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Abstract: Due to poor local range of the perception and object recognition mechanisms used by

autonomous vehicles, incorrect decisions can be made, which can jeopardize a fully autonomous

operation. A connected and autonomous vehicle should be able to combine its local perception with

the perceptions of other vehicles to improve its capability to detect and predict obstacles. Such a

collective perception system aims to expand the field of view of autonomous vehicles, augmenting

their decision-making process, and as a consequence, increasing driving safety. Regardless of the

benefits of a collective perception system, autonomous vehicles must intelligently select which data

should be shared with who and when in order to conserve network resources and maintain the overall

perception accuracy and time usefulness. In this context, the operational impact and benefits of a

redundancy reduction mechanism for collective perception among connected autonomous vehicles

are analyzed in this article. Therefore, we propose a reliable redundancy mitigation mechanism for

collective perception services to reduce the transmission of inefficient messages, which is called VILE.

Knowledge, selection, and perception are the three phases of the cooperative perception process

developed in VILE. The results have shown that VILE is able to reduce it the absolute number of

redundant objects of 75% and generated packets by up to 55%. Finally, we discuss possible research

challenges and trends.

Keywords: collective perception; connected and autonomous vehicles; redundancy; V2X communications

1. Introduction

The operation of a connected and autonomous vehicle (CAV) is based on three layers,
namely sensing, perception, and decision making [1,2]. CAVs are equipped with an array
of onboard sensors at the sensing layer, such as high-resolution cameras, RADAR, light
detection and ranging (LIDAR), global positioning system (GPS), inertial measurement unit
(IMU), and ultrasonic sensors [3,4]. In this way, the sensing layer provides a vast amount
of environmental and contextual data [5,6]. This sensing capability is a prerequisite for a
vehicle to perceive the surrounding environment and make proper and timely decisions to
ensure the comfort and security of passengers [7,8]. However, regardless of the technology
used, onboard sensors are limited by the CAV field of view (FoV), and by obstacles from
other moving cars or roadside objects.

The perception layer is responsible for furnishing the vehicle with knowledge of the
surrounding environment to allow it to identify and track pedestrians, animals, and other
vehicles, as well as accidents and dangerous situations, among other tasks [9]. In summary,
the perception layer must have the following characteristics: (i) provide precise driving
environment information; (ii) work typically and not easily malfunction; and (iii) avoid
processing delays that affect real-time applications (e.g., overtaking maneuvers) [10,11].
However, the sensors’ restricted FoV and potential inaccuracy results in an incomplete or
erroneous perception of the surrounding environment [10,12]. In this sense, the limitations
and inherent challenges in the perception layer lead to malfunction for complex driving
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applications, such as collision avoidance systems, blind crossing, location prediction, and
high definition maps [13,14].

To cope with this issue, CAVs must not only depend on on-board sensors or mecha-
nisms that operate locally. This is because the decision layer can have more precise decisions
as soon as the perception layer also provides information from other vehicles, sensors,
people, cities, etc. [15,16]. In this sense, collective perception (CP) appears as an alternative
to enhance the sensing layer information with data from other vehicles by allowing vehicles
to share their sensing and perceived data via wireless communication to obtain a more
accurate and comprehensive perception of their surroundings to guarantee safety for CAVs
[17,18]. CP services provide more information to detect safety-critical objects, avoid blind
spots, detect non-connected road users or to better track objects [16,19]. Hence, CP provides
updated view of a larger environment by considering information from neighbor vehicles
[15,16]. Finally, the decision layer is responsible for continuously taking efficient and safe
driving actions in real time, such as overtaking maneuvers, platoon formation, predictions,
route and motion planning, and obstacle avoidance. These decisions are possible through
the collective knowledge of the scenario provided by the perception layer [20,21].

However, CP could lead to significant amount of information exchanged by vehicles,
which decrease the performance of the vehicle-to-everything (V2X) network, and also
the effectiveness of CP. One way to mitigate this problem is to reduce redundant shared
data, which can be achieved by correlating different data sources or taking into account
vehicle mobility patterns. In addition, redundant data indicate that many vehicles may
execute a duplicate perception across the same region simultaneously [22]. It is important
to mention that the processing delay of a given data should not be too long, as otherwise,
the processing results would be out of date in relation to the real state of the environment.
In this way, the CP may face increased transmission latency as soon as no technique is used
to decrease transmission redundancy [23–26].

Existing studies [27–30] seek to reduce the overhead of the CP system and control
the redundant information exchanged between vehicles to reduce the communications
overhead. For instance, some works [27,31] propose a scheme that enables CAVs to adapt
the transmission of each tracked object based on information such as position, carrying
density, and road geometry. However, to the best of our knowledge, these data selection
works in the literature do not consider the presence of several regions of interest in the
CP scheme. A data selection scheme based on regions reduces frequent transmissions of
messages, enabling CP applications to be applied while maintaining the same perception
of the environment and number of objects detected.

In this article, we describe the operational impacts and benefits associated with CP
for CAVs. In this sense, we review the state of the art of CP for CAVs and the critical
research challenges related to CP. Based on our examination of the relevant literature, we
identify four research challenges, namely, redundant information, perception fusion and
dissemination, privacy, and security. In addition, we introduce a cooperatiVe perceptIon for
the autonomous vechicLEs mechanism, called (VILE), to show the benefits of CP in order
to reduce the amount of redundant data, while maintaining the amount of detected objects
compared to the basic transmission approach. To achieve that, we divide the scenario into
a set of regions and in each region, vehicles have perception data, such as the number of
objects detected. In the VILE operation, it relies on a data selection algorithm to choose a
given vehicle to share the perception of a specific area to reduce communication overhead.
Furthermore, VILE considers three phases (i.e., knowledge, selection, and perception)
in the CP process. Evaluation results demonstrate the efficiency of VILE mechanism
to reduce the amount of redundant data by up to 85%, while maintaining the number
of detected objects compared to the basic transmission approach defined by European
Telecommunications Standards Institute (ETSI) [32]. VILE also meets the requirements
for the operation of CP applications, as it maintains the same number of pedestrians and
vehicles detected and shared with the other CAVs. The main contributions of this article
are stated as follows: (i) Introduce the VILE mechanism to mitigate data redundancy for
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CAV object detection application. (ii) The evaluation of a CP to mitigate data redundancy
for CAV object detection application; (iii) The identification of potential research challenges,
opportunities, and requirements for CP in CAVs.

The remainder of this article is structured as follows. In Section 2, we describe the
current state-of-the-art about CP for CAVs. Section 3 presents the system model and
operation of the proposed VILE mechanism. In Section 4, we introduce the simulation
scenario, simulation methodology, and discuss the results obtained. Section 5 presents
the key research challenges related to CP. Section 6 concludes this article and presents the
future work direction.

2. State of Art about Collective Perception for Connected and Autonomous Vehicle

This section introduces an overview about CP applied to CAV. In addition, we in-
troduce the state-of-the-art requirements and opportunities for CP in CAVs in terms of
congestion control and redundancy mitigation; data selection and fusion for CAVs applica-
tions that may increase vehicle perception; and the safety aspect of CP applications. Based
on a detailed study of the literature and state of the art of CP in CAVs, we classified existing
works in different areas, such as communication, data selection and fusion, and privacy
and security.

2.1. CP Overview

CP allows vehicles to exchange collective perception message (CPM) with each other
to obtain a more accurate and comprehensive perception of their surroundings, improving
traffic safety and efficiency for CAVs [16]. The ETSIs defines the CPMs as a basic service
protocol that contain information about perceived objects by CAVs. Specifically, ETSIs
defines the message format and rules for CPMs generation [32,33]. In this way, CPMs
allows CAVss to share surrounding information (e.g., objects detected) detected by sensors,
such as, cameras, RADAR, LIDAR, and others [34,35]. A CPM contains data about the
vehicle that generated the CPM, its onboard sensors (e.g., range and FoV), as well as data
about the detected object (e.g., position, speed, distance, and size) [22,27].

In addition, CPM could be used to send information about tracked objects, where
the CPM must be transmitted based on the following conditions: (i) The detected object
must move at least 4 m from its last CPM transmission; (ii) The detected object must be
moving by more than 0.5 m/s from its last CPMs transmission; (iii) The detected object
must not be included in following CPMs. Figure 1 presents the general structure of a
CPM. One standard intelligent transport system (ITS) protocol data unit (PDU) header
and multiple containers constitute a CPM. The ITS header includes the information of
the protocol version and the message type. Inside the CPM information, the parameters
describing the objects identified within the CAV’s FoV must be included.

A CPM can be broadcast either by a CAV or by a road side unit (RSU). Some fields
present in CPM are optional and describe the perception observed by the sensor FoV.
The management container offers fundamental information about the transmitting entity,
whether it is a CAV or an RSU. The sensor information contains the data for each sensor
equipped on a vehicle. In this sense, the sensor container provides data, such as the
range and horizontal and optional vertical opening angles. Furthermore, the free space
addendum container may represent varying confidence levels for a given sensor’s FoV.
Finally, the perceived object container includes a detailed description of a detected object’s
dynamic state (i.e., speed, acceleration, and direction) and other properties related to the
object’s behavior.
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Schiegg et al. [27] examined the performance of the CPs service in IEEE 802.11p
networks in regards to its impact on traffic participants’ acquired environmental perception
and drew the conclusion that the service should be developed further. The primary objective
is to help the ongoing ETSI standardization work in this domain. In addition, the authors
modify the analytical model used to evaluate the performance of the C-V2Xs CPs service.

Garlichs et al. [29] proposed a set of generation rules for the CPs Service that provides
a trade-off between two factors. The proposed rules have the potential to significantly
impact the delivered service quality for receiving intelligent transport system stations, as
well as the generated network load on the used radio channel. As a result, the proposed
generation rules include a message segmentation mechanism that enables the generation
of sequential independent CPMss. In this approach, the proposed generation rules are
subjected to a thorough simulation study to assess their behavior in various traffic scenarios
and radio configurations.

Delooz and Festag [28] investigated three schemes for filtering the number of objects
in messages, and thus adjusting network load to optimize the transmission of perceived
objects. The simulation-based performance evaluation shows that filtering is an effective
method for improving network-related performance metrics, with only a minor reduc-
tion in perceived quality. The authors also investigate whether filtering perceived objects
carried in CPM is an appropriate mechanism for optimizing vehicle perception capabili-
ties. The authors see filtering as a supplement to the message generation rules based on
vehicle dynamics.

2.3. Data Selection and Fusion Aspect

CP over wireless networks cannot depend on the exchange of raw sensor data. This is
because the limited availability of communication resources, which is a fundamental factor
to justify the need to select or fuse data before transmission. Therefore, raw sensor data
must be effectively combined to save storage space and transmission resources. Previously,
some strategies [36–38] were presented for handling and processing such raw sensor data.
In this sense, data fusion approaches may integrate shared perceptual information provided
by CP applications to increase the accuracy of discovered items. In addition to minimizing
resource consumption, these strategies enhance the identification of impediments in the
driving environment via integrating multi-sensor data and raising the navigational safety
of autonomous cars [17,39].

Data fusion using a large set of redundant information leads to an overconfident
estimate, and thus it is important to use adaptive methods to select the information to be
fused [36,38]. As CP techniques rely on broadcast data without universally interpretable
object identifiers, participating CAVs must use data binding to sort and organize the
received data before merging computations. In addition, it is crucial to examine the
geographical and temporal significance of the item that will be used to integrate the data
and its effect on the produced findings [10].

Abdel-Aziz et al. [36] studied the joint problem of associating vehicles, allocating
resource blocks (RBs), and selecting the content of the exchanged CPMs to maximize the
vehicles’ satisfaction in terms of the received sensory information. The authors consider a
quadtree-based point cloud compression mechanism to analyze a reinforcement learnings
(RLs)-based vehicular association, RB allocation, and content selection of CPMs.

Yoon et al. [40] proposed and evaluated a unified CPs framework based on vehicle-
to-vehicles (V2Vs) connectivity. The authors presented a generalized framework for de-
centralized multi-vehicle CPs, as well as a systematic analysis of the framework’s inherent
limitations and opportunities. The framework must take into account the ad hoc and
random nature of traffic and connectivity, providing scalability and robustness to work at
various traffic densities and scenarios.

Lima et al. [37] studied the split covariance intersection filter, which is a method
capable of handling both independent and arbitrarily correlated estimates and observa-
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tion errors. Various filtering solutions based on the covariance intersection filter or split
covariance intersection filter were presented.

Miller et al. [38] created a perception and localization system to allow a vehicle with
low-fidelity sensors to incorporate high-fidelity observations from a vehicle in front of
it, allowing both vehicles to operate autonomously. The system shares observed vehicle
tracks and their associated uncertainties, as well as localization estimates and uncertainties.
The associated measurements are then fused in an extended Kalman filter to provide
high-fidelity estimates of tracked vehicle states at the current time.

Aoki et al. [41] presented a CPs scheme with deep reinforcement learning to improve
detection accuracy for surrounding objects. The presented scheme reduces network load in
vehicular communication networks and improves communication reliability by using deep
reinforcement learning to select the data to transmit. The authors also demonstrated the
collective and intelligent vehicle simulation platform, which was used to design, test, and
validate the CPs scheme.

Masi et al. [10] presented a dedicated system design with a custom data structure
and light-weight routing protocol for easy data encapsulation, fast interpretation, and
transmission. The authors also proposed a comprehensive problem formulation and an
efficient fitness-based sorting algorithm to choose the most valuable data to display at the
application layer.

2.4. Privacy and Security Aspect

As soon as the data leave the vehicle, it is important to guarantee that any personal
data are processed lawfully. Some works [42–44] are still evaluating how to comply with
data protection regulations in CP applications. CP deals with mobility and sensor data,
and thus, monitoring CAVs might breach users’ privacy. Furthermore, relying on CP
applications for continuous and comprehensive environmental data may generate privacy
problems [17,32].

Perception data would show the movements and actions of the driver, who is not
necessarily the vehicle owner. In this sense, broadcast CPMs with user location information
may lead to a privacy risk for both the car owner and the driver [17,32]. However, privacy
issues may be addressed if the information is filtered, anonymized, and aggregated (for
anonymity and data quality reasons) by trustworthy back-end systems before being shared
with other parties. Volk et al. [42] introduced a safety metric for object perception that
incorporates all of these parameters and returns a single easily interpretable safety assess-
ment score. This new metric is compared to state-of-the-art metrics using real-world and
virtual data sets. The proposed metric uses responsible-sensitive safety (RSS) definitions to
identify collision-relevant zones and penalizes hidden collision-relevant objects. The RSS
model consists of 34 definitions of various safety distances, timings, and procedural rules
that mathematically codify human judgment in various traffic conditions. RSS rules specify
the proper behavior of an autonomous vehicle and provide a mathematical description of
safe conduct.

Shan et al. [45] investigated and demonstrated, using representative experiments,
how a CAVs achieves improved safety and robustness when perceiving and interacting
with RSUs, using CPMs information from an intelligent infrastructure in various traffic
environments and with different setups. The authors showed how CAVs can interact with
walking and running pedestrians autonomously and safely using only CPMs information
from the RSUs via vehicle-to-infrastructures (V2Is) communication.

Guo et al. [43] provided a trustworthy information-sharing framework for CAVs,
in which vehicles measure each other’s trust using the Dirichlet-categorical model. The
authors apply trust modeling and trust management techniques developed for vehicular
networks to CAVs in order to achieve a trustworthy perception of information sharing on
CAVs. Enhanced super-resolution generative adversarial networks are used to improve
the resolution of images containing distant objects in order to allow a vehicle to assess
the trustworthiness of more data transmitted from others. Based on the results of shared
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object detection, the work first crops out all distant objects from captured images. It detects
potential objects by applying our super-resolution model to these blurry images.

Hurl et al. [46] examined a novel approach for CAVs to communicate perceptual
observations, which is tempered by trust modeling of peers providing reports. Based on the
accuracy of reported object detections as verified locally, transmitted messages can be fused
to improve perception performance beyond sight and a long distance from the ego vehicle.
The authors proposed a method for integrating trust modeling and collective perception
into an end-to-end distributed perception model, as well as the TruPercept dataset, a
multi-vehicle perspective perception dataset for CAVs collected in a realistic environment.

3. Collective Perception Mechanism for Autonomous Vehicles

This section describes the VILE mechanism, which considers three phases in the CP
process, namely, knowledge, selection, and perception. The knowledge phase divides the
scenario into a set of regions (i.e., hexagonal perception regions) and receives beacons from
the CAVs to build a dynamic graph. Next, in the selection phase, the RSU selects, in each
region, the vehicle closest to the hexagonal’s center and sends a message requesting the per-
ception of the surrounding environment. Finally, in the perception phase, the chosen CAVs
broadcast their perception with others CAVs in the scenario. In the following, we introduce
the considered the network and system model, as well as the mechanism operation.

3.1. Network and System Model

We consider a CAV scenario composed of n autonomous vehicles (nodes) moving
on a multi-lane urban or highway area, where each vehicle has an individual identity
(i ∈ [1, n]). These vehicles are represented in a dynamic graph G(V, E), where the vertices
V = {v1, · · · , vn} represent a finite set of vehicles, and edges E = {e1, · · · , em} build a
finite set of asymmetric wireless links between neighbor vehicles (vi). Each vehicle (vi)

moves toward a certain direction (
−→
diri) following a travel path Pi (a set of roads connected

by intersections) with speed si ranging between a minimum (smin), and a maximum (smax)
speed limit. Vehicles periodically broadcast beacon messages on the network via V2X
communication, where VILE includes extra information in the beacon, i.e., vehicle position,
speed, and direction. In this sense, VILE takes advantage of such beacon transmissions
to acquire information and build the dynamic graph G(V, E), avoiding extra overhead.
In this sense, RSUs collects such information and builds the knowledge necessary for its
decision making (i.e., selection and perception phases). Furthermore, the RSU divides the
scenario in a set of hexagonal regions H(L, S), where Lh represents the center position of
the hexagonal region h with a Sh size.

At each time interval t, the CAV vi detects a set of road objects Ovi,t that are inside the
sensor FoV. Specifically, an object oj ∈ Ovi,t is the state space representation of a physically
perceived entity inside the sensor’s perceptual range (i.e., its FoV). The sensors detect all
objects that are not shadowed by buildings or other vehicles using a simple ray-tracing-like
approach. The perception information is represented by each object’s position, type, size,
and dynamic state (i.e., speed, acceleration, and direction), which can be estimated by
analyzing the vehicle’s own sensor measurements. Sensor noise or other inaccuracies are
not modeled. In this way, it is possible to extract the set of perception information from
each object oj ∈ Ovi,t and build the local perception of the CAV. The local perception will be
included into the CPM, using the ETSI proposed format, and shared with the other CAVs.
The size of the CPM is dynamically calculated based on the number of objects included in
each CPM. Each object included in the message has an average size of about 30 bytes [32].

For the VILE works properly, the following assumptions are made:

• Every CAV vi can detect and share a object that is inside the sensor FoV. The sensors
detect all objects not covered by buildings or other vehicles;

• Other errors, sensor noise, and processing latency are not modeled;
• Each CAV vi is aware of its own data by means of orientation and positioning system,

such as global positioning systems (GPS) and inertial measurement unit (IMU);
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3.2. VILE Operation

In summary, the VILE mechanism considers tree phases for CP service, namely, knowl-
edge, selection, and perception phases. The VILE mechanism takes into account the
existence of a set H of hexagonal regions that divide a given map, as shown in Figure 2,
which depicts the division of the areas considered for the mechanism’s selection phase.
Mapping is a critical component of autonomous sensing and navigation systems since it
provides the CAV with the ability to locate and plan a collision-free course, as well as a
means of communication between people and the CAV. The hexagonal grid-based map is
one of the most used approaches for representing the surroundings. The RSUs have global
knowledge of the regions present in their coverage radius, but the distribution is global and
not associated with a specific RSU. VILE considers that an area segmentation algorithm,
such as the one presented by Uber [47], was used to partition the scenario into hexagons.
The VILE mechanism considers that each hexagonal region h of the set of regions H has a
fixed size S and diameter equal to the maximum range of a vehicle’s sensors.

Grid map systems are essential for analyzing enormous geographical perceptions
systems since they segment Earth into recognizable grid cells [48,49]. A hexagonal grid
map can be used for mapping static and dynamic environments. The shape of the cell is
not essential for dynamic approaches, but the advantages of the shape are preserved. Other
publications have already shown the advantages of dividing areas using hexagons [50,51].
Fewer hexagonal sections are needed to represent the map, which reduces the computing
time and storage requirements. Another advantage of employing hexagonal areas is
that sampling using hexagons results in minimal quantization error for a given sensor’s
resolution capacity [49]. First, the distance between a particular cell and its immediate
neighbors is the same in all six principal directions; curved structures are represented more
precisely than rectangular regions [50,51]. In that context, in the knowledge phase, the RSU
collects information shared by the CAVs based on position, speed, and orientation.

Figure 2. VILE knowledge phase.

Following, the selection phase chooses the CAV vi closest to the center position of the
hexagonal region hi to share the set Ovi,t of detected objects with the other vehicles after
the end of the time window W, as shown in Figure 3. This CAV is in charge of representing
the perception in the defined region. Algorithm 1 provides a brief explanation of how the
VILE mechanism was implemented and how the selection process is carried out based on
the distance between the position of each CAV and the center of each hexagonal region.
The parameters used to begin this processes are the hexagonal region’s center position L
and the CAVs set V under the RSU cover selected to share their sensor perception with
other vehicles.
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Figure 3. VILE selection phase.

Algorithm 1: VILE Algorithm

1 Input
2 V //Set of vehicles in the network
3 H //Hexagonal regions created by RSU that divide a given map
4 Output
5 VH //Set of vehicles to share the perception
6 begin
7 for vi ∈ V do
8 Lvi

← vi .currentPosition()

9 h← identi f yRegion(Lvi
, H)

10 d
(

Lvi
, Lh

)

←

√

∑
n
j=1

(

Lvi ,j − Lh,j

)2

11 if d
(

Lvi
, Lh

)

< minDistanceh then

12 VH ← includeInList(vi , V, H)

13 requestPerception(VH)

In this way, Algorithm 1 describes the process of the VILE. The set of vehicles V and
the hexagonal regions H created by RSU that divide a given map are provided to VILE. In
each vehicle inside the RSU coverage area, the algorithm identifies the defined hexagonal
region h according to each vi position (Lines 7–9). In the case of the vi position information
present in the h region of the RSU, the RSU can calculate the distance between the position
of the vi and the center position of the hexagonal region h. For this, VILE applied Euclidean
distance to calculate the smallest distance between two specific points (Line 10). If the
calculated distance d(Lvi

, Lh) is the shortest distance, compared with minDistanceh, among
the set of CAVs in the region h, then the CAV is added to the set of selected vehicles VH

(Lines 11–12). Finally, the RSU sends the message on the network and requests the selected
CAVs about the perception of the region (Line 13).

After the selection phase, the chosen CAVs broadcasting CPM contain the position
and dynamic state (e.g., velocity, acceleration, and orientation), as well as all or a subset
of the perceptual information Ovi,t, which is known as the perception phase, as shown in
Figure 4. Thus, each selected CAV is responsible for sensing a single hexagonal region. The
CAVs chosen by the mechanism will send the message to all the neighboring CAVs and the
RSU. In this way, the CP services can build the perception of the regions separately and
share the objects or obstacles detected with the neighboring regions. In this way, cars might
gather information from nearby regions for future use. RSU is also responsible for keeping
all areas’ perceptions updated after the time window W has ended.
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Figure 4. VILE perception phase.

Figures 2–4 illustrate each step for establishing a perception in each hexagonal region
H using the VILE mechanism. Assume that vehicles v1, v2, and v3 move on a hexagonal
region h1 to form a portion of CAVs V. After the knowledge phase, the RSU has the
position information for each vehicle inside region h1. For exemplification, let us assume
Lv1

= (50, 10), Lv2 = (10, 20), and Lv3 = (0, 10). Each CAV vi is aware of its position
Lvi

= (X, Y) provided by a positioning system, such as GPS. During the selection phase,
the RSU applies the VILE algorithm to compute and select based on the distance between
each vehicle inside the region h1 and the center position of the hexagonal region h1, defined
as Lh1

= (0, 0). In this example, v3 is selected to share the perception and representative
vehicle for region h1 since it has the shortest Euclidean distance, among the set of CAVs V in
the region h1, with distances d

(

Lv1
, Lh1

)

= 50.99, d
(

Lv2 , Lh1

)

= 22.36, and d
(

Lv3 , Lh1

)

= 10.

4. Evaluation

This section presents the evaluation of the VILE mechanism for redundancy mitigation
on the CAV scenario compared to baseline (ETSI CPM generation rules [32]). In addition,
this section presents the scenario description, detailing the setup and simulation and the
results obtained from CPM generated and received. The baseline approach is used to
evaluate the behavior of the proposal, which serves as the main benchmark for the analysis
of collective perception approaches. From a collective perception services perspective,
we also evaluate the redundancy of objects and the number of detected pedestrians and
vehicles perceived by the mechanisms.

4.1. Simulation Scenario Description

We considered the Veins and OMNeT++ framework to evaluate the implemented
mechanics. Veins is an open source framework that implements the standard IEEE 802.11p
protocol stack for inter-vehicle communication and an obstacle model for signal attenuation.
For traffic and vehicle mobility simulation, we employed the Simulation of Urban MObility
(SUMO), which is an open source traffic simulator, to model and manipulate objects in the
road scenario. This allows us to reproduce the desired vehicle movements with random
cruise speed and V2I interactions according to empirical data. We conducted 33 simulation
runs with different randomly generated seeds, and the results present the values with a
confidence interval of 95%.

We conducted simulations in a Manhattan grid scenario to evaluate the impacts of
vehicular mobility in the CP mechanisms. The scenario is a 1 km2 fragment of Manhattan,
USA, with several blocks and two-way streets so that the vehicles can move in opposite
directions. The vehicle densities varied from 100 to 200 vehicles/km2. Vehicles in the
simulation have the exact dimensions, mean speed, and standard deviation speed. In
addition, we applied a random mobility model to produce unique routes for each vehicle
based on replication and density using a random mobility model. As a result, vehicles
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in the simulation share the same characteristics, such as exact size, mean, and standard
deviation speed. All the main simulation parameters are summarized in Table 1. In our
simulations, we chose the sensors’ parameters according to others approaches that evaluate
the CP in CAVs scenario [22,32]. Thus, the FoV of 360° was chosen as well as the range of
150 m to generate CP messages with more detections in the scenario.

In terms of collective perception evaluation, the number of messages, channel busy
ratio, and packet delivery ratio are some metrics that address the network costs of the
CP service but are not enough to assess the quality level of the perception for the CAVs
applications because they fail to capture redundancy aspects of data content related to
sensors’ perception [32]. For example, the number of duplicate detected objects is based
on how often the sensor has caught the same object, such as people or CAVs. Therefore, a
higher redundancy value means worse channel utilization. We also evaluate the number of
detected objects for each vehicle on the road. We measure the average number of unique,
shared perceived objects for each CAV over its simulation time to calculate the absolute
number of objects detected. On the other hand, the number of CPM messages generated
and received measures the network costs for each approach based on the total number of
packets generated and sent through the shared channel. The CPM-generated values closer
to zero mean that the techniques use fewer messages in the shared communication channel
to transmit the objects detected.

Table 1. Simulation parameters.

Parameter Value

IVC Technology IEEE 802.11p
Transmission Power 20 mW
Beacon Transmission Rate 1 Hz
Bit Rate 6 Mbit/s
Transmission Range 250 m
Maximum Interference Range 2600 m
Data Message Size 1024 Bytes
Scenario Grid
Simulation Area 1 km2

Number of Road Segments 9
Number of Vehicles {100, 150, 200}
Number of Pedestrians 100
Vehicles Speed Mean: 13.84 m/s (St.Dev: 5.27)
Sensor FoV 360°
Range of Perception 150m

4.2. Simulations Results

To evaluate the cost of the collective perception service, the absolute number of CPM
generated for each approach applied in the scenario was evaluated, as shown in Figure 5.
The amount of CPM messages generated and received showed similar behavior to the
redundancy results of detected objects. However, the VILE mechanism reduces the number
of generated packets by up to 55% compared to the other approach. The most significant
amount of CPM messages generated occurred when the density was 100 vehicles, with
a value of 32 messages per CAV. Furthermore, we can notice a constant behavior in the
number of messages generated by each vehicle and received by the RSU. This happens
because the VILE mechanism chooses a single candidate to share the perception for each
previously defined region. Thus, the number of vehicles does not directly influence the
number of candidates chosen. The number of messages generated and transmitted by
the baseline increases significantly, as there is no redundancy control mechanism. In this
context, we noticed at least 25% increase in messages received by RSU.
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the data fusion system must develop a data structure for storing detected objects and
updating previously tracked objects with new measurements associated with a previously
monitored object. Finally, if new measurements are not related to previously monitored
items, the system must delete those objects from the list of tracked objects. The data fusion
mechanism predicts each object to timestamps at which no measurement is available from
sensors. In addition, the data fusion mechanism associates objects from other potential
sensors mounted to the station or received from other CAVs with objects in the tracking list.
It is essential to examine the different prediction approaches used in this context and to
suggest new strategies to maintain the prioritization of objects on the list.

Finally, the assumption that information obtained through collective perception is
correct may not be valid in real-world situations, and malicious attackers may exploit
models that lack mechanisms to detect and eliminate false information. CPM can cause
accidents or inaccurate CAV behavior with malicious intent. Encryption and signatures, in
general, can ensure data security. Aside from the malicious intent of CPM partners, there
could be other causes. It could be a simple malfunction or a lack of calibration. As a result,
the research seeks to broaden the field through mutual trust networks.

6. Conclusions and Future Work

CP improves traffic safety and efficiency by supporting various CAV applications.
However, one source of inefficiency in this new paradigm is that the same object can be
detected and tracked by multiple CAVs on the road, resulting in redundant data trans-
missions over the network. Without coordination, three observations of the same object
will often be sent over the network. Additionally, if the network is overloaded, messages
may take longer to send, which makes them less useful for collective perception. In this
situation, we need data redundancy mechanisms to make collective perceptions more
accurate and useful.

In this article, we discussed the implications and benefits of the redundancy reduction
mechanism for CP in the context of CAVs. In addition, an evaluation of a redundancy
mitigation mechanism, called VILE, was introduced to reduce communication costs and
maintain the system’s overall perception. Simulation results show the efficiency of the
VILE compared to the baseline to ensure a collective perception with 55% less generated
packets and 75% fewer redundant objects. Finally, we discuss collective perception trends
in the context of CAVs, as well as potential research challenges and opportunities.

In future work, we aim to compare the VILE mechanism with other proposals in
the literature and evaluate it in more complex scenarios. We also intend to consider the
perception and processing latency from the sensors, for example, by adding the processing
model defined by activity estimation [52], as well as evaluating the transmission delay and
a prediction model that chooses the CAV that will stay longer inside the hex region. The
security of the provided proposal will also be examined in future work. We will also assess
how the introduction of misleading information affects the behavior of the approach and
the perception of CAVs.
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