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Resumo 

 

 Esta dissertação propõe uma abordagem baseada em dados para estimar as irregularidades 

geométricas da ferrovia a partir de dados medidos pelo vagão instrumentado (VI). Aprendizado 

de máquina é utilizado para encontrar o mapeamento não linear entre os dados do VI e as 

irregularidades da via. Um modelo dinâmico do veículo ferroviário BRA1 foi utilizado para 

gerar um conjunto de dados artificial que contêm variáveis medidas pelo VI verdadeiro e 

também de outros VIs encontrados na literatura. Foi realizada uma etapa de análise de dados 

extensiva para verificar se a instrumentação atual do VI da BRA1 é suficiente para obter 

irregularidades tanto laterais quanto verticais da via. Engenharia de variáveis baseado nos 

movimentos do vagão, integração de sinais e métricas estatísticas foram aplicadas para extrair 

variáveis e, em seguida, as melhores variáveis foram selecionadas usando um método de 

wrapper. Oito modelos diferentes de regressão foram treinados e otimizados usando Optuna. 

Os resultados mostram que, com a instrumentação atual do VI, obter irregularidades laterais é 

improvável devido à baixa correlação, no entanto, as irregularidades verticais podem ser obtidas 

com uma raíz do erro quadrático médio (RMSE) de 0,556 mm. Com o pós-processamento, o 

RMSE foi ainda mais reduzido para 0,410 mm. 

 

Palavras Chave: Aprendizado de máquina; Vagão instrumentado; Análise exploratória de 

dados; Irregularidades geométricas; Inspeção de via permanente.  

 

 

 

  

 

 

 

 

 

 

 

 

 



 

 

 

Abstract 
 

This thesis proposes a data-driven approach to estimating geometric track irregularities 

from instrumented railway vehicle (IRV) data. Machine learning is used to find the nonlinear 

mapping between IRV data and track irregularities. A dynamic model of the BRA1 railway 

vehicle was used to generate an artificial dataset that contains variables that are measured by 

the real BRA1 IRV and other variables measured by IRVs found in the literature. An extensive 

data analysis step was done to verify if the current instrumentation of the BRA1 IRV is 

sufficient for obtaining both lateral and vertical track irregularities. Feature engineering based 

on wagon movements, signal integration and time domain statistical metrics were applied to 

extract features and then the best features were selected using a wrapper method. Eight different 

regression ML models were trained and optimized after the feature selection using Optuna. The 

results show that, with the current instrumentation of the BRA1 IRV, obtaining lateral track 

irregularities is unlikely due to low correlation, however, vertical irregularities can be obtained 

with a root mean squared error (RMSE) of 0.556 mm. With postprocessing, the RMSE was 

further reduced to 0.410 mm. 

Key Words: Machine learning; Instrumented railway vehicle; Exploratory data analysis; 

Track irregularities; Track inspection. 
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1 INTRODUCTION  
 

 

Railway companies routinely face the problem of deciding which track segments should 

be prioritized for inspection and maintenance (GERUM; ALTAY; BAYKAL-GÜRSOY, 

2019). Like any other mechanical system, railway components deteriorate with usage, time, and 

environmental conditions, causing lower safety and possibly railway asset failure (KASRAEI; 

ZAKERI; BAKHTIARY, 2020). Track degradation is especially important due to its large 

effect on vehicle dynamics and safety. Thus, it is crucial to have an accurate way of measuring 

and monitoring track irregularities in both the short and long term (KHAJEHEI, 2021; URDA 

et al., 2021).  

 The recent development of sensors and information technology (IT) has led to the 

emergence of condition-based monitoring of track assets (TSUNASHIMA; HIROSE, 2020). 

By recognizing how track condition changes over time, it is possible to predict the residual 

lifetime of the asset and optimize maintenance with accurate planning. Furthermore, track 

deterioration is closely related to ride quality and railway safety, so it is also important to keep 

track irregularities in check and follow the railway's norms (TSUNASHIMA, 2019).   

By installing an onboard sensing device in an in-service vehicle, track inspection can be 

done at lower costs and higher frequency when compared to track inspection cars or manual 

inspection (TSUNASHIMA; HIROSE, 2020). These vehicles are referred to as IRVs 

(instrumented railway vehicles). From IRVs measured data, different types of models and 

techniques can be applied for condition monitoring and degradation forecasting. 

 

 

1.1 Motivation 

 

 

Data is constantly being measured from an instrumented railway vehicle (IRV) and used for 

maintenance planning and decision-making by the railway engineers all around the world. This 

is particularly true for Brazilian Railway, like BRA1. The railway company currently compares 

the measured data from the IRV with preestablished maintenance limits. However, the results 

are not useful in their completeness. More sophisticated methods involving condition-based 
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maintenance (CBM) are being invested to improve upon the current system, where the IRV is 

the main source of data.  

Despite the abundance of available data, the systems that will transform this data into useful 

information for maintenance teams are in their early stages.  Therefore, there is a large margin 

for improvement and innovation in this area. This thesis represents a step towards transforming 

the current paradigm of track evaluation by offering novel contributions to the analysis methods 

pointing towards a more comprehensive and secure approach to the digital inspection system.  

 

 

1.2 Objective 

 

 

 The objective of this thesis is to develop a methodology to indirectly measure geometric 

track irregularities from the dynamic response measured by an instrumented railway vehicle 

(IRV).  

 

 

1.2.1 Research goals  

 

 

• Analyze the effect of track irregularity class (FRA6 – FRA3) on the measured dataset; 

• Analyze the effectiveness of the current IRVs sensor arrangement for obtaining track 

irregularities; 

• Utilize data-driven methods to measure rail-specific parameters, creating virtual sensors; 

• Apply model interpretability techniques to understand how the optimal model operates 

and observe if the learned characteristics correspond to the known domain knowledge;  

• Propose a flowchart of how to integrate the optimal data-driven model with day-to-day 

operations.
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2 LITERATURE REVIEW 
 

This section will focus on the core concepts and theories necessary for application of 

machine learning in the analysis of railway systems. Specifically, a brief review of track 

geometry parameters and types of geometric track irregularities is presented, to contextualize 

the reader before going into how track quality is quantified and why instrumented railway 

vehicles could be an adequate choice for applications involving condition monitoring. Different 

IRV sensor arrangements are also discussed, highlighting their respective applications, 

advantages, and disadvantages.  

Later on, the dataset generation process is explained. Track irregularities are generated 

using a power spectral density function while dynamic simulation provides the sensor values 

that correspond to the BRA1 IRV. From this information, a machine learning problem can be 

formulated to map the input (sensor variables) to the output (track irregularities). More details 

on how this is done in the context of fault diagnosis and health monitoring are provided, 

alongside with the more commonly used machine learning models. 

 

 

2.1 Track components and geometry parameters  

 

 

The railway track is composed of several different components that work together as the 

track's support. The main purpose of this structure is to provide an economical transportation 

system by guiding the vehicle and transmitting contact loads through the track components to 

the subgrade (ATTO-OKINE, 2017). The basic layers that compose a ballasted railway track 

are shown in Figure 1 and Figure 2. The superstructure is made of rails, ties (sleeper), fasteners, 

turnouts, and crossings, while the substructure consists of a ballast, sub-ballast, subgrade, and 

other drainage facilities. These two structures are separated by the sleeper-ballast interface. The 

research developed in this thesis focuses only on the ballasted railway tracks and the 

superstructure. 
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Figure 1: Layers forming a ballasted railway track - (BERAWI, 2013). 

 

 

Figure 2: Main components of the rail track superstructure -  (CARLVIK, 2020). 

 

 Track irregularities can be defined as geometrical deviations of the rail cross-section from 

an ideal track geometry. They can be divided into two main groups (URDA et al., 2021): 

 

• Distributed track irregularities: exhibit regular patterns along the track for multiple 

wavelengths. These defects depend on the damage mechanism (wear or rolling contact 

fatigue)  

• Isolated track defects: changes in the rail cross-sections at specific locations. 
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 This thesis will focus on the distributed track irregularities category, which is shown in 

Figure 3. Distributed track irregularities are commonly represented by the following variables 

(KASRAEI; ZAKERI; BAKHTIARY, 2020; MORI et al., 2010): 

 

• Left and right alignment (lateral irregularities); 

• Left and right longitudinal level (vertical irregularities); 

• Cant (superelevation); 

• Gauge; 

• Twist. 

 

 

Figure 3: Types of track irregularities. a) Alignment (lateral); b) Gauge; c) Longitudinal (vertical); d) cross-level; 

e) torsion/twist; f) superimposed - (ZHAI, 2020). 
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2.2 Describing railway track quality  

 

 

When planning maintenance actions, it is crucial to describe track quality and understand 

the current track condition to reduce derailment risks (KASRAEI; ZAKERI; BAKHTIARY, 

2020; WEI et al., 2014; ZHU et al., 2013). The two main ways of quantifying track quality are 

track geometry measurement and monitoring the dynamic response of the vehicle. 

 

 

2.2.1 Track geometry monitoring 

 

 

Ideally, railway vehicles would be guided along a smooth path, following the intended 

design parameters. In practice, there are deviations from this ideal state which can lead to 

unwanted vehicle responses such as poor ride quality and derailment (WESTON et al., 2007a). 

Many factors influence the track’s degradation, such as wagon speed, weather, topography, 

track characteristics, and components such as ballast, fasteners, sleepers, etc (BAI et al., 2016; 

BERAWI, 2013; SOLEIMANMEIGOUNI; AHMADI; KUMAR, 2016; YEO, 2017). Defects 

are not deterministically known a priori; they are stochastic on where and when they occur 

(GERUM; ALTAY; BAYKAL-GÜRSOY, 2019). Only after inspection and labeling the defect 

will be quantified; therefore, it is important to continuously measure track irregularities.  

Track irregularities are typically measured monthly using a track geometry car. This 

interval is chosen due to costs, track access rights, and other maintenance issues, since operation 

is interrupted in the whole segment of the track being inspected (BAI et al., 2016; DE ROSA et 

al., 2020; MOHAMMADI et al., 2019; PIRES et al., 2021; TSUNASHIMA; NAGANUMA; 

KOBAYASHI, 2014). This approach is, therefore, not optimal for diagnostics. An example of 

a track recording car is shown in Figure 4. This vehicle can measure gauge, cross-level 

(superelevation), twist, alignment, and longitudinal profiles with a sampling rate of 0.25 m. It 

can use either a mechanical contact system or an optical system that measures rail positions 

using an inertial platform as a reference (WESTON et al., 2007a).  
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Figure 4: Track geometry car EM 120 - (BERAWI, 2013). 

 

An example of a measurement system used by another track geometry car is shown in 

Figure 5. The instrumentation consists of vertical and lateral accelerometers (ACC), a 

gyroscope, linear variable differential transformers (LVDTs), and an optical system with lasers 

and cameras. Different track geometry cars can have different sensor arrangements for 

measuring track irregularities.  

 

 

Figure 5: Track measurement system installed on a track geometry car - (KHAJEHEI, 2021). 
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2.2.2 Dynamic response monitoring 

 

 

The alternative to track recording cars involves relying on inferring information from real 

freight vehicle motion (TAN et al., 2018a; THOMPSON et al., 2016; URDA et al., 2021; 

WESTON et al., 2007a, 2007b). This is done by monitoring the dynamic response (vehicle 

vibrations) of the vehicle with respect to track excitations by using sensors. Since vehicle 

vibrations are expected to correlate with track irregularities, the magnitude of the dynamic 

response is considered a possible means of assessing general track condition trends (BAI; LIU; 

LI, 2020; SANTOS; REICHL, 2014; TAN et al., 2018a; THOMPSON et al., 2016; 

TSUNASHIMA, 2019; URDA et al., 2021).  

To better illustrate the inherent relationship between track excitation and the dynamic 

response, consider the half-car suspension model shown in Figure 6. A series of springs and 

dampers connect the bodies. The track excitations on the bottom will cause a dynamic response 

to the bogie mass 𝑚𝑤𝑟 and wagon mass 𝑚𝑏. Sensors are put on specific locations to measure 

these responses, such as an accelerometer 𝑠1 placed on the bogie and the secondary spring 

displacement measurement 𝑠2. From these measurements, it is possible to infer the state of the 

track from the measured responses. Instrumented railway vehicles (IRVs) are the name given 

to the vehicles commonly used to measure these responses. 

 

Figure 6: Half-car suspension model – modified from (ZHANG et al., 2021). 
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An instrumented railway vehicle is defined as a regular railway service vehicle that is 

equipped with sensors and instrumentation capable of measuring and communicating operation 

conditions. These vehicles act as probes, serving to detect and analyze real-time vibrations and 

sensor data during regular operation. They are also capable of informing essential maintenance 

areas using GPS information.  

When the IRV monitored variables exceed a specified threshold, a track defect flag is 

generated. Depending on the severity of the flag, maintenance workers are assigned to visit the 

defective track segment to check and review these defects using other inspection tools, such as 

track geometry trolleys (BAI; LIU; LI, 2020). True and false positives are identified by these 

workers as well as their likely causes. 

The main advantages of using IRVs over track geometry cars can be summarized as 

follows (CHONG et al., 2017; KOJIMA; TSUNASHIMA; MATSUMOTO, 2006; 

LEDERMAN et al., 2017a; LI et al., 2006; RAVITHARAN, 2019; SANTOS; REICHL, 2014):  

 

• Operation is not interrupted since it is a regular wagon, but with added 

instrumentation; 

• Measurements of the vehicle’s response are performed in near real time and under 

normal operating conditions for any loading scenario;  

• The higher frequency of trips compared to track geometry cars allows more passes 

over areas of interest, meaning greater statistical confidence about the state of the 

track and faster detection of defects; 

• The use of vehicle responses allows the identification of critical defects which 

could not have been identified solely from geometry parameters, thus improving 

maintenance operation by complementing geometry-based track assessment. 

 

 The work of LI et al. (2006) helps illustrate the last topic. In his work, around 50% of the 

cases of poor vehicle performance cannot be detected by solely analyzing exceptions in the 

track geometry. Figure 7 exemplifies this, where bad dynamic performance is characterized by 

the ratio between the lateral and vertical forces (L/V) being above the standardized value of 1.0, 

as defined by the Association of American Railroads (AAR). Individually, none of the 

geometric parameters exceeded the Federal Railway Administration (FRA) standards, however, 

the combination of these deviations resulted in the vehicle exceptions shown.  
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Figure 7: Vehicle response recording at 69 km/h on tangent segment due to combined cross-level, alignment and 

surface deviations - (LI et al., 2006). 

 

 There are downsides to consider, however. The first problem is that the sensors are in an 

aggressive environment subject to large vibrations, which can lead to early sensor failures and 

erroneous measurements. A readily available maintenance team is needed to avoid downtime 

and maximize availability and monitoring. Data transmission needs to be well thought out. For 

real-time applications, for example, 3G transmission is necessary, which will require extensive 

data storage capacity, organization (in both the database and data pipelines), and easy access 

within the organization for usage.   

Figure 8 shows an IRV used in a Brazilian railway. In the left figure, there are solar panels 

installed on the wagon side, so the system is self-sustainable. The right figure shows a zoomed 

image of one of the sensors installed in the wagon. This sensor highlighted by the red circle is 

a spring attached to a load cell, which is responsible for measuring the vertical displacement of 

the secondary suspension system. Knowing the spring's elastic modulus and the applied force 

due to the load cell, it is possible to estimate the spring’s displacement. Many researchers 



28 

 

 

employ this sensor in their IRVs (COWIE et al., 2015; HARDIE et al., 2016; THOMPSON et 

al., 2016). An example of another IRV is shown in Figure 9.  

 

 

 

Figure 8: Example of an instrumented railway vehicle (IRV) used in a Brazilian railway. The left figure shows 

some of the IRVs instrumentation such as solar panels along the carbody. The right figure highlights one of its 

sensors (load cell attached to spring) for measuring spring displacement – modified from (SANTOS; REICHL, 

2014). 

 

 

 

Figure 9: IRV instrumentation layout - (HARDIE et al., 2016). 

 

There are many examples in the literature of researchers that used data measured by IRVs 

to either infer track quality, predict asset degradation, or detect local track defects. Thompson 
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et al. (2016) used an IRV for track degradation prediction based on different wagon classes. 

Hardie et al. (2016) used an IRV for track defect detection, peaked/dipped weld detection, track 

stiffness monitoring, and maintenance forecasting. This IRV also measures geometric 

parameters such as rail vertical alignment, crosslevel, and twist. Cowie et al. (2015) used an 

IRV for maintenance forecasting, detection of damaged welds, track defect detection, and 

coupler force monitoring for fatigue damage analysis. This IRV also measures superelevation 

and twist. 

 Although the BRA1 IRV doesn't measure roll and yaw to obtain superelevation and track 

twist like in  Cowie et al. (2015) and Hardie et al. (2016), there are similar variables measured 

to those employed by the researchers stated above. The measured variables of the BRA1 are 

described in detail by Pires et al. (2021). They are: 

 

• Vertical acceleration of the bogie: detects small impacts caused by track defects 

(uniaxial accelerometers). Two sensors are located on the left and right sideframe 

above the first wheelset of the leading bogie. Two other sensors are located on 

the left and right sideframe above the last wheelset of the trailing bogie;  

• Triaxial acceleration of the carbody: monitors wagon stability due to Hunting 

(triaxial accelerometer). Located on the carbody above the trailing bogie; 

• Vertical displacement of suspension springs: monitor dynamic wheel loading 

and it is used to establish velocity restrictions (DARBY et al., 2003). It is a load 

cell tied to a spring located on the left and right side of the secondary suspension 

on the leading and trailing bogie; 

• GPS: identifies track location and measures velocity;  

• Coupler force (only for GDE wagons): used to better establish velocity 

restrictions in locations with large forces between wagons. Basically, it uses 

strain gauges on the shaft connecting two wagons. It is also employed to monitor 

longitudinal wagon dynamics (BOWEY, 2018a; COWIE et al., 2015; YUEN et 

al., 2018); 

• Brake pipe pressure: used for monitoring brake applications and estimating 

their resulting forces (BOWEY, 2018a). 
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Figure 10 shows the location of the sensors on the BRA1 IRV.  

 

 

Figure 10: BRA1 Instrumented railway vehicle - (SOBRINHO et al., 2021). 

 

 

2.3 Practical considerations for quantifying track quality  

 

 

Through the bibliography review, many researchers highlighted problematic situations 

that occurred when validating their algorithms on real measured data. This section will talk 

about the most important factors to consider for a more practical application. 

 

 

2.3.1 Using maintenance information 

 

 

 For maintenance activities such as tamping, the monitored signal is expected to improve 

after maintenance. Therefore, the behavior of the track segment before and after will likely 

differ, as shown in Figure 11. To model track improvement, the quality signals (time series) are 

split into segments between successive maintenances. Neuhold, Vidovic, and Marschnig (2020) 
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developed an algorithm that extracted tamping actions from quality signals after outlier removal 

and was confronted with the executed actions. In this way, recorded tamping actions are 

validated and the addition of missing tamping actions is also possible. Linear models are fitted 

for each segment to monitor signal degradation. Based on the model’s prediction, the future 

state of the track can be estimated. With this information, a time frame can be established as to 

when maintenance must be done. This is shown in Figure 12, where the monitored variable is 

the standard deviation of a longitudinal track irregularity. IRV signals can also be used in this 

context, as shown in Figure 11 for a spring displacement variable. 

 

  

Figure 11: Spring deflection response before and after tamping - (MONAKALI; RAVITHARAN, 2016). 
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Figure 12: Linear regression of track geometry signal for two consecutive tamping actions (deterioration period) 

- (NEUHOLD; VIDOVIC; MARSCHNIG, 2020). 

 

 

2.3.2 Data alignment and matching 

 

 

Positioning accuracy between consecutive measurement trips of a specific track segment 

must have precise positional accuracy to avoid making incorrect conclusions (KHOSRAVI et 

al., 2021; LEDERMAN et al., 2017b, 2017a; NEUHOLD; VIDOVIC; MARSCHNIG, 2020). 

Figure 13 shows two types of positional error between two datasets: the first inspection dataset 

was conducted in February 2016 while the second dataset was conducted on two different dates 

in April and September 2016, respectively.  

Figure 13a shows that the time series of the second inspection is shifted to the right, which 

makes analyzing the local defect difficult due to its positional uncertainty. The time series 

between successive measurement trips may differ in length due to different velocities during 

measurement, wheel sliding, geometry degradation, wheel wear, and environmental conditions 

(KHAJEHEI, 2021; KHOSRAVI et al., 2021). To the left of the 130.32 km mark, a shift was 

detected between successive inspections. So, considering the 130.31 km mark, it seems that a 

severe track condition appeared, increasing the longitudinal level from around -1 mm to around 

-4.5 mm, but that “defect” was due to a misalignment.  
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Figure 13b highlights that the time series can also be compressed or stretched, as seen by 

the different shift sizes. Wheel sliding causes compression since the traveled distance is more 

than what was calculated from wheel rotation, while wheel slippage causes stretching because 

the traveled distance is less than the calculation resulting from wheel rotation, supposing that 

an odometer is used (KHOSRAVI et al., 2021).  

 

 

Figure 13: Positional error in two datasets from two different inspection runs. (a) A constant shift between the 

two datasets, (b) compression of the second dataset to the first - (KHOSRAVI et al., 2021). 

 

 

2.3.3 Track segments with different characteristics 

 

 

Railway networks have numerous rail segments that differ in terms of their defect 

proneness due to conditions such as loading, seasonal conditions, wear, fatigue, etc (GERUM; 

ALTAY; BAYKAL-GÜRSOY, 2019). Although a generalized model prediction method is 

desired, segments can lack data or have very different characteristics. Exploratory data analysis 

(EDA) is necessary to determine which is the best approach for the given data.  

 Gerum, Altay, and Baykal-Gürsoy (2019) used clustering to pool similar segments to 

obtain sufficient data for defect detection. The segments were grouped into 14 clusters using 

the K-means algorithm. Clusters 1 to 4 contain 24, 28, 47, and 41 rail segments with sufficient 
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data for prediction. Therefore, only clusters 1 to 4 were evaluated, representing 140 of the 170 

rail segments (82.4%). 

The dataset from Kasraei, Zakeri, and Bakhtiary (2020) contained 45 kilometers of track 

geometry data measured by a track recording car and stored each 0.25 m. The track was divided 

into 225 sections of 200 m for the left and right rails. The K-means algorithm was used to 

separate these 225 track sections into groups with the most similarity to decrease modeling 

uncertainty. The optimal number of clusters was 9, however, clusters 2 and 8 had fewer data. 

Therefore, these clusters were omitted and only 7 clusters were used for analysis (89% of 

original data).  

 

 

2.3.4 Outlier removal 

 

 

To exemplify the importance of outlier removal, consider both Figure 14 and Figure 15 

from the paper done by Neuhold, Vidovic, and Marschnig (2020). From Figure 14, the second 

and last regression lines are steeper when compared to the other three, which means that the 

track deteriorated rapidly. By studying the measurements more closely and comparing them to 

executed maintenance data, the researchers discovered that two measurements are likely to be 

outliers (red measurement points 8 and 15), which lead to a false deterioration rate and period. 

The presence of these outliers would have led to 6 maintenance actions. 
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Figure 14: Regression analysis with 5 deterioration periods. Outliers are highlighted in red - (NEUHOLD; 

VIDOVIC; MARSCHNIG, 2020). 

 

The regression model after removing these outliers is shown in Figure 15. Now only three 

deterioration periods are present with a similar degradation rate, leading to 3 maintenance 

actions instead of 6. Therefore, outlier detection and removal must be done when quantifying 

track quality. 

 

 

Figure 15: Degradation model after detection and elimination of outliers - (NEUHOLD; VIDOVIC; 

MARSCHNIG, 2020). 
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2.3.5 Robustness issues 

 

 

Condition monitoring must be robust to data uncertainties such as vehicle speed and 

position uncertainty. Lederman et al. (2017a) highlighted that different speeds cause different 

vehicle dynamics and affect data alignment between different passes on the track or data. For 

sensors placed on the carbody, the filter effect of the suspension system also depends on the 

velocity, so these sensors will stress additional problems. They also state the larger position 

uncertainty, which makes detecting track changes harder. A unidimensional mass-spring model 

(toy model) was studied to better comprehend the effect that vehicle speed and position 

uncertainty had on the condition monitoring of trains.  

Figure 16 shows two passes of different speeds for the toy model in the time domain (a) 

and spatial domain (b). If the velocity is zero, this means that the train stopped to drop 

passengers at a station. The defect in the spatial domain is shown in the letter (d). Although the 

defect is the same for both passes, the different speed profiles cause the mass-spring systems to 

experience a different excitation in the time domain, as shown in letter (c). The excitation at 

different points in time leads to a different dynamical response in the time domain, shown in 

letter (e). The response in the spatial domain (f) between both passes has better similarity, 

although there continues to be some effect due to speed variation seen at the end of the signal. 

Data alignment needs to be used to correct this problem. Alignment techniques such as 

Dynamic Time Warping (DTW) are commonly used to solve this problem (TAN et al., 2018b). 
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Figure 16: Illustration of how different speed profiles affect the measured vibration. Letter (a) shows the speed 

profiles in the time domain; (b) speed profiles in the spatial domain; (c) the roughness interpolated in time; (d) 

the roughness in space; (e) the acceleration of the oscillator in time, the box highlights two oscillations from the 

same bump which occur at different points in time due to the oscillator's speed profile; and (f) the acceleration of 

the oscillator in space - (LEDERMAN et al., 2017a). 

 

 

2.3.6 Correcting false positives when detecting track defects 

 

 

Bai et al. (2020) gave an example of how measurement errors can disrupt accurate 

maintenance planning. Suppose that an IRV runs over a specific track segment with the same 

track defect being detected and recorded repeatedly. Measurement bias or different vehicle 

speeds can easily cause the track defect to be detected in different locations, leading to the 

misinterpretation that there are multiple defects. These false positives must be minimized. Thus, 
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the authors proposed a data-driven bias correction and defect diagnosis model for in-service 

vehicle acceleration measurements (DBCDD-IVAM) to eliminate false positive detections of 

track vibration defects and to diagnose the causes of track vibration defects. The proposed 

model comprises two parts: a bias correction sub-model (BC-IVAM) and a defect diagnosis 

sub-model (DD-IVAM). 

Figure 17 shows how the BC-IVAM sub-model works. The horizontal axis represents the 

location of track vibration defects along the railway line, and the vertical axis represents the 

inspection date for track vibration defects. The points represent different track vibration defects 

detected on different dates. Two constants C_FT and C_FD are used to describe a rectangular 

area that represents the tolerance for measurement bias. If a track vibration defect point 𝑢𝑖 is 

within this rectangular area, these defect points are assumed to result from the same track 

geometry defect. The most recent point 𝑢𝑗  in the rectangular area is selected as the 

representative track vibration defect. If the total number of track vibration defect points that fall 

within the rectangular area is greater than or equal to a limit C_FN, it is a true positive. If it is 

less than C_FN, the defect is due to the rolling stock itself or from the external environment 

instead of track irregularities. For this scenario, these points are classified as false positives. 

 

 

Figure 17: Algorithm schema of the BC-IVAM sub-model for minimizing false positives - (BAI; LIU; LI, 2020). 

 

To illustrate this, consider C_FN = 8 points. From Figure 17, there are 11 blue points 

(variable 𝑢𝑖). This means that all 11 blue points are due to the same track defect, thus, are not 
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false positives. The most recent track defect point 𝑢𝑗  is considered the representative defect of 

all previous points. 

Although Bai, Liu, and Li (2020) used expert knowledge to define the constants C_FT, 

C_FD, and C_FN, an optimization problem to minimize the false positive rate with these 

constants as the optimization parameters can be defined. The main takeaway here is that a 

confidence range for successive inspections should be created to minimize the detection of false 

positives, which would decrease the workload of maintenance workers. The result of BC-IVAM 

is shown in Figure 18 with an 84.1% success rate. The DD-IVAM sub-model has a success rate 

of 75.8%.  

 

 

a) False and true positives 

 

b) True positives after BC-IVAM 

Figure 18: Distribution map of vibration defect data in the down direction of the Lanxin Railway between km 

548 and km 985.5 - (BAI; LIU; LI, 2020). 
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2.3.7 Summary of practical considerations 

 

 

• Track degradation and renewal must be validated and confronted with maintenance data; 

• Data alignment must be done to avoid drawing incorrect conclusions;  

• Using statistical metrics of the raw signal can help correct alignment errors depending on 

the specified length for computation; 

• Outlier removal is a necessary step when quantifying track quality. Besides traditional 

statistical analysis, maintenance data will help determine which data point is, in fact, an 

outlier; 

• Track quality monitoring techniques must be robust towards data uncertainties such as 

vehicle speeds and position uncertainty. Alignment algorithms can help with this issue.  

 

 

2.4 Instrumented railway vehicle sensors  

 

 

IRV sensors for measuring dynamic responses can be divided into 3 main groups based 

on their location: carbody, bogie, and axlebox sensors. This section will detail the sensors of 

each respective group, highlight their advantages and drawbacks, and show the IRV sensors 

used in this thesis.  

 

 

2.4.1 Carbody mounted sensors 

 

 

Carbody mounted sensors are typically accelerometers used to monitor wagon stability 

and the occurrence of hunting oscillation (BARBOSA, 2016; ODASHIMA et al., 2017; PIRES 

et al., 2021). Tsunashima et al. (2019) detected the presence of corrugation in the track by 

observing the vertical carbody acceleration. They noted that this signal is greatly influenced by 

low-frequency vibration, masking the effect that corrugation has on the signal. This causes 

corrugation detection to be a difficult task with traditional threshold boundary limits. Therefore, 



41 

 

 

signal processing techniques are required to be used in conjunction with the measurements to 

extract useful information. In this case, the root-mean-square (RMS) of the carbody acceleration 

was used as an index for monitoring track condition. A new work by the same authors stated 

that using the RMS metric results in a loss of frequency information and makes the analysis 

more difficult (TSUNASHIMA; HIROSE, 2020). To complement the RMS index, the 

Continuous Wavelet Transform (CWT) and the Hilbert-Huang Transform (HHT) were applied 

and compared to determine the best technique for detecting faulty tracks, which is shown in 

Figure 19.  The color bars represent the magnitude of the signal.  

Figure 19a shows a vertical carbody acceleration signal while letters (b) and (c) show the 

HHT of the signal at different frequency scales. Letter (b) reveals a large frequency component 

near 25.65 km detected at the same position where a joint depression exists. By zooming into a 

frequency scale between 0-5 Hz, Figure 19c shows a different defect, the degraded longitudinal 

level irregularity. Depending on the problem, different signal processing techniques and signal 

representations shall be tested to find the best representation, as was done by Lederman et al. 

(2017a) for detecting track defects from an instrumented train.  



42 

 

 

 

Figure 19: Letter (a) shows the carbody vertical acceleration. Letter (b) shows the Hilbert spectra for frequencies 

between 0 – 30 Hz, highlighting a joint depression. Letter (c) shows the Hilbert spectra for the range of 0 – 5 Hz 

-  (TSUNASHIMA; HIROSE, 2020). 

 

 Track fault detection using instrumentation on the carbody or in-cabin does not have to 

deal with the harsh environment close to the wheel-rail contact interface like bogie or axlebox 

mounted sensors, so it is easier to maintain (MORI et al., 2010). One downside, however, is 

that the distinctive signal of track faults is hidden in the carbody vibration or is filtered out by 

the suspension system (MORI et al., 2010; TSUNASHIMA; HIROSE, 2020; WESTON et al., 

2015). Signal processing techniques are necessary for in-cabin fault detection.  

Tsunashima et al. (2012) used the wavelet transform to decompose the car body 

acceleration signal into components of different frequency bands using multi-resolution 

analyses (MRA). With each specific frequency resolution, different defects were detected from 

the original signal. The sum of the signal at each frequency band returned the original signal. 

This process is illustrated in Figure 20 and exemplified in Figure 21. In the case of Figure 20, 

the starting signal 𝑆 was measured at 2 kHz, which means the signal has up to 1 kHz of 
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frequency content due to Nyquist’s theorem. This 1 kHz signal is now split into two 

components: one from 0-500 Hz (a1) and another from 500-1000 Hz (d1). The component with 

the lowest frequency range is split again with the above methodology, but the starting signal 

now has frequency content between 0-500 Hz. At the end of the process,  the signal of 1 kHz 

was split into the components d1, d2, d3, d4, and a4 corresponding to 1000-500 Hz, 500-250 Hz, 

250-125 Hz, 125-62.5 Hz, and frequencies not greater than 62.5 Hz, respectively. The user can 

specify the number of desired frequency bands, which was 10 in the case of Figure 21. 

 

 

Figure 20: Multi-resolution analysis (MRA) using the discrete wavelet transform - (TSUNASHIMA et al., 2012). 

 

Another issue is that the carbody acceleration waveform is considerably different from 

track geometry and the amplitude greatly depends on the vehicle speed (TSUNASHIMA; 

NAGANUMA; KOBAYASHI, 2014; YEO, 2017), highlighting the need for signal processing 

and possible robustness issues. In the case of Tsunashima et al. (2012), they measured their data 

on a curve with a radius of 202 m at a constant velocity of 38 km/h for detecting track faults 

from cabin vibration. Many researchers prefer to use a constant velocity and not deal with 

variations due to environmental or operational conditions.  

Lee et al. (2012) stated that carbody acceleration is highly dependent on the primary and 

the secondary suspension, so the effect of the track irregularities is difficult to extract from such 

data. Therefore, measuring irregularity values from carbody mounted sensors is unlikely.   
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Figure 21: Multi-resolution analysis (MRA) of vertical carbody acceleration. Different types of detected track 

irregularities are highlighted - (TSUNASHIMA et al., 2012). 

 

 

2.4.2 Axlebox mounted sensors 

 

 

 Axlebox mounted sensors consist mainly of vertical and lateral accelerometers. They are 

generally used for detecting track defects such as spalling, dipped welds, and insulated joints 

(DARBY et al., 2003). 
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Axlebox sensors tend to require higher frequency maintenance due to larger impact loads 

caused by the closer proximity to the wheel-rail contact interface (BAASCH et al., 2019; MORI 

et al., 2010; TAKIKAWA, 2012; TSUNASHIMA; NAGANUMA; KOBAYASHI, 2014). Due 

to the lack of filtering from the secondary suspension system, however, they can lead to a better 

representation of the dynamic response from track excitations. A comparison between carbody 

and axlebox accelerations was highlighted in the work of Tsunashima et al. (2012) and 

illustrated in Figure 22 for a curved track section with corrugation. The difference in signal 

amplitude and wave format is very clear; the vertical carbody acceleration stays relatively the 

same while the axlebox acceleration varies greatly.  

 

 

Figure 22: Measurement results of a curved section with corrugation. a) Axlebox sensor b) Carbody sensor - 

(TSUNASHIMA et al., 2012). 
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2.4.3 Bogie mounted sensors 

 

 

There are many different types of bogie mounted sensors in the IRV setting. Typically, 

vertical and lateral accelerometers, gyroscopes, and displacement sensors are used. Lee et al. 

(2012) used lateral and vertical accelerometers mounted on the bogie and axlebox to estimate 

lateral and vertical track irregularities by using a Kalman filter alongside bandpass and 

compensation filters. Track irregularities obtained from both axlebox and bogie mounted 

sensors were compared to a track geometry measurement system. The placement of these 

sensors is shown in Figure 23. 

 

Figure 23: Setup for measuring acceleration. The left figure shows axlebox mounted accelerometers. The right 

figure shows bogie mounted accelerometers - (LEE et al., 2012). 

 Some authors use gyroscopes, roll, and yaw sensors to obtain geometric information 

about the track, such as orientation, curvature, twist, and crosslevel by using mathematical 

formulae (HARDIE et al., 2016; HESSER; ALTUN; MARKERT, 2022; YEO, 2017). Hardie 

et al. (2016) used a roll rate sensor for calculating track twist, while Lingamanaik et al. (2017) 

used both yaw and roll rate sensors to determine track curvature and superelevation. An 

example can be seen in Figure 9, where a roll rate gyroscope was secured to a crossbar on the 

bolster.  

 The main advantages that come with using bogie mounted sensors are their higher 

maintainability when compared to axlebox sensors, better signal representation compared to 

carbody sensors, and the possibility of using different types of sensors due to the many 

parameters to monitor such as the secondary spring's displacement. The larger number of 

locations to install sensors is also a factor. The main disadvantage is that some signal 

information can be lost due to the filtering effect of the suspension system when compared to 
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the axlebox mounted sensors. Overall, this is probably the best location to install 

instrumentation on a railway vehicle.  

 

 

2.5 Obtaining track irregularities from accelerometer signals 

 

 

 Theoretically, vertical track irregularity values can be calculated by double integrating 

the vertical acceleration of the bogie or axlebox mounted sensors (BLEAKLEY, 2006; LEE et 

al., 2012; NADARAJAH et al., 2018; THOMPSON et al., 2016), as shown in Equation (2.1). 

The main difference is that bogie mounted sensors are filtered in the vertical direction by the 

primary suspension while axlebox mounted sensors aren’t. For the lateral track irregularities, 

Lee et al. (LEE et al., 2012) stated that bogie-mounted accelerometers are very similar to those 

using the axlebox mounted accelerometers due to the lack of substantial lateral suspension when 

compared to the vertical direction. When considering more practical scenarios in obtaining both 

vertical and lateral track geometry from integrating acceleration, a few problems appear 

(BLEAKLEY, 2006; LEE et al., 2012; YEO, 2017): 

 

• Large drift in either the positive or negative direction due to an offset (the 

accelerometer rarely gives a ‘zero’ output when acceleration is exactly zero); 

• Double integration further exacerbates sensor drift. Yeo et al.(2017) applied a 

high pass filter to minimize low frequency offset and drift; 

• Accelerometer output has some high frequency random noise due to sampling 

electronics.   

 

 
𝑧(𝑡) = ∫ ∫ �̈�  𝑑𝑡 𝑑𝑡 (2.1) 

 

 

This conversion is necessary if comparisons are to be made between passes of the train 

over the same section of track at differing speeds, as comparisons will not be possible in the 

time domain (YEO, 2017). The conversion can be done by simply changing the time domain to 

the spatial domain from the sampling rate and vehicle speed.  
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Another option is to obtain the signal already in the spatial domain by finding the vertical 

curvature 𝐾𝑧 of the track from the accelerometer signal �̈� and velocity 𝑉, as shown in Equation 

(2.2). 

 

 
𝐾𝑧 =

�̈�

𝑉2
 (2.2) 

 

Since vertical curvature is equal to the second derivative of 𝑧 with respect to 𝑥, the vertical 

displacement �̂� can be obtained with Equation (2.3) 

 

 
�̂� = ∬ 𝐾𝑧 𝑑𝑥 𝑑𝑥 = ∬

𝑑2𝑧

𝑑𝑥2
𝑑𝑥 𝑑𝑥 (2.3) 

 

Based on Equations (2.2) and (2.3), it can be deduced that, as the vehicle speed decreases, 

smaller accelerations are needed to obtain the same curvature and corresponding vertical 

displacement. At low speeds, the resulting vertical acceleration can be so small that it falls 

below the noise threshold of the accelerometer, causing drift (NADARAJAH et al., 2018; 

WESTON et al., 2007a, 2007b; YEO, 2017). This causes the calculated displacement to reflect 

accelerometer drift, as seen in Figure 24 by the large blue values at near zero vehicle speed 

(pink line), which surpass the scale of the figure. This issue is exacerbated by the presence of 

the squared speed term in Equation (2.3). In contrast, vertical irregularities obtained from the 

gyroscope are not as severely impacted due to the absence of the squared speed term.  
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Figure 24: The effect of low vehicle speed on calculated vertical irregularities - (YEO, 2017). 

 

 

2.6 Norms for evaluating track quality  

 

 

This section will go over the two main norms used in this thesis to generate the artificial 

track irregularities that will be used in the multibody dynamic simulation model. By running 
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the simulation, the dataset for obtaining track irregularities from sensor variables will be 

generated.  

 

 

2.6.1 European Regulation Standard (EN 13848) 

 

 

The European Committee for Standardization (CEN) has created a group of standards EN 

13848 for the characterization of track geometry and track quality. This standard is divided into 

five different parts: 

 

• Part 1: Terminology and framework for specifying track geometry parameters 

such as track gauge, lateral and vertical irregularities, crosslevel, and twist; 

• Part 2: Measuring system and track recording vehicle; 

• Part 3: Track construction and maintenance machines; 

• Part 4: Manual and lightweight devices; 

• Part 5: Minimum requirements for track geometry quality and safety related 

limits for the geometry parameters defined in part 1. 

 

Focusing on part 5 of EN 13848 (EN 13848-5), maintenance strategies are based on three 

different quality levels: safety limit, intervention limit, and alert limit. The formal definition for 

each level is shown in Table 1.  

 

Alert limit (AL) If a limit value is exceeded, an action to correct the error has to 

be considered in the regularly planned maintenance. 

Intervention Limit (IL) If a limit value is exceeded, an action to correct the error has to 

be done immediately before the next inspection. 

Safety Limit (IAL) If a limit value is exceeded, an action should be done to reduce 

the risk of derailment (closing the line, reducing speed, 

immediate tamping, etc.) 
Table 1: Track quality levels from the norm EN 13848-5 -  (BERAWI, 2013). 

 

For each limit, the standard defines track quality based on the wavelength spans D1, D2 and 

D3 presented below (BERAWI, 2013).  
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• D1: wavelength of irregularities inside the range 3 <  𝜆 ≤ 25 𝑚 (related to safety);  

• D2: wavelength of irregularities inside the range 25 <  𝜆 ≤ 70 𝑚 (related to ride 

comfort); 

• D3: wavelength of irregularities inside the range 70 <  𝜆 ≤ 200 𝑚 (related to ride 

comfort). 

 

To obtain a specific class, a bandpass filter is applied to the wavelength range of interest. 

Wavelengths below D1 (0.03 <  𝜆 ≤ 1 for example) are related to corrugation, which results 

in an audible vibration (KARIS, 2018).  

 

 

2.6.2 Federal Railroad Administration (FRA) 

 

 

 Track irregularities are normally modeled as being stochastic (or random). Thus, it is 

possible to describe their content in the frequency domain through its power spectral density 

(PSD) (PIRES et al., 2021). Countries like the United States, China, France, and Germany have 

modeled their respective spectrum of irregularities to represent their typical railway condition  

(BERAWI, 2013). These functions were obtained from measured data and are usually 

previously filtered and smoothed with statistical methods. Because of that, they represent the 

average track irregularity of their respective country. 

 The FRA categorized the quality of railway systems based on their one-sided PSD into 

nine different classes. The first six classes correspond to normal-speed railways while classes 

seven to nine are designated for high-speed tracks, accommodating passenger trains with a 

maximum speed of 145 km/h and freight trains with a maximum speed of 130 km/h. Note that 

these PSDs can only be applied for a wavelength range between 1.524 m and 304.8 m 

(BERAWI, 2013).  

 The mathematical expressions for the PSDs according to the geometric parameter are 

shown by Equations (2.4), (2.5), and (2.6): 

For vertical alignment: 

 
𝑆𝑣(Ω) = 𝑘

𝐴𝑣  Ω𝑐
2

Ω2(Ω2 + Ω𝑐
2)

 
(2.4) 
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For lateral alignment: 

 
𝑆𝑎𝑙(Ω) = 𝑘

𝐴𝑎  Ω𝑐
2

Ω2(Ω2 + Ω𝑐
2)

 
(2.5) 

 

For gauge and cross level (superelevation): 

 
𝑆𝑔𝑎𝑢𝑔𝑒/𝑐𝑙(Ω) = 𝑘

4 𝐴𝑣 Ω𝑐
2

(Ω2 + Ω𝑐
2)(Ω2 + Ω𝑠

2)
 

(2.6) 

 

Table 2 provides the coefficients for the PSDs according to their quality classification. 

Since the FRA PSD is very similar to the track conditions of the BRA railway, this standard 

and its PSDs are used for generating virtual track irregularities for multibody simulation and 

creating the dataset used in this thesis. The maximum permissible speed in this railway is 65 

km/h for freight wagons and railway experts stated that they work with, at worse, FRA 3 

irregularities. Therefore, line grades 6 to 3 were used in this study.  

 

Class Max velocity (km/h)  Parameters 

 Freight 

transportation 

Passengers  𝐴𝑣  

(cm2 rad/m) 

𝐴𝑎  

(cm2 rad/m) 

𝛺𝑐
2  

(rad/m) 

𝛺𝑠
2  

(rad/m) 

1 16 24  1.2107 3.3634 0.6046 0.8245 

2 40 48  1.0181 1.2107 0.9308 0.8245 

3 64 97  0.6816 0.4128 0.8520 0.8245 

4 97 129  0.5376 0.3027 1.1312 0.8245 

5 129 145  0.2095 0.0762 0.8209 0.8245 

6 177 177  0.0339 0.0339 0.4380 0.8245 
Table 2: Coefficients for the power spectral density functions - (PIRES et al., 2021). 

 

 

2.6.3 Defining the track irregularity wavelength range 

 

 

The first step in generating artificial track irregularities is to correctly define the 

wavelength range. It is important to note that only a few specific wavelengths are responsible 

for affecting the dynamic response of the vehicle (BERAWI, 2013). This is due to the 

relationship that the excitation wavelength has with the vehicle speed and the vehicle's natural 

frequency, expressed by Equation (2.7). 
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𝜆 =

𝑉

𝑓
 

(2.7) 

 

Where 𝜆 is the wavelength of the track excitation (m), 𝑉 is the vehicle speed (𝑚/𝑠) and 𝑓 is 

the natural frequency of the vehicle (Hz). 

Equation (2.7) is represented graphically for different natural frequency values in Figure 

25. Depending on the vehicle speed, different wavelength values would be responsible for 

exciting the railway vehicle. Since low velocity values do not typically cause large and 

dangerous dynamic responses in comparison to high velocities, the largest permissible speed 

value (65 km/h) is used to determine the wavelength range. For the BRA railway, this is the 

maximum permissible speed. 

 

 

Figure 25: Wavelengths that affect ride quality - (ALCOCER, 2019). 

 

Alcocer (2019) showed an example of applying Equation (2.7) to determine the wavelength 

range. For a natural frequency range between 1 and 2 Hz and a speed of 80 km/h, the wavelength 

that excites the vehicle would be between 11.111 m and 22.222 m. This was used to justify the 

usage of D1 class wavelengths for generating artificial track irregularities for their simulations. 

 For this thesis, the natural frequency of the studied railway vehicle was measured, and 

the lowest and largest frequencies were 1.10 Hz and 4.17 Hz respectively. Considering a 

maximum permissible speed of 65 km/h and applying Equation (2.7), the wavelength range that 

would excite the wagon would be between 4.33 m and 16.414 m. The D1 class from EN 13848-
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5 contemplates this range, therefore, this class will be used for generating artificial track 

irregularities.  

 

 

2.6.4 Generating artificial track irregularities in SIMPACK 

 

 

SIMPACK uses Equation (2.8) for the amplitude of the signal. Given the frequency band 

𝐹1 and 𝐹2, the number of discrete frequencies and the PSD function 𝑆(Ω), the amplitude of the 

trigonometric Fourier series that describes the spatial domain track excitation can be calculated. 

This is done by summing the resulting amplitudes and phases of the harmonic functions created, 

shown in Equation (2.8). Note that the frequency resolution, range, and PSD formula affect the 

amplitude value. From Equation (2.9), both the frequency and amplitude of the signal change, 

depending on the wavelength range.  

 

 
𝑟(𝑥) = ∑ 𝐴𝑘cos (𝑤𝑘𝑥 + 𝜃𝑘)

𝑁

𝑘=1

 
(2.8) 

 
𝐴𝑘(Ω) = ΔΩ√

𝑆(Ω)

2𝜋ΔΩ  
 

(2.9) 

 

The procedure described led to the creation of four irregularities: two vertical 

irregularities from Equation (2.4) (left and right rail) and two lateral irregularities from Equation 

(2.5) (left and right rail). It must be emphasized that the same formula was used for both left 

and right irregularities; however, a different value was set in the random number generator 

inside SIMPACK to guarantee that the excitations would be different and, therefore, better 

represent reality. 

Using the parameters listed below as input for SIMPACK and the PSD formula constants 

of Table 2, artificial irregularities were created for both lateral and vertical directions. The 

method consists in using a polynomial quotient (1 in SIMPACK) to describe the PSD 

expressions and then importing them as a stochastic function from PSD (108 in SIMPACK). 

For SIMPACK automatically convert the units to S.I., the DIMLESS function was used to wrap 

the coefficients of the polynomial quotient and give the desired units.  
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• Class: FRA6, FRA5, FRA4, FRA3 and no irregularities; 

• Upper and lower spatial frequency (1/m): 1/3 and 1/25 (D1); 

• Number of frequencies (harmonics): 3000 (BERAWI, 2013; PODWÓRNA, 

2015); 

• Representation of independent: Angular frequency; 

• Free factor alpha: 2 π; 

• Sides: One-sided;  

• Constant k: 0.25 (BERAWI, 2013; PODWÓRNA, 2015); 

• Track extension: 7407 m (Figure 26). 

 

 Figure 26 shows the macrogeometry used. It is composed of nine curves and ten tangents. 

The horizontal lines where curvature equals zero represent tangent sections while those that are 

not zero represent curved sections. The transition from tangent to curve or vice-versa is shown 

by the inclined lines, where track curvature changes linearly over the distance. Figure 27 shows 

the generated track irregularities from SIMPACK according to their FRA class.  

 

 

Figure 26: Track curvature. 
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a) 

 

b) 

Figure 27: Generated track irregularities from SIMPACK. Letter a) shows the lateral track irregularities for the 

right rail. Letter b) shows the vertical track irregularities for the right rail. 

 

2.7 Track condition monitoring 

 

 

There are three main approaches to condition monitoring: physical models, conventional 

data-driven models, and deep learning models, exemplified in Figure 28. Traditionally, physics-

based models were commonly used to monitor asset degradation, however, the Internet of 

Things (IoT) has shifted this paradigm towards data-driven methods. Most of the physics-based 

models are unable to be updated with online measured data and the model needs to represent 

the dynamic system through accurate parameter identification, which limits their effectiveness 

and flexibility (ESCALONA; URDA; MUÑOZ, 2021; ZHAO et al., 2019). On the other hand, 
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the development of sensor networks, computers, and the increasing amount of data collected 

from assets have led data-driven monitoring methods to become more and more attractive.  

  Traditional data-driven methods likely require the design of new features (feature 

engineering) to better find the mapping between the dataset and the target variable. The number 

of features created can be so vast that it is common to use feature selection or dimensionality 

reduction to reduce the number of variables to only the most relevant ones. This process of 

designing and choosing new features is heavily dependent on the domain knowledge and 

expertise of the data scientist, although there are algorithms that try to automate these steps 

such as tsfresh (CHRIST et al., 2018). After creating the dataset, the model is trained using 

traditional machine learning techniques like Support Vector Machines (SVM) or 

RandomForests.  

To alleviate the problem of needing domain knowledge, deep learning extracts 

hierarchical representations from input data by building deep neural networks with multiple 

layers of non-linear transformations. Each layer can be regarded as a function that applies a 

transformation from input values to output values (REZAEIANJOUYBARI; SHANG, 2020; 

ZHAO et al., 2019). Therefore, the application of one layer can learn a new representation of 

the input data, and then, the stacking structure of multiple layers can enable the model to learn 

complex concepts from the raw input. This is one of its main selling points since it automatically 

learns internal representations from the raw input and target variable, therefore, not requiring 

extensive human labor and domain knowledge for handcrafting features and feature selection. 

For this thesis, traditional machine learning was used. 
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Figure 28: Frameworks for three different monitoring approaches: physical models, conventional data-driven 

models, and deep learning models. Shaded boxes denote data-driven components - (ZHAO et al., 2019). 

 

2.7.1 Machine learning for intelligent fault diagnosis 

 

 

Machine learning has helped automate intelligent fault diagnosis (IFD) to recognize the 

health state of machines without specialized knowledge of the engineering scenario (LEI et al., 

2020). The diagnosis procedure can be summarized in 3 steps: data collection, artificial feature 

extraction, and health state recognition, as shown in Figure 29. Each step of Figure 29 will be 

described in more detail in the following sections highlighting how to take these concepts and 

apply them to the railway system. 

 

 

Figure 29: Diagnosis procedure for intelligent fault diagnosis (IFD) using traditional machine learning - (LEI et 

al., 2020). 
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2.7.2 Data collection 

 

 

Sensor measurements are the main source of data for machine diagnosis. Different sensors 

can be used to measure vibration (accelerometers), temperature, and pressure, among other 

variables. For instrumented railway vehicles (IRVs), the dynamical response from track 

excitations is measured using accelerometers positioned on the carbody, bogie, and axlebox. 

Other sensors such as load cells and strain gauges are used to measure suspension displacement 

(secondary or primary) and wagon drawbar impact loads respectively (BOWEY, 2018b; 

COWIE et al., 2015; PIRES et al., 2021). More information on the measured variables is 

available in Section 2.2.2.  

 

 

2.7.3 Feature extraction and engineering 

 

 

Feature extraction is a common step in all diagnostic and prognostic approaches. Feature 

extraction is defined as the process of obtaining time, frequency, and time-frequency domain 

features from raw signal data (ANKRAH; KIMOTHO; MUVENGEI, 2020; LEI et al., 2007, 

2020; PIRES et al., 2021; TSUI et al., 2015). When faults occur in machines, the time-domain 

signal may change in amplitude and distribution compared to the signal under normal 

conditions. The frequency spectrum and its distribution may also change, meaning that new 

frequency components may appear associated with degradation (LEI et al., 2007).  

Examples of time, frequency, and time-frequency domain features are shown in Table 3. 

Since raw sensor data is a time series signal, a rolling window can be applied and generate new 

columns of data from these metrics. Tsunashima et al. (2019) used a rolling window of 4 

samples to calculate the root mean square of the carbody vertical acceleration, although the 

exact size of the window is a parameter to be optimized.  
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Table 3: Commonly used time domain features - (KIMOTHO; SEXTRO, 2014) 

 

 Extracted features must be sensitive to the fault condition, as shown by the 3rd block of 

Figure 29. By accurately separating normal and faulty conditions, the machine learning 

algorithms will have an easier time training the model, leading to better performance.  

 In the case of the problem of obtaining track geometric irregularities from measured IRV 

data, it is expected that large geometric peaks lead to large dynamic excitations. Therefore, 

feature engineering and extraction are responsible for creating variables that are sensitive to 

these conditions. 

 

 

2.7.4 Health state recognition 

 

 

 Health state recognition can be summarized as a classification problem, where machine 

learning models are used to establish the relationship between the selected features and the 

health state of the asset (LEI et al., 2020). Given a dataset that has already undergone feature 
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extraction, the diagnosis model is trained with labeled samples of the health state. Once trained, 

the models can recognize the health states when fed with unlabeled data.  

 Unfortunately, IRV data does not have a label that characterizes track health. The limits 

utilized by maintenance teams are not optimal and depend on the engineer’s expertise during 

measurement and analysis. That said, the BRA railway does have norms that help differentiate 

a good track from a bad one in terms of its geometry. Therefore, knowing that the limits of the 

track geometry must satisfy international norms, it might be possible to find what sensor values 

correspond to these limits. However, this is not the scope of the thesis.  

 

 

2.8 Machine learning algorithms 

 

 

 This section will go over the machine learning algorithms used to map the input dataset 

to the target variable (geometric track irregularities). The algorithms used were: Linear 

regression with regularization (Lasso, Ridge, ElasticNet, SGDRegressor), 

RandomForestRegressor, ExtraTreesRegressor, AdaBoostRegressor, XGBRegressor (Extreme 

Gradient Boosting Regressor), LightGBM (Light Gradient Boosting Machine) and neural 

networks. 

 

 

2.8.1 Linear regression with regularization 

 

 

 Linear regression is one of the simplest models to use and is given by Equation (2.10), 

where �̂� is the predicted value, 𝑛 is the number of features, 𝑥𝑖 is the ith feature value and 𝜃𝑗  is 

the jth model parameter. There is also a vector representation given by the transpose of the 

parameter vector 𝜃 and the feature vector 𝑥. This parameter vector contains the weights that 

each variable has on the model output.  

  

 �̂� = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + ⋯ + 𝜃𝑛𝑥𝑛 = 𝜃𝑇𝑥 (2.10) 
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 An error metric is minimized to find the best fitting line to the data. The mean squared 

error (MSE) is commonly used as the cost function, which is shown in Equation (2.11), where 

𝑦𝑖 is a vector of containing the values of the variable and 𝑚 is the number of data points. Note 

that the 𝑀𝑆𝐸 is only parameterized by 𝜃. 

 

 
𝑀𝑆𝐸(𝜃) =

1

𝑛
∑  

𝑛

𝑖=1

(𝑦𝑖 − �̂�𝑖)2 =
1

𝑛
∑  

𝑛

𝑖=1

(𝑦𝑖 − 𝜃𝑇𝑥𝑖)
2 

(2.11) 

 

 The generalization performance of the linear regression model may be affected by the 

size or complexity of the parameter vector 𝜃, leading to overfitting (AGGARWAL, 2015; 

GÉRON, 2019). Overfitting occurs when a model fits the training data too closely, thereby 

losing its ability to generalize to unseen data. This concept can be illustrated through 

polynomial regression, as shown in  Figure 30. When a polynomial of degree 1 is used, a linear 

model is obtained (red line), however, this model may not accurately represent the dataset due 

to its simplicity, known as underfitting. On the other hand, using a polynomial of degree 300 

results in excessive oscillations to fit the data points. There are too many parameters when 

compared to the number of observations, which leads to the model representing the noise in the 

data rather than the underlying relationship, causing overfitting. The best fit was obtained using 

a 2nd-degree polynomial, highlighting the need to modify the linear regression cost function to 

mitigate overfitting.   
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Figure 30: Example of overfitting using polynomial regression - (GÉRON, 2019). 

  

 Regularization is a technique that addresses overfitting by adding a penalty term to the 

cost function. This penalty term discourages very large coefficients and reduced the weight of 

less important variables, thereby forcing the model to have a simpler and more generalizable 

representation of the data (AGGARWAL, 2015; GÉRON, 2019). In essence, regularization 

trades a small increase in error on the training data for improved generalization performance on 

unseen data. There are three types of regularization: Lasso, Ridge, and Elastic Net, each with a 

different representation of the regularization term.  

 Ridge regularization adds a regularization term equal to 
𝛼

2
∑ 𝜃𝑖

2𝑛
𝑖=1  to the cost function, 

where 𝛼 is a user-defined hyperparameter representing how much influence the regularization 

term will have on the cost function. If 𝛼 is very small, regularization does not affect the 

algorithm. However, if 𝛼 is very large, then all weights end up very close to zero and the result 

will be a flat line. The Ridge regression cost function 𝐽(𝜃) is the MSE of the model’s weights 

added with Ridge’s regularization term, as shown in Equation (2.12). 

 

 
𝐽(𝜃) = 𝑀𝑆𝐸(𝜃) +

𝛼

2
∑ 𝜃𝑖

2

𝑛

𝑖=1

 
(2.12) 

 



64 

 

 

 The regularization term above has an equivalent representation using a squared L2-norm, 

also known as Euclidian norm or L2 regularization. Using this representation alongside the cost 

function  𝐽(𝜃) gives: 

 

 𝐽(𝜃) = 𝑀𝑆𝐸(𝜃) +
𝛼

2
‖𝜃‖2

2 (2.13) 

 

 Lasso regularization has a different regularization term that is the L1 norm of the weight 

vector instead of half the square of the L2 norm. Lasso regularization tends to eliminate the 

weights of the least important features by setting them to zero, offering a sparse model 

(GÉRON, 2019). The cost function alongside Lasso regularization is shown in Equation (2.14).  

 

 
𝐽(𝜃) = 𝑀𝑆𝐸(𝜃) + 𝛼 ∑|𝜃𝑖|

𝑛

𝑖=1

 
(2.14) 

 

 Elastic Net regularization is a mix of both Ridge and Lasso regularization, where a mixing 

ratio 𝑟 is defined to combine both regularization functions, as shown in Equation (2.15). If 𝑟 =

0, Elastic Net becomes Ridge regularization and when = 1, it becomes Lasso regularization.  

 

 
𝐽(𝜃) = 𝑀𝑆𝐸(𝜃) +

1 − 𝑟

2
𝛼 ∑ 𝜃𝑖

2

𝑛

𝑖=1

+ 𝑟𝛼 ∑|𝜃𝑖|

𝑛

𝑖=1

 
(2.15) 

 

 

2.8.2 Decision trees 

 

 

Decision trees utilize hierarchical decisions on the feature variables to obtain the output, 

resulting in a tree-like structure, as shown in Figure 31. The first decision is done using the 

“Age” variable, leading to two branches that used the “Salary” variable to continue making 

decisions and splitting the data until they are well separated. Although Figure 31 uses a single 

attribute for the splits, it is possible to consider multiple variables simultaneously, as shown in 

Figure 32.  Algorithms such as RandomForests utilize multiple decision trees trained on 

different subsets of data to produce an output and aggregate these outputs into a final value. 
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This leads to more robust and generalizable solutions compared to using a single decision tree 

(AGGARWAL, 2015; GÉRON, 2019; YI et al., 2019). This technique is a type of model 

ensemble, which will be discussed in the following sections.  

 

 

 

Figure 31: Example of a decision tree for univariate splits - (AGGARWAL, 2015). 
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Figure 32: Example of a decision tree for multivariate splits - (GÉRON, 2019). 

 

 

2.8.3 Model ensembling 

  

 

  Model ensembling (grouping) is the combination of different models to overcome the 

limited generalization performance of each model, thus, generating more accurate predictions 

than these individual models. After optimizing the hyperparameters of different machine 

learning models and guaranteeing an optimal configuration for the problem, ensembling them 

will likely perform better than the individual models (FERREÑO et al., 2021; LASISI; 

ATTOH-OKINE, 2019). Even if the models are weak learners (only slightly better than random 

guessing), the ensemble can still achieve high accuracy, provided that there are a sufficient 

number of weak learners and they are sufficiently diverse. 

 It is important to keep in mind that there is no universal algorithm that is guaranteed to 

perform well for all types of problems and datasets, which is also known as the “no free lunch 

theorem” (DE ROSA et al., 2020; LASISI; ATTOH-OKINE, 2019; SHAFIULLAH et al., 

2010). Different algorithms will perform better on different parts or characteristics of the 

dataset. The diversity of solutions that comes with combining these algorithms can increase 
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robustness and generalization. Therefore, these methods work best when the predictors are as 

independent of one another as possible, like training very different algorithms.   

 Figure 33 and Figure 34 exemplify ensembling for a classification problem. Suppose from 

Figure 33 that different classification algorithms were trained and each one achieved about 80% 

accuracy. The predictions of each model can be grouped up to predict the class that gets the 

most votes. In Figure 34, three out of the 4 models predicted class 1, therefore, the final output 

would be class 1. Since three out of the 4 models returned 1, it is more likely to be correct than 

by using a singular model.  

  

 

 

Figure 33: Training diverse classifiers - (GÉRON, 2019). 
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Figure 34: Combining models with a hard voting classifier - (GÉRON, 2019). 

 

 There are many ways to combine different machine learning models. The main 

approaches will be presented in the following sections. 

 

 

2.8.3.1 Bootstrap aggregation (Bagging) 

 

 

 Instead of training a diverse set of models, Bagging uses the same algorithm but trains it 

on different random subsets of the training set, as shown in Figure 35 (GÉRON, 2019). Once 

all models are trained, the ensemble aggregates these models, and their combination produces 

the final output.  
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Figure 35: Illustration of bagging - (GÉRON, 2019). 

 

 

 Figure 36 compares the decision boundary of a single decision tree with the decision 

boundary of a bagging ensemble of 500 trees, both trained on the same dataset. The ensemble’s 

prediction will likely generalize better than the single decision tree, as seen by the less irregular 

green decision boundary separating the blue class from the yellow class. 

 

 

 

Figure 36: A single decision tree (left figure) versus a bagging ensemble of 500 trees (right figure) - (GÉRON, 

2019). 

 

Bagging is also used as a nonparametric way of determining a model’s confidence interval 

(bootstrap confidence intervals) (BROWNLEE, 2019). With just the original dataset, there will 

be only one single estimate of the population parameter with no information about the 
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uncertainty of the estimation. By taking random samples of the dataset using Bagging, there is 

now available data to estimate a population parameter such as the mean of the estimate or a 

confidence interval for quantifying uncertainty. A downside of resampling methods is that they 

can be computationally expensive due to requiring hundreds to thousands of resamples to 

develop a robust estimate of the populating parameter.  

Forest algorithms such as RandomForest and ExtraTrees have this sampling strategy 

known as bootstrap sampling and the maximum number of samples that are used by each tree 

can be defined as a hyperparameter.  

 

 

2.8.3.2 Boosting 

 

 

 Boosting methods involve training models sequentially, that is, the next model tries to 

correct the residual of its predecessor (AGGARWAL, 2015; AGGARWAL; SATHE, 2015; 

FERREÑO et al., 2021; LASISI; ATTOH-OKINE, 2019). Famous algorithms such as 

XGBoost, AdaBoost, CatBoost, LightGBM, etc all employ this concept. This is better explained 

in the example shown in Figure 37 for a classification problem.  

 

 

Figure 37: Illustration of how boosting works, exemplified by an AdaBoost classifier - (MARSH, 2016). 

 

 

 From Figure 37, a model is fitted to the original dataset 𝐷1, which lead to the creation of 

a decision boundary after training. Initially, all samples have the same weight on the error. The 
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highlighted black circles show the error in the model. Incorrect predictions are assigned to the 

next base learner with larger importance (larger weights or boosted weights). By giving more 

importance to the incorrect predictions, the next model will prioritize correcting these terms. 

This can be seen by the slightly larger symbol size of the incorrect points after updating the 

weights. The second model 𝐷2 is trained and the steps are repeated. For this figure, the ensemble 

of three models was enough to correctly classify the dataset. More accurate models will have a 

bigger weight for the final output.  

 Note that the sequential nature of the boosting algorithm makes them more prone to 

overfitting compared to traditional machine learning models. Since model errors made by 

previous iterations are fitted by the subsequent model, over-specialization to the training data 

can occur, which would reduce the model’s ability to generalize. So it is important to use 

techniques that prevent overfitting such as early stopping and regularization. Another option is 

to reduce the number of models subsequently trained and verify their effect using cross 

validation.   

 

 

2.8.3.3 Stacking 

 

 

 Instead of using a trivial function such as a voter or average, a machine learning model is 

responsible for the aggregation (GÉRON, 2019; OZDEMIR; SUSARLA, 2018). Stacking 

utilizes the output of simpler models (base learners) to create a new dataset that will serve as 

the output for a second-level model, also known as a meta-model or blender (PIRES et al., 

2021). This second model will use the individual model predictions as the input and give the 

final estimate as the output. A simple flowchart is shown in Figure 38 while an example of a 

regression problem is shown in Figure 39.  
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Figure 38: Simple flowchart of how model stacking works - (PIRES et al., 2021). 

 

 

Figure 39: Aggregating predictions using stacking - (GÉRON, 2019). 

 

 

Gerum et al. (2019) stacked a random forest model with a recurrent neural network (RNN) 

to predict track defects and minimize underestimations. The overall average false negative rate 

decreased from 15% to less than 5% while the false positive rate decreased from 20% to 8%. 

The Partial Swarm Optimization (PSO) algorithm was implemented to find the best weights for 

the linear combination of the models. In the case of this thesis, model stacking was not 

necessary due to the good error metrics, but was included for completeness.  
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2.8.4 Neural networks 

 

 

Artificial neural networks are a type of deep learning model that is capable of generating 

nonlinear mappings between the input and the output through the connection of layers of nodes 

or neurons (GULER, 2014; KARIS, 2018; ZHAO et al., 2018). These neurons receive an input 

from some other neurons and a weight value is attributed to the input connections. The neuron 

then applies a mathematical function to the input and returns an output to be used by subsequent 

neurons (AGGARWAL, 2015). For the network to work properly, the weights of the neural 

network are optimized by minimizing a cost function. The effectiveness of the neural network 

is heavily reliant on its arrangement of neurons or architecture.  

An example of a neural network is shown in Figure 40. This neural network was used to 

obtain wheel contact forces from track geometry and vehicle data to quantify safety through the 

Nadal index (LI et al., 2006).  

 

 

 

Figure 40: Simplified neural network architecture for obtaining wheel loads from track geometry data - (LI et al., 

2006). 

 

 In this thesis, a deep neural network was used, characterized by its multiple hidden layers, 

each equipped with a substantial amount of neurons. While deeper neural networks, meaning 

those with a larger amount of hidden layers, have the potential to capture more intricate 

relationships, they are also more susceptible to overfitting due to the larger number of 



74 

 

 

hyperparameters. To mitigate the risk of overfitting, regularization techniques such as early 

stopping, dropout, and the application of L1 or L2 norms to penalize hidden layers, are often 

utilized. Deeper neural networks also demand a higher computational cost during training and 

necessitate a larger dataset to avoid overfitting. It is important to note that deepening a neural 

network does not guarantee improved performance, and thus, great caution must be exercised 

when designing the network architecture and training the model.  
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3 METHODOLOGY 
 

 

 Figure 42 shows the flowchart of the methodology adopted in this thesis. Five main 

parameters are necessary to evaluate the dynamic behavior, which are the track macrogeometry, 

wheel and rail profile, velocity profile, wagon model, and geometric track irregularities. The 

wagon's dynamical model must be capable of measuring the variables that the BRA1 railway 

uses in its day-to-day activities and also the variables used by the IRVs of other researchers to 

visualize which potential sensors would be important for this application. The dataset used in 

this thesis can be divided into three categories: 

 

• IRV sensor data: variables that the BRA1 IRV can measure with its sensors; 

• Virtual sensor data: variables that are measured by the IRVs of other researchers but not 

the BRA1 due to lack of instrumentation; 

• Target variable: vertical and lateral rail irregularities of the left and right rail. 

 

 The raw dataset was created inside 𝑆𝐼𝑀𝑃𝐴𝐶𝐾𝑇𝑀, which is a commercial program used 

for multibody dynamic simulation and is commonly used by railway researchers. The BRA IRV 

model was validated with measured data and will act as the digital mockup of the real 

instrumented wagon . The model was created with three substructures: two bogies and the 

wagon, as shown in Figure 41. More details on the model are available in Silva (2022).   

 

 

Figure 41: SIMPACK model – modified from (SILVA, 2022). 
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 Preprocessing is done to rename the columns and create categorical columns to facilitate 

the exploratory data analysis (EDA) step. Once the data is preprocessed, the EDA step consists 

of visualizing the dataset with lineplots, boxplots, and correlation metrics to highlight the 

relationship between input and target output (track irregularities). After establishing a baseline 

model in the EDA phase, feature engineering is done to better find the mapping between the 

dataset and the target variable and improve upon the baseline model. Once the feature 

engineering step is concluded, feature selection was done to remove redundant variables. 

Different machine learning models were then trained and optimized using Optuna (AKIBA et 

al., 2019; OPTUNA, 2020) and compared to one another. The best model in terms of error 

metrics was chosen for further investigation involving model interpretability and feature 

importance. In the last topic, the variables that most contribute to the model output were 

defined. 

 

 
Figure 42: Methodology flowchart. 
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3.1 Dataset creation and preprocessing 

 

 

 The current instrumentation of the IRV may be insufficient for measuring track 

irregularities with reliable results. Therefore, the dataset created from simulation shall have the 

same sensors as the real IRV, but also sensors that do not exist in the real IRV. By simulating 

with both real and virtual sensors, it is possible to do the following:  

 

• Test different sensor positions to determine an optimal location from the already existing 

instrumentation; 

• Test different sensor types that are not used in the current IRV (gyroscope for example) 

and analyze their viability. 

 

 The raw dataset consists of 5 .csv files containing simulation data from 4 different FRA 

class irregularities and a no irregularity case. Each of these files contains 68352 rows and 56 

columns. There are a large number of columns because there are 11 real sensors, 38 virtual 

sensors, 4 target columns (track irregularities), and 3 auxiliary columns (distance, curvature, 

and irregularity class). From the curvature of the track, 4 categorical variables were created to 

add information about the track segment such as, for example, the type of track (tangent or 

curve), and track radius. The virtual sensor positions were based on the study of other authors 

such as (BLEAKLEY, 2006; COWIE et al., 2015; HARDIE et al., 2016; PIRES et al., 2021). 

Therefore, the final raw dataset has 341760 rows and 60 columns.  

 The scope of part of this work is to verify if it is possible to find the nonlinear mapping 

between the track irregularities and the real IRV variables using a machine learning model, so 

the numerical variables of the dataset were reduced to the variables that this IRV can measure. 

This was done because, if the mapping proves to be sufficiently accurate with the current 

instrumentation, then there will be no need to add other sensors and increase costs. Table 4 

shows a brief description of this filtered dataset that now has 341760 rows and 22 columns. 
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Data Localization Variable Component Units Description Name 

 

 

 

 

 

 

 

 

 

Input: 

numerical 

variables 

 

Carbody 

 

Middle 

 

 

Acceleration 

X  

 

m/s2 

 

Triaxial accelerometer 

variables 

TA_X 

Y TA_Y 

Z TA_Z 

Leading 

bogie 

sideframe 

Left 

side 

 

 

 

Acceleration 

 

 

 

Z 

 

 

 

 

m/s2 

 

 

Vertical uniaxial 

accelerometer 

UA_Z_LR 

Right 

side 

UA_Z_LL 

Trailing 

bogie 

sideframe 

Left 

side 

UA_Z_TL 

Right 

side 

UA_Z_TR 

Leading 

bogie 

suspension 

Left 

side 

 

 

 

Displacement 

 

 

 

Z 

 

 

 

m 

 

 

Displacement of 

spring attached to a 

load cell 

SS_Z_LR 

Right 

side 

SS_Z_LL 

Trailing 

bogie 

sideframe 

Left 

side 

SS_Z_TL 

Right 

side 

SS_Z_TR 

 

- 

- Distance - m Distance traveled by 

the IRV 

Distance 

- Curvature - 1/m Track curvature Curvature 

 

 

 

Input: 

categorical 

variables 

 

 

 

 

 

- 

- Class - - FRA irregularity class Class 

- Type of 

segment 

- - Binary variable to 

distinguish curved 

from tangent track 

Type of 

segment 

- Segment - - Specific track 

segment 

Segment 

- Radius - - Radius of the segment Radius 

- Radius  

class 

- - Classify track if a 

segment is tangent, 

has a radius greater or 

less than 500 m 

Radius 

class 

 

 

Target 

variables 

 

 

 

Track 

Right 

rail 

Vertical 

irregularity 

 

Z 

 

 

 

mm 

 

 

Geometric track 

irregularities 

Irr_Z_RR 

Left rail Irr_Z_LR 

Right 

rail 

Lateral 

irregularity 

 

Y 

Irr_Y_RR 

Left rail Irr_Y_LR 

Table 4: Preprocessed dataset. 
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3.2 Exploratory data analysis 

 

 

 Exploratory data analysis (EDA) is a common procedure for visualizing and exploring 

the dataset before model training to better understand the problem and identify possible 

challenges. The EDA step in this study involves:  

 

• Removing outliers using boxplots based on the expected sensor values obtained from real 

IRV data; 

• Visualizing the relationship between variables using lineplots, boxplots, and correlation 

metrics to remove useless features; 

• Establishing a baseline model. 

 

 Once the data is preprocessed, the EDA step consists of visualizing the dataset with 

lineplots, boxplots, and correlation metrics to highlight the relationship between input and target 

output (track irregularities). After establishing a baseline model in the EDA phase, it is also 

possible to create expectations about modeling success by looking at univariate and multivariate 

correlations between the input dataset and target variable. The exploratory data analysis (EDA) 

step will focus on using only the variables that exist in the BRA IRV. This means that the 

studied dataset is filtered to now have 341760 rows and 22 columns. 

 

 

3.2.1 Outlier removal 

 

 

 To better represent the regression problem, it is important to remove extreme values that 

are outside the range of what is expected from the data since this is likely due to an error 

unrelated to the problem. These types of outliers could appear due to measurement error or data 

corruption (BROWNLEE, 2019). To identify if a data point is an outlier, a mixture of domain 

knowledge and simple statistical methods were used. In the BRA1 railway, the uniaxial 

accelerometer values range up to around 70 m/s2. Looking at the boxplot of the acceleration 

variables in Figure 43, the collected data far exceeds this threshold. This is likely due to the 

closer proximity to the wheel-rail interface and the difficulty in simulating the impact loads that 
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occur there. Due to the large number of plots necessary to visualize the outliers for each 

variable, this thesis will show an example of how outlier removal was performed. Of all the 

variables, only the uniaxial accelerometer variables showed values outside the expected range.  

 

 

Figure 43: Before outlier removal. 

 

 The Interquartile Range (IQR) method was used to remove these outliers. The IQR starts 

obtaining the 25𝑡ℎand 75𝑡ℎ percentile of a variable to calculate their IQR. The new limits to 

identify outliers are a factor 𝑘 multiplied by the IQR above the 75𝑡ℎ and below the 25𝑡ℎ 

percentile. Brownlee (2019) recommends a factor 𝑘 = 1.5 for common applications or a factor 

𝑘 = 3 or more to identify extreme outliers. In this work, the factor 𝑘 was selected in such a way 

that simulation values would be in the expected range of measured acceleration values, which 

would be around 55 m/s2 for a FRA 4 class irregularity. The other sensor variables such as the 

triaxial accelerometer and the spring sensors did not exhibit absurd values. So the rows that had 

an absolute uniaxial acceleration measurement above 55 m/s2 were removed. 

 The boxplots of the most critical variables after outlier removal are shown in Figure 44. 

Note in Figure 43 that the range of outlier values is so large that the boxplot cannot be 

visualized. After outlier removal, the boxplots of FRA3 and FRA4 are barely visible, 

highlighting that the dataset still contains outliers. These outliers, however, are not outside the 

expected range of measured values and are likely due to the physical characteristics of the 

system instead of numerical simulation error. No filtering techniques were applied. 
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Figure 44: After outlier removal. 

 

3.2.2 The effect of track severity on measured signals 

 

 

 Track irregularity severity has a large impact on the measured signal, as shown by the 𝑌 

component of the triaxial accelerometer in Figure 45. A track with no irregularities allows the 

user to see the effect that track curvature has on the signal, as seen by the zoomed section in 

Figure 46 between 4100 m and 4800 m. However, class FRA6 irregularities make it harder to 

visualize this while FRA3 irregularities are even more so. This suggests that information with 

regards to the track segment is masked by track irregularities. The categorical variables that 

describe track design characteristics (view Table 4 for more information) will not be useful 

because the data will be too similar. To exemplify in terms of feature selection, the information 

of whether a track segment is a tangent or a curve will add nothing new for the model to learn 

this distinction due to their similarity. Consequently, a useless feature will be added that will 

hinder model training. 
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Figure 45: Y component of the triaxial accelerometer. 

 

 
Figure 46: Zoom of the curved section between 4100 m and 4800 m. 

 

 

 The hypothesis that track characteristics are unimportant for large track irregularities can 

be better explained by using Figure 47. Looking at the boxplot range of the second row for the 

suspension variables, no irregularities clearly show a distinction between tangent and curved 

sections. When the track severity increases from FRA6 to FRA3, the boxplot ranges between 

tangent and curved sections become closer. Up to FRA6, the categorical variables previously 

defined are likely to be important since there is a noticeable difference in the boxplots. 

However, for FRA5 and lower, the boxplots are very similar. This means that the track design 

features created are unlikely to improve model performance for large track irregularities. Since 

this study prioritizes detecting severe track irregularities over smaller ones, these categorical 

variables were removed. With this, the model will have to generalize for any type of track 
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segment.  After removing the 4 categorical variables and 2 auxiliary plotting variables (distance 

and curvature), the dataset was reduced from 22 columns to 16.  

 

 

 

Figure 47: Boxplot of the sensor variables. 

 

 Figure 48 shows the pairplot of the irregularities for all FRA classes. Note that, by using 

all of the data, there will be a data imbalance. The majority of the dataset would be of small 

irregularities while the main objective is to prioritize the detection of severe irregularity cases. 

Since the BRA railway is classified as FRA4 by the maintenance engineers, the dataset is 
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filtered to only contain this class. With this, the data that will be analyzed represents a similar 

condition to what is measured by the BRA IRV. The dataset now has 68155 rows and 15 

columns since the "Class" column is useless now that it only contains class FRA 4 irregularities. 

 

 

Figure 48: Distribution plot of the track irregularities. 

 

 

3.2.3 Correlation analysis 

 

 

There are two main approaches for studying correlation in machine learning: univariate 

correlation and multivariate correlation (BROWNLEE, 2019; CHRIST et al., 2018). The 

objective of correlation is to have a metric that describes the relationship between the input 
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dataset and the target variable. With these metrics, the data scientist can create an expectation 

of how the model will likely perform.  

Univariate feature selection considers each feature individually while multivariate 

correlation (wrapper methods) relies on an external prediction model that provides coefficients 

indicating the importance of each input feature towards the output (KIMOTHO; SEXTRO, 

2014). While univariate correlation shows individual features with redundant information or 

seemingly uninformative by themselves, multivariate correlation sees if their combination with 

other variables proves to be useful. Both types of correlation were used in the present study.  

Figure 49 shows the correlation heatmap for the Pearson coefficient (linear correlation) 

and Spearman coefficient (monotonic correlation) for the filtered dataset containing FRA4 

irregularities. From this figure, it is clear that the current instrumentation of the BRA IRV has 

a very small correlation with lateral irregularities and a reasonable correlation with vertical 

irregularities at around 0.47. Note the Pearson correlation of 0.52 between the vertical 

irregularities of the left rail (bottom row) and the spring displacement on the left side of the 

leading bogie (second column).  

 

 

Figure 49: Correlation heatmaps. 

These results seem to make intuitive sense due to how the current instrumentation of the 

BRA1 IRV is implemented. The vast majority of the IRV sensors measure vertical excitations 

while only the 𝑌 component of the triaxial accelerometer measures the lateral movement. Even 

so, the correlation of the lateral triaxial component with the lateral irregularities is practically 
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zero. This highlights the possible need for a different instrumentation configuration to 

accurately monitor the lateral movements of the wagon. With this in mind, the present thesis 

will focus on obtaining the vertical track irregularities from the IRV data. 

 In Figure 49, all four suspension sensors have a solid correlation with the vertical track 

irregularities while the triaxial accelerometer components have a low correlation. It is likely 

that the 𝑍 component of the triaxial accelerometer has a low correlation because of the filtering 

effect of the secondary suspension, which changes the signal significantly (TSUNASHIMA; 

NAGANUMA; KOBAYASHI, 2014). The uniaxial accelerometers in the leading bogie have a 

good monotonic correlation with the vertical irregularities while the sensors in the trailing bogie 

do not. This indicates that sensor placement would be better on the leading bogie when 

compared to the trailing bogie if the objective was to capture vertical track excitations.  

 Six different machine learning models with default hyperparameters were used to 

determine the multivariate correlation between the input and vertical track of the right rail, as 

shown in Figure 50. All models used are shown in the title and they were created using their 

default hyperparameters with no hyperparameter optimization. By using a diverse set of models 

and observing the coefficient of determination (𝑅2) metric, it is possible to confirm the 

observations done in the univariate correlation and determine if the mapping produces 

sufficiently accurate results.  
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Figure 50: Multivariate correlation using a wrapper method for 6 different models. 

 

 From Figure 50, the objective is to find models that show some accurate mapping between 

the input and the output and analyze their feature importance. Looking at the 𝑅2 metric, these 

models can either be the RandomForestRegressor or the ExtraTreesRegressor. From these 2 

models, the leading uniaxial accelerometer on the right sideframe and the 4 trailing suspension 

sensors can be seen in the top 4, which is expected based on the univariate correlation with the 

right rail (third to bottom row in Figure 49. An interesting observation is that the trailing 

uniaxial accelerometer variables do not appear in the top 8 features of the models while the 

triaxial variables do. Even though the 𝑌 component of the triaxial sensor has about the same 

univariate correlation as the trailing uniaxial accelerometers, it is more important when 

considering all the variables together. The argument that positioning the sensors on the trailing 

bogie is not ideal seems more plausible.  

 To continue, the vertical track irregularity of the left rail was selected as the target variable 

to prove that the mapping is possible. The other track irregularity columns are removed, leading 

to an output dataset of 68155 rows and 12 columns. 
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3.2.4 Conclusions from EDA 

 

 

The main conclusions of the EDA step can be summarized as follows: 

 

• Outliers appeared only on the uniaxial accelerometers due to their proximity to the 

wheel-rail contact interface. The impact loads that occur in this interface likely lead to 

numerical errors which caused these outliers; 

• Larger track irregularities (FRA3 - FRA5) mask the effect that the track curvature has 

on the measured IRV variables;  

• Categorical variables that contain track design characteristics will likely not contribute 

to increasing model accuracy due to the masking effect of the more severe irregularities 

(FRA3-FRA4). Thus, they were removed; 

• After removing the categorical variables, maintaining only class FRA4, and selecting a 

target variable, the output dataset has 68155 rows and 12 columns (11 sensor variables 

and the target variable); 

• The baseline model performance is 𝑅2 = 0.8448, which is far below the desired 

accuracy for practical implementations. 

 

 

3.3 Feature engineering 

 

 

Traditional data-driven methods likely require the design of new features (feature 

engineering) to better find the mapping between the dataset and the target variable. This 

procedure is very common in diagnostic and prognostic modeling (LEI et al., 2020; TSUI et al., 

2015). Feature selection/extraction is also a key part of this process; therefore, it depends on 

the domain knowledge and expertise of the data scientist. The following sections show the 

creation of new columns based on domain knowledge and feature extraction using statistical 

metrics. 
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3.3.1 Domain knowledge of wagon movements 

 

 

 A typical bogie model with six degrees of freedom is shown in Figure 51. Due to the track 

excitations, the movement experienced by the vehicle will represent either a translation or 

rotation about these axes. Thompson et al. (2016) and Darbie et al. (2003) highlighted that the 

secondary suspension deflection (suspension travel) and accelerometers can be used to detect 

track geometry irregularities and also movements that correlate with oscillatory modes of the 

wagon (rotations around the 3 axes). Bleakly’s IRV, for example, had the objective of capturing 

roll, pitch, and yaw from vertical and lateral accelerations of the wagon body (BLEAKLEY, 

2006). This is shown in Figure 52.  

 

 

 

Figure 51: Representation of a bogies' six degrees of freedom - (YEO, 2017). 
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Figure 52: Excitation of oscillatory modes in the wagon body - (BLEAKLEY, 2006). 

 

 

To represent these types of movements, the main references used were from Bleakly 

(2006) and Thompson et al. (2016). The sensor arrangement of Bleakly (2006) consists only of 

accelerometers and is shown in Figure 53. The variables that capture these degrees of freedom 

alongside their mathematical expressions used by Bleakly are shown in Figure 54.  
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Figure 53: Accelerometer locations and axis naming convention - (BLEAKLEY, 2006). 

 

 

Figure 54: Relating corner accelerations to 5 degrees of freedom - (BLEAKLEY, 2006). 
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Comparing the IRV of Bleakly with the BRA IRV of this thesis, the main differences are: 

 

• Carbody: BRA only has a triaxial IRV instead of Bleakly’s setup in Figure 53; 

• Bogie: BRA measures acceleration only in the vertical direction for similar sensor 

locations. BRA also measures secondary spring displacement while Bleakly measures 

lateral acceleration; 

• Axlebox: Both IRVs do not have instrumentation on the axlebox. 

 

 Due to the BRA IRV having spring displacement sensors at approximately the same 

location as Bleakly’s accelerometers, the mathematical expressions used in this thesis are 

different. The rigid body motions captured in this thesis are illustrated in Figure 55. The 

mathematical expressions used to create these new variables from domain knowledge are 

available in Appendix C.  

 

 
Figure 55: Example of rigid body motions that can be recreated using feature engineering on the IRV 

measurements. 

 

 

3.3.2 Integrating accelerometer signals 

 

 

 As stated in Section 2.5, vertical irregularity values can be calculated by double 

integrating the vertical acceleration of the bogie or axlebox mounted sensors (BLEAKLEY, 

2006; LEE et al., 2012; THOMPSON et al., 2016). Although there are disadvantages to simply 

using this integration to measure track geometry, it is still possible to take advantage of the 

natural correlation between the double-integrated uniaxial acceleration signal and the track 

irregularity for data-driven models. In this study, the two uniaxial accelerometer variables of 

the leading bogie were integrated numerically due to their good correlation with the output. The 
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integration was done using the scipy library in Python by applying Simpson's rule 

(scipy.integrate.simps). 

 

 

3.3.3 Statistical metrics 

 

 

 Statistical metrics in the time domain, frequency domain, or time-frequency domain 

(wavelets) are commonly used for feature extraction from raw signal data (ANKRAH; 

KIMOTHO; MUVENGEI, 2020; LEI et al., 2020; TSUI et al., 2015). Larger track irregularities 

may cause the time-domain signal to change in amplitude and distribution compared to the 

signal excited by small irregularities. The frequency spectrum and its distribution may also 

change, meaning that new frequency components may appear associated with track severity 

(LEI et al., 2007). Only time domain metrics were used here due to their simplicity in 

implementation. These metrics were: mean, standard deviation, root mean absolute, mean 

absolute, root mean square, maximum absolute value, skewness, kurtosis, and peak-to-peak 

value.  

 A rolling window was used to create the new variables. To illustrate the procedure, 

consider a column vector T, a target variable and a window size (𝑤) of 4. The first step is to 

create new columns that are the lagged features of T. Since the window size is 4, there would 

be 3 lagged features, as shown in Table 5 by columns T-1, T-2, and T-3. Note the appearance of 

NaNs due to the shift in the time series or because the mean could not be calculated with a NaN 

term. The next step is to calculate one of the statistical metrics stated previously, which is the 

mean in this illustration. The final step is to remove the rows with NaNs and the columns 

containing the lagged features. This results in a final dataset with fewer rows (size of the 

window) and an additional column for each statistical metric applied to T. All statistical metrics 

were applied to all numerical variables after the domain knowledge feature engineering step. It 

is important to note that only past information is being used to predict the present value.  In 

Python, the Pandas package provides a function called “rolling” that does the steps shown 

previously (BROWNLEE, 2020).  
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Index T T-1 T-2 T-3 Mean (T,T-1,T-2,T-3) Target 

1 10 NaN NaN NaN NaN 4.5 

2 20 10 NaN NaN NaN 5.5 

3 30 20 10 NaN NaN 6.5 

4 40 30 20 10 25 7.5 

5 50 40 30 20 35 8.0 

6 30 50 40 30 37.5 9.0 

7 40 30 50 40 40 10.0 

Table 5: Illustration of the rolling window process employed. 

 

Index T Mean (T,T-1,T-2,T-3) Target 

4 40 25 7.5 

5 50 35 8.0 

6 30 37.5 9.0 

7 40 40 10.0 

Table 6: Dataset after the rolling window process 

 

 Since raw sensor data is a time series signal, a rolling window can be applied and generate 

new columns of data from these metrics. Tsunashima et al. (2019) used a rolling window of 4 

samples to calculate the root mean square of the carbody vertical acceleration as a metric for 

track quality, although he stated that the exact size of the window is a parameter to be optimized. 

The window size was optimized and from a range between 5 and 100, a window size of 55 

samples gave the best results. The ExtraTrees model was trained on multiple datasets obtained 

with different window sizes and the one that returned the best R2 on the test set was used. 

 The final result of the feature engineering step was a dataset of 68101 rows and 410 

columns. Note that some rows were discarded due to the rolling window of 55 samples. With 

the increase in column numbers from 12 to 410 columns, many of them likely present redundant 

or irrelevant features. These types of columns must be discarded to speed up model training, 

avoid overfitting and the curse of dimensionality (LEI et al., 2007, 2020). Therefore, feature 

selection must be done to only maintain the most important variables while minimizing model 

accuracy loss.  
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3.4 Feature selection 

 

 

 Taking advantage of the wrapper methods for multivariate correlation presented in 

Section 3.2.3, the ExtraTreesRegressor model with default hyperparameters was fitted on this 

dataset since it has shown to have the best performance out of all the 6 baseline models, as 

shown in Figure 50. All columns that have an importance coefficient lower than a constant 

𝑎 multiplied by the mean importance of the model is removed. This constant 𝑎 is a 

hyperparameter to be tuned based on the amount of precision and number of variables the user 

wants to be removed. For this study specifically, it was determined that 𝑎 = 1.1 gives 

satisfactory results, reducing the dataset from 410 columns to 30 while 𝑅2 was reduced from 

0.9738 to 0.9408. It is important to note that no hyperparameter tuning was done yet, so the 

drop-off in model performance is likely to be recovered. 

 

 

3.5 Machine learning models 

 

 

 Once the final dataset is obtained, machine learning algorithms are trained to solve the 

regression problem of mapping the IRV variables to the vertical track irregularities. It is 

important to keep in mind that there is no universal algorithm that is guaranteed to perform well 

for all types of problems or datasets, also known as the “no free lunch theorem”. Different 

algorithms will perform better on different parts or characteristics of the dataset. With this in 

mind, a diverse set of different algorithms were selected to be trained and optimized.  

 If performance is inadequate, model stacking (GÉRON, 2019; PIRES et al., 2021) would 

be done to increase generalization and robustness. Stacking is a type of ensemble (model 

grouping) where different machine learning models are combined to overcome the limited 

generalization performance of each model. As a result, ensembles are capable of more accurate 

predictions than each model individually. More information is presented in Section 2.8.3.3.  

 The following machine learning models were used in this work (more information about 

these models is in Section 2):  
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• Linear regression with regularization (Lasso, Ridge, ElasticNet); 

• Stochastic gradient descent with regularization – SGDRegressor;  

• Forest algorithms: RandomForestRegressor and ExtraTreesRegressor; 

• Boosting algorithms: AdaBoostRegressor, XGBRegressor, CatBoostRegressor, and 

LightGBM;  

• Deep Neural Network. 

 

  

 The machine learning models were evaluated using k-fold cross validation with ten splits 

(KFold). This process involves splitting the dataset into 𝑘 non-overlapping groups. A training 

dataset is created with all but one group while the model is evaluated on the leftover group. 

This process is repeated until each group is given a chance to be used as the holdout test set 

(which is 10 in this study). The average performance across all evaluations represents the 

model's performance. This work goes further and establishes a 95% confidence interval for the 

error metrics to assess the reliability of the predictions. Due to the restricted number of samples 

(10 in this case), a t-student distribution was used to obtain the confidence intervals 

(BROWNLEE, 2019).  

 

 

3.6 Hyperparameter optimization 

 

 

 Hyperparameter optimization was done using the open-source package Optuna (AKIBA 

et al., 2019) due to its pruning strategy that avoids combinations of parameters that will not lead 

to model improvement. This makes the searching process faster than the traditional GridSearch 

and RandomSearch. The dataset was divided so that 70% would be used as the training set 

while the remainder for the test set. 

 One of Optuna’s most attractive features is its visualizations for hyperparameter 

optimization. Figure 56 shows how the objective function of the neural network (MSE) changes 

over the number of trials. Each blue point is the objective function at a specific trial 

(combination of hyperparameters from the search space in Appendix A). The red line shows 

the best objective value over all trials. If a specific trial is better than all previous ones, the red 

line is updated. This helps show how many trials are needed for the objective function to 
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converge. After each trial, the search space is reduced by avoiding combinations of 

hyperparameters that will not perform well based on their history. 

 

 

 

Figure 56: Objective history plot. 

 

 

Figure 57 and Figure 58 show the objective function value attributed to each 

hyperparameter. The color is given by the trial number. In the case of Figure 57, it shows how 

three different types of activation functions (relu, tanh, and linear) affect the MSE. It can be 

seen that the tanh, relu, and tanh activation functions had the best objective function values for 

the 1st, 2nd, and 3rd layers respectively (from left to right). For the number of neurons in each 

layer, the optimal number is not as clear compared to Figure 58, however, it is possible to limit 

the hyperparameter range to focus on the more promising regions. An example of this would 

be limiting the search space that was initially 500-1500 neurons to 1000-1500 neurons in the 

3rd layer (leftmost side of Figure 58). Note that the number of layers is also a hyperparameter, 

but to illustrate some of Optuna’s visualization tools, a neural network with three layers was 

used, which is also the number of layers of the best performing model.  
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Figure 57: The effect that the activation function has on the objective function. 

 

 

Figure 58: The effect that the number of neurons of each layer has on the objective function. 
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4 RESULTS 
 

 

In this chapter, the results are presented following the methodology proposed in chapter 3. Table 

7 shows the performance of the regression models used in this study after hyperparameter 

optimization. The top 4 rows show that linear models are not capable of finding an accurate 

mapping. RandomForestRegressor and ExtraTreesRegressor showed solid error metrics with a 

RMSE of 2.197 mm and 2.368 mm respectively, but not good enough for practical applications 

due to the order magnitude. Of all the boosting algorithms, CatBoostRegressor showed the best 

results with an RMSE of 1.125 mm. Overall, a deep neural network showed the best metrics 

with a RMSE of 0.556 mm. The rightmost column of Table 7 shows the average run time of each 

hyperparameter optimization run done in Optuna, considering one standard deviation. A total 

of 30 iterations were done to provide an initial estimate. Note that the neural network has a 

large standard deviation due to the number of layers being a hyperparameter.  

 

Model MAE RMSE R2 Time (s) 

Lasso 2.885 ± 0.014 3.630 ± 0.024 0.591 ± 0.004 0.151 ± 0.054 

Ridge 2.885 ± 0.020 3.630 ± 0.035 0.591 ± 0.006 0.009 ± 0.002 

ElasticNet 2.885 ± 0.026 3.630 ± 0.033 0.591 ± 0.006 0.131 ± 0.032 

SGD_Reg 2.887 ± 0.018 3.633 ± 0.027 0.591 ± 0.006 0.151 ± 0.054 

RandomForest 1.641 ± 0.011 2.197 ± 0.032 0.850 ± 0.002 10.788 ± 5.585 

ExtraTrees 1.095 ± 0.025 2.368 ± 0.013 0.926 ± 0.004 1.619 ± 0.865 

LightBoost 0.818 ± 0.009 1.141 ± 0.026 0.960 ± 0.001 4.941 ± 2.018 

XGBR 0.912 ± 0.008 1.271 ± 0.012 0.950 ± 0.001 23.733 ± 19.349 

Adaboost 2.821 ± 0.018 3.514 ± 0.032 0.617 ± 0.005 40.166 ± 17.308 

CatBoost 0.814 ± 0.029 1.125 ± 0.025 0.961 ± 0.006 12.325 ± 10.011 

Neural Network 0.393 ± 0.027 0.556 ± 0.025 0.990 ± 0.005 780.008 ± 369.898 

Table 7: Model results. 

 

Figure 59 shows the optimal neural network architecture and its learning curves can be seen in 

Figure 60. The optimal models are shown in Table 7 and can be seen in Appendix B. 
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Figure 59: Optimized neural network architecture. 
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Figure 60: Neural network learning curve. 

 

 

 Compared to other researchers, Urda et al. (2021) estimated track irregularities using a 

scaled IRV and obtained an overall RMSE of 0.439 mm for vertical track irregularities. 

Although the model in this thesis provided an RMSE of 0.556 mm, postprocessing of the 

model's output signal allowed the reduction of the RMSE to 0.410 mm, making it comparable. 

The postprocessing step will be explained in Section 4.1.  

 

  

4.1 Data postprocessing 

 

 

 As stated in Section 2.6.4, the artificial irregularities generated in 𝑆𝐼𝑀𝑃𝐴𝐶𝐾𝑇𝑀 should 

contain wavelengths between 3 m and 25 m, therefore, the output of the models should also be 

in this range. Figure 61 shows the power spectral density (PSD) of the target and predicted 

vertical irregularities from the best-performing model (neural network). Both target and 

prediction are inside the expected D1 wavelength range of the FRA 4 class; however, 

wavelengths lower than 3 m show a considerable difference. Since small wavelengths are the 
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same as large spatial frequencies, the prediction likely has a noise term that should be filtered 

out. Wavelengths larger than 25 m are of little concern since their order of magnitude is much 

larger than the length of the wagon, meaning that it is unlikely to excite the wagon dynamics. 

 Following the example of Yeo (2017), a fourth-order Butterworth low pass filter was 

applied to the predicted vertical irregularity to minimize the noise term. For this work 

specifically, a cutoff spatial frequency of 0.35 1/m (wavelength of about 2.86 m) was used since 

it is sufficiently close to the lower wavelength limit of 3 m while also showing better error 

metrics. From the purple line of Figure 61, the cutoff provided by this filter is much more 

abrupt.  

 

 

Figure 61: PSD of the target variable and model output compared to the FRA norm specifications. 

 

 The application of the filter leads to an improvement in the RMSE from 0.556 mm to 

0.410 mm for the neural network, improving by around 26.3%. This increase in performance 

can be explained with the help of Figure 62. This figure shows the target variable with the 

filtered and unfiltered model prediction in the spatial domain for the test set. The smoothing 

effect caused by noise removal was responsible for improving the error metrics, which can be 

seen from index 61600 to 61800. The application of this filter is intended to be an option that 

the user can adopt to see if it delivers better performance or as a way to check if the model 

output makes sense. 
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Figure 62: Comparison between the model prediction and filtered prediction for a section of the test set. 

 

 

4.2 Model interpretability 

 

 

 The vertical track irregularities obtained from measured IRV data will be used to monitor 

the track and plan maintenance. For these decision-making applications, model interpretability 

is crucial so that domain experts responsible for maintenance planning trust the information 

provided by the ML model in their day-to-day operations (ALLAH BUKHSH et al., 2019). 

Specifically, it would be possible to obtain detailed information with regards to feature 

importance and critical instances where the IRV data measured very large values. 

 Figure 63 shows a flowchart of how model interpretability could complement a machine 

learning model for applications involving decision-making. Currently in the BRA railway, 

measured IRV data is visualized in reports and dashboards and compared to the tolerable limits 

for maintenance planning. The machine learning model would add another metric which would 

be the geometric irregularity values. Model explainability techniques would add a branch to the 

process for detailed explanations relating the measured dynamics to the track excitations. This 

work uses Shapely Additive Explanation (SHAP) as the model interpretability technique 

(LUNDBERG; LEE, 2017). 
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Figure 63: Flowchart of how to aggregate the machine learning with explainability techniques for decision 

making. 

 

 Developed by Lundberg and Lee (2017), SHAP uses game theory to explain the output 

of any machine learning model by calculating Shapley values. These values explain why the 

prediction of a specific point differs from the model average and how much each variable 

contributed to the final output. The Shapley value is defined as the average marginal 

contribution of a feature value across all possible feature combinations. For each combination, 

the marginal contribution is computed by taking the difference between the predicted variable 

with and without the specific feature value. 

 Figure 64 shows two ways of visualizing the SHAP values for the neural network model 

that allows different types of analysis to be done. The left figure shows the global feature 

importance of the top 15 variables, which is given by the mean absolute SHAP value for that 

feature over all given samples. The meaning behind each of these 15 variables is available in 

Appendix D. This means that, for this specific model, the top 3 variables that affect the output 

of the model the most are: 

 

• The mean value of the suspension on the right side of the trailing bogie; 

• The mean value of wagon pitch obtained from the suspension sensors on the left side of 

the bogie.  

• Suspension displacement on the right side of the trailing bogie. 
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Figure 64: SHAP values for determining feature importance. 

 

 Note that variables related to the triaxial sensors have a considerable impact on the model 

output; something that the univariate correlation tests didn't reveal. Surprisingly, the only 

variable related to the uniaxial accelerations that made it into the top 15 was “UA_Z_LR_Pos” 

which represents the double integration of the accelerometer positioned on the right side of the 

leading bogie. This shows that the suspension sensors variables have the largest impact on the 

model output, followed by the triaxial accelerometer and the uniaxial accelerometers. The 

reason that features created from the uniaxial accelerometer measurements are not important is 

likely due to a large number of outliers still being present compared to other sensors. Another 

possible issue is the noise that appeared during the numerical integration of these variables. 

Future studies will focus on better understanding, defining these outliers, and reducing noise 

by integrating in the frequency domain. 

 The right side of Figure 64 highlights details that the global feature importance plot does 

not show, allowing an explanation of the individual data points (local explanation). The density 

of the data points can be seen in this plot, where the cold colors (blue) mean that the variable 

has small values while warm colors (red) represent large values. To better illustrate the 

information provided by this plot, the 5th most impactful variable will be used as an example 

due to roll being a type of wagon movement that will facilitate interpretation (Figure 55). The 
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local explanation reveals that large values of this variable negatively affect the model output 

while small values have a positive impact. This can be better visualized in Figure 65.  

 A linear relationship is observed between the roll of the trailing bogie (“BackRoll_Susp”) 

and its SHAP values. The question now is if this result makes intuitive sense from a physical 

standpoint. For the back roll variable, positive values represent a clockwise spin around the 

wagon's x-axis while negative values represent a counterclockwise spin. Keep in mind that the 

objective variable is the vertical irregularity on the right rail. If the wagon has a negative roll, 

the right vertical irregularity is likely to be larger than the left vertical irregularity since this 

creates the torque necessary for the roll movement. Therefore, large positive irregularity values 

on the right rail cause a counterclockwise spin (negative roll values), and this relationship was 

captured by the neural network.  

 Looking now at the color of Figure 65, it can be seen that there is a clear interaction term 

between the roll of the trailing bogie and the roll of the wagon as a whole. This makes sense 

because the wagon roll variable was created as the most critical case of roll observed 

considering both bogies. From this result, it can be said that the model is capable of capturing 

the underlying dynamics of the wagon and its relationship to track excitations.   

 

 

Figure 65: Shap dependence plot of the variable representing the wagon’s roll movement. 
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5 CONCLUSION 
 

 

 This thesis proposes a data-driven approach to obtaining geometric track irregularities 

from instrumented railway vehicle (IRV) data. Machine learning models are trained to find the 

nonlinear mapping between the IRV sensor data (input) and the track irregularities (output). A 

virtual dataset was generated using dynamic simulation of a BRA1 IRV model inside 

SIMPACKTM. The dataset contains sensor variables measured by the BRA1 IRV and by other 

IRVs found in the literature. The target variable is class D1 (wavelength between 3 ≤ λ ≤

 25 m) track irregularities due to their relationship with vehicle safety. With this dataset, nine 

different machine learning models were used and optimized using Optuna.  

 Exploratory data analysis revealed that, with the current instrumentation of the BRA1 

IRV, it is possible to find the mapping between vertical track irregularities and IRV sensor 

measurements due to the Pearson and Spearman correlation coefficients of around 0.5 for some 

of the sensor variables. The Spearman correlation of the uniaxial vertical accelerometers on the 

trailing bogie was close to zero compared to the 0.46 observed for the same sensors on the 

leading bogie. This means that sensor placement on the trailing bogie for obtaining vertical 

track irregularities is not recommended.   

 For lateral track irregularities, accurate mapping is unlikely due to the correlation 

coefficients being close to zero for all variables. This is due to IRV instrumentation being 

tailored to monitor vertical excitations since most of the measured sensor components are 

vertical. A different instrumentation layout with sensors measuring lateral movements will 

likely lead to better correlation results. Therefore, machine learning models were trained to 

obtain the vertical track irregularities.  

 The results show that the best performing model was a deep neural network with a root 

mean squared error (RMSE) of 0.556 ± 0.025 mm and a coefficient of determination R2 of 

0.990 ± 0.005. Inside the D1 wavelength range, the model output accurately follows the target 

variables, however, there was noise present in the model output. Applying a 4th order 

Butterworth lowpass filter on the model output to filter the desired wavelength range D1 caused 

the RMSE to improve from 0.556 mm to 0.410 mm.  

 Model interpretability techniques using SHAP values revealed that the top 3 most 

important features were created using suspension sensor variables while the 4th and 6th are the 

mean 𝑍 and 𝑋 components of the triaxial accelerometer. Of the top 15 variables, only one of 
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them was obtained using uniaxial accelerometer measurements which was the double 

integration of the signal. Therefore, the suspension and triaxial sensors are the most important 

for measuring vertical track irregularities. 
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6 FUTURE STUDIES 
 

 

• Improve upon the double integration done in feature engineering by detrending the data 

and removing noise by applying a bandpass filter after each integration step, as done in 

Haji Abdulrazgh et al. (2021) and Malekjafarian et al. (2021) while also analyzing the 

signal-to-noise ratio. Another option is integrating in the frequency domain; 

• Simulate segments with different velocity profiles to verify model robustness; 

• Better define outlier thresholds for the uniaxial accelerometer variables; 

• Apply a statistical test to better determine and quantify the effect that track irregularities 

have on measured sensor variables;  

• Study different instrumentation arrangements for monitoring lateral track irregularities to 

find a mapping between lateral track irregularities and sensor variables; 

•  Validate methodology with experimental data. For practical implementation, it is 

necessary to have IRV and track geometry data measured at a close enough date. In the 

work of Haji Abdulrazgh et al. (2021), acceleration data was measured by an 

instrumented car on July 18, 2018, and track geometry parameters were recorded by a 

track geometry car on July 15, 2018. A similar timespan would be required.   
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APPENDIX A – Optuna hyperparameter search space 
 

 This section contains the hyperparameter searchspace used by Optuna to optimize the 

performance of the machine learning models. 

 

Lasso:  

• alpha = range(0,2,0.05) 

Ridge: 

• alpha = range(0,2,0.05) 

ElasticNet: 

• alpha: range(0,2,0.05)  

• l1_ratio: range(0,1,0.05) 

SGDRegressor: 

• alpha: range(0,2,0.05)  

• penalty: ['l1', 'l2', 'elasticnet']  

• loss: ['squared loss', 'huber', 'epsilon insensitive'] 

KNeighborsRegressor: 

• n_neighbors: range(1,8,1)  

• weights: ['uniform','distance'] 

• leaf_size: range(30,500,10) 

• p: [1,2] 

• distance metric: ['euclidean','manhattan'] 

RandomForestRegressor: 

• n_estimators: range(60,600,20)  

• min_samples_leaf: range(1,8,1)  

• min_samples_split: range(1,8,1)  

• bootstrap: [True,False] 

ExtraTreesRegressor: 

• n_estimators: range(40,800,20)  

• min_samples_leaf: range(1,8,1)  

• min_samples_split: range(1,8,1)  

• bootstrap: [True,False] 
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AdaBoostRegressor: 

• n_estimators: range(60,1000,20)  

• learning_rate: range(0.001,0.1,0.005)  

• loss: ['linear','square','exponential'] 

XGBRegressor: 

• n_estimators: range(60,600,20)  

• max_depth: range(2,20,1)  

• learning_rate: range(0.001,0.1,0.005) 

• min_child_weight: range(1,8,1)  

• colsample_bytree: range(0,1,0.1)  

• min_child_weight: range(4,12,1) 

• subsample: range(0,1,0.1) 

• gamma: range(0,10,1) 

CatBoostRegressor: 

• n_estimators: range(20,1000,20)  

• loss: ['squared loss', 'MAPE', 'Poisson'] 

• l2 _leaf_reg: [0.001,0.01,1,3,5,11,20,50,100]  

• depth: range(4,12,1) 

LightGBM: 

• n_estimators: range(60,800,20)  

• max_depth: range(4,100,2) 

• num_leaves: range(50,300,20) 

• min_data_in_leaf: range(2,20,2) 

Deep neural network: 

• Number of layers: 1,2,3 

• Number of neurons: range(300,1500,25) 

• Activation function: ['relu','linear','tanh'] 

• learning rate: loguniform(1e-4,1e-2,5e-4) 
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APPENDIX B – Optimal model parameters 
 

This section shows the optimal models obtained after using Optuna for hyperparameter 

optimization. The neural network optimal  

 

 

• Lasso(alpha=0.02) 

• Ridge(alpha = 1.06) 

• ElasticNet(alpha=1e-05, l1_ratio=0.262) 

• SGDRegressor(loss = 'squared_loss', penalty='elasticnet',  alpha=0.001) 

• KNeighborsRegressor(n_neighbors=2,weights='distance', metric='manhattan', 

leaf_size=473, p=1) 

• RandomForestRegressor(n_estimators = 170, max_depth = 24, min_samples_leaf = 1, 

min_samples_split=5, max_features=24) 

• ExtraTreesRegressor(bootstrap=True, min_samples_split=7, n_estimators=200, 

min_samples_split = 7, min_samples_leaf=1) 

• AdaBoostRegressor(learning_rate=0.846, loss='square',  n_estimators=500) 

• XGBRegressor(max_depth = 20, learning_rate = 0.04, n_estimators = 230, 

colsample_bytree = 0.85, min_child_weight=11,  subsample=0.77, gamma= 3) 

• CatBoostRegressor(n_estimators = 790, loss="MAPE", depth=12, l2_leaf_reg= 100) 

• Deep neural network:  

o Layer 1: 1275 neurons, linear activation function 

o Layer 2: 925 neurons, relu activation function 

o Layer 3: 1150, tanh activation function 

o Output layer: 1 neuron, linear activation function 

o Learning rate: 1e-3 
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APPENDIX C – Feature engineering equations for wagon movements 
 

This appendix contains all formulas used for feature engineering based on domain 

knowledge. Since the EFVM has 4 suspension displacement sensors and 4 sideframe 

accelerometers positioned in different locations, a nomenclature code of 3 letters will be used 

to describe these sensors: 

 

1st letter: represents which bogie the sensor is located (F for front bogie and T for trailing 

bogie) 

2nd letter: represents on which side the sensor is located (R for right and L for left) 

3rd letter: represents the sensor being used (Z for vertical displacement of the suspension sensor 

and A for the uniaxial accelerometer) 

 

Example: FLZ means the suspension sensor (Z) located on the left side (L) of the front bogie 

(F). 

 

Most of the formulas as based on Boolean operations that follow the frame below: 

 

𝑋 = (𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑡𝑒𝑠𝑡, 𝑣𝑎𝑙𝑢𝑒 𝑖𝑓 𝑡𝑟𝑢𝑒, 𝑣𝑎𝑙𝑢𝑒 𝑖𝑓 𝑓𝑎𝑙𝑠𝑒) 

 

Maximum acceleration: 

 

𝐴𝑚𝑎𝑥 = 𝐼𝐹(max(𝐹𝐿𝐴, 𝐹𝑅𝐴, 𝑇𝐿𝐴, 𝑇𝑅𝐴) ≥ min(𝐹𝐿𝐴, 𝐹𝑅𝐴, 𝑇𝐿𝐴, 𝑇𝑅𝐴), 

max(𝐹𝐿𝐴, 𝐹𝑅𝐴, 𝑇𝐿𝐴, 𝑇𝑅𝐴) , min (𝐹𝐿𝐴, 𝐹𝑅𝐴, 𝑇𝐿𝐴, 𝑇𝑅𝐴)   

 

Where FLA is the accelerometer positioned on the left side of the front bogie, FRA is the 

accelerometer positioned on the right side of the front bogie, TLA is the accelerometer 

positioned on the left side of the trailing bogie, TRA is the accelerometer positioned on the right 

side of the trailing bogie and 𝐴𝑚𝑎𝑥 is the maximum acceleration value. 

 

Suspension travel of the left side of the IRV 

 𝑆𝑇𝑙𝑒𝑓𝑡 = 𝐼𝐹(max(𝐹𝐿𝑍, 𝑇𝐿𝑍) ≥ min(𝐹𝐿𝑍, 𝑇𝐿𝑍), max(𝐹𝐿𝑍, 𝑇𝐿𝑍), min(𝐹𝐿𝑍, 𝑇𝐿𝑍)),  
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Where FLZ is the displacement sensor positioned on the left side of the front bogie, TLZ  is the 

displacement sensor positioned on the left side of the trailing bogie and 𝑆𝑇𝑙𝑒𝑓𝑡 is the suspension 

travel calculated on the left side of the bogie. 

 

Suspension travel of the right side of the IRV 

 𝑆𝑇𝑟𝑖𝑔ℎ𝑡 = 𝐼𝐹(max(𝐹𝑅𝑍, 𝑇𝑅𝑍) ≥ min(𝐹𝑅𝑍, 𝑇𝑅𝑍), max(𝐹𝑅𝑍, 𝑇𝑅𝑍), min(𝐹𝑅𝑍, 𝑇𝑅𝑍))  

 

Where FRZ is the displacement sensor positioned on the right side of the front bogie, TRZ  is 

the displacement sensor positioned on the right side of the trailing bogie and 𝑆𝑇𝑟𝑖𝑔ℎ𝑡 is the 

suspension travel calculated on the right side of the bogie. 

 

Largest suspension travel  

 

𝑆𝑇 = 𝐼𝐹(max(𝑆𝑇𝑙𝑒𝑓𝑡, 𝑆𝑇𝑟𝑖𝑔ℎ𝑡) ≥ min(𝑆𝑇𝑙𝑒𝑓𝑡, 𝑆𝑇𝑟𝑖𝑔ℎ𝑡), 

max(𝑆𝑇𝑙𝑒𝑓𝑡, 𝑆𝑇𝑟𝑖𝑔ℎ𝑡), min(𝑆𝑇𝑙𝑒𝑓𝑡, 𝑆𝑇𝑟𝑖𝑔ℎ𝑡))  

 

Where 𝑆𝑇 is the largest suspenstion travel value considering both left and right sides. 

 

Pitch (measured with accelerometers) 

 

Right pitch  

 𝑃_𝑎𝑐𝑐𝑒𝑙𝑙𝑒𝑓𝑡 =
FRA − TRA

𝑀
   

 

Where M is the distance between accelerometers FRA and TRA in meters and 𝑃_𝑎𝑐𝑐𝑒𝑙𝑙𝑒𝑓𝑡 is 

the pitch movement calculated on the left side of the vehicle using the accelerometers. 

 

Left pitch 

 𝑃_𝑎𝑐𝑐𝑒𝑙𝑟𝑖𝑔ℎ𝑡 =
FLA − TLA

𝑀
   

 

Where 𝑃_𝑎𝑐𝑐𝑒𝑙𝑟𝑖𝑔ℎ𝑡 is the pitch movement calculated on the right side of the vehicl using the 

accelerometers. 
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Largest Pitch value 

 

𝑃_𝑎𝑐𝑐𝑒𝑙 = 𝐼𝐹(max(𝑃_𝑎𝑐𝑐𝑒𝑙𝑙𝑒𝑓𝑡, 𝑃_𝑎𝑐𝑐𝑒𝑙𝑟𝑖𝑔ℎ𝑡) ≥ min(𝑃_𝑎𝑐𝑐𝑒𝑙𝑙𝑒𝑓𝑡, 𝑃_𝑎𝑐𝑐𝑒𝑙𝑟𝑖𝑔ℎ𝑡), 

max(𝑃_𝑎𝑐𝑐𝑒𝑙𝑙𝑒𝑓𝑡, 𝑃_𝑎𝑐𝑐𝑒𝑙𝑟𝑖𝑔ℎ𝑡), min(𝑃_𝑎𝑐𝑐𝑒𝑙𝑙𝑒𝑓𝑡, 𝑃_𝑎𝑐𝑐𝑒𝑙𝑟𝑖𝑔ℎ𝑡))  

 

𝑃_𝑎𝑐𝑐𝑒𝑙 is the largest pitch movement of the vehicle calculated using accelerometers. 

 

Pitch (measured with spring displacement): 

 

Left pitch 

 𝑃_𝑠𝑢𝑠𝑝𝑙𝑒𝑓𝑡 =
FRZ − TRZ

𝑁
   

 

Where N is the distance between displacement sensors FRZ and TRZ in meters and 𝑃_𝑠𝑢𝑠𝑝𝑙𝑒𝑓𝑡 

is the pitch movement calculated on left side of the railway vehicle using the displacemente 

sensors. 

 

Right pitch 

 𝑃_𝑠𝑢𝑠𝑝𝑟𝑖𝑔ℎ𝑡 =
FLZ − TLZ

𝑁
   

 

𝑃_𝑠𝑢𝑠𝑝𝑟𝑖𝑔ℎ𝑡 is the pitch movement calculated on right side of the railway vehicle using the 

displacement sensors. 

 

 

Largest pitch value 

 

𝑃_𝑠𝑢𝑠𝑝 = 𝐼𝐹(max(𝑃_𝑠𝑢𝑠𝑝𝑙𝑒𝑓𝑡, 𝑃_𝑠𝑢𝑠𝑝𝑟𝑖𝑔ℎ𝑡) ≥ min(𝑃_𝑠𝑢𝑠𝑝𝑙𝑒𝑓𝑡 , 𝑃_𝑠𝑢𝑠𝑝𝑟𝑖𝑔ℎ𝑡), 

max(𝑃_𝑠𝑢𝑠𝑝𝑙𝑒𝑓𝑡, 𝑃_𝑠𝑢𝑠𝑝𝑟𝑖𝑔ℎ𝑡), min(𝑃_𝑠𝑢𝑠𝑝𝑙𝑒𝑓𝑡, 𝑃_𝑠𝑢𝑠𝑝𝑟𝑖𝑔ℎ𝑡))  

 

Where 𝑃_𝑠𝑢𝑠𝑝𝑟𝑖𝑔ℎ𝑡 is the largest pitch value calculated from the displacement sensors. 
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Bounce (measured with accelerometers): 

 

Bounce of the leading bogie 

 𝐵_𝑎𝑐𝑐𝑒𝑙𝑓𝑟𝑜𝑛𝑡 =
FLA − FRA

2
   

 

Where 𝐵_𝑎𝑐𝑐𝑒𝑙𝑓𝑟𝑜𝑛𝑡 is the bounce movement of the leading bogie calculated from the 

accelerometers. 

 

Bounce of the trailing bogie 

 𝐵_𝑎𝑐𝑐𝑒𝑙𝑏𝑎𝑐𝑘 =
TLA − TRA

2
   

 

Where 𝐵_𝑎𝑐𝑐𝑒𝑙𝑏𝑎𝑐𝑘 is the bounce movement of the trailing bogie calculated from the 

accelerometers. 

 

Largest bounce value  

 

𝐵_𝑎𝑐𝑐𝑒𝑙 = 𝐼𝐹(max(𝐵_𝑎𝑐𝑐𝑒𝑙𝑓𝑟𝑜𝑛𝑡, 𝐵_𝑎𝑐𝑐𝑒𝑙𝑏𝑎𝑐𝑘) ≥ min(𝐵_𝑎𝑐𝑐𝑒𝑙𝑓𝑟𝑜𝑛𝑡, 𝐵_𝑎𝑐𝑐𝑒𝑙𝑏𝑎𝑐𝑘), 

max(𝐵_𝑎𝑐𝑐𝑒𝑙𝑓𝑟𝑜𝑛𝑡, 𝐵_𝑎𝑐𝑐𝑒𝑙𝑏𝑎𝑐𝑘), min(𝐵_𝑎𝑐𝑐𝑒𝑙𝑓𝑟𝑜𝑛𝑡, 𝐵_𝑎𝑐𝑐𝑒𝑙𝑏𝑎𝑐𝑘))  

 

Where 𝐵_𝑎𝑐𝑐𝑒𝑙 is the largest bounce movement of the railway vehicl calculated from the 

accelerometers. 

 

Bounce (measured with displacement sensors): 

 

Bounce of the leading bogie 

 𝐵_𝑠𝑢𝑠𝑝𝑙𝑒𝑓𝑡 =
FLZ − FRZ

2
   

 

Where 𝐵_𝑠𝑢𝑠𝑝𝑙𝑒𝑓𝑡 is the bounce movement of the leading bogie calculated from the 

displacement sensors. 
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Bounce of the trailing bogie 

 𝐵_𝑠𝑢𝑠𝑝𝑟𝑖𝑔ℎ𝑡 =
TLZ − TRZ

2
   

 

Where 𝐵_𝑠𝑢𝑠𝑝𝑟𝑖𝑔ℎ𝑡 is the bounce movement of the leading bogie calculated from the 

displacement sensors. 

 

Largest bounce value 

 

𝐵_𝑠𝑢𝑠𝑝 = 𝐼𝐹(max(𝐵_𝑠𝑢𝑠𝑝𝑙𝑒𝑓𝑡, 𝐵_𝑠𝑢𝑠𝑝𝑟𝑖𝑔ℎ𝑡) ≥ min(𝐵_𝑠𝑢𝑠𝑝𝑙𝑒𝑓𝑡 , 𝐵_𝑠𝑢𝑠𝑝𝑟𝑖𝑔ℎ𝑡), 

max(𝐵_𝑠𝑢𝑠𝑝𝑙𝑒𝑓𝑡, 𝐵_𝑠𝑢𝑠𝑝𝑟𝑖𝑔ℎ𝑡), min(𝐵_𝑠𝑢𝑠𝑝𝑙𝑒𝑓𝑡, 𝐵_𝑠𝑢𝑠𝑝𝑟𝑖𝑔ℎ𝑡))  

 

Where 𝐵_𝑠𝑢𝑠𝑝 is the largest bounce movement of the vehicle calculated from the displacement 

sensors. 

 

Roll (measured with accelerometers): 

 

Roll of the leading bogie 

 𝑅_𝑎𝑐𝑐𝑒𝑙𝑓𝑟𝑜𝑛𝑡 =
FRA − FLA

𝑃
   

 

Where 𝑃 is the distance between accelerometers FRA and FLA in meters and 𝑅_𝑎𝑐𝑐𝑒𝑙𝑓𝑟𝑜𝑛𝑡 is 

the roll movement calculated on the leading bogie using the accelerometers. 

 

Roll of the trailing bogie 

 𝑅_𝑎𝑐𝑐𝑒𝑙𝑏𝑎𝑐𝑘 =
TRA − TLA

𝑃
   

 

Where 𝑅_𝑎𝑐𝑐𝑒𝑙𝑏𝑎𝑐𝑘 is the roll movement calculated on the trailing bogie using the 

accelerometeres. 

 

Largest roll value of the bogie   

 

𝑅_𝑎𝑐𝑐𝑒𝑙 = 𝐼𝐹(max(𝑅_𝑎𝑐𝑐𝑒𝑙𝑓𝑟𝑜𝑛𝑡, 𝑅_𝑎𝑐𝑐𝑒𝑙𝑏𝑎𝑐𝑘) ≥ min(𝑅_𝑎𝑐𝑐𝑒𝑙𝑓𝑟𝑜𝑛𝑡, 𝑅_𝑎𝑐𝑐𝑒𝑙𝑏𝑎𝑐𝑘), 

max(𝑅_𝑎𝑐𝑐𝑒𝑙𝑓𝑟𝑜𝑛𝑡, 𝑅_𝑎𝑐𝑐𝑒𝑙𝑏𝑎𝑐𝑘), min(𝑅_𝑎𝑐𝑐𝑒𝑙𝑓𝑟𝑜𝑛𝑡, 𝑅_𝑎𝑐𝑐𝑒𝑙𝑏𝑎𝑐𝑘))  
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Where 𝑅_𝑎𝑐𝑐𝑒𝑙 is the largest roll value of the vehicle calculated from the accelerometers.  

 

 

Roll (measured with displacement sensors): 

 

Roll of the leading bogie 

 𝑅_𝑠𝑢𝑠𝑝𝑓𝑟𝑜𝑛𝑡 =
FRZ − FLZ

𝑄
   

 

Where 𝑄 is the distance between displacement sensors TRZ and TLZ in meters and 

𝑅_𝑎𝑐𝑐𝑒𝑙𝑓𝑟𝑜𝑛𝑡 is the roll movement calculated on the leading bogie using the accelerometers. 

 

Roll of the trailing bogie 

 𝑅_𝑠𝑢𝑠𝑝𝑏𝑎𝑐𝑘 =
TRZ − TLZ

𝑃
   

 

Where 𝑅_𝑠𝑢𝑠𝑝𝑏𝑎𝑐𝑘 is the roll movement calculated on the trailing bogie using the 

accelerometers. 

 

Largest roll value of the bogie   

 

𝑅_𝑠𝑢𝑠𝑝 = 𝐼𝐹(max(𝑅_𝑠𝑢𝑠𝑝𝑓𝑟𝑜𝑛𝑡, 𝑅_𝑠𝑢𝑠𝑝𝑏𝑎𝑐𝑘) ≥ min(𝑅_𝑠𝑢𝑠𝑝𝑓𝑟𝑜𝑛𝑡, 𝑅_𝑠𝑢𝑠𝑝𝑏𝑎𝑐𝑘), 

max(𝑅_𝑠𝑢𝑠𝑝𝑓𝑟𝑜𝑛𝑡, 𝑅_𝑠𝑢𝑠𝑝𝑏𝑎𝑐𝑘), min(𝑅_𝑠𝑢𝑠𝑝𝑓𝑟𝑜𝑛𝑡, 𝑅_𝑠𝑢𝑠𝑝𝑏𝑎𝑐𝑘))  

 

 

Where 𝑅_𝑠𝑢𝑠𝑝 is the largest roll value of the vehicle calculated from the displacement 

sensors.  

 

 

 

 

 

 

 

 

 


