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RESUMO

Emaranhamento, não-localidade de Bell e Steering, anteriormente considerados sinônimos,

são conceitos não clássicos distintos. Embora o emaranhamento seja necessário, não é uma

condição suficiente para que as correlações exibidas por um sistema sejam não locais e/ou

steerable e, portanto, exibam um comportamento mais forte que o clássico. A relação exata

entre esses três fenômenos é desconhecida. O problema de verificar se um estado quântico

geral pode gerar estatísticas não locais é notoriamente difícil. Há pouca esperança de se

obter uma ferramenta analítica sistemática para responder a esta questão. Portanto, méto-

dos numéricos têm sido desenvolvidos para a solução parcial de tais problemas. Neste pro-

jeto, a aluna utilizou um método que conta com um subconjunto de otimização convexa,

chamado de programação semidefinida, que foi apresentado em um artigo de 2016 que in-

clui o orientador da aluna como um dos autores. Com este novo método otimizado e gen-

eralizado, fomos capazes de investigar e certificar a localidade de uma ampla gama de esta-

dos quânticos emaranhados e obtivemos limites aprimorados no volume de estados de dois

qubits que são emaranhados e locais. No entanto, este método tem limitações e funciona

melhor com dimensões baixas e poucas medições. Com base no sucesso das técnicas de

Machine Learning em problemas semelhantes com muitas variáveis, e com vários exemplos

já classificados pelo nosso método anterior, discutimos a construção de um modelo usando

o método Multi-Layer Perceptron para classificar se os estados são emaranhados e locais ou

não.

Palavras-chave: Emaranhamento. Steering. Não-localidade de Bell.



ABSTRACT

Entanglement, Bell non-locality, and Steering, previously considered synonymous, are dis-

tinct nonclassical concepts. Although entanglement is necessary, it is not a sufficient con-

dition for the correlations exhibited by a system to be nonlocal and/or steerable, and thus

display stronger-than-classical behavior. The exact relationship between these three phe-

nomena is unknown. The problem of checking whether a general quantum state can gener-

ate non-local statistics is notoriously difficult. There is little hope of obtaining a systematic

analytical tool for answering this question. Therefore, numerical methods have been devel-

oped for the partial solution of such problems. In this project, the student used a method

that relies on a subset of convex optimization, called semi-definite programming, which was

presented in a 2016 article that includes the student’s advisor as one of the authors. With

this new optimized and generalized method, we were able to investigate and certify the lo-

cality of a wide range of entangled quantum states, and obtained improved bounds on the

volume of two-qubit states that are both entangled and local. However, this method has lim-

itations and works best with low dimensions and few measurements. Based on the success

of Machine Learning techniques on similar problems with many variables, and with several

examples already classified by our previous method, we discuss building a model using the

Multi-Layer Perceptron method to classify whether states are entangled and local or not.

Keywords: Entanglement. Steering. Bell non-locality.
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PREFACE

The decision to pursue a master’s degree is unique to each individual. Often,

even the student herself may not have a clear justification for it. In my case, the opportunity

to spend two years working on a theoretical physics project on the foundations of quantum

physics was an opportunity I couldn’t pass up. It gave me the chance to study and re-study

concepts in physics and mathematics that had excited me during my undergraduate course.

Moreover, it opened up avenues of study that I hadn’t even known existed when I graduated.

After completing the first year of the master’s, I wrote a report and presented a

qualifying seminar. Throughout this process, I was able to revisit articles that I had already

read during my undergraduate studies. It was a satisfying feeling to be able to identify the

authors, the importance of the articles in the field, the consequences of their results and to

see growth in my understanding of the topics. The justification behind my pursuit of this

master’s degree is simply to learn and to discover new limits in my own knowledge.

With this thesis, I aim to create a material that is as clear, didactic, complete, and

adjusted to the intended audience as possible. I imagined myself talking to a friend and

tried to present the concepts and ideas learned over those two years in the best possible way.

I am aware of the difficulties that the reader may encounter, and I have tried to be practi-

cal in overcoming them. The text is progressive, and I have ordered the subjects and built

the appendices in a way that would have helped me when I started. I have provided recom-

mendations for other complementary texts at the beginning of each session, in addition to

references throughout the text.

I have added most of the proofs, commenting on each step as much as possible,

to avoid gaps and unanswered questions. Where possible, I have added images to aid in

visualization. I clarify notation abuses and contraindications in the use of each definition.

Some previous knowledge is necessary: the codes were all built in Python, and

I will not focus on the study of programming or a tutorial of the language itself. In the ap-

pendix, we cover only the construction of the technique that will be used: Convex Optimiza-

tion, in particular, Semi-Definite Programming and Machine Learning. Mathematically, the

reader should be comfortable with functions and linear algebra, and in physics, knowledge

of standard undergraduate curricula is sufficient.
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PART I: GATHERING THE TOOLS

CHAPTER 1

CONCEPTS

We will begin this project by introducing two fundamental building blocks of

quantum theory: quantum states and measurements. For those who are new to these con-

cepts, we recommend consulting references [1, 2] for further reading.

1.1 Quantum states

In quantum mechanics, the state is an operator ρ that acts on the vectors that belong to the

Hilbert space H d , of dimension d (in this work we will restrict ourselves to finite dimen-

sions), associated to the system it describes. A density operator ρ, as it is called, is defined

according to the conditions:

• Normalization: tr(ρ) = 1, where tr(.) denotes the trace.

• Positivity: ρ is semi-definite positive, that is, 〈ψ|ρ|ψ〉 ≥ 0 for all |ψ〉 ∈ H . It is de-

noted ρ ≥ 0. Since a positive operator is necessarily Hermitian, we gain here a second

property: Hermiticity. The density operator ρ is Hermitian, ρ = ρ†, where ρ† is the

conjugate transposition of ρ.

Every density operator can be written as a convex combination of one-dimensional

projectors,

ρ =∑
i

qi |ψi 〉〈ψi |;
∑

i
qi = 1, qi ≥ 0; (1.1)

as long as ||ψi 〉| = 1 (normalization condition). This decomposition, in general, is not unique

[2], with the exception of the pure states ρ = |ψ〉〈ψ|. Two vectors that are equal up to one

global phase represent the same quantum state, |ψ〉 ∼ e iϕ|ψ〉.
Here, we use Dirac notation [3] to represent the vectors of the associated Hilbert

space, so we represent the “ket” |ψ〉 as a column vector. Its dual, called “bra”, is its Hermitian

conjugate, i.e. |ψ〉† = 〈ψ|. In the matrix representation, the Hermitian conjugate operation

reduces to taking the conjugate transpose, thus the “bra” represents a row vector.
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We can now define two different operations with bras and kets, giving mathemat-

ical meaning to the expressions 〈ψ|φ〉 and |ψ〉〈φ|. The first represents the inner product (it’s

a map 〈·|·〉 : H d ×H d → C) and the second the outer product (is a map |·〉〈·| : H d ×H q →
Cd×q ).

The Hilbert space associated with a system composed of two or more parts is

formed by the tensor product of the spaces associated with the subsystems. A bipartite sys-

tem, composed of subsystems whose Hilbert spaces are H A and HB , has the space H AB =
H A ⊗HB associated with it.

Let ρAB be a composite state associated with H A ⊗HB , where {ui } and {vµ} are

bases for H A and HB , respectively. Then {|u〉⊗|v〉}, or in a more simplified notation {|ui vµ〉},

will be an orthonormal basis for H A ⊗HB . We can decompose the composite state into the

vector tensor products of the basis,

ρAB = ∑
i , j ,µ,ν

ρiµ, jν|ui vµ〉〈u j vν|.

The reduced density operator for subsystems A and B are respectively defined by

ρA ≡ trB (ρAB ) = ∑
i , j ,µ

ρiµ, jµ|ui 〉〈ui |,

ρB ≡ trA(ρAB ) = ∑
i ,µ,ν

ρiµ,iν|vµ〉〈vν|,

where the operations trA and trB represent the partial trace operations on the subsystems A

and B , respectively.

A product, or uncorrelated, state of this system is a state of the form ρAB = ρA ⊗
ρB . However, a crucial point in understanding these reduced operators is the fact that a state

is not always a product state. We can also have states said to be separable, or classically

correlated, in the form

ρ =
n∑

r=1
qrρ

A
r ⊗ρB

r , qr ≥ 0,
n∑

r=1
qr = 1.

States that cannot be prepared like this, and are incompatible with the form presented above,

are said to be entangled. All construction of these composite systems were presented with

bipartite systems, but the generalization is straightforward.

The entanglement of bipartite pure states can be described using the Schmidt

decomposition, which constructs a pair of preferred orthonormal bases to emphasize the

tight correlations between two quantum subsystems.

It is interesting to note that Erhard Schmidt’s original work [4] was published in

1906, before the concept of entanglement appeared in Schrödinger’s famous paper on the

“Cat Paradox” [5]. Schmidt focused on investigating kernels of integral equations. Hugh
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Everett III [6, 7] provided the decomposition for finite-dimensional systems, which is mostly

applied in quantum physics nowadays.

Theorem 1 (Schmidt decomposition) Any vector |Ψ〉 ∈ H A ⊗HB can be expressed in the

form

|Ψ〉 =∑
i
λi |ψi 〉A|φi 〉B ,

where {|ψi 〉A} is a basis of H A, {|φi 〉B } is a basis of HB and the coefficients λi are real, non-

negative and
∑

j λ
2
i = 1.

For the proof of this theorem, it follows that: Let ρA be the reduced state of the

system A and its spectral decomposition

ρA =∑
i
αi |ψi 〉A〈ψi |A,

given the orthonormal basis {|ψi 〉A} for H A and let {|ω j 〉B } be any orthonormal basis for HB

, we see that {|ψi 〉A|ω j 〉B } will be an orthonormal base for H A ⊗HB . Therefore, we can write

|Ψ〉 =∑
i , j

ci j |ψi 〉A|ω j 〉B .

The coefficients ci j can be calculated through ci j = 〈Ψ|(|ψi 〉A|ω j 〉B
)
. If we define λi =p

αi ,

we can rewrite

|Ψ〉 =∑
i
λi |ψ〉A

(∑
j

ci j

λi
|ω j 〉B

)
. (1.2)

We can define |φi 〉B =∑
j

ci j

λi
|ω j 〉B and thus we have

|Ψ〉 =∑
i
λi |ψ〉A|φi 〉B .

We have to ensure that this new set {|φi 〉B } can be extended to an orthogonal basis of HB .

For that, we have to show that 〈φi |φi ′〉 = 0 when i ̸= i ′ and 1 when i = i ′. Calculating, we have

〈φi |φi ′〉 =
∑
j , j ′

c∗i j ci ′ j ′

λiλi ′
〈ω j |ω j ′〉,
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since {|ω j 〉B } was an orthonormal basis and using the definition of ci j , we have

〈φi |φi ′〉 =
∑

j

c∗i j ci ′ j

λiλi ′

=∑
j

〈Ψ|(|ψi ′〉A|ω j 〉B
)(〈ψi |A〈ω j |B

)|Ψ〉
λiλi ′

= 〈Ψ|(|ψi ′〉A〈ψi |A ⊗∑
j |ω j 〉B 〈ω j |B

)|Ψ〉
λiλi ′

= 〈Ψ|(|ψi ′〉A〈ψi |A ⊗ I)|Ψ〉
λiλi ′

. (1.3)

Equivalent to Equation 1.3 is to perform the trace operation

〈φi |φi ′〉 =
tr

(|Ψ〉〈Ψ|[|ψi ′〉A〈ψi |A ⊗ I])
λiλi ′

= tr
(
trB

[|Ψ〉〈Ψ||ψi ′〉A〈ψi |A ⊗ I])
λiλi ′

= tr
(
ρA|ψi ′〉A〈ψi |A

)
λiλi ′

= 〈ψi |AρA|ψi ′〉A

λiλi ′
.

As we know that {|ψi 〉A} is the orthonormal base for H A, it follows

〈φi |φi ′〉 =
αi 〈ψi |ψi ′〉
λiλi ′

= αi

λiλi ′
δi i ′ .

Therefore, and remembering that λi =p
αi , we have that 〈φi |φi ′〉 will be 0 when i ̸= i ′ and 1

when i = i ′, that is, {|φi 〉B } is an orthonormal basis. Thus ending the proof of Theorem 1.

Through the Schmidt decomposition theorem, we have to choose suitable bases

{|ψi 〉A} and {|φi 〉B }, called Schmidt bases for |Ψ〉. With this choice of basis, we have that

we don’t need the cross terms of i and j in Equation 1.2. The coefficients λi are called the

Schmidt coefficients for |Ψ〉 and the number of non-zero coefficients λi ̸= 0 is called the

Schmidt number of |Ψ〉. Some important consequences of this theorem are

• The reduced states ρA and ρB will have the same eigenvalues, and therefore the same

rank (Schmidt number):

ρA =∑
i
λ2

i |ψi 〉A〈ψi |A,

ρB =∑
i
λ2

i |φi 〉B 〈φi |B ;
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• The vector |Ψ〉 generates a state product if and only if the Schmidt number equals 1.

Therefore, we have a direct relationship between the Schmidt number and the entanglement

of a state. All development here was done with pure states, but there is a generalization for

mixed states.

1.2 Measurements

Complementary to the states are the so-called measurement operators. A measurement is

described by a operator M , called observable. Let an be the value associated with the mea-

surement M on the element |n〉 of the basis of eigenvectors of M , so M |n〉 = an |n〉. Con-

straining the observable to be Hermitian ensures that all measurement results will be real

numbers. The matrix representation of the operator M has its terms given by

Mmn = 〈m|M |n〉 = an〈m|n〉 = anδmn .

Based on the equation above, we can then define a projective measurement as one in which

each outcome an is associated with a projector Πn , and each projector associated with a

distinct outcome corresponds to an orthogonal subspace to others [1]. Whence it follows

that

M =∑
m

∑
n
|m〉Mmn〈n| =

∑
m

∑
n
|m〉〈m|M |n〉〈n| =∑

n
an |n〉〈n| =

∑
n

anΠn .

This result tells us that we can decompose any observable in terms of projective measure-

ments, represented by projectorsΠn .

When applying a projective measurement on any ρ state, the probability of ob-

taining the result an is given by p(an) = tr(Πnρ) (also known as Born’s rule). If we want the

measurements to be reproducible, that is, that when we subsequently carry out the same

operation we obtain the same result, it is necessary that after the first one the state of the

system becomes ρn = (Πn)ρ(Πn)/p(an).

By relaxing the condition that we need to know the final state of the system, we

can discuss POVMs (positive-operator valued measure), where we are only interested in the

probabilities of obtaining each outcome. Projective measurements become just a special

case of POVMs [1].

If x is any POVM, we associate the effects Ma|x to the possible results a. An ef-

fect is necessarily a positive operator, Ma|x ≥ 0, and also satisfies the completeness relation∑
a Ma|x = I. The probability of obtaining the value a when applying the effect x to the system

ρ is still p A(a|x) = tr(Ma|xρ). However, unlike projective measurements, effects associated

with distinct a results do not necessarily correspond to orthogonal subspaces. It is in this

sense that the condition of knowing the post-measurement state was relaxed.

In a composite stateρAB , measurements of the type MA⊗IB acting onρAB present
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the same statistics as for all MA acting on ρA, and it is in this sense that we say that the oper-

ator represents its respective subsystem.

1.3 Qubits and Bloch Sphere

Now that we have fairly straightforward and operational descriptions of what our states and

measurements are, it’s interesting to get an intuition of how they behave and what we can

do with them through the geometric visualization of the cases of systems associated with

the Hilbert space H 2 = C2. Here we will be able to use the representations of qubits and

the Bloch sphere. Qubits are mathematical abstractions that refer to simpler, non-trivial

quantum systems.

In H 2, the canonical orthonormal basis, commonly called the computational

basis in the literature, is defined as

|0〉 =
(

1

0

)
, |1〉 =

(
0

1

)
.

A ket vector can be written as a linear combination of this basis and, given the normalization

and global phase conditions, can be conveniently parameterized through two angles:

|ψ〉 =α|0〉+β|1〉 = |α|e iϕα |0〉+ |β|e iϕβ |1〉
= cosθe iϕα |0〉+ sinθe iϕβ |1〉 (Normalization)

= cos
(θ

2

)
|0〉+ sin

(θ
2

)
e i (ϕβ−ϕα)|1〉 (Global phase)

= cos
(θ

2

)
|0〉+e iϕ sin

(θ
2

)
|1〉,

where θ ∈ [0,π] and ϕ ∈ [0,2π]. In Figure 1.1 we can do the visualization of this parametriza-

tion.

When we use this parametrization in the definition of the density operators 1.1

and e iψ = cosψ+ i sinψ, we get

ρ =∑
i

qi |ψi 〉〈ψi |

=∑
i

qi
(

cos(θ/2)i |0〉+e iϕi sin(θi /2)|1〉)(cos(θi /2)〈0|+e−iϕi sin(θi /2)〈1|)
=∑

i
qi

(
cos2(θi /2) cos(θi /2)sin(θi /2)(cosψ− i sinψ)

cos(θi /2)sin(θi /2)(cosψ+ i sinψ) sin2(θi /2)

)

= 1

2

(
1+ vz vx − i vy

vx + i vy 1− vz

)
,
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Figure 1.1: Bloch sphere. An arbitrary ket |ψ〉 on the Bloch sphere is representable as a unique linear combina-
tion of the two basis elements, here chosen as |0〉 and |1〉, with coefficients defined by the two angles θ and ϕ.

where

vz =
∑

i
qi (cos2(θi /2)− sin2(θi /2)),

vx =∑
i

qi cos(θi /2)sin(θi /2)cosψ,

vy =
∑

i
qi cos(θi /2)sin(θi /2)sinψ.

Defined the identity matrix (matrix representation of the operator with the same name)

I=
(

1 0

0 1

)
,

and the three Pauli matrices

σx =
(

0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0

0 −1

)
,

any quantum state of a qubit can be written as

ρ = I+ v⃗ · σ⃗
2

,

where v⃗ is called the Bloch vector, with v⃗ ∈ R3 and |v⃗ | ≤ 1 (positivity condition), and σ⃗ is the

vector formed by the Pauli matrices.

One of the great advantages of this parameterization is the direct geometric in-

terpretation of the state space of a qubit. The correspondence between density operators

and vectors v⃗ is one-to-one, and this allows identifying the state space of H 2 with the three-
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dimensional ball of unit radius, inserted in R3, formed by the real vectors v⃗ with norm less

than or equal to 1. We can do the visualization of this in Figure 1.2.

Figure 1.2: Bloch vector. Bloch vectors correspond to density operators, allowing the geometric visualization
in R3 of the space of C2.

Analogously, we can also represent dichotomous projective measurement oper-

ators (two results) in Bloch’s sphere, given by

M±|x = I± v̂x · σ⃗
2

, (1.4)

where v̂x is a unitary vector that represents the measurement direction and the direction will

be associated by the sign, representing the measurement result (+1 or −1). With this, we see

that a dichotomous projective measurement can be represented as two antipodal points on

the surface of the Bloch sphere. Therefore, we can build polytopes associated with sets of

measurements, given that each point representing an effect will be a vertex of the polytope.

We can visualize this idea in Figure 1.3.
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101

1

0

1

1

0

1

Figure 1.3: Polytope of measurements. A 6-vertex polytope, the regular octahedron, representing 3 dichoto-
mous projective measurements with vertices ±(1,0,0), ±(0,1,0) and ±(0,0,1).



20

CHAPTER 2

PROPERTIES

After presenting our basic concepts and explaining how to use them, we can be-

gin to analyze the properties that they exhibit. First, let’s consider the possibility of two mea-

surements being incompatible with each other. Then, we’ll explore scenarios where mea-

surements are performed on states, and non-locality is observed.

2.1 Measurement incompatibility

There are a variety of references that can be consulted in order to further explore the topic of

measurement incompatibility. I strongly suggest the reading of [8–11].

There are different notions characterizing compatibility relations between quan-

tum observables; such as commutativity, non-disturbance, joint measurability, coexistence,

etc. For projective measurements, all four relations are equivalent, however, for generalized

observables, all are non-equivalent. There is, however, a hierarchical relationship between

some of them [12].

We will begin by defining the more general concept of measurement compatibil-

ity. Two observables A and B , with outcome sets {m} and {n}, are compatible if there exists

a third observable C , with an outcome set {k}, and functions f : {k} → {m} and g : {k} → {n}

such that

A(x) = ∑
z: f (z)=x

C (z), B(y) = ∑
z:g (z)=y

C (z). (2.1)

The functions f and g are simply relabeling the outcomes of C . If A and B are not compati-

ble, then they are incompatible.

Another compatibility relation is the commutativity criterion. Probably the best

known property of measurement incompatibility. We say that two observables commute if

[O1,O2] ≡O1O2−O2O1 = 0. Due to the relative ease of this calculation it makes sense that it is

the best known, especially knowing that it is enough to show the incompatibility of projective

measurements.

The second incompatibility relation we will study is the joint measurability. A

set of m POVMs {Ma|x} is called jointly measurable if there is a measurement Ma⃗ with result
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a⃗ = [a1, a2, . . . , am], where ax gives the result of the measurement x, i.e.

Ma⃗ ≥ 0,
∑
a⃗

Ma⃗ = I, ∑
a⃗/ax

Ma⃗ = Ma|x ,

where a⃗/ax represents the elements of a⃗ except ax . Thus, all POVM elements Ma|x are re-

trieved as marginals from the joint observable Ma⃗ . We can visualize the concept of joint

observable in Figure 2.1.

Joint 
observable

Jointly 
measurable

POVMs

Figure 2.1: Joint observable. The elements of the set of POVMs {Ma|x } jointly measurable are retrieved as
marginals from the joint observable Ma⃗ .

We can show that commuting observables is a particular case of their being jointly

measurable. We can define Ma⃗ = Ma|x Ma′|x ′ , where we have
∑

a⃗ Ma⃗ = I and
∑

a⃗/ax Ma⃗ = Ma|x ,

directly, and using the commutativity of Ma|x and Ma′|x ′ , we will have Ma⃗ ≥ 0. However, two

observables can be jointly measurable even without commuting [10].

Joint measurability is a strictly weaker notion of compatibility for POVMs, but if

we are considering a finite number of observables, then they are equivalent definitions [9].

We can conclude this by seeing that if A and B are compatible and C , f , g are such that

Equation 2.1 holds, then we can define a new observable G on the product outcome set

{m}× {n} as

G(x, y) = ∑
z: f (z)=x∧g (z)=y

C (z)

and then Equation 2.1 implies that

A(x) =∑
y

G(x, y), B(y) =∑
x

G(x, y). (2.2)
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This is a special case of Equation 2.1, where the relabeling functions are taken to be the pro-

jections f (x, y) = x and g (x, y) = y . Any observable G satisfying Equation 2.2 is called a joint

observable of A and B . Therefore, we can visualize a summary of this hierarchy in Figure 2.2.

Compatibility

Joint measurability

Commutativity

Figure 2.2: Hierarchy of measurement compatibility concepts. Commutativity implies joint measurability
and compatibility, but a set of measurements can be jointly measurable and do not commute, or even be com-
patible and neither jointly measurable nor commute.

We will define a last notion of incompatibility called coexistence. Two POVMs,

A and B , are said to coexist if there exists a POVM M such that each effect of A or B can

be simulated by M , and all binary measurements that can be formed from A and B can be

measured simultaneously. However, this does not provide a direct way to measure the en-

tire observables A and B simultaneously. The relationship between coexistence and joint

measurability was studied in article [13], where it was shown that coexistence does not im-

ply joint measurability. Furthermore, article [14] demonstrated that there are even stronger

relationships than compatibility, such as broadcastibility, one-side broadcastability, mutual

nondisturbance, and nondisturbance.

Another way to certify measurement incompatibility is through incompatibility

witnesses. This method, however, must be used on a case-by-case basis, as we will have to

find the specific witness that will allow us to certify the incompatibility of the measurements

in question, as we will see below.

In general, a witness is any experimentally assessable linear function whose val-

ues are greater than or equal to zero whenever the measured object does not have the in-

vestigated property, but results in a negative value for at least one object that does have the

property.

The general framework of witnesses is formally defined from V a real linear space

and S0 ⊂ V a compact convex subset that mathematically describes the objects of interest.

This set is then divided into two disjoint subsets (empty intersection) S and S̄, with S being



2. Properties 23

closed and convex. We can think of subsets as properties, either the element x ∈ S0 is in S or

in S̄. A witness to the property S̄, or S̄-witness, is a map ξ : S →R such that

1. ξ(x) ≥ 0 for all x ∈ S and ξ< 0 at least for some x ∈ S̄;

2. ξ(t x + (1− t )y) = tξ(x)+ (1− t )ξ(y) for all x, y ∈ S0 and t ∈ [0,1].

By the second condition, each witness generates a hyperplane separating V into two half-

spaces. The first condition ensures that one of the halves completely contains S, but not all

of S0.

Witnesses are associated with hyperplanes and are equivalent in detection if they

produce the same set separation. In Figure 2.3, we can visualize the representation of two

equivalent witnesses, which detect the red dot, but not the black one.

Figure 2.3: Witnesses. Two equivalent witnesses, each one associated with one hyperplane. They both detect
the red point, but not the black one. Image based on figure 1 of article [15].

2.2 Bell non-locality

The EPR paradox is a thought experiment by Einstein, Podolsky, and Rosen arguing that

quantum mechanics is incomplete. In a 1935 paper titled “Can Quantum-Mechanical De-

scription of Physical Reality be Considered Complete?” [16] they proposed the existence of

“elements of reality” that were not part of quantum theory, and that it should be possible to

construct a theory containing the so called hidden variables. Later, in 1964, John Bell’s pa-

per “On the Einstein Podolsky Rosen paradox” [17] presented a theorem that demonstrates

the incompatibility between quantum mechanics and local hidden-variable theories. In this

context, “local” refers to the principle of locality, the idea that a particle can only be influ-

enced by its immediate surroundings. The interactions mediated by physical fields cannot

propagate faster than the speed of light.
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The scenario we will consider is that of two distant observers, Alice and Bob,

making local measurements on a shared entangled quantum state, ρ. The measurements

are described by the POVMs {Aa|x} and {Bb|y } (where Aa|x ≥ 0 and
∑

a Aa|x = I, likewise for

Bb|y ), where x and y denote the choice of measurements and a and b denote the corre-

sponding results. We say that each observer has what we can call a measurement box, which

gets clearer if we visualize this scenario in Figure 2.4.

BA

Figure 2.4: Bell non-locality scenario. Alice and Bob each receive a part of the shared entangled quantum state
and perform the measurement x and y , respectively. The results obtained are a and b, respectively.

The corresponding probability distributions are given by

p(ab|x y) = tr([Aa|x ⊗Bb|y ]ρ). (2.3)

If two measurement events are spatially separated, as represented in Figure 2.5, there is

no direct causal connection between them. However, the observed correlations could have

arisen from the causal influence of an unknown third event in the common past of the first

two. Let us investigate how a classical mechanism based on such unknown common event

would explain the observed correlations.

Let Λ be a random variable that assumes values in the set {λ}, with probabilities

{p(λ)}. A measurement of Λ is performed in the common past of the spatially separated

measurement events a|x and b|y , and the value λ obtained influences the operation of both

measurement boxes. This way:

p(ab|x y,λ) = p A(a|x,λ)pB (b|y,λ).
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Space

Time

Figure 2.5: Measurement events spatially separated. Two measurements events Aa|x and Bb|y separated by a
space-like interval represented by points. The light cones are delimited and we can see where they meet. The
painted area represents the common past of the events.

The observed correlations come from the marginalization on λ:

p(ab|x y) =
∫

L
p(ab,λ|x y)dλ

=
∫

L
p(ab|x y,λ)p(λ|x y)dλ

=
∫

L
p A(a|x,λ)pB (b|y,λ)p(λ)dλ, (2.4)

with
∫

p(λ)dλ= 1. Here we are using the assumption that λ does not depend on the choices

of measurements x and y and therefore p(λ|x y) = p(λ). A quantum state ρ is said to be

local, or equivalently admits a local hidden variable model (LHV), when the statistics of ar-

bitrary local measurements can be reproduced by a distribution of the form Equation 2.4.

In contrast, if such a decomposition does not exist, the state is non-local and violates a Bell

inequality for appropriately chosen local measurements [2].

In Bell scenario with finite numbers of parts, measurements per part, and pos-

sible outcomes per measurement, we can discretize Equation 2.4. For this, we can assume

that the marginal probabilities p A(a|x,λ) and pB (b|y,λ) assume only the values 0 or 1, for

any measurements and results. The randomness in the marginal probabilities is incorpo-

rated to the randomness of the variable λ and we can build the local behaviors from deter-

ministic strategies, given by the set of predetermined results of each of the possible measure-

ments of Alice and Bob. In the case of mA measurements of kA results each for Alice and mB

measurements of kB results each for Bob, we will have the formation of N = (kA)mA (kB )mB

deterministic strategies of the form

D = [
D(a1b1|x1 y1),D(a2b1|x1 y1), . . . ,D(ak b1|x1 y1),D(a1b1|x2 y1), . . . ,D(ak bk |xmA ymB )

]
,
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where

• D(ab|x y) = D(a|x)D(b|y), since Bob’s choice of measurements cannot influence Al-

ice’s and vice versa;

• D(a|x) and D(b|y) are either 0 or 1 (locally deterministic);

•
∑kA

i=1

∑kB
j=1 D(ai b j |x y) = 1 for all x and y , since probabilities must add up to 1.

Therefore, we can write the discretized local distribution of the state as

p(ab|x y) =∑
λ

p(λ)D(ab|x y).

2.3 Steering

We continue with the scenario of two distant observers. However, now only Alice will per-

form the measurements in the ρ state, Bob will perform his measurements in the unnormal-

ized state

σa|x = trA[(Aa|x ⊗ IB )ρ], (2.5)

where IB is the density operator in B , conditioned on Alice having observed the result a in

the measurement x, with tr(σa|x) = p A(a|x). For each possible outcome/measurement Alice

has, Bob will receive a different state, we call the set of all possible states an assemblage

{σa|x}. We can visualize this scenario in Figure 2.6.

BA

Figure 2.6: Steering scenario. Alice and Bob each receive a part of the shared entangled quantum state. Only
Alice performs the measurement x in her subsystem and obtains the result a. Bob can perform measurements
in his conditioned state to reconstruct his assemblage.

Analogously to the Bell locality scenario, let Λ be a random variable in the com-

mon past of Alice and Bob’s measurement events, that assumes values in the set {λ} with
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probability distribution {p(λ)}. The value λ obtained after the measurement of Λ, again in

the common past, influences the operation of Alice’s measurement box resulting {p A(a|x,λ)}

and a set of states {ρλ(λ)} of Bob’s quantum system such that

σa|x =
∫
ρλ(λ)p A(a|x,λ)p(λ)dλ,

with

ρλ(λ) ≥ 0, tr (ρλ(λ)) = 1 and
∫

dλq(λ) = 1,

for all λ. Then the state ρ has a local state model (LHS) for these measurements and we say

it is unsteerable. Otherwise, it has no local state model and we say it is steerable [18].

As in the case of local models of hidden variables, it is possible to assign all ran-

domness to the choice of variable λ, and take only local deterministic behaviors for Alice

σa|x =∑
λ

qλ(λ)pD (a|x,λ)ρλ

=∑
λ

pD (a|x,λ)σ(λ). (2.6)
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CHAPTER 3

HIERARCHY OF PROPERTIES

Armed with the definition of these properties, we can begin to understand the

exact relationships between them and identify possible hierarchies. For this topic, one might

consider delving into the works [19–23].

We should start this discussion by establishing that in the case of pure states,

the properties of entanglement, steering and Bell non-locality are equivalent. This means

that for any pure entangled state there exists a choice of incompatible measurements that

produce Bell nonlocal correlations [24]. Bearing this in mind, we can move on to study the

hierarchical relationships between properties in relation to mixed states.

3.1 Steering and the other properties

Steering and entanglement

Entanglement is necessary for steering, and we can show this by first considering a non-

entangled state, i.e. one that admits decomposition

ρAB =∑
λ

q(λ)ρA(λ)⊗ρB (λ).

By using this state in a steering scenario, we arrive at the post measurement state given by

σa|x = trA[(Aa|x ⊗ IB )ρAB ] (3.1)

=∑
λ

q(λ)tr[Aa|xρA(λ)]ρB (λ) (3.2)

=∑
λ

q(λ)p A(a|x,λ)ρB (λ), (3.3)

that is, the state is local, being necessarily unsteerable.

In Werner’s 1989 article [25], the author presents a family of states that became

known as “Werner States”. A portion of these states were certified as entangled and local,

that is, which are not steerable. Thus, we have that entanglement is necessary for steering,

but not sufficient. This family of states will be studied later in this work in section 7.1.
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Steering and measurement incompatibility

Analyzing the Theorem 2 presented in [20], we have that

Theorem 2 The assemblage {σa|x}, withσa|x = trA[(Aa|x ⊗IB )ρAB ], is unsteerable for any state

ρAB acting onCd ⊗Cd if and only if the set of POVMs {Aa|x} acting onCd is jointly measurable.

To prove this theorem, lets first focus on the if part. Our goal is to show that {σa|x}

admits a decomposition of the form of Equation 2.6, when {Aa|x} is jointly measurable, for

any state ρAB .

Consider Ma⃗ , the joint observable for {Aa|x}, and define Alice’s local variable to

be λ = a⃗, distributed according to Π(a⃗) = tr(Ma⃗ρ
A), where ρA = trB (ρAB ). Next Alice sends

the local state σa⃗ = trA[(Ma⃗ ⊗ I)ρAB ]/Π(a⃗). When asked by Bob to perform measurement x,

Alice announces an outcome a according to p A(a|x, a⃗) = δa,ax . In this way, we can write

σa|x =∑
a⃗

p A(a|x, a⃗)σ(a⃗),

therefore admitting a local decomposition.

We now move to the only if part. Our goal is now to show that if σa|x is un-

steerable then {Aa|x} is jointly measurable. Consider an arbitrary pure state ρAB = |Ψ〉〈Ψ|
with Schmidt number d . We can always write |Ψ〉 = (D ⊗ I)|Φ〉, where |Φ〉 =∑

i |i i 〉 is an (un-

normalized) maximally entangled vector inCd ⊗Cd , and D is a diagonal matrix that contains

only strictly positive numbers. The assemblage resulting from a set of POVMs {Aa|x} on ρAB

is given by

σa|x = trA[(Aa|x ⊗ IB )ρAB ] = DM T
a|xD

where M T
a|x is the transpose of Aa|x . As σa|x is unsteerable, we have that

σa|x =∑
λ

p A(a|x,λ)σλ

which allows us to define the positive definite operator

σa⃗ =∑
λ

σλ
∏

x
p(ax |x,λ)

from which we can recover the assemblage {σa|x} as marginals, i.e., σa|x = ∑
a⃗\ax σa⃗ . Since

the diagonal matrix D is invertible, we can define Ma⃗ := D−1σT
a⃗ D−1.

It is straightforward to check that Ma⃗ is a joint observable for {Aa|x}, since

Ma⃗ ≥ 0,
∑
a⃗

Ma⃗ = I, ∑
a⃗/ax

Ma⃗ = Aa|x .

Hence, {Aa|x} is jointly measurable, which concludes the proof. Note, finally, an interesting

point that follows from the above. Considering a set of incompatible measurements acting
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on Cd , any pure entangled state of the Schmidt number d can be used to demonstrate steer-

ing. Specifically, for any set of POVMs that are incompatible (i.e., not jointly measurable),

one can find an entangled state, such that the resulting statistics violates a steering inequal-

ity.

One-way steering

Due to the asymmetry of the concept of steering, there are entangled states that can only be

steered in one direction. The article [26] provides examples of families of states that can be

steered in a single direction.

3.2 Bell non-locality and the other properties

Bell non-locality and steering

If a state is Bell non-local, the state is necessarily steerable. To prove this, we start with an

unsteerable state ρ, where we have

trA[(Aa|x ⊗ IB )ρ] =
∫
ρλ(λ)p A(a|x,λ)p(λ)dλ.

When performing the locality Bell scenario, we will obtain the probability distribution given

by

p(ab|x y) =
∫

p A(a|x,λ)tr(Bb|yρλ)p(λ)dλ,

which will necessarily be a local distribution.

However, a steerable state can be Bell local, as presented in [21]. The authors

begin by presenting the class of states of the form

ρG = 1

9

[
α|ψ−〉〈ψ−|+ (3−α)

I2

2
⊗|2〉〈2|+2α|2〉〈2|⊗ I2

2
+ (6−2α)|22〉〈22|

]
where |ψ−〉 = (|01〉− |10〉)/

p
2 and I2 denotes the identity with dimension 2. For 0 <α≤ 1/2,

these states are proven to be local for POVMs, but they are steerable (in both directions) for

0 < α ≤ 1. Therefore, the state ρG with 0 < α ≤ 1/2 is two-way steerable but local for all

POVMs.

Bell non-locality and entanglement

Entanglement is necessary for Bell non-locality, and we can show this by first considering a

non-entangled state, i.e. one that admits decomposition

ρAB =∑
λ

q(λ)ρA(λ)⊗ρB (λ),
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then the generated probabilities will be local

p(ab|x y) = tr[(Aa|x ⊗Bb|y )ρAB ]

=∑
λ

q(λ)tr[Aa|xρA(λ)⊗Bb|yρB (λ)]

=∑
λ

q(λ)tr[Aa|xρA(λ)]tr[Bb|yρB (λ)]

=∑
λ

q(λ)p A(a|x,λ)pB (b|y,λ).

Just as entanglement is not enough for steering, it will not be for Bell non-locality.

Bell non-locality and measurement incompatibility

We investigate now how joint measurability relates to Bell nonlocality. First, the Theorem 2

implies that if the set of POVMs {Aa|x} used by Alice is jointly measurable, then the statistics

p(ab|x y) can always be reproduced by a local model, for any state ρAB and measurements

of Bob {Bb|y }. The converse problem is much more interesting. The question is whether

for any set of POVMs {Aa|x} that is not jointly measurable, there exists a state ρAB and a set

of measurements {Bb|y } such that the resulting statistics p(ab|x y) violates a Bell inequality.

This was shown to hold true for the case of sets of two POVMs with binary outcomes [27]. But

in [28], they present explicitly a given set of non jointly measurable POVMs {Aa|x} from which

it is not possible to construct a scenario that violates a Bell inequality. Considering a bipartite

Bell test where Alice uses {Aa|x}, then for any possible shared entangled state ρAB and any set

of (possibly infinitely many) POVMs {Bb|y } performed by Bob, the resulting statistics admits

a local model. Consequently, these statistics do not violate any Bell inequality. This shows

that quantum measurement incompatibility does not imply Bell non-locality in general.

3.3 Hierarchy diagram

The hierarchical relationships presented here can be conveniently represented through the

diagram shown in Figure 3.1, based on article [21].
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Entanglement

Bell Nonlocality

Steering
B → A

Steering 
A → B

Incompatible 
measurements

Figure 3.1: Hierarchical relationships between the properties. Diagram of hierarchical relationships between
the properties of Entanglement, Steering, Bell Non-locality and Incompatible measurements.
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PART II: BUILDING RESULTS

CHAPTER 4

CERTIFICATION OF LOCAL ENTANGLED STATES

Now that we’ve developed the necessary tools for our study, we can proceed to

establish the methods required to certify entanglement and state locality. This entails con-

ducting two distinct certification processes: one focused on entanglement and another cen-

tered on locality. Subsequently, we can merge the outcomes of these certifications to certify

states that exhibit both entanglement and locality.

4.1 Entangled states certification

An interesting criterion to study in order to certify entangled states is the Positive Partial

Transpose (PPT) criterion, presented in Theorem 3 [29].

Theorem 3 (PPT criterion) LetρAB be a separable state of a bipartite quantum system, acting

on H A ⊗HB . Then the transposed partial in subsystem B (or analogously for subsystem A) is

positive semi-definite ρTB = (IdA ⊗TB )[ρ] ≥ 0. Therefore if ρTB ≤ 0, the state ρAB is entangled.

The proof of this theorem is quite straightforward. If ρ is separable, it can be

written as

ρ =∑
piρ

A
i ⊗ρB

i .

In this case, the effect of the partial transposition is trivial, given by

ρTB = (I ⊗T )(ρ) =∑
piρ

A
i ⊗ (ρB

i )T .

As the transposition map preserves eigenvalues, the spectrum of (ρB
i )T is the same as the

spectrum of ρB
i , and in particular (ρB

i )T must still be positive semidefinite. Thus ρTB must

also be positive semidefinite. This proves the necessity of the PPT criterion.

In arbitrary dimensions of the two subsystems, the PPT criterion only provides a

necessary but not sufficient condition for separability, that is, in “high” dimensions there are
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states that remain positive under partial transposition (PPT states) even if they are entangled.

If, instead, the bipartite system has dimension dA ·dB ≤ 6, that is, the bipartite system is of

type 2⊗2, 2⊗3 or 3⊗2, then the criterion PPT provides a separability condition [30], given

as follows.

Theorem 4 (PPT criterion for dA ·dB ≤ 6) Let ρAB be a state of a bipartite quantum system

with dimension dA ·dB ≤ 6, acting on H A ⊗HB . It will be separable if and only if the trans-

posed partial in subsystem B is positive semi-definite ρTB = (IdA ⊗TB )[ρ] ≥ 0.

To do the proof of this theorem and show that being PPT is also sufficient for the

dA ·dB ≤ 6 cases is more involved. First, it was shown that for every entangled state there

exists an entanglement witness [30]. This is a result of geometric nature and invokes the

Hahn-Banack theorem.

From the existence of entanglement witnesses, one can show that I ⊗Λ(ρ) being

positive for all positive maps Λ is a necessary and sufficient condition for the separability of

ρ, whereΛmaps the space of density matrices L (HB ) to L (H A).

Furthermore, every positive map from L (HB ) to L (H A) can be decomposed

into a sum of completely positive and completely copositive maps, when dB = 2 and dA = 2

or 3. In other words, every such mapΛ can be written as

Λ=Λ1 +Λ2 ◦T,

where Λ1 and Λ2 are completely positive and T is the transposition map. This follows from

the Størmer-Woronowicz theorem.

Loosely speaking, the transposition map is therefore the only one that can gener-

ate negative eigenvalues in these dimensions. So if ρTB is positive, I ⊗Λ(ρ) is positive for any

Λ. Thus we conclude that the PPT criterion is also sufficient for separability when dA ·dB ≤ 6.

In higher dimensions, however, there exist maps that can’t be decomposed in this

fashion, and the criterion is no longer sufficient. Consequently, there are entangled states

which have a positive partial transpose. For the higher dimension cases, we can study the

DPS hierarchy, also known as k-symmetric PPT extension.

Let ρAB be the state of a bipartite quantum system, acting on H A⊗HB . The state

ρAB is said to admit a k-symmetric extension if there is a state ρAB1...Bk acting on H A ⊗H ⊗k
B

such that the partial trace over any (k −1) copies of subsystem B is equal to ρAB :

trB(1,...,k)/i ) (ρAB1···Bk ) = ρABi ,

for all i ∈ {1, . . . ,k}, where the notation B(1,...,k)/i denotes all k parts B , except the part Bi .

If in addition to these conditions we have

ρ
TA
AB1···Bk

≥ 0 and ρ
TB1
AB1···Bk

≥ 0,
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ρAB is said to admit a k-symmetrical PPT extension. Finally, we can present the Theorem 5

[31].

Theorem 5 (Doherty-Parrilo-Spedalieri (DPS) Criterion) Let ρAB be the state of a bipartite

quantum system, acting on H A ⊗HB . The state ρAB is separable if and only if it admits a

k-symmetric PPT extension for all k.

This theorem presents an entanglement detection criterion that allows the construction of a

numerical algorithm of arbitrary precision using convex optimization methods [32].

4.2 Local states certification

To perform the certification of local states, we start by analyzing one of the theorems pre-

sented in [18].

Theorem 6 Let M be a finite collection of projective measurements in CdA . A state ρAB act-

ing on CdA ⊗CdB admits an LHS model for all projective measurements if there is a unit trace

operator O AB acting on the same Hilbert space, so that O AB admits an LHS model for mea-

surements in M , and

ρAB = r O AB + (1− r )ξA ⊗OB , (4.1)

where r is the radius of the inner sphere, the largest centric sphere contained in the polytope

generated by M , and ξA is an arbitrary density matrix (of dimension dA ×dA).

To prove this theorem we have to show that

trA[(M r
a ⊗ IdB )O AB ] = trA[(Ma ⊗ IdB )ρAB ]. (4.2)

Given that we are constructing a continuous set of shrunk measurements M r
a = r Ma + (1−

r )tr[ξA Ma]IdA for any Ma ∈M . Then r is exactly the largest number such that all M r
a can be

written as a convex combination of the elements of {Aa|x}, i.e. M r
a =∑

x px Aa|x with
∑

x px = 1

and px ≥ 0. The left side of Equation 4.2, can be written

trA[(M r
a ⊗ IdB )O AB ] = trA[(r Ma + (1− r )tr[ξA Ma]IdA )⊗ IdB O AB ]

= trA[r (Ma ⊗ IdB )O AB + ((1− r )tr[ξA Ma]IdA )⊗ IdB O AB ]

= trA[r (Ma ⊗ IdB )O AB ]+ trA[((1− r )tr[ξA Ma])IdA ⊗ IdB O AB ]

= trA[r (Ma ⊗ IdB )O AB ]+ trA[((1− r )tr[ξA Ma])IdA×dB O AB ]

= r (trA[(Ma ⊗ IdB )O AB ])+ ((1− r )tr[ξA Ma])trA[O AB ]

= r (trA[(Ma ⊗ IdB )O AB ])+ ((1− r )tr[ξA Ma])OB , (4.3)
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and the right side can be written

trA[(Ma ⊗ IdB )ρAB ] = trA[(Ma ⊗ IdB )(r O AB + (1− r )ξA ⊗OB )]

= trA[r (Ma ⊗ IdB )O AB + (1− r )(Ma ⊗ IdB )(ξA ⊗OB )]

= trA[r (Ma ⊗ IdB )O AB ]+ trA[(1− r )(MaξA)⊗ (IdB OB )]

= r (trA[(Ma ⊗ IdB )O AB ])+ ((1− r )tr[MaξA])OB , (4.4)

where we made use of the property (A ⊗ B)(C ⊗ D) = (AC ) ⊗ (BD), and also that trA[(1 −
r )(MaξA)⊗OB ] = ((1− r )tr[MaξA])OB , given that the partial trace operator can be defined

invariantly. Combining Equation 4.3 and Equation 4.4 into Equation 4.2, we have

r (trA[(Ma ⊗ IdB )O AB ])+ ((1− r )tr[ξA Ma])OB =
r (trA[(Ma ⊗ IdB )O AB ])+ ((1− r )tr[MaξA])OB ,

which is true, since tr[ξA Ma] = tr[MaξA], which concludes the proof.

Using Theorem 6, we can define a method that provides a sequence of tests (suf-

ficient conditions) that converge to the brute force test, in terms of the set M , so that a state

has a model LHS in the limit where M is the infinite set of all projective measurements [18].

This method is based on a convex optimization program, with the semi-definite

programming (SDP) technique, defined and discussed in Appendix A. Initially, we choose

a finite set of measurements M and calculate r , given by the distance between the closest

facet of the polytope generated by M and the origin (calculated by enumeration algorithms

of default vertices). Since M is finite, we can restrict it to a finite set of hidden variables by

imposing an LHS model on the O AB operator.

Without loss of generality, we consider λ = λ1 · · ·λmA a bit string of length mA,

which specifies a (deterministic) result for each of Alice’s mA measurements. When the mea-

surement along the ûx direction is performed, we get a = λx . If each measurement has k

possible outcomes, there are dmA = kma distinct deterministic specifications. Thus, accord-

ing to Theorem 6, the following SDP tests an LHS model for projective measurements in state

ρAB :

given ρAB ,M ,r,ξ

find O AB , {ρλ}λ

subject to trA[(Πa|ûx ⊗ IB )O AB ] =∑
λ

Dλ(a|x)ρλ, ∀a, x

ρλ ≥ 0, ∀λ
r O AB + (1− r )ξ⊗OB = ρAB ,

where Dλ(a|x) = δa,λx are the deterministic response functions.
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If we change the format of our state of interest to

ρAB = ρq = qρ+ (1−q)ρsep,

with 0 ≤ q ≤ 1, and where state ρ can be called target state and ρsep is a separable state (thus

unsteerable), we can change the SDP to find the maximum value of q such that ρq admits an

LHS model. The changed SDP is as follows

maximize q

subject to trA[(Πa|v̂x ⊗ IB )O AB ] =∑
λ

Dλ(a|x)ρλ, ∀a, x

ρλ ≥ 0, ∀λ
r O AB + (1− r )ξ⊗OB = ρq .

When the q found is equal to 1, it means that it was not necessary to add noise to find the

LHS model, that is, the state is unsteerable (local).
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CHAPTER 5

SAMPLING QUANTUM STATES

The structure of the abstract space of theories is characterized in terms of its

metrics. In order to understand what are the possible metrics that define the mathemati-

cal structure of quantum theory, we must understand what would be a natural measure of

distance for it. In particular, two metrics are interesting: the Hilbert-Schmidt distance and

the Bures metric. Some interesting references on this subject are [33–35].

5.1 Hilbert-Schmidt

Quantum tomography, also known as quantum state tomography, is a process used to recon-

struct a quantum state by performing measurements on a collection of identical quantum

states. Consider two quantum systems associated with a d-dimensional Hilbert space. To

determine the proximity between two quantum states, ρ1 and ρ2, a tomographically com-

plete set of mutually complementary measurements M = {Mx} is employed. These mea-

surements are non-degenerate and orthogonal, allowing for the unique identification of the

state. It is crucial for a proximity measure to be invariant under the specific choice of a com-

plete set of mutually complementary measurements.

The measurement is performed independently and equivalently for each quan-

tum system and its probability vector is denoted by p⃗x(ρ) for the system ρ. The distance of

the two probability vectors, p⃗x(ρ1) and p⃗x(ρ2), is defined as,

Dx(ρ1,ρ2) = |p⃗x(ρ1)− p⃗x(ρ2)|2,

where | · | is a vector norm. The distance Dx is called the single operational distance for

measurement Mx belonging to the complete set of mutually complementary measurements.

The total operating distance can be defined by summing the individual operating distances

over the complete set of complementary measurements:

Dtotal(ρ1,ρ2) =∑
x

Dx(ρ1,ρ2).

The present geometric approach leads to the result that the total operating dis-
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tance is equivalent to the Hilbert-Schmidt distance, i.e.

Dtotal(ρ1,ρ2) = ∥ρ1 −ρ2∥2,

where ∥ ·∥ is a Hilbert-Schmidt norm.

To generate a Hilbert-Schmidt random density matrix of dimension n, we take a

square complex random matrix G of size n pertaining to Ginibre’s ensemble, which is built

with real and imaginary parts of each element being a random variable sampled from the

normal distribution. Therefore, we can write the density matrix as

ρHS = GG†

tr[GG†]
.

5.2 Bures

The fidelity serves as another measure of the proximity between two quantum states. It

can be defined as the transition probability between two pure states ρ1 = |ψ1〉〈ψ1| and ρ2 =
|ψ2〉〈ψ2|, as

F (ρ1,ρ2) = |〈ψ1|ψ2〉|,

where F = 0 when the states are orthogonal (perfectly distinguishable) and F = 1 when |ψ1〉 =
|ψ2〉.

This definition can be generalized to the case where one of the states is pure ρ1 =
|ψ1〉〈ψ1| and the other one is mixed ρ2,

F (ρ1,ρ2) =√〈ψ1|ρ2|ψ1〉.

In this case, the fidelity can be understood as the average value obtained from considering

both pure states over an ensemble of pure states represented by a density matrix ρ2.

When fidelity is extended to incorporate mixed states, we end up with

F (ρ1,ρ2) =
(
tr

√p
ρ1ρ2

p
ρ1

)2

,

and its interpretation becomes vague from an operational perspective. Rather, fidelity can

be indirectly interpreted in terms of the statistical distance or “statistical distinguishability”

of finding the measure that optimally resolves neighboring density operators.

This measure can be used to define the Bures metric on the space of density ma-

trices, by defining the Bures distance, given by

DB (ρ1,ρ2) =
√

2
(
1−√

F (ρ1,ρ2)
)
.
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To generate a Bures random density matrix of dimension n, we take a square

complex random matrix G of size n pertaining to the Ginibre ensemble, a random unitary

matrix U distributed according to the Haar measure on U (n) and write the random density

matrix

ρB = (I+U )GG†(I+U †)

tr[(I+U )GG†(I+U †)]
.
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CHAPTER 6

CODE DOCUMENTATION AND VALIDATION

All results referring to this project were built numerically, using codes written

in the Python language and stored in a GitHub digital repository with public access [36].

Next, I present the documentation and validation of the code, as well as their limitations and

associated precisions.

Entanglement certification

As we will be interested in states of dimensions dA ·dB ≤ 6, we use the positive partial trans-

pose criterion (PPT) to certify the entanglement of the states. Given the target state ρ as

input, we are able to calculate the partial transpose and determine if the state is entangled

or not. We can also find the entanglement threshold αent for each state ρα =αρ+ (1−α)ρsep

to become separable. The values given by this method have a precision of 10−16.

Generating the quantum states

We perform the generation of entangled quantum states according to Bures and Hilbert-

Schmidt [37] metrics. For code validation, we first perform the certification of the mixed-

state density matrix generation function by checking the normalization properties (tr(ρ) = 1)

and hermiticity (ρ = ρ†) with an accuracy of up to 10−15. Next, we recovered the percentage

of generation of separable states expected by geometrical arguments. We uniformly sam-

pled 105 two-qubit states first with the Bures metric, which our method generated ≈ 7.4%

(expected value = 7.3% [38]) and next with the Hilbert–Schmidt metric, which our method

generates ≈ 24.2% (value expected = 24.2% [38]). We certified the separability of the states

generated with the aforementioned code. On an Intel i5-7200U CPU, it took 37 seconds to

create and certify the states generated according to the Bures metric, and 11 seconds for

Hilbert-Schmidt metric.
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Generating the measurements

As we are interested in studying dichotomous projective measurements performed on qubits,

we can use the format presented in Equation 1.4 to generate our measurements. Thus, when

assembling the set of measurements, we are determining a polytope in which each vertex

will represent a measurement effect M±|x . We will see that it will be interesting that this

polytope is constructed in such a way as to maximize the value of the radius of the inscribed

sphere. It is important to notice here that the inradius is not necessarily proportional to the

number of vertices, for example, if the vertices are all concetrated on the poles, the inradius

will be smaller than if they are well distributed.

The polytopes that will be used in this work can be seen in Figure 6.1, the first has

6 vertices and an inradius of 0.577, the second has 18 vertices and an inradius of 0.816 and

the third one has 26 vertices and an inradius of 0.863. The polytopes constructed here share

vertices, meaning that the 18-vertex polytope contains the 6 vertices of the 3-measurements

polytope, and the 26-vertex polytope contains the 18 vertices of the 9-measurements poly-

tope.

101

1

0

1

1

0

1

3 measurements

101

1

0

1

1

0

1

9 measurements

101

1

0

1

1

0

1

13 measurements

Figure 6.1: Polytopes of dichotomic projective measurements. In the left, we have the polytope that represent
3 measurements. In the middle, the polytope that represent 9 measurements. In the right, the polytope that
represent 13 measurements.

Locality certification

To do the locality certification, we constructed a code that follows the structure presented in

Figure 6.2.
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Dimension of the state (n)

Number of measurements 
and outcomes per 

measurement (m,k)

Input

Local models

Lower bound α 

OutputTarget state
rho_mixed(n)

Measurments
measurements(m)

SDP
SDP_LHS(...)

Strategies
strategies_LHS(m,k)

Separable state
rho_sep(n)

Functions

Figure 6.2: Program structure. We input the dimension of the state, 4 in the case of two qubits, the number
of measurements per part and the number of results per measurement, 2 in the dichotomous case. The pro-
gram will then provide the target and separable state, the measurements and the deterministic strategies of the
scenario to feed the SDP which will return as output the lower bound of locality for the target state and the
respective local model.

Looking back at the SDP presented in section 4.2,

maximize q

subject to trA[(Πa|v̂x ⊗ IB )O AB ] =∑
λ

Dλ(a|x)ρλ, ∀a, x

ρλ ≥ 0, ∀λ
r O AB + (1− r )ξ⊗OB = qρ+ (1−q)ρsep,

we see that it has input variables and optimization variables that are not predefined. Know-

ing that dA is the dimension of Alice’s part, dB is the dimension of Bob’s part, k is the number

of results per measurement, m is the number of measurements, the dimensions of each vari-

able is presented in Table 6.1.

Table 6.1: Dimension of variables

Input variables
Variable ρ, ρsep IB ξ {Πa|v̂x }a,x r {Dλ(a|x)}λ,a,x

Dimension (dA ·dB ,dA ·dB ) (dB ,dB ) (dA,dA) (k ·m,dA ·dA) 1 (km ,k ·m)

Optimization variables
Variable q O AB {ρλ}λ

Dimension 1 (dA ·dB ,dA ·dB ) (km ,dB ,dB )

Analyzing variable by variable, we see that {Dλ(a|x)}λ,a,x will be the most com-

putationally costly of the input variables. This is because to build the strategies, we need to

take in consideration that they are deterministic, so, given a result a of a measurement v̂x ,
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the associated probability will be either 0 or 1. For each round of the experiment it is possi-

ble to determine all possible deterministic strategies, so we create km (k being the number

of results per measurement and m the number of measurements) in the form

Dλ = (Dλ(a1|v̂1),Dλ(a2|v̂1), . . . ,Dλ(ak |v̂1), . . . ,Dλ(bk |v̂m)),

with
∑k

i=1 Dλ(ai , v̂ j ) = 1 for all 1 ≤ j ≤ m.

For the optimization variables, {ρλ}λ will be the most computationally costly.

This happens because for each λ, we create a local state of Bob’s state dimension, that is,

km states of dimension dB .

By fixing the number of measurements and the number of results per measure-

ment, we find that the spatial complexity increases as a quadratic function of the dimension

of the state, i.e., O (n2). If we set the number of measurements to m and the size of the state,

the spatial complexity increases as a function of the number of results per measurement by

a factor of O (nm). Conversely, if we fix the number of results per measurement k and the di-

mension of the state, we see that the spatial complexity increases as a function of the number

of results per measurement by a factor of O (n·kn).

Machine Learning

To improve my results using the method presented above, I need to increase the number

of measurements, which is computationally expensive. Therefore, it becomes interesting to

study alternative techniques. Given the success of Machine Learning techniques on similar

problems [39] we propose building a model for the certification of local entangled states.

For our purposes, we will employ the Multi-Layer Perceptron Neural Network,

which is readily available in the popular Python library called Scikit-learn. Scikit-learn lever-

ages the extensive capabilities of Python to offer cutting-edge implementations of numerous

renowned machine learning algorithms. It ensures a user-friendly interface that seamlessly

integrates with the Python language, facilitating a smooth and intuitive experience [40].

Through this method, we can effectively categorize the input quantum state into

one of two potential output classes: entangled and local or not. To interpret the outcomes

accurately, our analysis will primarily rely on the confusion matrix, presented in Table 6.2,

where we use acronyms such as TP (True Positive), TN (True Negative), FP (False Positive),

and FN (False Negative). TP signifies cases correctly predicted as positive when they are in-

deed positive, while TN indicates cases correctly predicted as negative when they are indeed

negative. Conversely, FP points to cases incorrectly predicted as positive when they are actu-

ally negative, and FN denotes cases incorrectly predicted as negative when they are actually

positive.
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Table 6.2: Confusion matrix

Actual values

Positive (1) Negative (0)

Predicted Positive (1) TP FP

value Negative (0) FN TN

In an ideal scenario, we anticipate that the data points will predominantly fall

along the main diagonal of the matrix, indicating good performance. We can derive the fol-

lowing additional quantitative performance metrics from these values, based on the ques-

tions

Precision “How many of the selected items are relevant?”. Given by TP
TP+FP .

Recall “How many of the relevant items are selected?”. Given by TP
TP+FN .

Accuracy “What percentage of predictions were correct?”. Given by TP+TN
TP+FP+TN+FN .

This method is elaborated upon in Appendix B, where you can also find a more

precise definition of the performance metrics.

Additional certification methods

In addition to the techniques presented in this document for locality certification, there are

others already discussed in the literature. There is also Bell non-locality certification. Each

technique has its own unique strengths, optimal target problems, and inherent limitations.

In the following, we provide a brief overview of some of the notable state-of-the-art works in

this particular research domain.

In a comprehensive review published in 2017 [41], the authors explored the char-

acterization of quantum steering using semidefinite programming. This review presents ef-

ficient numerical methods for addressing various problems related to steering, including

detection, quantification, and practical applications.

Another article from 2017 [42] combines two recently developed numerical meth-

ods to derive a result. By utilizing these methods, an analytical construction of the local hid-

den variable (LHV) model is achieved, employing a larger set of measurements. However, it

should be noted that this result is specific to a particular class of entangled states and lacks

general applicability. Generalizing this method to construct LHV models for other classes

of entangled states, especially in higher-dimensional Hilbert spaces, has yet to be explored.

Additionally, the adaptation of this technique to construct local hidden state (LHS) models

specifically for studying steering was not discussed in the article.

In a 2023 article [43], researchers examined the limiting value for the non-locality

of two-qubit Werner states under projective measurements. This approach is not limited to
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the specific case considered but can be applied to scenarios involving any number of parties

and inputs (uniform for all parties) with only two outputs. The lower bound derived in this

work is entirely analytic and provides a tight constraint on the value of the Grothendieck con-

stant of order three. The authors employed a convex optimization algorithm called Frank-

Wolfe, which seeks to find the vertex of the polytope closest to the point of interest at each

iteration.

In a recent 2023 paper [44], the authors introduced a confidence polytope. This

polytope, taking the form of a hyperoctahedron, serves as a valuable tool for determining if

a quantum state can be described by a local hidden state model. By verifying the absence

of steering and establishing Bell-locality, the authors provide a computationally efficient

method for this verification process. Remarkably, the authors demonstrate that assessing

the locality of the polytope’s vertices alone is sufficient to establish the overall locality of the

confidence polytope.
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PART III: LOOKING AT THE FINAL WORK

CHAPTER 7

THE RESULTS

With the concepts and methods at our disposal, we can now embark on the cer-

tification processes and engage in a comprehensive discussion of the insights derived from

the results. Our primary focus will be on the examination of two-qubit states and dichoto-

mous projective measurements.

7.1 Werner states

The first result we sought was to characterize the entanglement and locality limits for a class

of states already analytically defined, in order to perform code verification. We use the 2-

qubit Werner state class

ρW (α) =α|ψ−〉〈ψ−|+ (1−α)I/4, 0 ≤α≤ 1, (7.1)

with |ψ−〉 = (|01〉− |10〉)/
p

2.

After the entanglement certification, we recovered αent = 1/3 (expected value =
1/3 [25]), with a precision of 10−16. As for the locality certification, we were able to reach a

numerical limit of αlocal = 0.44 with 13 dichotomic measurements (insphere radius of 0.86).

When comparing to the analytical limit of 1/2 [25], our method already recaptures ≈ 88% of

local Werner states.

Moreover, we run the code with the pentakis dodecahedron polytope with 32

vertices (representing 16 dichotomous measurements), with an internal radius of 0.92. In

this case, the vertices do not include all the vertices of the 13-measurement polytope. We

were able to reach a numerical limit ofαlocal = 0.47, recapturing ≈ 94% of local Werner states.

When running the code, the choice of measurements itself will be important to

the performance of the code. Therefore, when we use the polytopes that contain the vertices

of the smaller polytope, we guarantee that the improvement of the values found was given by

the increase in the inscribed radius and we have a more reliable visualization of the inscribed
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radius and lower bound relationship.

When analyzing the graph presented in Figure 7.1, we see that the radius of the

inscribed sphere is crucial for approaching the expected value. However, the number of ver-

tices in the polytope also defines the time it takes to run the code. That is exactly why we had

to perform the optimization to find the polytopes with the smallest number of vertices and

the largest associated inscribed radius.
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Figure 7.1: Werner State’s lower bounds for locality as a function of insphere radius. We used the locality
certification method by SDP to calculate the lower bounds for the Werner state, referring to the different mea-
surement polytopes used (3, 9, 13, and 16 measurements). The polytope of 16 measurements is presented in
a different color, as it does not possess the vertices of the smaller polytopes. In the graph, the continuous line
at 0.5 represents the known analytical result of the locality threshold for the Werner state. Code runtimes ac-
counted for on an Intel Xeon CPU E5-2630 v4.

This initial result serves as validation for the selected methods employed in our

certification process. It is crucial to bear in mind that, despite being able to analytically

characterize this specific family, the challenge of determining whether a general quantum

state can produce local statistics is an exceptionally challenging problem. The prospect of

obtaining a systematic analytical tool to answer this question is exceedingly slim. Therefore,

our numerical method provides a partial yet significant solution to this complex set of issues.

7.2 Relative volume

Using this method, we can determine a lower bound for the volume of the set of local en-

tangled states. We use a set of 9 dichotomous measures (radius 0.82) to certify which states



7. The results 49

are entangled and Bell local. We selected this particular polytope due to its favorable char-

acteristics, as demonstrated in our previous result. It exhibits an optimal balance between

the number of vertices, inscribed radius, and the computational time required.

We started by generating 104 two-qubit states uniformly according to the Hilbert-

Schmidt metric. We find that approximately 35.3% of the entangled states are local. Then,

we generated 104 two-qubit states uniformly according to the Bures metric. We find that

approximately 11.6% of the entangled states are local. The charts shown in Figure 7.2 sum-

marize the relative volumes found for each metric.

In a related study [18], the authors use this same technique but with the icosahe-

dron polytope (radius 0.79). They find that approximately 25% of the 2×104 entangled states

sampled according to the Hilbert-Schmidt measure are local, while using the Bures measure

there was 7%. We have already observed a increase for the lower bound of the volume of

local entangled states, given by the increase in the inscribed radius in this project.

Separable Entangled 
and local

Entangled

Bures metric
Separable Entangled 

and local

Entangled

Hilbert-Schmidt metric

Figure 7.2: Relative Volumes. In the left, we have the states generated by Bures metric. We have successfully
certified that 7.2% states are separable. Additionally, we can confirm that at least 10.8% of the states (or 11.6%
of the entangled states) exhibit entanglement and satisfy the condition of locality. In the right, we have the
states generated by Hilbert-Schmidt metric. We have achieved successful certification indicating that 23.8%
of the states are separable. Furthermore, we can confidently affirm that a minimum of 26.9% of the states (or
35.3% of the entangled states) demonstrate entanglement while satisfying the condition of locality.

7.3 Machine Learning

In the previous result, we generated a dataset of quantum states and employed entanglement

and locality certifications to classify them. This dataset is well-suited for serving as input to

train and evaluate a Multilayer Perceptron model. Initially, we generated 5000 states using

the Bures metric. However, in order to maintain a balanced dataset with an equal number of

states for each classification, we reduced this number to 1034.

For the dataset partition, 70% of the states were utilized for training, while the

remaining 30% were used for testing. The confusion matrix and performance metrics (pre-
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sented in Appendix B) are presented in Table 7.1 and Table 7.2, respectively. After performing

cross-validation with a 5-fold process, we were able to recover a mean accuracy of 0.81±0.03.

Table 7.1: Confusion matrix (Bures metric)

Positive (1) Negative (0)

Positive (1) 135 29

Negative (0) 32 115

Table 7.2: Performance metrics (Bures metric)

Precision Recall Accuracy

0.81 0.82 0.80

The second dataset initially consisted of 5000 states generated using the Hilbert-

Schmidt metric. After balancing the dataset, the total number of states decreased to 2664.

Among these, 70% were allocated for training the model, while the remaining 30% were re-

served for testing. The evaluation of the model’s performance is presented through a confu-

sion matrix in Table 7.3, illustrating the classification results. Additionally, Table 7.4 provides

the performance metrics, offering a comprehensive analysis of the model’s accuracy, pre-

cision and recall. After conducting a 5-fold cross-validation process, we achieved a mean

accuracy score of 0.66±0.03.

Table 7.3: Confusion matrix (Hilbert-Schmidt metric)

Positive (1) Negative (0)

Positive (1) 274 128

Negative (0) 143 255

Table 7.4: Performance metrics (Hilbert-Schmidt metric)

Precision Recall Accuracy

0.66 0.68 0.66

Upon comparing the results of the different datasets, an interesting observation

emerges: the model exhibits better performance when applied to the states generated by the

Bures metric. This finding may appear counterintuitive, considering that the dataset based

on the Hilbert-Schmidt metric was larger, and one might expect the neural network to learn

more effectively with a larger number of examples.

In addition to the individual dataset analyses, we also generated a third dataset

by combining the previous two. The classification outcomes are depicted in the confusion
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matrix shown in Table 7.5, while the comprehensive results of the performance metrics are

presented in Table 7.6. The mean accuracy recovered after cross-validation with a 5-fold

process was 0.707±0.009.

Table 7.5: Confusion matrix (Both metrics)

Positive (1) Negative (0)

Positive (1) 384 169

Negative (0) 151 406

Table 7.6: Performance metrics (Both metric)

Precision Recall Accuracy

0.72 0.69 0.71

Across all three datasets, the low standard deviation of the accuracy after cross-

validation provides strong evidence that the model is capable of accurately classifying new

data. This indicates that the model has not suffered from overfitting or selection bias, and it

is expected to generalize well to unseen data.

In this study, we opted to use a fixed model, specifically the Multilayer Percep-

tron, due to its simplicity and ease of implementation. However, it is worth noting that there

are automated methods available in the field of machine learning that can help identify the

best model for a given dataset. One such method is the Tree-based Pipeline Optimization

Tool (TPOT) [45], a Python Automated Machine Learning tool that leverages genetic pro-

gramming to optimize machine learning models. Using the TPOT, we found that there are

models that lead our data to higher accuracy, as shown in Table 7.7. Interestingly, in the

case of the Hilbert-Schmidt dataset, our model outperformed the one suggested by the au-

tomated machine learning (AutoML) process.

Table 7.7: Accuracy of the TPOT-discovered models

Bures metric Hilbert-Schmidt metric Both metrics

0.894 0.655 0.823

Using the Multilayer Perceptron (MLP) model and training it with 104 states gen-

erated by Bures, achieving an accuracy of 0.88, we successfully estimated a new relative vol-

ume. The estimation was performed using 105 input states, among which 42% were clas-

sified as entangled and local. The certification was solely based on the machine learning

model without the need for additional certification methods. The prediction process, car-

ried out on an Intel Xeon CPU 2.20GHz, took 0.17 seconds, highlighting the efficiency of our

approach.
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We observed a significant increase in the relative volume compared to the result

obtained through convex optimization, which was previously recorded at 10.8%. It is im-

portant to approach this result with caution, considering the following aspects. Firstly, the

previous technique provided certification of locality and lower bound values for the relative

volume, whereas our machine learning approach estimates state classifications through data

analysis. Additionally, our model is still in its initial stages and currently exhibits relatively

low accuracy. For instance, there are opportunities to enhance the model by expanding the

training dataset, implementing the model recommended by auto ML, increasing the number

of hidden layers, neurons, and iterations of backpropagation, among other potential mod-

ifications. These adjustments hold the potential to further enhance the performance and

accuracy of the method.
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CHAPTER 8

DISCUSSIONS, CONCLUSIONS AND NEXT STEPS

Following extensive theoretical investigations into the fundamental concepts of

quantum states and measurements, including their interrelationships and inherent proper-

ties, we embarked on the challenging task of devising a framework for entanglement and

locality certification applicable to arbitrary two-qubit states subjected to projective dichoto-

mous measurements. Subsequently, we constructed two distinct numerical methodologies:

one grounded in convex optimization and the other rooted in machine learning techniques.

Our analysis uncovered distinct advantages and limitations associated with each

method. Notably, the SDP method necessitates the initial definition of a set of measure-

ments used to construct the polytope, an inherently critical aspect of the program. Con-

versely, the machine learning method does not rely on the definition of measurements but

heavily depends on the database, composed exclusively of certified states. The accuracy of

the machine learning model is significantly influenced by the composition of this dataset.

Upon examining the results for the lower bound of locality in the Werner state, we

observed that while the SDP method delivers high accuracy for individual two-qubit states,

it incurs substantial computational costs in terms of memory usage and processing time.

Consequently, for a large number of states, the SDP method becomes impractical quickly. In

contrast, the machine learning method offers computational cost advantages in both mem-

ory and time, serving as a viable alternative for handling numerous states when provided

with an appropriate dataset. Nevertheless, with the SDP method, we successfully investi-

gated and certified the locality of a broad spectrum of entangled quantum states, leading to

improved bounds on the volume of two-qubit states featuring both entanglement and local-

ity under the Bures and Hilbert-Schmidt metrics employed for uniform state generation.

It is essential to acknowledge that the SDP method faces scalability limitations

concerning the dimension of the states under consideration. Consequently, it is pertinent to

explore avenues for enhancing the methodology’s scalability. This exploration might involve

investigating alternative optimization techniques capable of handling higher-dimensional

states or potentially devising hybrid methods that strike a balance between accuracy and

computational efficiency. By pursuing such avenues, we could significantly bolster the scal-

ability of our approach, rendering it applicable to a broader array of quantum problems and

scenarios.
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APPENDIX A

CONVEX OPTIMIZATION

Optimization is a field that lies at the intersection of applied mathematics and

computer science. Its main aim is to study and apply algorithms to solve optimization prob-

lems. Solving an optimization problem entails finding the best possible value for the param-

eters of a system given a goal (for example, minimizing or maximizing a function).

The convexity of the problems we are interested in has the convenient property

that, in many cases, we can use the powerful tools of convex optimization. The main ref-

erence used for the construction of this appendix was the book Convex Optimization, by

Stephen Boyd and Lieven Vandenberghe [46].

To understand this important tool, we must first establish the mathematical def-

initions that lead us to it.

Line and line segment

Assuming x1 ̸= x2 two points in Rn . Points of the form

y = θx1 + (1−θ)x2,

where θ ∈ R, forms the line passing through x1 and x2. Values of the θ parameter between

0 and 1 correspond to the (closed) line segment between x1 and x2. We can visualize both

definitions in Figure A.1.
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Figure A.1: Line and line segment. The line passing through x1 and x2 is shown lighter than the line segment
between x1 and x2.

Affine Sets

A set C ⊂ Rn is affine if the line through any two distinct points in C lies in C , i.e., if for

any x1, x2 ∈ C and θ ∈ R, we have θx1 + (1−θ)x2 ∈ C . In other words, C contains the linear

combination of any two points in C , provided the coefficients in the linear combination sum

to one. This idea can be generalized to more than two points.

Convex Sets

A set C is convex if the line segment between any two points in C is in C , i.e., if for any x1,

x2 ∈C and any θ with 0 ≤ θ ≤ 1, we have θx1 + (1−θ)x2 ∈C .

Every affine set is also convex, since it contains the entire line between any two

distinct points in it, and therefore also the line segment between the points.

We refer to a point of the form θ1x1 +·· ·+θk xk , where θ1 +·· ·+θk = 1 and θi ≥ 0,

i = 1, . . . ,k, as a convex combination of the points x1,. . .,xk . A set can be shown to be convex

if and only if it contains all convex combinations of its points. We can visualize examples of

convex and nonconvex sets in Figure A.2, given in [46].
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Figure A.2: Convex and nonconvex sets. On the left we have a hexagon, which includes its boundary (shown
darker), is convex. On the middle we have a kidney shaped set is not convex, since the line segment between
the two points in the set shown as dots is not contained in the set. On the right we have a square that contains
some boundary points but not others, and, therefore, is not convex. Image based on figure 2.2 of book [46].

Convex Functions

A function f : Rn → R is convex if dom f is a convex set and for all x,y ∈ dom f , and θ with

0 ≤ θ ≤ 1, we have

f (θx + (1−θ)y) ≤ θ f (x)+ (1−θ) f (y). (A.1)

Geometrically, this inequality means that the line segment between (x, f (x)) and

(y, f (y)), which is the chord from x to y , is above the graph of f . A function f is strictly

convex if the strict inequality holds in Equation A.1 whenever x ̸= y and 0 < θ < 1. We say

that f is concave if − f is convex, and strictly concave if − f is strictly convex.

Optimization problems

Optimization problems follow the format

min f0(x) (A.2)

s.t fi (x) ≤ bi , i = 1, . . . ,m.

Here, the vector x = (x1, · · · , xn) is the optimizable variable of the problem, the

function f0 : Rn → R is the objective function, the functions fi : Rn → R, i = 1, . . . ,m, are the

constraint functions (inequalities), and the constants b1, . . . ,bm are the limits of restrictions.

A vector x∗ is said to be optimal, or a solution to the problem A.2, if it has the

smallest objective value among all vectors satisfying the constraints: for any z with f1(z) ≤
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b1, · · · , fm(z) ≤ bm , we have f0(z) ≥ f0(x∗).

Convex Optimization

A problem is said to be convex when the objective and constraint functions are convex,

which means that they satisfy the inequality

fi (αx +βy) ≤α fi (x)+β fi (y)

for all x, y ∈ Rn and all a,b ∈ R with α+β= 1, α≥ 0, β≥ 0.

It can be shown that in a convex program, every local minimum is also a global

minimum, and the set of all optimal points is convex. If the objective function is strictly

convex, we can also say that there is only one optimal point. The first of these properties is

closely related to the existence of efficient algorithms for this type of problem.

Linear programs (LPs) and Semi-definite programs (SDPs)

Linear programs (LPs) and semi-definite programs (SDPs) are two particularly interesting

cases of convex optimization problems. In linear programs, the objective function and con-

straint functions are linear, so the region C over which the optimization takes place is a con-

vex polytope. Generally speaking, LPs can be written as:

min
x

cT x (A.3)

such that Ax ≤ b,

x ≥ 0,

where, x,b,c ∈ Rn , A is a matrix p ×n, where p is the number of linear constraints, and the

inequality in Equation A.3 denotes term-by-term inequality.

Semi-definite programs have a slightly more elaborate definition. Very superfi-

cially, the inequalities of the semi-definite program are all half-spaces in the space of Hermi-

tian matrices. Then, its set M is the intersection of the cone of semi-defined matrices with a

polytope. Generally speaking, SDPs can be written as

min
X∈Sn

tr(C X ) (A.4)

such that tr(Ai X ) ≤ bi , i ∈ {1, . . . , p},

X ≥ 0,

where Sn denotes the set of symmetric matrices n ×n (or, more generally, the Hermitian
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matrices n ×n), Ai and C are matrices n ×n, for all i , bi is scalar, for all i , and the inequality

in (A.4) denotes that X is positive semi-definite.

Among the class of convex problems, linear programming is the smallest subset,

and semi-definite programming lies between the two. They differ in the restrictions imposed

on their respective structures. In convex optimization, we are only interested in minimizing

or maximizing convex functions within an equally convex set of possible values for the vari-

ables. In linear programming, our restriction is even greater, since our objective function

must be linear, and the feasible set is a convex polytope. Finally, in semi-definite program-

ming, we are also restricted to linear functions but within an affine set, of which convex

polytopes are a subset.

These types of problems can be solved efficiently, from a computational point

of view, with a wide range of tools that have already been developed, such as the solvers

Gurobi [47] and Mosek [48]. As we are using the Python language in this project, we make

use of the Picos library [49].
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APPENDIX B

MACHINE LEARNING

Machine learning is a powerful data analysis method that offers numerous ad-

vantages, including efficient data management, continuous improvement, pattern identifi-

cation, and the ability to handle multi-dimensional data. However, it also presents certain

challenges, such as data acquisition difficulties, time and space requirements, result inter-

pretation complexities, and susceptibility to high error rates. To delve deeper into this sub-

ject, I highly recommend reading the book [50] for a comprehensive understanding.

Artificial intelligence encompasses various aspects of intelligence, including the

abilities to perceive, synthesize, and infer information. One significant subfield within arti-

ficial intelligence is machine learning, which involves automated processes capable of ex-

tracting patterns and relationships from data without explicit programming. Deep learn-

ing, a subarea of machine learning, utilizes high-level modeling abstractions to analyze data

through multiple processing layers. It typically requires large datasets for optimal perfor-

mance. Neural networks represent another subfield within deep learning, consisting of in-

terconnected artificial neurons. These networks receive signals, process them, and transmit

signals to other connected neurons, enabling complex information processing. The relation-

ships between these concepts can be visualized in Figure B.1.
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Figure B.1: Hierarchy of the artificial intelligence subfields. Within the field of artificial intelligence, there
exists the subfield of machine learning. Deep learning is a specialized subfield within machine learning, and
further within deep learning, we find the subfield of neural networks.

Multilayer Perceptron

A Multilayer Perceptron (MLP) is a neural network architecture that consists of an input layer,

an output layer, and one or more hidden layers. Each hidden layer is composed of multiple

interconnected neurons, creating a stacked structure within the network. The key charac-

teristic of MLPs is their ability to model non-linear mappings between inputs and outputs.

MLPs fall under the category of feedforward algorithms, as they receive inputs from the pre-

vious layer, which are then combined with initial weights to compute a weighted sum. This

result is then passed through an activation function. This process is repeated for each layer,

with the output of one layer becoming the input for the next. We can visualize the basic

construction of the MLP in the Figure B.2.
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Figure B.2: Multilayer Perceptron. A Multilayer Perceptron (MLP) is a type of neural network composed of
input and output layers, along with one or more hidden layers containing multiple stacked neurons.

However, there is more to MLPs than just computing weighted sums and propa-

gating results to the output layer. To enable learning and minimize the cost function, MLPs

utilize a mechanism called backpropagation. Backpropagation iteratively adjusts the weights

in the network during the training process. If the algorithm only computed one iteration or

stopped at the output layer, it would not be capable of learning. Backpropagation ensures

that the weights are adjusted by computing the gradient of the Mean Squared Error across

all input-output pairs.

During each iteration, after the weighted sums are forwarded through all layers,

the gradient of the Mean Squared Error is calculated for each input-output pair. Then, this

gradient is propagated back by updating the weights of the first hidden layer. This process

continues, propagating the weights back through the neural network. The iterations persist

until the gradient for each input-output pair converges, meaning the newly computed gra-

dient has not changed significantly beyond a specified convergence threshold compared to

the previous iteration. This iterative backpropagation mechanism allows the MLP to adjust

its weights and improve its performance over time. We can visualize in the Figure B.3 the

neurons of the hidden layers in more detail.
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Figure B.3: Neuron of the hidden layer. The neurons of the hidden layer receive inputs of the previews layer,
combine them with initial weights in a weighted sum, and pass the result through an activation function.
Through the process of backpropagation, the network iteratively adjusts the weights by calculating the error
of the output.

There are various examples of activation functions commonly used in neural net-

works. These include:

Binary step It outputs 0 if the input is less than zero and 1 if the input is greater than zero.

Hyperbolic tangent (tanh) The formula for tanh is (1−exp(−2x))/(1+exp(−2x)). It produces

values between -1 and 1, with negative inputs mapping to negative outputs and posi-

tive inputs mapping to positive outputs.

Sigmoid The sigmoid function is given by sig(x) = 1/(1+exp(−x)). It maps inputs to a range

between 0 and 1, with smaller negative inputs approaching 0 and larger positive inputs

approaching 1.

Rectified Linear Unit (ReLU) ReLU returns 0 if the input x is less than 0 and the input itself

if the input is greater than or equal to 0. It is defined as f (x) = max(0, x).

These activation functions serve different purposes and are chosen based on the specific

requirements and characteristics of the neural network being used. We can visualize this

functions in Figure B.4.
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Figure B.4: Activation functions. By considering the same range of values, we can observe the behaviors of
four activation functions. In the upper left corner, we find the binary step function. Moving to the upper right
corner, we encounter the hyperbolic tangent function. In the lower left corner, we have the sigmoid function,
and finally, in the lower right corner, we have the ReLU function.

Performance metrics

We can categorize the classification of inputs into four classes:

True Positive (TP) The case was positive, and it was correctly predicted as positive.

True Negative (TN) The case was negative, and it was correctly predicted as negative.

False Positive (FP) The case was negative, but it was incorrectly predicted as positive.

False Negative (FN) The case was positive, but it was incorrectly predicted as negative.

A visualization of this concepts is given in Figure B.5.
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TP FP

FN TN

Figure B.5: Categories of classification. We designate circles to represent relevant data (positive cases) and tri-
angles to represent irrelevant data (negative cases). Consequently, the left or darker side of the box corresponds
to the relevant area. Following the classification by the machine learning model, the selected area, depicted by
a circular region, represents the positive cases determined by the model, also called the decision boundary.
Within this context, the true positive area of the circumference represents the portion that intersects with the
relevant area of the square, while the false positive area refers to the section outside the relevant area. The false
negative area refers to the part of the relevant area that was not included in the circumference of selected cases,
whereas the true negative area refers to the square region that was neither selected nor relevant.

With this information, we are able to construct our first performance visualiza-

tion, the confusion matrix. The confusion matrix, presented in Table B.1, provides a clear

and intuitive representation of the performance of the classification model used. In an ideal

scenario, we anticipate that the data points will predominantly fall along the main diagonal

of the matrix, indicating good performance. Any cases that deviate from the main diagonal

should ideally be minimal or non-existent. This alignment signifies accurate predictions and

a strong correlation between the predicted and actual values.

Table B.1: Confusion matrix

Actual values

Positive (1) Negative (0)

Predicted Positive (1) TP FP

value Negative (0) FN TN

There are several other performance metrics that provide valuable insights, such

as:

Precision Precision answers the question, “How many of the selected items are relevant?”
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It measures the accuracy of positive predictions, indicating the proportion of correctly

identified positive cases among the total selected positives.

Recall Recall answers the question, “How many of the relevant items are selected?” It repre-

sents the fraction of actual positives that were correctly identified by the model, indi-

cating its ability to capture all relevant cases.

Accuracy Accuracy answers the question, “What percentage of predictions were correct?” It

measures the overall fraction of predictions made by the model that are correct, pro-

viding an assessment of the model’s overall performance.

These performance metrics provide different perspectives on the model’s effectiveness in

different aspects of prediction accuracy and can help evaluate and fine-tune the model’s

performance. We can visualize each metric in Figure B.6.

TP FP

TP TP

TP

FN

TP FP

FN TN

TP

TN

Figure B.6: Performance metrics. The formula and the illustrative representation for the precision (in the left),
the recall (in the middle) and the accuracy (in the right).

Another metric is support. Different from the others, it remains consistent across

models. Support refers to the actual number of occurrences of a class within a given dataset.

Imbalanced training data can indicate potential issues with the reported scores of the classi-

fier and may suggest the need for strategies such as stratified sampling or rebalancing tech-

niques. Related to this concept, we have the cross-validation diagnosis. Cross-validation is a

resampling method that involves dividing the data into different subsets to train and test the

model across multiple iterations, as depicted in Figure B.7. The purpose of cross-validation

is to assess the model’s performance in predicting new data that was not used during its esti-

mation. This approach helps identify problems like overfitting or selection bias and provides

insights into how the model will generalize to an independent dataset, such as real-world
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scenarios. It serves as a means to evaluate the model’s ability to perform well on unseen or

unknown data [51].

Test DataTrain Data

80%20%

80%20%

80%20%

80% 20%

80% 20%

Figure B.7: Resampling (k-fold). The resampling of k-fold involves randomly dividing the database into k
subsets, where k is a predefined value. In this case, we illustrate the resampling using 5 folds, ensuring that
each subset contains approximately an equal number of samples.
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