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RESUMO 

A expansão intensiva de terras agrícolas para uma população crescente tem 

impulsionado a degradação do solo em todo o mundo. A modelagem de como os 

agroecossistemas respondem às variações nos atributos do solo, relevo e dinâmica do manejo 

da cultura pode orientar a conservação do solo. Esta pesquisa apresenta uma nova abordagem 

para avaliar a perda de solo por erosão hídrica em áreas cultivadas usando o modelo RUSLE e 

séries temporais de variáveis ambientais, agrícolas e antrópicas de sensoriamento remoto na 

região Sudeste do Estado de São Paulo, Brasil. A disponibilidade das imagens de satélite de 

acesso aberto da Tropical Rainfall Measuring Mission (TRMM) e imagens de satélite Landsat 

forneceram dez anos de dados de precipitação e 35 anos de superfície de solo exposto. A 

superfície nua do solo e o uso agrícola da terra foram extraídos e a erosividade pluviométrica 

multitemporal foi avaliada. Prevemos os atributos dos mapas de solo (textura e matéria 

orgânica) por meio de técnicas inovadoras de espectroscopia de solo para avaliar a erodibilidade 

do solo e a tolerância à perda de solo. A erosividade, erodibilidade e topografia obtidas por 

imagens de observação da Terra foram adquiridas para estimar a erosão do solo em quatro 

cenários de cobertura de palha da cana-de-açúcar (Saccharum spp) (0%, 50%, 75% e 100%). O 

primeiro ano de colheita da cana-de-açúcar e quatro anos de colheita consecutivas de 2013 a 

2017. O resultado a tolerância à perda de solo de 4,3 Mg ha-1 supera a taxa mínima em 40 % da 

região, resultando em uma perda total de solo de ~ 6 milhões Mg ano-1.. Nossos achados 

sugerem que a produção de palha de cana-de-açúcar não tem sido suficiente para proteger a 

perda de solo contra a erosão hídrica. Assim, a remoção da palha é inviável a menos que práticas 

alternativas de conservação sejam adotadas, como preparo mínimo do solo, curvas de nível, 

terraços e outras técnicas que favoreçam o aumento do teor de matéria orgânica e cátions 

floculantes do solo. Esta pesquisa identifica áreas propensa à erosão que imediatamente requer 

um guia de desenvolvimento de terras sustentável para restaurar e reabilitar os serviços 

ecossistêmicos vulneráveis. O método espaço-temporal aplicado nesse trabalho pode identificar 

áreas propensas à degradação do solo e a expansão das terras agrícolas. Essas informações 

podem orientar proprietários e formuladores de políticas a aplicar técnicas de conservação mais 

avançadas de acordo com a variação específica do local. 

 

Palavras-chave: Degradação do solo, RUSLE; sensoriamento remoto; resíduos agrícolas; 

palha; cana-de-açúcar; bioenergia; uso sustentável do solo.  



 

 

 

ABSTRACT 

Intensive cropland expansion for an increasing population has driven soil degradation 

worldwide. Modeling how agroecosystems respond to variations in soil attributes, relief, and 

crop management dynamics can guide soil conservation. This research presents a new approach 

to evaluate soil loss by water erosion in cropland using the RUSLE model and time series 

remotely-sensed environmental, agricultural and anthropic variables in the Southeast region of 

São Paulo State, Brazil. The availability of the open-access satellite images of Tropical Rainfall 

Measuring Mission (TRMM) and Landsat satellite images provided ten years of rainfall data 

and 35 years of exposed soil surface. The bare soil surface and agricultural land use were 

extracted and the multi-temporal rainfall erosivity were assessed. We predict soil maps’ 

attributes (texture and organic matter) through innovative soil spectroscopy techniques to assess 

soil erodibility and soil loss tolerance. Erosivity, erodibility, and topography obtained by the 

Earth observations were adopted to estimate soil erosion in four scenarios of sugarcane 

(Saccharum spp) residue coverage (0%, 50%, 75%, and 100%) in five years of the sugarcane 

cycle, the first year of sugarcane harvest and four subsequently harvesting years from 2013 to 

2017. Soil loss tolerance means 4.3 Mg ha-1 exceeds the minimum rate in 40 % of the region, 

resulting in a total soil loss of ~ 6 million Mg yr-1 under total coverage management (7 Mg ha-

1). Our findings suggest that sugarcane straw production has not been sufficient to protect the 

soil loss against water erosion. Thus, straw removal is unfeasible unless alternative 

conservation practices are adopted, such as minimum soil tillage, contour lines, terracing and 

other techniques that favor increases in organic matter content and soil flocculating cations. 

This research also identifies a spatiotemporal erosion-prone area that requests an immediately 

sustainable land development guide to restore and rehabilitate the vulnerable ecosystem service. 

The high-resolution spatially distribution method provided can identify soil degradation prone 

areas and the cropland expansion frequency. This information may guide farms and the 

policymakers for a better request of conservation practices according to site-specific 

management variation. 

 

Keywords: Soil degradation; RUSLE; remote sensing; crop residue; sugarcane; sugar cane 

straw; bioenergy; sustainable land use. 
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CHAPTER 1. GENERAL INTRODUCTION 

 

Soil is a crucial natural resource vital to the planet’s functioning. It interacts with the 

atmosphere, biosphere, hydrosphere, and lithosphere (BRADY; WEIL, 2008), supporting food, 

fiber, bioenergy production, carbon storage, biodiversity, water filtration, and nutrient 

transformation (BANWART, 2011).  

The world’s soil is facing significant degradation. Some soil types are in danger of 

substantial loss or complete extinction due to various factors, such as agriculture and 

urbanization pressure, leading to soil loss, erosion, salination, and pollution (AMUNDSON; 

GUO; GONG, 2003). Soil losses in some locations worldwide are losing soil 100 times faster 

than the rate of soil formation (BANWART, 2011). Why are we facing this scenario if we have 

so much soil information worldwide? 

The soil diversity has not been assigned. Understanding soil diversity and its ability to 

support soil management is fundamental to management practices regarding fertilizer 

application, the design of field research programs, and other soil-dependent activities (GALLO 

et al., 2018). Therefore, soil conservation practices such as conservation tillage, crop rotation, 

cover cropping, agroforestry, and soil amendments have been developed to mitigate soil 

degradation and promote sustainable land management (FAOUN, 2015).  

Soil conservation is critical to achieving the Sustainable Development Goals (SDGs) 

and the Paris Agreement on climate change. It contributes to food security, climate resilience, 

and environmental sustainability (LORENZ; LAL; EHLERS, 2019).  The SDGs encompass a 

universal call to action by 2030 to eradicate hunger, poverty, safeguard the planet, and foster 

global peace and prosperity, echoing their urgency (IPCC, 2019). 

Scaling large areas in space and time is no doubt challenging, given the time-consuming 

and high-cost data acquisition processes required to capture the multifaced climatic and abiotic 

ecological factors such as soil characteristics and topography, land use, and land management 

practices (CERVI et al., 2020). Moreover, land use change does not occur linearly over time, 

with various factors influencing land rights in different places, such as the political economy 

and legal situations (IPBES, 2018b).  

Multitemporal satellite imagery provides a powerful tool that enables soil information 

collection on a global scale. It is important for estimating soil erosion and identifying areas at 

risk of soil loss. The remote sensing technique is handy in extensive agricultural regions, as it 

enables monitoring large areas of soil spatial variability and identifying surfaces of bare soil 

frequency over time with minimal cost (DEMATTÊ et al., 2020b).  
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A multitude of academic papers have utilized remote sensing to assess land dynamics 

and soil conservation efforts. In their study, Schultz et al. (2015) applied the proposed approach 

to a sub-tropical study site in Southeastern Brazil, using a multi-temporal Landsat 8 image as 

input data. They also incorporated training samples from field visits and very high-resolution 

(VHR) RapidEye photo-interpretation. The results achieve an overall accuracy (OA) of 80% on 

pixel-wise classification of five crop classes including, sugarcane, soybean, cassava,and peanut.  

The significance of soil conservation in water supply systems is exemplified by the 

Cantareira System, catering to São Paulo's Metropolitan Region. Lense et al. (2023) employed 

the RUSLE model, Geographic Information System (GIS), and Remote Sensing to model soil 

loss and sediment production. The findings underscore the impact of climate change-driven 

silting on the system, with approximately 3 million Mg of soil loss annually impacting water 

bodies and critical resource sustainability. Although most of the system maintains tolerable soil 

loss, about a third faces water and soil resource sustainability challenges. Sustainable solutions, 

including conservation practices, are essential to maintain the viability of this vital water 

network. 

In Brazil's Cerrado biome, Vieira et al. (2021) utilized the decision tree method and 

Normalized Difference Vegetation Index (NDVI) derived indices from 1985 to 2018 to predict 

degradation patterns resulting from agricultural expansion. Their findings highlight 

approximately 0.63% of the study region experiencing strong degradation signs, primarily in 

pastures and grasslands, with both low and high soil resilience areas impacted, often influenced 

by fire. The intricate interplay of factors underscores the urgency of conservation and 

restoration strategies. 

Falcão et al. (2020) utilized a comprehensive approach integrating various data sources, 

including DEM and Sentinel-2B imagery, to estimate soil erosion within the Brazilian semiarid 

region. Their results underscore a moderate yet significant mean soil loss, emphasizing the 

interplay of factors such as soil erodibility and land cover in shaping degradation patterns. 

Longato et al. (2019) present a pioneering approach in remote sensing, using data to 

identify marginal lands for wood biomass production. In Italy's Rovigo province, they classified 

marginal lands using the Soil Adjusted Vegetation Index (SAVI), unveiling potential trade-offs 

and synergies between wood crops, food production, and Ecosystem Services (ES). The 

findings highlight the potential for bioenergy generation while enhancing ES, suggesting an 

avenue for enhancing the multifunctionality of agricultural landscapes. 

These studies collectively underscore the indispensability of remote sensing in 

identifying regions susceptible to soil degradation and guiding effective conservation strategies. 
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The research presented in this study draws inspiration from a broader effort to promote 

the use of crop residues for bioenergy production, focusing on sugarcane straw. Straw is a 

valuable biomass feedstock for bioenergy production in Brazil (CARVALHO et al., 2016). As 

a byproduct of sugarcane harvesting, the straw can be abundant in many sugarcane-growing 

regions around the world. Sugarcane is a globally cultivated crop with leading producers in 

Brazil, India and China. With the increasing demand for renewable energy sources, straw has 

emerged as a promising feedstock due to its high lignocellulosic content and versatility in 

converting to different forms of energy, such as electricity, heat, and biofuel (CERVI et al., 

2020). However, soil erosion can be a significant concern in areas where sugarcane straw is 

removed. Straw removal can negatively impact soil health, decreasing crop yields and 

productivity (BORDONAL et al., 2018; CHERUBIN et al., 2018)  

One approach to using straw for soil conservation is using the residues produced as a 

cover crop to reduce erosion, protect the soil surface, promote soil moisture retention, and 

contribute to the soil’s organic matter content (TENELLI et al., 2019c). The sustainable 

management of sugarcane straw for soil conservation and bioenergy production requires 

understanding the optimal amount of sugarcane straw left on the soil.  

In this context, we were motivated to investigate sugarcane straw sustainable 

management for soil conservation, a previous analysis for straw removal using multitemporal 

satellite images and remote sensing data (Figure 1) in the Southeastern region of Brazil. The 

exposed soil was mapped, including texture and organic matter content, and the RUSLE model 

was used to estimate soil loss by water erosion. To evaluate the impacts of straw removal on 

soil erosion, we simulated four different scenarios with varying straw coverage rates of 0%, 

50%, 75%, and 100% over five years (2013 to 2017).  

We have provided spatiotemporal erosion-prone information, highlighting the urgent 

need for a sustainable land development guide. Our findings emphasize the importance of 

balancing the use of sugarcane straw for bioenergy production while mitigating soil erosion to 

preserve soil health and maintain agricultural productivity. 

Southeast Brazil is renowned for its rich biodiversity and significant agricultural 

activities. However, intensive land use and deforestation have led to soil degradation and 

environmental concerns. Leveraging remote sensing, particularly multitemporal satellite 

imagery, offers a viable solution to monitor and mitigate soil degradation while exploring 

bioenergy prospects in the region. 

The thesis was structured into three chapters, starting with an introduction to soil 

concerns of residue removal for the bioenergy industry. The second chapter evaluated spatial 
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and temporal patterns of soil loss in sugarcane yield using an innovative multitemporal remote 

sensing data technique. Finally, the third chapter summarized the study’s findings and presented 

directions for future research.  

 

 

Figure 1. This flowchart provides an overview of the comprehensive approach used to 

evaluate the effectiveness of sugarcane straw management strategies on soil conservation. First, 

multitemporal satellite images are combined with field research data to generate a map of the 

bare soil surface, referred to as the Soil Synthetic Image. Remote sensing techniques are then 

applied to estimate soil attributes from this image, resulting in digital soil attribute maps. These 

digital soil attribute maps are utilized in the Revised Universal Soil Loss Equation (RUSLE) 

model and Soil Tolerance simulations, which assess the impact of different sugarcane straw 

management scenarios on soil loss. The final map generated from these simulations highlights 

areas more susceptible to soil erosion and degradation due to poor management practices. The 

resulting maps can aid in implementing sustainable land management practices to mitigate soil 

erosion and promote soil health.  



15 

 

 

1.2 REFERENCES 

 

AMUNDSON, R.; GUO, Y.; GONG, P. Soil diversity and land use in the United States. 

Ecosystems, v. 6, n. 5, p. 470–482, ago. 2003.  

BANWART, S. Save our soil. Nature, v. 474, p. 151–152, 2011.  

BORDONAL, R. DE O. et al. Sustainability of sugarcane production in Brazil. A 

review. Agronomy for Sustainable Development, v. 38, n. 2, p. 13, 27 abr. 2018.  

BRADY, N. C.; WEIL, R. R. The Nature and Properties of Soils. 14. ed. New Jersey: 

Pearson, 2008.  

CARVALHO, J. L. N. et al. Agronomic and environmental implications of sugarcane 

straw removal : a major review. Bioenergy Research, p. 1–16, 2016.  

CERVI, W. R. et al. Mapping the environmental and techno-economic potential of 

biojet fuel production from biomass residues in Brazil. Biofuels, Bioproducts and Biorefining, 

p. 1–23, 2020.  

CHERUBIN, M. R. et al. Crop residue harvest for bioenergy production and its 

implications on soil functioning and plant growth: A review. Scientia Agricola, v. 75, n. 3, p. 

255–272, maio 2018.  

Falcão, C. J. L. M., Duarte, S. M. de A., & da Silva Veloso, A. (2020). Estimating 

potential soil sheet Erosion in a Brazilian semiarid county using USLE, GIS, and remote sensing 

data. Environmental Monitoring and Assessment, 192(1). https://doi.org/10.1007/s10661-019-

7955-5. 

FAOUN. Status of the World’s Soil Resources. Food and Agriculture Organization of 

the United Nations, 2015.  

GALLO, B. et al. Multi-Temporal Satellite Images on Topsoil Attribute Quantification 

and the Relationship with Soil Classes and Geology. Remote Sensing, v. 10, n. 10, p. 1571, 1 

out. 2018.  

IPCC. Climate Change and Land - IPCC Special Report on Climate 21 Change, 

Desertification, Land Degradation, Sustainable Land Management, Food Security, and 

Greenhouse gas fluxes in Terrestrial Ecosystems. [s.l: s.n.]. 

 Lense, G. H. E., Lämmle, L., Ayer, J. E. B., Lama, G. F. C., Rubira, F. G., & Mincato, 

R. L. (2023). Modeling of Soil Loss by Water Erosion and Its Impacts on the Cantareira System, 

Brazil. Water (Switzerland), 15(8). https://doi.org/10.3390/w15081490. 

Longato, D., Gaglio, M., Boschetti, M., & Gissi, E. (2019). Bioenergy and ecosystem 

services trade-offs and synergies in marginal agricultural lands: A remote-sensing-based 

https://doi.org/10.3390/w15081490


16 

 

 

assessment method. Journal of Cleaner Production, 237. 

https://doi.org/10.1016/j.jclepro.2019.117672. 

LORENZ, K.; LAL, R.; EHLERS, K. Soil organic carbon stock as an indicator for 

monitoring land and soil degradation in relation to United Nations’ Sustainable Development 

Goals. Land Degradation & Development, v. 30, n. 7, p. 824–838, 30 abr. 2019.  

Schultz, B., Immitzer, M., Formaggio, A. R., Sanches, I. D. A., Luiz, A. J. B., & 

Atzberger, C. (2015). Self-guided segmentation and classification of multi-temporal Landsat 8 

images for crop type mapping in Southeastern Brazil. Remote Sensing, 7(11), 14482–14508. 

https://doi.org/10.3390/rs71114482. 

TENELLI, S. et al. Can reduced tillage sustain sugarcane yield and soil carbon if straw 

is removed? BioEnergy Research, v. 12, n. 4, p. 764–777, 26 dez. 2019.  

Vieira, R. M. da S. P., Tomasella, J., Barbosa, A. A., Polizel, S. P., Ometto, J. P. H. B., 

Santos, F. C., Ferreira, Y. da C., & Toledo, P. M. de. (2021). Land degradation mapping in the 

MATOPIBA region (Brazil) using remote sensing data and decision-tree analysis. Science of 

the Total Environment, 782. https://doi.org/10.1016/j.scitotenv.2021.146900. 

 



17 

 

 

CHAPTER 2 SOIL EROSION SATELLITE-BASED ESTIMATION IN CROPLAND 
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Abstract: Intensive cropland expansion for an increasing population has driven soil 

degradation worldwide. Modeling how agroecosystems respond to variations in soil attributes, 

relief, and crop management dynamics can guide soil conservation. This research presents a 

new approach to evaluate soil loss by water erosion in cropland using the RUSLE model and 

time series remotely sensed environmental, agricultural and anthropic variables in the Southeast 

region of São Paulo State, Brazil. The availability of the open-access satellite images of 
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Tropical Rainfall Measuring Mission (TRMM) and Landsat satellite images provided ten years 

of rainfall data and 35 years of exposed soil surface. The bare soil surface and agricultural land 

use were extracted and the multi-temporal rainfall erosivity were assessed. We predict soil 

maps’ attributes (texture and organic matter) through innovative soil spectroscopy techniques 

to assess soil erodibility and soil loss tolerance. Erosivity, erodibility, and topography obtained 

by the Earth observations were adopted to estimate soil erosion in four scenarios of sugarcane 

(Saccharum spp) residue coverage (0%, 50%, 75%, and 100%) in five years of the sugarcane 

cycle, the first year of sugarcane harvest and four subsequently harvesting years from 2013 to 

2017. Soil loss tolerance means 4.3 Mg ha-1 exceeds the minimum rate in 40 % of the region 

has the average of 4.3 Mg ha-1 soil loss, resulting in a total soil loss of ~ 6 million Mg yr-1 

under total coverage management (7 Mg ha-1). Our findings suggest that sugarcane straw 

production has not been sufficient to protect the soil loss against water erosion. Thus, straw 

removal is unfeasible unless alternative conservation practices are adopted, such as minimum 

soil tillage, contour lines, terracing and other techniques that favor increases in organic matter 

content and soil flocculating cations. This research also identifies a spatiotemporal erosion-

prone area that requests an immediately sustainable land development guide to restore and 

rehabilitate the vulnerable ecosystem service. The high-resolution spatially distribution method 

provided can identify soil degradation prone areas and the cropland expansion frequency. This 

information may guide farms and the policymakers for a better request of conservation practices 

according to site-specific management variation. 

 

Keywords: Soil Degradation, RUSLE, Remote Sensing, Crop Residue, Bioenergy, Sustainable 

Land Use 

 

2.1 INTRODUCTION 

One-third of global land is occupied by livestock (21%) and agriculture (12%) 

(OLSSON et al., 2019). The increasing demand of a growing population projected to reach 9.6 

billion by 2050 from the current 7.7 billion (PANAGOS; BORRELLI; ROBINSON, 2020) has 

put pressure on the Earth’s land for food, natural resources, and climate change and created new 

challenges between humanity and the world’s fertile soil resources. 

Soil erosion rates caused by the immense expansion of cropland areas have exceeded 

the rate at which soil is formed by one to two orders of magnitude (MONTGOMERY, 2012). 

The process of soil erosion usually involves detachment, breakdown, transport, redistribution 

and deposition of sediments (LAL, 2003). Soil erosion globally has resulted in around 25 to 40 
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billion tons of increased sediment every year (PANAGOS; BORRELLI; ROBINSON, 2020). 

Land-use change to cropland is responsible for ~80% of the erosion increase. The highest soil 

erosion occurs in the least developed countries due to accelerated soil erosion driven by land-

use change and poor land management. On the other hand, these countries have the highest 

potential for soil erosion reduction by conservation agriculture adoption (BORRELLI et al., 

2017). 

Sustainable land management (SLM) is treated as an effective land degradation 

reduction method to achieve the Sustainable Development Goals (SDGs) regarding food, 

health, water, climate, and land management (LORENZ; LAL; EHLERS, 2019a). SDGs are a 

global call to end hunger and poverty, protect the planet, and ensure peace and poverty for all 

by 2030. Despite the SLM’s importance for land and soil degradation, identifying large soil 

management scaling areas in space and time are challenging due to time-consuming and high 

cost for data acquisition of the complex climatic, abiotic ecological factors (i.e., soil 

characteristics and topography), type of land use and land management practices (i.e., tillage 

and crop rotation). Land-use change does not occur linearly over time since land rights vary in 

places and are dependent on the political-economic and legal situation (IPBES, 2018).  

The Universal Soil Loss Equation (USLE) (WISCHMEIER; SMITH, 1978) and its 

revised version (RUSLE) (RENARD et al., 1997) are the most used empirical models to 

estimate soil erosion driven by water globally. It aims to guide conservation planning and 

supports the planners to evaluate and predict soil erosion rate for each of several alternative 

combinations of cropping systems and management techniques on any site within the specified 

limits. The RUSLE equation integrates erosivity, erodibility, topography, cover management, 

and support practice factors. Further, it considers soil loss tolerance, which ponders the 

productivity loss due to erosion with the rate of soil formation from parent material, the role of 

topsoil formation, loss of nutrients and the cost to replace them (RENARD et al., 1997). 

Remote Sensing (RS) linked with Geographic Information System (GIS) combined in 

RUSLE provide data to compute soil erosion with better spatial coverage and accuracy with 

reasonable costs (OSTOVARI et al., 2017). The soil spectroscopy advent overcomes the lack 

of reliable soil data that can be applied to the least developed economies. This method along 

with the Earth observation based data can be used to assess soil erodibility factor based on the 

environmental soil service (organic matter and mineral composition) with the spectral 

reflectance data (OSTOVARI et al., 2017; TENG et al., 2016).  

Southeast Brazil is the core of sugarcane production with about 5 million hectares in the 

2019/2020 season (62% of the national production) (WALTER et al., 2016). It was estimated 



20 

 

 

that 600 million Mg yr-1 of annual rainfall soil erosion loss occurs annually in this region (DE 

OR MEDEIROS et al., 2016). Sugarcane crop in southern Brazil requires a large amount of 

land to produce biofuels, sugar and electricity. In general, sugarcane production is based on 

conventional tillage using green mechanized harvesting every year, with a replanting period 

every five years. The transition from a burned to green harvest system resulted in the 

maintenance of a large amount of sugarcane straw on the soil surface (CARVALHO et al., 

2016b). The thick layer of straw (ranging from 10 to 20 Mg tons ha-1) covering the soil after 

harvesting, resulted in several benefits, such as nutrient cycling (CHERUBIN et al., 2019), 

carbon storage (TENELLI et al., 2019b), better soil physical and biological conditions 

(CASTIONI et al., 2019; MENANDRO et al., 2019) and control against erosion processes 

(MARTINS-FILHO et al., 2009). However, although straw covers results in several ecosystem 

benefits, Brazil’s more recent sugarcane sector has shown interest in removing part of this 

crop´s residue for bioenergy production, which would lead to increased soil degradation in 

sugarcane fields (FRANCO et al., 2013). 

There is a tenuous line between soil degradation and sustainable land management in 

cropland. In sugarcane fields, straw is an essential source of soil conservation because it benefits 

soil functioning, e.g., erosion protection cover, soil temperature amplitude reduction, biological 

activity increasing (CARVALHO et al., 2013). Studies have demonstrated that maintaining 7 

to 10 Mg tons ha-1 of straw is enough to cover 100% of the area prevailing the crop’s agronomic 

benefits (JONES et al., 2017; SILVA et al., 2019). It suggested that if straw yield exceeds this 

amount, it may be used as feedstock for Brazil’s bioenergy demand (bioelectricity and cellulosic 

ethanol).  

This paper presents a new approach to evaluate spatial and temporal patterns of soil loss 

and the impacts of straw removal in the Southeastern part of Brazil by integrating environmental 

variables with the cropland management dataset, field data, RS and GIS data in the RUSLE 

model. A modern multi-temporal satellite-based estimation method was conducted to assess 

soil proprieties, spatial patterns of agricultural land use over the last three decades, and rainfall 

data in the last decade. Four soil loss scenarios have been assessed by simulation with four 

different straw coverage rates of about 0%, 50%, 75% and 100%, respectively, in five years of 

the sugarcane cycle (2013-2017) to enlighten the impacts of straw removal changes on soil 

erosion. 

The main novelties of this research are related to soil erodibility parameters of RUSLE 

and soil loss tolerance obtained by soil attributes maps (texture and organic matter) through 

bare soil spectroscopy technique (Synthetic Soil Image). This method combines and use 
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Revised Universal Soil Loss Equation (RUSLE) model associated with a time series remotely-

sensed data estimate soil loss by water erosion in cropland. 

 

2.2 MATERIAL AND METHODS 

 

2.2.1 Site description and sugarcane cycle 

We evaluate soil erosion of 500 km2 of agricultural sugarcane land-use area, located in 

the Southeastern part of Brazil, west of São Paulo State (Fig. 2.1a). The erosion processes in 

this region may deliver sediments to the nearby rivers. Therefore, we expanded soil erosion 

estimations into 13 sub-basins (~1,600 km2) based on the streamflow in order to have a multi-

perspective overview of the possible off-site effects of soil erosion on the hydrological 

ecosystem (Fig. 2.2a). 

The region is classified as Tropical with dry winter (May-September). The average 

annual rainfall is 1391 mm yr−1, and the average annual temperature is 24°C (BORDONAL et 

al., 2018). The landscape is gently undulating and rolling uplands, with slopes ranging between 

0 and 28%. The predominance of sandy-mudstone parental material (PERROTTA et al., 2005) 

characterizes the soils’ sandy/loam texture dominance. Sheet and interill are preponderating 

types of erosion in the study site (Fig 2.1b), but gully erosion sites are common, especially in 

ascending terrain (Fig 2.1c). 

The sugarcane cycle comprises five years: the plant cane harvest and four subsequent 

harvesting years (ratoons) (Fig 2.2). Conventional tillage operations are the most common 

practices during the plant cane stage and the replanting period, which lies in glyphosate 

application, subsoiling, plowing, harrowing with physical, chemical, and or biological 

corrections. Conventional tillage is the most critical period due to the expose soil period until 

the crop canopy closure (three to six months later) causing erosion. In areas cultivated with 

sugarcane, the main attributes of the terrain that contribute to erosion are extreme weather 

events such as high intensity and volume of rainfall, soil exposure associated with sloping 

reliefs. So, the harvest period occurs every year or 18 months, the maintenance of the straw in 

the field reduces the risk of soil erosion at this step. 
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Figure 2.1. a) Study Location; b) Sheet and interrill erosion process and c) gully erosion 

development during the rainy season in the beginning of the plant cane under conventional 

tillage. 

 

2.2.2 Soil sampling 

Sixty-Seven topsoil (Epipedon) samples were collected randomly, 20% of the soil 

samples validated the soil erodibility maps generated from Remote Sensing. The soil samples 

brought to the laboratory oven-dried for 48h at 50 °C, grounded and sieved (2 mm mesh) to 

analyze soil organic carbon and particle size properties according to the (EMBRAPA, 2017). 

The main soil classes found in the study site, according to World Reference Base for Soil 

Resources (WRB) (IUSS WORKING GROUP WRB, 2015) were: Gleysols, Ferralsols, 

Lixisols, Leptosols and Arenosols. 

 

c)

a)

b)
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2.2.3 Parametrization of soil loss by water erosion 

Multi-temporal satellite image and field observations assessment provide soil loss 

estimation. The figure 2.2 demonstrates the general flowchart of the methodology to obtain soil 

loss. 

 

Figure 2.2 Flowchart of the methodology to obtain soil loss. The multi-temporal 

satellite image and field observations data used to estimated and validated rainfall erosivity and 

soil erodibility, a digital elevation model used to derive the slope. The Synthetic Soil Image 

(SYSI) technique based on remote sensing and soil spectroscopy derived soil attributes maps 

to calculate soil erodibility, soil loss tolerance and detect the cropland use spatial patterns. The 

environmental variables (rainfall, erodibility and topography) associate with the cropland 
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patterns and the cropland management dataset (five years of the sugarcane cycle) under 

different amounts of straw (0%, 50%, 75%, and 100%) estimate soil loss. Soil loss higher than 

the tolerance indicate high land degradation that contribute to increase climate change crises, 

while lower indicate restoring and rehabilitation of the ecosystem. 

 

The Revised Universal Soil Loss Equation (RUSLE) (Eq. 1) MENDELEY CITATION 

PLACEHOLDER 27 implemented in Geographic Information System (GIS) was used to assess 

the soil erosion rate (Table 2.1 and Fig 2.1). Soil losses by water erosion refer to the amount of 

sediment that reaches the end of a specified area (cell) on a hillslope (BORRELLI et al., 2017). 

Using a GIS raster scheme means that each cell is independent of the others. Thus, soil erosion 

is not routed downslope across each cell from hill(BENAVIDEZ et al., 2018)slopes to the sink 

area or the riverine systems. The RUSLE model does not capture gullying and other geomorphic 

processes (i.e., mudflows, landslides and tillage erosion) (BORRELLI et al., 2018). However, 

it indicates the soil loss rate at which gully erosion might be expected to begin (RENARD et 

al., 1997). 

 

Soil Loss = R*K*LS*C*P (Eq. 1) 

 

The detachment-limited model outputs the mass of soil lost per unit area and time (Mg 

ha−1 yr−1). Sheet, inter rill and rill erosion processes are given by the multiplication of six 

parameters: rainfall erosivity (R-Factor in MJ mm−1 h−1 y−1), soil erodibility (K-Factor in tons. 

h. MJ−1 mm−1), slope length (L-Factor in meters), slope steepness (S-Factor in percentage), 

cropping system (C-Factor), and erosion control practice (P-factor). C and P factors are 

dimensionless (Table 1). The spatial resolutions range from 30 m to 25 km, the parameters were 

resampled to 30 x 30 m cell size to model soil loss as the final output. 

Soil loss tolerance threshold (T-value) indicates the maximum rate of soil erosion that 

can occur and still permits crop productivity to be sustained economically (RENARD et al., 

1997; WISCHMEIER; SMITH, 1978). T value according to (“U.S. Department of Agriculture, 

Agricultural Research Service and Soil Conservation Service”, 1956) is estimated by: (1) soil 

thickness; (2) soil formation rate; (3) guidelines of the USDA-NRCS; and (4) productivity 

index. In addition, T value for a specific soil is a function of: the rate of soil formation from 

parent material; the rate of topsoil formation from subsoil; reduction of crop yield by erosion; 

soil depth; changes in soil attributes favorable for plant growth; loss of plant nutrients by 

erosion; the likelihood of rill and gully formation; sediment deposition problems within a field; 
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sediment delivery from the erosion site and; the availability of feasibility, economic, culturally 

and socially in addition to soil conservation practices (“U.S. Department of Agriculture, 

Agricultural Research Service and Soil Conservation Service”, 1956). Cropping management 

practices with the predicted soil loss rate less than the T-value rate may be projected to deliver 

less soil degradation (Fig 2.2). Thus, sustainable land management practices can reduce the risk 

of land degradation and mitigate the climate change impacts by promoting restoration and 

rehabilitation of the ecosystems, for example, by improving their carbon stock (OLSSON et al., 

2019). 

 
Table 2.1.Synthesis of the RUSLE spatial dataset required to map soil loss by water erosion  

Factor 
Environmental 

dataset  
Tools/Method Variability Spatial dataset 

Resolution/ 

Map Scale 

Rainfall 

(R-Factor) 

Average 

Monthly/Annual 

Rainfall  

Google Engine, 

Literature/MFI1/EI30
2 

Spatiotemporal  

(10 years) 
TRMM3 25 km 

Soil 

(K-Factor) 

Texture, Organic 

Matter, Bulk 

Density 

Google Engine/SYSI4 

and R program/ DSM5 

Spatiotemporal  

(35 years) 
Landsat 30 m 

Permeability and 

Structure Code 
Legacy Soil Maps Shape 

Region Map 1:250.000 

Local Soil Map 1:50.000 

Topography 

(LS-Factor) 

Slope, Flow 

direction, Flow 

accumulation 

ArcGIS Spatial SRTM6 30 m 

Management 

(P-Factor) 

 

(C-Factor) 

Slope and Contour 

Farming 
ArcGIS Spatial SRTM6 30 m 

Land use Google Engine/SYSI4 
spatiotemporal 

(35years) 
Landsat 30 m 

Canopy-cover, 

Surface-cover, 

Surface-roughness, 

Soil moisture 

Excel/ Sugarcane 

Management 

Combinations 7 

Shape 

(5 years) 
Cropland Plots 1:50.000 

1MFI: Modified Fournier Index, 2EI30: Erosivity Index, 3TRMM: Tropical Rainfall Measuring Mission,  4SYSI: Soil 

Synthetic Image,  5DSM: Digital Soil Map, 6SRTM: Shuttle Radar Topographic Mission, , 7Local, Planting and Tillage Date, 

Tillage System, Crop Rotation, Straw Management, Sugarcane Cycle, and Management Levels. 

 

2.2.3.1 Rainfall Erosivity Factor (R) 

Rainfall erosivity represents the erosive powers of rainfall energy (intensity and 

duration), a total of rain (volume) and frequency over extended time events. We calculated R-

factor using ten years (2008-2017) data of the monthly 3B42 product from the Tropical Rainfall 
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Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA). Several studies 

worldwide have estimated erosivity at fair resolution using the TRMM (TENG et al., 2016; 

VRIELING; HOEDJES; VAN DER VELDE, 2014; VRIELING; STERK; DE JONG, 2010). 

This product provides global coverage of precipitation (mm hr-1), with a 3-hour temporal 

resolution and a 0.25-degree spatial resolution (HUFFMAN et al., 2007).  

We performed the Modified Fournier Index (MFI) (Eq. 2) using TRMM products to 

estimate erosivity factor according to the Erosivity Index (EI30) equations recommended by 

(MELLO et al., 2013; OLIVEIRA; WENDLAND; NEARING, 2013). The EI30 is defined as 

the product of the maximum rain intensity during a 30-minutes period. There are three main 

stations relating EI30 to MFI that fitted the study site location (Table 2). Our calculated R-Factor 

is an average of the three erosivity equations. We used data from seven gauges provided by the 

Water and Electric Energy Department of São Paulo State (DAEE-SP) located towards the 

study site to validate the R-Factor obtained from TRMM. 

 

MFI =
1

P
∑ ∗ Pi212

i=1   (Eq. 2) 

 

P is the average annual rainfall (mm), and Pi is the average rainfall (mm) in the month 

i. 

 

Table 2.2 Erosivity equations studies around the study site. 

Latitude Longitude City/ State Equation Authors 

22° 37′ 0″S 52° 10′ 0″W 
Teod. 

Sampaio/SP 
EI30=106.82+46.96 (MFI) (COLODRO et al., 2002)  

22° 31′ 12″S 47° 2′ 40″W Campinas/SP EI30=68.73 (MFI) 0.841 
(LOMBARDI NETO; 

MOLDENHAUER, 1992)  

23° 13′ 0″S 49° 14′ 0″W Piraju/SP EI30=72.55 (MFI) 0.8488 
(ROQUE; CARVALHO; 

PRADO, 2001)  

EI30: Erosivity Index and MFI: Modified Fournier Index  

 

2.2.3.2 Soil Erodibility Factor (K) 

The soil erodibility factor (BENAVIDEZ et al., 2018) represents soil susceptibility to 

erosion. Soil particle size distribution (clay, fine sand, and silt contents), soil organic matter 

(SOM) content, soil structure, and profile permeability are the attributes required to estimate 

K-Factor [27] (Eq. 9) (WISCHMEIER; SMITH, 1978). 
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K = [2.1*10 ^ (-4) * M ^ 1.14 (12-OM) + 3.25 (S-2) + 2.5 (Q-3) / 100] * 0.1317 

 (Eq. 3) 

 

M = (% silt + % fine sand) * (100 - % clay). OM is soil organic matter content (%). S is 

soil structure code (1-4). Q is permeability code (1-6). 

 

Here, the topsoil attributes were spatially modelled using an improved methodology 

with satellite Bare Soil Composite Image (GALLO et al., 2018) based on a Geospatial Soil 

Sensing System data-mining algorithm. This algorithm flagged bare surfaces from the 

collection of historical images and aggregated the spatially bare soil fragments into a synthetic 

soil image (SYSI) (DEMATTÊ et al., 2018, 2020; SAFANELLI et al., 2020). In this study, we 

used multi-temporal Landsat satellite images to extract bare soil fragments from 1984 to 2019 

and aggregate them, in order to obtain all periods of exposed soil for later creation of a mosaic, 

which allows viewing the entire area of interest with exposed soil surface. Landsat imagery has 

the wavelengths (Bands) of Visible (VIS – Blue/Green/Red), Near Infrared (NIR) and 

Shortwave Infrared (SWIR1 and SWIR 2) with 30 m of spatial resolution and 16 days of 

temporal resolution.  

MID-Infrared and NDVI indexes were used to remove vegetation and crop residue in 

each image We used quality bands to mask clouds and shadows. MID-Infrared represents the 

normalized difference index calculated from Landsat bands SWIR1 and SWIR2, and NDVI 

defines the normalized difference vegetation index calculated from Landsat bands NIR and 

Red. MID-Infrared and NDVI threshold combinations of -0.25 to 0.25 and 0.013 to 0.10 were 

performed. The indexes threshold was determined based on studies related to soil reflectance 

(DEMATTÊ et al., 2020; SAFANELLI et al., 2020) and field observation. We used quality 

bands to mask clouds and shadows or pixels with inconsistent values and we choose a filter to 

use Landsat images with no clouds. The images were aggregated into a single image by the 

median spectral reflectance value achieving the SYSI of the agricultural spatial patterns from a 

time interval of 1984 to 2019, with a native spatial (30m) Landsat product. We used Google 

Earth engine platform to acquire the SYSI algorithm.  

We performed a partial least square regression (PLSR) method to predict the digital soil 

mapping attributes by inputting the multi-temporal spectra data from the SYSI and the field 

measured soil samples (80 % employed for calibration and the remaining 20 % for validation) 
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at the R program. The models were evaluated based on the coefficient of determination (R2), 

and the root means square error (RMSE). 

 

2.2.3.3 Slope Length and Steepness Factor (LS) 

LS-Factor (BENAVIDEZ et al., 2018) describes the effect of the topography on soil 

erosion. The L-Factor calculates the slope length, and the S-Factor measures the slope 

steepness. L-Factor represents the distance from the overland flow point of origin to the point 

where the slope gradient decreases, and water runoff streamed into a channel and deposition 

starts (PANAGOS; BORRELLI; MEUSBURGER, 2015; WISCHMEIER; SMITH, 1978).  

(FOSTER; MEYER; ONSTAD, 1977) identify that S-Factor is not uniform for a whole 

area; hence, they proposed sub-divide the slope into several segments. Later (DESMET; 

GOVERS, 1996) extended this approach to a two-dimensional terrain using the unit-

contributing area model (Eq. 4 to 6). (RENARD et al., 1997) incorporated this approach into 

RUSLE with slope gradient concepts of (MCCOOL et al., 1987), and found that soil loss arises 

faster in slopes that were steeper than 9% (Eq. 7 and 8). 

The LS-Factor was derived from a Digital Elevation Model (DEM) product obtained 

from the Topodata [44], which filled the original Shuttle Radar Topographic Mission (SRTM) 

3 arc-second (90 m) data into an interpolated DEM of 1 arc-second (30 m). We calculated the 

slope length and slope steepness factors at the ArcGIS platform according to (DESMET; 

GOVERS, 1996; RENARD et al., 1997). 

 

Li,j =
(Ai,j−i,n+D2)m+1−(Ai,j−i,n)m+1

(Dm+2) ∗(xi,j
m) ∗ (22,13)m

   (Eq. 4) 

 

𝑚 =
𝛽

𝛽+1
  (Eq.5) 

 

𝛽 =
sin θ

0.0896

[0.56+3∗(sin θ)0.8   (Eq. 6) 

 

S =  10.8 ∗  sin θ +  0.03, where slope gradient < 0.09 ou 9%  (Eq.7) 

 

S =  16.8 ∗  sin θ −  0.5, where slope gradient ≥ 0.09  (Eq. 8) 
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Li,j is the slope length factor for the grid cell with coordinates(i, j). Ai,j is an upslope 

contributing area for the grid cell with coordinates (i, j) (m2). D is the side length of the grid 

cell (m). xi,j is a contour length coefficient for the grid cell with coordinates (i, j). m is related 

to the ratio β of the rill to interill erosion. θ is a gradient of slope in degrees. S is slope steepness. 

 

2.2.3.4 Control Practice Factor (P) 

P-Factor measures the ratio of soil loss expected for a specific support conservation 

practice to the corresponding loss with surface upslope and downslope tillage. The support 

practices for erosion control usually comprehend contouring, strip-cropping, terracing, and 

subsurface drainage. These practices influence drainage patterns, runoff velocity, and the 

direction of water volume concentration (RENARD et al., 1997).  

The cropland of the study site mainly applies contour farming in terraces according to 

the slope gradient. Contour means that farmers implement field practices along contours 

perpendicular to the normal water flow direction. Consequently, it reduces runoff velocity by 

increasing the surface roughness providing more time for infiltration (STEVENS et al., 2009), 

protecting the fertile layer, improving crop yield, increasing income and contributing to the 

environment. The slope (%) (Table 3) obtained by the DEM (30 m) derived P-Factor for the 

arable cropland. 

 

Table 2.3. P-Factor for contour support practices for different slope gradients 

(WISCHMEIER; SMITH, 1978). 

Solpe 

(%) 

P-Factor for 

contouring 

1-2 0.6 

3-8 0.5 

9-12 0.6 

13-16 0.7 

16-20 0.8 

21-25 0.9 

>  25 0.95 

 

2.2.3.5 Cover Management Factor (C) 

C-Factor comprises the effect of cropping and management practices on soil loss rates; 

this factor indicates how the management activities will affect the average annual soil and how 
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the soil erosion potential will be disseminated in time during a conservation plan. C-Factor 

value for a particular land use type is the weighted average of Soil Loss Ratios (SRLs) that 

ranges from 0 to 1 (RENARD et al., 1997); as it increases to 1, land use degradation stresses 

high soil threatens. C-Factor may cause a considerable influence on the erosion calculation, 

which is defined as the most significant among the RUSLE factors (TANYAŞ; KOLAT; 

SÜZEN, 2015).  

We used a tool developed explicitly for sugarcane crops based on São Paulo State 

(ROCHA, 2017), and we calibrated it with the sugarcane stalks yield data from the agroindustry 

plots from 2013 to 2017. This tool enables many combinations of sugarcane system 

management as input data to obtain SLR subfactors (Eq.9) and to model the average annual C-

Factor (Eq. 10). It requires geographic location, date of tillage (month) and tillage growing 

(winter, year or 18 months), tillage type (conventional, minimum or no-tillage), covers crop 

(bare soil, bare fallow, and green crop), crop residue management (0% to 100% of crop residues 

coverage), number of sugarcane cycle, and management level (low, medium and high). In this 

study, we assumed four cover management scenarios to assign soil loss based on the yield 

average of the five sugarcane cycles and the ratio of 120 kg of dry matter straw per tons of fresh 

sugarcane stalk (MENANDRO et al., 2017). The scenarios are classified in: i) no straw 

coverage rate (0 Mg -1), ii) 50% coverage (3.5 Mg -1), iii) 75% coverage (5.25 Mg -1), and iv) 

100 % coverage (7 Mg -1).  

SRL is calculated for a given condition using five subfactors and has to be calculated 

for different periods, as (RENARD et al., 1997) recommended. Each subfactor contains 

cropping and management variables that affect soil erosion. PLU (Prior-Land Use) expresses 

the influence on soil erosion of subsurface residual effects from previous crops and the effect 

of previous crop management practices on soil consolidation. CC (Canopy Cover) indicates the 

effectiveness of vegetative canopy in reducing the energy of the rainfall striking the soil surface. 

SC (Surface Cover) affects erosion by reducing the transport capacity of runoff water by 

causing deposition in ponded areas and decreasing the surface area susceptible to raindrop 

impact. SR (Surface-Roughness) is a function of the surface’s random roughness. SM (Soil-

Moisture) influences infiltration, runoff, and soil erosion (RENARD et al., 1997). Here, soil 

moisture reflects soil field capacity, value 1, due to their intensive condition under the erosive 

process. 

 

SLR = PLU * CC * SC * SR * SM  (Eq. 9) 
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𝐹𝑎𝑡𝑜𝑟 𝐶 = ∑
𝑆𝐿𝑅𝑖𝐸𝐼𝑖

𝐸𝐼𝑎𝑛𝑢𝑎𝑙

12
𝑖=1   (Eq. 10) 

 

𝐸𝐼𝑖 is the rainfall erosivity for the month i (MJ mm−1 h−1 y−1), and  𝐸𝐼𝑎𝑛𝑢𝑎𝑙 is the annual 

rainfall erosivity (MJ mm−1 h−1 yr−1). 

 

2.2.4 Soil loss tolerance 

Various methods to assess soil loss tolerance have been recommended by soil scientists 

worldwide; each approach has its assumptions, advantages, and limitations (YANG et al., 

2022). Land cover and carbon stocks are the principal indicators to estimate land degradation 

because they can change rapidly (CHAPPELL et al., 2019). Here, the spatial modeling of soil 

loss tolerance was estimated based on [53] (Eq. 13), which considers the soil bulk density 

method obtained in [54] (Eq. 11 and 12) that depends on SOM and soil drained capacity. The 

soil class map of the agroindustry determined soil drained capacity. The SOM map was 

estimated by the satellite bare soil surface methodology (Item 2.3.2). Soil depth of 0 - 30m, and 

the temporal constant founded on the concept that forming 1,000 mm of soil is required 1,000 

years (SMITH; STAMEY, 1965) were incorporated in the calculations to obtain T. 

 

𝐵𝐷 = 1.52 − 0.06 ∗ S𝑂𝑀 (𝑤𝑒𝑙𝑙 𝑑𝑟𝑎𝑖𝑛𝑒𝑑)   (Eq. 11) 

 

𝐵𝐷 = 1.53 − 0.5 ∗ S𝑂𝑀 (imperfectly drained )   (Eq. 12) 

 

Where BD is soil bulk density (g cm-3), SOM is organic matter (%) 

 

𝑇 = (
H×BD

1,000
) ∗ 10,000    (Eq. 13) 

 

BD is soil bulk density (kg m-3). SOM is soil organic matter (g kg−1). T is soil loss 

tolerance (Mg ha−1 yr−1), H is soil depth (m), 1000 is the temporal constant founded on the 

concept that forming 1000 mm of soil required 1000 years [53];, and 10,000 factor was applied 

to transform the data from Mg m-2 to Mg ha-1. 

 

2.3. RESULTS 
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2.3.1 Soil degradation spatial analyses estimated by RUSLE 

2.3.1.1 Rainfall erosivity factor 

The spatial data average rainfall erosivity calculated represents 6,078.00 MJ mm−1 ha−1 

yr−1 (Fig. 2.3), which according to (FOSTER et al., 1981; MELLO et al., 2013) indicates strong 

erosivity, 300% higher than the global average (BORRELLI et al., 2017). 

 

 

Figure 2.3. The sub-basins’ geographic location with the distribution of daily rain data 

gauges in Sao Paulo State, Brazil and the monthly rain data gauges on the rainfall erosivity (R-

Factor) map. 

 

We calculated the R-Factor using TRMM data between 2008 and 2017 and the erosivity 

equations obtained by the daily rain data as a function of the Modified Fournier Index (MFI) 

(Fig. 2.3). We compared our estimated R-Factor to that calculated from the monthly rain data 

gauges covering the sub-basins. In the southeastern part of Brazil, the rainy period marks warm 

temperatures start in September and ends in May (Fig. 2.4a). The relation has an R2 = 0.90, 

demonstrating a good correspondence between the values with a close 1:1 relationship (Fig 2.4 

b). 

 

(MJ mm−1 h−1 y−1)
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Figure 2.4. a) Annual rainfall distribution from 2008 to 2017 from a station located in 

the study site, b) R-Factor obtained from the Tropical Rainfall Measuring Mission (TRMM) 

compared to that obtained from the monthly rain gauges data. 

 

2.3.1.2 Soil erodibility factor obtained from the digital soil attributes mapping 

The summary statistics of soil property in Table 4 show soil attributes physical and 

organic matter variability at 0 to 0.30 m depth (Table 2.4). The low amount of clay and SOM 

content and high sand content ranging from 73% to 92 % demonstrate soil erosion-prone 

features and low natural fertility in the soil. 

 

Table 2.4 – Soil attributes values obtained by laboratory analyses. 

 Minimum Maximum Mean SD1 CV2 

Sand (%) 73.00 92.10 83.27 4.11 16.87 

Coarse Sand (%) 42.00 72.70 58.65 7.48 56.01 

Fine Sand (%) 13.10 40.50 24.54 5.33 28.38 

Silt (%) 1.20 3.80 2.07 0.56 0.32 

Clay (%) 6.70 23.20 14.74 3.64 13.25 

SOM3 (%) 0.70 2.10 1.19 0.19 0.04 

1 Standard deviation; 2 Coefficient of variation; 3 Soil organic matter. 

 

The geology map (PERROTTA et al., 2005) showed that sandy-mudstone lithology of 

the Rio do Peixe Valley’s formation is predominant along with the site where the relief is flat 

featuring Ferralsol (LV, LA, LVA) to gently undulating characterizing Lixisol (PV, PA, PVA) 

(Fig 2.5 and Table 2.5)(BERTONI, J., LOMBARDI NETO F., 2017). By approaching the 

rolling uplands, the sandstone from the Marilia formation arises. Basic intrusive diabase rocks 

occur between the sand-mudstone of the Serra Geral formation neighboring the site, which 
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provides the reddish color to the soil types and clay accumulation in the Lixisol subsurface (Fig 

2.5). Ferralsols, Lixisol, and Gleysols represent 40%, 58%, and 2% of the land, respectively. 

 

 

Figure 2.5. Maps of: a) Lithology (MEZZALIRA, 1966), b) Soil classes, c) Topsoil 

class texture.  

 

Soil permeability were established based on soil type, color and texture (Fig. 2.5 and 

Table 2.5). Permeability decreases as color change from reddish to yellowish and from sandy 

to clay texture. We classified the soil classes, in dry conditions, from the agroindustry map and 

the regional map (ROSSI, 2017) at the suborder level according to the Brazilian Soil 

Classification System (SiBCS) (DOS SANTOS et al., 2018) and the corresponding classes of 

the World Reference Base (FAO, 2014). 

The multi-temporal satellite bare soil resulted in 35 years of Landsat data from 1984 to 

2019 (Fig.2. 6 a). The synthesis of all images composes a final image of bare soil, covering 

72% of the cropland surface (Fig. 2.6 b). The soil surface corresponds to the agricultural 

inventory data, in which there is a specific time-window to monitor soil surface satellite 

imaging due to the conventional crop management tillage adopted. The remaining sites 

correspond to forest or grass assigned as NA values for modeling. 
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Table 2.5 – Permeability according to soil class type, color and texture. 

SiBCS1 WRB2 Color Texture Permeability3  

Gleissolo Háplico (GX) Gleysol   Very Slow  

Latossolo Amarelo (LA) Ferralsol Yellow Loam Moderate  

Latossolo Vermelho (LV) Ferralsol Red Loam Moderate to Fast  

Latossolo Vermelho (LV) Ferralsol Red Clay Moderate  

Latossolo Vermelho-Amarelo (LVA) Ferralsol 
Red -

Yellow 
Loam Moderate to Fast 

 

Latossolo Vermelho-Amarelo  (LVA) Ferralsol 
Red -

Yellow 
Clay Moderate 

 

Nitossolo Vermelho (NV) Nitosol Red Clay Moderate to Fast  

Argissolo Amarelo (PA) Lixisol Yellow Sand/Loam Slow to Moderate  

Argissolo Amarelo (PA) Lixisol Yellow Loam /Clay Slow  

Argissolo Vermelho (PV) Lixisol Red Sand/Loam Slow to Moderate  

Argissolo Vermelho (PV) Lixisol Red Loam/Clay Slow  

Argissolo Vermelho-Amarelo (PVA) Lixisol 
Red -

Yellow 
Sand/Loam Slow to Moderate 

 

Argissolo Vermelho-Amarelo (PVA) Lixisol 
Red -

Yellow 
Loam/Clay Slow 

 

Neossolo Litólico (RL) Leptsol  Clay Slow  

Neossolo Quartzarênico (RQ) Arenosol  Sand/Loam Fast  

1 Brazilian Soil Classification System (DOS SANTOS et al., 2018). 2 World Reference 

Base (IUSS, 2015).  

 

The spatial-spectral patterns are related to the soil mineralogy, granulometry and 

organic matter content identified throughout the satellite image’s color and the spectral data 

(Fig. 2.6 c). Bright colors indicate low soil organic carbon content and higher quartz proportions 

(DEMATTÊ et al., 2020). The shape and intensity of spectral profile discriminate sandy soil as 

it increases from the higher reflectance and the ascending shape of the wavelength from Band 

1 to Band 5 (GALLO et al., 2018).  

The spectral signatures of the surface reflectance provided from the site-specific soil 

samples validate the bare soil composite image’s reliability and quality. While, the validation 

prediction of clay, fine sand, silt, and organic matter maps correspond to R2 of 0.67, 0.59, 0.68 

and 0.55 and RMSE (g kg−1) of 25.8, 48.3, 4.38, 1.99 respectively, which indicate good 

agreement and low error between the observed and the predicted dataset.   

The spatial distribution of K-Factor values increases where PVA and PV occur in rolling 

uplands, as observed in sub-basin 10 (Fig. 2.7). In these sites, the sand-loamy textures soil 
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particles are easily detached and transported by overland flow. The mean K-Factor value for 

the agricultural study site corresponds to 0.019 tons h MJ−1 mm−1. Predicted versus measures 

K-Factor values present satisfactory performance with an R2 of ~ 0.78 (Fig. 2.8). 

 

 

Figure 2.6. a) Multi-temporal satellite images masks using NDVI e MID-Infrared, b) 

Soil Synthetic Imagen has shown the agricultural land in false color (RGB 543) of the Landsat 

data with soil samples sites location used for the soil map attributes prediction by Partial Square 

Least Regression, c) Soil spectral profile average from the soil samples, d) Soil attributes map 

(clay, fine sand, silt, and organic matter) used to derive the erodibility factor map. Soil texture 

analyzes resulted in the following classes: Sand, Coarse Sand, Fine Sand, Silt and Clay. Note 

that only Clay, Fine Sand and Silt maps were generated to calculate erodibility, so the final 

percentage value will not be 100%. This would require all maps of all textural classes to reach 

100%. 
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Figure 2.7. Soil K-Factor derived from satellite base-estimation contrasting organic 

matter values at sub-basin 10. 

 

 

Figure 2.8. Comparison between the K-Factor satellite-based predicted and K-Factor 

measured by the soil samples analysis. 
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2.3.1.3 The topographic parameters and control practice 

LS-Factor derived from flow accumulation, flow direction, and slope using Digital 

Elevation Model (DEM) performed at GIS incorporates surface runoff into soil erosion (Fig. 

2.9). The L-Factor stretches the impact of slope length while the S-Factor delivers the effect of 

slope steepness. The DEM captured the topography changes with precision and estimated soil 

erosion with accuracy. (DESMET; GOVERS, 1996) demonstrated that the LS-Factor model is 

suitable for landscape-scale soil erosion modeling.  

The LS-Factor’s topographic spatial pattern presents an average value of 0.58, with a 

range of 0.03 in lowland to 82 in the uplands (Fig. 8). The coefficient of variation (CV) of 0.53 

indicates low heterogeneity; LS-Factor value under 1.5 was estimated in 93% of the area.  

P-Factor map depended on slope derived from DEM and contouring as specific support 

management (Fig. 2.8). The P-Factor result presents low variation; 88% of the area has 

represented a value from 0.5 to 0.6 with an average of 0.59. 

 

 

Figure 2.9. LS-Factor derived from the SRTM variables (slope, flow accumulation and 

flow direction) and P-Factor derived from slope and contour farming a support conservation 

practice. 
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2.3.1.4 Cover management factor 

The spatial C-Factor of crop residue management for the scenarios expresses the land 

use management applied from 2013 to 2017 (Fig. 2.10). It generated 98 combinations of 

sugarcane management in the cropland plots. We can observe in sub-basin 7 the cropland plots 

contrasting two tillage combinations. The sugarcane cycles range from one to nine in the unit 

plots; the mean is five crop cycles (Fig. 2.11). During the sugarcane crop cycle, plant cane had 

higher production and the yield decay over the next years (Fig. 2.11 b). We can observe that 

about 80% of the area is productive during the year, while the remaining area is under replanting 

(Fig. 2.11 a).  

 

Figure 2.10. C-Factor of the agroindustry under 100 % coverage sugarcane straw coverage, 

50% coverage, 75% coverage, and no coverage, and the sub-basin 7 representing two cover 

management input data in each arable cropland plot.  

 

Geographic location: Quatá, SP

Tillage Date: December

Tillage growing: 18 months

Tillage type: Conventional 

Prior land use: Bare soil 

Management level: Medium

Number of cycle : 5

Current cycle: 1

Straw coverage: 100%, 75% , 50%, 0%

Sub-basin 7

C-Fator =  0.3423, 0.3454, 0.3499, 0.3705

Cropland management inputs

C-Fator = 0.0843, 0.0904, 0.0989, 0.1296

Cropland management inputs

Geographic location: Quatá, SP

Tillage Date: April

Tillage growing: Winter

Tillage type: Conventional 

Prior land use: Bare soil 

Management level: Medium

Number of cycle : 5

Current cycle: 5

Straw coverage: 100%, 75% , 50%, 0%

Sugarcane Straw Management
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During the sugarcane replanting period, the crop residues are incorporated into the soil 

by tillage operations, and the soil is exposed, characterizing the prior land use subfactor as bare 

soil for all the cropland plots. The average C-Factor values from the cropland plots for 0%, 

50%, 75%, and 100% coverage are 0.12, 0.0975, 0.0921 and 0.0884, respectively. We applied 

this C-Factor value for the entire sub-basins dimension. 

 

 

Figure 2.11. a) Yield production areas from 2013 to 2017 with an average annual 

production considering all sugarcane cycles and the replanting areas. b) The average yield in 

nine sugarcane crop cycle with production rate decay. 

 

2.3.2 Soil loss in agricultural regions 

The soil loss rates from high-resolution spatially distributed modeling (30 x 30 m cell 

size) were estimated by integrating the erosivity, erodibility, topography, conservative 

practices, and cover management data. Our results showed that soil erosion dynamics under 

different straw coverage rates (Fig. 2.12) decreases soil loss rates by 22 %, 26 % and 28 % in 

all sub-basins as the amount of straw coverage increases from to 50 %, 75 % to 100%, 

respectively (Table 2.6). 

The average bulk density of 1.69 Mg m-3 derived soil loss tolerance (T-value); T-value 

presents an area-specific average of 4.3 Mg ha-1. Our data demonstrate that the annual average 

soil erosion exceeds the T-value threshold in 12 of the 13 sub-basins under no cover of straw 

(Table 6). Sub-basin 3, 6, 7 show soil loss per percentage of the land lower than the T-value 

(Fig 2.12 a). 
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Figure 2.12. Soil loss obtained by the RUSLE model and the percentage of the basin 

with greater and lesser soil loss than the tolerance (T-value) with a) 0% straw coverage rate, b) 

50% straw coverage, c) with 75% straw coverage, d) 100% straw coverage. 

 

The most intensively eroded region were identified in sub-basins 4, 8, 9, 10, 11, 13 with 

an annual average soil erosion higher than T-values in sites 100% covered with straw (Table 

2.6). Sub-basin 4 presented the lowest values of total soil loss (52.65 Mg x 103yr-1) (Table 

a) 0% Coverage b) 50% Coverage

c) 75% Coverage d) 100% Coverage
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2.4), due to the smaller size of the sub-basin compared to the others. The average soil loss 

scenario of 100 % straw coverage is equivalent to T-value (Table 2.6), indicating that all the 

amount of straw is necessary to balance soil loss tolerance from the perspective of soil erosion. 

Thus, it is equivalent to 7 Mg -1 of straw according to the sugarcane yield data documented (Fig 

2.11). However, this amount of straw has not been satisfactory to protect the soil against erosion 

in 40% of the agricultural land, classified with a higher potential of soil erosion estimated at ~ 

6,000 Mg 103 y-1 (Fig 2.12a, Table 2.6). We estimated an overall increase in soil erosion 

amount of 4 %, 10 %, and 41 % under 75%, 50% and no coverage, respectively, driven by the 

possibility of spatial removal. 

 

Table 2.6 - Average soil erosion and total soil loss per sub-basin 

Sub-basin 
Average soil erosion (Mg ha-1 yr-1) Total soil loss (Mg x 103 yr-1) 

0% 50% 75% 100% 0% 50% 75% 100% 

1 5.74 4.35 4.10 3.93 832.09 631.024 494.67 569.71 

2 4.83 3.73 3.59 3.39 432.27 333.741 321.65 303.37 

3 4.19 3.31 3.14 3.02 125.86 99.25 94.10 90.48 

4 7.53 6.39 6.18 6.04 65.65 55.69 53.90 52.65 

5 6.11 4.82 4.58 4.41 1,645.55 1,297.30 1,232.67 1,188.52 

6 4.59 3.33 3.09 2.93 269.72 195.55 181.72 172.24 

7 4.89 3.75 3.52 3.35 206.67 158.49 148.60 141.68 

8 7.30 5.70 5.38 5.16 103.54 80.87 76.35 73.28 

9 6.52 5.10 4.79 4.57 535.56 419.43 393.70 375.45 

10 7.62 5.84 5.50 5.26 942.35 722.981 680.03 650.71 

11 6.97 5.64 5.37 5.18 1,093.39 883.75 841.35 811.81 

12 5.86 4.59 4.35 4.18 1,050.64 822.95 780.04 750.33 

13 6.38 4.92 4.65 4.46 1,102.66 850.13 803.35 771.01 

Total area 6.04 4.73 4.48 4.30 8,406.01 6,551.20 6,202.47 5,951.31 

 

2.4 DISCUSSION 

The soil is vulnerable for erosion by nature through according to a slow constructive 

process of fertile soils caused by geology, topography and climate factors. In contrast, 

anthropogenic land-use changes and unsustainable land management in agriculture can 

accelerate land degradation (LAL, 2003).  
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In this paper we assessed a multi-temporal soil erosion pattern driven by water in 

sugarcane fields using the RUSLE model at 30 m resolution. We used remote sensing data and 

GIS techniques to extract R, K, LS factors and, an exhaustive set of C-Factor, an accurate DEM 

to compute LS and P factors, and an innovative digital soil mapping method to calculate K-

Factor. Thus, the variability demonstrated by this method has a considerable potential to 

identify hotspots and concern areas for both uses in the cropland plots scale and the whole area 

for conservation planning (Fig 2.12). 

Rainfall intensity emphasizes the region’s climatic vulnerability, resulting in high values 

of erosivity factor (Fig. 2.3 and 2.4), a critical climatic driver of soil erosion. According to 

(VRIELING; HOEDJES; VAN DER VELDE, 2014), erosivity correlates with total rainstorm 

energy to the storm’s maximum 30 minutes of rainfall intensity. The spatial variability of 

erosion power of rainfall tends to increase or decrease in various combinations driven to the 

degree of global warming caused by climate change (OLIVER, 1980), which impact directly 

on land degradation, resulting in increasing temperatures, changing rainfall patterns, and 

intensification of rainfall (OLSSON et al., 2019). 

Individual powerful rainstorms of a short period can remove topsoil during a rainstorm 

event, initiate a gully and mudslide, as revealed in Fig 2.1. Damages caused by heavy rainfall 

events have a century-scale nutrient depletion, soil particle loss, and high-water treatment costs. 

The 3-hourly TRMM data provided a good indicator of high-intensity rainfall events (more than 

30 mm), typically captured at the beginning of the rainy season (VRIELING et al., 2008). 

Hydrological changes affect soil fertility due to topsoil layer removal, water availability, 

and the vulnerability of smallholder and subsistence agriculture (MORTON, 2007). Each soil 

type has properties that have different resistance to the raindrop and runoff. High rainfall 

erosivity increases soil loss rates that deplete soil structure (breakdown aggregates) and 

accelerate the decomposition of the organic carbon matter by a microbial process (LAL, 2003). 

Controversially, a decrease in rainfall erosivity may enforce agribusiness development 

(ALMAGRO et al., 2017) and smallholders, especially in regions with crop irrigation liability. 

While, a decrease of rainfall erosivity in the Southeast region of Brazil may suggest a favorable 

scenario for the continued sugarcane expansion (ALMAGRO et al., 2017) since sugarcane does 

not need irrigation (GOLDEMBERG et al., 2014). 

Projection of climate change in rainfall erosivity is essential, but at this stage, 

developing strategies to adapt to these changes is the key to reduce vulnerabilities and improve 

resilience, e. g., public policies that focus on soil and water conservation, such as sustainable 

agriculture and conservation practices must be encouraged, ensuring food security and energy. 
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Our digital soil attributes maps obtained extracted from satellite data are instruments for 

sustainable land-use (Fig. 2.6). Previous studies based on Landsat data have also derived 

reliable soil proprieties maps demonstrating the substantial potential of these products for the 

land management applications (DIEK et al., 2017; DOGAN; KILIÇ, 2013; MENDES et al., 

2019; SHABOU et al., 2015). We identified that sites with moderate soil loss are mostly 

homogeneous with topsoil texture that varies from loam to sandy. The loam texture sites 

demonstrate the occurrence of Ferralsols (Fig. 2.5) in the flat position of the landscape. On the 

other hand, high soil loss occurs mostly in Lixisol (Fig. 2.5) that is over smooth to gently 

undulating relief with the textural gradient of sandy/loamy at the surface and loamy/clayey in 

subsurface layers (Fig. 6), featuring the highest values of LS-Factor (Fig. 2.9). We confirmed 

(MANNIGEL et al., 2002) assumption that an increase of the textural gradient leads to a 

decrease in soil loss tolerance and an increase in soil K-Factor (Fig. 2.7).  

SYSI data can capture the agricultural land-use change. Here, we could enlighten two 

time periods to investigate land-use change using SYSI 1) From 1984 to 2009, the period with 

land changes from forestation to sugarcane under harvest burning system adoption; 2) after 

2009, with the establishment of the current machine harvest system characterized by the 

remarkable effect of soil conservation agriculture provided by straw on topsoil. On the other 

hand, straw removal practices may threaten sugarcane yield, compromising bioenergy 

production (CARVALHO et al., 2019). The nutrient addition in soil in the first period, 

associated with straw removal of the second period plus the climate change impacts related to 

land use cover may be re-sponsible for soil organic matter depletion (CARVALHO et al., 2019; 

TENELLI et al., 2019b). Our investigations reveal that high erodibility values in sub-basin 10 

correspond to Lixisols, associated with the low organic matter content (Fig. 2.7). Lixisols when 

exposed due to changes in land use and/or soil management, erosion processes are favored. 

These soils have a more clayey B horizon, which reduces water infiltration, favoring surface 

runoff and, consequently, erosion. 

Strategies for soil conservation as cover management are the main component to control 

soil erosion potential of runoff, maintain soil structure and conserve soil organic carbon with 

low cost (PANAGOS et al., 2015). Crop residue retained in the field delivers maintenance to 

the soil quality; it affects sugarcane yields in all soil types in different magnitudes. Straw can 

help maintaining soil moisture and, mitigating water deficit, which stimulates microclimate by 

regulating the thermal amplitude and improving the soil biota (CARVALHO et al., 2017; RUIZ 

CORRÊA et al., 2019). The yield annual average, inferior to the national average yield of 76 

Mg ha-1 (CONAB, 2020) (Fig 2.11a) aggregated with soil compaction, reveals low soil fertility. 
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Field observations and the literature indicated high soil compaction in this region, particularly 

if straw has been removed (CASTIONI et al., 2019), which resulted in low soil permeability 

capacity. 

Ferralsol is very well-developed, deep and unsaturated, characterized as fast 

permeability. However, this soil was classified as moderate to fast or moderate. We also 

observed that permeability decreases as color changes from reddish to yellowish and sandy to 

clay texture (Table 5). Whereas, as permeability decreases more vulnerable is topsoil loss in 

Lixisol that is well-developed with a textural gradient in the subsurface featuring erosion-prone 

soils (MEDEIROS et al., 2016). These attributes result in low yielding potential and straw 

production. It explains the inefficiency of 100% straw coverage capacity of holding gross 

erosion and preventing soil degradation in many sub-basins, especially in sub-basin 4 and 8 that 

presented the soil erosion hotspots (Fig 2.12d and Table 2.6), even under a low heterogeneity 

topography (Fig. 2.9). 

Our C-Factor results demonstrate that the number of sugarcane cycle and the planting 

season are the SLR sub-factors that have the most significant impact on the management cover, 

consistent with (ROCHA, 2017). The sugarcane cycle can influence crop residue maintenance 

in the erosion process by surface-cover, canopy-cover, and tillage effectiveness in the yielding. 

While the planting season is affected by the climate, the soil is affected by the following 

conditions: i) During replanting when the soil is entirely uncovered; ii) At the beginning of the 

sugarcane ratoon, the previous cycle removed the straw, and the sugarcane canopy-cover is not 

entirely close; iii) The low number of sugarcane cycles (less than five due to the low yield and 

coverage potential; iv) Tillage management operations during the rainy season. 

Alternative management strategies on-site for more sustainable sugarcane production is 

required to compensate the adverse erosion effects on soil, water, and biotic balance as 

vegetative barrier conservation practices (BONNER et al., 2014), and techniques to improve 

soil organic carbon and increase yield e. g., reduce or no-tillage, crop rotation (minimum soil 

disturbance) (TENELLI et al., 2019b) legume cover crop (TENELLI et al., 2019a), organic 

fertilizer, filter cake, ashes, biochar, and other. Reduce tillage, and no-tillage system concepts 

were implemented in this century. Reduced tillage system associated with a part of the straw 

cover in the soil could enhance soil organic carbon stock, sustain sugarcane yield over the crop 

cycle, and part of the straw used for bioenergy (TENELLI et al., 2019b). Each agricultural 

system affects short-term soil CO2 emissions. Undisturbed soil keeps high soil moisture than 

conventional tillage; moisture is a control temporal variability factor of CO2 emission. The 
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adoption of no-tillage in sugarcane areas would prevent 30% of soil CO2 emission in tropical 

soils than conventional tillage. 

The erosion cost could be reduced by 81.2% adopting no-tillage, while the production 

costs increased only by 0.47 for the soybean crop (RODRIGUES, 2005). Another study 

observed the same crop an erosion cost reduction from the different management systems, 

including no-tillage, reduced tillage and conventional tillage in $ 15, 16, and 25 ha-1 yr-1, 

respectively (BERTOL et al., 2007). Soil erosion assessment is essential from an economic 

perspective since it degrades soils on-site, producing loss of fertility and reduces water storage 

capacity compromising yield, which from the long-term may depreciate land value (TELLES 

et al., 2013; TELLES; GUIMARÃES; DECHEN, 2011). The hydrographic basins unit is vital 

to assess the cost of soil loss due to the off-site impacts of land degradation. Soil erosion effects 

in the surrounding areas can be severe to the freshwater systems causing sedimentation, 

eutrophication, enhancing urban areas flooding, and impacting the marine ecosystem.  

The results reported herein indicate the conservation-effective measures on-site erosion 

is essential to reduce or reverse soil degradation, and minimized the climate change impacts 

from off-site erosion. Furthermore, the obligation of soil conservation practices may help to 

internalize the costs of the land user. Fertile soil is a limited and non-renewable natural resource, 

and soil degrades impacts the world from many aspects, e.g., socio-economic, social, political, 

and cultural for this and future generations. 

 

2.5 CONCLUSION 

The method to estimate soil loss indicated soil degradation prone areas that request 

sustainable land management. The bare soil surface image obtained from multi-temporal 

satellite images covering 100% of the agricultural land use is equivalent to 72% of the study 

site. The image’s spectral patterns presented accurate spectral quality that permits capturing the 

soil interactions, featuring sandy soil and low organic matter content properties. Our 

spatiotemporal erodibility factor reveals the correlation of soil organic matter depletion with 

high erodibility values in Lixisol, which resulted in low soil loss tolerance.  

The bare soil surface technique indicates that intensive farming causes high soil 

exposure rates in the last three decades. Erosion intensification contributes to land degradation 

for at least 20 years from the beginning of the multi-temporal series until 2010, when bare soil 

frequency decreased due to the gradual change to agricultural conservation systems established 

in the sugarcane fields. Our result indicates vulnerable areas to hold gross erosion in locations 

with 100 % of crop residue coverage. This susceptible area is a combination of natural erosion-
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prone areas with low effectiveness of the tillage practices and the number of cycles (inferior to 

five) that result in low sugarcane straw yield, which is easily and quickly decomposed by the 

microbial process. In addition, we suggest further studies using SYSI to deepen soil erosion 

researches. 

Furthermore, the strong rainfall erosivity of the region reinforces soil erosion by water, 

especially in the planting season. Public policies that focus on soil and water conservation to 

ensure food and energy security are strategies to reduce the vulnerabilities and improve the 

resilience of the environment to adapt to the increasing temperatures, the changing of the 

rainfall patterns, and the rainfall intensification driven by climate change. This technique 

provides multidisciplinary uses that extend beyond sustainable agriculture developments and 

land-use change monitoring as the costs to replace nutrients loss derived from soil erosion and 

carbon stock dynamics are the foundation for the emission levels analyses. 

The high-resolution spatially distribution method provided can identify soil degradation 

prone areas and the cropland expansion frequency. This information may guide farms and the 

policymakers for a better request of conservation practices according to site-specific 

management variation. 
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CHAPTER 3. FINAL CONSIDERATIONS 

Using multitemporal satellite imagery in remote sensing has provided valuable insights 

into soil properties, relief, climatic conditions, and management practices for monitoring 

cropland fields and identifying areas at risk of soil loss. The information obtained is crucial for 

promoting sustainable land use in the study region’s crop field.  

This study found that high sand content is prevalent in the study region, and optimal 

management of sugarcane straw alone is insufficient to protect soil against erosion. Alternative 

conservation practices, such as cover cropping, minimum tillage, counter lines, and terracing, 

should be immediately adopted to increase organic matter content and promote soil health. 

Furthermore, in regions where sugarcane straw can be used for the bioenergy industry, 

continued research, innovation, and policy support are necessary to ensure sustainable use for 

conservation and bioenergy. 

Soil conservation is critical to promoting soil diversity, sustainable agriculture, 

protecting the environment, and ensuring the well-being of future generations. By adopting soil 

conservation practices and policies, we can restore degraded soils, increase food production, 

and mitigate the impacts of climate change.  

This study contributes to the existing knowledge on soil conservation and highlights the 

potential of remote sensing techniques in monitoring and mitigating soil degradation in 

agricultural landscapes. It provides valuable insights for policymakers and farmers to adopt 

sustainable agriculture practices. Overall, collaborative efforts among stakeholders are 

necessary to ensure the sustainable use of our land resources. 

Model Limitation 

While the Revised Universal Soil Loss Equation (RUSLE) has proven to be a valuable 

tool for assessing soil erosion risk, its application using satellite imagery and remote sensing 

has limitations. One notable challenge lies in the inherent complexity of the RUSLE model 

itself. The model's accuracy heavily relies on the availability and accuracy of input data, which 

includes factors such as rainfall erosivity, soil erodibility, topography, cover and management 

practices, and conservation support practices. Remote sensing can provide data for some of 

these factors, such as land cover and topography. However, certain parameters may be 

challenging to accurately derive solely from satellite imagery as an erodibility factor.  

Soil erosion is a spatially and temporally dynamic phenomenon. It varies across 

different landscapes and over varying time scales, influenced by short-term climatic events and 

longer-term trends. This dynamic nature complicates the design of experiments, as researchers 
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need to capture a wide range of conditions to ensure the robustness and generalizability of their 

findings. Such complexity often requires extensive data collection and monitoring efforts, 

making experiments resource-intensive and time-consuming. 

Our multitemporal satellite imagery in remote sensing has provided valuable insights 

into soil properties, relief, climatic conditions, and management practices for monitoring 

cropland fields. However, the model assumes some constant sub factors data to estimate soil 

erodibility, such as bulk density determination, which might not hold in dynamic landscapes.  

Another limitation arises from the scale at which RUSLE operates. While satellite 

imagery offers a wide coverage area, the model's success is often contingent upon the analysis 

and data resolution scale. RUSLE assumes uniform conditions within a given grid cell, which 

might not always accurately reflect the actual heterogeneity of land use and management 

practices present within that cell. Additionally, the temporal resolution of satellite imagery may 

not align with the frequency of erosion events, leading to potential inaccuracies in erosion 

predictions. Moreover, the model does not account for factors such as ephemeral gullies or 

channel erosion, which can play a significant role in erosion dynamics but are often not captured 

by remote sensing data. 

In summary, while integrating RUSLE with remote sensing holds promises for assessing 

soil erosion risk, it is important to acknowledge its limitations. These include the challenge of 

accurately deriving certain input parameters from satellite imagery and the inherent 

assumptions and scale-related constraints. Therefore, a holistic approach that combines remote 

sensing data with field measurements and other research modeling techniques must be 

continued to encourage policy support.  

While remote sensing offers the advantage of capturing erosion patterns over large 

areas, its effectiveness in providing fine-scale details required for robust validation is restricted. 

Remote sensing data might lack the resolution necessary to account for localized factors, 

intricate land use changes, and small-scale topographical variations that influence erosion rates. 

Consequently, when validating RUSLE using remote sensing, there is a risk of missing crucial 

site-specific dynamics essential for accurate assessments, highlighting the necessity of 

complementary validation methods. 

Remote sensing is advantageous in capturing erosion patterns across large areas, but its 

effectiveness in delivering fine-scale details necessary for robust validation is constrained. 

Remote sensing data may lack the resolution to consider localized factors, intricate land use 

shifts, and minor topographical variations that substantially influence erosion rates. 

Consequently, when validating RUSLE via remote sensing, there is a risk of overlooking crucial 
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site-specific dynamics essential for accurate assessments. This underscores the necessity of 

employing complementary validation approaches. 

Conversely, local experiments employing the RUSLE model face intricacies stemming 

from labor-intensive demands. Assembling comprehensive input data for RUSLE, spanning 

soil characteristics, land use practices, and rainfall patterns, entails substantial fieldwork and 

data collection endeavors. This calls for skilled labor adept at precise sampling, measurements, 

and meticulous data recording. Furthermore, calibrating model coefficients to match local 

conditions necessitates rigorous data analysis and iterative adjustments, further amplifying 

complexity. The ongoing monitoring and measurement of actual erosion rates for validation 

require consistent effort involving equipment maintenance, data logging, and the logistical 

challenges of field campaigns. The labor-intensive nature of local RUSLE experiments 

underscores the need for dedicated personnel, training, and streamlined coordination to ensure 

the quality and reliability of the collected data and ensuing model outcomes. 

These labor-intensive demands have presented difficulties in conducting field 

experiments within our research, highlighting the need for efficient coordination and 

appropriate support to overcome these challenges. 

 

Soil Conservation Initiatives in Sugarcane Areas 

As revealed through the referenced studies, the initiatives aimed at soil conservation in 

sugarcane areas collectively underscore the vital importance of integrating sustainable land 

management practices into bioenergy production and agricultural expansion in Brazil. These 

studies offer insightful perspectives on the intricate relationships between land use change, 

environmental impacts, policy considerations, and the imperative of maintaining ecosystem 

services. 

The intricate interplay between bioenergy production, land-use change (LUC), and 

sustainability considerations in sugarcane-derived bioenergy is meticulously explored in the 

review by Cherubin et al. (2021). This comprehensive study, focusing on Brazil's sugarcane-

derived bioenergy, underscores the dual challenge of harnessing bioenergy's potential for 

climate change mitigation while addressing large-scale LUC's environmental and 

socioeconomic impacts, particularly the expansion of sugarcane crops. By delving into a 

thorough literature review, the authors meticulously unravel the intricate relationships between 

LUC, best management practices, and various sustainability components such as soil health, 

carbon sequestration, greenhouse gas emissions, nutrient cycling, and water quality. 



58 

 

 

A noteworthy revelation from this review is the potential co-benefits that emerge based 

on LUC scenarios and management practices. The transition from low-productivity pastures to 

sugarcane cultivation is highlighted as a promising sustainable pathway that offers advantages 

in soil health and carbon sequestration. Despite challenges like soil compaction, biodiversity 

loss, and erosion, integrating best practices such as conservation tillage and rational fertilization 

is pivotal for sustainable bioenergy production. 

The study recognizes the significance of public policies and regulatory frameworks in 

harmonizing bioenergy production with responsible land use and protection. This is 

exemplified by Brazil's Forest Code and RenovaBio legislations, which serve as important tools 

for aligning bioenergy production with environmental preservation. 

One of the most intriguing insights from Cherubin et al. (2021) pertains to the potential 

global impact of sugarcane expansion over pasture areas in Latin American, Caribbean, and 

sub-Saharan African countries. This expansion has the potential to significantly influence 

global bioenergy supply, underscoring the interconnectedness of local land-use decisions and 

global sustainability goals. 

Complementing the study mentioned above, da Luz et al. (2020) dive into the intricate 

relationship between sugarcane expansion and soil water dynamics in Brazil's central-south 

region. Their study highlights the importance of understanding land-use changes' effects on soil 

hydro-physical properties. While the transition from pasture to sugarcane involves conventional 

tillage, it intriguingly does not exacerbate soil degradation. Despite slight impairments in soil 

water and physical conditions in the 100-200 mm soil layer, the study emphasizes the need for 

sustainable management practices to maintain soil quality and water dynamics, essential for 

optimal plant growth and broader ecosystem benefits. 

Additionally, Picoli & Machado (2021) comprehensively explore Brazil's bioethanol 

journey, tracing its origins and evolution as a strategy for energy security and reducing 

greenhouse gas emissions. This paper critically examines the evolution of sugarcane expansion 

over the years, revealing the complex interplay between bioethanol production and land use 

change. The study's focus on the indirect consequences of sugarcane expansion, such as 

encroachment upon pasture areas leading to deforestation, highlights the need for holistic cross-

sectoral efforts to ensure biofuel sustainability. 

Vera et al. (2020) adopted an integrated approach to investigate the environmental 

consequences of sugarcane expansion in Sao Paulo state. By aggregating various environmental 

impacts into an environmental performance index, the study provides a spatially nuanced 

understanding of the trade-offs associated with sugarcane expansion. Identifying zones with 
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positive and negative impacts is a foundation for targeted strategies to mitigate adverse effects 

and enhance favorable outcomes in future sugarcane expansion. 

Finally, dos Santos et al. (2020) address the practicality of the Soil and Water 

Assessment Tool (SWAT) in assessing land use impacts on streamflow and sediment yield. 

Their study, centered on the Atibaia river basin in São Paulo, highlights the need for well-

defined parameter sets to model land use changes' effects on hydrological processes accurately. 

By pinpointing influential parameters, the research aids in enhancing environmental quality and 

management practices in the basin. 

The collective findings from these studies shed light on the multifaceted challenges and 

opportunities in soil conservation initiatives within sugarcane areas. It is evident that holistic 

approaches, incorporating best practices, policy interventions, and innovative modeling 

techniques, are essential to balance bioenergy production and environmental sustainability. As 

Brazil's sugarcane industry expands, these studies serve as valuable guides for shaping a future 

where bioenergy and land conservation coexist harmoniously. 
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