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1. Introduction

Some fluids including polymer melts and solutions, as well as liquids in which small particles are in
suspension, in mathematical physics, are called non-Newtonian fluids. This kind of fluids, unlike the
Newtonian fluids, cannot be adequately described assuming a constitutive relation for the Cauchy stress
linear in the symmetric part of the velocity gradient. Non-Newtonian fluids cover a broad variety of
materials of widely differing material structure, leading to diverse constitutive relations for the stress
tensor, what implies the existence of many different non-Newtonian models (see, for instance, [7]).

The model we are interested in was introduced and treated by O. A. Ladyzhenskaya [12–14], sometimes
called the modified Navier–Stokes system or the Ladyzhenskaya model (see also Lions [16, pp. 207–221]
or the seminal monograph by Malek, Nečas, Rokyta and Ružička [18, Section 5] or in the more recent by
Feireisl and Pražák [8, Ch. 7 & 8] and the references therein).

The so-called Ladyzhenskaya model deals with an homogeneous and incompressible fluid without
thermal effects which reads⎧

⎪⎪⎪⎨
⎪⎪⎪⎩

∂u

∂t
− divS(Du) + div(u ⊗ u) + ∇p = f in Ω × (τ,∞),

divu = 0 in Ω × (τ,∞),
u(x, τ) = uτ (x) in Ω,
u(x, t) = 0 on ∂Ω × (τ,∞),

(1)

where Ω ⊂ R
n (n = 2 or n = 3) is a bounded domain with Lipschitz boundary, τ ∈ R, as usual Du

denotes the symmetrized gradient of the velocity field u, i.e. Du = 1
2 (∇u+∇u⊤), p is the pressure, f the

external force and the stress-tensor S : R
n×n
sym → R

n×n
sym is assumed to satisfy the following conditions (cf.

[8])
⎧
⎨
⎩

S(0) = 0,
(S(D1) − S(D2)) : (D1 − D2) ≥ ν1(1 + μ(|D1| + |D2|))

p−2|D1 − D2|
2,

|S(D1) − S(D2)| ≤ c1ν1(1 + μ(|D1| + |D2|))
p−2|D1 − D2|,

(2)

where the positive constants ν1 and ν2 are the so-called generalized viscosities, and μ = (ν2/ν1)
1/(p−2)

(with the convention that μ = 0 for p = 2). [By the way c1 is another positive constant; the same ci > 0
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will be supposed in the sequel, constants depending on the parameters of the model.] Examples of non-
Newtonian tensors are for instance those of power-law type S = (ν̃1 + ν̃2|Du|p−2)Du. These assumptions
above imply coercivity and control of growth for the tensor S

S(D) : D ≥ c2(ν1|D|2 + ν2|D|p), |S(D)| ≤ c3(ν1|D| + ν2|D|p−1) for p ≥ 2. (3)

There are some difficulties in analyzing the dynamics of non-Newtonian fluids in comparison with
Newtonian fluids. Even though it would be possible to consider the three-dimensional case with the
uniqueness of solutions, with p large enough, there would be some additional obstacles in proving the
asymptotic compactness of the process. Roughly speaking this happens because higher regularity results
(say H2) are not available. In this way, we have to explore the p-integrability of the solutions as well as
the regularity of the time partial derivative.

The study of the asymptotic behavior of solutions is crucial not only for the long-term understanding
of the behavior of solutions and their internal structure, but for each complete model itself, as regularity
and uniqueness issues, minimal dissipative conditions and so on. Concerning the asymptotics associated to
(1), in the autonomous case the analysis is rather satisfactory (stability, attractors, exponential attractors,
fractal dimension, Lyapunov exponents, perturbed models, etcetera). We may mention [2,10,11,17,19,23],
and [8, Sec. 7] among many others.

Under the presence of time-dependent forces (e.g. due to fluctuations or device controls), the framework
becomes non-autonomous. This means that the dynamical analysis can be performed in several senses:
uniform attractors seek a fixed photo in the phase-space; skew-product flows do similarly but under a
driving system; random dynamical systems and (deterministic) pullback attractor theories look for time-
dependent families whose sections attract in suitable senses. These objects point out dynamical properties
of the evolution in time of the trajectories, that help to go deeper in the understanding of the model, for
instance, after invariance, of regularity and uniqueness issues.

Regarding this non-autonomous case, very recently, Yang et al. [25] proved the existence of finite-
dimensional pullback attractors for a simplified model where divS(Du) was replaced by (ν+ν0‖∇u‖2

L2)∆u.
The advantage of this change is that the modified model enjoys nice properties of uniqueness and regular-
ity. Although a completely different non-Newtonian model (fourth order), also worth to mention several
contributions to the existence of pullback attractors from Zhao and collaborators [27–30].

The goal of this paper is to investigate the existence of dynamical systems and pullback attractors
associated to (1), both without or with uniqueness and in different norms. The structure of the paper is
as follows. Section 2 is devoted to recall briefly the abstract functional setting of the problem, focusing
on weak and strong solutions, existence, regularity and uniqueness issues. Since uniqueness is unknown
when p is not large enough, we summarize the main ingredients on pullback attractors for processes
in a (possibly) multi-valued framework in Sect. 3. Time-dependent universes and relationships between
attractors are also presented here. Section 4 deals with the asymptotic of weak solutions in L2-norm.
The assumptions on forces are minimized, and an energy method is developed. Worth to emphasize here
that the uniform estimates allow arbitrarily large choices of the tempered parameter for the case p > 2,
in contrast to the Newtonian case where the range of values of the parameter is (upper) constrained
by the first eigenvalue of the Stokes operator. The parameter in a tempered universe is a measure of
the growth of the perturbed initial data when a very long phenomena takes place, but such that this
tracking property of the sections of a pullback attractor still holds. This will lead to infinite attractors of
respective tempered universes, both suitably ordered (cf. Theorem 23 and Remark 25.) Finally in Sect. 5
strong solutions to (1) are considered. We pay the price of uniqueness to ensure the results proving
them through the Galerkin approximations. Under additional regularity of the force term, deriving the
equation, attraction in W 1,p-norm is obtained, again with an infinite family of objects, related with those
of the previous paragraph. Actually, we conclude proving that they coincide under a suitable stronger
assumption on the force.
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2. Abstract Setting of the Problem and Known Results

In order to fit the problem in an abstract functional setting let us recall the usual functional spaces
involved. Denote V := {ϕ ∈ C∞

c (Ω)n : divϕ = 0}, H is the closure of V in the L2(Ω)n-norm and (for a
general q ∈ [1,∞)) Vq the closure of V in the W 1,q(Ω)n-norm. In H we will denote by (·, ·) the standard
scalar product in L2(Ω)n and the corresponding norm by | · |. The norm on Vq will be the Lq-norm of the
gradient of an element (thanks to the Poincaré inequality). V ∗

q denotes the topological dual of Vq, 〈·, ·〉
the action among these spaces, and ‖ · ‖∗ the norm in V ∗

q (without referring to q if no confusion arises).
The amount of results concerning different notions of solutions in the modern theory for PDE problems

is wide. Indeed it is even more involved for non-Newtonian fluid models depending on the parameters
and the regularity of the data (e.g. cf. the above cited monographs [8,18] and the references therein).
Roughly speaking, while assuming more regular data and functions in the system (and larger values of the
parameters) strong solutions can be obtained; on other hand, weakened assumptions or smaller values of
parameters only allow to gain weak solutions, or by last (the most general case) measure-valued solutions.
Here we will be mainly concerned with weak solutions (of course, under suitable values of the parameter
p related to the dimension n). We recall the basic notion and existence result for our purposes.

In what follows we assume that f ∈ Lp′

loc(R;V ∗
p ).

Definition 1. A weak solution to (1) is an element u ∈ L∞(τ, T ;H) ∩ Lp(τ, T ;Vp) for any T > τ such
that

∫ T

τ

∫

Ω

(−u∂tϕ − (u ⊗ u) : Dϕ + S(Du) : Dϕ)dxdt =

∫

Ω

uτϕ(τ, ·)dx +

∫ T

τ

∫

Ω

fϕdxdt (4)

for any ϕ ∈ C∞
c ([τ, T ) × Ω)n with divϕ = 0.

If larger enough values of the parameter p (related to the dimension n) are assumed, we may consider
the following functional operators to reformulate the problem. Namely, we borrow [17, Lemma 2.8, p.
504] to define the operator T by

∫ T

τ

〈T(u)(t), v(t)〉dt :=

∫ T

τ

∫

Ω

S(Du) : Dvdxdt.

Then it satisfies T : Lp(τ, T ;Vp) → Lp′

(τ, T ;V ∗
p ) if p > 1.

On other hand the operator B defined by
∫ T

τ

〈B(u)(t), v(t)〉dt :=

n∑

i,j=1

∫ T

τ

∫

Ω

uj(x, t)
∂

∂xj
ui(x, t)vi(x, t)dxdt

satisfies B : Lp(τ, T ;Vp) ∩ L∞(τ, T ;H) → Lp′

(τ, T ;V ∗
p ) if p ≥ 1 + 2n/(n + 2).

In this way taking p ≥ 1+2n/(n+2) the abstract formulation of the problem (1) in a free-divergence
space arises

du

dt
+ Tu + B(u) = f,

whence a solution u satisfies du
dt ∈ Lp′

loc(τ,∞;V ∗
p ). Actually any element of the class of weak solutions

can be taken as a test function in the weak formulation. This leads to uniform estimates, and by last
(through compactness and monotonicity arguments) to an existence result, continuity properties and
energy equality (cf. Remark 3 below), which will be essential in order to study the long-time behavior).

Theorem 2. (Existence; e.g. cf. [12–14], [16, Théorème 5.1], [17, Theorem 2.14], [8,18])

(i) Suppose p ≥ 1 + 2n/(n + 2), f ∈ Lp′

loc(R;V ∗
p ) and uτ ∈ H. Then there exists at least one weak

solution to problem (1).
(ii) Besides the above, if p ≥ (n + 2)/2 then the weak solution to (1) is unique.
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Remark 3. From above and the regularity of f, any weak solution (ensured by (i) provided that p ≥

1 + 2n/(n + 2)) satisfies u′ ∈ Lp′

loc(τ,∞;V ∗
p ). Therefore there exists a representative in the class with

u ∈ C([τ,∞);H) and the following energy equality holds

|u(t)|2 + 2

∫ t

s

∫

Ω

S(Du) : Dudxdr = |u(s)|2 + 2

∫ t

s

〈f(r), u(r)〉dr ∀τ ≤ s ≤ t.

It will be convenient at some stage of the paper to assume that S has a potential, i.e. there exists
Φ ∈ C2(Rn×n; R+) with

∂DΦ(D) = S(D),
∂2

DΦ(D) : (B ⊗ B) ≥ ν1(1 + μ|D|)p−2|B|2,
|∂2

DΦ(D)| ≤ c4ν1(1 + μ|D|)p−2.
(5)

Observe that this means control from above and below for Φ(D) for any D ∈ R
n×n namely

c5ν1(1 + μ|D|)p−2|D|2 ≤ Φ(D) ≤ c6ν1(1 + μ|D|)p−2|D|2. (6)

Assuming that S has a potential, it can be shown a regularizing effect in the problem for a more
regular external force. Actually, we have the following result.

Proposition 4. ([2, Theorem 3.3], [8, Theorem 7.32]) Consider T, τ ∈ R with T > τ , uτ ∈ H and
f ∈ L2

loc(R;L2(Ω)n). Assume that p > 2 if n = 2 and p ≥ 12/5 if n = 3. Then, any weak solution
associated to the initial condition uτ satisfies

u ∈ L∞(τ + ε, T ;Vp) and
∂u

∂t
∈ L2(τ + ε, T ;H)

for all ε > 0 such that τ + ε < T . If uτ ∈ Vp then we can take ε = 0.

Recall the Korn inequality, which relates the norms of the gradient and of the symmetrized gradient.
Namely, for any ϕ ∈ W 1,q

0 (Ω)n, 1 < q < ∞, there exists a constant c(q) > 0 such that

‖∇ϕ‖q ≤ c(q)‖Dϕ‖q.

For short we denote c0 = c(2) and c̃0 = c(p). We also recall the Poincaré inequality

λ1|v|2 ≤ |∇v|2 ∀v ∈ V2,

where λ1 is the first eigenvalue of the Stokes operator with homogeneous Dirichlet boundary conditions.

3. Non-autonomous Multi-valued Dynamical Systems and Pullback Attractors

In this section we recall briefly some well known concepts and results concerning multi-valued non-
autonomous dynamical systems and about the existence and relationships of minimal pullback attractors.
They are just included for the sake of completeness and for the convenience of the readers, and for their
proofs we refer for instance to [22] (for the autonomous case) or to [4, Section 2] or [3,6,21] among many
others. Nevertheless, it is worth to mention that when uniqueness holds for the considered problem, the
theory exposed below reduces to the standard non-autonomous dynamical system theory of pullback
attractors for single-valued closed processes (e.g., cf. [9]).

Given a metric space (X, dX), and denoting R
2
d = {(t, s) ∈ R

2 : t ≥ s} and P(X) the family of
nonempty subsets of X, we recall the notion of multi-valued (semi-)process.

Definition 5. A multi-valued map U : R
2
d × X → P(X) is a multi-valued process on X if

(i) U(τ, τ)x = {x} for any τ ∈ R and all x ∈ X.
(ii) U(t, τ)x ⊂ U(t, s)(U(s, τ)x) for any τ ≤ s ≤ t and all x ∈ X, where U(t, τ)B :=

⋃
z∈B U(t, τ)z for

any B ⊂ X.

The process U is said to be strict if the inclusion in (ii) is an equality.
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One of natural extensions of notion of continuity is upper-semicontinuity, and reads as follows. A multi-
valued process U on X is upper-semicontinuous if for any pair (t, τ) ∈ R

2
d, the mapping U(t, τ) : X →

P(X) satisfies for each x ∈ X and neighborhood N(U(t, τ)x) of U(t, τ)x that there exists a neighborhood
M of x such that U(t, τ)y ⊂ N(U(t, τ)x) for any y ∈ M.

In the context of non-autonomous dynamical systems it seems more suitable to consider not only fixed
(bounded) sets for applications but a universe D, that is, a nonempty class of families parameterized in

time D̂ = {D(t) : t ∈ R} ⊂ P(X). This is due to the fact that a perturbation in data does not affect only
the spatial position but also a possible change in time as we will see below (this is originally motivated

by the random dynamical system theory). A universe D is said inclusion-closed if given two families D̂

and D̂′ with D̂ ∈ D and D̂′ = {D′(t) : t ∈ R} ⊂ P(X) with D′(t) ⊂ D(t) for all t ∈ R, then it holds that

D̂′ ∈ D.

The key ingredients for the establishment of an attraction object are absorption and asymptotic
compactness.

Definition 6. A family D̂0 = {D0(t) : t ∈ R} is pullback D-absorbing for a multi-valued process U if for

any t ∈ R and D̂ ∈ D there exists τ(D̂, t) ≤ t such that U(t, τ)D(τ) ⊂ D0(t) for all τ ≤ τ(D̂, t).

Observe that we do not require that the absorbing family above belongs to the universe.

Definition 7. Given a family D̂0 = {D0(t) : t ∈ R}, a multi-valued process U : R
2
d × X → P(X) is

pullback D̂0-asymptotically compact if for any t ∈ R and sequences {τn} ⊂ (−∞, t] and {xn} ⊂ X with
τn → −∞ and xn ∈ D0(τn) for all n, it holds that any sequence {yn} with yn ∈ U(t, τn)xn is relatively
compact in X.

A multi-valued process U is said pullback D-asymptotically compact if it is pullback D̂-asymptotically

compact for any D̂ ∈ D.

The minimal components (in the sense of attraction) that we aim to collect are the omega-limit

families. Namely, given a family D̂ = {D(s) : s ∈ R} ⊂ P(X), the omega limit set of D̂ by U at time t
(when it make sense) is defined by

Λ(D̂, t) =
⋂

s≤t

⋃

τ≤s

U(t, τ)D(τ)
X

.

Now the above combine to give the following result (cf. [4, Theorem 3]).

Theorem 8. Consider an upper-semicontinuous multi-valued process U on a metric space X with closed

values, a universe D, a pullback D-absorbing family D̂0 = {D0(t) : t ∈ R} ⊂ P(X) and assume that U is

pullback D̂0-asymptotically compact. Then the family AD = {AD(t) : t ∈ R} given by

AD(t) =
⋃

D̂∈D

Λ(D̂, t)
X

∀t ∈ R

is the minimal pullback D-attractor, i.e. it satisfies the following four properties: (i) [compact sections]
AD(t) is a nonempty compact subset of X for each t ∈ R; (ii) [attraction] AD is pullback D-attracting,

i.e. limτ→−∞ distX(U(t, τ)D(τ),AD(t)) = 0 for any D̂ ∈ D and all t ∈ R, where distX(·, ·) denotes the
Hausdorff semi-distance in X between two subsets of X; (iii) [negatively invariance] AD is negatively

invariant under the process U, i.e. AD(t) ⊂ U(t, τ)AD(τ) for any t ≥ τ ; (iv) [minimality] if Ĉ = {C(t) :
t ∈ R} is a family of closed sets which pullback D-attracts under U, then AD(t) ⊂ C(t) for all t ∈ R.

Moreover, it holds that AD(t) ⊂ D0(t)
X

for any t ∈ R. Besides this, if AD ∈ D and U is a strict

process, then AD is invariant under U, i.e. AD(t) = U(t, τ)AD(τ) for any t ≥ τ . If D̂0 ∈ D has closed
sections and D is inclusion-closed then AD ∈ D.
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Observe that a pullback attractor fulfilling only conditions (i)–(iii) above does not need to be unique
(cf. [20]). Condition (iv) of minimality gives uniqueness. On the other hand, when the attractor AD ∈ D,
then it is also the unique family of closed subsets in D satisfying (ii)–(iii).

Next result is useful when we need to compare several attractors, for instance in regularity framework.
It is inspired in the single-valued case [9, Theorem 3.15] but valid for a multi-valued process (cf. [4,
Theorem 4]).

Theorem 9. Consider two metric spaces {(Xi, dXi
)}i=1,2 with continuous embedding X1 ⊂ X2, respective

universes Di in P(Xi) for i = 1, 2 and D1 ⊂ D2. Assume that U is a multi-valued process in both spaces,
i.e. U : R

2
d × Xi → P(Xi) for i = 1, 2. For each t ∈ R denote

Ai(t) =
⋃

D̂i∈Di

Λi(D̂i, t)
Xi

, i = 1, 2,

(the subscript i in the omega-limit symbol Λi means w.r.t. the respective topology). Then A1(t) ⊂ A2(t)
for all t ∈ R.

Moreover, A1(t) = A2(t) for all t ∈ R if the following two conditions hold: (i) A1(t) is a compact

subset of X1 for all t ∈ R; (ii) for any D̂2 ∈ D2 and t ∈ R there exist a family D̂1 ∈ D1 and a t∗
D̂1

such that U is pullback D̂1-asymptotically compact, and for any s ≤ t∗
D̂1

there exists a τs < s such that

U(s, τ)D2(τ) ⊂ D1(s) for all τ ≤ τs.

An immediate consequence of the above results—but worth to recall for applications—are relating
attractors for a general universe (usually given by tempered condition as will be seen below) with that

of the universe of fixed bounded sets, denoted by DX
F , i.e. D̂ ∈ DX

F if D̂ = {D(t) = B : t ∈ R} with B a
nonempty bounded subset of X. Then we have the following

Corollary 10. Under the assumptions of Theorem 8, if DX
F ⊂ D then ADX

F
(t) ⊂ AD(t) for all t ∈ R.

Moreover if there exists T ∈ R such that
⋃

t≤T D0(t) is bounded in X, then ADX
F

(t) = AD(t) for all
t ≤ T.

Remark 11. If the problem considered guarantees uniqueness, then the associated process through the
solution operator becomes single-valued. Then the above results in this section can also be applied.
Actually they reduce in such case to standard results in autonomous (e.g. cf. [24]) and non-autonomous
(e.g. cf. [9, Section 3]) dynamical system theories.

4. Uniform Estimates and Attractors in H

In this section we study the asymptotic behavior of solutions to (1) analyzing the existence of the minimal
pullback attractors in the H-norm for various universes.

In what follows, we assume that p ≥ 1 + 2n/(n + 2) and that f ∈ Lp′

loc(R, V ∗
p ).

We denote by Ψ(τ, uτ ) the set of weak solutions to (1) in [τ,+∞) with initial datum uτ ∈ H. Theorem
2 on the existence of weak solutions to (1) guarantees that Ψ(τ, uτ ) is not empty. Moreover, we can define
a multi-valued map U : R

2
d × H → P(H) given by

U(t, τ)uτ = {u(t) : u ∈ Ψ(τ, uτ )}, uτ ∈ H, τ ≤ t.

Next result establishes that the multi-valued map is a strict multi-valued process which is a direct
consequence of the translation and concatenation properties of weak solutions.

Lemma 12. The multi-valued map U is a strict multi-valued process in H.

Compactness arguments show that the multi-valued process U is upper-semicontinuous with closed
values.
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Lemma 13. Let {um
τ } ⊂ H be a strongly convergent sequence to uτ in H. Then, for any sequence {um} ⊂

Ψ(τ, um
τ ) there exist a subsequence of {um} (relabeled the same) and u ∈ Ψ(τ, uτ ), such that

um(s) → u(s) strongly in H for any s ≥ τ. (7)

Proof. Consider any T > τ . Note that from the energy equality for (1), the coercivity of the stress tensor
S (3), and the Korn and Young inequalities, it follows that the sequence {um} is bounded in L∞(τ, T ;H)∩

Lp(τ, T ;Vp). Therefore, the sequence {∂um

∂t } is bounded in Lp′

(τ, T ;V ∗
p ). By the Aubin-Lions compactness

Lemma, there exist a subsequence of {um} (relabeled the same) and u ∈ L∞(τ, T ;H) ∩ Lp(τ, T ;Vp) with
∂u
∂t ∈ Lp′

(τ, T ;V ∗
p ) such that

um
∗
⇀ u weakly-star in L∞(τ, T ;H),

um ⇀ u weakly in Lp(τ, T ;Vp),

∂um

∂t
⇀

∂u

∂t
weakly in Lp′

(τ, T ;V ∗
p ),

um → u strongly in L2(τ, T ;H).

These convergences allow to pass to the limit in the weak formulation (4) by using the monotonicity of
S (this can be proved exactly as in [8, Theorem 7.4, p. 176]). Moreover, it is not difficult to check that
u(τ) = uτ . Consequently, u ∈ Ψ(τ, uτ ).

It remains to prove (7). Observe that {um} is equicontinuous in V ∗
p on [τ, T ] and that {um} is bounded

in C([τ, T ];H). Therefore, by the Arzelà-Ascoli Theorem, up to a subsequence, there follows that

um → u strongly in C([τ, T ];V ∗
p ).

Hence, by the boundedness of {um} in C([τ, T ];H) we conclude that

um(s) ⇀ u(s) weakly in H for any τ ≤ s ≤ T. (8)

Now, since the estimate

|z(r)|2 ≤ |z(s)|2 + 2

∫ r

s

〈f(θ), z(θ)〉dθ, τ ≤ s ≤ r ≤ T

holds for z = um and z = u, it follows that the functions Jm, J : [τ, T ] → R defined by

Jm(r) = |um(r)|2 − 2

∫ r

τ

〈f(θ), um(θ)〉dθ,

J(r) = |u(r)|2 − 2

∫ r

τ

〈f(θ), u(θ)〉dθ,

are non-increasing and continuous (in the class of weak solutions we are choosing the continuous repre-
sentatives in C([τ,∞);H), cf. Remark 3), and satisfy

Jm(r) → J(r) a.e. r ∈ (τ, T ).

To prove that Jm(r) → J(r) for any r ∈ [τ, T ] consider a fixed t∗ ∈ (τ, T ] and an increasing sequence
tk ↑ t∗ such that Jm(tk) → J(tk) for all k ≥ 1. Thus, for any ǫ > 0 there exist M, K > 0 such that

|J(tk) − J(t∗)| ≤
ǫ

2
for k ≥ K,

|Jm(tK) − J(tK)| ≤
ǫ

2
for m ≥ M.

Since Jm is a non-increasing function, we have that

Jm(t∗) − J(t∗) ≤ |Jm(tK) − J(tK)| + |J(tK) − J(t∗)| ≤ ǫ

for all m ≥ M , and consequently lim sup
m→∞

Jm(t∗) ≤ J(t∗). Taking into account that

∫ t∗

τ

〈f(θ), um(θ)〉dθ →

∫ t∗

τ

〈f(θ), u(θ)〉dθ,
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we deduce that lim sup
m→∞

|um(t∗)| ≤ |u(t∗)|. Hence, by the weak convergence (8) we conclude that (7) holds

for all s ∈ [τ, T ]. By taking increasing intervals and a diagonal argument we see that, for a suitable
subsequence, (7) holds true for any s ≥ τ . The proof is complete. �

As a direct consequence of the previous result we have that

Corollary 14. The multi-valued process U is upper-semicontinuous with closed values.

In the following we obtain the uniform estimates leading to the existence of absorbing families and to
the property of asymptotic compactness. Just for clarity in the exposition we split the case p > 2 from
the case p = 2.

Lemma 15. Consider p > 2. Then for any η > 0, there exist positive constants cν2,p and Ĉ1 such that
any weak solution to (1) satisfies

|u(t)|2 ≤ e−η(t−τ)|u(τ)|2 + cν2,p

∫ t

τ

e−η(t−s)‖f(s)‖p′

∗ ds +
Ĉ1

η
∀ t ≥ τ. (9)

Proof. From the energy equality for (1), the coercivity of the tensor S (3), and the Korn and Young
inequalities, there follows

1

2

d

dt
|u|2 +

c2ν1

c2
0

|∇u|2 +
c2ν2

c̃p
0

‖∇u‖p
p ≤

1

p′ǫp′
‖f‖p′

∗ +
ǫp

p
‖∇u‖p

p a.e. t > τ.

Choosing ǫp

p = c2ν2

2c̃p
0

and denoting cν2,p = 2
p′ǫp′ , after the Poincaré inequality

d

dt
|u|2 +

2c2ν1λ1

c2
0

|u|2 +
c2ν2

c̃p
0

‖∇u‖p
p ≤ cν2,p‖f‖p′

∗ a.e. t > τ. (10)

Since we aim to arrive at a similar expression in the LHS with η|u|2, we make the most of the Young
inequality and the remaining term ‖∇u‖p

p.

Namely we split in cases depending the value of η. Actually the only interesting case is η > 2c2ν1λ1c
−2
0 .

Denote 0 < β = η − 2c2ν1λ1

c2
0

. Consider also CI a constant of the embedding W 1,p
0 (Ω)n ⊂ L2(Ω)n, i.e.

|u| ≤ CI‖∇u‖p. Then the Young inequality yields

|u|2 ≤
γp/2

p/2
‖∇u‖p

p +
(p − 2)C

2p/(p−2)
I

pγp/(p−2)
.

Putting γp/2

p/2 = c2ν2

2c̃p
0β

we gain

β|u|2 ≤
c2ν2

2c̃p
0

‖∇u‖p
p + Ĉ1

where Ĉ1 =
(p−2)C

2p/(p−2)
I β

pγp/(p−2) . Then (10) reduces to

d

dt
|u|2 + η|u|2 +

c2ν2

2c̃p
0

‖∇u‖p
p ≤ cν2,p‖f‖p′

∗ + Ĉ1.

The case η ≤ 2c2ν1λ1c
−2
0 is simpler, and in any case the above inequality is valid.

Now it is standard multiplying by eηs and integrating in [τ, t] to arrive at (9). �

The case p = 2 is simpler, nevertheless we include it for the sake of completeness. Observe that from
(2), for p = 2 it holds that c2 = 1 and ν2 = 0 in (3).

Lemma 16. If p = 2, for any η ∈ (0, 2ν1λ1c
−2
0 ) there exists a positive constant β such that any weak

solution to (1) satisfies

|u(t)|2 ≤ e−η(t−τ)|u(τ)|2 +
λ1

β

∫ t

τ

e−η(t−s)‖f(s)‖2
∗ds ∀t ≥ τ. (11)
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Proof. The energy equality and the Korn inequality yield

d

dt
|u|2 +

2ν1

c2
0

|∇u|2 ≤ 2〈f, u〉 a.e. t > τ.

Fix a value η ∈ (0, 2ν1λ1c
−2
0 ). Arranging coefficients and using the Cauchy inequality in the RHS we

arrive at
d

dt
|u|2 +

η

λ1
|∇u|2 ≤

λ1

β
‖f‖2

∗ a.e. t > τ, (12)

where β := 2ν1λ1c
−2
0 − η > 0. By the Poincaré inequality, multiplying by eηs, and integrating in [τ, t],

(11) holds true. �

The above uniform estimates indicate what type of tempered condition should be involved in the
definition of suitable universes.

Definition 17. (Universes in H) For any σ > 0, we will denote by DH
σ the class of all families of nonempty

subsets D̂ = {D(t) : t ∈ R} ⊂ P(H) such that

lim
τ→−∞

eστ sup
v∈D(τ)

|v|2 = 0.

Observe that any DH
σ is inclusion-closed. From the tempered condition it holds that the universe of

fixed bounded sets satisfies DH
F ⊂ DH

σ .
To prove the existence of a pullback absorbing family, we introduce the class

Ip′

σ = {f ∈ Lp′

loc(R;V ∗
p ) :

∫ 0

−∞

eσs‖f(s)‖p′

∗ ds < ∞}.

From Lemmas 15 and 16 one deduces

Corollary 18. If there exists η > 0 (if p = 2, η ∈ (0, 2ν1λ1c
−2
0 )) such that f ∈ Ip′

η , then the dynamical

system U in H associated to the weak solutions of (1) has a pullback DH
η -absorbing family B̂0 = {B0(t) :

t ∈ R} ⊂ DH
η with B0(t) = BH(0,R(t)) where

R2(t) = 1 +
Ĉ1

η
+ cν2,pe

−ηt

∫ t

−∞

eηs‖f(s)‖p′

∗ ds if p > 2,

R2(t) = 1 +
λ1

β
e−ηt

∫ t

−∞

eηs‖f(s)‖2
∗ds if p = 2, (13)

being β = 2ν1λ1c
−2
0 − η.

Remark 19. Since Ip′

η ⊂ Ip′

σ for any σ ≥ η, the estimates leading to the previous result means that for

p > 2 any universe DH
σ (with σ ≥ η) will have an absorbing family through U. This will be completed

later in terms of existence of attractors (cf. Theorem 23 and Remarks 24 and 25). Actually, this is not
only valid for a bounded domain Ω but also for domains with finite measure (nevertheless the unbounded
case requires more technicalities). On the other hand, the case p = 2 is shown to require a smallness
condition.

To accomplish the existence of minimal pullback attractors, it remains to prove the pullback asymptotic
compactness. To this end, we establish some additional estimates. Again, we consider the cases p > 2 and
p = 2 separately.

Lemma 20. Consider p > 2 and suppose that there exists η > 0 such that f ∈ Ip′

η . Then for any t ∈ R

and D̂ ∈ DH
η , there exists τ1(D̂, t) < t − 3, such that for any τ ≤ τ1(D̂, t), uτ ∈ D(τ), and u ∈ Ψ(τ, uτ ),

it holds
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⎧
⎪⎨
⎪⎩

|u(r; τ, uτ )| ≤ ̺1(t) ∀ r ∈ [t − 3, t],
∫ r

r−1

‖∇u(s; τ, uτ )‖p
pds ≤ ̺2(t) ∀ r ∈ [t − 2, t],

where

̺2
1(t) = 1 +

Ĉ1

η
+ cν2,pe

η(3−t)

∫ t

−∞

eηs‖f(s)‖p′

∗ ds

and

̺2(t) =
c̃p
0

c2ν2
̺2
1(t) +

c̃p
0cν2,p

c2ν2

∫ t

t−3

‖f(s)‖p′

∗ ds.

Proof. Fix t ∈ R. The first inequality can be proved analogously to Corollary 18. Indeed, there exists

τ1(D̂, t) < t − 3 such that

e−η(t−τ)|uτ |2 ≤ 1 ∀τ ≤ τ1(D̂, t).

Therefore, it follows from (9) that

|u(r; τ, uτ )|2 ≤ ̺2
1(t) ∀ r ∈ [t − 3, t], τ ≤ τ1(D̂, t), uτ ∈ D(τ),

where ̺1 is given above.
Integrating (10) from r − 1 to r we arrive at

c2ν2

c̃p
0

∫ r

r−1

‖∇u(s)‖p
pds ≤ |u(r − 1)|2 + cν2,p

∫ r

r−1

‖f(s)‖p′

∗ ds

which finishes the proof. �

Lemma 21. Consider p = 2 and suppose that there exists η ∈ (0, 2ν1λ1c
−2
0 ) such that f ∈ I2

η . Then for

any t ∈ R and D̂ ∈ DH
η , there exists τ1(D̂, t) < t − 3, such that for any τ ≤ τ1(D̂, t), uτ ∈ D(τ), and

u ∈ Ψ(τ, uτ ), it holds
⎧
⎪⎨
⎪⎩

|u(r; τ, uτ )| ≤ ̺1(t) ∀ r ∈ [t − 3, t],
∫ r

r−1

|∇u(s; τ, uτ )|2ds ≤ ̺2(t) ∀ r ∈ [t − 2, t],

where

̺2
1(t) = 1 +

λ1

β
eη(3−t)

∫ t

−∞

eηs‖f(s)‖2
∗ds

and

̺2(t) =
λ1

η
̺2
1(t) +

λ2
1

βη

∫ t

t−3

‖f(s)‖2
∗ds.

Proof. The first inequality follows from (11) similarly to the proof of Corollary 18. To obtain the second
inequality, we integrate (12) from r − 1 to r

η

λ1

∫ r

r−1

|∇u(s)|2ds ≤ |u(r − 1)|2 +
λ1

β

∫ r

r−1

‖f(s)‖2
∗ds,

which furnishes the desired inequality. �

Now, we are able to prove the asymptotic compactness of the process. We proceed as in the proof of
Lemma 13 by using the continuous and non-increasing functions Jm and J .

Proposition 22. Consider p ≥ 2 and suppose that there exists η > 0 (for p = 2, η ∈ (0, 2ν1λ1c
−2
0 ))

such that f ∈ Ip′

η . Then, the process U is pullback B̂0-asymptotically compact, where B̂0 is the pullback

DH
η -absorbing family given in Corollary 18.
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Proof. We prove the result for p > 2, the case p = 2 is analogous. Fix t ∈ R and consider a sequence
τm ⊂ (−∞, t − 2] such that τm → −∞ and uτm

∈ B0(τm). We will prove that any sequence {vm}, where
vm ∈ U(t, τm)uτm

for all m, is relatively compact in H. We denote by um ∈ Ψ(τm, uτm
) a solution such

that um(t) = vm.

From Lemma 20 there exists τ1(B̂0, t) < t − 3 such that if τm < τ1(B̂0, t) for m ≥ m0(t), the
sequence {um} is bounded in L∞(t − 2, t;H) ∩ Lp(t − 2, t;Vp) for m ≥ m0(t). Hence, {∂um

∂t } is bounded

in Lp′

(t − 2, t;V ∗
p ). The Aubin-Lions compactness Theorem allows to conclude that there exists u ∈

L∞(t − 2, t;H) ∩ Lp(t − 2, t;Vp) with ∂u
∂t ∈ Lp′

(t − 2, t;V ∗
p ), such that, up to subsequences, the following

convergences hold

um
∗
⇀ u weakly-star in L∞(t − 2, t;H),

um ⇀ u weakly in Lp(t − 2, t;Vp),

∂um

∂t
⇀

∂u

∂t
weakly in Lp′

(t − 2, t;V ∗
p ),

um → u strongly in L2(t − 2, t;H),

um(s) → u(s) strongly in H a.e. s ∈ (t − 2, t).

Moreover, notice that u ∈ C([t − 2, t];H) and that u is a weak solution to (1) on (t − 2, t).

Let {tm} ⊂ [t − 2, t] be a sequence such that tm → t∗. Since {um(tm)} is bounded in H, there exists
v ∈ H such that um(tm) ⇀ v in H (up to subsequences). As in the proof of Lemma 13, by means of the
Arzelà-Ascoli Theorem, we can see, again up to subsequences, that

um → u strongly in C([t − 2, t];V ∗
p ).

Thus, v = u(t∗) and

um(tm) ⇀ u(t∗) in H. (14)

To finish it suffices to show that um → u strongly in C([t − 1, t];H). We argue by contradiction.
Assume that there exist ǫ > 0 and a sequence {tm} ⊂ [t − 1, t] with tm → t∗ for some t∗ such that

|um(tm) − u(t∗))| ≥ ǫ ∀m ≥ m0(t). (15)

In analogous way as in the proof in Lemma 13, we introduce the functions Jm, J : [t − 2, t] → R

defined by

Jm(r) = |um(r)|2 − 2

∫ r

t−2

〈f(θ), um(θ)〉dθ,

J(r) = |u(r)|2 − 2

∫ r

t−2

〈f(θ), u(θ)〉dθ,

which are non-increasing and continuous, and satisfy

Jm(r) → J(r) a.e. r ∈ (t − 2, t).

Let us fix ε > 0. Observe that t∗ ∈ [t−1, t] and therefore, from above and the continuity and non-increasing
character of J , there exists t − 2 < t̂ε < t∗ such that

lim
m→∞

Jm(t̂ε) = J(t̂ε), (16)

and

0 ≤ J(t̂ε) − J(t∗) ≤ ε.
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Since tm → t∗, there exists mε such that t̂ε < tm for all m ≥ mε. Then,

Jm(tm) − J(t∗) ≤ Jm(t̂ε) − J(t∗)

≤ |Jm(t̂ε) − J(t̂ε)| + |J(t̂ε) − J(t∗)|

≤ |Jm(t̂ε) − J(t̂ε)| + ε

for all m ≥ mε, and consequently, by (16), lim supm→∞ Jm(tm) ≤ J(t∗) + ε. Thus, as ε > 0 is arbitrary,
we deduce that

lim sup
m→∞

Jm(tm) ≤ J(t∗).

Taking into account that tm → t∗ and
∫ tm

t−2

〈f(θ), um(θ)〉dθ →

∫ t∗

t−2

〈f(θ), u(θ)〉dθ,

from above we deduce that lim supm→∞ |um(tm)| ≤ |u(t∗)|. This last inequality and (14) imply that
um(tm) → u(t∗) strongly in H, which contradicts (15). Hence, um → u in C([t − 1, t];H) which implies

that the multi-valued process U is pullback B̂0-asymptotically compact. �

We are now in position to establish the main result of this section.

Theorem 23. Consider p ≥ 2 and suppose that there exists η > 0 (for p = 2, η ∈ (0, 2ν1λ1c
−2
0 )) such that

f ∈ Ip′

η . Then, there exist the minimal pullback DH
F -attractor

ADH
F

= {ADH
F

(t) : t ∈ R},

and the minimal pullback DH
η -attractor

ADH
η

= {ADH
η

(t) : t ∈ R},

for the process U : Rd × H → P(H), and the following relation holds:

ADH
F

(t) ⊂ ADH
η

(t) ⊂ B0(t) ∀ t ∈ R. (17)

Moreover, if f ∈ Lp′

loc(R;V ∗
p ) satisfies

sup
s≤0

(
e−ηs

∫ s

−∞

eηr‖f(r)‖p′

∗ dr
)

< ∞, (18)

then

ADH
F

(t) = ADH
η

(t) ∀t ∈ R. (19)

Proof. Corollaries 14 and 18, and Proposition 22 guarantee that we can apply Theorem 8 to conclude
the existence of ADH

η
and ADH

F
.

The relationships established in (17) follow from Theorem 9 and Corollary 10.
Finally, the last statement is a consequence of the fact that for all T ∈ R,

⋃
t≤T B0(t) is a bounded

subset of H. Therefore, it follows from Corollary 10. �

Remark 24. It is not difficult to see that for any μ ≥ η > 0 the following two inclusions hold: Ip′

η ⊂ Ip′

μ

and DH
η ⊂ DH

μ . Hence, if f ∈ Lp′

loc(R;V ∗
p ) satisfies f ∈ Ip′

η for some η > 0, as a consequence of Theorem

23, the corresponding minimal pullback DH
μ −attractor ADH

µ
exists for any μ ∈ [η,+∞) (μ ∈ [η, 2ν1λ1c

−2
0 )

if p = 2) and ADH
η

(t) ⊂ ADH
µ

(t) for any t ∈ R.

Moreover, if f satisfies (18), then

sup
s≤0

(
e−μs

∫ s

−∞

eμr‖f(r)‖p′

∗ dr
)

< ∞ ∀μ ∈ [η,+∞).
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Therefore, by (19), we conclude that

ADH
F

(t) = ADH
η

(t) = ADH
µ

(t) ∀μ ∈ [η,+∞)
(
μ ∈ [η, 2ν1λ1c

−2
0 ) if p = 2

)
.

Remark 25. The existence of absorbing family for the case p > 2 requires the existence of η > 0 such
that f ∈ Ip′

η . Observe that this gives more generality than the case p = 2. Indeed, if such assumption is

satisfied for p > 2, then the associated process U on each universe DH
μ (μ ≥ η) possesses an attractor

ADH
µ

. According to Theorem 9, ADH
µ1

(t) ⊂ ADH
µ2

(t) for any t ∈ R for η ≤ μ1 ≤ μ2. This also improves the

corresponding results for the existence of pullback attractor for a p-Laplacian parabolic problem recently
established in [5].

5. Pullback Attractors in Vp

In this section, we will strengthen the main conclusion of the previous section, Theorem 23, in the sense
that we will show the existence of minimal pullback attractors in the Vp-norm. In addition, we will verify
that all these families of attractors are the same object under reasonable assumptions.

From now on, we assume that the tensor stress S has a potential, i.e., there exists a function Φ
satisfying (5). This assumption will allow to obtain some estimates for the time partial derivative of the
solution u. Moreover, in order to perform our analysis we consider

p ≥ 12/5 if n = 3 and p > 2 if n = 2.

This range of p guarantees that problem (1) has a unique weak solution with initial data in Vp, cf. [15,
Theorem 7.2] and [2, Theorems 3.2 and 3.3]. Hence we can define the process U on Vp, for each (t, τ) ∈ R

2
d.

Proposition 26. Let f ∈ L2
loc(R;L2(Ω)n). Then, the map U : R

2
d × Vp → Vp defined by U(t, τ)uτ =

u(t; τ, uτ ), where u is the unique weak solution to (1), is a closed process on Vp.

Proof. uτ ∈ Vp leads to the solution u ∈ C([τ, T ];H) ∩ L∞(τ, T ;Vp). By [1, Theorem 1.6] it follows that
u ∈ Cw((τ, T ];Vp). Hence, u(t) is defined on Vp, for each t ∈ (τ, T ]. Then the process U is well-defined on
Vp.

To see that the process is closed, let t ∈ R with τ < t be given and suppose that {uk
τ} is a sequence

in Vp with uk
τ → uτ in Vp, as k → ∞. Assume also that U(t, τ)uk

τ = u(t; τ ;uk
τ ) → v in Vp, as k → ∞.

We will show that, v = U(t, τ)uτ . Indeed, we know by (3.6) in [2] that U(t, τ)uk
τ → U(t, τ)uτ in H, as

k → ∞. Since Vp →֒ H, by the uniqueness of limit, there follows that v = U(t, τ)uτ . �

We next introduce the universes in Vp.

Definition 27. (Universes in Vp) For any σ > 0, we will denote by D
H,Vp
σ the class of all families D̂Vp

⊂

P(Vp) of the form D̂Vp
= {D(t) ∩ Vp : t ∈ R}, where D̂ = {D(t) : t ∈ R} ∈ DH

σ .

Accordingly, we will denote by D
Vp

F the class of all families D̂ = {D(t) = D : t ∈ R} with D a

fixed nonempty bounded subset of Vp. Observe that, for any σ > 0, D
Vp

F ⊂ D
H,Vp
σ and that D

H,Vp
σ is

inclusion-closed.
Notice that Lemma 15 entails the existence of a D

H,Vp
η -absorbing family.

Corollary 28. Assume that f ∈ L2
loc(R;L2(Ω)n) satisfies f ∈ Ip′

η for some η > 0. Then,

B̂0,Vp
= {B0,Vp

(t) = BH(0,R(t)) ∩ Vp : t ∈ R},

where R(t) is given in (13), belongs to D
H,Vp
η and satisfies that for any t ∈ R and any D̂ ∈ DH

η , there

exists τ(D̂, t) < t such that

U(t, τ)D(τ) ⊂ B0,Vp
(t) for all τ ≤ τ(D̂, t).

In particular, the family B̂0,Vp
is pullback D

H,Vp
η -absorbing for the process U : R

2
d × Vp → Vp.
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We next establish some uniform estimates in finite time-intervals when the initial time is shifted
pullback appropriately.

Lemma 29. Assume that f ∈ L2
loc(R;L2(Ω)n) satisfies f ∈ Ip′

η for some η > 0. Then, for any t ∈ R and

D̂ ∈ DH
η , there exists τ1(D̂, t) < t − 2 such that, for all τ ≤ τ1(D̂, t) and any uτ ∈ D(τ), it holds

‖u(r; τ, uτ )‖1,p ≤ ̺3(t) ∀ r ∈ [t − 2, t],
∫ r

r−1

∣∣∣
∂u

∂t
(θ; τ, uτ )

∣∣∣
2

dθ ≤ ̺4(t) ∀ r ∈ [t − 1, t], (20)

where

̺3(t) = max{ς1(t), ς2(t), ς3(t)} if n = 3, ̺3(t) = ς4(t) if n = 2,

with ςi(t), i = 1, . . . , 4 are given in (23), (25), (26), and (27) respectively, and

̺4(t) = 2c8(1 + (̺3(t))
p) + 2(̺3(t))

2ς5(t) + 2

∫ t

t−2

|f(θ)|2dθ

where ς5(t) is given in (28) if n = 3 or in (29) if n = 2.

Proof. The proof will be performed at level of the Galerkin approximations of the solution u (for short
we omit the subscript of the Galerkin approximation). In this way, ∂u

∂t can be taken as test function in
the weak formulation

∣∣∣
∂u

∂t

∣∣∣
2

+
d

dt

∫

Ω

Φ(Du)dx +
(
u · ∇u,

∂u

∂t

)
=

(
f,

∂u

∂t

)
,

where we have used that S has a potential.
By using Hölder and Young inequalities we have that

1

2

∣∣∣
∂u

∂t

∣∣∣
2

+
d

dt
‖Φ(Du)‖1 ≤ |f |2 + ‖u‖2

1,p‖u‖2
2p

p−2
. (21)

We notice that, from (6), there exist positive constants c7 and c8 such that

c7‖u‖p
1,p ≤ ‖Φ(Du)‖1 ≤ c8(1 + ‖u‖p

1,p). (22)

To estimate the RHS of (21), we split the proof into three cases: n = 3 with 12/5 ≤ p < 3, n = 3 with
p ≥ 3, and n = 2 with p > 2.

Case (i): n = 3 and 12/5 ≤ p < 3. By the interpolation inequality, it holds

‖u‖2
2p

p−2
≤ Ĉ‖u‖

12
5p−6

1,p |u|
2(5p−12)

5p−6 ,

where Ĉ is a constant that depends on Ω and p. Hence, by using (22), we can estimate

‖u‖2
1,p‖u‖2

2p
p−2

≤ Ĉ‖u‖p
1,p‖u‖

p(16−5p)
(5p−6)

1,p |u|
2(5p−12)
(5p−6)

≤
Ĉ

c7
‖Φ(Du)‖1‖u‖

p(16−5p)
(5p−6)

1,p |u|
2(5p−12)
(5p−6) .

By plugging this inequality into (21), we arrive at

d

dt
‖Φ(Du)‖1 ≤ |f |2 +

Ĉ

c7
‖Φ(Du)‖1‖u‖

p(16−5p)
(5p−6)

1,p |u|
2(5p−12)
(5p−6) .

By integrating in time from s to r, where r ∈ [t − 2, t] and s ∈ [r − 1, r], and applying the Gronwall
Lemma one has

‖Φ(Du(r))‖1 ≤
(
‖Φ(Du(s))‖1 +

∫ r

r−1

|f(θ)|2dθ
)

exp
( Ĉ

c7

∫ r

r−1

‖u(θ)‖
p(16−5p)
(5p−6)

1,p |u(θ)|
2(5p−12)
(5p−6) dθ

)
.
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Now, integrating in s from r − 1 to r yields

‖Φ(Du(r))‖1

≤
(∫ r

r−1

‖Φ(Du(s))‖1ds +

∫ r

r−1

|f(θ)|2dθ
)

exp
( Ĉ

c7

∫ r

r−1

‖u(θ)‖
p(16−5p)

5p−6

1,p |u(θ)|
2(5p−12)

5p−6 dθ
)
.

By (22) and Lemma 20 we deduce that

‖u(r; τ, uτ )‖1,p ≤ ς1(t),

for all r ∈ [t − 2, t], τ ≤ τ1(D̂, t), and uτ ∈ D(τ), where

ςp
1 (t) =

1

c7

[
c8

(
1 + ̺2(t)

)
+

∫ t

t−3

|f(θ)|2dθ
]
exp

( Ĉ

c7

(
̺1(t)

) 2(5p−12)
(5p−6)

(
̺2(t)

) 16−5p
5p−6

)
. (23)

Case (ii): n = 3 and p ≥ 3. Let C̃ be the constant of the embedding W 1,p(Ω)n →֒ L
2p

p−2 (Ω)n. From
(21) we have that

d

dt
‖Φ(Du)‖1 ≤ |f |2 + C̃2‖u‖4

1,p.

Let us denote U = 1 + ‖Φ(Du)‖1. Therefore, from (22) one has

d

dt
U ≤ |f |2 +

C̃2

c
4/p
7

U4/p. (24)

Now, if p ≥ 4, since U ≥ 1, then U4/p ≤ U . Hence,

d

dt
U ≤ |f |2 +

C̃2

c
4/p
7

U .

Integrating from s to r, with r ∈ [t − 2, t] and s ∈ [r − 1, r], there follows

U(r) ≤ U(s) +

∫ r

r−1

|f(θ)|2dθ +
C̃2

c
4/p
7

∫ r

r−1

U(θ)dθ.

Integrating again in s from r − 1 to r, we have that

U(r) ≤

∫ r

r−1

U(s)ds +

∫ r

r−1

|f(θ)|2dθ +
C̃2

c
4/p
7

∫ r

r−1

U(θ)dθ.

By (22) and Lemma 20 we find

‖u(r; τ, uτ )‖1,p ≤ ς2(t),

for all r ∈ [t − 2, t], τ ≤ τ1(D̂, t) and uτ ∈ D(τ), where

ςp
2 (t) =

1

c7

[(
1 +

C̃2

c
4/p
7

)(
1 + c8

(
1 + ̺2(t)

))
+

∫ t

t−3

|f(θ)|2dθ
]
. (25)

If 3 ≤ p < 4, let us consider γ = 2p−4
p . Observe that γ ∈ [23 , 1). Multiplying (24) by Uγ−1 we obtain

that

1

γ

d

dt

(
Uγ

)
≤ |f |2Uγ−1 +

C̃2

c
4/p
7

U ≤ |f |2 +
C̃2

c
4/p
7

U ,

since Uγ−1 ≤ 1. Similarly as before, integrating twice, we arrive at

1

γ
Uγ(r) ≤

( 1

γ
+

C̃2

c
4/p
7

)∫ r

r−1

U(s)ds +

∫ t

t−3

|f(θ)|2dθ,



30 Page 16 of 20 H. L. López-Lázaro et al. JMFM

for all r ∈ [t − 2, t]. We conclude from Lemma 20 using (22) that

‖u(r; τ, uτ )‖1,p ≤ ς3(t),

for all r ∈ [t − 2, t], τ ≤ τ1(D̂, t), and uτ ∈ D(τ), where

ςp
3 (t) =

1

c7

(
γ
[( 1

γ
+

C̃2

c
4/p
7

)(
1 + c8

(
1 + ̺2(t)

))
+

∫ t

t−3

|f(θ)|2dθ
]) 1

γ

. (26)

Case (iii): n = 2 and p > 2. Observe that 2p
p−2 > 2. Then, by the interpolation inequality,

‖u‖2
2p

p−2
≤ Cp|∇u|

4
p |u|

2(p−2)
p ≤ C‖u‖

4
p

1,p|u|
2(p−2)

p .

Integrating (21) from s to r, where r ∈ [t − 2, t] and s ∈ [r − 1, r],

‖Φ(Du(r))‖1 ≤ ‖Φ(Du(s))‖1 +

∫ r

r−1

|f(θ)|2dθ + C

∫ r

r−1

‖u(θ)‖
4+2p

p

1,p |u(θ)|
2(p−2)

p dθ.

Integrating in s from r−1 to r and, similarly as before, by using Lemma 20 and inequality (22) we arrive
at

‖u(r; τ, uτ )‖1,p ≤ ς4(t),

for all r ∈ [t − 2, t], τ ≤ τ1(D̂, t) and uτ ∈ D(τ), where

ςp
4 (t) =

1

c7

(
c8(1 + ̺2(t)) + C(̺1(t))

2(p−2)
p (̺2(t))

4+2p

p2 +

∫ t

t−3

|f(θ)|2dθ
)
. (27)

Hence, (20) is proved.
Finally, integrating (21) from r − 1 to r with r ∈ [t − 1, t], and using (20) and (22),

∫ r

r−1

∣∣∣
∂u

∂t
(θ)

∣∣∣
2

dθ ≤ 2‖Φ(Du(r − 1))‖1 + 2

∫ r

r−1

|f(θ)|2dθ + 2

∫ r

r−1

‖u(θ)‖2
1,p‖u(θ)‖2

2p
p−2

dθ

≤ 2c8

(
1 + (̺3(t))

p
)

+ 2

∫ t

t−2

|f(θ)|2dθ + 2(̺3(t))
2

∫ r

r−1

‖u(θ)‖2
2p

p−2
dθ.

By using interpolation as in the previous cases, we can estimate

‖u(θ)‖2
2p

p−2
≤ ς5(t) = max{Ĉ(̺3(t))

12
5p−6 (̺1(t))

2(5p−12)
5p−6 , C̃2(̺3(t))

2} if n = 3 (28)

and

‖u(θ)‖2
2p

p−2

≤ ς5(t) = C(̺3(t))
4
p (̺1(t))

2(p−2)
2 if n = 2. (29)

In this way, we deduce that
∫ r

r−1

∣∣∣
∂u

∂t
(θ; τ, uτ )

∣∣∣
2

dθ ≤ ̺4(t)

for all r ∈ [t − 1, t], τ ≤ τ1(D̂, t), and uτ ∈ D(τ), where ̺4 is given in the statement. This finishes the
proof. �

We make a further estimate for the time partial derivative ∂u
∂t of the solution. To this end we require

more regularity on the external force.

Lemma 30. Assume that f ∈ W 1,2
loc (R;L2(Ω)n) satisfies f ∈ Ip′

η for some η > 0. Then, for any t ∈ R and

D̂ ∈ DH
η , there exists τ1(D̂, t) < t − 2, such that for all τ ≤ τ1(D̂, t) and any uτ ∈ D(τ), it holds

∣∣∣
∂u

∂t
(r; τ, uτ )

∣∣∣ ≤ ̺5(t) ∀ r ∈ [t − 1, t],
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where

̺2
5(t) = ̺4(t)

[
2 + C

(
̺3(t)

) 2p
2p−3

]
+

∫ t

t−2

∣∣∣
∂f

∂t
(θ)

∣∣∣
2

dθ if n = 3,

and

̺2
5(t) = ̺4(t)

[
2 + C

(
̺3(t)

) p
p−1

]
+

∫ t

t−2

∣∣∣
∂f

∂t
(θ)

∣∣∣
2

dθ if n = 2,

being C = C(p, ν1, c0, Ĉ).

Proof. We will make formal computations that can be justified by using the Galerkin approximations of
the solution u. By differentiating in time the first equation in (1), we have

∂2u

∂t2
− div

(
∂2

DΦ(Du)D
(∂u

∂t

))
+ div

(∂u

∂t
⊗ u + u ⊗

∂u

∂t

)
+ ∇

(∂p

∂t

)
=

∂f

∂t
.

Multiplying by ∂u
∂t and integrating over Ω, we obtain that

1

2

d

dt

∣∣∣∣
∂u

∂t

∣∣∣∣
2

+

∫

Ω

∂2
DΦ(Du)D

(∂u

∂t

)
: D

(∂u

∂t

)
dx +

∫

Ω

(∂u

∂t
⊗

∂u

∂t

)
: ∇udx =

(∂f

∂t
,
∂u

∂t

)
,

where we have used that div
(

∂u
∂t

)
= 0.

Bu using the properties of Φ (5) and the Hölder inequality, there follows

1

2

d

dt

∣∣∣
∂u

∂t

∣∣∣
2

+ ν1

∫

Ω

(1 + μ|Du|)p−2
∣∣∣D

(∂u

∂t

)∣∣∣
2

dx ≤
1

2

∣∣∣
∂f

∂t

∣∣∣
2

+
1

2

∣∣∣
∂u

∂t

∣∣∣
2

+ ‖u‖1,p

∥∥∥
∂u

∂t

∥∥∥
2

2p′

. (30)

Observe that, by the Korn inequality,

1

c2
0

∥∥∥
∂u

∂t

∥∥∥
2

1,2
≤

∫

Ω

∣∣∣D
(∂u

∂t

)∣∣∣
2

dx ≤

∫

Ω

(1 + μ|Du|)p−2
∣∣∣D

(∂u

∂t

)∣∣∣
2

dx

and that, by the interpolation inequality, we have that
∥∥∥

∂u

∂t

∥∥∥
2

2p′

≤ Ĉ
∣∣∣
∂u

∂t

∣∣∣
2p−3

p
∥∥∥

∂u

∂t

∥∥∥
3
p

1,2
if n = 3

and
∥∥∥

∂u

∂t

∥∥∥
2

2p′

≤ Ĉ
∣∣∣
∂u

∂t

∣∣∣
2(p−1)

p
∥∥∥

∂u

∂t

∥∥∥
2
p

1,2
if n = 2.

By using the Hölder and Young inequalities in (30) we arrive at

d

dt

∣∣∣
∂u

∂t

∣∣∣
2

+
ν1

c2
0

∥∥∥
∂u

∂t

∥∥∥
2

1,2
≤

∣∣∣
∂f

∂t

∣∣∣
2

+
∣∣∣
∂u

∂t

∣∣∣
2

+ C‖u‖
2p

2p−3

1,p

∣∣∣
∂u

∂t

∣∣∣
2

if n = 3

and
d

dt

∣∣∣
∂u

∂t

∣∣∣
2

+
ν1

c2
0

∥∥∥
∂u

∂t

∥∥∥
2

1,2
≤

∣∣∣
∂f

∂t

∣∣∣
2

+
∣∣∣
∂u

∂t

∣∣∣
2

+ C‖u‖
p

p−1

1,p

∣∣∣
∂u

∂t

∣∣∣
2

if n = 2,

where C = C(p, ν1, c0, Ĉ).
Integrating first from s to r, with s ∈ [r − 1, r] and then integrating in s from r − 1 to r,

∣∣∣
∂u

∂t
(r)

∣∣∣
2

≤ 2

∫ r

r−1

∣∣∣
∂u

∂t
(s)

∣∣∣
2

ds +

∫ r

r−1

∣∣∣
∂f

∂t
(θ)

∣∣∣
2

dθ + C

∫ r

r−1

‖u(θ)‖
2p

2p−3

1,p

∣∣∣
∂u

∂t
(θ)

∣∣∣
2

dθ,

for n = 3 and similarly for n = 2. The conclusion follows from Lemma 29. �

To prove the pullback asymptotic compactness in Vp we follow some ideas used in [26] for the semigroup
of the p-Laplacian equation.

Proposition 31. Assume that f ∈ W 1,2
loc (R;L2(Ω)n) satisfies f ∈ Ip′

η for some η > 0. Then, the process U

is pullback D
H,Vp
η -asymptotically compact.
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Proof. Let D̂ ∈ D
H,Vp
η and t ∈ R be given. Let um(t) = U(t, τm)uτm

be the unique weak solution to (1),
where uτm

∈ D(τm) for each m ∈ N and τm → −∞. From Lemma 29, we know that {um(t)} is relatively
compact in H. Without loss of generality, we can assume that {um(t)} is a Cauchy sequence in H. In
what follows, we prove that {um(t)} is a Cauchy sequence in Vp.

We first observe that, from the p-coercivity of S (2) and the Korn inequality,

ν1μ
p−2

c̃p
0

‖u − v‖p
1,p ≤

(
S(Du) − S(Dv), Du − Dv

)

for all u, v ∈ Vp.
Therefore, by Lemmas 29 and 30, we have that

ν1μ
p−2

c̃p
0

‖uk − ul‖
p
1,p ≤

(
S(Duk) − S(Dul), Duk − Dul

)

= −
(∂uk

∂t
−

∂ul

∂t
, uk − ul

)
+

((
uk ⊗ uk − ul ⊗ ul

)
,∇(uk − ul)

)

≤
∣∣∣
∂uk

∂t
−

∂ul

∂t

∣∣∣|uk − ul| + ‖uk‖1,p‖uk − ul‖
2
2p′

≤ 2̺5(t)|uk − ul| + ̺3(t)‖uk − ul‖
2
2p′ .

Lemma 29 and the interpolation inequality, for n = 3, give us

‖uk − ul‖
2
2p′ ≤ Ĉ|uk − ul|

2p−3
p ‖uk − ul‖

3
p

1,2

≤ Ĉp|uk − ul|
2p−3

p 2(̺3(t))
3
p

and, for n = 2,

‖uk − ul‖
2
2p′ ≤ Ĉ|uk − ul|

2(p−1)
p ‖uk − ul‖

2
p

1,2

≤ Ĉp|uk − ul|
2(p−1)

p (̺3(t))
2
p .

Plugging these estimates into the previous one completes the proof. �

We are able to obtain the existence of minimal pullback attractors for the process U in Vp.

Theorem 32. Assume that f ∈ W 1,2
loc (R;L2(Ω)n) satisfies f ∈ Ip′

η for some η > 0. Then, there exist the

minimal pullback D
Vp

F -attractor A
D

Vp
F

= {A
D

Vp
F

(t) : t ∈ R} and the minimal pullback D
H,Vp
η -attractor

A
D

H,Vp
η

= {A
D

H,Vp
η

(t) : t ∈ R} for the closed process U : R
2
d × Vp → Vp. The minimal pullback D

H,Vp
η -

attractor belongs to D
H,Vp
η and the following relationships hold

A
D

Vp
F

(t) ⊂ ADH
F

(t) ⊂ ADH
η

(t) = A
D

H,Vp
η

(t) ∀t ∈ R, (31)

where ADH
F

and ADH
η

are the minimal pullback DH
F -attractor and the minimal pullback DH

η -attractor,

respectively, for the process U : R
2
d × H → H, whose existence is guaranteed by Theorem 23.

Finally, if f ∈ Ip′

η satisfies (18), then all the above inclusions are actually equalities.

Proof. The existence of the pullback attractor for the closed process U on Vp, in the universe D
H,Vp
η , follows

from Theorem 8, Corollary 28, Proposition 31, and Remark 11. The existence of pullback attractor in

the universe D
Vp

F with the inclusion (31) is given by Corollary 10 and Theorem 9. The last assessment is
a consequence of Corollary 10. �

Remark 33. By (31), in particular, the following pullback attraction result in Vp holds

lim
τ→−∞

distVp
(U(t, τ)D(τ),ADH

η
(t)) = 0 for all t ∈ R and any D̂ ∈ DH

η ,
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and, if f satisfies (18), then

lim
τ→−∞

distVp
(U(t, τ)D,ADH

F
(t)) = 0 for all t ∈ R and any D ∈ DH

F .

Taking into account Remarks 24 and 25, since all throughout this section p > 2, we conclude

Corollary 34. Under the assumptions of Theorem 32, there exists pullback D
H,Vp
μ -attractors A

D
H,Vp
µ

⊂

D
H,Vp
μ for any μ ≥ η, and analogous relationships as in Theorem 32 hold. Moreover, their time-sections

satisfy A
D

H,Vp
µ1

(t) ⊂ A
D

H,Vp
µ2

(t) for any t ∈ R and η ≤ μ1 ≤ μ2.
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