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Resumo

Nesta tese, tratamos de problemas de conectividade de pares em grafos, cuja entrada
inclui um conjunto de pares de vértices, chamados de demandas, e uma solução consiste
de alguma estrutura conectando as demandas. Estudamos os problemas do ponto de
vista de algoritmos de aproximação e parametrizados, que são combinados para superar
barreiras advindas do uso de cada estratégia separadamente. Os resultados utilizam tanto
técnicas existentes, como programação dinâmica sobre decomposição em árvores, como
novas técnicas que podem ser generalizadas para problemas relacionados.

No Star k-Hub Center (SkHC), recebemos um grafo com um vértice central e um
inteiro k e a tarefa é selecionar k vértices, chamados de terminais, e atribuir cada vértice a
um terminal. O objetivo é minimizar o comprimento do maior caminho que conecta cada
par de vértices e passa pelo centro e terminais atribuídos. Iniciamos o estudo do SkHC
na área de complexidade parametrizada, derivando os primeiros resultados de dificuldade
em parâmetros estruturais e apresentando um algoritmo de aproximação parametrizado
pela treewidth, isto é, um algoritmo que executa em tempo O∗((tw/ε)O(tw)) e produz uma
solução com fator 1 + ε do valor ótimo.

No Multiple Allocation k-Hub Center (MAkHC), recebemos um grafo cujos
vértices são clientes ou terminais, um conjunto de demandas composto por pares de clien-
tes e um inteiro k. O objetivo é selecionar k terminais, minimizando o maior caminho que
conecta os vértices de uma demanda passando pelo terminal associado. Também damos
início ao estudo deste problema sob as lentes de complexidade parametrizada, fornecendo
limitantes inferiores de aproximação e uma redução que elimina a possibilidade de exis-
tência de algoritmos com outros parâmetros. O resultado principal para o MAkHC é
uma (2 + ε)-aproximação parametrizada pela treewidth, usando técnicas que removem a
dependência de outros parâmetros e lidam com o conjunto de demandas arbitrário.

No Spanning Tree-Star (STS), temos um grafo com duas funções de custos nas
arestas e uma solução é um subgrafo conexo gerador. O objetivo é minimizar a soma dos
custos das arestas da solução, onde arestas pendantes e não pendantes são precificadas
distintamente. Também consideramos variantes do STS em que as arestas não pendantes
induzam um caminho ou um ciclo. Apresentamos algoritmos para o STS e variantes, pa-
rametrizados por treewidth ou pathwidth, que executam em tempo com expoente simples.
Estes resultados usam rank-based approach e aplicam uma nova modelagem de rótulos.



Abstract

In this thesis, we deal with a series of pair connectivity problems in graphs, whose in-
put includes a set of pairs of vertices, called demands, and a solution consists of some
structure connecting the demands. The problems are studied from the point of view of
approximation and parameterized algorithms, which are combined to overcome hardness
barriers coming from using each approach separately. Our results leverage both existing
ideas, such as frameworks for dynamic programming over a tree decomposition, and novel
techniques that generalize to related problems.

In the Star k-Hub Center (SkHC), we are given a graph with a special center vertex
and an integer k, and the task is to select a set of k vertices, called hubs, so that each
vertex is connected to one hub. The goal is to minimize the length of the longest path
connecting each pair of vertices through the center and assigned hubs. We initiate the
study of parameterized algorithms for SkHC, giving the first hardness results on structural
graph parameters and presenting an efficient parameterized approximation scheme with
treewidth as parameter, that is, an algorithm that runs in time O∗((tw/ε)O(tw)) and
produces a solution whose cost is within a factor 1 + ε of the optimal value.

In the Multiple Allocation k-Hub Center (MAkHC), we are given a graph,
whose vertices can be clients or hub locations, a set of demands composed by pairs of
clients and an integer k. The task is to select k vertices minimizing the length of the
longest path connecting the vertices of a demand through the assigned hub. We also
initiate the study of this problem under the lens of parameterized complexity, giving
inapproximability lower bounds and a reduction that rules out algorithms for several
parameters. Our main result for MAkHC is a (2+ ε)-approximation parameterized by the
treewidth of the graph, using techniques to remove dependency on extra parameters and
to deal with arbitrary sets of demands.

In the Spanning Tree-Star (STS), we are given a graph with two edge-cost func-
tions, and a solution is a spanning connected subgraph. The goal is to minimize the sum
of the edge costs in a solution, where pendant and non-pendant edges are charged dif-
ferently. We also consider variants of STS where non-pendant edges of a solution induce
a path or a cycle. We give improved algorithms for STS and variants, parameterized
by treewidth or pathwidth, running in single-exponential time. These results rely on
rank-based techniques and a new flexible label modeling of the problems.
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Chapter 1

Introduction

Computing is ubiquitous in our world: it is present in interactions between people, every-
day financial transactions, going from one place to another and getting the latest news, all
happening instantly. This is the result of the hard work done by our society throughout
generations, researching, building and being curious about difficult matters. Algorithms
are no different, and our understanding about them and their surrounding problems is
always evolving.

The concept of an algorithm has been around for more than two thousand years,
describing mathematical procedures such as performing division and finding the greatest
common divisor or primes [40]. The last centuries were marked by an effort of building
the first computational machines and laying the theoretical foundation of algorithms, that
concerned on whether a procedure is correct [60]. As soon as people were able to specify
programs and actually run them in early computers, we had algorithms to solve some of
the world’s problems. When practitioners were content with the elapsed time to obtain an
output, the algorithm was deemed fast ; the others would be classified as slow, especially
when they demanded a very long time to solve even the simplest instances. For many
such problems, eventually a new algorithm that is fast would appear and replace the slow
one. However, there are a few hard problems for which no fast algorithm was discovered
and, up to this day, no one knows how to solve them efficiently.

The need to formalize these notions gave rise to the complexity theory, which studies
the resources required to solve a given computational problem, mostly time and space.
We say that a decision problem belongs to P if there is an efficient (polynomial-time)
algorithm to solve it, and problems in NP are those that can be efficiently verified by a
non-deterministic Turing machine. A problem P is NP-hard if, for every problem in NP,
there is a polynomial-time reduction to P , and, if P is also in NP, then it is called
NP-complete [91]. Cook and Levin laid the foundation by showing that the satisfiability
problem is NP-complete [52, 125]; Karp followed by giving 21 others [109].

When deciding whether a problem is tractable, there are many adjacent questions.
The main underlying question is “what is the fastest algorithm to solve it?”. It turns out
that such a simple question might be too hard to answer, or might not give sufficient
information about the problem in practice. For one, if the considered problem is of the
optimization kind, when instances admit distinct solutions that can be ranked, a better
question would be “how well can we solve the problem efficiently?”. For other, if we
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insist in finding an optimal solution, but the considered instances are restricted to some
fixed subset, a more suitable question would be “which groups of instances can be solved
efficiently?”.

In this thesis, we are interested in combinatorial optimization problems, whose sets
of feasible solutions are finite, oftentimes exponentially large in the input size. Each
solution maps to a real value according to some given function, and the objective is to
find an element that minimizes or maximizes this function. Ideally, one desires to find an
algorithm that gives the best solution and runs in a reasonable amount of time, being it
seconds or weeks, depending on the application. It turns out that the decision versions of
many optimization problems are NP-hard, which is evidence that no efficient algorithms
to solve them exist [53].

One example is a clustering algorithm that groups objects based on similarity for
a given number of wanted clusters, and can be used, for example, as a subroutine of
a machine learning system [146]. In such an application, an algorithm could be invoked
thousands of times during a regular execution, thus it must run in a very short time frame
to produce fairly good solutions. Now, consider the application of establishing emergency
service facilities, such as fire stations, that must cover a city so that the response time
is acceptable for every neighborhood. A procedure to solve this problem can afford a
much higher running time, since it can be the difference of building fewer (prohibitively
expensive) stations or better covering the city, reducing the response time.

The previous problems can be modeled as variants of k-Center [62, 130], which is
a classical location problem recollected in this thesis. Although both examples share the
same underlying basic problem, for the first, one might give up finding optimal solu-
tions, while, for the second, the interest is in optimal solutions only. This highlights the
importance of knowing and using distinct algorithm design strategies depending on the
circumstance.

1.1 Investigated problems and motivation

Location theory deals with the spatial interaction of various objects, subject to diverse
constraints, such as capacities, connectivity requirements, network topologies and ro-
bustness in the face of uncertainty [135, 70]. Many of these combinatorial optimization
problems are centered on connecting pairs of objects through a network, so their demands
are satisfied. For example, in the family of hub location problems, pairs of clients need to
be connected through a hub network that routes all communications or products. Given
clients and possible hub locations, a solution is a subset of open hubs and an assignment
of clients to open hubs, respecting the constraints imposed beforehand. Amongst the
modeled scenarios, we have delivery systems [107, 160], public transportation [93] and
commercial aviation of civilians and cargo [39, 108].

Various hub location problems have emerged through the years, differing on the so-
lution domain, whether it is discrete or continuous; on the number of hub stops serving
each demand; on the number of selected hubs, and so on [4, 73]. Central to this classi-
fication is the nature of the objective function: for median problems, the objective is to
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minimize the total length of the paths serving the demands, while, for center problems,
the objective is to find a solution whose maximum length is minimum. We are interested
in two center problems within this family.

In the Star k-Hub Center (SkHC), we are given a graph with a special center
vertex and an integer k, and the task is to select a set of k vertices, called hubs, and
assign each vertex to exactly one hub, so that we minimize the length of the longest path
that connects a pair of vertices through the center and assigned hubs. This models a two-
level hub system, since a path between vertices that are assigned to distinct hubs needs
to pass through the center vertex, while a path between vertices assigned to the same hub
needs to pass only through the hub itself. Note that every vertex, but the center, can be
chosen as a hub, and the set of demands is not dependent on the input, that is, every
vertex must be connected to each other.

In the Multiple Allocation k-Hub Center (MAkHC), we are given a graph
whose vertices can be clients or hub locations, a set of demands composed by pairs of
clients and an integer k, and the task is to select a set of k hubs among the hub locations
so that each demand is assigned to a hub. The goal is to minimize the length of the
longest path connecting the vertices of a demand through the assigned hub. This problem
concerns with the one-stop model [105, 166], in which a demand uses only one hub to be
satisfied, and thus the length of a path is the sum of the distances between each client
and the selected hub. Note that a client may be assigned to multiple hubs for distinct
demands, and the set of demands that must be satisfied is given by the input.

Although both problems belong to the same family, they pose different challenges. The
first takes place in a particular type of network, where every vertex is assigned to exactly
one hub and the path between two vertices depend on which hubs they are assigned to.
The second has no additional constraints on the network and receives an arbitrary set of
demands, but each client can be connected to multiple hubs and the path of a demand
uses only one hub.

We are also interested in another family of network design problems modeling trans-
portation and telecommunication systems [2, 118, 10]. In such problems, each vertex
must either be internal, connected to a high capacity but expensive backbone, or be con-
nected directly to an internal vertex. In the Spanning Tree-Star (STS), the input
is a graph and two edge-cost functions, and a solution is a connected subgraph, whose
internal vertices induce a tree. The goal is to minimize the sum of edge costs, where the
function used to charge an edge depends on whether both endpoints are internal. Other
variants consist of finding minimum-cost connected spanning subgraphs in which internal
vertices induce a path or a cycle, namely, Spanning Path-Star (SPS) and Spanning
Cycle-Star (SCS).

These are some problems that match our framework of pair connectivity in the lo-
cation theory literature. As we have seen, these families of problems are recurrent in
practice, and since they are composed by NP-hard problems, researchers do not hope to
find efficient algorithms that solve each and every instance. Then, we turn to alternative
techniques to solve them in some scenarios. Specifically, we are interested in approxima-
tion and parameterized algorithms. Moreover, we study the recent trend of combining
both techniques [69, 134, 1, 111].
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Approximation algorithms find (possibly) non-optimal solutions with guaranteed qual-
ity in polynomial time, whereas parameterized algorithms solve the problem exactly, but
might have non-polynomial factors in their running time, depending on a fixed parameter.
A parameterized approximation algorithm finds a solution with guaranteed quality, as an
approximation algorithm, and has a bounded running time, as a parameterized algorithm.
This approach is used mainly when neither technique applied separately is satisfactory.
In this thesis, we investigate these types of algorithms for pair connectivity problems and,
alongside obtaining algorithmic results, we also study the intrinsic difficulty of problems,
that, above all, help us guide the search for an adequate solution method.

An important topic we discuss is the notion of treewidth, that captures the tree-
likeness of a graph by means of a structural decomposition, i.e., a tree decomposition.
Given its versatility and expressiveness, treewidth is extensively used in parameterized
algorithms as a parameter. A small value indicates the input graph is close to a tree,
and thus the algorithm may run faster on these instances. This concept aligns perfectly
with dynamic programming algorithms, where a global solution is obtained by considering
solutions for smaller problems that are reused multiple times. We apply the technique of
dynamic programming over a tree decomposition to all problems we investigate, together
with some consolidated approaches and novel ideas.

1.2 Results and thesis organization

In the following, we state our main results for the presented problems. These are thor-
oughly investigated in individual chapters, each containing the related works and a com-
plete exposition of results and techniques. Chapter 2 presents common basic concepts
and definitions that are used in the subsequent chapters, on which we build our results.

Chapter 3 is dedicated to SkHC. We initiate the parameterized study of the problem,
showing that it is W[1]-hard when the parameter is the combination of the vertex cover
number of the graph and the number of hubs, and that there is no parameterized (1.25−ε)-
approximation algorithm when the parameter is the number of hubs, for ε > 0. The first
positive result is an algorithm parameterized by tw and r, the treewidth of the graph and
the cost of the solution, that either produces a solution for SkHC of size k and value at
most r, or decides that no such solution exists. Actually, this algorithm solves a slightly
modified problem with a dynamic programming formulation, which we show to translate
to an algorithm for SkHC. Building on this result, we give an efficient parameterized
approximation scheme with parameter tw, that is, an algorithm that finds a solution with
k hubs and value at most (1 + ε)r, or concludes that every solution has value greater
than r. The main ingredient to achieve this improvement is storing the distances in an
approximate fashion, and showing that the final value has bounded error, when compared
to the exact value.

Chapter 4 is dedicated to MAkHC. We also initiate the parameterized study of this
problem, showing that, for ε > 0, there is no parameterized (3 − ε)-approximation when
the parameter is the number of hubs, the cost of the solution is bounded by a constant and
the graph is unweighted, unless FPT = W[2]. It is also hard to find a good constant-factor
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approximation when the graph is planar, as we show it is NP-hard to obtain a (3 − ε)-
approximation for MAkHC, even if the maximum degree is 3. Aiming for a different
set of parameters, we show that, unless FPT = W[1], the problem does not admit an
algorithm parameterized by the number of hubs, the highway and skeleton dimensions
and the pathwidth of the graph, even constrained to a specific type of graph, or when
parameterized by the number of hubs and the vertex cover of the graph. Our main result
for this problem is a (2 + ε)-approximation parameterized by the treewidth of the graph,
in which we combine ideas from a classical algorithm in location theory, a framework
that reduces the size of the dynamic programming table and a technique we devise to
deal with the generic set of demands, given as input. An additional algorithm is given
for unweighted planar graphs, with the number of hubs and the cost of the solution as
parameters, achieving a similar approximation.

Chapter 5 is dedicated to STS and variants. We provide the first single-exponential
time algorithm for STS, parameterized by either the pathwidth or the treewidth of the
graph, running in O∗(41.7pw) and O∗(43.5tw), respectively. This result relies on the rank-
based approach and our label modeling of the problem, that we believe can be used in
other connectivity problems. The algorithm is then a combination of a dynamic program-
ming formulation and a subroutine from the rank-based approach that removes redundant
partial solutions from the table in each step, with no damage to the optimal solution. On
the hardness side, we prove that there is no algorithm solving STS in time O∗((4− ε)pw),
for ε > 0, and that a similar algorithm parameterized by clique-width is unlikely. Analo-
gous results are also given for SPS and SCS, the path and cycle variants.

Chapter 6 brings our final remarks.

Publications The following papers were published as a result of this thesis:

• “An efficient parameterized approximation scheme for the Star k-Hub Center” in the
Latin and American Algorithms, Graphs and Optimization Symposium [16].

• “A Parameterized Approximation Algorithm for the Multiple Allocation k-Hub Cen-
ter” in the Latin American Symposium on Theoretical Informatics [14].
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Chapter 2

Preliminaries

A problem in the field of combinatorial optimization is composed of a set of instances,
a set of feasible solutions, a function that maps solutions to values and a goal, either
minimizing or maximizing this value [117]. The complexity of these problems is usually
studied by considering their decision versions, where the question is whether there exists
a solution of a given value. We introduce some of the complexity classes of combinatorial
optimization.

A decision problem is in P (polynomial time) if there exists an algorithm that solves
the problem and runs in polynomial time. The class NP (non-deterministic polynomial
time) contains the decision problems that can be solved by a non-deterministic Turing
machine in polynomial time or verified by a deterministic Turing machine in polynomial
time. For decision problems P and P ′, a polynomial-time reduction1 from P to P ′ is a
polynomial-time mapping of each instance of P to an instance of P ′, such that a Yes-
instance of P is mapped to a Yes-instance of P ′, and a No-instance of P is mapped to
a No-instance of P ′. Then, an algorithm for P ′ can be used to solve P , and thus the
latter is no harder to solve than the former. A problem is NP-hard if every problem from
NP can be reduced to it in polynomial time. This implies that, if there exists an efficient
algorithm to solve any NP-hard problem, one can use it to solve all the problems in NP in
polynomial time. Problems both in NP and NP-hard are called NP-complete. A detailed
guide to these classes is given in [91].

The presented complexity classes are the foundation of many fields. One of the most
important unsolved problem in Computer Science is determining the relationship between
these classes, coined the P versus NP problem. The debate is whether the class of prob-
lems that can be efficiently verified is the same as the class of problems that can be
efficiently solved, and the prevailing opinion amongst researchers is that P 6= NP [98].
Figure 2.1 relates the complexity classes, considering P 6= NP. Under this assumption,
NP-hard problems are, in fact, intractable and thus we need alternative ways2 to tackle
these problems, other than polynomial-time algorithms. We focus on the intersection of
approximation and parameterized algorithms, reviewed in the following sections. While
not all mentioned concepts are used to devise our results, we included them as educational
value for a reader unfamiliar with the subject.

1Also known as Karp reduction.
2Other alternatives are exact formulations [137] and heuristic methods [157].
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NPP NP-c NP-h

Figure 2.1: Diagram relating complexity classes.

We use standard graph theory notation. For a graph G, let V (G) and E(G) be the sets
of vertices and edges of G, respectively. A graph G′ is a subgraph of G if V (G′) ⊆ V (G)

and E(G′) ⊆ E(G). For X ⊆ E(G), G[X] is the subgraph that has the endpoints of X
as vertices and X as the set of edges. The neighborhood N(u) of a vertex u ∈ V (G) is
the set of vertices adjacent to u; the closed neighborhood is defined as N [u] = N(u)∪{u}.
Let cc(G) be the number of connected components of G. The set containing non-negative
integer numbers is represented as N.

2.1 Approximation algorithms

An approximation algorithm produces solutions with provable quality and runs in poly-
nomial time, thus, it concedes guaranteeing only a fairly good solution, instead of an
optimal, but in exchange it does not take long to do so. They can be used when one
needs to ensure the quality of the solution and cannot admit the non-polynomial running
time of an exact method. Researchers are also interested in determining how close any
algorithm can approximate an optimal solution in polynomial time, leading to the study
of inapproximability lower bounds. These are mostly based on strong hypotheses, such
as the P 6= NP conjecture, then there is a high confidence on these barriers.

In the following, consider a minimization problem and let α > 0. An algorithm A is an
α-approximation algorithm if, for each instance I of the problem, A runs in time |I|O(1),
i.e., polynomial in the input size, and returns a solution of value A(I) ≤ α ·OPT(I),
where OPT(I) is the value of an optimal solution for I. A family of algorithms {Aε}ε>0

is a polynomial-time approximation scheme (PTAS) if, for any ε > 0, Aε is a (1 + ε)-
approximation running in time |I|f(ε), for a computable function f ; if Aε runs in time
f(ε) · |I|O(1), then it is an efficient polynomial-time approximation scheme (EPTAS). If
there is an inapproximability result stating that, unless a strong hypothesis fails, there
can be no approximation algorithm with ratio α− ε, for ε > 0, and we have an algorithm
with approximation ratio α, then we say this algorithm is tight, i.e., it is the best possible
approximation for the problem with respect to the hypothesis.

A popular way of dealing with NP-hard problems is devising heuristics, which are
procedures based on practical experiences and insights, with no a priori commitment
to solution quality or running time [133]; then, an empirical study on a wide set of
instances is needed to assess its usefulness. Consequently, these are often employed on
applications with a well-behaved set of instances, or in situations that the given statistical
guarantees are sufficient. Approximation algorithms, on the other hand, are based on
mathematical proofs that guarantee the solution quality, ranging over all instances of
a problem. Although it may be hard to create an algorithm ensuring close-to-optimal
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solutions, many approximations perform well in practice. For example, Jain et al. [106]
presented two algorithms for the Facility Location (FL), with approximation ratios
1.861 and 1.61, and conducted an experimental study that revealed their algorithms had
an average error of less than 3% and ran in at most 2 seconds.

Williamson and Shmoys [164] listed the main reasons for studying approximation al-
gorithms: (i) we need solutions for NP-hard problems that are intrinsically connected
to information technology, especially when the vast amount of data results in bigger
instances, impractical for exact methods; (ii) solving a simpler model of a real-life appli-
cation approximately can facilitate the creation of a good heuristic, and, overtime, evolve
into an approximation solving the original problem; (iii) the mathematical rigor on de-
vising an algorithm to solve the problem approximately leads to a deeper understanding
of its underlying structure, helping us identify classes of instances in which an algorithm
thrives in practice; (iv) in association with complexity theory, approximation algorithms
and inapproximability lower bounds gives us a sense of the hardness of solving a problem.

Design techniques Approximation algorithms have diverse design techniques, from
simple implementations to others using complex data structures or other approaches that
carry large constants in their time complexity. We highlight the main techniques.

A greedy strategy is one that makes locally optimal choices during each step of its
execution, in the hope this leads to a good solution. It is used ubiquitously in the design
of algorithms, and, in the field of approximation, often yields the simplest proofs and
implementation. A local search algorithm holds on to an incumbent solution and searches
for improved ones on its neighborhood. This relationship is defined beforehand, providing
a subset of similar candidates from the search space. The algorithm iteratively moves to
one of them and the process continues, until a stop criteria is reached.

The toolbox of linear programming (LP) models the problem in a mathematical lan-
guage, and is part of several involved techniques [80]. A popular use is designing rounding
algorithms, that transforms a solution of a relaxed model into a feasible solution by
rounding the variables to integer values [155]. In primal-dual algorithms, the problem
is described as two LP models, which are manipulated in tandem to obtain a feasible
solution [13, 164]. In spite of using LP models, this technique does not need a solu-
tion to its relaxation, thus, these algorithms are often fast. Other design techniques in-
volve dynamic programming, enumeration in (pseudo) polynomial time, changing metrics,
applying cuts, using randomness, semidefinite programming, and more problem-specific
approaches [164, 162].

2.2 Parameterized algorithms

A parameterized algorithm solves a problem exactly while maintaining the non-polynomial
running time confined to a parameter of the input. Then, as long as this parameter is
small, the algorithm is fast and is often much faster then usual exact algorithms which
depend exponentially on the whole input. The area of parameterized complexity can be
viewed as an expansion of the classical complexity theory, since now the tractability of a
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problem does not depend only on the number of bits used to describe an instance, but
also on some specific part of the input, i.e., the parameter.

This allows a fine-grained analysis that characterizes instances that are easier to solve
to optimality, rather than trying to give an algorithm to solve all instances at once. In
other words, while an approximation algorithm focuses on efficiently producing a solution
with reasonable quality for any given instance, a parameterized algorithm focus on a family
of instances and aims at obtaining an exact solution with non-polynomial dependency as
small as possible. For example, Vertex Cover (VC) has a simple exhaustive algorithm
solving the problem in time 2knO(1), where k is the size of the solution, thus, if k =

O(log n), the problem is polynomially solvable for these instances. This problem has been
extensively studied, and the current best algorithm with k as parameter has running time
O∗(1.25298k) [96]. Note that such algorithms have a deep impact on practical scenarios,
considering there are problems, such as Clique, whose best-known algorithm executes in
time O(nΘ(k)), where k is the size of the clique [138].

Formally, a parameterized problem is comprised of an instance I of some decision
problem3 and an integer parameter k that depends on I. If, for each instance (I, k) of a
parameterized problem, there is an algorithm that decides I in time f(k) · |I|O(1), where
f is a computable function, we say that the problem is fixed-parameter tractable (FPT)
and the procedure is a parameterized algorithm [58]. The running time of the algorithm is
often presented in the form O∗(f(k)) = f(k) · poly(|I|), which omits polynomial factors.
A slice-wise polynomial algorithm runs in time f(k) · |I|g(k) for an instance I, parameter
k and computable functions f and g, and the class containing such problems is XP.

Kernelization One of the contributions of parameterized complexity is formalizing the
concept of preprocessing routines, that effectively simplifies an instance of a problem
before the main algorithm is invoked. This concept is called kernelization, and is aimed
at solving the easy parts of an instance, reducing it to a hard kernel.

Formally, a kernelization algorithm maps an instance (I, k) to an equivalent instance
(I ′, k′) such that (I, k) is a Yes-instance if, and only if, (I ′, k′) is a Yes-instance. More-
over, it must run in polynomial time, in terms of |I| and k, and |I ′| + k′ ≤ g(k), for a
computable function g. If g is polynomial, then the problem admits a polynomial kernel. A
parameterized problem is FPT if, and only if, it admits a kernelization algorithm [35, 58],
thus, giving a kernelization algorithm is an alternative way of defining the fixed-parameter
tractability of a problem. A common research question is determining the smallest kernel
size, both from an algorithmic and hardness point of views.

As an example, we present a simple kernelization for VC, parameterized by k. Often-
times, the procedure is defined as a set of reduction rules, which are executed exhaustively
until none applies: (i) remove isolated vertices; and (ii) if there is a vertex with degree
more than k, then remove it and decrease the parameter in one. Now, one can prove that
the (reduced) graph G has maximum degree k, and a set of k vertices can cover at most
k2 edges, then, every Yes-instance has |V (G)| ≤ k2 + k and |E(G)| ≤ k2, resulting in a
quadratic kernel.

3Optimization problems can be posed as decision problems by asking whether there is a solution with
some specific value (given as input), since the possible solutions are Yes and No.
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Klam value A running time of 222
22

2k

· nO(1) is gladly accepted by the presented def-
inition of parameterized algorithms, but it is clear that such an algorithm would not
perform well in practice. Downey and Fellows addressed this problem by introducing
the klam value, defined as the largest value of k that an algorithm is capable of solving
in practice, considering (i) the running time has the form f(k) · |I|c, for c ≤ 3, so the
complexity is not shifted into the polynomial portion; and (ii) f(k) ≤ 1020, i.e., we bound
the maximum number of computational steps with a reasonable absolute value [139, 68].

Table 2.1 compares the efficiency of algorithms for VC, considering only the exponen-
tial term of the running time. The algorithms are the naive exhaustive search running in
O∗(2k), Chandran and Grandoni [42] in time O(1.2745kk4 + kn) and exponential space,
Chen et al. [45] in time O(1.286k + kn), Chen et al. [46] in time O(1.2738k + kn) and
Harris and Narayanaswamy [96] in time O∗(1.25298k).

k 2k 1.2745kk4 1.286k 1.2738k 1.25298k

10 1 024 105 12 11 9
20 106 107 153 126 90
50 1015 1012 290 000 180 000 79 000
100 1030 1018 1011 1010 109

150 1045 1024 1016 1015 1014

klam value 66 112 183 190 204

Table 2.1: Approximate efficiency and klam value of algorithms for VC.

Lower bounds Just as in classical complexity theory, we need the ability of ruling out
certain types of algorithms, based on a strong hypothesis. The foundation of parame-
terized complexity was laid by Downey and Fellows [68], and it is an essential tool for
algorithm designers, since one may be searching for a result that is not possible under
our current understanding of the field. This means that achieving such an algorithm is
as hard as getting an algorithm for a well-established problem, heavily studied by many
researchers for decades. Additionally, like in the classical setting, the insights stemming
from analyzing a problem in both perspectives, hardness and algorithmic, can lead to an
easier path of obtaining results.

The basic working hypothesis4 used in the parameterized setting is that Clique is not
FPT, an assumption stronger than P 6= NP. Using reductions, we can prove such results for
our problems. Let (I, k) and (I ′, k′) denote instances of parameterized problems P and P ′,
respectively. A parameterized reduction from P to P ′ is an algorithm that receives an
instance of the former and outputs an instance of the latter, where

(i) (I, k) is a Yes-instance of P if, and only if, (I ′, k′) is a Yes-instance of P ′;

(ii) k′ ≤ g(k), for a computable function g;

(iii) the running time is f(k) · |I|O(1), for a computable function f .
4There is an equivalent argument with Turing machines.
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Note that the second item, requiring that the parameter of P ′ must be bounded by a
function of the parameter of P , implies that not every NP-hardness reduction translates
into a parameterized one.

The W-Hierarchy organizes problems according to their hardness, in the hope of dis-
criminating the different existent levels. A parameterized problem P belongs to W[t], for
t ≥ 1, if there is a parameterized reduction from P to a circuit satisfiability problem with
weft5 at most t [58]. There is also the familiar notion that a parameterized problem can
belong to W[t] and W[t]-hard, making it W[t]-complete, for some t ≥ 1. Our canonical
problem Clique lies in the first class and is W[1]-complete, whereas Dominating Set
is W[2]-complete. The hierarchy is organized as in Equation 2.1, and it is conjectured
that each of the containments is proper [68]. Note that W[P ] denotes the class obtained
by having no restriction on depth.

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆W[P ] ⊆ XP (2.1)

As algorithm designers, if we are interested in ruling out a parameterized algorithm for
a problem P , it is sufficient to show a parameterized reduction from a W[t]-hard problem
to P , for some t ≥ 1. A commonly-used conjecture in parameterized hardness results is the
Exponential Time Hypothesis (ETH), that states 3-SAT cannot be solved in time 2(1−ε)n,
for ε > 0, i.e., with subexponential running time in the number of variables. The initial
intuition was that FPT 6= W[1] is not suitable for obtaining precise estimates of lower
bounds in the parameterized setting, later confirmed when ETH, which ultimately implies
P 6= NP, supported the existence of nearly-tight lower bounds for various problems [58].
A variant of ETH is the Strong Exponential Time Hypothesis (SETH), that gives even
more refined lower bounds in the base of the exponent: it states that a version of SAT
cannot be solved in time O((2− ε)n), for any ε > 0 [103, 36, 58].

Being conjectures, one must examine its solidity in the field of study, nonetheless,
improving a lower bound proven under ETH or SETH is as hard as improving the current
understanding on the complexity of SAT. This is an active area of research, as many lower
bounds, not only in the parameterized world, depend on other conjectures that produce
tighter results, although with less consensus amongst theoreticians [161].

Design techniques Now, we give an overview on some design techniques for param-
eterized algorithms. These and more are thoroughly described in Niedermeier [140] and
Cygan et al. [58].

Inspired in the idea of backtracking, a bounded search tree is a simple, yet effective,
technique to obtain parameterized algorithms. Given an initial instance, the procedure
guesses a small part of an optimal solution, simplifying the input to the next level: if,
in each branching step, (i) at least one optimal solution is considered, (ii) the number
of possible guesses is bounded by the parameter, and (iii) the instance is simplified, it is
possible to bound the size of the search tree in terms of the parameter, obtaining an FPT
algorithm. The O∗(2k)-time algorithm for VC is a simple application of bounded search

5The weft of a circuit is defined as the maximum number of large nodes on a path from an input node
to the output node, where large nodes are those which have in-degree greater than 2.
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trees, which can be further improved with kernelization.
The iterative compression technique can be used for solving problems whose objective

is removing a subset of elements satisfying a certain condition, usually a subset of vertices
or edges in graph problems. The procedure receives an instance and a solution with
some known property, that is exploited to either slightly reduce its size or correctly state
that no smaller solution exists. The key strategy to obtain fast algorithms is starting
with the smallest solution possible and employing an efficient FPT compression routine.
Reed et al. [150] were the first to employ such technique, wielding a O∗(3k)-time algorithm
for Odd Cycle Transversal.

Probability plays an important part in some parameterized algorithms, and that is
the case in color coding. Originally, it was used to detect some small subgraph pattern
in an input graph, such as a path, cycle or graph with bounded treewidth, but since
then, other applications emerged. The method colors objects randomly and searches
for the wanted structure, that has some probability of being colored correctly; then, by
repeating a sufficient number of times, we can find it with constant or high probability.
An example is the randomized algorithm for Longest Path that solves the problem in
time O∗((2e)k), returning a path with constant probability.

Parameters come in many forms: they can be directly related to the problem at
hand, e.g., the number of facilities in an instance of Facility Location, or its input
graph, e.g., the maximum degree of a vertex. There are structural parameters, such as
the vertex cover number (vc) or feedback vertex set number (fvs) of the input graph,
that are used to further understand the difficulty of the problem in instances with these
bounded parameters. Frequently, an algorithm with this kind of parameter is assumed
to receive the structure as input; in practice, it is obtained with an FPT algorithm or
approximation [28]. There are also structural parameters that capture the resemblance of
the input graph to some type of graph, such as paths, trees or cliques. In Section 2.4, we
explore the treewidth, the main parameter studied in this work, while in Section 2.5, we
show how the dynamic programming paradigm is used to design parameterized algorithms,
especially combined with treewidth.

2.3 Parameterized approximation algorithms

The Cobham-Edmonds thesis states that a problem is feasibly solvable if it admits an
algorithm that is accurate and efficient [49, 71]. The previous sections gave two different
approaches to solve NP-hard problems, each relaxing one of the characteristics we want
in an algorithm. Since the dawn of parameterized complexity, there have been people
studying the possibilities when the fields of approximation and parameterized algorithms
come together [34, 69, 134]. However, a significant growth occurred in the last decade,
when countless open questions were surfaced by the intensive study of parameterized
complexity.

Indeed, efficient polynomial-time approximation schemes were studied avant la lettre,
before the notion of FPT was evidently considered, since a PTAS and an EPTAS are,
in fact, approximations running in XP and FPT time, respectively, parameterized by the
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approximation factor6. This evidences the natural path of merging these fields, as the
combined effort help us circumvent hardness results that affects each one separately.

Given a parameterized problem with instance (I, k), A is a parameterized approxima-
tion algorithm with ratio α if it runs in time f(k) · |I|O(1) and produces a solution of value
A(I) ≤ α·OPT(I), for a computable function f . For ε > 0, a family of algorithms {Aε}ε>0

is a parameterized approximation scheme (PAS) if Aε approximates an optimal solution
within 1 + ε and runs in time f(k, ε) · |I|g(ε), for constant ε and computable functions f
and g; if ε is a parameter alongside k, then Aε must run in time f(k, ε) · |I|O(1), and Aε is
called an efficient parameterized approximation scheme (EPAS). An introduction to the
subject and a recent survey can be found in Marx [134] and Feldmann et al. [75].

Approximate kernelization Some problems do not admit kernels of polynomial size,
under common complexity assumptions. This is the case for Connected Vertex
Cover, where the best one can hope for is a kernel with 2k vertices [67, 58]. However, if
we settle for a near-optimal solution, we can achieve a polynomial-size kernel [128]. As we
broadened the definition of a parameterized algorithm to output approximate solutions,
there has been work to do the same with kernels.

An α-approximate kernelization algorithm maps, in polynomial time, an instance (I, k)

to an equivalent instance (I ′, k′), such that a β-approximate solution for I ′ can be con-
verted, in polynomial time, into an αβ-approximate solution for I. As in the previous
case, we must have |I ′|+k′ ≤ g(k), for a computable function g. For a complete exposition
on this subject, including different types of approximate kernels, we refer the reader to
Lokshtanov et al. [128].

Lower bounds The tools to develop lower bounds on the approximation of parame-
terized problems are an extension of the ones used to derive results in the parameterized
world. Just as ETH and SETH were devised to obtain precise lower bounds to con-
trast with parameterized algorithms, there are attempts to improve the understanding of
parameterized approximation algorithms.

The Gap Exponential Time Hypothesis (Gap-ETH) is a strengthening of ETH, that
states an approximate version of 3-SAT cannot be solved in time 2o(n) [65]. This hypoth-
esis was used to obtain relevant lower bounds for classic problems, such as Clique and
k-Median. The former was proven to not admit a parameterized o(k)-approximation [41],
while the latter has no parameterized (1 + 2/e− ε)-approximation, implying that the best
algorithm is essentially tight [50].

Design techniques The design techniques employed in parameterized approximation
algorithms come from both realms, often undergoing small adaptations to fit the new
setting. As this field of study is relatively new, there is no unified theory categorizing
the different types of algorithms. In clustering problems, for example, coresets consol-
idate clients into representatives, effectively reducing the set to a logarithmic size [50].

6In a recent talk, Fellows recounted the anecdote when, briefly after the publication of his seminal
work on parameterized complexity, his colleague asked whether the parameter can really be anything,
surfacing the relation between a PTAS and the parameterized world.
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This technique found a fruitful field when combined with the enumeration of small sets
and guessing values, dependent on the parameter. Other works are found in a recent
survey [76].

Although most algorithms are focused on breaching W-hardness barriers, there is
also the search for faster algorithms solving FPT problems, exchanging quality for effi-
ciency. For instance, there is an algorithm for Vertex Cover that, given any exact
algorithm running in O∗(γk), produces a (1+ ε)-approximate solution in time O∗(γ(1−ε)k),
for ε > 0 [78]. Using the best exact algorithm and settling for a 1.1-approximate solution,
we can improve the klam value of this problem from 190 to 211.

2.4 Treewidth

It is recurrent that solving a problem in a general graph is hard, but an efficient algorithm
is known as soon as one restrains the input graph to a class, such as trees. Instead
of considering only trees, the notion of treewidth classifies the tree-likeness of a graph,
accompanied with its structural decomposition. One of the main uses of this tool is to
design efficient algorithms when there is a high degree of similarity between the input
graph and a tree, i.e., when the treewidth is small. Moreover, this algorithm is usually
designed under the framework of dynamic programming. The concept was discovered a
few times over the last decades and gained popularity through the work of Robertson and
Seymour [151].

A person unfamiliar with treewidth could define the tree-likeness of a graph in various
ways, perhaps counting the number of cycles or other estimate to transform it in a tree. Up
to now, the most useful way to define it, both for algorithmic and theoretical purposes,
is to decompose the graph into a special structure. This structure has the separation
property of trees, roughly captured by the following: for a given vertex u of a tree, every
path whose origin belongs to the subtree rooted at u going to a vertex that is not in the
subtree, must pass through u. Next, we formally define this type of graph decomposition
and the treewidth of a graph.

A tree decomposition of a graph G is a pair (T , B), where T is a tree and B is a
function that associates each node t of T to a vertex subset Bt, called bag, such that:

(i) ∪t∈V (T )Bt = V (G), i.e., every vertex of G is in at least one bag;

(ii) ∀ (u, v) ∈ E(G),∃ t ∈ V (T ) : u, v ∈ Bt, i.e., for each edge of G, there is a bag
containing its endpoints;

(iii) ∀u ∈ V (G), Tu = {t ∈ V (T ) : u ∈ Bt} induces a connected subtree of T , i.e., the
nodes whose bags contain a vertex u form a connected subtree.

The width of a tree decomposition is maxt∈V (T ) |Bt| − 1 and the treewidth of G is the
minimum width of any tree decomposition of the graph, and is denoted by tw. Other ways
to define treewidth can be found in [23, 58]. Figure 2.2 exemplifies a tree decomposition
alongside the obtained tree and bags; note that this graph admits a tree decomposition
of width 2.
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(a) Input graph.

u1 u2

u6 u7

u2 u3

u7 u8

u3 u4

u8 u9

u8 u9

u11 u12

u4 u5

u9 u10

(b) Associated bags and tree.

Figure 2.2: Example of a tree decomposition.
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Figure 2.3: Node types of a nice tree decomposition.

In order to facilitate the design of dynamic programming algorithms, we use the con-
cept of a nice tree decomposition, where T is a binary rooted tree and each node t can be
one of four types:

(i) leaf node, in which |Bt| ≤ 1;

(ii) introduce node, which has a child t′ with Bt = Bt′ ∪ {u}, for u /∈ Bt′ ;

(iii) forget node, which has a child t′ with Bt = Bt′ \ {u}, for u ∈ Bt′ ;

(iv) join node, which has children t′ and t′′ with Bt = Bt′ = Bt′′ .

Note that, by the third property of a tree decomposition, every vertex of G is forgotten
only once, but may be introduced several times. Frequently, it is helpful to use an extra
type of node that introduces edges one by one:

(v) introduce edge node, which has a child t′ with Bt = Bt′ , annotated with an edge
{u, v} such that u, v ∈ Bt.

Figure 2.3 exemplifies the node types of a nice tree decomposition, where t4 is a leaf
node, t3 is an introduce node, t1 is a forget node and t2 is a join node, while Figure 2.4
brings a nice tree decomposition of the graph given in Figure 2.2.

The adjacent concept of a path decomposition of graph G is a pair (P , B), where
P is a path and B is a function that associates each node of P to a vertex subset Bt,
respecting the same three properties of tree decompositions, except that the nodes whose
bags contain a fixed vertex form a connected subpath of P . As expected, the width of a
path decomposition is maxt∈V (P) |Bt|−1 and the pathwidth of G is the minimum width of
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Figure 2.4: Example of a nice tree decomposition.
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Figure 2.5: Example of a path decomposition.

any path decomposition of the graph, and is denoted by pw. A nice path decomposition
has the same types of its tree counterpart, except for join nodes. Figures 2.5 and 2.6
present a path decomposition and its nice version of the graph of Figure 2.2.

As we have seen, nice decompositions gently introduce and forget vertices in a struc-
tured way, and thus facilitate the design of algorithms. The following theorem states that,
given a decomposition, it is easy to obtain its nice counterpart of no larger width, only
increasing the number of nodes.

Theorem 1 ([58, 24]). Given a graph G and a tree decomposition (T , B) of width k, one
can compute a nice tree decomposition of width k in time O(k2 · max{|V (T )|, |V (G)|})
that has O(k · |V (G)|) nodes and is rooted at either a forget node or an introduce edge
node.

When solving some problems, it is useful to compute a nice tree decomposition of
limited height, allowing for a small width increase.

Theorem 2. Given a graph G and a tree decomposition (T , B) of width k, there is a
polynomial-time algorithm that produces a nice tree decomposition of G of width at most
3k + 2 and height O(k log |V (T )|).

Proof. Using the algorithm of Bodlaender and Hagerup [27], one can turn the given tree
decomposition into a binary one (T ′, B′) of width at most 3k+2 and height O(log |V (T )|).
The niceness property is obtained by creating bags to introduce and forget vertices: for



29

u1 u1 u2
u1 u2

u6

u1 u2

u6 u7

u2 u6

u7
u2 u7

u2 u3

u7

u2 u3

u7 u8

u3 u7

u8
u3 u8

u3 u4

u8

u3 u4

u8 u9

u4 u8

u9

u4 u5

u8 u9

u5 u8

u9

u5 u8

u9 u10

u8 u9

u10
u8 u9

u8 u9

u11

u8 u9

u11 u12

u8 u9

u11
u8 u9u8

Figure 2.6: Example of a nice path decomposition.

each edge (t, t′) ∈ E(T ′), we gradually turn B′t into B′t′ , one vertex at a time. In each
step, at most 2k bags are created. The resulting is a nice tree decomposition of G of
width at most 3k + 2 and height O(k log |V (T )|).

For a graph G and a node t of a nice tree decomposition (T , B) of G, let Vt ⊆ V (G)

be the subset of vertices introduced in the subtree rooted at t, including itself. It is useful
to define a subgraph Gt of G, defined as

Gt = (Vt, Et = {e ∈ E(G) : e is introduced in the subtree rooted at t}).

Graphs of bounded treewidth A k-tree is a family of graphs defined inductively: a
(k + 1)-clique is a k-tree, and a new one can be obtained by adding a vertex connected
to k vertices that form a clique. A partial k-tree is a subgraph of a k-tree. The former is
the family of graphs with treewidth at most k and the latter is the family of graphs with
treewidth exactly k, i.e., any new edge would increase this value [58].

For a fixed k, the family of partial k-trees can be defined by a set of forbidden minors,
where a minor of a graph G is a graph obtained from G by performing vertex and edge
deletions and edge contractions [152]. The forbidden minors for k = 1 and k = 2 are K3

and K4, respectively; for k = 3, there are four forbidden minors. All of the following fam-
ilies have treewidth at most 3: outerplanar graphs, cactus graphs, series-parallel graphs,
Halin graphs and Apollonian networks [21] (see Figure 2.7).

Some types of graphs existent in real-world settings have been observed to have low
treewidth. Planken et al. [149] tackled the problem of computing all-pairs shortest paths7,
giving a quadratic-time algorithm for graphs of constant treewidth. Among the types of
networks in the dataset, they considered subgraphs of the streets of New York with up to
5000 vertices. These graphs had tree decompositions of width around 30, which is in the
range of practical tractability.

7Note this problem is in P.
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(a) A series-parallel graph. (b) An Apollonian network.

Figure 2.7: Graphs of bounded treewidth.

A study on the treewidth estimation of large-scale instances (containing millions of
vertices) found that graphs representing infrastructure such as public roads, bus routes
and power grids often have low treewidth [131]. Another example is in the field of bioin-
formatics, in which graphs modelling macromolecules were observed to have treewidth 10
or lower [132].

Monadic Second-Order Logic The formalism of Monadic Second-Order Logic (MSO2)
describes properties of undirected graphs using quantifiers over elements and sets of ele-
ments. In the following, we show some examples (for a complete exposition refer to [58],
Section 7.4). The following formula defines 3-Colorability, where, for a vertex u and
an edge e of a graph G, inc(u, e) is true if u is an endpoint of e.

adj(u, v) := (u 6= v) ∧ (∃e∈E(G)inc(u, e) ∧ inc(v, e))

independent(X) := ∀u,v∈X¬adj(u, v)

partition(X1, X2, X3) := ∀v∈V (G)((v ∈ X1 ∧ v /∈ X2 ∧ v /∈ X3)

∨ (v /∈ X1 ∧ v ∈ X2 ∧ v /∈ X3)

∨ (v /∈ X1 ∧ v /∈ X2 ∧ v ∈ X3))

3colorability(G) := ∃X1,X2,X3⊆V (G)partition(X1, X2, X3)

∧ independent(X1)

∧ independent(X2)

∧ independent(X3)

Many problems on graphs are expressible in MSO2, such as Hamiltonian Cycle
and Vertex Cover [56, 58]. An interesting use of this formalism is to show that a
problem admits a parameterized algorithm on graphs of bounded treewidth.

Theorem 3 (Courcelle’s Theorem [55]). Assume that φ is a formula of MSO2 and G is an
n-vertex graph equipped with evaluation of all the free variables of φ. Suppose, moreover,
that a tree decomposition of G of width t is provided. Then, there exists an algorithm that
verifies whether φ is satisfied in G in time f(||φ||, t) · n, for some computable function f .

Unfortunately, the running times of algorithms devised this way are composed of a
tower of exponentials of unbounded height, and thus are prohibitive in practical scenarios.
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However, the result is still of great importance, as one can quickly classify a problem by
formulating it in MSO2.

2.4.1 Computing the treewidth of a graph

As we have seen, the treewidth of a graph is the minimum width of any tree decomposition.
Computing this value, however, is an NP-hard problem [7]; still, we need to obtain low-
width tree decompositions for both our theoretical and practical uses. Bodlaender [22]
gave an algorithm that, given a graph G an integer k, either outputs a tree decomposition
of width k or concludes that the treewidth of G is greater than k; the running time
of the algorithm is O∗(kO(k3)), thus, the problem is FPT. Determining the treewidth of
a graph was one of the first problems to be analyzed under the lens of parameterized
approximation, exchanging solution quality for time efficiency [127].

Over the years, many algorithms were developed with this objective, balancing the
approximation factor, parameter and instance size dependencies on the running time (see
Table 2.2 for a non-exhaustive list).

Paper Approx. factor f(k) g(n) Year
Arnborg et al. [7] exact O(1) nk+2 1987
Lagergren [120] 8k + 7 2O(k log k) n log2 n 1996
Bodlaender [22] exact kO(k3) n 1996
Fomin et al. [87] exact O(1) 1.7347n 2015

Bodlaender et al. [25] 5k + 4 2O(k) n 2016
Korhonen [115] 2k + 1 2O(k) n 2022

Table 2.2: Algorithms for computing treewidth.

There has been interest in devising heuristics to compute tree decompositions, since
these are also used in multiple large-scale scenarios, such as compiler optimization [159]
and shortest path computation [149]. Bodlaender and Koster [29] gave a detailed descrip-
tion of the main heuristics and further treewidth characterizations, such as triangulations
and elimination orderings.

The PACE Challenge took a step in this direction, prompting researchers to compute
treewidth in exact and heuristic tracks, with the objective of decreasing the gap between
theory and practice [61]. The proposed instances have up to 1000 vertices in the exact
track and up to 10 million vertices in the heuristic track, derived from road networks,
satisfiability and probabilistic inference settings. The submitted solutions have since been
used in various works [116, 12, 81]. Some applications also benefit from the computation
of a lower bound on the treewidth of a graph, that, together with an upper bound given
by a tree decomposition, form a treewidth estimation [131].

For our theoretical interests, we can frequently assume that a tree decomposition is
given as part of the input, since we can use Bodlaender’s algorithm to compute an exact
one. As we have seen, this algorithm has only tw as parameter, thus, it does not spoil the
status of a problem being FPT in respect to tw. When researchers are looking for the faster
algorithm solving a problem parameterized by treewidth, obtaining a tree decomposition
is also left out for better comparison.
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2.4.2 Other parameters

For our main algorithmic results, we focus on treewidth; however, there exists many other
parameters, each with its strengths and weaknesses. In the following, we briefly introduce
some of these parameters.

Clique-width (cw) is a structural parameter that resembles treewidth, but kinder to
dense graphs. Its decomposition is defined by four operators: creating a new vertex with
a label, disjoint union of graphs, creating edges between every two vertices of a pair of
labels and renaming a label. The clique-width of a graph is the minimum number of labels
needed to construct it with these operators [57]. For unbounded clique-width graphs, it
is NP-hard to obtain a decomposition; when the clique-width is bounded, there exists an
approximation algorithm [85].

Treedepth (td) is a structural parameter that indicates the star-likeness of a graph. It
is defined as the minimum height of a forest such that every edge of the original graph
connects a pair of vertices in the forest having an ancestor-descendant relationship. It
can be computed in polynomial time for some types of graphs [63] and there exists an
approximation algorithm for general graphs [26].

A feedback vertex set (fvs) of a graph is a minimum set of vertices one needs to remove
so the graph has no cycles, and a vertex cover (vc) of a graph is a minimum set of vertices
that includes at least one endpoint of every edge. Both problems were shown to be NP-
complete by Karp [109], and their use in parameterized complexity is extensive [58]. These
graph parameters are often used to obtain parameterized algorithms for problems in which
treewidth and other parameters are not strong enough [79, 114]. Other parameters we
mention are twinwidth, branchwidth and rankwidth [31, 62, 144].

Figure 2.8 brings the relationships between some of these parameters, e.g., treewidth
inherits algorithmic results from clique-width and hardness results from feedback vertex
set, pathwidth, treedepth and vertex cover.

cw tw
fvs

pw td
vc

algorithmic hardness

Figure 2.8: Relationships between parameters.

2.5 Dynamic programming over a tree decomposition

The design technique of dynamic programming is used all over computer science with the
same two principles, being optimal substructure, in which an optimal solution can be
obtained by combining optimal solutions for smaller problems, and overlapping subprob-
lems, when a given subproblem is considered several times to build solutions for bigger
problems [53]. These concepts align perfectly with our setting, allowing us to build a dy-
namic programming algorithm over a (nice) tree decomposition. A dynamic programming
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table is encoded by a given node of the tree decomposition and, often times, some useful
information about the produced solution; then, a solution for the global problem is found
at the root of the tree decomposition [58]. This strategy has been around for several
decades, when researchers generalized algorithmic results on trees for classic problems,
such as Vertex Cover, Dominating Set and Independent Set [20, 8].

An algorithm designer uses the fact that any node of the tree decomposition is a
separator of the subtree rooted at this node to the rest of the graph, then any choice
made within this subtree is independent from the solutions for higher nodes, depending
on the problem being solved. An algorithm is given by describing an specific procedure
for each type of node of a nice tree decomposition: these are generally simple, since there
are only a limited number of ways the vertices in the parent bag can interact with its
children. Then, if the table has a limited number of entries, mainly dependent on the
parameter, and each procedure takes FPT time, we obtain a parameterized algorithm by
following the standard steps in dynamic programming of using the bottom-up approach
and memoization.

According to Cygan et al. [58], the challenge in devising a dynamic programming
algorithm over a tree decomposition boils down to giving a precise definition of a table
state, indexed by a node of the decomposition and some information about the solution,
together with the recursive formulas calculating its value. The correctness of the algorithm
follows by showing two types of inequalities, for each node t of the decomposition: how
an optimal solution for t relates with some solutions for its children, and how optimal
solutions for its children relate with a solution for t.

Many problems admit algorithms parameterized by treewidth, such as Vertex Cover,
Weighted Independent Set, Dominating Set and Max Cut, running in time
O∗(2O(tw)). Using this strategy, problems with connectivity requirements, such as Steiner
Tree, Hamiltonian Path, Connected Dominating Set and Cycle Packing, ad-
mit algorithms running in time O∗(twO(tw)) [58]. In Chapter 5, we use the framework of
rank-based approach of Bodlaender et al. [24] to give faster algorithms for the connectivity
problems we consider.

2.5.1 An example algorithm: Weighted Independent Set

In this subsection, we go over the algorithm for Weighted Independent Set, param-
eterized by treewidth, to illustrate the aforementioned directions on the design of this
type of algorithm. In this problem, the input is a graph G and a vertex-weight function
w : V (G) → R≥0, and the objective is to find an independent set of maximum weight,
that is, a subset of V (G) such that no two vertices are adjacent. Recall that we also
receive a nice tree decomposition (T , B) of G as input.

Given a node t ∈ V (T ) and S ⊆ Bt, the subproblem definition asks for a maximum-
weight extension Ŝ such that S ⊆ Ŝ ⊆ Vt, S = Ŝ ∩ Bt and Ŝ is an independent set. Let
At(S) be an entry of this table. For a leaf node t, we have At(∅) = 0. For an introduce
node t with child t′, such that Bt = Bt′ ∪ {u}, for u /∈ Bt′ , we have three cases: S is
not an independent set, u is in S or u is not in S. Note that the first case considers the
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possibility u ∈ S and N(u) ∩ S 6= ∅. Then,

At(S) =


−∞ if S is not independent,

At′(S) if u /∈ S,
At′(S \ {u}) + w(u) otherwise.

For a forget node t with child t′, such that Bt = Bt′ \ {u}, for u ∈ Bt′ , we take the
best solution for t′ either including or excluding u from S, considering S is valid. Then,

At(S) =

{
−∞ if S is not independent,

max{At′(S), At′(S ∪ {u})} otherwise.

For a join node t with children t′ and t′′, such that Bt = Bt′ = Bt′′ , we take the best
solution for each child and subtract the weight of vertices in S, given S is valid. Then,

At(S) =

{
−∞ if S is not independent,

At′(S) + At′′(S)− w(S) otherwise.

The computation of the table starts from each leaf node, followed by other node types,
as soon as their children have been calculated. Considering tr is the root of the tree de-
composition, a maximum-weight independent set of G can be found by computing Atr(∅).
For a complete exposition, including the correctness proof, running time calculation and
implementation details, see [58].

2.5.2 Storing large integers

For many algorithms parameterized by some graph width, such as treewidth, pathwidth or
clique-width, a good portion of their running times come from the fact that they calculate
and store large integers as part of their solutions. These integers may represent distances
between nodes or the size of a set of vertices, but the common ground among these uses is
that they are calculated by adding previous entries, stored on the dynamic programming
table. A standard technique to improve the running time of such an algorithm is to store
these integers approximately, effectively shrinking the table and consequently the search
space [30].

For some δ > 0, each value is rounded to the closest integer power of (1 + δ), then, by
storing only the integers corresponding to the powers, one reduces a table with rw entries
to a table with (log(1+δ) r)

w entries, given that we want to represent integers in {1, . . . , r}
and have w entities. A downside to this approach is that rounding errors pile up as
the algorithm proceeds to higher nodes in the decomposition, and that some precision is
lost. One can show that these errors are contained directly by the algorithm or apply the
framework of approximate addition trees [121]. We used the former strategy in Chapter 3
and the latter in Chapter 4.

An addition tree is an abstract model that represents the computation of a number
by successively adding two other previously computed numbers.
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Figure 2.9: Addition tree and a corresponding approximate addition tree.

Definition 1. An addition tree is a full binary tree such that each leaf u is associated
to a non-negative integer input yu, and each internal node u with children u′ and u′′ is
associated to a computed number yu := yu′ + yu′′.

One can replace the sum with some operator ⊕, which computes each such sum only
approximately, up to an integer power of (1+δ), for some parameter δ > 0. The resulting
will be an approximate addition tree (see Figure 2.9).

Definition 2. An approximate addition tree with parameter δ > 0 is a full binary tree,
where each leaf u is associated to a non-negative integer input zu, and each internal node u
with children u′ and u′′ is associated to a computed value zu := zu′ ⊕ zu′′, where a⊕ b := 0

if both a and b are zero, and a⊕ b := (1 + δ)dlog1+δ(a+b)e, otherwise.

For simplicity, here we defined only a deterministic version of the approximate ad-
dition tree, since we can assume that the height of the decomposition is bounded by
O(tw · log |V (G)|). While the error of the approximate value can pile up as more oper-
ations are performed, Lampis [121] showed that, for some ε > 0, as long as δ is not too
large, the relative error can bounded by 1 + ε.

Theorem 4 ([121]). Given an approximate addition tree of height `, if δ < ε
2`
, then, for

every node u of the tree, we have max
{
zu
yu
, yu
zu

}
< 1 + ε.
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Chapter 3

Star k-Hub Center

In the Star k-Hub Center (SkHC), we are given a connected edge-weighted graph
and a special center vertex. The task is to select a set of hubs of size k, and define an
assignment of vertices to hubs such that every pair of vertices is connected by a path
going through their hubs and possibly the center. A path connecting vertices that are
assigned to the same hub must visit only this hub, otherwise, it must visit the hubs and
the center. The objective is to minimize the length of the longest path in a solution. An
example of an instance and a corresponding solution are depicted in Figure 3, where the
center is represented as a black square and the selected hubs as gray squares.

(a) Input graph with center. (b) Solution using 3 hubs.

Figure 3.1: An instance and a solution of SkHC.

This problem models a two-level hub system, where hubs are connected to a given
center and each non-hub vertex must communicate with all other vertices through their
assigned hubs. Historically, a solution has been described as a tree of depth two, rooted
at the center, which means that non-hub vertices are directly connected to the hubs [165].
In practice, however, the input graph may not be complete, thus we allow the path
between a pair of vertices to contain multiple vertices; note that one can obtain an instance
to the mentioned version of the problem by computing the metric closure of the input
graph. In the following, we assume that G is an edge-weighted undirected graph with
non-negative integer weights. For vertices u and v of G, the length of a minimum-weight
path from u to v is denoted by d(u, v), and we assume, w.l.o.g., that d(u, v) > 0, for
u 6= v, as otherwise one could simplify the graph. For vertices (u1, u2, . . . , up), define
d(u1, u2, . . . , up) = d(u1, u2) + d(u2, u3) + · · ·+ d(up−1, up).

Formally, an instance is composed of a connected edge-weighted graph G with n ver-
tices, a center vertex c ∈ V (G) and integers k and r. A solution is a pair (H,φ), con-
sisting of a set of hubs H ⊆ V (G) \ {c} of size k and an assignment of vertices to hubs
φ : V (G) \ {c} → H, such that φ(u) = u, for u ∈ H, and
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max
u,v∈V (G)\{c}

d(Pφ(u, v)) ≤ r,

where Pφ(u, v) = (u, φ(u), c, φ(v), v), if φ(u) 6= φ(v), and, otherwise, Pφ(u, v) = (u, φ(u), v).

This setting has applications in many-to-many distribution systems that considers a
connection hierarchy, e.g., the backbone of the network and the access links, connected
to the center and the vertices, respectively [73, 3]. This is often referred as a star-star
network, since the center and its links to hubs form a star graph, as well as each hub
and its links to vertices [165]. Helme and Magnanti [97] gave a practical application,
where they designed a two-level satellite network. In this network, each pair of satellites
communicate locally if they are connected to the same switch, and otherwise, they use an
Earth station, connected to each of their switches.

This is one of the many hub location problems, a type of problem modeling trans-
portation systems that are organized through hubs, which are intermediate transshipment
entities that routes goods between origin–destination pairs [73, 4].

Related works The first works on two-level hub networks go back several decades, with
Mirzaian [136] and Garcia [89], that presented integer linear programming formulations
to build this type of network, considering installation and operating costs. More exact
formulations were considered by Labbé and Yaman [119], that studied a version of SkHC
that minimizes the cost of locating and assigning hubs plus a cost per distance of each
link. Some adjacent problems have been considered in a multi-level network structure [37,
43, 51, 33, 94].

Yaman and Elloumi [165] introduce SkHC and a related problem that aims to minimize
the total routing cost of the network, i.e., the sum of every path that connects two
vertices, while maintaining the cost of each path below a given threshold. Both problems
are concerned with generating a telecommunication network that values service quality,
albeit with distinct objective functions. They present an NP-hardness proof of SkHC and
give integer linear programming formulations for both problems, that are experimentally
tested on instances with up to 50 vertices.

The problem was first considered in the approximation setting by Liang [126], who gave
a 3.5-approximation algorithm. This is a purely combinatorial algorithm, using a guessing
step to obtain relevant link costs, and, as an auxiliary algorithm, a 2-approximation of a
version of k-Center that forbids centers. Also, this work shows the first NP-hardness
proof for SkHC in metric spaces: unless P = NP, there is no (1.25 − ε)-approximation
algorithm, for any ε > 0, with a reduction from Dominating Set.

This result was later strengthened by Chen et al. [48], proving that it is NP-hard to
obtain an approximation factor of 1.5 − ε, for any ε > 0, with a reduction from Set
Cover. They also presented two algorithmic results, improving the previous one. The
first is a linear-time 2-approximation that picks the k closest vertices to the center, and
connects every other vertex to the closest hub. The second is a 5

3
-approximation running

in time O(kn4), that returns the best solution of two other algorithms, with opposing
strategies to pick hubs. The variant in which there is no center vertex and each pair
is connected only through its hubs is studied by Chen et al. [47], that provide similar
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approximation algorithms. A problem related to SkHC is the well-studied k-Center,
which receives an edge-weighted graph G and an integer k as input. The objective is to
find a set of centers K ⊆ V (G) of size k such that maxu∈V (G) minv∈K d(u, v) is minimized.
A simple greedy algorithm has approximation factor 2, which is the best possible, unless
P = NP [95].

The lower bounds imposed on approximation algorithms for problems such as SkHC
or k-Center imply that, unless P = NP, one cannot find optimal or even near-to-
optimal solutions in polynomial time. An alternative is designing parameterized algo-
rithms. The goal is to solve the problem exactly in super-polynomial time, restricting
the non-polynomial factors of the running time to depend only on a parameter of the in-
put [58]. It turns out that many location problems do not admit this type of algorithm for
natural parameters, such as k-Center, that is W[1]-hard for planar graphs of constant
doubling dimension when the parameter is a combination of k, the highway dimension,
the pathwidth and the skeleton dimension of the graph [19].

In the last decade, the strategy of combining parameterized and approximation al-
gorithms to obtain near-to-optimal solutions has been gaining momentum [121, 111, 74,
76, 75]. For example, Katsikarelis et al. [111] presented an approximation scheme for
k-Center parameterized by tw, the treewidth of the graph. They showed that, for any
ε > 0, there is an algorithm that runs in FPT time and produces a solution with k centers
and value at most (1 + ε)r, whenever a solution with k centers and value r exists. This
technique is particularly useful when a problem has some form of intractability even in
a parameterized setting, which is circumvented by computing an approximate solution in
FPT time.

Our results and techniques We initiate the study of SkHC in the parameterized
framework. We show that the problem is W[1]-hard when the parameter is vc and k, a
combination of the vertex cover number of the graph and the number of hubs, by using
a reduction from k-Center. Recall that vc is an upper bound on tw, thus the hardness
holds when SkHC is parameterized by tw and k as well. We also note that the problem
does not admit a parameterized (1.25− ε)-approximation algorithm, for any ε > 0, when
the parameter is k. This is derived from the standard approximation hardness [126].

Two algorithmic results are presented. We give a parameterized algorithm, with pa-
rameter tw and r, that either produces a solution for SkHC of size k and value at most r,
or decides that no such solution exists. The algorithm uses the technique of dynamic
programming over a tree decomposition, and actually solves a slightly modified problem
with a different structure. This problem additionally takes as input two functions relating
vertices to distances: the first is an upper bound on the path connecting the vertex to
the center, and the second is an upper bound on the path connecting the vertex to its
assigned hub. We guess important distances of an optimal solution and reduce an instance
of SkHC to an instance of the modified problem, which simplifies our algorithm. This is
possible because every pair of vertices must be connected by a path of length at most r,
since there is a unit of demand between every two vertices of the graph.

Building on the previous result, we give an efficient parameterized approximation
scheme with parameter tw. More precisely, for any ε > 0, we give an algorithm that finds
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a solution with k hubs and value at most (1+ε)r, or concludes that every solution has value
greater than r. The algorithm runs in time O∗((tw/ε)O(tw)). The ingredient to remove r as
a parameter is to store the distances in the dynamic programming table in a approximate
manner, as discussed in Subsection 2.5.2, as well as using a tree decomposition of limited
height.

The remaining of this chapter is organized as follows: Section 3.1 brings our hardness
results, Section 3.2 describes the algorithm parameterized by tw and r, Section 3.3 gives
the EPAS with only tw as parameter, building on the previous algorithm, and Section 3.4
points future research directions.

3.1 Hardness results

As we have seen, SkHC is hard to approximate in polynomial time. More specifically,
Chen et al. [48] established that it is NP-hard to obtain a (1.5− ε)-approximation, for any
ε > 0. A possible strategy to improve the approximation factor is to consider an algorithm
running in FPT time, that efficiently solves instances whose parameter is small. A natural
choice is the number of hubs k. We note that, using the reduction of Liang [126] from
Dominating Set, an algorithm parameterized by k could only achieve an approximation
factor of 1.25.

Theorem 5. For any ε > 0, computing a (1.25− ε)-approximation for SkHC parameter-
ized by k is W[2]-hard.

This lower bound prompts us to explore other parameters, as the goal is to get an
optimal or close-to-optimal solution. A common choice among the structural parameters
is the treewidth of the graph. The main result of this chapter is an efficient parameterized
approximation scheme for SkHC, with treewidth as parameter. We present a hardness
lower bound proving this is the best algorithmic result one could hope for, when param-
eterized by treewidth. More than that, it states the problem is W[1]-hard even if we
consider as parameter the combination of the vertex cover number of the graph and the
number of hubs. Since the treewidth of a graph is bounded by its vertex cover number,
i.e., tw ≤ vc [77], this implies the problem is also W[1]-hard when parameterized by tw
and k. We use the following hardness result of k-Center.

Theorem 6 ([111]). k-Center is W[1]-hard parameterized by vc and k. Furthermore,
if there is an algorithm for the problem in time no(vc+k), then ETH is false.

Theorem 7. SkHC is W[1]-hard parameterized by vc and k.

Proof. We reduce k-Center to SkHC. Let I = (G, k, r) be an instance for the decision
version of k-Center. We build an instance I ′ = (G′, c, k′, r′) for the decision version of
SkHC. Starting with G, add vertices h and z connected by an edge of weight r. Also, add
a vertex c and an edge from c to each vertex u ∈ V (G) ∪ {h} of weight r + 1. Observe
that d(h, z) = r and d(u, c) = r + 1, for each u ∈ V (G) ∪ {h}. Figure 3.2 shows the
resulting graph G′. Now, let k′ = k + 1 be the number of hubs and r′ = 4r + 2 be the
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Figure 3.2: Graph G′.

bound on the value of a solution. We will show that I is a Yes-instance if, and only if, I ′

is a Yes-instance.
Let K ⊆ V (G) be an optimal solution for I, such that maxu∈V (G) minv∈K d(u, v) ≤ r.

Thus, there is a assignment φ : V (G) → K, such that d(u, φ(u)) ≤ r, for every u ∈
V (G). Let H = K ∪ {h} be a set of k + 1 = k′ vertices, and define an assignment
φ′ : V (G′) \ {c} → H such that φ′(u) = h if u ∈ {h, z}, and otherwise φ′(u) = φ(u). For
a pair of vertices u, v ∈ V (G′) \ {c} with φ′(u) 6= φ′(v), we have d(u, φ′(u), c, φ′(v), v) ≤
4r+2, since the distance between every hub and the center is exactly r+1 and the distance
between every vertex and its hub is at most r. For the case in which φ′(u) = φ′(v), we
have d(u, φ′(u), v) ≤ 2r. Thus, I ′ is indeed a Yes-instance.

Now, let H be a set of k′ = k+ 1 vertices, and φ′ : V (G′) \ {c} → H be an assignment
such that d(u, φ′(u), c, φ′(v), v) ≤ 4r + 2, for every u, v ∈ V (G′), if φ′(u) 6= φ′(v), and
otherwise d(u, φ′(u), v) ≤ 4r + 2. Note that φ′(z) = h, as otherwise we would have
d(z, φ′(z), c, φ′(u), u) > 4r + 2, for some u ∈ V (G) \ {c}. Thus, one of the hubs must
be h. Using similar arguments, z cannot be the hub assigned to h. As before, the
distance between every hub and the center is exactly r + 1, then, for every u ∈ V (G), we
have d(u, φ′(u)) ≤ 4r + 2− d(φ′(u), c)− d(c, φ′(z))− d(φ′(z), z) = r. We conclude that H
induces a solution for I, and thus I is a Yes-instance.

Finally, recall that k-Center is W[1]-hard parameterized by vc and k (Theorem 6)
and observe that the reduction increases the vertex cover number of G by at most 2.
Therefore, SkHC is W[1]-hard parameterized by vc and k.

3.2 A parameterized algorithm

In this section, we present an algorithm for SkHC parameterized by tw and r that runs
in time O∗(rO(tw)). More precisely, for an instance (G, c, k, r), we either find a set of k
hubs and a corresponding assignment such that the path between each pair of vertices
through the assigned hubs (and possibly the center) has length at most r, or decide that
no such solution exists. Note that this path passes through the center if, and only if, the
vertices are assigned to distinct hubs. The algorithm is based on a dynamic programming
approach over a nice tree decomposition. We use this result as a foundation for the
efficient parameterized approximation scheme presented in Section 3.3.
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3.2.1 Reduction to a simplified problem

In order to define a dynamic programming table, rather than considering SkHC directly,
we solve a slightly different problem, defined next. This formulation relies on the property
that every pair of vertices has unit demand, which allows us to guess important vertices
and distances of an optimal solution.

Definition 3. Let `1, `2 : V (G) \ {c} → Z≥0. An assignment φ : V (G) \ {c} → H, where
H ⊆ V (G) \ {c}, respects `1 and `2 if, for every u ∈ V (G) \ {c}, we have:

d(u, φ(u), c) ≤ `1(u) and d(u, φ(u)) ≤ `2(u).

In the Modified Star k-Hub Center (MSkHC), an instance is composed of a
graph G with center c, a number k and functions `1 and `2. A solution is an assignment
of vertices to hubs, opening k hubs, that respects `1 and `2. Figure 3.3 shows the distances
of a vertex to the center and to its hub, relating to `1 and `2.

c
φ(u)u

≤ `2(u)

≤ `1(u)

Figure 3.3: Relationship between distances and functions `1 and `2.

We show how to solve an instance of SkHC with an algorithm that solves the corre-
sponding instance of this modified version.

Lemma 1. Let I be an instance of SkHC and I ′ be the corresponding instance of MSkHC.
It is possible to solve I in time O(n4 · f(I ′)), given an algorithm that solves I ′ in time
f(I ′).

Proof. Let φ be the assignment of vertices to hubs of an optimal solution for an instance
I = (G, c, k, r) of SkHC. Let u1 = arg maxu∈V (G)\{c} d(u, φ(u), c) be the farthest vertex
from the center and u2 = arg maxu∈V (G)\{c} d(u, φ(u)) be the farthest vertex from its hub
in this optimal solution. Moreover, let γ1 = d(u1, φ(u1), c) and γ2 = d(u2, φ(u2)) be
the respective distances. These can be found in a guessing step in time O(n4). The
instance of MSkHC is I ′ = (G, c, k, `1, `2), created as follows. Let N = {u ∈ V (G) \ {c} :

d(u, φ(u1)) ≤ d(u1, φ(u1))}. For every u ∈ N , we have `1(u) = γ1, and for all others, we
have `1(u) = r − γ1. If γ2 ≤ r/2, then `2(u) = γ2 for every u, otherwise, `2(u2) = γ2 and
`2(u) = r − γ2, for every u 6= u2. This setting is depicted in Figure 3.4.

cφ(u1)u1
N

φ(u2) u2
γ2

γ1

Figure 3.4: Important vertices and distances of an optimal solution.
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Let (H,φ) be a solution for I. From construction, we know u1 and u2. We build a
solution (H,φ′) that respects `1 and `2. Let φ′(u) = φ(u1) for u ∈ N , then d(u, φ′(u), c) ≤
d(u1, φ

′(u1), c) = γ1 = `1(u). For every other u, let φ′(u) = φ(u), then, as this solution
has value r, we have d(u, φ′(u), c) ≤ r − d(u1, φ

′(u1), c) = r − γ1 = `1(u). If γ2 ≤ r/2,
then d(u, φ′(u)) ≤ γ2 = `2(u), for every u. Now, assume γ2 > r/2. If u and u2 are
connected to the same hub, then d(u, φ′(u)) ≤ r − d(u2, φ

′(u2)) = r − γ2 = `2(u). If
u and u2 have different hubs, we also have d(u, φ′(u)) ≤ r − γ2 = `2(u), as otherwise
d(u, φ′(u), c, φ′(u2), u2) > d(u, φ′(u)) + d(u2, φ

′(u2)) > r − γ2 + γ2 > r, a contradiction.
For the other direction, let (H,φ) be a solution for I ′. We prove this is a solution for I.

Let u and v be vertices such that φ(u) 6= φ(v), and assume, w.l.o.g., that φ(u) = φ(u1).
Then, d(u, φ(u), c) ≤ `1(u) = γ1 and d(v, φ(v), c) ≤ `1(v) = r − γ1. If none of the hubs
is φ(u1), both their distances to c are bounded by r − γ1. Since γ1 ≥ r/2, in either case
the path of (u, v) costs at most r. Now, let u and v be vertices such that φ(u) = φ(v),
and assume γ2 > r/2. Assume, w.l.o.g., that u = u2, then d(u, φ(u)) ≤ `2(u) = γ2 and
d(v, φ(v)) ≤ `2(v) = r−γ2, implying that the path of (u, v) costs at most r; otherwise, the
path costs at most 2(r − γ2) < r. Now, assume γ2 ≤ r/2, then d(w, φ(w)) ≤ `2(w) = γ2

for every vertex w, thus the path of (u, v) costs at most r.

3.2.2 The algorithm

In this section, we describe the algorithm in the form of recurrence relations, one for each
node type of a nice tree decomposition. We suppose we receive an instance (G, c, k, `1, `2)

of MSkHC and a nice tree decomposition (T , B) of G of width tw.
Assume the center c is contained in the bag Bt, for each t ∈ V (T ), since otherwise we

could add c to every bag and increase the width of the decomposition by at most one.
For the ease of notation, define Xt = Bt \ {c} and let Vt denote the non-center vertices
of G, contained in bags of the subtree rooted at t. Also, define Gt = G[Vt ∪ {c}] as the
subgraph induced by Vt and c.

Subproblem definition For each node t of the tree decomposition, we would like to
find a set of hubs that corresponds to a partial solution for the global problem. Since
vertices in Vt might be connected to hubs that are not introduced yet, they might be
satisfied indirectly by vertices of Xt. To encode the distances from a vertex of Xt to the
center and to its hub in a global solution, we consider colorings c,h : Xt → {0, . . . , r},
respectively. Thus, a value c(u) associated with a vertex u gives an upper bound on the
length of a path from u to the center, while h(u) gives an upper bound on the length of
a path from u to its hub. Vertices in S ⊆ Xt are not connected to the center and a hub
yet, they will be satisfied by higher nodes of the tree decomposition. Next, we define a
partial solution.

Definition 4. Let t be a node of the tree decomposition, and consider colorings c,h :

Xt → {0, . . . , r} and a subset S ⊆ Xt. A partial solution for t is a subset H ⊆ Vt such
that:

(i) for u ∈ Xt, we have u ∈ H if, and only if, c(u) = d(u, c) and h(u) = 0; and



43

(ii) for u ∈ Xt \ S, there is v ∈ H such that d(u, v, c) ≤ c(u) and d(u, v) ≤ h(u); and

(iii) for u ∈ Vt \Xt, Gt has a shortest path P from u to a vertex v such that:

(a) V (P ) ∩Xt = {v}, d(u, v) + c(v) ≤ `1(u) and d(u, v) + h(v) ≤ `2(u), or

(b) V (P ) ∩Xt = ∅, v ∈ H, d(u, v, c) ≤ `1(u) and d(u, v) ≤ `2(u).

If item (ii) or (iii) holds for some vertex u, then we say that u is satisfied by v.

A partial solution for SkHC is depicted in Figure 3.5, where a curved edge repre-
sents a path whose internal vertices are not in Xt. Note that a regular edge may con-
tain several internal vertices. In this example, u is satisfied directly by hub v, provided
that d(u, v, c) ≤ `1(u) and d(u, v) ≤ `2(u). Similarly, u′ is satisfied by hub v′, but since
u′ ∈ Xt, this time we require that d(u′, v′, c) ≤ c(u′) and d(u′, v′) ≤ h(u′). Finally, u′′ is
satisfied indirectly by the non-hub vertex v′′, provided that d(u′′, v′′) + c(v′′) ≤ `1(u′′) and
d(u′′, v′′) + h(v′′) ≤ `2(u′′).

vu′′

u

Gt
c

v′

u′

Bt

v′′
S

Figure 3.5: Partial solution in a node t of the tree decomposition.

Algorithm description Let A be the dynamic programming table used in the algo-
rithm, where At is defined for each node t of the tree decomposition:

At : {0, . . . , r}Xt × {0, . . . , r}Xt × 2Xt → N ∪ {∞}

An entry At(c,h, S) is the minimum size of a partial solution for t w.r.t. (c,h, S), and
if there is no partial solution, then At(c,h, S) = ∞. Observe that finding a solution for
the whole graph G corresponds to an entry of the subproblem defined at the root node
with S = ∅. Next, we give recurrence relations to compute At(c,h, S) for each node type.

For a leaf node t, the only vertex in the bag is the center, so there is no vertex to be
satisfied and At(c,h, S) = 0 (see Figure 3.6).

Bt
c

Figure 3.6: The leaf case of SkHC.
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For an introduce node t with child t′, we have Xt = Xt′ ∪ {u}, for some u /∈ Xt′ . Let
c′ and h′ be the restrictions of c and h to Xt′ , respectively, and H ⊆ Vt′ be the partial
solution for t′. If c(u) = d(u, c) and h(u) = 0, then u is a hub, and we define S ′ as
the union of S and the vertices of Xt′ that are satisfied by u, according to item (ii) of
Definition 4:

S ′ = S ∪ {v ∈ Xt′ : d(v, u, c) ≤ c(v) ∧ d(v, u) ≤ h(v)}.

It may be the case that u /∈ S and there is no hub that satisfies u, i.e., d(u, v, c) > c(u)

and d(u, v) > h(u), for every v ∈ H, then we set the entry to∞. Otherwise, there are two
cases: u ∈ S or u /∈ S and there is v ∈ H such that d(u, v, c) ≤ c(u) and d(u, v) ≤ h(u),
according to item (ii) of Definition 4. Figure 3.7 depicts the case u is chosen as a hub
and the case there is a hub in H satisfying it.

Bt′S ′
c

u

(a) u is chosen as a hub.

Bt′
cv

u

(b) u is satisfied by a
hub.

Figure 3.7: The introduce case of SkHC.

Observe that no vertex in Vt \Xt can be satisfied by u, as Bt′ is a separator, thus there
is no direct path from such a vertex to u. We compute:

At(c,h, S) =


At′(c′,h′, S ′) + 1 if u is a hub,

∞ if u /∈ S and u is not satisfied,

At′(c′,h′, S ′) otherwise.

Lemma 2. The formula holds for introduce nodes.

Proof. Define an indicator set U : if c(u) 6= d(u, c) and h(u) 6= 0, then U = ∅, otherwise,
U = {u}. Observe that a partial solution H for t induces a partial solution H \ U for t′.
To see this, note that, since Xt′ is a separator of Gt, any vertex v that is satisfied by u
must be in Xt′ , but then v ∈ S ′. Thus, At′(c′,h′, S ′) ≤ At(c,h, S)− |U |.

For the opposite direction, if H ′ is a partial solution for t′, then H ′ ∪ U is a partial
solution for t. It suffices to recall that, if there is v ∈ S ′ \S, then v is satisfied by u. Thus,
At′(c′,h′, S ′) + |U | ≥ At(c,h, S).

For a forget node t with child t′, we have Xt = Xt′ \ {u}, for some u ∈ Xt′ . Let c′ and
h′ be extensions of c and h to Xt′ . There are two cases: u is satisfied indirectly by some
vertex of Xt, i.e., there is v ∈ Xt with d(u, v) + c′(v) ≤ c′(u) and d(u, v) + h′(v) ≤ h′(u);
or u is satisfied directly by a hub in the partial solution for t (see Figure 3.8).
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cv

u

(a) u is satisfied indi-
rectly.
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vu

(b) u is satisfied by a
hub.

Figure 3.8: The forget case of SkHC.

We compute:

At(c,h, S) = min
c′,h′

{
At′(c′,h′, S ∪ {u}) if u is satisfied indirectly

At′(c′,h′, S) otherwise,

where c′ and h′ span over all extensions of c and h to Xt′ .

Lemma 3. The formula holds for forget nodes.

Proof. Let H be a partial solution for t, and suppose that u is satisfied by a vertex v.
Let c′ and h′ be the extensions such that, if v ∈ Xt, we have c′(u) = d(u, v) + c′(v) and
h′(u) = d(u, v) + h′(v), and, otherwise, we have c′(u) = d(u, v, c) and h′(u) = d(u, v, w),
for a w ∈ H. Also, let S ′ = S ∪ {u} if v ∈ S, and S ′ = S, otherwise. Note that H is a
partial solution for t′ w.r.t. (c′,h′, S ′), thus At(c,h, S) ≥ At′(c′,h′, S ′), which is considered
in the recurrence.

For the other direction, let At′(c′,h′, S ′) be an entry of the recurrence that achieves
the minimum, and let H ′ be a corresponding partial solution for t′. If u /∈ S ′, then S ′ = S

and one can check that H ′ is a partial solution for t. Otherwise, there exists v ∈ S such
that d(u, v) + c′(v) ≤ c′(u) and d(u, v) + h′(v) ≤ h′(u), thus H ′ is also a partial solution
for t in this case. It follows that At(c,h, S) ≤ At′(c′,h′, S ′).

For a join node t with children t′ and t′′, we have Xt = Xt′ = Xt′′ . A vertex in Xt that
is satisfied directly in the subproblem for t might be satisfied indirectly in the subproblem
for t′ or t′′, but not both (see Figure 3.9). Thus, the intersection of vertices satisfied
indirectly in t′ and t′′ must be equal to the set of vertices satisfied indirectly in t.

Bt′
S ′

c
u

v
Bt′′c

u
v

Btc
u

v

Figure 3.9: The join case of SkHC.
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We compute:

At(c,h, S) = min
S′,S′′⊆Xt:
S′∩S′′=S

{
At′(c,h, S ′) + At′′(c,h, S ′′)− |H0|

}
,

where H0 is the set of vertices u ∈ Xt such that c(u) = d(u, c) and h(u) = 0, which
corresponds to a common subset of hubs in the children’s partial solutions.

Lemma 4. The formula holds for join nodes.

Proof. Let H be a partial solution for t, and define H ′ = H ∩ Vt′ and H ′′ = H ∩ Vt′′ .
We consider an entry (c,h, S ′) of the subproblem for t′ and an entry (c,h, S ′′) of the
subproblem for t′′. Observe that every vertex of Vt′ is satisfied by some vertex in H ′, with
the exception of S and possibly some other vertices in Xt. Let S ′ be the union of S and
the subset of vertices in Xt that are satisfied by some hub in H ′′ \Xt. The construction
of S ′′ is analogous. Notice that H0 = H ∩ Xt, and that H0 is a common subset of H ′

and H ′′. Observe that H ′ and H ′′ are partial solutions for t′ and t′′, respectively. Then,
At(c,h, S) = |H| = |H ′|+ |H ′′| − |H0| ≥ At′(c,h, S ′) + At′′(c,h, S ′′)− |H0|.

For the converse direction, consider the pair of subsets S ′ and S ′′ that achieve the
minimum in the recurrence, and let H ′ and H ′′ be corresponding partial solutions for t′

and t′′, respectively, such that |H ′| = At′(c,h, S ′) and |H ′′| = At′′(c,h, S ′′). We claim
that H = H ′ ∪H ′′ is a partial solution for t. Observe that H ′ satisfies vertices in Vt′ \ S ′
and H ′′ satisfies vertices in Vt′′ \ S ′′. Thus, H satisfies vertices in (Vt′ ∪ Vt′′) \ (S ′ ∩ S ′′).
Since Vt = Vt′ ∪ Vt′′ and S = S ′ ∩ S ′′, H is a partial solution for t. Then, At′(c,h, S ′) +

At′′(c,h, S ′′)− |H0| = |H ′|+ |H ′′| − |H0| = |H| ≥ At(c,h, S).

Using the recurrence relations in a dynamic programming algorithm, one can compute
a minimum size solution for the whole graph. This leads to the following theorem.

Theorem 8. Given an instance (G, c, k, `1, `2) of MSkHC and a nice tree decomposition
of G of width tw, there is an algorithm that computes a solution in time O∗(rO(tw)), or
concludes that there is no solution with k hubs.

Proof. Let t0 be the root of the tree decomposition, where Xt0 = ∅, and c∅, h∅ be empty
colorings. Using Lemmas 2, 3 and 4, if At0(c∅,h∅, ∅) > k, then there is no solution with
k hubs. Otherwise, we have a partial solution H ⊆ Vt0 = V (G) and a corresponding
assignment φ : V (G) \ {c} → H, where item (iii) of Definition 4 holds for every vertex
of G. It follows that (H,φ) respects `1 and `2, as for every u ∈ V (G), there is φ(u) ∈ H
such that d(u, φ(u), c) ≤ `1(u) and d(u, φ(u)) ≤ `2(u).

Now we analyze the running time of the algorithm. For each node t of the tree
decomposition, there are at most (r + 1)|Xt| distinct colorings for each of c and h and
2|Xt| choices of S, resulting in O(rO(tw)) entries per node. The running time to compute
the value of an entry At(c,h, S) is considered next. For leaf and introduce nodes, the
operations are performed in time O(n). For a forget node, since the child node has
exactly one extra vertex, we consider at most r+ 1 extensions for each of c and h, which
can be done in time O∗(r2). For a join node, we list entries of the subproblems that
correspond to pairs of subsets S ′ and S ′′ whose intersection is S, which can be done in
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time O∗(4tw). Since the nice tree decomposition has O(n · tw) nodes, the overall time of
the algorithm is O∗(rO(tw)).

3.3 An efficient parameterized approximation scheme

In this section, we present an EPAS for SkHC, parameterized by the treewidth of the
graph. Namely, for any ε > 0, we give an algorithm that receives an instance (G, c, k, r)

of SkHC and either finds a solution of value at most (1 + ε)r, or concludes that every
solution has value greater than r. The running time of the algorithm is O∗((tw/ε)O(tw)).
The previous algorithm depended exponentially on r because an entry of the dynamic
programming table contains the exact distances from each vertex in the bag to the center
and to its hub. This is a common issue for algorithms parameterized by graph widths,
which often store and enumerate large integers.

The general structure of the EPAS is inspired by the framework of Lampis [121], that
was later applied to k-Center by Katsikarelis et al. [111]. In these works, integers are
stored approximately in a dynamic programming table, and are calculated by adding
values from previously computed entries. This effectively shrinks the size of the table
and renders a faster algorithm, while increasing the value of a solution by a small factor.
The former author devised an abstract model of computation based on this idea, which
is now part of the parameterized approximation toolkit (see Subsection 2.5.2). We use
this method in Chapter 4, for a different hub location problem. For SkHC, however, we
directly show how to obtain such an approximate solution with no more hubs than in the
exact one.

3.3.1 Reduction to a simplified problem

As before, we consider an instance (G, c, k, `1, `2) of MSkHC that is solved by a dynamic
programming algorithm. However, now we require that a solution H respects `1 and `2

only approximately.

Definition 5. Let ε > 0 be a constant and consider an instance I = (G, c, k, `1, `2) of
MSkHC. An assignment φ : V (G) \ {c} → H, where H ⊆ V (G) \ {c} with |H| ≤ k,
ε-respects `1 and `2 if, for every u ∈ V (G) \ {c}, we have d(u, φ(u), c) ≤ (1 + ε)`1(u) and
d(u, φ(u)) ≤ (1 + ε)`2(u). Moreover, we say (H,φ) is an ε-solution for I.

We show that finding an ε-solution for MSkHC is sufficient to find a (1+ε)-approximation
for SkHC.

Lemma 5. If there is an ε-solution for an instance of MSkHC, then there is a (1 + ε)-
approximation for the corresponding instance of SkHC.

Proof. Suppose that we want to find a (1+ε)-approximation for an instance I = (G, c, k, r)

of SkHC, for 0 < ε ≤ 1. Let (H,φ) be an optimal solution for I, and let u1, u2, γ1 and
γ2 be as in the proof of Lemma 1, i.e., the farthest vertices from the center and its
hub in this optimal solution, respectively, and their distances. Recall that N = {u ∈
V (G) \ {c} : d(u, φ(u1)) ≤ d(u1, φ(u1))}. We guess the length of γ1 and γ2 up to a factor,
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so assume that we are given lower bounds γ′1 and γ′2, such that γ′1 ≤ γ1 ≤ (1 + ε)γ′1 and
γ′2 ≤ γ2 ≤ (1 + ε)γ′2. This can be done in time O∗(log(1+ε) r).

The instance I ′ we build for MSkHC is similar to that in Lemma 1, but we allow
vertices to have a greater distance to the center and its hub. We have `1(u) = (1 + ε)γ′1,
for u ∈ N , and `1(u) = r − γ′1, otherwise. If γ2 ≤ r/2, we have `2(u) = (1 + ε)γ′2, for
every u; otherwise, we have `2(u2) = (1 + ε)γ′2 and `2(u) = r − γ′2, for every u 6= u2.

Clearly, (H,φ) is an ε-solution for I ′, thus, we can find an ε-solution for this instance
using the given algorithm. Since the resulting is an ε-solution, for every u ∈ V (G) \ {c},
we have d(u, φ(u), c) ≤ (1 + ε)`1(u) and d(u, φ(u)) ≤ (1 + ε)`2(u). We verify that this
solution has the desired approximation factor for I. Let φ be the assignment function of
this solution.

Let u and v be such that φ(u) 6= φ(v). Suppose, w.l.o.g., that u = u1, then

d(u, φ(u), c, φ(v), v) ≤ (1 + ε)(`1(u) + `1(v))

= (1 + ε)((1 + ε)γ′1 + r − γ′1)

= (1 + ε)(r + εγ′1)

≤ (1 + ε)2r,

using γ′1 ≤ r. If u, v 6= u1, then

d(u, φ(u), c, φ(v), v) ≤ (1 + ε)(`1(u) + `1(v))

= 2(1 + ε)(r − γ′1)

≤ 2(1 + ε)(r − γ1/(1 + ε))

≤ (1 + 2ε)r,

using γ′1 ≥ γ1/(1 + ε) and r − γ1 ≤ r/2. Now, let u and v be such that φ(u) = φ(v) = w.
Suppose γ2 ≤ r/2, then

d(u,w, v) ≤ (1 + ε)(`2(u) + `2(v))

= 2(1 + ε)2γ′2

≤ (1 + ε)2r,

using γ′2 ≤ γ2 ≤ r/2. Now, suppose γ2 > r/2 and, w.l.o.g., let u = u2. We have

d(u,w, v) ≤ (1 + ε)(`2(u) + `2(v))

= (1 + ε)((1 + ε)γ′2 + r − γ′2)

= (1 + ε)(r + εγ′2)

≤ (1 + ε)2r,



49

using γ′2 ≤ γ2 ≤ r. If u, v 6= u2, then

d(u,w, v) ≤ (1 + ε)(`2(u) + `2(v))

= 2(1 + ε)(r − γ′2)

≤ 2(1 + ε)(r − γ2/(1 + ε))

≤ (1 + 2ε)r,

using γ′2 ≥ γ2/(1 + ε). Therefore, since max{1 + 2ε, (1 + ε)2} ≤ 1 + 3ε, this solution is a
(1 + 3ε)-approximation for I.

3.3.2 The algorithm

For a fixed δ > 0, we will approximate a distance by an integer power of (1 + δ). For
some vertex u ∈ V (G) \ {c}, we consider a set of numbers containing zero, d(u, c) and the
integer powers of (1 + δ) that are less than or equal to (1 + ε)r, defined as:

Σu = {0, d(u, c)} ∪ {(1 + δ)i : i ∈ Z≥0, (1 + δ)i ≤ (1 + ε)r}.

In the subproblem definition, rather than considering values in {0, . . . , r}, we will
enumerate only values in Σu, for a vertex u. This implies that the colorings found for the
subproblem corresponding to a node of the tree decomposition are computed only within
a factor (1 + δ). But, because the partial solutions for the children nodes are already
approximate, the approximation error is multiplied in each node of the tree up to the
root. This suggests the following definition, that is a relaxed version of Definition 4.

Definition 6. Let t be a node of the tree decomposition of height h. Consider color-
ings cδ,hδ on Xt such that cδ(u),hδ(u) ∈ Σu, for u ∈ Xt, and a subset S ⊆ Xt. A
δ-partial solution for t is a subset H ⊆ Vt such that:

(i) for every u ∈ Xt, we have u ∈ H if, and only if, cδ(u) = d(u, c) and hδ(u) = 0; and

(ii) for every u ∈ Xt \S, there is v ∈ H such that d(u, v, c) ≤ (1 + δ)cδ(u) and d(u, v) ≤
(1 + δ)hδ(u); and

(iii) for every u ∈ Vt \Xt, Gt has a shortest path P from u to a vertex v such that:

(a) V (P ) ∩ Xt = {v}, d(u, v) + cδ(v) ≤ (1 + δ)h`1(u) and d(u, v) + hδ(v) ≤ (1 +

δ)h`2(u), or

(b) V (P ) ∩Xt = ∅, v ∈ H, d(u, v, c) ≤ (1 + δ)h`1(u) and d(u, v) ≤ (1 + δ)h`2(u).

If item (ii) or (iii) holds for some vertex u, then we say that u is δ-satisfied by v.

Instead of finding a δ-partial solution of minimum size, for each entry (cδ,hδ, S),
our algorithm computes a δ-partial solution for t of bounded size Aδt (cδ,hδ, S) and, if
we cannot find a δ-partial solution, we set Aδt (cδ,hδ, S) = ∞. We show that, for each
entry of the table, the size of the constructed δ-partial solution is no greater than the
size of a minimum partial solution for a corresponding instance of the exact subproblem.
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Namely, in Lemma 6, for each entry At(c,h, S) for the exact subproblem, we compute a
corresponding entry Aδt (cδ,hδ, S) for the relaxed subproblem, where:

cδ(u) =

{
d(u, c) if c(u) = d(u, c),

(1 + δ)blog(1+δ) c(u)c otherwise.

hδ(u) =

{
0 if h(u) = 0,

(1 + δ)blog(1+δ) h(u)c otherwise.

Lemma 6. Consider an entry At(c,h, S) of the exact dynamic programming table. There
is an algorithm that, in time O∗((log(1+δ) r)

O(tw)), computes a δ-partial solution for t w.r.t.
(cδ,hδ, S) and size Aδt (cδ,hδ, S) ≤ At(c,h, S).

Proof. We use the same recurrence relations as those given in Section 3.2, except that
now we refer to the notions of δ-partial solutions of Definition 6, instead of the notions of
partial solutions of Definition 4. We will show the lemma by induction on the height h
of t. For leaf nodes, Xt contains only the center, so Aδt (cδ,hδ, S) = 0, and the lemma holds
trivially. Thus, assume that t is not a leaf. Next, we consider each node type separately.

Forget node In this case, t has a child t′ with height h′ such thatXt = Xt′\{u}, for some
u ∈ Xt′ , and Gt = Gt′ . Consider a partial solution H for t such that |H| = At(c,h, S).
Next, we consider an instance of the subproblem for t′ w.r.t. (c′,h′, S ′) such that c′ and
h′ are extensions of c and h, respectively, and S ′ ⊆ Xt′ is a superset of S. We consider
two subcases separately.

(i) First, assume that u is satisfied by some vertex y ∈ Xt such that d(u, y) + c(y) ≤ `1(u)

and d(u, y) + h(y) ≤ `2(u). In this case, we define c′(u) = d(u, y) + c(y), h′(u) =

d(u, y) + h(y) and S ′ = S ∪ {u}. Observe that H is a partial solution for t′, thus
At′(c′,h′, S ′) ≤ At(c,h, S).

For the other direction, let H ′δ be a δ-partial solution for t′ such that |H ′δ| =

Aδt′(c
′
δ,h

′
δ, S

′). We claim that each vertex v of Vt \ S is δ-satisfied in the sub-
problem for t. This is clear if v is δ-satisfied by some vertex of H ′δ ∪ Xt in the
subproblem for t′. In the only remaining possibility, v is δ-satisfied by u, thus
d(v, u) + c′δ(u) ≤ (1 + δ)h

′
`1(v) and d(v, u) + h′δ(u) ≤ (1 + δ)h

′
`2(v). It follows that

v can be δ-satisfied by y ∈ Xt, since

d(v, y) + cδ(y) ≤ d(v, u, y) + c(y)

= d(v, u) + c′(u)

≤ (1 + δ)(d(v, u) + c′δ(u))

≤ (1 + δ)(1 + δ)h
′
`1(v)

= (1 + δ)h`1(v),

where we used c′δ(u) ≤ c′(u) ≤ (1 + δ)c′δ(u), and h′ < h. Analogously, d(v, y) +

hδ(y) ≤ (1 + δ)h`2(v).
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(ii) Now, assume that u is not satisfied by any vertex in Xt. Then, u is satisfied directly
by some vertex w ∈ H. In this case, we define c′(u) = d(u,w, c), h′(u) = d(u,w) and
S ′ = S. Observe that H is a partial solution for t′, thus At′(c′,h′, S ′) ≤ At(c,h, S).

For the other direction, let H ′δ be a δ-partial solution for t′ such that |H ′δ| =

Aδt′(c
′
δ,h

′
δ, S

′). We claim that each vertex v of Vt \S is δ-satisfied in the subproblem
for t. Again, it suffices to analyze the case that v is δ-satisfied by u in the subprob-
lem for t′, thus d(v, u) + c′δ(u) ≤ (1 + δ)h

′
`1(v) and d(v, u) + h′δ(u) ≤ (1 + δ)h

′
`2(v).

In this case, since u /∈ S ′, u is δ-satisfied by some vertex w ∈ H ′δ such that
d(u,w, c) ≤ (1 + δ)c′δ(u) and d(u,w) ≤ (1 + δ)h′δ(u). Thus,

d(v, w, c) ≤ d(v, u, w, c)

≤ d(v, u) + (1 + δ)c′δ(u)

≤ d(v, u) + (1 + δ)((1 + δ)h
′
`1(v)− d(v, u))

≤ (1 + δ)(1 + δ)h
′
`1(v)

≤ (1 + δ)h`1(v).

Analogously, d(v, w) ≤ (1 + δ)h`2(v). It follows that v is δ-satisfied by w.

In either case, the entry Aδt′(c
′
δ,h

′
δ, S

′) is considered by the recurrence relation, thus
Aδt (cδ,hδ, S) ≤ Aδt′(c

′
δ,h

′
δ, S

′). Since Aδt′(c′δ,h
′
δ, S

′) ≤ At′(c′,h′, S ′) by the induction hy-
pothesis, and we also have At′(c′,h′, S ′) ≤ At(c,h, S), the lemma holds.

Introduce node In this case, t has a child t′ such that Xt′ = Xt \{u}, for some u ∈ Xt.
Let c′ and h′ be the restrictions of c and h to Xt′ , respectively. We define an indicator
set U and a set S ′. If c(u) 6= d(u, c) and h(u) 6= 0, then let U = ∅ and S ′ = S; otherwise,
let U = {u} and define S ′ = S ∪ {v ∈ Xt′ : d(v, u, c) ≤ c(v) ∧ d(v, u) ≤ h(v)} \ {u},
i.e., S ′ corresponds to the union of S with the vertices of Xt′ which can be satisfied by u.
Consider a partial solution H for t such that |H| = At(c,h, S) and note that H ′ = H \U
is a partial solution for t′ such that |H ′| = |H|−|U |, then At′(c′,h′, S ′) ≤ At(c,h, S)−|U |.

For the other direction, letH ′δ be a δ-partial solution for t′ such that |H ′δ| = Aδt′(c
′
δ,h

′
δ, S

′).
We claim that Hδ = H ′δ ∪U is a δ-partial solution for t. Because H ′δ is a δ-partial solution
for t′ w.r.t. (c′δ,h

′
δ, S

′), it suffices to show that each vertex v ∈ S ′\S is δ-satisfied in the sub-
problem for t. By construction, S ′ \S is non-empty only if cδ(u) = d(u, c) and hδ(u) = 0,
but then u ∈ Hδ. Thus d(v, u, c) ≤ c(v) ≤ (1 + δ)cδ(v) and d(v, u) ≤ h(v) ≤ (1 + δ)hδ(v),
and indeed v is δ-satisfied. It follows that Aδt (cδ,hδ, S) ≤ Aδt′(c

′
δ,h

′
δ, S

′) + |U |. Since
Aδt′(c

′
δ,h

′
δ, S

′) ≤ At′(c′,h′, S ′) by the induction hypothesis, the lemma holds.

Join node In this case, t has children t′ and t′′ such that Xt = Xt′ = Xt′′ . Let H
be a partial solution for t such that |H| = At(c,h, S), and define H ′ = H ∩ Vt′ and
H ′′ = H ∩ Vt′′ . Observe that a vertex in Xt might be satisfied only by a hub in H ′′ \Xt.
Thus, in the subproblem corresponding to t′, we have to consider additional vertices that
are satisfied indirectly. Formally, define S ′ as the union of S and all vertices v ∈ Xt that
are not δ-satisfied by some vertex u ∈ Xt ∪H ′. We define S ′′ symmetrically.
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Let H0 be the set of vertices v ∈ Xt such that c(v) = d(v, c) and h(v) = 0. Observe
that H ′ is a partial solution for t′ and H ′′ is a partial solution for t′′ such that |H| = |H ′|+
|H ′′|−|H ′∩H ′′| = |H ′|+|H ′′|−|H0|. Thus, At′(c,h, S ′)+At′′(c,h, S ′′)−|H0| ≤ At(c,h, S).

For the other direction, letH ′δ be a δ-partial solution for t′ such that |H ′δ| = Aδt′(cδ,hδ, S
′),

andH ′′δ be a δ-partial solution for t′′ such that |H ′′δ | = Aδt′′(cδ,hδ, S
′′). Note thatHδ = H ′δ∪

H ′′δ is a δ-partial solution for t. Because the pair of entries Aδt′(cδ,hδ, S ′) and Aδt′′(cδ,hδ, S ′′)
are considered in the recurrence relation, Aδt (cδ,hδ, S) ≤ Aδt′(cδ,hδ, S

′) +Aδt′′(cδ,hδ, S
′′)−

|H0|. Since Aδt′(cδ,hδ, S ′) ≤ At′(c,h, S ′) and Aδt′′(cδ,hδ, S ′′) ≤ At′′(c,h, S ′′) by the induc-
tion hypothesis, the lemma holds.

The running time of the algorithm is dominated by the number of table entries for a
node of the tree decomposition, which is O∗((log(1+δ) r)

O(tw)).

We have yet to prove that finding a δ-partial solution for the root node is sufficient
to find an ε-solution for MSkHC. First, let ĥ be the height of the tree decomposition,
and define δ = ε

2(ĥ+1)
. To bound the approximation error, we use the following auxiliary

result. Then, we observe that a δ-partial solution for the root node is an ε-solution.

Lemma 7. (1 + δ)ĥ+1 ≤ 1 + ε.

Proof. By direct calculation,

(1 + δ)ĥ+1 =
(

1 +
ε

2(ĥ+ 1)

)ĥ+1

≤ e
ε
2 ≤ 1 + ε,

where we use
(

1 + x
n

)n
≤ ex and e

x
2 ≤ 1 + x, for x ≤ 2.

Lemma 8. If H is a δ-partial solution for the root node of the tree decomposition, then
H is an ε-solution.

Proof. Let H be a δ-partial solution for t0, and recall that ĥ is the height of this node.
Consider a fixed vertex u ∈ V (G) \ {c}. Since t0 is empty, Definition 6 implies that
u is δ-satisfied by some vertex v ∈ H. Then, d(u, v, c) ≤ (1 + δ)ĥ`1(u) and d(u, v) ≤
(1 + δ)ĥ`2(u). Therefore, the statement follows by Lemma 7.

Putting everything together leads to the main result of this chapter.

Theorem 9. There is an efficient parameterized approximation scheme for SkHC, pa-
rameterized by the treewidth of the graph.

Proof. First, we give an algorithm that computes an ε-solution for an instance (G, c, k, `1, `2)

of MSkHC. Using the algorithm of Lemma 6, in time O∗((log(1+δ) r)
O(tw)), one can com-

pute a δ-partial solution H for the root node, and, with Lemma 8, we have that H is an
ε-solution for this instance. The running time can be simplified:

O(log(1+δ) r) = O
( log r

log(1 + δ)

)
= O

( log r

δ

)
= O

(tw · log r · log n

ε

)
,

since δ = O( ε
tw·logn

) and 3 log(1 + δ) ≥ δ for δ ≤ 2.



53

Now, we consider the corresponding instance (G, c, k, r) of SkHC. Without loss of
generality, we assume this instance has bounded aspect ratio, i.e., that r is polynomi-
ally bounded in n/ε, and thus log r = O(log(n/ε)). If not, then one can construct a
corresponding instance with bounded aspect ratio such that an approximation for the
modified instance induces an approximation for the original instance using standard tools
(e.g., [9, 50]). It suffices to find a constant-factor approximation A for the optimal value r
(using the 2-approximation of Chen et al. [48]), then constructing a copy of G such that
each edge (u, v) has weight d′(u, v) =

⌈
d(u,v)
εA/n2

⌉
.

To find a (1 + ε)-approximation for SkHC, we use Lemma 5, which increases the
running time by an extra factor O∗(log(1+ε) r). The overall running time is:

O∗(log(1+ε) r · (log(1+δ) r)
O(tw)) = O∗((tw/ε)O(tw)).

To verify the last equality, note that if tw ≤
√

log n, then

(log n/ε)O(tw) = (1/ε)O(tw)(log n)O(
√

logn) = O∗((1/ε)O(tw));

otherwise, log n < tw2, and then (log n/ε)O(tw) = O∗((tw/ε)O(tw)).

3.4 Future work

A possible research direction for SkHC is investigating parameterizations discussed in
Subsection 2.4.2: we highlight the strategy of bounding the treewidth of an input graph
in terms of another parameter, like clique-width, as done in Katsikarelis et al. [111], and
then running the existing algorithm parameterized by treewidth. There is also the matter
of finding either an improved approximation algorithm or a tighter inapproximability
lower bound, given the gap is currently 1.5− ε to 5

3
, for ε > 0.
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Chapter 4

Multiple Allocation k-Hub Center

In the Multiple Allocation k-Hub Center (MAkHC), we are given a connected
edge-weighted graph G, sets of clients C and hub locations H, where V (G) = C ∪ H, a set
of demands D ⊆ C2 and a positive integer k. A solution is a set of hubs H ⊆ H of size
k such that every demand (a, b) is satisfied by a path starting in a, going through some
vertex of H, and ending in b. The objective is to minimize the largest length of a path:

max
(a,b)∈D

min
h∈H

d(a, h) + d(h, b),

where d(u, v) denotes the length of a shortest path between vertices u and v. In the
decision version of the problem, we are also given a non-negative number r and the goal
is to determine whether there exists a solution of value at most r.

In classical location theory, the optimal strategy is usually to connect a client to its
closest open facility [100, 44, 101, 54]. We consider the scenario in which pairs of clients
need to be connected: rather than connecting each pair directly, one might select a set
of hubs that act as consolidation points to take advantage of economies of scale [107, 39,
93, 108]. In this case, each origin-destination demand is served by a path starting at
the origin, going through one of the selected hubs and ending at the destination. Using
consolidation points reduces the cost of maintaining the network, as a large number of
goods is often transported through few hubs, and a small fleet of vehicles is sufficient to
serve the network [38].

Related works The first modern studies on hub location problems were done by
O’Kelly [142, 143], when models and applications were surveyed. Since then, most papers
focused on integer linear programming and heuristic methods [4, 73]. Some approxima-
tion algorithms were considered for single allocation median variants [104, 5, 92, 15]. The
analogous of MAkHC with median objective was considered by Bordini and Vignatti [32],
who presented a (4α)-approximation algorithm that opens

(
2α

2α−1

)
k hubs, for α > 1.

The problem we study is closely related to the well-known k-Center, where, given
an edge-weighted graph G, one wants to select a set of k vertices, called centers, so that
the maximum distance from each vertex to the closest center is minimized [101, 95]. In
the corresponding decision version, one also receives a number r, and asks whether there
is a solution of value at most r. By creating a demand (u, u) for each vertex u of G,
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one reduces k-Center to MAkHC, thus MAkHC can be seen as a generalization of k-
Center. In fact, MAkHC even generalizes the k-Supplier, a variant of k-Center
whose vertices are partitioned into clients and locations, only clients need to be served,
and centers must be selected from the set of locations [102].

A simple greedy algorithm gives a 2-approximation for k-Center, that is the best
one can hope for, since finding an approximation with smaller factor is NP-hard [95].
Analogously, there is a best-possible 3-approximation for k-Supplier [102]. These results
have been extended to MAkHC as well, which also admits a 3-approximation [145]. This
algorithm applies the bottleneck strategy of Hochbaum and Shmoys [102], that guesses
the value of an optimal solution; then, the algorithm either outputs a certificate that there
is no solution of this value, or gives an approximate solution for this instance.

As we have seen, an alternative is to consider the problem from the perspective of
parameterized algorithms, that insist on finding an exact solution, but allow running
times with a non-polynomial factor that depends only on a certain parameter of the input.
Feldmann and Marx [76] showed that k-Center is W[1]-hard for planar graphs of constant
doubling dimension when the parameter is a combination of k, the highway dimension
and the pathwidth of the graph. Blum [19] showed that the hardness holds even if we
additionally parameterize by the skeleton dimension of the graph. Under the assumption
that FPT 6= W[1], this implies that k-Center does not admit an FPT algorithm for any
of these parameters, even if restricted to planar graphs of constant doubling dimension.

Demaine et al. [62] give an FPT algorithm for k-Center, parameterized by k and r for
planar and map graphs. All these characteristics seem necessary for an exact FPT algo-
rithm, as even finding a (2−ε)-approximation with ε > 0 for the general case is W[2]-hard
for parameter k [74]. If we remove the solution value r and parameterize only by k, the
problem remains W[1]-hard if we restrict the instances to planar graphs [76], or if we add
structural graph parameters, such as the vertex-cover number or the feedback-vertex-set
number, and thus, also treewidth or pathwidth [111].

In order to confront the previous barriers, Katsikarelis et al. [111] provide an EPAS for
k-Center with different parameters w, i.e., for every ε > 0, one can compute a (1 + ε)-
approximation in time f(ε, w) · nO(1), where w is either the clique-width or treewidth
of the graph. More recently, Feldmann and Marx [76] have also given an EPAS for k-
Center when it is parameterized by k and the doubling dimension, which can be a more
appropriate parameter for transportation networks than r.

Our results and techniques We initiate the study of MAkHC under the perspective
of parameterized algorithms. We start by showing that, for any ε > 0, there is no
parameterized (3− ε)-approximation for the problem when the parameter is k, the value
r is bounded by a constant and the graph is unweighted, unless FPT = W[2]. For planar
graphs, finding a good constant-factor approximation remains hard in the polynomial
sense, as we show that it is NP-hard to find a (3− ε)-approximation for MAkHC in this
case, even if the maximum degree is 3.

To challenge the approximation lower bound, one might envisage an FPT algorithm by
considering an additional structural parameter, such as vertex-cover and feedback-vertex-
set numbers or treewidth. However, this is unlikely to lead to an exact FPT algorithm,
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as we note that the hardness results for k-Center [111, 76, 19] extend to MAkHC.
Namely, we show that, unless FPT = W[1], MAkHC does not admit an FPT algorithm
when parameterized by a combination of k, the highway and skeleton dimensions and the
pathwidth of the graph, even if restricted to planar graphs of constant doubling dimension;
or when parameterized by k and the vertex-cover number. Instead, we aim at finding an
approximation with factor strictly smaller than 3 that runs in FPT time.

In this chapter, we present a (2 + ε)-approximation for MAkHC parameterized by the
treewidth of the graph, for ε > 0, running in time O∗((tw/ε)O(tw)). Moreover, we give
a parameterized (2 + ε)-approximation for MAkHC when the input graph is planar and
unweighted, parameterized by k and r.

Our main result is a non-trivial dynamic programming algorithm over a tree decom-
position, that follows the spirit of the algorithm by Demaine et al. [62]. We assume that
we are given a tree decomposition of the graph and consider both k and r as part of
the input. Thus, for each node t of this decomposition, we can guess the distance from
each vertex in the bag of t to its closest hub in some (global) optimal solution H∗. The
subproblem is computing the minimum number of hubs to satisfy each demand in the
subgraph Gt, corresponding to t.

Compared to k-Center and k-Supplier, however, MAkHC has two additional sources
of difficulty. First, the cost to satisfy a demand cannot be computed locally, as it is the
sum of two shortest paths, each from a client in the origin-destination pair to some hub
in H∗ that satisfies that pair. Second, the set of demand pairs D is given as part of the
input, whereas every client must be served in k-Center or in k-Supplier. If we knew
the subset of demands D∗t that are satisfied by some hub in H∗ ∩ V (Gt), then one could
solve every subproblem in a bottom-up fashion, so that every demand would have been
satisfied in the subproblem corresponding to the root of the decomposition.

Guessing D∗t leads to an FPT algorithm parameterized by tw, r and |D|, which is
unsatisfactory as the number of demands might be large in practice. Rather, for each
node t of the tree decomposition, we compute deterministically two sets of demands
Dt, St ⊆ D that enclose D∗t , that is, that satisfy Dt ⊆ D∗t ⊆ Dt ∪ St. By filling the
dynamic programming table using Dt instead of D∗t , we can obtain an algorithm that
runs in FPT time on parameters tw and r, and that finds a 2-approximate solution.

The key insight for the analysis is that the minimum number of hubs in Gt that are
necessary to satisfy each demand in Dt by a path of length at most r is a lower bound on
|H∗∩V (Gt)|. At the same time, the definition of the set of demands St ensures that each
such demand can be satisfied by a path of length at most 2r using a hub that is close
to a vertex in the bag of t. This is the main technical contribution of this chapter, and
we believe these ideas might find usage in algorithms for similar problems whose solution
costs have non-local components.

Using only these ideas, however, is not enough to get rid of r as a parameter, as we
need to enumerate the distance from each vertex in a bag to its closest hub. A common
method to shrink a dynamic programming table with large integers is storing only an
approximation of each number, causing the solution value to be computed approximately.
This eliminates the parameter r from the running time, but adds a term ε to the approx-
imation factor. This technique is now standard and has been applied multiple times for
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graph width problems [62, 83, 121, 111, 16], as we have seen in Subsection 2.5.2.
Specifically, we employ the framework of approximate addition trees [121]. For some

δ > 0, we approximate each value {1, . . . , r} of an entry in the dynamic programming
table by an integer power of (1 + δ), and show that each such value is computed by an
addition tree and corresponds to an approximate addition tree. By results in [121], we can
readily set δ appropriately so that the number of distinct entries is polynomially bounded
and each value is approximated within factor (1 + ε).

The remaining of this chapter is organized as follows: Section 4.1 brings our hardness
results, Section 4.2 describes the algorithm parameterized by treewidth, which is analyzed
in Section 4.3, Section 4.4 shows the algorithm for the planar case, and Section 4.5 points
future research directions.

4.1 Hardness results

In this section, we observe that approximating MAkHC is hard, both in the classical
and parameterized senses. First, we show that approximating the problem by a factor
better than 3 is NP-hard, even if the input graph is planar and unweighted. This result
strengthens the previous known lower bound and matches the approximation factor of
the greedy algorithm [145].

Theorem 10. For every ε > 0, if there is a (3− ε)-approximation for MAkHC when the
graph is planar and unweighted, then P = NP.

Proof. We present a reduction from Vertex Cover (VC), whose task is to find a sub-
set of k vertices that contains at least one endpoint of every edge of the graph. More
specifically, we consider a particular version of the problem.

Claim 1. Vertex Cover is NP-hard even if the graph is planar, triangle-free and has
maximum degree 3.

Proof. We self-reduce the problem from the case the input graph is planar and with
maximum degree 3, which is known to be NP-hard [90]. Given an instance (G, k) of
vertex cover, create another instance (G′, k′), where G′ is obtained by subdividing each
edge of G in three parts, and k′ = k+ |E(G)|. Let ue and ve be new vertices added for the
subdivision of an edge e = (u, v) ∈ E(G) and that are incident with u and v, respectively.
This reduction is depicted in Figure 4.1.

u ve

(a) Graph G.

u ue vve

(b) Graph G′.

Figure 4.1: Self reduction of VC.
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Assume S is a vertex cover for G of size k, and build a vertex cover S ′ for G′ as follows.
Initialize S ′ with a copy of S and, for each edge e = (u, v) of G, add ve to S ′, if u ∈ S, and
add ue, otherwise. Note that S ′ is a vertex cover of G′ of size k′. For the other direction,
assume S ′ is a vertex cover of G′ with size k′, and define S = S ′ \ {ue, ve : e ∈ E(G)}.
If, for some edge (ue, ve) of G′, both ue and ve are in S ′, then S ′ \ {ue} ∪ {u} is a vertex
cover of G′. Thus, assume for every such edge (ue, ve), either ue or ve is in S ′. It follows
that S is a vertex cover of G of size k.

Given an instance (G, k) of VC, build an instance (G, C,H,D, k) of MAkHC, where C =

H = V (G) and D = E(G). Observe that there exists a vertex cover S of size k in G if,
and only if, the solution S for MAkHC has value 1. Suppose that the optimal value is
greater than 1, then it would have to be at least 3, since the graph has no triangles. Then,
for ε > 0, a (3− ε)-approximation for MAkHC can decide whether the optimal value is 1,
thus deciding whether there is a vertex cover of size k in G.

From this reduction, one may observe that the previous result holds even for the case
where the maximum degree is 3 and the optimal value is bounded by 3.

To find a better approximation guarantee, one might resource to a parameterized
approximation algorithm. The natural candidates for parameters of MAkHC are the
number of hubs k and the value r of an optimal solution. The next theorem states
that this choice of parameters does not help, as it is W[2]-hard to find a parameterized
approximation with factor better than 3, when the parameter is k, the value r is bounded
by a constant and G is unweighted.

Theorem 11. For every ε > 0, if there is a parameterized (3 − ε)-approximation for
MAkHC with parameter k, then FPT = W[2].

Proof. The result will follow by a reduction from Hitting Set (HS), which is known
to be W[2]-hard [68]. We show that a (3 − ε)-approximation for MAkHC can decide an
instance of HS, implying that FPT = W[2]. Recall that in HS, we are given a set U , a
family of sets F ⊆ 2U and an integer k, and the objective is to decide whether there exists
a set H ⊆ U of size k that intersects every set of F .

Given an instance I = (U ,F , k) of HS, we build an instance I ′ = (G, C,H,D, k) of
MAkHC: for each element e ∈ U , create a vertex he in G and add it to H; for each set
S ∈ F , create vertices uS and vS in G, add them to C, create a demand (uS, vS) in D and
connect uS and vS to vertices {he : e ∈ S}. This reduction is depicted in Figure 4.2.

e1 e2 e3 e4 e5

S1 S2

(a) Example instance of HS.

he1 he2 he3 he4 he5

uS1 vS1 uS2 vS2

(b) Reduced instance of
MAkHC.

Figure 4.2: Reduction from HS to MAkHC.
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Consider a hitting set H of size k, and let H ′ = {he : e ∈ H} be a set of hubs of
size k. This set of hubs satisfies every demand in D with cost 2, since for every S ∈ F ,
there is e ∈ S ∩H and thus he ∈ H ′. In the other direction, consider a set of hubs H ′ of
size k that satisfies every demand in D with cost 2, and let H = {e : he ∈ H ′} be a set
of elements of size k. For each set S ∈ F , there exists a corresponding demand (uS, vS)

in D that is satisfied by a hub he ∈ H ′ with cost 2. Since the length of this path is 2, he
must be a neighbor of uS and vS in G, then e ∈ S ∩H. It follows that H is a hitting set
for I.

We have shown that I is a Yes-instance if, and only if, the optimal value of I ′ is 2.
Now, if the optimal value of I ′ is greater than 2, then it would have to be at least 6.
Indeed, if a demand (uS, vS) is satisfied by a hub he ∈ H ′ with cost greater than 2, then
he is not a neighbor of uS. But G is bipartite and uS and he are at different parts, then
d(uS, he) ≥ 3. Analogously, we have d(vS, he) ≥ 3, and thus d(uS, he) + d(vS, he) ≥ 6. We
conclude that a (3 − ε)-approximation can decide whether the optimal value of I ′ is 2,
thus deciding whether I is a Yes-instance.

Due to the previous hardness results, a parameterized algorithm for MAkHC must
consider different parameters, or assume a particular case of the problem. We focus on
the treewidth of the graph, that is one of the most studied structural parameters [58], and
the particular case of planar graphs. This setting is unlikely to lead to an (exact) FPT al-
gorithm, though, as the problem is W[1]-hard, even if we combine these conditions. The
next theorem follows directly from a result of Blum [19], since MAkHC is a generalization
of k-Center.

Theorem 12. Even on planar graphs with edge lengths of constant doubling dimension,
MAkHC is W[1]-hard for the combined parameter (k, pw, h, κ), where pw is the pathwidth,
h is the highway dimension and κ is the skeleton dimension of the graph.

Proof. Given an instance I = (G, k) of k-Center, we build an instance I ′ = (G, C,H,D, k)

of MAkHC where C = H = V (G) and D = {(u, u) : u ∈ V (G)}. Now, note that there
is a solution of value at most r for I if, and only if, there is a solution of value 2r for I ′.
The theorem follows, as we do not change the graph or the number of hubs k.

Note that MAkHC inherits other hardness results of k-Center, thus it is W[1]-hard
when parameterized by a combination of k and the vertex-cover number [111]. Recall that
the treewidth is a lower bound on the pathwidth, thus the previous theorem implies that
the problem is also W[1]-hard for planar graphs when parameterized by a combination of
tw and k.

In order to circumvent these hardness results, we give a (2+ε)-approximation algorithm
for MAkHC for arbitrary graphs that is parameterized by tw, breaking the approximation
barrier of 3. Then, we complement this result with a (2+ε)-approximation for unweighted
planar graphs parameterized by k and r.
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4.2 Algorithm

In this section, we give a (2 + ε)-approximation parameterized by treewidth. In what
follows, we assume that we receive an instance of MAkHC and a nice tree decomposition
(T , B) of the input graph G of width tw and height bounded by O(tw · log |V (G)|). Also,
we assume that G contains all edges connecting pairs u, v ∈ Bt for each node t. Moreover,
we are given an integer r bounded by O((1/ε)|V (G)|). Our goal is to design a dynamic
programming algorithm that computes the minimum number of hubs that satisfy each
demand with a path of length r. The overall idea is similar to that of the algorithm for
k-Center by Demaine et al. [62], except that we consider a tree decomposition, instead
of a branch decomposition, and that the computed solution will satisfy demands only
approximately. We use a preprocessing step to simplify our algorithm and notation.

Preprocessing For an instance of MAkHC and a demand (a, b) ∈ D, define Gab as the
induced subgraph of G with vertex set V (Gab) = {v ∈ V (G) : d(a, v) + d(v, b) ≤ r}.

Notice that if a solution H has a hub h ∈ V (Gab), then the length of a path serving
(a, b) that crosses h is at most r. In this case, we say that demand (a, b) is satisfied by h
with cost r. Thus, in an optimal solution H∗ of MAkHC, for every (a, b) ∈ D, the set
H∗ ∩ V (Gab) must be non-empty.

Also, if there is v ∈ V (G) such that d(a, v) + d(v, b) > r for every (a, b) ∈ D, then v
does not belong to any (a, b)-path of length at most r, and can be safely removed from G.
From now on, assume that we have preprocessed G in polynomial time, such that for
every v ∈ V (G),

min
(a,b)∈D

d(a, v) + d(v, b) ≤ r.

Moreover, we assume that each edge has an integer weight and that the optimal
value, OPT, is bounded by O(1

ε
|V (G)|), for a given constant ε > 0. If not, then we solve

another instance for which this holds and that has optimal value OPT′ ≤ (1+ε)OPT using
standard rounding techniques [164]. It suffices finding a constant-factor approximation
of value A ≤ 3OPT [145], and defining a new distance function such that d′(u, v) =⌈

3|V (G)|
εA

d(u, v)
⌉
.

Subproblem definition Consider some fixed global optimal solution H∗ and a node t
of the tree decomposition. Let us discuss possible candidates for a subproblem definition.
The subgraph Gt corresponding to t in the decomposition contains a subset of H∗ that
satisfies a subset D∗t of the demands. The shortest path serving each demand with a hub
of H∗ ∩ V (Gt) is either completely contained in Gt, or it must cross some vertex of the
bag Bt. Thus, as in [62], we guess the distance i from each vertex u in Bt to the closest
hub in H∗, and assign “color” ↓i to u to mean that the corresponding shortest path is in
Gt, and color ↑i otherwise.

Since the number of demands may be large, we cannot include D∗t as part of the
subproblem definition. For k-Center, if the shortest path serving a vertex in Gt crosses
a vertex u ∈ Bt, then the length of this path can be bounded locally using the color of u,
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and the subproblem definition may require serving all vertices. For MAkHC, however,
there might be demands (a, b) such that a is in Gt, while b is not, thus the coloring of Bt

is not sufficient to bound the length of a path serving (a, b).
Instead of guessing D∗t , for each coloring c of Bt, we require that only a subset Dt(c)

must be satisfied in the subproblem, and they can be satisfied by a path of length at
most 2r. Later, we show that the other demands in D∗t are already satisfied by the hubs
corresponding to the coloring of Bt. More specifically, we would like to compute At(c)
as the minimum number of hubs in Gt that satisfy each demand in Dt(c) with a path of
length at most 2r and that respect the distances given by c.

Since we preprocessed the graph, there must be a hub in H∗ to each vertex of Bt

at distance at most r. Thus, the number of distinct colorings to consider for each t is
bounded by rO(tw). To get an algorithm parameterized only by tw, we need one more
ingredient: in the following, the value of each color is stored approximately as an integer
power of (1 + δ), for some δ > 0. Later, using the framework of approximate addition
trees (see Subsection 2.5.2), for any constant ε > 0, we can set δ such that the number
of subproblems is bounded by O∗((tw/ε)O(tw)), and demands are satisfied by a path of
length at most (1 + ε)2r.

The set of approximate colors is

Σ = {↓0} ∪ { ↑i, ↓i : j ∈ Z≥0 , i = (1 + δ)j , i ≤ (1 + ε)r }.

A coloring of Bt is represented by a function c : Bt → Σ. For each coloring c, we compute
a set of demands that are “satisfied” by c.

Definition 7. Define St(c) as the set of demands (a, b) for which there exists u ∈ Bt with
c(u) ∈ {↑i, ↓i} and such that d(a, u) + 2i+ d(u, b) ≤ (1 + ε)2r.

Bt

u

a
b

↓i

Figure 4.3: Demand (a, b) is satisfied by a hub close to Bt.

The intuition is that a demand (a, b) ∈ St(c) can be satisfied by a hub close to u by
a path of length at most (1 + ε)2r (see Figure 4.3). Also, we compute a set of demands
that must be served by a hub in Gt in the global optimal solution (see Figure 4.4).

Definition 8. Define Dt(c) as the set of demands (a, b) such that (a, b) /∈ St(c) and either:
(i) a, b ∈ V (Gt); or (ii) a ∈ V (Gt), b /∈ V (Gt) and there is h ∈ V (Gab) ∩ V (Gt) such
that d(h, V (Gab) ∩Bt) > r/2.

We will show in Lemmas 12 and 13 that Dt(c) ⊆ D∗t ⊆ Dt(c) ∪ St(c), thus we only
need to take care of demands in Dt(c) in the subproblem. Formally, for each node t of
the tree decomposition and coloring c of Bt, our algorithm computes a number At(c) and
a set of hubs H ⊆ H ∩ V (Gt) of size At(c) that satisfies the conditions below.
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Gt

u

a

b

h

Bt

> r/2

Figure 4.4: A demand in Dt(c).

(C1) For every u ∈ Bt, if c(u) =↓ i, then there exists h ∈ H and a shortest path P

from u to h of length at most i such that V (P ) ⊆ V (Gt);

(C2) For every (a, b) ∈ Dt(c), minh∈H d(a, h) + d(h, b) ≤ (1 + ε)2r.

If the algorithm does not find one such set, then it assigns At(c) =∞.

Algorithm description We describe how to compute At(c) for each node type (recall
the meaning of the operator ⊕ in Subsection 2.5.2). For a leaf node t, we have V (Gt) = ∅,
then H = ∅ satisfies the conditions, and we set At(c∅) = 0, where c∅ denotes the empty
coloring.

For an introduce node t with child t′, let u be the introduced vertex, such that Bt =

Bt′ ∪ {u}, for u /∈ Bt′ . Let It(c) be the set of colorings c′ of Bt′ such that c′ is the
restriction of c to Bt′ and, if c(u) =↓i for some i > 0, there is v ∈ Bt′ with c′(v) =↓j such
that i = d(u, v)⊕ j (see Figure 4.5). Note that this set is either a singleton or is empty.
If It(c) is empty, discard c.

Bt′

u

(a) u is chosen as a hub.

Bt′

v

u

↓j

(b) u connects to a hub.

Figure 4.5: The introduce case of MAkHC.

Define:

At(c) = min
c′∈It(c):

Dt(c)⊆Dt′ (c′)

{
At′(c

′) + 1 if c(u) =↓0,
At′(c

′) otherwise.

Let H ′ be the solution corresponding to At′(c′): we output H = H ′ ∪ {u} if c(u) =↓0, or
H = H ′ otherwise.

For a forget node t with child t′, let u be the forgotten vertex, such that Bt = Bt′ \ {u},
for u ∈ Bt′ . Let Ft(c) be the set of colorings c′ of Bt′ such that c is the restriction of c′
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to Bt and, if c′(u) =↑i, then there is v ∈ Bt such that c(v) =↑j and i = d(u, v) ⊕ j (see
Figure 4.6). If Ft(c) is empty, discard c.

Bt

u
↓i

(a) u is close to a hub in Gt.

Btv

u

↑j

(b) u connects to a hub not in Gt.

Figure 4.6: The forget case of MAkHC.

Define:

At(c) = min
c′∈Ft(c):

Dt(c)⊆Dt′ (c′)∪St′ (c′)

At′(c
′).

We output as solution the set H = H ′, where H ′ corresponds to the solution of the
selected subproblem in t′.

For a join node t with children t′ and t′′, we have Bt = Bt′ = Bt′′ . Let Jt(c) be the set
of pairs of colorings (c′, c′′) of Bt such that, for every u ∈ Bt, when c(u) is ↓0 or ↑i, then
c′(u) = c′′(u) = c(u); else, if c(u) is ↓i, then (c′(u), c′′(u)) is either (↑i, ↓i) or (↓i, ↑i). If
Jt(c) is empty, discard c. Figure 4.7 depicts the case a vertex u is satisfied by a hub down
the subproblem (node t′′), thus its coloring in t′ must be c′(u) =↑i; vertex u′, on the other
hand, is satisfied by a hub up the subproblem, thus we have c(u′) = c′(u′) = c′′(u′) =↑i′.

Bt′
uu′

hh′

↑i↑i′
Bt′′

u
u′

h

h′

↓i

↑i′

Bt
u

u′

h

h′

↓i

↑i′

Figure 4.7: The join case of MAkHC.

Define:

At(c) = min
(c′,c′′)∈Jt(c):

Dt(c)⊆Dt′ (c′)∪Dt′′ (c′′)

At′(c
′) + At′′(c

′′)− h(c),

where h(c) is the number of vertices u in Bt such that c(u) =↓0. We output a solution
H = H ′ ∪H ′′, where H ′ and H ′′ are the solutions corresponding to t′ and t′′, respectively.

In the next lemma, we show that the algorithm indeed produces a solution of bounded
size that satisfies both conditions.
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Lemma 9. If At(c) 6= ∞, then the algorithm outputs a set H ⊆ H ∩ V (Gt), with |H| ≤
At(c), that satisfies (C1) and (C2).

Proof. We prove the lemma by induction on the height of node t, thus assume the lemma
holds for nodes below t. For leaves, the algorithm outputs an empty set, satisfying both
conditions.

For an introduce node t with child t′ and u ∈ Bt \ Bt′ , let H ′ be the solution corre-
sponding to t′ with coloring c′. Since c′ is the restriction of c to Bt′ , condition (C1) is
satisfied for every v ∈ Bt′ , by induction. If c(u) =↓0, then it is satisfied for u, since, in
this case, u ∈ H. Else, if c(u) =↓ i for i > 0, then it is also satisfied, since in this case
there is v ∈ Bt′ with c′(v) =↓j such that i = d(u, v) ⊕ j. Condition (C2) is satisfied as
well, since Dt(c) ⊆ Dt′(c

′), and H ′ satisfies (C2).
For a forget node t with child t′ and u ∈ Bt′ \ Bt, we have that H = H ′, where H ′

is the solution to t′ corresponding to some coloring c′ of Bt′ . Since c is the restriction of
c′ to Bt, H satisfies (C1) by induction. For (C2), let (a, b) ∈ Dt(c), and remember that
Dt(c) ⊆ Dt′(c

′) ∪ St′(c′). If (a, b) ∈ Dt′(c
′), then this demand is satisfied by H with cost

at most (1 + ε)2r. Else, (a, b) ∈ St′(c′), but (a, b) /∈ St(c). Thus, for the forgotten vertex
u, we have c′(u) ∈ {↑i, ↓i} and d(a, u) + 2i+ d(u, b) ≤ (1 + ε)2r. We consider two cases:

• If c′(u) =↓i, then, since H satisfies (C1), there is h ∈ H such that the distance from
u to h is at most i. Thus condition (C2) is satisfied, because

d(a, h) + d(h, b) ≤ d(a, u) + 2i+ d(u, b) ≤ (1 + ε)2r.

• If c′(u) =↑i, there is v ∈ Bt with c(v) =↑j and i = d(u, v)⊕ j. We get

d(a, v) + 2j + d(v, b) ≤ d(a, u) + 2(d(u, v) + j) + d(u, b)

≤ d(a, u) + 2i+ d(u, b)

≤ (1 + ε)2r,

where we used d(u, v) + j ≤ d(u, v)⊕ j = i in the second inequality. But this means
that (a, b) ∈ St(c), which is a contradiction.

For a join node t with children t′ and t′′, letH ′ andH ′′ be solutions for the subproblems
at t′ and t′′ corresponding to the selected pair of colorings c′ and c′′. We claim that
H = H ′ ∪H ′′ satisfies both conditions. For (C1), note that if c(u) =↓i, for some u ∈ Bt,
then c′(u) =↓ i or c′′(u) =↓ i. For (C2), note that, for (a, b) ∈ Dt(c), we have (a, b) ∈
Dt′(c

′)∪Dt′′(c
′′), and thus this demand is satisfied with cost at most (1 + ε)2r by a vertex

in H ′ or H ′′.

Let t0 be the root of the tree decomposition and c∅ be the empty coloring. Since the
bag corresponding to the root node is empty, we have St0(c∅) = ∅ and thus Dt0(c∅) = D.
Therefore, if At0(c∅) ≤ k, Lemma 9 implies that the set of hubs H computed by the
algorithm is a feasible solution that satisfies each demand with cost at most (1 + ε)2r. In
the next section, we bound the size of H by the size of the global optimal solution H∗.
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4.3 Analysis

For each node t of the tree decomposition, we want to show that the number of hubs
computed by the algorithm for some coloring c of Bt is not larger than the number of
hubs of H∗ contained in Gt, that is, we would like to show that At(c) ≤ |H∗ ∩ V (Gt)|
for some c. If the distances from each vertex u ∈ Bt to its closest hub in H∗ were stored
exactly, then the partial solution corresponding to H∗ would induce one such coloring c∗t ,
and we could show the inequality for this particular coloring.

More precisely, for each u ∈ V (G), let h∗(u) be a hub of H∗ such that d(u, h∗(u))

is minimum and P ∗(u) be a corresponding shortest path. Assume that each P ∗(u) is
obtained from a shortest path tree to h∗(u) and that it has the minimum number of edges
among the shortest paths. The signature of H∗ corresponding to a partial solution in Gt

is a function c∗t on Bt such that

c∗t (u) =

{
↓d(u, h∗(u)) if V (P ∗(u)) ⊆ V (Gt),

↑d(u, h∗(u)) otherwise.

Since distances are stored approximately as integer powers of (1 + δ), the function c∗t
might not be a valid coloring. Instead, we show that the algorithm considers a coloring
c̄t with roughly the same values of c∗t and that its values are computed by approximate
addition trees. We say that an addition tree and an approximate addition tree are cor-
responding if they are isomorphic and have the same input values. Also, recall that a
coloring c of Bt is discarded by the algorithm if the set It(c), Ft(c) or Jt(c) corresponding
to t is empty.

Lemma 10. Let `t0 be the height of the tree decomposition. There exists a coloring c̄t that
is not discarded by the algorithm such that, for every u ∈ Bt, the values c∗t (u) and c̄t(u)

are computed, respectively, by an addition tree and a corresponding approximate addition
tree of height at most 2`t0.

Proof. A partial addition tree is a pair (T, p), where T is an addition tree and p is a leaf
of T . The vertex p represents a subtree that computes a pending value xp, and may be
replaced by some other (partial) addition tree that computes this value.

For some node t, let `t be the height of t and define Ut as the set of vertices u ∈ Bt such
that c∗t (u) =↑i, for some i. We say that a vertex v ∈ V (Gt) \ Ut is t-complete according
to the following cases:

• if V (P ∗(v)) ⊆ V (Gt) and v ∈ Bt, then d(v, h∗(v)) is computed by an addition tree
of height at most `t;

• if V (P ∗(v)) ⊆ V (Gt) and v /∈ Bt, then d(v, h∗(v)) is computed by an addition tree
of height at most 2`t;

• if V (P ∗(v)) 6⊆ V (Gt), then d(v, h∗(v)) is computed by a partial addition tree (T, p)

of height at most `t such that xp = d(w, h∗(w)), for some w ∈ Ut.
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We will show by induction on the height of t that every v ∈ V (Gt) \ Ut is t-complete. The
claim holds trivially for leaves, thus suppose that t is not a leaf.

Assume t is an introduce node with child t′, and let u be the introduced vertex. Since
Ut′ ⊆ Ut, if v ∈ V (Gt′) \ Ut′ , then v is t-complete by the induction hypothesis. Else, we
have v = u and, since v /∈ Ut, c∗t (v) =↓d(v, h∗(v)). Thus, there is w ∈ Bt′ \ Ut′ such that
c∗t′(w) =↓d(w, h∗(w)) and d(v, h∗(v)) = d(v, w) + d(w, h∗(w)). Since d(w, h∗(w)) can be
computed by an addition tree of height at most `t′ , this implies that d(v, h∗(v)) can be
computed by an addition tree of height at most `t′ + 1 ≤ `t.

Now, assume t is a forget node with child t′, and let u be the forgotten vertex. Since
V (Gt) = V (Gt′), if V (P ∗(v)) ⊆ V (Gt′), then v is t-complete by the induction hypothesis.
Otherwise, by the induction hypothesis, d(v, h∗(v)) is computed by a partial addition tree
(T, p) of height at most `t′ such that xp = d(w′, h∗(w′)), for some w′ ∈ Ut′ . If w′ ∈ Ut,
then v is t-complete. So, assume w′ ∈ Ut′ \ Ut, which implies that w′ is the forgotten
vertex u and c∗t′(u) =↑ d(u, h∗(u)). Thus, P ∗(u) crosses some vertex w ∈ Ut such that
d(u, h∗(u)) = d(u,w) + d(w, h∗(w)). It follows that d(u, h∗(u)) can be computed by a
partial addition tree (Tu, pu) of height 1 such that xpu = d(w, h∗(w)). Therefore, we can
replace the vertex p by the subtree Tu, and the height of T becomes at most `t′ + 1 ≤ `t.

Finally, assume t is a join node with children t′ and t′′, and recall that Bt = Bt′ = Bt′′ .
If v ∈ Bt, then V (P ∗(v)) ⊆ V (Gt′) or V (P ∗(v)) ⊆ V (Gt′′), because Bt induces a clique
and P ∗(v) is a shortest path with minimum number of edges. Thus, v is t-complete by the
induction hypothesis. Otherwise, v ∈ V (Gt) \ Bt. Assume v ∈ V (Gt′) \ Bt, as the other
case is analogous. By the induction hypothesis for t′, d(v, h∗(v)) is computed by a partial
addition tree (T ′, p) of height at most `t′ such that xp = d(w, h∗(w)) for some w ∈ Ut′ .
If w ∈ Ut, then v is t-complete. Thus, assume w /∈ Ut, which implies that V (P ∗(w)) ⊆
V (Gt). Again, since Bt induces a clique, P ∗(w) is included in V (Gt′) or V (Gt′′), but since
w ∈ Ut′ , we have V (P ∗(w)) ⊆ V (Gt′′). It follows that c∗t′′(w) =↓ d(w, h∗(w)). By the
induction hypothesis for t′′, d(w, h∗(w)) is computed by an addition tree T ′′ of height at
most `t′′ . Therefore, we can replace the vertex p by the subtree T ′′, and the height of T ′

becomes at most `t′ + `t′′ ≤ 2`t. This completes the induction.

For the root node t0, we have Bt0 = ∅, thus for every v ∈ V (G), the distance d(v, h∗(v))

is computed by an addition tree Tv of height at most 2`t0 . Let T̄v be the approximate
addition tree corresponding to Tv, and define d̄(v) as the output of T̄v. For every node t,
and u ∈ Bt, if c∗t (u) =↓d(u, h∗(u)), define c̄t(u) =↓ d̄(u); else, define c̄t(u) =↑ d̄(u). By
repeating the arguments above, and replacing the addition operator by ⊕, one can show
that, for every t, the coloring c̄t is not discarded by the algorithm.

By setting δ = ε/(2`t0 + 1), Theorem 4 implies the next lemma.

Lemma 11. For every u ∈ Bt, if c∗t (u) ∈ {↑x, ↓x} and c̄t(u) ∈ {↑i, ↓i}, then i ≤ (1+ ε)x.

Recall that H∗ is a fixed global optimal solution that satisfies each demand with
cost r. Our goal is to bound At(c̄t) ≤ |H∗ ∩ V (Gt)| for every node t, thus we would like
to determine the subset of demands D∗t that are necessarily satisfied by hubs H∗ ∩ V (Gt)

in the subproblem definition. This is made precise in the following.

Definition 9. D∗t = {(a, b) ∈ D : minh∈H∗\V (Gt) d(a, h) + d(h, b) > r}.
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Since we cannot determine D∗t , we show that, for each node t, the algorithm outputs
a solution H for the subproblem corresponding to At(c̄t) that satisfies every demand in
Dt(c̄t). In Lemma 12, we show that every demand in Dt(c̄t) is also in D∗t , as, otherwise,
there could be no solution with size bounded by |H∗ ∩ V (Gt)|. Conversely, we show in
Lemma 13 that a demand in D∗t that is not in Dt(c̄t) must be in St(c̄t), thus all demands
are satisfied.

Lemma 12. Dt(c̄t) ⊆ D∗t .

Proof. Let (a, b) ∈ Dt(c̄t) and consider an arbitrary hub h∗ ∈ H∗ that satisfies (a, b) with
cost r. We will show that h∗ ∈ V (Gt), and thus (a, b) ∈ D∗t . For the sake of contradiction,
assume that h∗ ∈ V (G) \ V (Gt).

First we claim that d(h∗, V (Gab) ∩ Bt) > r/2. If not, then let u ∈ V (Gab) ∩ Bt be a
vertex with c̄t(u) ∈ {↑i, ↓i} such that d(u, h∗) ≤ r/2. Because the closest hub to u has
distance at least i/(1 + ε), we have i ≤ (1 + ε)d(u, h∗) ≤ (1 + ε)r/2, but since u ∈ V (Gab),
this implies that (a, b) ∈ St(c̄t), and thus (a, b) /∈ Dt(c̄t) (see Figure 4.8(a)). Then, it
follows that indeed d(h∗, V (Gab) ∩Bt) > r/2.

Now we show that it cannot be the case that a, b ∈ V (Gt). Suppose that a, b ∈ V (Gt).
Consider the shortest path from a to h∗, and let u be the last vertex of this path that
is in V (Gt). Since Bt separates V (Gt) \ Bt from V (G) \ V (Gt), it follows that u ∈ Bt.
From the previous claim, d(h∗, u) > r/2, and thus d(h∗, a) > r/2. Analogously, there is
v ∈ Bt with d(h∗, b) > d(h∗, v) > r/2, but then d(a, h∗) + d(h∗, b) > r, which contradicts
the fact that h∗ satisfies (a, b) with cost r (see Figure 4.8(b)). This contradiction comes
from supposing that a, b ∈ V (Gt). Thus, either a or b is not in V (Gt).

Gt
u

a

b

h∗

Bt

> r/2

(a) (a, b) has no close hub.

Gt
uv

a

b

h∗

Bt

(b) a and b are not both in Gt.

Figure 4.8: Exemplifying the assumptions.

Assume without loss of generality that a ∈ V (Gt) and b /∈ V (Gt). From the definition
of Dt(c̄t), we know that there exists h ∈ V (Gab)∩V (Gt) such that d(h, V (Gab)∩Bt) > r/2.
Let P be a path from a to b crossing h∗ with length at most r. Similarly, since h ∈ V (Gab),
there exists a path Q from a to b crossing h with length at most r. Let u be the last
vertex of P with u ∈ Bt, and let v be the last vertex of Q with v ∈ Bt (see Figure 4.9).
Concatenating P and Q leads to a closed walk of length at most 2r. This walk crosses u,
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h∗, v and h, and thus

2r ≥ d(a, h∗) + d(h∗, b) + d(a, h) + d(h, b)

= d(u, h∗) + d(h∗, v) + d(v, h) + d(h, u) (4.1)

> 2r,

where we used the fact that each term in (4.1) is greater than r/2. This is a contradiction,
so h∗ ∈ V (Gt) and then (a, b) ∈ D∗t .

Gab

Bt Gt

h∗ h

u

v

a

b

Figure 4.9: Closed walk formed by P and Q.

Lemma 13. D∗t ⊆ Dt(c̄t) ∪ St(c̄t).

Proof. Let (a, b) ∈ D∗t . Assume (a, b) /∈ St(c̄t), as otherwise we are done. If a, b ∈ V (Gt),
we have (a, b) ∈ Dt(c̄t). Thus, suppose without loss of generality that a ∈ V (Gt) and
b /∈ V (Gt). Since (a, b) ∈ D∗t , there is h∗ ∈ H∗ ∩ V (Gab) ∩ V (Gt). Let u ∈ V (Gab) ∩ Bt

with c̄t(u) ∈ {↑i, ↓i} for some i. Because (a, b) /∈ St(c̄t), we have i > (1 + ε)r/2. But the
distance from u to the closest hub in H∗ is at least i/(1 + ε), thus i ≤ (1 + ε)d(u, h∗). It
follows that d(u, h∗) > r/2. Therefore, h∗ ∈ V (Gab)∩V (Gt) and d(h∗, V (Gab)∩Bt) > r/2,
and then (a, b) ∈ Dt(c̄t).

Before bounding the number of hubs opened by the algorithm, we prove some auxiliary
results.

Lemma 14. If t is an introduce node with child t′, then Dt(c̄t) ⊆ Dt′(c̄t′).

Proof. We claim that D∗t \D∗t′ ⊆ St(c̄t). Let u be introduced vertex, and note that V (Gt)\
V (Gt′) = {u}. If (a, b) ∈ D∗t \D∗t′ , by definition, we know that minh∈H∗\V (Gt) d(a, h) + d(h, b) > r,
but minh∈H∗\V (Gt′ )

d(a, h) + d(h, b) ≤ r. This can only happen if u ∈ H∗, so c̄t(u) =↓0,
and then (a, b) ∈ St(c̄t).

Since D∗t′ ⊆ D∗t and St′(c̄t′) ⊆ St(c̄t), the claim implies D∗t \ St(c̄t) ⊆ D∗t′ \ St′(c̄t′).
Using Lemmas 12 and 13, we get

Dt(c̄t) ⊆ D∗t \ St(c̄t) ⊆ D∗t′ \ St′(c̄t′) ⊆ Dt′(c̄t′).
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Lemma 15. If t is a forget node with child t′, then Dt(c̄t) ⊆ Dt′(c̄t′) ∪ St′(c̄t′).

Proof. In this case V (Gt) = V (Gt′), thus D∗t = D∗t′ . Using Lemmas 12 and 13,

Dt(c̄t) ⊆ D∗t = D∗t′ ⊆ Dt′(c̄t′) ∪ St′(c̄t′).

Lemma 16. If t is a join node with children t′ and t′′, then Dt(c̄t) ⊆ Dt′(c̄t′) ∪Dt′′(c̄t′′).

Proof. We claim that D∗t \ (D∗t′ ∪D∗t′′) ⊆ St(c̄t). Let (a, b) ∈ D∗t \ (D∗t′ ∪D∗t′′) and suppose,
for a contradiction, that (a, b) /∈ St(c̄t). Then, for every h∗ ∈ H∗ and u ∈ V (Gab) ∩ Bt,
we have d(h∗, u) > r/2. Since (a, b) ∈ D∗t , but (a, b) /∈ D∗t′′ , there is h′ ∈ H∗ ∩ V (Gt′) \Bt

that satisfies (a, b). Similarly, there is h′′ ∈ H∗ ∩ V (Gt′′) \ Bt. Now, h′, h′′ ∈ V (Gab), but
the diameter of Gab is at most r, thus d(h′, h′′) ≤ r. Since Bt separates h′ and h′′, there
is u ∈ Bt with d(h′, u) + d(u, h′′) ≤ r. Thus, either d(h′, u) ≤ r/2 or d(h′′, u) ≤ r/2, a
contradiction. This implies (a, b) ∈ St(c̄t).

Observe that D∗t′ ∪ D∗t′′ ⊆ D∗t and St(c̄t) = St′(c̄t′) = St′′(c̄t′′). Combining with
Lemmas 12 and 13, we get

Dt(c̄t) ⊆ D∗t \ St(c̄t) ⊆ (D∗t′ \ St′(c̄t′)) ∪ (D∗t′′ \ St′′(c̄t′′)) ⊆ Dt′(c̄t′) ∪Dt′′(c̄t′′).

Combining Lemma 10 and Lemmas 14–16, we can show that the algorithm does not
open too many hubs.

Lemma 17. At(c̄t) ≤ |H∗ ∩ V (Gt)|.

Proof. Assume the lemma holds for the children of t. For a leaf node, the output set is
empty, and the inequality is satisfied trivially.

Let t be an introduce node with child t′ and u ∈ Bt \ Bt′ . From Lemmas 10 and 14,
we know that c̄t′ ∈ It(c̄t) and Dt(c̄t) ⊆ Dt′(c̄t′). Thus, if c̄t(u) =↓0, we have u ∈ H∗ and
At(c̄t) = At′(c̄t′) + 1 ≤ |H∗ ∩ V (Gt′)| + 1 = |H∗ ∩ V (Gt)|. Otherwise, At(c̄t) = At′(c̄t′) ≤
|H∗ ∩ V (Gt′)| = |H∗ ∩ V (Gt)|.

Let t be a forget node with child t′ and u ∈ Bt′ \Bt. From Lemmas 10 and 15, we know
that c̄t′ ∈ Ft(c̄t) and Dt(c̄t) ⊆ Dt′(c̄t′)∪St′(c̄t′). Thus, At(c̄t) ≤ At′(c̄t′) ≤ |H∗ ∩V (Gt′)| =
|H∗ ∩ V (Gt)|.

Let t be a join node with children t′ and t′′. From Lemmas 10 and 16, we know that
(c̄t′ , c̄t′′) ∈ Jt(c̄t) and Dt(c̄t) ⊆ Dt′(c̄t′) ∪Dt′′(c̄t′′). Let H ′ and H ′′ be the output solutions
corresponding to t′ and t′′, respectively. We have

|H| = |H ′|+ |H ′′| − |H ′ ∩H ′′|
≤ At′(c̄t′) + At′′(c̄t′′)− h(c̄t)

≤ |H∗ ∩ V (Gt′)|+ |H∗ ∩ V (Gt′′)| − h(c̄t)

= |H∗ ∩ V (Gt)|.
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Now we can state the main result of this chapter.

Theorem 13. For every ε > 0, there is a parameterized (2 + ε)-approximation algorithm
for MAkHC running in time O∗((tw/ε)O(tw)).

Proof. Consider a preprocessed instance (G, C,H,D, k) of MAkHC, in which the optimal
value OPT is an integer bounded by O(1

ε
|V (G)|). We run the dynamic programming

algorithm for each r = 1, 2, . . . , and output the first solution with no more than k hubs.
Next, we show that the dynamic programming algorithm either correctly decides that
there is no solution of cost r that opens k hubs, or finds a solution of cost (1 + ε)2r that
opens k hubs. Thus, when the main algorithm stops, r ≤ OPT, and the output is a
(2 + ε′)-approximation, for a suitable ε′.

Assume H∗ is a solution that satisfies each demand with cost r with minimum size.
Recall that t0 is the root of the tree decomposition and c∅ is the coloring of an empty bag. If
At0(c∅) ≤ k, then Lemma 9 states that the dynamic programming algorithm outputs a set
of hubs H of size at most k that satisfies each demand in Dt0(c∅) = D with cost (1 + ε)2r.
Otherwise, k < At0(c∅), and Lemma 17 implies k < At0(c∅) ≤ |H∗ ∩ V (Gt0)| = |H∗|.
Thus, by the minimality of H∗, there is no solution of cost r that opens k hubs.

Finally, we bound the running time. Let n = |V (G)|. The tree decomposition has
O(tw · n) nodes and, for each node t, the number of colorings is |Σ|O(tw). Also, each
recurrence can be computed in time O∗(|Σ|O(tw)). Since r = O(n

ε
) and δ = Θ

(
ε

tw·logn

)
,

the size of Σ is

|Σ| = O
(
log1+δ r

)
= O

(
log r

log(1 + δ)

)
= O

(
log n+ log(1/ε)

δ

)
= O

(
(tw/ε) (log2 n+ log n log(1/ε))

)
= O

(
(tw/ε)2 log2 n

)
.

Notice that O(logO(tw) n) = O∗(2O(tw)), thus the total running time is bounded by
O∗
(
|Σ|O(tw)

)
= O∗

(
(tw/ε)O(tw)

)
.

4.4 The planar case

In this section, we give a (2 + ε)-approximation algorithm parameterized by k and r,
when the input is restricted to unweighted planar graphs. This algorithm can be seen as
another way to challenge the approximation lower bound presented in Section 4.1. Indeed,
by Theorem 11, finding a (3 − ε)-approximation parameterized by k and r is W[2]-hard
for unweighted graphs, even when r is a constant. Thus, we restrict the input to planar
graphs, but get a better approximation factor.

The algorithm is built upon the bidimensionality framework, and is inspired by the
work for k-Center by Demaine et al. [62]. In the following, let (G, C,H,D, k, r) be a
positive instance of MAkHC such that G is an unweighted planar graph.

Lemma 18. If G has a (ρ× ρ)-grid as minor, then ρ ≤
√
k(2r + 1) + 2r.

Proof. We begin with a series of definitions.
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Let F be a (ρ× ρ)-grid, where

V (F ) = {1, . . . , ρ} × {1, . . . , ρ} and

E(F ) = {((x, y), (x′, y′)) : |x− x′|+ |y − y′| = 1}.

Let Vext be the set of vertices of F whose degrees are smaller than 4. We assume the
vertices of Vext belong to the external face of some embedding of F and call the other
faces internal.

Let Vint be the set of vertices of F that have distance at least r from every vertex in Vext.
Note that Vint induces a subgraph F [Vint] that is a subgrid of F with |Vint| = (ρ− 2r)2.

Define δ((x, y), (x′, y′)) = max{|x− x′|, |y − y′|} and let dF ((x, y), (x′, y′)) be the dis-
tance from (x, y) to (x′, y′) in F .

Let J be the supergraph of F with the same set of vertices and with the additional
set of (diagonal) edges:

{((x, y), (x+ 1, y + 1)), ((x, y + 1), (x+ 1, y)) : 1 ≤ x, y < ρ}.

Let R be a subgraph of J and let dR(u, v) be the length of a shortest path from u

to v in R. Observe that, for every u, v ∈ V (R), we have δ(u, v) ≤ dR(u, v). Define
N `
R(u) = {v : dR(u, v) ≤ `}.
For a (x, y) ∈ V (F ) and an integer `, define

B`((x, y)) = {(x′, y′) : δ((x, y), (x′, y′)) ≤ `}.

Now, consider a sequence of edge contractions and removals which transforms G into
a minor isomorphic to F using a maximal number of edge contractions. Let H be the
result of applying only the contractions of that sequence to G, and consider an embedding
of H in the plane that corresponds to an embedding of F . Partition the edges of H in
three sets: the edges that occur in F , the set E1 that connect non-adjacent vertices of an
internal face of F , and the set E2 with all other edges. Note that edges in E2 are only
incident with vertices in Vext.

Call R the graph we obtain by adding edges E1 to F , and note that R is a subgraph of
J . Then, for a vertex u of R and an integer `, we have that N `

R(u) ⊆ B`(u). Observe that
the set of edges of H is E(R) ∪ E2. For a vertex u ∈ Vint, we claim that N r

H(u) ⊆ Br(u).
This holds because paths of length at most r starting at a vertex of Vint do not use edges
of E2 and, as a consequence, N r

H(u) = N r
R(u).

Let S be a solution for the instance of MAkHC. Observe that the distance between
every client and a hub of S is at most r, since every vertex is in some set V (Gab). Also, note
that, for vertices u and v of G associated with vertices u′ and v′ ofH, dH(u′, v′) ≤ dG(u, v),
as H is obtained from G using only edge contractions.

Define a set of vertices:

Y = Vint ∩ {((2r + 1)i+ r + 1, (2r + 1)j + r + 1) : i, j ∈ Z≥0}.

The size of this set is |Y | ≥
⌈
ρ−2r
2r+1

⌉2

≥
(
ρ−2r
2r+1

)2

.
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For distinct y, y′ ∈ Y , we have Br(y) ∩ Br(y
′) = ∅. Also, there must exist a hub

in S that is associated with some vertex in N r
H(y) ⊆ Br(y). Therefore, each y ∈ Y is

associated to one unique hub in S, and finally,

k ≥ |Y | ≥
(ρ− 2r

2r + 1

)2

.

Corollary 1. tw(G) ≤ 6
√
k(2r + 1) + 12r + 1.

Proof. Robertson, Seymour and Thomas [153] prove that, ifG has no ((ρ+1)×(ρ+1))-grid
as a minor, then tw(G) ≤ 6(ρ+1)−5. Let ρ be the largest integer for which G has a (ρ×ρ)-
grid as a minor. Then, using Lemma 18, we have that tw(G) ≤ 6

√
k(2r+1)+12r+1.

Using the previous bound and Theorem 13, we obtain an algorithm for the planar
case.

Theorem 14. For every ε > 0, there is a parameterized (2 + ε)-approximation algorithm
for MAkHC when the parameters are k and r, and the input graph is unweighted and
planar.

4.5 Future work

In this chapter, we focused on giving an improved algorithm for MAkHC that, albeit runs
in FPT time, bypasses the lower bound of 3 on the factor of polynomial-time approxi-
mation algorithms. From the parameterized side, we can rule out an exact algorithm for
various parameters, such as vertex-cover number, highway dimension and the number of
hubs. We give a (2 + ε)-approximation parameterized by treewidth, for ε > 0, which still
leaves an interesting gap to be explored by either algorithmic or hardness results.

An orthogonal research direction is applying our strategy to deal with the set of
demands to similar problems, for which the vertices that need to be connected are given
in the input. Instead of trying to connect the exact subset of demands of a subproblem,
we settle for connecting a subset of these vertices and relaxing the cost requirement for
the remaining ones. In our analysis, this increased the cost of a solution by a factor of at
most 2, but different ideas and connectivity constraints might lead to other guarantees.
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Chapter 5

Spanning Tree-Star and variants

In this chapter, we consider a family of problems that aim to design a minimum-cost
network respecting a prespecified configuration. For a graph G and a connected spanning
subgraph H of G, if a vertex u has only one neighbor in H, we say that u is an external
vertex, otherwise, it is an internal vertex. An edge {u, v} ∈ E(H) is an internal edge if u
and v are internal vertices, otherwise, it is an external edge. Let I(H) and X (H) be the
sets of internal and external edges of H, respectively.

In the Spanning Tree-Star (STS), we are given a connected undirected graph G

and two edge-cost functions c, d : E(G) → N, and a solution is a connected spanning
subgraph1 H of G, such that the internal vertices of H induce a tree. The goal is to find a
solution that minimizes

∑
e∈I(H) c(e) +

∑
e∈X (H) d(e). We also consider variants that ask

for other types of networks, namely, the Spanning Path-Star (SPS) and the Spanning
Cycle-Star (SCS), where the internal vertices induce, respectively, a path and a cycle.
Figure 5.1 shows the types of network we want for the same input graph, where internal
and external vertices are represented in a solution as squares and circles, respectively.

(a) Input graph. (b) Solution for STS. (c) Solution for SPS. (d) Solution for SCS.

Figure 5.1: Different types of networks of STS, SPS and SCS.

Related works These network design problems have been studied in the last decades
under a diverse nomenclature, mostly with exact formulations and computational experi-
ments. They often model complex real-world applications that arise in hierarchical vehicle
routing, optical fiber networks and rapid transit systems [2, 118, 10].

The first studies on STS were carried in the context of designing telecommunica-
tion networks for digital data services, using integer programming approaches [123, 122].
Subsequent papers dealt with the problem applying similar techniques [113, 129, 6].

1The solution for STS is a tree – subgraph is used to accommodate variant definitions.
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Labbé et al. [118] formulate SCS as a mixed-integer linear program and give several valid
inequalities. The capacitated version of the problem is studied by Baldacci et al. [10].
Several papers consider the problem with multiple depots, in the sense that a solution is
a collection of cycle-star networks, each containing one open depot [99, 156, 11]. Simon-
etti et al. [154] empirically test their formulation for SPS, that so far was only used as
a hardness source to other problems [158]. There are also related problems in which the
objective is to find an underlying network spanning a given set of vertices [112, 124, 147].

The problems we investigate have interesting results in the parameterized world. In
the Minimum Leaf Spanning Tree the task is to find a spanning tree that minimizes
the number of leaves; there is an XP algorithm for this problem and its directed vari-
ant, parameterized by clique-width, running in time O(n2O(cw)

) [88]. The associated task
of finding a spanning tree with at least k leaves admits an algorithm running in time
O∗(3.4575k). Note that STS generalizes both these problems.

Dinneen and Khosravani [64] were the first to consider STS, SPS and SCS in the
parameterized setting. They provided algorithms for SPS, parameterized by pathwidth
or treewidth, which are expanded to STS and SCS, running in time roughly O∗(5tw ·tw2tw).
The variant of SPS for directed graphs, in which a solution must span only a given set of
terminals, is studied by Okada et al. [141], that gave an algorithm with a similar running
time.

For some time, researchers could not find improved algorithms for connectivity prob-
lems, such as Connected Dominating Set and Steiner Tree, whose best algorithms
had the usual running time of O∗(twO(tw)), when parameterized by treewidth. The major
belief was that the global connectivity requirement imposed algorithms to keep track of
all the ways a partial solution interacts with a separator of the tree decomposition. The
first technique to solve these problems in single-exponential time was developed by Cy-
gan et al. [59], however, the use of randomization raised the question whether deterministic
algorithms were possible.

Bodlaender et al. [24] answered this query positively, and introduced the general frame-
work of rank-based approach to solve connectivity problems deterministically, using the
idea of representative partial solutions. This strategy is capable of speeding up dynamic
programming algorithms, given that they are formulated with a set of operators and
connectivity is expressed via sets of partitions. The authors applied the framework to
fundamental problems, giving algorithms for Steiner Tree and Traveling Sales-
man running in time O∗(23.6tw) and O∗(23.3tw), respectively.

The framework has been expanded to consider more width parameters, such as branch-
width, clique-width and rankwidth [148, 17, 18]. The ideia of representative partial so-
lutions is as follows: given sets of partial solutions S and S ′, we say S ′ represents S if,
whenever a solution from S can be completed into an optimal solution, there is a so-
lution in S ′ that can also be completed into an optimal solution. At each node of the
tree decomposition, we build partial solutions using a dynamic programming formulation;
then, the framework provides a representative set of these partial solutions of limited size,
which ultimately speeds up the algorithm, since this set will be used by higher nodes of
the decomposition.
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Our results and techniques We give improved parameterized results for the consid-
ered family of network design problems. We primarily investigate the tree variant, from
which we derive other algorithmic results. Using the rank-based approach, we give pa-
rameterized algorithms for STS running in time O∗(41.7pw) and O∗(43.5tw), with pathwidth
and treewidth as parameters, respectively. Note that no single-exponential time algorithm
was previously known for this problem. Moreover, using standard complexity-theoretic
assumptions, we prove that: (i) there is no g(k)-approximation parameterized by the cost
k of an optimal solution (ii) the best base of the exponent in the running time when
parameterized by pathwidth one can hope for is 4, and (iii) we are unlikely to obtain
an algorithm parameterized by clique-width. We also show that these positive and some
negative results can be extended to SPS and SCS.

As a secondary contribution, we expand the collection of connectivity problems that
can be solved with the rank-based approach. Our algorithms identify and label vertices
according to their roles in a partial solution, that depends on its neighbors. In STS, for
example, a vertex of a partial solution has four possible roles: internal or external vertex of
a connected component, an external vertex of a small component, or an isolated vertex.
These labels change whenever an edge is included in a partial solution or two partial
solutions are joined, which alters the contribution of edges to the total cost of a solution.
In the path and cycle variants of the problem, more labels are needed to represent all
the roles present in a partial solution, as the structure of the network formed by internal
vertices is less flexible, causing vertices to interact in a more intricate way.

The remaining of this chapter is organized as follows: Section 5.1 introduces the
rank-based approach, Section 5.2 brings our hardness results for the studied problems,
Section 5.3 gives the algorithms for STS parameterized by pathwidth and treewidth, and
Section 5.4 extends these results to the path and cycle variants.

5.1 The rank-based approach

In this section, we introduce the framework of Bodlaender et al. [24] to solve connectivity
problems parameterized by treewidth.

A dynamic programming algorithm stores partial solutions in a table, using them to
compose solutions for bigger subproblems. Suppose there are partial solutions a and a′

in this table such that, for each extension of a to a complete solution a · b, a′ can be
extended in the same way a′ · b, with cost at most that of a · b. In this way, we can delete
a and effectively reduce the size of the table. The rank-based approach uses this idea to
obtain single-exponential time parameterized algorithms for connectivity problems, with
the treewidth of the input graph as parameter.

In order to decrease the size of a dynamic programming table A, for each newly
computed entry, an algorithm reduce that computes a representative set of solutions is
invoked, and this entry is stored instead. This technique was introduced by Bodlaen-
der et al. [24], along with a collection of operators that allows one to apply the same
framework to any dynamic programming algorithm, given that it is defined with these
operators.
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Let U be a ground set. Denote by Π(U) the set of all partitions of U . For a partition
p ∈ Π(U), we call each part of p a block, and let #blocks(p) denote the number of blocks
of p. For X ⊆ U , U [X] is the partition of U where one block is X and all others are
singletons. For partitions p, q ∈ Π(U), p v q if, and only if, every block of q is a subset
of some block of p, i.e., q refines p. Observe that, for u, v ∈ U , we have p v U [{u, v}] if,
and only if, u and v are in the same block in p. Figure 5.2 exemplifies a ground set and
two partitions p and q, where p v q.

u1 u2 u3 u4

(a) A ground set U .

u1 u2 u3 u4

(b) A partition p = {{u1, u2}, {u3, u4}}.

u1 u2 u3 u4

(c) A partition q = U [{u1, u2}].

Figure 5.2: Example of partitions.

For partitions p, q ∈ Π(U), the join operation is denoted as p t q, and is defined in
graph terms: build a graph with U as the vertex set and add an edge between vertices
within the same block of p and q; the result of the join operation is the partition of U into
the connected components of this graph. For X ⊆ U ⊆ X ′ and p ∈ Π(U), let p↓X ∈ Π(X)

be the partition obtained by removing all elements not in X from p, and let p↑X′ ∈ Π(X ′)

be the partition obtained from p by adding singletons for every element in X ′ \ U .
A set of weighted partitions A ⊆ Π(U)×N is a family of pairs, where each element is

a partition of U and a non-negative integer weight. These pairs represent the connectivity
and the cost of partial solutions, where vertices are connected according to the associated
partition, i.e., vertices in the same block are in the same connected component. The
operators presented in the following can be naturally applied to connectivity problems.

Definition 10 (Bodlaender et al. [24]). Let U be a ground set and A ⊆ Π(U) × N, and
define rmc(A) = {(p, w) ∈ A : @(p, w′) ∈ A ∧ w′ < w}. Consider the following operators:

• union(A,B) combines two sets of weighted partitions and discards dominated parti-
tions, i.e., removes non-minimal weight copies:

union(A,B) = rmc(A ∪ B),

where B ⊆ Π(U)× N.

• insert(X,A) inserts elements X ⊆ U into A as singletons:

insert(X,A) = {(p↑U∪X , w) : (p, w) ∈ A}.

• shift(w′,A) increases the weight of each partition by w′:

shift(w′,A) = {(p, w + w′) : (p, w) ∈ A}.
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• glue({u, v},A) combines, in each partition, the sets containing u and v, inserting
them if needed:

glue({u, v},A) = rmc({(Û [{u, v}] t p↑Û , w) : (p, w) ∈ A}),

where Û = U ∪ {u, v}.

• project(X,A) removes all elements of X ⊆ U from each partition, discarding those
where this would reduce the number of blocks:

project(X,A) = rmc({(p↓X̄ , w) : (p, w) ∈ A ∧ ∀u ∈ X, ∃v ∈ X̄ : p v U [{u, v}]}),

where X̄ = U \X.

• join(A,B) extends all partitions to the same base set, joining blocks that have a
common element, with weight equal to the sum of the weights:

join(A,B) = rmc({(p↑Û t q↑Û , w + w′) : (p, w) ∈ A ∧ (q, w′) ∈ B}),

where B ⊆ Π(U ′)× N and Û = U ∪ U ′.

Operators glue and join with a subscript infer a shift operation with that value, i.e.,

gluew({u, v},A) = shift(w, glue({u, v},A))

joinw(A,B) = shift(w, join(A,B)).

Proposition 1 (Bodlaender et al. [24]). The operators union, insert, shift, glue and
project execute in time O(S · |U |O(1)), where S is the size of the operation input, while
join executes in time O(|A| · |B| · |U |O(1)).

The following theorem states that we can always find a reasonably small representative
set of weighted partitions. Then, this set should allow us to extend to an optimal solution,
given that one of the solutions present in the original set extends to it.

Theorem 15 (Bodlaender et al. [24]). There exists an algorithm reduce that given a set
of weighted partitions A ⊆ Π(U)×N, outputs in time |A|2(ω−1)|U ||U |O(1) a set of weighted
partitions A′ ⊆ A such that A′ represents A and |A′| ≤ 2|U |−1, where ω denotes the matrix
multiplication exponent.

Computational experiment Briefly after the work of Bodlaender et al. [24], a com-
putational experiment on the effectiveness of the rank-based approach was performed by
Fafianie et al. [72], using Steiner Tree as benchmark. They compared the running
times and the number of generated partial solutions of the naive dynamic programming
algorithm, that is described via the operators of Definition 10, and the algorithm that
additionally applies the reduce algorithm after each step of the recurrence. The instances
were obtained from a diverse set of experimental studies of the problem, with graphs up
to a thousand vertices and edges, whose tree decompositions have width up to 13.
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They observed that the rank-based approach significantly speeds up the algorithm,
indicating that the extra time used to reduce the size of the table pays off, as fewer partial
solutions need to be analyzed in higher nodes of the decomposition. A modification that is
relevant to experimental practitioners is to apply the reduce algorithm only when the size
of the current set of weighted partitions is above the upper bound given in Theorem 15,
which further improves the results.

Other notation For a predicate P , let [P ] be 1 if P is true, and 0 otherwise. For a
vector s, s[u → α] is a vector whose entries are the same as s, except for u, that has
value α. Denote s|X the vector s restricted to the domain X.

5.2 Hardness results

In this section, we prove lower bounds for the studied problems in both classical and
parameterized complexity. We employ well-known complexity assumptions that provide
quantitative information about the running times to give, together with the algorithmic
results of Sections 5.3 and 5.4, a tight understanding on the complexity of these problems,
up to small factors in the exponent.

Our results for STS are based on a reduction from Dominating Set (DS), where the
input is an undirected graph G and k ∈ N, and the task is to find S ⊆ V (G) of size k
such that N [S] = V (G). The following theorem for STS uses the total inapproximability
of DS (Theorem 16), that rules out any parameterized approximation running in time
f(k) · no(k) [110]. Note that the result holds for metric distance functions.

Theorem 16 (Karthik et al. [110]). Assuming ETH, there is no g(k)-approximation
algorithm for DS running in time f(k) · no(k), parameterized by the size of an optimal
solution, for computable functions f and g.

Theorem 17. Assuming ETH, there is no g(k)-approximation algorithm for STS running
in time f(k) · no(k), parameterized by the cost of an optimal solution, for computable
functions f and g.

Proof. Consider the following parameterized reduction from DS. Let I = (G, k) be an
instance of DS, from which we build an instance I ′ = (G′, c, d) of STS. Graph G′ has
vertices V (G) ∪ {u0} and edges E(G) ∪ E0, where E0 = {{u0, u} : u ∈ V (G)}; edge costs
are defined as c(e) = d(e) = 1, for e ∈ E0, and c(e) = 1, d(e) = 0, for e ∈ E(G) (see
Figure 5.3). We will prove that I is a Yes-instance if, and only if, I ′ costs k.

u0

G

..
.

(1, 1)

(1, 0)

Figure 5.3: Reduction from DS to STS.
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Let S be a dominating set of G with size k. Consider the function φ : V (G) \ S → S

that associates, for each vertex not in S, a neighbor in S. It follows that the tree T with
edges {{u0, u} : u ∈ S} ∪ {{u, φ(u)} : u ∈ V (G) \ S} is a solution for I ′ with cost k, since
T spans G and edges in the first and second sets cost, respectively, 1 and 0. Note that
the first set can be composed of both internal and external edges, whereas the second is
composed of only external edges. For the other direction, let T be a solution for I ′ with
cost k. Let p : V (G) → V (G′) be a function that indicates the parent of a vertex by
performing a depth-first search in T , starting from u0. We modify T by reassigning every
internal vertex of T to u0, thus removing edges {{u, p(u)} : u is an internal vertex of T}
and adding edges {{u0, u} : u is an internal vertex of T}; this modification incurs no extra
cost in the solution, as both types of edges have cost 1. Let S = {u : {u0, u} ∈ E(T ′)}
be the set of vertices incident to u0 in T ′. Since T ′ costs k, we know that |S| = k,
and moreover, as T ′ spans G, every vertex in V (G) \ S has a neighbor in S. Then,
S is a dominating set of G with size k. Therefore, the result follows from the total
inapproximability of DS.

Using the same reduction, we prove that STS is as hard to approximate as Set Cover
in the classical setting [66], and that the best base of the exponent when parameterized
by pathwidth is 4, from the lower bound of the connected version of the problem [59].
The parameterized reduction also works for pathwidth, as the universal vertex in the
constructed graph increases the parameter by a constant.

Theorem 18. It is NP-hard to obtain a (1− ε) lnn-approximation for STS, for ε > 0.

Theorem 19. Assuming SETH, STS cannot be solved in time O∗((4− ε)pw), for ε > 0.

The success of the rank-based approach in providing single-exponential time algo-
rithms for connectivity problems, parameterized by treewidth, prompted researchers to
use the framework with further structural parameters, such as the algorithms for Steiner
Tree and Connected Dominating Set, parameterized by clique-width and branch-
width [148, 17]. We prove that we are unlikely to obtain an algorithm for STS pa-
rameterized by clique-width, as we have for treewidth, using the lower bound given
by Fomin et al. [84], stating that Hamiltonian Path (HP) cannot be solved in time
f(cw) · no(cw), for a computable function f .

Theorem 20. Assuming ETH, there is no (1.5 − ε)-approximation for STS running in
time f(cw) · no(cw), for ε > 0, where n is the number of vertices and f is a computable
function.

Proof. Consider the following parameterized reduction from HP. Let I = (G) be an
instance of HP, from which we build an instance I ′ = (G, c, d) of STS, where c(e) = 0

and d(e) = 1, for e ∈ E(G). We will prove that I is a Yes-instance if, and only if, an
optimal solution for I ′ costs 2.

Let P be a hamiltonian path of G; it follows that T = P is a solution for I ′ with cost 2,
since there are only two external edges in T and it spans G. For the other direction, let T
be a solution for I ′ with cost 2. Since a spanning tree with only two leaves is a hamiltonian
path, P = T is a solution for I. For ε > 0, assume we have a (1.5 − ε)-approximation
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algorithm for STS, running in time f(cw) · |I ′|o(cw), for a computable function f . Since a
solution for I ′ has integer cost, this algorithm is able to decide HP in time f(cw) · |I|o(cw),
therefore, the theorem follows.

For the path variant, from a similar reduction from HP, we can rule out a f(n)-
approximation algorithm, for a polynomial-time computable function f , and show that
there is no algorithm parameterized by clique-width.

5.3 The tree variant

In this section, we give a parameterized algorithm for Spanning Tree-Star that runs in
time O∗(43.5tw), based on the dynamic programming over a tree decomposition technique
and the rank-based approach. As a byproduct of this result, we obtain an algorithm
parameterized by the pathwidth of the input graph and another for particular classes of
graphs. We assume we are given a nice tree decomposition (T , B) of the input graph.
The algorithm identifies and labels vertices according to their roles in a partial solution,
which are modified as new edges are included or two partial solution are joined.

Subproblem definition Let U = {i, e,m, z} be a set of labels and U′ = U \ {z}. For
a bag Bt of the tree decomposition, the vector s ∈ UBt indicates the role of vertices in
a partial solution: an internal vertex has label i; an external vertex that is connected to
an internal vertex has label e; an external vertex that is connected to an external vertex
has label m, and an isolated vertex has label z. Figure 5.4 shows the possible labels for a
vertex and its respective neighbors, where internal and external vertices are represented
as squares and circles, respectively. Note that an internal vertex can be connected to
more than two vertices, either of internal or external types.

i e m z

Figure 5.4: Possible labels of a vertex in STS.

Every connected pair of vertices in a partial solution must be given valid labels, that
is, the neighbors of a vertex must have compatible labels to the presented definition. Let
D be the set of valid pairs of labels:

D = {(i, i), (i, e), (e, i), (m,m)}.

For s ∈ UBt and W ⊆ U, let s−1(W ) = {u ∈ Bt : s(u) ∈ W}. Define the dynamic
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programming table and the set of partial solutions as:

At(s) = {(p, min
X∈Et(p,s)

w(X)) : p ∈ Π(s−1(U′)) ∧ Et(p, s) 6= ∅}

Et(p, s) = {X ⊆ Et : ∀u ∈ Bt, u ∈ V (G[X]) ⇐⇒ s(u) 6= z

∧ ∀u, v ∈ s−1(U′), p v U [uv] ⇐⇒ u, v are in the same c.c. of G[X]

∧ ∀u, v ∈ s−1(U′), {u, v} ∈ X =⇒ (s(u), s(v)) ∈ D
∧#blocks(p) = cc(G[X])

∧G[X] is acyclic}

A partial solution X ∈ Et(p, s) for STS is a forest G[X] in which the intersection of
G[X] with Bt corresponds to the blocks of p, and vertices with label z are not spanned by
X. An example partial solution is depicted in Figure 5.5, where the vertices of the cur-
rent bag are partitioned in {{u1, u2, u3}, {u4}, {u5, u6, u7}}, with labels s−1(i) = {u2, u6},
s−1(e) = {u1, u3, u5, u7}, s−1(m) = {u4} and s−1(z) = {u8}. Note that u8 is not in the
partition as it is an isolated vertex.

Bt
u1 u2 u3 u4 u5 u6 u7 u8

Figure 5.5: An example partial solution of STS.

Algorithm description In the following, we describe how to compute partial solutions
for each node of the tree decomposition, according to its type. For a leaf node t, we have
that Bt = ∅, then At(∅) = {(∅, 0)}.

Consider an introduce vertex node t with child t′ such that Bt = Bt′ ∪{u}, for u /∈ Bt′ .
Since u is being introduced, there are no incident edges yet, then we only consider the
case u is isolated.

At(s) =

{
At′(s|Bt′ ) if s(u) = z,

∅ otherwise.

Consider a forget vertex node t with child t′ such that Bt = Bt′ \ {u}, for u ∈ Bt′ .
In this case, we take every partial solution that includes u in a tree such that it has a
neighbor in some block of the partition, since project removes partitions in which u is a
singleton.

At(s) =
⋃

a∈{e,i,m}

project(u,At′(s[u→ a]))

Consider an introduce edge node t with child t′ such that Bt = Bt′ , annotated with edge
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e = {u, v}. In order to include this edge in a partial solution, we analyze all label pairs
that lead to their values in s. Each valid label pair of connected vertices (s(u), s(v)) ∈ D
defines a set of pairs C(s(u), s(v)) that lead to their values when an edge between these
types of vertices is included. For instance, if u and v are set as internal vertices in s, we
consider every partial solution whose labels are in C(i, i). Note that these are the only
possible labels of u and v that result in them being internal vertices, as we include e in
the partial solution.

C(i, i) = {(e, e), (e, i), (e,m), (i, e), (i, i), (i,m), (m, e), (m, i), (m,m)}
C(i, e) = {(e, z), (i, z), (m, z)}
C(e, i) = {(z, e), (z, i), (z,m)}

C(m,m) = {(z, z)}

Figure 5.6 gives a graphical representation of these sets, where we display every label
combination of u and v along with the resulting labels when e is included in the solution;
vertices u and v are colored as black and gray, respectively.
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Figure 5.6: Label combinations in STS.

When an edge {u, v} is included in a partial solution, we calculate its effect in the
cost with ∆(`1, `2) = ∆0(`1, `2) + ∆1(`1, `2), for (`1, `2) ∈ C(s(u), s(v)), according to
Table 5.1. The first term represents the cost of the introduced edge, considering it is
either an external or an internal edge, whilst the second term accounts for changing the
value of an incident edge from external to internal. This happens when at least one of u
or v have label e, and we define e′ and e′′ as the incident edges of u and v, respectively,
before e is included.
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At(s) = At′(s) ∪
⋃

(`1,`2)∈C(s(u),s(v))

glue∆(`1,`2)({u, v}, At′(s[u→ `1, v → `2]))

`1 `2 `1 ⊗ `2 ∆0(`1, `2) ∆1(`1, `2)
i i i c(e) 0
i e i c(e) c(e′′)− d(e′′)
i m i c(e) 0
i z i d(e) 0
e i i c(e) c(e′)− d(e′)
e e i c(e) c(e′) + c(e′′)− d(e′)− d(e′′)
e m i c(e) c(e′)− d(e′)
e z e d(e) c(e′)− d(e′)
m i i c(e) 0
m e i c(e) c(e′′)− d(e′′)
m m i c(e) 0
m z m d(e) 0
z i i d(e) 0
z e e d(e) c(e′′)− d(e′′)
z m m d(e) 0
z z z d(e) 0

Table 5.1: Operator ⊗ and costs in STS.

Consider a join node t with children t′ and t′′ such that Bt = Bt′ = Bt′′ . In this case,
we combine two vectors l and r of partial solutions into s according to the operator ⊗ :

U2 → U, that is applied for each vertex u ∈ Bt, such that s(u) = l(u) ⊗ r(u). As we
are joining two partial solutions, a vertex u can have distinct labels in t′ and t′′, e.g., if
s(u) = i, we need to consider various combinations of l(u) and r(u) that lead to such
a label. We also need to account for possible changes in the edge costs, since joining a
vertex that has label e in one of the children nodes entails the adjustment of the weight
of the resulting partitions, just as in introduce edge nodes. This is done by the shift
operation, embedded in the join below, summing all ∆1(l(u), r(u)), for u ∈ Bt. For
the ease of notation, define ∆1(l, r) =

∑
u∈Bt ∆1(l(u), r(u)). Note that Figure 5.6 is also

helpful in this case, considering u and v are the same vertex, but coming from each of the
children.

At(s) =
⋃

l,r∈UBt :l⊗r=s

join∆1(l,r)(At′(l), At′′(r))

Lemma 19. The algorithm correctly computes an optimal solution for STS.

Proof. The correctness follows from induction on a node t of the tree decomposition T .
Consider the induction hypothesis: given nodes t and t′ of the tree decomposition, such
that t′ is a descendant of t with s ∈ UBt′ , the recurrence correctly calculates a set At′(s)
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of weighted partitions for t′. For a given partition p ∈ Π(s−1(U′)), a partial solution
X ∈ Et′(p, s) consists of a forest, in which every connected component of G[X] has at
least one vertex in Bt′ and vertices are correctly labeled.

A leaf node t with Bt = ∅ is the base case, for which the induction hypothesis holds.
Now we consider other node types, and assume the induction hypothesis holds for their
descendants.

An introduce vertex node t has child t′ with Bt = Bt′ ∪ {u}, for u /∈ Bt′ . In this case,
the algorithm takes the set of weighted partitions of t′ when u is set as an isolated vertex,
and, otherwise, takes the empty set, as there is no valid partial solution. This is caused
by the increase of the number of blocks of a partition and not the number of connected
components in the graph induced by the solution. Assume X is a partial solution for t
that is cheaper than every solution considered by the algorithm. Since u has no edges
in Gt, it is an isolated vertex, then X is also a partial solution for t′. This contradicts
the optimality of the induction hypothesis, as the algorithm uses the same set of partial
solutions of t′ for t, when u is set to z.

A forget node t has child t′ with Bt = Bt′ \ {u}, for u ∈ Bt′ . The recurrence extends
a given s to the cases u is set as e, i or m in the child node, and the set of weighted
partitions for t is then the union of those sets of t′. The project operation considers
only partial solutions whose partitions maintain the number of blocks when u is removed,
which ensures u has a neighbor in some block of the partition. Assume X is a cheaper
partial solution for t that is not considered by the algorithm. Since X is valid, u is not
an isolated vertex. It follows that the recurrence correctly computes such a solution by
regarding every possible label of u in the child node, which is correctly calculated (IH).

An introduce edge node t has child t′ with Bt = Bt′ , annotated with an edge {u, v}.
In case this edge is not included in the solution, the algorithm simply takes the set of
weighted partitions of the child t′, otherwise, we must consider every possible label of u
and v. Now, if we use {u, v} in the solution and, for example, set u and v as i and e in
s, respectively, we need to consider every label pair (`1, `2) ∈ C(i, e) that leads to their
label in s. Then, the glue operation combines the blocks containing u and v into one,
representing the newly created connected component; moreover, the cost ∆(`1, `2) of the
operation is added to the weight of every partition. Analogous steps are taken when u

and v have labels (i, i), (e, i) or (m,m) in the vector s. Aiming for a contradiction, let X
be a cheaper partial solution that is not considered by the algorithm, using edge {u, v} in
such a way that u is an internal and v is an external vertex. Let `1 and `2 be the labels of
u and v, respectively, before including the edge in X. Using the induction hypothesis, we
correctly calculate this solution for the child node t′. Since the algorithm considers every
label combination that leads to u and v being these types of vertices, listed in C(i, e), and
take into account the correct costs ∆(`1, `2) of the operation, X cannot be cheaper than
the solutions obtained by the algorithm. The analysis is analogous when u and v have
labels (i, i), (e, i) or (m,m) in the vector s.

A join node t has children t′ and t′′ with Bt = Bt′ = Bt′′ . In order to calculate the set
of weighted partitions for t, we combine every vector l and r, of t′ and t′′, respectively, into
the given vector s, using the operator ⊗. The join operator is applied to the partitions
of the children, effectively placing every vertex that is in the same connected component
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of the combined partial solution in the resulting block of a partition. The weight of this
partition, that is, the cost of the combined partial solution, is the sum of the weights of the
children considering the possible changes in the costs of the existing edges, when at least
one of the children have label e, expressed by ∆1(l, r). Aiming for a contradiction, assume
X is a cheaper partial solution for t that is not calculated by the algorithm. According
to our definition of a nice tree decomposition, each edge is introduced once, above the
last join node that has both endpoints, and each vertex is forgotten once, then the edges
between vertices in Bt are not introduced yet, and V (Gt′)∩V (Gt′′) = Bt; this implies that
X can be partitioned into valid partial solutions X ′ and X ′′, for t′ and t′′, respectively.
The partial solution X ′ for t′ induces a vector l ∈ UBt′ that is considered by the algorithm
(IH), and the analogous holds for X ′′ and t′′, as we try every vector combination. Since
we correctly account for possible changes in the edge costs, it follows that such solution
X is considered by the algorithm for node t.

Recall that the best base of the exponent one can achieve is 4, as seen in Theorem 19.
Now we are ready for the main result of this section.

Theorem 21. There is an algorithm for STS that runs in time O∗(43.5tw).

Proof. The algorithm proceeds by computing the intermediate sets Ãt, for each node
t ∈ V (T ), according to the described recurrence relations. Then, At = reduce(Ãt) is
stored, the reduced-size representative set of weighted partitions of such node, to be used
in bigger subproblems.

The reduce operator runs in time |Ãt|2(ω−1)|U ||U |O(1) and produces a set At of size at
most 2|U |−1, where U = s−1(U′) and ω < 2.3727 [163]. In the following, we calculate the
size of the intermediate set of a node t, considering it is a join node, since these are larger
than other node types.

|Ãt(s)| ≤
∑
l⊗r=s

2|l
−1(U′)|2|r

−1(U′)|

=
∏
u∈Bt

∑
l(u)⊗r(u)=s(u)

2[l(u)∈U′]+[r(u)∈U′]

= 40|s
−1(i)|4|s

−1(e)|4|s
−1(m)|,

where the first equality expands into products for each vector coordinate, and use the
following observation:

∑
l(u)⊗r(u)=s(u)

2[l(u)∈U′]+[r(u)∈U′] =


40 if s(u) = i,

4 if s(u) = e,

4 if s(u) = m,

1 if s(u) = z.

Take s(u) = e as an example: the label pairs that lead to e when applied the operator are
(e, z) and (z, e), since e⊗ z = z⊗ e = e; then, the previous sum for this label would be:

2[e∈U′]+[z∈U′] + 2[z∈U′]+[e∈U′] = 21+0 + 20+1 = 4.
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The running time to compute At(s), for every s ∈ UBt , is

∑
s∈UBt

|Ãt(s)|2(ω−1)|s−1(U′)|twO(1) =
∑

ii+ie+im+iz=|Bt|

(
|Bt|

ii, ie, im, iz

)
40ii4ie4im1iz2(ω−1)twtwO(1)

≤ (49 · 2(ω−1))twtwO(1)

≤ 43.5twtwO(1),

where we use |s−1(U′)| ≤ tw and the multinomial theorem. Since there are O(n · tw)

nodes in T , the algorithm runs in time O∗(43.5tw).

Further algorithmic results The presented algorithm can be easily extended to use
pathwidth as parameter and to consider particular classes of graphs as input. In the first
case, we assume a path decomposition of width pw is given as input (recall this type of
decomposition has no join nodes). Then, the size of the intermediate sets of weighted
partitions is at most 2|s

−1(U′)| ≤ 2pw. Since the operator ⊗ is not needed, the running time
is improved compared to the algorithm parameterized by treewidth. Note that this result
is close to the lower bound given in Theorem 19.

Theorem 22. There is an algorithm for STS that runs in time O∗(41.7pw).

Following directly from our positive results parameterized by pathwidth and treewidth,
and Theorems 23 and 24, we obtain algorithms for graphs of bounded degree and planar
graphs.

Theorem 23 ([82]). For any graph G with n vertices and maximum degree 3, pw(G) ≤ n
6
.

Theorem 24 ([86]). For any planar graph G with n vertices, tw(G) + 1 ≤ 3.183
√
n.

Theorem 25. For graphs of maximum degree 3, there is an algorithm for STS that runs
in time O(1.49n).

Theorem 26. For planar graphs, there is an algorithm for STS that runs in time O(2O(
√
n)).

5.4 The path and cycle variants

In this section, we present a parameterized algorithm for Spanning Path-Star, using
treewidth as parameter, that runs in time O∗(28.4tw). We also give an algorithm pa-
rameterized by pathwidth, that runs in time O∗(24.38pw), and two others specialized in
particular classes of graphs. These results follow the same structure as the one for STS,
thus, we highlight the points that need to be adapted.

For the tree variant, four types of vertices were codified as labels to represent a partial
solution, namely, internal vertices, external vertices that are connected to either an inter-
nal or an external vertex, and isolated vertices. In this case, more information is needed
to correctly describe the role of a vertex in a bag of the tree decomposition, as vertices
interact in a more intricate way. The algorithm for the cycle variant of the problem is
also devised in this section.
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In SPS, given a graph G and two edge-cost functions, the objective is to find a
minimum-cost spanning subgraph H of G in which its internal vertices induce a path,
where the internal and external edges are priced differently. We have that every vertex
not in the path is connected to exactly one vertex in the path, and hence the problem is
also known as the Minimum Spanning Caterpillar. The path formed by the internal
vertices is also called the spine of the solution.

An instance of the problem is composed of a graphG, edge-cost functions c, d : E(G)→
N and a nice tree decomposition T of G. It is useful to assume the decomposition is
rooted at an introduce edge node, which can be done efficiently (Theorem 1). We guess
the endpoints of the spine of an optimal solution are the vertices u0 and un, creating the
edge {u0, un} in G. In the algorithm for the cycle variant of the problem, we look for an
edge that is part of the cycle of an optimal solution, guessing only existing edges of G.
This guessing step adds an extra quadratic term to the running time of the algorithm.

Subproblem definition Consider labels U = {i0, i1, i2, e0, e1, e2,m, z}, and let U′ =

U \ {z}. For a node t ∈ V (T ), we use a vector s ∈ UBt to describe the role of vertices
in the bag of t, then, for u ∈ Bt, its role in the partial solution is represented by s(u):
if u is an internal vertex connected to none, one or two internal vertices, it has label i0,
i1 or i2, respectively; if u is an external vertex connected to a vertex of type i0, i1 or i2,
it has label e0, e1 or e2, respectively; if u is an external vertex connected to an external
vertex, it has label m, and if u is an isolated vertex, it has label z. Figure 5.7 shows the
types of labels of a vertex in a partial solution, where internal and external vertices are
represented as squares and circles, respectively.

i0 i1 i2 e0 e1 e2 m z

Figure 5.7: Possible labels of a vertex in SPS.

Any connected pair of vertices of a partial solution must be given valid labels, that is,
the neighbors of a vertex must have compatible labels to the presented definition. Let D
be the set that contains the valid pairs of labels.

D = {(i0, e0), (i1, i1), (i1, i2), (i1, e1), (i2, i1), (i2, i2), (i2, e2), (e0, i0), (e1, i1), (e2, i2), (m,m)}.

For t ∈ V (T ) and a vector s ∈ UBt , define the dynamic programming table and the
set of partial solutions as:

At(s) = {(p, min
X∈Et(p,s)

w(X)) : p ∈ Π(s−1(U′)) ∧ Et(p, s) 6= ∅}

Et(p, s) = {X ⊆ Et : ∀u ∈ Bt, u ∈ V (G[X]) ⇐⇒ s(u) 6= z

∧ ∀u, v ∈ s−1(U′), p v U [uv] ⇐⇒ u and v are in the same c.c. of G[X]

∧ ∀u, v ∈ s−1(U′), {u, v} ∈ X =⇒ (s(u), s(v)) ∈ D
∧#blocks(p) = cc(G[X])

∧G[X] is acyclic}
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A partial solution X ∈ Et(p, s) for SPS is a forest G[X] in which the intersection of the
connected components of G[X] with Bt correspond to the blocks of p, any two connected
vertices must be given one of the valid label pairs of D, and vertices with label z are not
spanned by X. An optimal solution is then found at the root node, whose partition is
{{u0, un}}, with s(u0) = s(un) = i1, since we want to find a single connected component
with these vertices as the endpoints of the spine. In the cycle variant of the problem, we
set the label of these vertices to i2 and account for the weight of this edge in the total
cost of the solution.

Algorithm description In the following, we describe the algorithm for SPS, highlight-
ing the differences between the one presented in the previous section. A leaf node contains
only a partial solution formed by an empty partition and weight zero, as expected. In
an introduce vertex node, as in STS, valid solutions are obtained from the child’s solu-
tion when the introduced vertex is set as isolated, since it has no introduced edges yet;
then, all other labels lead to an invalid partial solution. In a forget node, one can only
forget external vertices and internal vertices that already have two other neighbors set as
internal vertices, i.e., vertices with labels e0, e1, e2 and i2. This ensures that the last two
internal vertices are the endpoints of the solution’s spine, as intended.

In an introduce edge node annotated with edge e = {u, v}, we consider every label pair
of u and v in the child’s solution that leads to their values in s when the edge is included
in the partial solution. As before, each pair in D defines a set of pairs C(s(u), s(v)) to be
analyzed:

C(i0, e0) = {(i0, z), (m, z)}
C(i1, i1) = {(i0, i0), (i0,m), (m, i0), (m,m)}
C(i1, i2) = {(i0, i1), (i0, e0), (i0, e1), (m, i1), (m, e0), (m, e1)}
C(i1, e1) = {(i1, z), (e0, z), (e1, z)}
C(i2, i1) = {(i1, i0), (e0, i0), (e1, i0), (i1,m), (e0,m), (e1,m)}
C(i2, i2) = {(i1, i1), (i1, e0), (e0, i1), (i1, e1), (e1, i1), (e0, e0), (e0, e1), (e1, e0), (e1, e1)}
C(i2, e2) = {(i2, z)}
C(e0, i0) = {(z, i0), (z,m)}
C(e1, i1) = {(z, i1), (z, e0), (z, e1)}
C(e2, i2) = {(z, i2)}
C(m,m) = {(z, z)}

Figure 5.8 shows a graphical representation of the label combinations of u and v and
the resulting labels after edge e is included, where u and v are represented, respectively,
as black and gray vertices. Note that i2 only produces a valid combination with z, while
e2 has no valid combinations. In this formulation, we observe that changing the label of
a vertex causes the labels of the neighboring vertices to change as well. Say u and v have
labels e0 and i0, respectively, before e is included in the partial solution, then, including
the edge changes their labels to i2 and i1, respectively. Moreover, the vertex connected to
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u changes to i1 and its neighbors to e1, and the vertices connected to v change to e1. This
straightforward adaptation of labels in s need to occur each time a new edge is included
in the partial solution, so every label pair of connected vertices remain valid.
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Figure 5.8: Label combinations in SPS.

Whenever an edge e is included, we need to calculate the change in the total cost
of a partial solution, that has value ∆(`1, `2) = ∆0(`1, `2) + ∆1(`1, `2), where (`1, `2) ∈
C(s(u), s(v)) are the possible labels of u and v, respectively, before e is included in the
solution. The first term is the cost of the included edge and the second term accounts for
the change in cost of an incident edge from external to internal. Table 5.2 summarizes
these costs for every label pair contained in the sets described by D, where e′ and e′′ are
the edges of u and v, respectively, when they are set as external vertices.

A join node needs to combine partial solutions to two different subgraphs of G, then,
with l and r as the vectors describing the role of vertices in the bags of the children, we
need to consider the vector s for the current node, such that s(u) = l(u)⊗ r(u), according
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to the operator ⊗ defined in Table 5.2. Joining these solutions effectively changes the
labels of various vertices, e.g., if a vertex u is labeled as e0 and i0 in l and r, respectively,
the resulting label of u will be e0 ⊗ i0 = i1; just as in introduce edge nodes, neighboring
vertices also need to adapt their labels. Note that, while e2 vertices do not admit edge
inclusion, they can be joined with z vertices. The cost of a partial solution also needs
adjustment when an incident edge changes from being external to internal, as in STS,
caused by joining the children solutions. This cost is given by ∆1(`1, `2) in Table 5.2,
where `1 and `2 are the labels of the vertex in the bags of the children.

Theorem 27. There is an algorithm for SPS that runs in time O∗(28.4tw).

Proof. The correctness arguments are similar as the ones presented in Theorem 21, so we
concentrate on the running time of the algorithm. This running time is also dominated
by the size of the intermediate sets of join nodes:

|Ãt(s)| ≤
∑
l⊗r=s

2|l
−1(U′)|2|r

−1(U′)|

=
∏
u∈Bt

∑
l(u)⊗r(u)=s(u)

2[l(u)∈U′]+[r(u)∈U′]

= 20|s
−1(i0)|52|s

−1(i1)|40|s
−1(i2)|4|s

−1(e0)|4|s
−1(e1)|4|s

−1(e2)|4|s
−1(m)|,

where we use the following observation:

∑
l(u)⊗r(u)=s(u)

2[l(u)∈U′]+[r(u)∈U′] =



20 if s(u) = i0,

52 if s(u) = i1,

40 if s(u) = i2,

4 if s(u) = e0,

4 if s(u) = e1,

4 if s(u) = e2,

4 if s(u) = m,

1 if s(u) = z.

Then, the total running time is∑
s∈UBt

|Ãt(s)|2(ω−1)|s−1(U′)|twO(1)

=
∑

ii0+···+iz=|Bt|

(
|Bt|

ii0 , . . . iz

)
20ii052ii140ii24ie04ie14ie24im1iz2(ω−1)twtwO(1)

≤ (129 · 2(ω−1))twtwO(1)

≤ 28.4twtwO(1),

where we use |s−1(U′)| ≤ tw. Since |V (T )| ∈ O(n · tw), the algorithm runs in time
O∗(28.4tw).
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Further algorithmic results As before, the presented algorithm can be easily ex-
tended to consider the pathwidth of the input graph as parameter and other particular
classes of graphs.

Theorem 28. There is an algorithm for SPS that runs in time O∗(24.38pw).

Theorem 29. For graphs of maximum degree 3, there is an algorithm for SPS that runs
in time O(1.66n).

Theorem 30. For planar graphs, there is an algorithm for SPS that runs in time O(2O(
√
n)).

5.5 Future work

The algorithm presented for STS improved the running time to solve it from O∗(twO(tw))

to O∗(43.5tw), being the first single-exponential time algorithm for this problem. The
existence of our O∗((4 − ε)pw) lower bound constitutes a good research opportunity to
tighten this running time for both pathwidth and treewidth. Our application of the rank-
based approach proved its versatility when we used more labels to represent a solution
than the seminal paper, analyzing multiple cases emerging from their interaction. We left
open the analysis of the Steiner version of these problems under the rank-based approach.
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`1 `2 `1 ⊗ `2 ∆0(`1, `2) ∆1(`1, `2)
i0 i0 i0 c(e) 0
i0 i1 i1 c(e) 0
i0 e0 i1 c(e) c(e′′)− d(e′′)
i0 e1 i1 c(e) c(e′′)− d(e′′)
i0 m i0 c(e) 0
i0 z i0 d(e) 0
i1 i0 i1 c(e) 0
i1 i1 i2 c(e) 0
i1 e0 i2 c(e) c(e′′)− d(e′′)
i1 e1 i2 c(e) c(e′′)− d(e′′)
i1 m i1 c(e) 0
i1 z i1 d(e) 0
i2 z i2 d(e) 0
e0 i0 i1 c(e) c(e′)− d(e′)
e0 i1 i2 c(e) c(e′)− d(e′)
e0 e0 i2 c(e) c(e′) + c(e′′)− d(e′)− d(e′′)
e0 e1 i2 c(e) c(e′) + c(e′′)− d(e′)− d(e′′)
e0 m i1 c(e) c(e′)− d(e′)
e0 z e0 d(e) c(e′)− d(e′)
e1 i0 i1 c(e) c(e′)− d(e′)
e1 i1 i2 c(e) c(e′)− d(e′)
e1 e0 i2 c(e) c(e′) + c(e′′)− d(e′)− d(e′′)
e1 e1 i2 c(e) c(e′) + c(e′′)− d(e′)− d(e′′)
e1 m i1 c(e) c(e′)− d(e′)
e1 z e1 d(e) c(e′)− d(e′)
e2 z e2 − 0
m i0 i0 c(e) 0
m i1 i1 c(e) 0
m e0 i1 c(e) c(e′′)− d(e′′)
m e1 i1 c(e) c(e′′)− d(e′′)
m m i0 c(e) 0
m z m d(e) 0
z i0 i0 d(e) 0
z i1 i1 d(e) 0
z i2 i2 d(e) 0
z e0 e0 d(e) c(e′′)− d(e′′)
z e1 e1 d(e) c(e′′)− d(e′′)
z e2 e2 − 0
z m m d(e) 0
z z z d(e) 0

Table 5.2: Operator ⊗ and costs in SPS.
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Chapter 6

Final Remarks

In this thesis, we investigated two families of pair connectivity problems, focusing on
algorithmic and hardness results on the fields of approximation and parameterized com-
plexity. These problems find usage in several areas of combinatorial optimization, such as
location theory and network design, and although we scrutinize them with a theoretical
point of view, the gained insights can often be transposed to practical scenarios.

We have used the dynamic programming over a tree decomposition algorithm design
technique in our positive results, leveraging consolidated works and introducing novel
ideas. The versatility of this technique is demonstrated by the range of solution quality
guarantees we give: a (2 + ε)-approximation, an approximation scheme and an exact al-
gorithm, all obtained with the same underlying framework, running in FPT time. The
preliminaries chapter brings basic definitions and examples of such types of algorithms,
and with the application in later chapters, we believe this constitutes a modest introduc-
tion to the field of parameterized approximation algorithms.

For SkHC, we give the first parameterized results for the problem: it is W[1]-hard
when the parameter is the combination of the vertex cover number of the graph and the
number of hubs, and there is no parameterized (1.25− ε)-approximation algorithm when
the parameter is the number of hubs, for ε > 0; on the positive side, we give an efficient
parameterized approximation scheme with treewidth as parameter, that either builds a
close-to-optimal solution or concludes there is no solution with such cost. This algorithm
reduces the problem to one in which we are additionally given two functions bounding the
cost of the paths from a vertex to the center and to the assigned hub. Then, we go over
the dynamic programming formulation, building such paths for vertices and calculating
distances in an approximate fashion. A distance value is approximated by an integer
power of (1 + δ), reducing the number of values from O(n) to O(tw · log n), which allows
us to enumerate them. In the end, we show the values computed approximately are not
far from the exact ones, given our choice of δ and the height of the tree decomposition.
Note this is a tight algorithm for treewidth, since it is W[1]-hard to give a parameterized
algorithm, and ours is a parameterized (1 + ε)-approximation for this parameter.

For MAkHC, we give hardness results for different sets of parameters: when we have
the number of hubs as parameter, the cost of the solution is bounded by a constant and
the graph is unweighted, there is no parameterized (3 − ε)-approximation, for ε > 0; for
the number of hubs, the highway and skeleton dimensions and the pathwidth of the graph
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as parameters, or when parameterized by the number of hubs and the vertex cover of the
graph, the problem does not admit a parameterized algorithm, unless FPT = W[2]. Our
algorithmic result also revolves around approximate distances and a tree decomposition,
but with different challenges compared to the previous problem: since in this case the set
of demands is given as part of the input, we cannot assume every vertex in a subproblem
needs to be connected, and enumeration is not possible unless the number of demands
is part of the parameter. We solve this issue by requiring a special subset of demands
to be satisfied within twice the optimal cost, and then we show the rest of demands
are already satisfied by the same set of hubs; this makes the algorithm a parameterized
(2 + ε)-approximation. As in the previous algorithm, we store distances approximately,
but now we employ the framework of approximate addition trees, which simplifies the
process of bounding the maximum error from a value computed in a tree decomposition
of limited height. We hope the presented algorithmic and hardness results for the hub
location family pave the way for more research in the field of parameterized complexity
for these types of problems.

For STS, we give single-exponential time parameterized algorithms for either path-
width or treewidth running in time O∗(41.7pw) and O∗(43.5tw), improving upon results in
the literature. We employ the recent rank-based approach in our results, responsible for
keeping track of the connected components of a solution and efficiently storing them. In
a solution, each vertex is given a label to represent its current state in respect to their
neighbors, adapting as new edges and vertices are introduced. For SPS and SCS, we show
an adaption of the given algorithm already renders similar results for these variants, using
a different label set to describe the connectivity requirements.
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