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Abstract

Additive manufacturing has enabled the construction of increasingly complex

mechanical structures. However, the variability of mechanical properties may

be higher than that of conventionally manufactured structures. Typically, the

computational cost of the numerical modeling of such structures considerably

increases when variability is considered. In deterministic analyses of periodic

structures, the dispersion diagrams obtained for the first Brillouin zone (FBZ)

can be used to predict attenuation bands for any direction of propagation. This

can be further simplified considering only the contour of the irreducible Brillouin

zone (IBZ) if the unit cell presents symmetries. The objective of the current in-

vestigation is to present evidence that, similarly to what occurs in deterministic

cases, the stochastic results obtained by scanning only the IBZ contour of the

proposed two-dimensional unit cell under 4-fold rotational symmetry of statisti-

cal variability coincides with statistical results obtained scanning the FBZ. This

is not a direct result, because each individual unit cell sample is asymmetric.

We show that, under symmetry of variability statistics, the stochastic results

computed for supercells and for finite metastructures consisting of a finite num-

ber of cells also coincide with the results for the IBZ contour of the unit cell.
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This result is important, as it dramatically reduces the computation cost of the

stochastic analysis of such structures.

Keywords: Mechanical variability, additive manufacturing, Bayes’ factor,

periodic structure, robust band gap.

1. Introduction

Mechanical vibrations may be detrimental in structural applications [1, 2, 3,

4]. The design of supporting phononic or metamaterial structures that isolate

vibrations using wave band gaps, i.e., frequency bands where there is no wave

propagation [2, 5, 6], is a current topic of research [7, 8]. In addition, additive5

manufacturing has made the (meta)material design possible through a wide va-

riety of lightweight complex geometries, without the loss of effective mechanical

stiffness [1].

In this context, investigating two-dimensional lattices composed by 1D waveg-

uides is interesting because they are halfway between one-dimensional simple10

models and more complex three-dimensional models, allowing the investigation

of directionality without exceedingly complex analytical formulations [9, 10] and

computational burden [11, 12]. They may also have important applications in

machine design [11, 13, 14, 15]. Some examples of two-dimensional metastruc-

tures are plane frame structures with resonators [4], plates with polynomial15

decrement of their thickness in specific regions (acoustic black holes) [7, 8], and

periodic inclusions [12].

Recent studies have reported cases where the variability of the mechani-

cal properties of waveguides obtained by additive manufacturing substantially

influenced the observed dynamic responses [1], thus showing the necessity of20

quantifying the uncertainties related to this variability [5, 3, 16, 17]. Statistical

methods have been used to estimate and to infer about the statistical distri-

bution of the model parameters. The inferred distributions are used to obtain

the stochastic response using the deterministic model [1, 16, 18, 19, 20]. It is

known that the greater the sample size, the better the inference, but the greater25
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the experimental effort [21]. However, using the correct prior information and

Bayesian statistics, the final result can present better precision at a smaller ex-

perimental effort [22]. The correct application of the Bayesian approach usually

yields less biased estimates and improves precision and accuracy [19, 23].

Statistical methods have been used for uncertainty quantification in many30

fields, including structural dynamics [1, 18, 24]. In statistics, there are two main

approaches: frequentist and Bayesian [25, 26]. Bayesian statistics uses prior

information that is available before the experiments [22]. In previous studies, a

Bayesian estimator, which used Prony’s method to estimate the wavenumbers

from experimental data, was considered [27]. It has also been shown that it is35

possible to use this highly precise inference to generate stochastic fields that

simulate spatial variability of mechanical properties in periodic structures using

statistical tools such as Karhunen–Loève (KL) expansion and the expansion

optimal linear estimator (EOLE) [10, 20].

Recent investigations focused on the robustness of band gaps of two- and40

three-dimensional structures. In some studies, the robustness of the band gap is

considered in terms of the band gap width and/or location [28, 29, 30, 31, 32, 33],

while, in others, in terms of defects [34, 35]. Some studies address the variability

related to the dimensions of local resonators [36, 37, 38]. Also, the variability

of all geometric dimensions of a three-dimensional PC is considered when deal-45

ing with band gap robustness [16]. Sensitivity analysis was used to identify

the random variable that most influences the band gap [39]. Recently, a study

that considered the mechanical properties as spatially correlated random vari-

ables was also reported [40, 41, 42, 43]. Another recent study on uncertainty

in the scattering matrix of mechanical joints reports symmetric average scat-50

tering under symmetry of variability [44]. Two main concerns observed in the

literature are dealt with in the current study: (i) the lack of computationally

efficient methodologies for analyzing attenuation bands in periodic structures

(metamaterials or PCs) under variability; and (ii) the lack of investigations of

the relationship between the dispersion diagrams computed on the IBZ or FBZ55

contours for the unit cells, on the IBZ of supercells, and the forced responses of
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metastructures (finite metamaterials or PCs) with spatial variability.

The deterministic approach is presented in detail in the Appendices and

consists of obtaining the minimum of the imaginary part (minimum attenuation)

of all the computed wavenumbers using the model of a frame cell based on the60

Spectral Element Method (SEM). The stochastic methodology combines the

computed attenuation bands with EOLE to model the spatial variability and

the Monte Carlo (MC) method. Similarly to the Bayes’ factor, a ratio of chances

is used to infer the stochastic results.

The objective of the current study is to show evidence that, for 2D periodic65

structures with rotational symmetry of variability, it is possible to infer the

stochastic wave attenuation of metastructures by analyzing only the IBZ of its

unit cell, as it occurs in the deterministic case. By symmetry of variability, we

mean that the same description of the spatial variability of the frame elements,

either by random variables or random fields with specified correlation function70

and correlation length, is used for the frame elements of the unit cell. We

call this a rotational symmetry of variability. The presented results for a 4-fold

rotational symmetry of variability are novel. This original result is important for

simulating the stochastic of periodic frame structures because of the dramatic

computational cost reduction it allows. The stochastic wave attenuation bands75

on the IBZ contour coincide with the stochastic wave attenuation bands on the

FBZ, with the stochastic wave attenuation on the IBZ of a supercell, and with

stochastic forced responses computed for finite metastructures. The results are

computed for three different two-dimensional frame cells modeled using Euler-

Bernoulli (EB) and Timoshenko (T) beam theories. The presented stochastic80

wave propagation properties are not as direct as they are for the deterministic

cases, because each unit cell obtained as a sample of the stochastic field does

not present 4-fold deterministic rotational symmetry of mechanical properties

nor periodicity over the metastructure. However, when looking at the spatial

distribution of variability, there is 4-fold rotational symmetry over the unit cell85

and periodicity over the metastructure.

In Section 2, we present the SEM modeling of a frame element and the de-
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terministic results. The two-dimensional modeling and the strategies for sam-

pling the IBZ and FBZ contours are presented in Section 3. The methodology

for modeling finite metastructure and for simulating the spatial variability are90

presented in Section 4. In Section 4, results show that, under symmetry of

variability, stochastic results for the IBZ are equivalent to results for the FBZ

for different two-dimensional cells and for different types of variability. In ad-

dition, it is shown that the dispersion diagrams computed for the stochastic

two-dimensional unit frame cell on the IBZ contour also coincide with the IBZ95

results for the supercell and with the forced responses for a metastructure built

up with the frame cell. Section 5 presents the concluding remarks concerning

the evidence about the equivalence of the results for the IBZ and the FBZ of a

two-dimensional cell, results for the IBZ of the supercell, and forced responses

of a metastructure. This is valid for stochastic cases under 4-fold rotational100

symmetry of the variability.

2. Obtaining the wavenumber from a two-dimensional frame cell

The dynamic stiffness matrix of a structural frame element (Df (ω)) can be

obtained via the SEM, which is reviewed in Appendix A for the elementary

rod, the EB and the T beam theories. If the modeled frame element is not105

homogeneous, it can be modeled in a piece-wise form and the dynamic conden-

sation procedure can be applied to reduce the dimensionality of the problem

(see details in Appendix B). Using the assumption of uncoupled flexural and

longitudinal behavior (see Fig. 1b), the plane frame element can be obtained

by assembling the rod (Dr) and beam matrices (Db), as presented in Eq. (1)110

[45].
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where the subscript ij denotes the element at the i-th row and j-th column of

the considered matrix.

After a frame element is modeled and condensed, a built-up structure (metas-

tructure) can be assembled into the global stiffness matrix (Dg(ω)) similarly as

in the finite element (FE) method [46, 47]. The matrix Dg(ω) relates all exter-

nal displacements and forces of all assembled frames in matrix form for a given

frequency ω [48, 49, 50]

Dg(ω)u = F, (2)

where vector u represents the nodal displacements and/or rotations, vector F

represents the external nodal forces and/or moments, and matrix Dg(ω) is the115

dynamic stiffness matrix.

The two-dimensional unit cell of the Lieb lattice (Fig. 1a) [48, 49, 50] mod-

eled via its global stiffness matrix (Eq. (2)) using four frame elements. Appendix

C presents a procedure of assembling Dg(ω) and the condensation of nodes q4

and q5. After q4 and q5 are condensed, the dynamic equations of motion may

be expressed using the condensed global stiffness matrix Dc(ω) as
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→ Dc(ω)uc = Fc, (3)

where the vectors uc and Fc are related to the nodes q1, q2, and q3.
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(a) (b)

Figure 1: (a) The proposed two-dimensional frame cell, made of four plane frame elements

(e1, e2, e3, and e4). Red nodes (q1, q2, and q3) are kept and the black nodes are condensed (q4

and q5). (b) Representation of the longitudinal (ux), flexural (vy) and torsional (φz) degrees

of freedom (DOFs) for the frame element e1.

The Bloch-Floquet periodic conditions [14, 51] can be applied to Dc(ω) in

order to compute the dispersion relation of the Lieb unit cell. A relatively

low computational cost, when compared with the ω(k) approach using an FE120

model, is required for solving a k(ω) problem using SEM. This can be explained

by the significant reduction in the dynamic matrix dimensions allowed by SEM,

especially at higher frequencies. Although the considered k(ω) method does

not take advantage of the symmetry and sparsity of FE matrices when using

an ω(k) method, the resulting reduced dimensions allows an efficient computa-125

tional cost when finding the roots of the polynomial in Eq. 7 for a variable ω

using the companion matrix. In addition, it results in an analytical solution in

the frequency domain [53]. This methodology is briefly presented in the follow-

ing paragraphs and in Appendix D, because a non-conventional procedure is

proposed to improve the ill-conditioning inherent to this problem.130

Using the Bloch-Floquet theorem [54, 55], and defining the propagation con-

stant in the x direction as λx and the propagation constant in the y direction

as λy, it is possible to define the relationship between the displacements of the

nodes at different unit cell boundaries by Eq. (4).

{

q1 q2 q3

}T

=
[

In Inλx Inλy

]T

q1 → q = ΛR q1, (4)

where ΛR can be defined as the transformation matrix that relates q1, q2, and
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q3 to q1.

Matrix ΛL, which assumes equilibrium of nodal forces, can be obtained using

F 1 + F 2λ
−1
x + F 3λ

−1
y = 0, (5)

yielding
[

In Inλ
−1
x Inλ

−1
y

]{

F 1 F 2 F 3

}T

= ΛLF = 0. (6)

Now, substituting Eq. (4) in the term q of Eq. (2), and premultiplying both

sides by ΛL one obtains

ΛLDc(ω)ΛRq1 = 0. (7)

The companion matrix can be used to solve Eq. (7) while maintaining the

polynomial ordinary (see Appendix D). This procedure makes it possible to

obtain the dispersion diagram for infinite number, but not continuous, values135

of θ in a substantive lower computational cost. An alternative method, which

could also have been used to compute the wavenumbers in a numerically effi-

cient way [57] is the shift-cell method [56]. The proposed procedure combined

with the SEM modeling is of utmost importance when computing the stochastic

response, which needs multiple simulations. A methodology to improve the ma-140

trix conditioning is presented in Appendix E and is illustrated by deterministic

results presented in Appendix F and Appendix G.

A wavenumber with a non-negligible imaginary part is an evidence of evanes-

cent behavior [58, 59]. A frequency band where all the waves are evanescent is

here named attenuation band. If the wavenumber is complex, the real part is

given by the number of radians per unit distance while the imaginary part gives

an exponential decay, or attenuation, as the wave propagates [60]. The Bloch-

Floquet theorem [54, 55], for a periodic waveguide, implies that the wavenumber

consists of real and imaginary components. By considering an one-dimensional

structure for the sake of simplicity, the wave propagating to the right-side of

the waveguide is given by Ae−ikx, where A is the wave amplitude, k is the com-

plex wavenumber, x is the position along the waveguide and i is the imaginary

unit number. Consequently, inspecting the previously mentioned mathematical
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expression, the percentage of attenuation per length due to the evanescent part

of the wavenumber (Im(k)), which has the dimension of m−1, can be calculated

[59]. The attenuation per meter can be given by

δm = 100(1− e−Im(k)). (8)

It is a common procedure to calculate kL instead of k. Thus, the percentage

of attenuation per cell length is given by

δc = 100
(

1−
(

e−Im(kL)
))

. (9)

Bragg-type band gaps are characterized by a real part of the normalized

wavenumber kL in the Bragg limits (0 and π) and a non-zero imaginary part

[61]. However, in complex structures, the interpretation of the wave attenua-145

tion phenomenon is not as straightforward as the Bragg scattering band gap.

Frequency bands where attenuation happens for all waves are called full band

gaps. Furthermore, for two- or three-dimensional waveguides, if this also hap-

pens for all wave propagation directions, it may be considered as a full and

complete band gap [20]. To characterize such bands, values of δc greater than150

a predefined threshold value for all waves are considered [10].

3. Deterministic results for the periodic structure

In this section, some deterministic results are presented. A two-dimensional

frame cell with a circular radius (r) and length (L) (Fig. 2a) is proposed using

four one-dimensional unit cell forming a Lieb lattice (Fig. 2b) and assessed155

considering the EB beam theory. The mechanical and geometric characteristics

of segments f1 (nylon) and f2 (aluminum) are defined as E1 = 2 GPa, ρ1 = 1200

kg/m3, L1 = 60 mm, r1 = 2.5 mm, E2 = 70 GPa, ρ2 = 2700 kg/m3, L2 = 60

mm, r2 = 4 mm. It is possible to verify by inspecting the deterministic physical

modes (see Appendix E) at Fig. 3 that there are mainly 7 full attenuation160

band for θ = 45◦: 2.25-4.25 kHz; 4.60-6.35 kHz; 7.05-7.98 kHz; 9.30-9.53 kHz;

11.43-14.38 kHz; 14.82-19.40 kHz; the last band starts at 23.8 kHz.
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(a) (b)

Figure 2: (a) The first proposed Lieb unit cell made of four frame elements modeled via

elementary rod and EB beam theories. (b) The defined symmetric frame element of three

segments: nylon in the extremities and aluminum in the middle.

Figure 3: Real (blue and black) and imaginary (red and green) parts of the physical wave

modes of the unit cell for θ = 45◦.

More complex structures can present richer dispersion diagrams. In addition,

coupled systems can also present dispersion diagrams substantially different

from uncoupled structures [62]. It is possible to notice from Fig. 3 four wide and165

full attenuation bands (2.25-4.25 kHz; 4.60-6.35 kHz; 11.43-14.38 kHz; 14.82-

19.40 kHz). The causes of such attenuation bands are not as simple as for the

one-dimensional periodic system. For instance, the causes of attenuation can be

isolated or combined phenomenon: Bragg scattering [5], local resonance, wave

veering, and locking effects [62].170
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Given the complexity of the dispersion diagrams, it is impracticable to ana-

lyze the causes of the wave attenuation for the hundreds of stochastic responses.

Therefore, the minimum value of the magnitude of the imaginary part of the nor-

malized wavenumber (min(| Im(kL) |)) is used to observe the attenuation bands.

If their value is greater than zero, it indicates there will be attenuation of all175

waves while traveling along the structure [63], even in the absence of structural

damping. In practice, there may exist frequency ranges where, although there is

no substantial wave attenuation, the computed (min(| Im(kL) |)) can be slightly

greater than zero. For this reason, a minimum threshold value δk is considered

to detect an attenuation at a given frequency, i.e., (min(| Im(kL) |)) > δk.180

In the present study, two gray color patches were created for δk ≈ 0.2 and

δk ≈ 0.92. Those values correspond to an attenuation of approximately at least

20% (δc ≥ 20%) and 60% (δc ≥ 60%) in all directions per cell length, respec-

tively.

3.1. First Brillouin zone and irreducible Brillouin zone185

The FBZ represents the dispersion relations for all possible propagation di-

rections of a wave propagating in a periodic structure [64].For two-dimensional

propagation, it is represented by a square for the Lieb unit cell (see the dashed

line in Fig. 4a). If the two-dimensional structure presents symmetry, the sym-

metry will be manifested in the reciprocal space, and hence, it is not necessary to190

scan the entire FBZ. The IBZ presents the smallest part of the FBZ that makes

it possible to reproduce the FBZ by mirroring and rotating. If elements e1, e2,

e3, and e4 in Fig. 1 have the same deterministic mechanical property distribu-

tion and geometric characteristics with respect to the frame center (node q1),

which is the case in the deterministic analysis of the present study, it is known195

that the IBZ contour can be used. On the other hand, if these four elements are

(or there is a possibility of being) different, e.g., there is significant variability

related to the manufacturing of these elements, the literature indicates that the

FBZ should be used instead of the IBZ contour [65].
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(a) Representation of the FBZ and IBZ

(contour in red) in the reciprocal space.

(b) Representation of the samples made in the

contour line M − X in the IBZ.

Figure 4: Representation of the IBZ for the proposed two-dimensional frame cell (a), and the

proposed observations along the contour line from M to X (b).

The direction of the kx and ky axes can be changed using the same samples200

presented in Fig. 4b to compute the FBZ contour, as presented in Appendix D

and Appendix H.

Figure 5 was obtained by applying the proposed procedure to determine the

attenuation using the IBZ of the deterministic two-dimensional cell (Fig. 2a).

Note that min(| Im(kL) |) in Fig. 3 is the same as the first result (θ = 45◦) for205

the contour Γ−M in Fig. 5. It is possible to observe that there are four large

complete and full attenuation bands where the attenuation per cell length is at

least 20%: 2.45-4.28 kHz; 4.60-6.35 kHz; 11.45-14.40 kHz; 14.85-19.35 kHz, and

four band of at least 60% of attenuation per cell length: 2.90-4.10 kHz; 4.88-6.03

kHz; 12.00-14.10 kHz; 15.10-18.40 kHz.210
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Figure 5: Minimum of the magnitude of the imaginary part of the wavenumber along the

contour of the IBZ for the cell represented in Figure 2 from 0 to 25 kHz. Attenuation per cell

length of at least 20% (light gray) and 60% (middle gray).

3.2. Simulating a two-dimensional metastructure

The dispersion relation computed from the unit cell can be used to inter-

pret or predict attenuation even in more complex structures, requiring a larger

computational cost. Such as the structure shown in Fig. 6. It is composed of

16 two-dimensional cells, with excitation in the left bottom corner. Figure 7215

presents the accelerance frequency response function (FRF) at an upper node

superposed at the attenuation patches from Fig. 5. It is possible to observe

that there is strong attenuation within the predicted attenuation zones, cor-

roborating the previous results of the periodic cell wavenumber analysis (Fig.

5).220
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Figure 6: Proposed metastructure excited at the base (Fx and Fy) with response at the top

(ux uy).
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Figure 7: Obtained FRF for the proposed two-dimensional structure in Fig. 6. For horizontal

excitation (Fx), the FRFs in red and blue are for vertical (uy) and horizontal (ux) responses

respectively. For vertical excitation (Fy), the FRFs in black and green are for vertical (uy)

and horizontal (ux) responses respectively. Attenuation per cell length of at least 20% (light

gray) and 60% (middle gray).

Figure 8 compares the FRF of the proposed metastructure (Fig. 6) consti-

tuted by frame elements made of two materials (Fig. 1a) represented by the

blue line, the homogeneous nylon frame represented by the red line, and the

homogeneous aluminum frame represented by the green line. It is possible to

notice one main attenuation band beginning at approximately 14 kHz and five225

narrower attenuation bands beginning at approximately 2.5 kHz, 4.5 kHz, 6

kHz, 12 kHz, and 13.5 kHz, respectively.
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Figure 8: FRFs for vertical excitation and vertical response of the proposed metastructures

(Fig. 6) with frame elements made of: nylon and aluminum (Fig. 3) (blue), homogeneous

aluminum (green), and homogeneous nylon (red).

So far, the deterministic results can be summarized as follows: it is pos-

sible to verify the vibration response, especially attenuation bands, of a two-

dimensional periodic frame structure by analyzing its unit cell only. In addi-230

tion, if the unit cell has certain geometric and mechanical property symmetries,

results for the IBZ are equivalent to results for the FBZ as expected. The com-

putational cost of analyzing attenuation bands throughout the IBZ of the unit

cell is substantially smaller than computing the FRFs of the metastructures. For

stochastic analyses, where the simulations have to be performed several times,235

this can be of utmost importance. In the next section, some stochastic results

are presented for metastructures considering attenuation bands and FRFs for

periodic and non-periodic geometries. The different attenuation bands are com-
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pared among themselves and with these FRFs in order to verify how robust can

the attenuation band be against the proposed variability.240

4. Assuming randomness at mechanical properties

As the geometric and/or mechanical property variability of a certain sample

can be asymmetric, the use of the IBZ instead of the FBZ cannot, in principle,

be made. However, when the variability (not the individual sample, but among

several samples) is analyzed as a whole, and the aim is to define attenuation245

bands that are robust against such variability, the stochastic FRFs of metas-

tructures coincide with the results for the IBZ of a frame cell under variability.

These results will be presented in the current section.

4.1. Statistical inference

The usual confidence interval [25] is not suitable for the desired type of in-

ference, because the aim is to achieve the interval between the minimum and

maximum attenuation, not to know the minimum possible attenuation. In ad-

dition, usual statistical tests [21] and an inference methodology with a more

straightforward interpretation could be the best choice. Thus, in the present

study, we infer the stochastic results using the ratio of chances, which is similar

to using the Bayes’ factor (BF) [22] in Bayesian statistics [25]. This inference

consists of testing the null (H0) against the hypothesis (H1) in the following

way:

H0 : β ∈ β0 vs H1 : β ∈ β1, (10)

where β0 ∪ β1 = B, where B is the parameter space, β0 ∩ β1 = 0. Considering

π(β1) the probability of occurring H1 and π(β0) the probability of occurring

H0, BF1,0 is defined as

BF1,0 =
π(β1)

π(β0)
, (11)

where the value of BF1,0 establishes quantitatively how many times is the ev-250

idence H1 stronger than H0. The so-called Jeffreys’ scale of evidence, which
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links quantitative intervals of Bayes’ factor to qualitative evidence was used in

current study. This scale is presented in Table 1.

Table 1: Jeffreys’ scale of evidence.

FB value Evidence against H0

1 ∼ 3 weak

3 ∼ 10 moderate

10 ∼ 30 substantial

30 ∼ 100 strong

> 100 decisive

Table 1 can be used to create credibility intervals, hypothesis tests or in

optimization. In practice, the BF1,0 can be applied to the stochastic min(|255

Im(k) |) throughout the stochastic dispersion relation, using H0 : min(| Im(k) |
) > δk, to indicate how many times the attenuation band is more likely to occur

than not to occur.

There are cases where the variability of the mechanical properties is con-

siderably smaller within batches than between batches, such as, in concrete260

manufacturing [66] or for natural composite materials, such as bamboos, where

the mechanical property variability can be almost homogeneous for a given sec-

tion but can vary along with the plant height, and it can vary considerably from

plant to plant [67]. For such type of variability, it is reasonable to assume the

same mechanical property along a given frame section, but different for different265

sections of different batches.

4.2. Simulating the spatial fields

Typically, mechanical properties vary throughout the structure manufac-

tured via additive manufacturing [68, 69, 70]. One possible approach for taking

this into account consists in using a statistical tool to simulate a stochastic270

field along the structure length, related to the spatial covariance and the known

(or estimated) spatial variability [71]. The EOLE [72] method can be used
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in such cases in a more efficient way. In this case, similarly to the discrete

Karhunen–Loève expansion [40, 71], a correlation matrix, using a discretized

space can be used to generate the correlation matrix Σ, built via assuming275

a known correlation function. Then, eigenvalues (λ̂) and eigenvector (ψ̂) are

computed assuming a certain correlation length Lc = Lx/2 = Ly/2 (the frame

length, see Fig. 1) [71].

Σ̂ψ̂Lc = λ̂ψ̂. (12)

In addition, a set of n samples from a given spatial random field discretized

into p elements is defined as XT
o . Hence, the term XT

0 is a n′×p′ matrix, where

n′ is the sample size and p′ is the discretization number. Finally, the process

mean µy(x) is the mean of the simulated spatial random variable along the

entire frame length. When dealing with experimental data, the distribution of

XT
0 can be estimated in a highly precise way using a Bayesian estimator [27] as

briefly presented in [10]. Finally, the mean-centered correlated random variable

(Zi) can be defined as [73]

Zi =
1√
λi
XT

0 ψiΣ̂, (13)

where, analogously to the KL expansion truncated in k terms, the EOLE can

be determined by Eq. (14) [40]. In the current study, it was defined k = 8,

and the spatial mean (µy(x)) is finally added to the mean-centered correlated

random variable.

Y (x) = µy(x) +

k
∑

i=1

Zi, (14)

where µy(x) is the field mean value and the correlation function is given, in

a piece-wise form, by the exponential function, between two discrete spatial

positions (x(i) and x(j)) used to create Σ̂

exp

(

−| (x(i)− x(j) |
Lc/2

)

, (15)

where i = 1, 2, ..., n′ − 1. In the present study, the value n′ = 120 was con-

sidered. The greater the n′, the greater the discretization of the spatial field.280
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The exponentially decaying correlation function was chosen because it is com-

monly used to represent spatial correlation of random fields in engineering [71]

and, particularly, to characterize the spatial correlation of mechanical properties

[5, 74].

4.3. Comparing stochastic results285

In the current study, it was observed that, usually, if a deterministic one-

dimensional frame element presents a band gap for all waves in a certain fre-

quency band, the two-dimensional frame cell will present a full and complete

band gap near that frequency band. Three configurations are proposed as PC

frame elements (Fig. 1b) to build the two-dimensional unit cell (Fig. 1a). All290

the frame elements have a circular cross-section. We used two different beam

theories and different types of variability in order to verify if the same behav-

ior was consistently observed. The first two frame elements, shown in Fig. 2b

(with segments f1 and f2) and in Fig. K.1a (with segments f3 and f4), were

modeled using the EB beam theory, while the third (Fig. 9) was modeled using295

the Timoshenko beam theory (with only one segment f5). Segment f5 is made

of nylon and was defined using a Fourier series to represent the spatial radius

(r(x)) and performing an optimization aiming at a wider and lower frequency

band gap. The optimization procedure is described in [75, 76].
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(a) (b)

Figure 9: Another proposed unit cell made of four frame elements modeled via: (a) elementary

rod and T beam theories. The defined frame elements of nylon have (b) a spatially varying

cross-sectional area.

The mechanical and geometric characteristics of segments f1, f2, f3, and f4300

are summarized in Table 2. The termsX1, X2, X3, andX4 are Gamma distribu-

tions (Gamma(αx, βx)) with shape parameter αx and scale parameter βx. The

Gamma distribution is used here because it is versatile and suitable for positive

value distributions [71]. In the present study, we defined X1 ∼ Gamma(1, 5),

X2 ∼ Gamma(2, 10), X3 ∼ Gamma(10, 0.5), and X4 ∼ Gamma(10, 1). With305

such different values, the random variables of ρ and E are considerably differ-

ent between the two frame elements. The first frame is associated with a larger

variability (related to X1 and X2) than the second and third ones (related to X3

and X4). The term r(x) represents a spatially varying radius given by Fourier

series that are optimized for lower and wider full attenuation zones (see [75, 76]).310

Note that no geometric variability is considered.

21



Configuration 1 Configuration 2 Configuration 3

f1 f2 f3 f4 f5

ρ [kg/m3] 1200 2700 1200(1+X3) 1200(1+X3) 1200(1+X4)

E [GPa] 2(1+X1) 70(1+X2) 3(1+X4) 3(1+X4) 2(1+X3)

G [GPa] - - - - E(1+X3)
(2(1+nu))

ν [1] - - - - 0.35

L [mm] 60 60 70 150 180

r [mm] 2.5 4 3 6 r(x)

Table 2: Mechanical and geometric characteristics of the first two proposed frame elements

with varying mechanical properties.

The MC method [77, 78] is combined with the EOLE expansion procedure

and the dispersion relation and metastructure models are used to simulate the

stochastic results of configuration 3. The MC mean and variance convergences

were also investigated but not shown here. Details of the inference using BF on315

the stochastic dispersion relation for the first two-dimensional frame cell shown

in Fig. 2 for configuration 1 can be found in Appendix I. Results are obtained

using the MC method with 4,000 field samples (1,000 steps with 4 different

frames each as presented in Section 4.2).

Figure 15a presents the summary of the inference for configuration 1 using320

BF100 for the defined values of θ along the IBZ contour in the frequency range

from 0 to 25 kHz. BF100 represents bands where the probability of an attenu-

ation band of at least 20% (light gray) and 60% (middle gray) per cell length

to occur is at least 100 times higher than not to occur. It is possible to observe

that there are three robust attenuation bands of at least 60% per cell length325

from (3.13-4.18 kHz; 5.33-6.55 kHz; 17.00-19.60 kHz) against the material prop-

erty variability. Observing the inference on the stochastic dispersion relation,

it is possible to investigate the attenuation bands that are robust against the

proposed variability in a more efficient way than considering the attenuation

band width [10].330
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The equivalent result for the FBZ was obtained simulating 125 MC samples

for the same four elements e1, e2, e3, and e4, which should yield the same re-

sult as 1,000 samples of the IBZ is presented in Fig. 15b. Eight MC samples

on the IBZ are equivalent to one sample on the FBZ considering the spatial

mechanical properties of elements e1, e2, e3, and e4 are defined randomly and335

independently of each other. Each sample of the MC method response when

using the FBZ contour was calculated using the same elements e1, e2, e3, and

e4 on the two-dimensional frame cell, by rotating 180◦ on the y direction, calcu-

lating the stochastic response, rotating 90◦ on the z direction, and calculating

the stochastic response. After this procedure is performed four times, the result340

for the full sweep of the IBZ was obtained. There are also three attenuation

bands of at least 60% per cell (3.05-4.30 kHz; 5.05-6.25 kHz; 10.15-10.22 kHz;

17.00-19.63 kHz).

The stochastic result consists of inferring on the result of 1,000 two-dimensional

frame cells. The first two two-dimensional frame cells are presented in Fig. 10345

for configuration 1. It is possible to observe that none of these two-dimensional

frame cells, and possibly none of the other 1,000 samples, is symmetric on the

x and y directions (4-fold deterministic symmetry), which is a necessary condi-

tion for the use of the IBZ contour shown in Fig. 4b. However, when dealing

with statistical analyses, the distribution should be analyzed, not the individual350

samples. Thus, it is possible to observe that there is a symmetry of the distri-

butions of E throughout the cell by looking at Fig. 11, which represents the

distributions as histograms for each segment. This can explain the similarity

between the inference on the stochastic FBZ and corresponding IBZ.
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Figure 10: First two samples of the first frame cell (Fig. 2a) with E following the distributions

of f1 and f2 stated in Table 2.

Figure 11: Histograms representing the distributions of the sampled values used to simulate

the stochastic response of E on the first sampled two-dimensional frame cell.

The same procedure was applied to Fig. 9b For configuration 3 with spatial355

variability of E, ρ, and G modeled via EOLE method, with the spatially corre-

lated samples defined according to the distributions on segment f5 of Table 2.
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The inference using BF100 on the stochastic results for the IBZ and equivalent

FBZ are graphically represented respectively in Fig. 17a and Fig. 17b. Again,

when considering individual observations there is no symmetry in the spatial360

variability of E, ρ or G. Fig. 12 presents the first two samples of the three

spatial varying mechanical properties. But when looking at their spatial distri-

bution of such variability in Fig. 13, it is possible to verify the symmetry-related

to all these spatial variability. This result agrees with previously observed re-

sults for uncertainty in mass, damping, and stiffness matrices in the scattering365

properties of the mechanical joints [44]. It helps to understand the similarity

between stochastic IBZ and FBZ dispersion under symmetry of distributions,

even though individual samples are not symmetric. It is possible to notice an

overall agreement between the robust attenuation bands computed along the

IBZ and FBZ, specially in the main robust attenuation bands of at least 20%370

per cell: 6.50-7.23 kHz, and of at least 60%: 1.92-3.73 kHz; 15.20-15.60 kHz;

4.00-4.30 kHz
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(a) (b)

(c) (d)

(e) (f)

Figure 12: First two samples of the first frame cell (Fig. 9b) with E(x) (a-b), G(x) (c-d), and

ρ(x) (e-f) following the distribution of f5 stated in Table 2.
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Figure 13: The proposed two-dimensional frame cell with spatially varying mechanical prop-

erties and their associated simulated fields represent the symmetric spatial variability of the

mechanical properties.

For configuration 2, the same results shown for configurations 1 and 3 are

shown in Appendix J, where the same stochastic results are shown for a dif-

ferent frame element with variability in E and ρ, as presented in Table 2, also375

modeled using elementary rod and EB beam theories. However, even though

the stochastic results along the FBZ and IBZ contour agree, indicating that

the IBZ can be used under symmetry of variability, it is worth investigating

if the wavenumber analysis can represent metastructures under periodicity of

variability.380

4.4. Analyzing the wave attenuation attenuation using a supercell

Figure 14 is a scheme of a supercell made of 9 fundamental cells via assem-

bling 36 frame elements in 33 nodes. Now, the first proposed two-dimensional

frame cell element (Fig. 2a) is used, the random mechanical property of each

frame is a sample of the mechanical property distribution shown in Table 2.385

The external nodes (red) were maintained to obtain the dispersion diagram, the
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other 21 nodes were condensed in a similar way as presented in Appendix C.

Further details of the Bloch-Floquet periodic conditions modeling of the pro-

posed supercell are presented in Appendix K.

Figure 14: Schematic representation of super-cell used to calculate the stochastic dispersion

diagram. Only the red nodes (at the boundaries) were considered and the internal nodes were

condensed to reduce the order of the polynomial.

For configuration 1, Figure 15c presents graphically the same procedure for390

measuring the attenuation related to the proposed two-dimensional supercell.

One can notice good agreement between Fig. 15c, Fig. 15a, and Fig. 15b.

In Fig. 15c, there are other attenuation bands and attenuation bands of at

least 60% wider than the ones presented in Fig. 15a, which occurs because

the supercell is more complex and larger than the unit cell [1]. However, the395

attenuation bands predicted using the unit cell occur on the supercell. The same

can be observed and concluded when comparing the inference on the stochastic

attenuation of the supercell response made of the third proposed frame with

spatially varying mechanical properties for configuration 3 (Fig. 9b). This

result is graphically represented in Fig. 17c that can be compared to the results400

obtained using the unit cell in Fig. 17a and Fig. 17b.
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4.5. Comparing the stochastic forced responses

Figures 15 and 17 present comparisons of the attenuation bands throughout

the stochastic IBZ and FBZ contours inferred using the frame cell (Fig. 1a) and

the IBZ contour inferred using the supercell (Fig. 14) for the frame elements in405

Fig. 2b and Fig. 9b, respectively. It is possible to verify that the three results

agree, even though frame samples with different mechanical properties were

simulated and, thus, a certain level of difference between different simulations

is expected, even after achieving convergence. The 500 forced responses of the

metastructure with 64 frame elements (Fig. 6) are shown in Fig. 16. It is410

possible to verify the agreement between attenuation bands computed using the

unit cells and stochastic FRFs computed using the finite metastructure. Results

for the third proposed frame element are presented in Appendix J.

(a) (b) (c)

Figure 15: Minimum value of the magnitude of the imaginary part throughout the IBZ (a) and

FBZ contours (b) computed using the unit cell (Fig. 1a) and the IBZ contour (c) computed

using the supercell (Fig. 14), using the frame element in Fig. 2b. The patches represent the

IBZ attenuation per cell length of at least 20% (light gray) and 60% per cell (dark gray).
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Figure 16: Stochastic FRFs computed for 500 samples of the proposed metastructure (Fig.

6, vertical excitation and vertical response) made of 16 two-dimensional frame cells (Fig. 2b)

with the inference made on the stochastic IBZ of a single unit cell. The patches represent an

attenuation per cell length of at least 20% (light gray) and 60% per cell (dark gray).

(a) (b) (c)

Figure 17: Minimum value of the magnitude of the imaginary part throughout the IBZ (a) and

FBZ contours (b) computed using the unit cell (Figure 1a) and the IBZ contour (c) computed

using the supercell (Fig. 14), using the frame cell in Fig. 9b. The patches represent the IBZ

attenuation per cell length of at least 20% (light gray) and 60% per cell (dark gray).
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Figure 18: Stochastic FRFs computed for 500 samples of the proposed metastructure (Fig.

6, vertical excitation and vertical response) made of 16 two-dimensional frame cells (Fig.9b)

with the stochastic IBZ of a single unit cell. The patches represent the IBZ attenuation per

cell length of at least 20% (light gray) and 60% per cell (dark gray).

The results presented in the current section show that, under 4-fold symme-

try of variability, the inference on the stochastic IBZ contour computed using415

the frame cell can be used to predict robust attenuation bands in finite metas-

tructures. These stochastic results agree with the results for the FBZ contour

computed using the unit cell, the IBZ computed using the supercell, and the

FRFs of the finite metastructure. However, the computational cost is much

lower when using the IBZ contour than with the other methods. This can be420

illustrated by the number of frame element samples used in each simulation.

The IBZ contour using the frame cell used 4,000 samples, while the stochastic

IBZ for the supercell used 36,000 samples, and the stochastic FRFs used 32,000

samples.

5. Final remarks425

Beyond the deterministic case, where the IBZ corresponds to the FBZ for

periodic structures with geometric and mechanical property 4-fold rotational

symmetry of their unit cell, the presented results indicate that the stochastic
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analysis on the IBZ of the unit cells and supercells, and on the FBZ of the

unit cells are equivalent when there is 4-fold rotational symmetry of variability430

of the frame cell. This methodology was applied to different two-dimensional

rectangular frame cells, and it was shown that, by analyzing the two-dimensional

unit cell alone, it is possible to accurately predict the vibration attenuation

bands in metastructures under 4-fold rotational symmetry of variability. We

have used two types of variability: homogeneous sections and homoscedastic435

fields (constant variance), but this property might also apply to other kinds

of periodic structures (e.g., plates) and other types of rotational symmetry of

variability. However, this is outside the scope of the current work.

A two-dimensional stochastic modeling procedure for wave propagation anal-

ysis of plane frame lattices is proposed. The methodology consists of a combi-440

nation of SEM with the solution of the polynomial equation yielded by applying

the Bloch-Floquet theorem to the frame element dynamic stiffness matrix. It

is compatible with stochastic modeling because it is computationally efficient

and presents straightforward indications of full and complete attenuation bands.

This methodology is applied to the dispersion diagrams of the unit-cell and the445

supercell and to the forced response of three different frame metastructures.

In addition, in the present work, a method to determine wave band gaps

of a two-dimensional unit frame cell modeled using SEM is presented. It con-

sists of computing the minimum of the magnitude of the imaginary part of the

wavenumbers along the IBZ contour. This procedure can be used for struc-450

tures modeled via SEM in a computationally efficient way, which is of utmost

importance when dealing with statistical analyses. A highly precise Bayesian

estimator is used to infer the material property variability and the stochastic

responses.
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Appendix A. Spectral element method

Using the strain, kinetic, and potential energy, and Hamilton’s principle, it

is possible to obtain the equations of motion for the elementary rod, EB and T
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beam [79, 80, 53, 81, 82, 60]

∂

∂x

(

EA
∂ux
∂x

)

− ρA
∂2ux
∂t2

= qn(x, t); (A.1)

∂2

∂x2

(

EI
∂2uy
∂x2

)

+ ρA
∂2uy
∂t2

= qy(x, t) (A.2)

GAκ

(

∂2vy
∂x2

− ∂φz
∂x

)

− ρA
∂2vy
∂t2

= qv(x, t),

∂

∂x

(

EI
∂φz
∂x

)

+GAκ

(

∂vy
∂x

− φz

)

− ρI
∂2φz
∂t2

= qm(x, t),

(A.3)

where the mechanical properties E, ρ, and G are, respectively, the material750

Young’s modulus, mass density, and shear modulus. The geometric properties

A, I, and κ are, respectively, the element cross-sectional area, second moment

of area, and T shear coefficient. The quantities ux, vy, φz, qn(x, t), qy(x, t),

qv(x, t), and qm(x, t) are, respectively, the element longitudinal and transversal

(the EB and T) displacements, T beam shear deformation angle, and the rod755

and beam (transverse and rotational) external loads.

Transforming Eqs. (A.1) and (A.3) from the time to the frequency domain

(Fourier series or integral, depending on the type of excitation) yields an ordi-

nary differential equation in the spatial variable x. Substituting an exponential

solution, the analytical wavenumber for each frequency ω for an homogeneous

element (we have used the sub-indices □r for rod, □eb for EB beam, □tb for T

beam) can be obtained [6, 53, 83]

kr(ω) = ω

√

ρ

E
, keb(ω) =

(

ω2 ρA

EI

)1/4

, (A.4)

ktb,1 = −ktb,2 =

√

−β̄ +
√

β̄2 − 4η̄

2
ktb,3 = ktb,4 =

√

−β̄ −
√

β̄2 − 4η̄

2
,

(A.5)

where η̄ = a1ω
2
(

a2∗w(n)2−a3

∆̄

)

, β̄ = a3a4 − ω2
(

a1+a2+a2a4

∆̄

)

, ∆̄ = 1 + a4, a1 =

ρA
κGA , a2 = ρI

EI , a3 = κGA
EI , a4 = P

κGA .

Using the relation between forces and/or moments and displacements and/or

rotations, one can find the dynamic stiffness matrix for a spectral element760
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of length L for the rod (Dr(ω)), EB beam (Deb(ω)),and T beam elements

(Dtb(ω)).

Dr(ω) =
EA

L





Dr,11 Dr,12

Dr,12 Dr,11



 , (A.6)

Deb(ω) =
EI

L3

















Deb,11 Deb,12 Deb,13 Deb,14

Deb,21 Deb,22 Deb,23 Deb,24

Deb,31 Deb,32 Deb,33 Deb,34

Deb,41 Deb,42 Deb,43 Deb,44

















, (A.7)

Dtb(ω) =H1H
−1
2 . (A.8)

The elements of the rod dynamic stiffness matrix (Dr) are given by

Dr,11 = (kr(ω)L) cot(kr(ω)L),

Dr,12 = −(kr(ω)L) csc(kr(ω)L).
(A.9)

The elements of matrix (Deb) are given by

Deb,11 = Deb,33 = ∆BL̄3(cos(L̄)sinh(L̄) + sin(L̄)cosh(L̄)),

Deb,22 = Deb,44 = ∆BL̄3keb(ω)
−2(−cos(L̄)sinh(L̄) + sin(L̄)cosh(L̄)),

Deb,12 = Deb,21 = −Deb,34 = −Deb,43 = ∆BL̄3keb(ω)
−1(sin(L̄)sinh(L̄)),

Deb,13 = Deb,31 = −∆BL̄3(sin(L̄) + sinh(L̄)),

Deb,14 = Deb,41 = −Deb,23 = −Deb,32 = ∆BL̄3keb(ω)
−1(−cos(L̄) + cosh(L̄)),

Deb,24 = Deb,42 = ∆BL̄3keb(ω)
−2(−sin(L̄) + sinh(L̄)),

(A.10)

where L̄ = keb(ω)L and ∆B = 1
1−cos(L̄)cosh(L̄)

. The matrices that compound

the beam dynamic stiffness matrix (Dtb) are

H2 =

















1 1 1 1

ε1 ε2 ε3 ε4

e1 e2 e3 e4

e1ε1 e2ε2 e3ε3 e4ε4

















(A.11)
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H1 =
EI

L3

















−g1 −g2 −g3 −g4
−h1 −h2 −h3 −h4
e1g1 e2g2 e3g3 e4g4

e1h1 e2h2 e3h3 e4h4

















, (A.12)

where εi =
ia3ki

(k2

i
−(a2ω2−a3)

, ei = eikiL, gi = ia3((1 + a4)ki + iεi), hi = ikiεi.

Due to reciprocity, spectral element matrices are symmetric. The dynamic

stiffness matrix relates forces and displacements at the ends of the element in

the frequency domain [84]:






F (0)

F (L)







=





D11 D12

D21 D22











q(0)

q(L)







, (A.13)

where F (0) and F (L) are the external forces, and q(0) and q(L) are vectors of

the displacements at the boundaries of the simulated element. The presented765

methodology has an assumption of homogeneity of the element. If the element

has spatially varying geometry of mechanical properties, it can be discretized.

Appendix B. Dynamic stiffness condensation for a frame element

The SEM assumes homogeneity of element properties along each element.

For an element with properties varying along x according to f(x), the property770

can be discretized with intervals δx′n with a zero-order approximation. For

a discretized frame element (1b), matrix D(ω) has n internal DOFs or n +

1 segments, partitioned in internal (I) DOFs, besides left (L) and right (R)

external node DOF. The internal DOF can be related to the local coordinate

system (x′), separated by distances δx′i as shown in Fig. B.1.775

Figure B.1: Schematic representation of one-dimensional internal and external nodes of a

frame element with arbitrary geometry.
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Assuming there are no external forces applied to the internal nodes (FI = 0),

D(ω) can be dynamically condensed. A possible procedure is to reorganize Eq.

(2) by partitioning matrix D(ω) and vector q as





















DLL DLR

DRL DRR









DLI

DRI





[

DIL DIR

] [

Dss,II

]



































qL

qR

qI



















=



















FL

FR

0



















, (B.1)

with

Daa =





DLL DLR

DRL DRR



 ,Das =





DLI

DRI



 ,Dsa =
[

DIL DIR

]

, and Dss =
[

DII

]

(B.2)

where the subscripts a and s represent, respectively, active (L and R) and slave

(I) DOFs [85]. Then, through applying the dynamic reduction [85], which is

similar to the Guyan reduction [86], but considering the dynamic stiffness matrix

(which also takes inertia into account), toD(ω) the condensed dynamic stiffness

matrix (Dc(ω)) expressed in Eq. (B.3) is obtained from Eq. (B.1) [87]

Dc(ω) =Daa −DasD
−1
ss Dsa =





Dc,LL Dc,LR

Dc,RL Dc,RR



 . (B.3)

The matrix relation considering Dc(ω) can be written to relate quantities

at nodes L and R as




Dc,LL Dc,LR

Dc,RL Dc,RR











qL

qR







=







FL

FR







. (B.4)

Appendix C. Dynamic stiffness condensation for the proposed two-

dimensional frame cell

The current Appendix is also used to model the frames that are assembled

into the two-dimensional frame cell that is to calculate the wavenumber values.

The dynamic stiffness matrix for the proposed two-dimensional frame cell (Fig.
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1a) can be assembled maintaining the nodes 4 and 5 in the last rows and columns

D(ω) =







































D∗

II,1 0 0

0 D∗

11,2 0

0 0 D∗

11,4





















D∗

12,1 D∗

12,3

D∗

12,2 0

0 D∗

12,4















D∗

21,1 D∗

21,2 0

D∗

21,3 0 D∗

21,4









D∗

II,2 0

0 D∗

II,3

































=





Daa Das

Dsa Dss



 ,

(C.1)

where

D∗

II,1 =D∗

11,1 +D
∗

11,3,

D∗

II,1 =D∗

11,2 +D
∗

22,1,

D∗

II,1 =D∗

22,3 +D
∗

11,4,

(C.2)

and D∗

rs,j is the sub-matrix in the r-th row and s-th column of the partitioned

stiffness matrix of the j-th frame element.

Appendix D. Solving the eigenproblem via companion matrix780

Equation (7) is a polynomial problem with roots λx, λy:

[D31λx +D21λy +D32λ
2
x +D23λ

2
y + (D11 +D22 +D33)λxλy+

D12λ
2
xλy+D13λxλ

2
y]q̂1 = 0.

(D.1)

where λx and λy represent half the periodicity of the periodic cell along the x

and y directions shown in Fig. 1.

Equation (D.1) has two variables to be determined and there are two meth-

ods for solving it assuming one does not know ky or kx [51]. The first method

solves the eigenproblem for an arbitrary θ numerically, which has an extreme

computational cost. The second one assumes the decomposition of k into kx and

ky as projections using a Cartesian coordinate system, i.e., for a given direction

defined only by θ, kx = k cos(θ) and ky = k sin(θ). This allows to take λy in

terms of λx

λx = e
−ikxLx

2 , λy = λ

(

Ly

Lx
tan(θ)

)

x . (D.2)
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Hence, if
Ly

Lx
tan(θ) is an integer number, the problem is formulated using a

single variable, for instance, kx. An eigenproblem can be established to find λx

and, consecutively, λy. The companion matrix [88, 89] can be used to solve this785

eigenproblem. However, the order of the polynomial will increase as a function

of
Ly

Lx
tan(θ), as can be noted by observing Eqs. (D.2) and (D.1). This method

is much less computationally expensive than the first method, and it is more

suitable for a statistical analysis that requires solving it several times.

It is possible to obtain the dispersion diagram scanning the first Brillouin790

zone (FBZ), represented in Fig. 4a, calculating the response for any values of

θ [90]. In addition, as the metastructure made of elementary cells (Fig. 1) is

symmetric with respect to the axes x and y, it is needed to scan only the IBZ to

check for a complete band gap [65]. As presented in Fig. 4a, the contour of the

IBZ consists of three directions: from Γ to M, where θ = 45◦ and, therefore,795

kx = ky and λx = λy; from M to X, where θ varies between 45◦ and 90◦, and,

therefore, the polynomial in Eq. (D.1) can be ordinary, for instance, when θ

is 63.435◦ (ky = 2kx),or 75.964◦ (ky = 4kx), and it can be also fractional [14].

From X to Γ (θ = 90◦), the wavenumbers are kx = 0, which implies λx = 1.

Considering only the solution of the ordinary polynomial (Eq. (D.1)), as800

the order of the polynomial increases, the number of possible eigenvalues will

also increase [91]. Moreover, this procedure can be computational costly and

ill-conditioned. Hence, it is a common procedure to calculate the wavenumber

values for a restricted number of values of θ in the IBZ (usually 2 or 3) [92, 93,

94, 95]. First, in the present study, in order to simplify the problem and make805

it computationally more efficient, ordinary polynomials were used. Therefore,

the IBZ defined by the red line in Fig. 4a was scanned. Finally, values of θ were

selected as 45◦, 63.435◦, and 75.964◦, which made it possible to obtain three

almost equally spaced regions observations over the IBZ contour in the M−X

direction of the IBZ (Fig. 4b). The same procedure can be applied when the810

kx− and ky−axis directions are redefined, allowing the computation of other

directions of propagation, as presented in Appendix H.
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Appendix E. Improving the invertibility of a matrix: considerations

for implementation

If the determinant of a matrix is almost equal to zero, the numerical calcu-815

lations of the inverse terms can be inaccurate. One procedure to overcome this

issue is based on the Tikhonov regularization [88]. This methodology is based,

similar to the generalized estimator for the ridge regression methodology [96],

on adding a small quantity δT to the diagonal elements of the matrix before

calculating its inverse. The scalar δT should be relatively small in order not820

to influence the final result, but large enough to make the matrix numerically

non-singular.

A commonly used measure to verify the ill-conditioning of a matrix is the

ratio between the maximum and minimum values of its eigenvalues (KM ) [97].

Considering δT the dependent variable, KM of Eq. (D.1) before the addition of

δT to its diagonal, the equation below, obtained through statistical regression

[97] has been a good estimation for an initial guess of δT in the tested cases

δT = e−22.35+0.1755 log(KM ). (E.1)

In the present study, the defined procedure is substantively important when

computing the inverse of D−1
ss in the dynamic condensation (Eq. (B.3)) and the

inverses of the required terms in the companion matrix. Appendix F presents825

some results to illustrate the effects of changes in the δT on the wavenumber

values. Some modes are more robust and remain unchanged to the different

values of δT , while other modes change too much that is possible to see it in

the dispersion relation. In the current study, the robust mode that has physical

meaning are called physical modes.830

Two methods can be used to analyze the dispersion diagrams. The first is

performed by obtaining and analyzing only the physical modes. This procedure

begins with the separation of the modes, which can be performed through the

difference between consecutive frequencies since the Modal Assurance Criterion

behaves poorly due to the number of modes. For example, in the present case, for835
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θ = 75.964◦ the problem can result in 48 associated eigenvalues and eigenvectors.

The two modes were obtained by varying the value of δT and keeping the two

modes that remained unchanged. The second procedure consists of analyzing

the attenuation of all computed modes without separating the physical modes.

The second methodology is useful, again, in stochastic analyses, where values840

need to be easily computed many times and from which the inference can be

performed. Appendix G presents a comparison between these two methods.

Appendix F. The effects of δT on the wavenumber values

More modes than the physical ones (physical) are calculated when the Bloch-

Floquet periodic conditions are used, and the modes without physical meaning845

can be removed. Fig. F.1a presents the wavenumber values for δT = 0.05 (δ1),

the value used for θ = 76◦ in the present study, and Fig. F.1b presents the

result for δT = 0.5 (δ2). Some wavenumber values differ considerably such that

the changes can be verified visually. Here, two values of δT are used, but it

requires more values, usually 4 to 6, and these values should be greater than850

δ1, which is calculated using Eq. E.1, in order to select those two wavenumber

values.

(a) Wavenumber values obtained for δ1 = 0.05

and θ = 45◦. physical modes, real parts in blue

and black, and imaginary parts in green and red.

The other modes are in cyan (imaginary parts)

and purple (real parts).

(b) Wavenumber values obtained for δ2 = 10×δ1

and θ = 45◦. All wavenumber values are pre-

sented in cyan (imaginary parts) and purple (real

parts).

Figure F.1: Comparison between the wavenumber values for different values of δT for θ = 45◦.

The presented procedure should be performed for 6 different values of δT ,
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with values of each one 10 times larger than the other begging with the value

given in Eq. (E.1).855

Appendix G. Comparing the full and complete band gaps obtained

with different approaches

After the proposed methodology is performed, the physical wave modes are

selected. Figure G.1 compares the the min|Im(k)| for the two physical wave

modes in Fig. F.1a) (Fig. G.1a) with the results for all wave modes (Fig. G.1b).860

It is possible to notice that both results are very similar. This exemplifies that

using both metrics yields the same attenuation result, but using min|Im(k)| is
more efficient because it does not require to identify the physical modes, which

is essential when running the stochastic response.

(a) Minimum of the absolute value of the

wavenumber for θ = 45◦ when using the two

physical wavemodes.

(b) Minimum of the absolute value of the imag-

inary part ot the wavenumber for θ = 45◦ when

using all wavemodes.

Figure G.1: Comparison between the methodologies using the minimum of the absolute value

of the imaginary part of the wavenumbers in the attenuation analysis. The gray region means

attenuation for θ = 45◦ of at least 20% (light gray) and 60% (middle gray).

Two methods can be used to analyze the dispersion diagrams. The first is865

performed by obtaining and analyzing only the two wave modes that are more

robust to changes in the δT . This procedure begins with the separation of the

modes, which can be performed through the difference between consecutive fre-

quencies since the Modal Assurance Criterion behaves poorly due to the number

of modes. For example, in the present case, for θ ≈ 76◦ the problem can result870

in 48 associated eigenvalues and eigenvectors. The two modes were obtained by
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varying the value of δT and keeping the two modes that remained unchanged.

The second procedure consists of analyzing the attenuation for the complete and

full band gap. This methodology is useful in stochastic analyses, where values

need to be easily computed many times and from which the inference can be875

performed. Appendix F presents a comparison between the second method

obtained directly from all wavenumber values and the first method using the

two wave modes obtained using the first method.

Appendix H. Computing the samples along the FBZ contour

Using the same samples presented in Fig. 4b, but changing the directions of880

the x− and y−axis in the physical space, as illustrated in Fig. H.1, which also

alters the matrices ΛL and ΛR as presented in Table H.3, the the samples along

the FBZ contour of the reciprocal space (kx and ky) can be computed. One can

observe that the samples of θ varies from 0◦ to 360◦ along the FBZ contour by

redefining the coordinate system, while the order of the polynomial remains the885

same.

Table H.3: Matrices ΛL and ΛR used to obtain the FBZ contour via Eq. (7).

Triangle Number ΛT
R ΛL Equivalent samples of θ

1
[

In Inλx Inλy

] [

In Inλ
−1
x Inλ

−1
y

]

45◦, 63◦, 76◦, and 90◦

2
[

In Inλ
−1
x Inλy

] [

In Inλx Inλ
−1
y

]

104◦ and 117◦

3
[

In Inλ
−1
y Inλx

] [

In Inλy Inλ
−1
x

]

135◦, 151◦, 168◦, and 180◦

4
[

In Inλ
−1
y Inλ

−1
x

] [

In Inλy Inλx

]

194◦ and 207◦

5
[

In Inλy Inλx

] [

In Inλ
−1
y Inλ

−1
x

]

225◦, 241◦, 258◦, and 270◦

6
[

In Inλy Inλ
−1
x

] [

In Inλ
−1
y Inλx

]

284◦ and 297◦

7
[

In Inλx Inλ
−1
y

] [

In Inλ
−1
x Inλy

]

315◦, 331◦, 348◦, and 0◦

8
[

In Inλ
−1
x Inλ

−1
y

] [

In Inλx Inλy

]

14◦, and 27◦
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Figure H.1: Axis rotation for computing the samples along the FBZ contour.
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Appendix I. Stochastic inference for the proposed direction of prop-

agation

Figures J.1a, J.1b, J.1c, and J.1d represent the Bayes’ factor (BF) with

values of 3 (BF3), 10 (BF10), 30 (BF30), and 100 (BF100), as well as the median890

for the stochastic wavenumber, respectively, for θ = 90◦, θ ≈ 76◦, θ ≈ 63◦, and

θ = 45◦. A large BF value indicates a large attenuation robustness computed

from the deterministic two-dimensional frame cell in Fig. 2a. One can notice

that, for example, the attenuation band between 15 and 20 kHz is more robust

than the band gap between 11 and 13 kHz by looking to the different BF lines895

because it has lower spread for the proposed variability.
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(a) Γ-M1 direction; θ = 45◦.

(b) One observation on the M1-X2 direction;

θ ≈ 63◦.

(c) One observation on the M1-X2 direction;

θ ≈ 76◦. (d) X2- Γ direction; θ = 90◦.

(e) One observation on the X2-M2 direction;

θ ≈ 104◦. (f) X2- M2 direction; θ ≈ 117◦.

(g) One observation on the M2-Γ direction;

θ = 135◦.

Figure J.1: Inference using the BF to create credible intervals for the cell made of periodic

plane frame elements on the stochastic wavenumber with.
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Appendix J. Other stochastic results

Configuration 2 considers the variability presented in segments f3 and f4 of

Table 2 in segments of Fig. K.1b. The inference using BF100 was used on the

stochastic results of the IBZ is presented in Fig. K.2a. It is equivalent to the900

FBZ results presented in Fig. K.2b and Fig. K.2c, and it also agree mostly with

the attenuation bands of the stochastic FRFs in Fig. K.3. As the variability is

related to E and ρ for this proposed frame, there is a 4-fold rotational asymmetry

between individual observation of both mechanical properties (similar to Fig.

10). However, there is 4-fold rotational symmetry between their distributions905

similarly as occurs for the first frame varying only E (similar to Fig. 11).

(a) (b)

Figure K.1: Another proposed unit cell made of four frame elements modeled via: (a) elemen-

tary rod and EB beam theories. The defined frame elements of nylon have: (b) two segments

with a smaller cross-sectional area than the segment of the middle.
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(a) (b) (c)

Figure K.2: Inference throughout the stochastic IBZ (a) and FBZ contours (b) computed

using the unit cell (Fig. 1a) and the IBZ contour (c) computed using the supercell (Fig.

14), using the frame cell in Fig. K.1b. The patches represent the IBZ attenuation per cell

length of at least 20% (light gray) and 60% per cell (dark gray) computed from the stochastic

two-dimensional frame cell.

Figure K.3: Stochastic FRF, using 500 samples of the proposed metastructure (Fig. 6, vertical

excitation and vertical response) made of 16 two-dimensional frame cells (Fig. K.1b) with the

inference on the stochastic IBZ of a single unit cell. The patches represent the IBZ attenuation

per cell length of at least 20% (light gray) and 60% per cell (dark gray) computed from the

stochastic two-dimensional frame cell (Fig. K.2a).
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Appendix K. Supercell analysis

A similar approach as presented in Appendix C can be applied to condensate

the internal nodes of the proposed supercell (Fig. 14). Thus, considering the 3

external red nodes in Fig. 14, the terms ΛR and ΛL are redefined by Eq. L.1,910

and after u in Eq. 2 is replaced by ΛRu1, and premultiplied both sides by ΛL,

Eq. 7 is again obtained, but the order of the resulting polynomial is greater

than the one using the two-dimensional unit cell.

ΛR =
[

In Inλ
3
x Inλ

3
y

]

, ΛL =
[

In Inλ
−3
x Inλ

−3
y

]

. (L.1)
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