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Abstract

In this paper we extended the semiparametric mixed model for longitudinal censored data with

normal errors to Student-t erros. This models allows flexible functional dependence of an outcome

variable on covariates by using nonparametric regression, while accounting for correlation between

observations by using random effects. Penalized likelihood equations are applied to derive the

maximum likelihood estimates which appear to be robust against outlying observations in the

sense of the Mahalanobis distance. We estimate nonparametric functions by using smoothing

splines jointly estimate smoothing parameter by the EM algorithm. Finally, the performance of

the proposed approach is evaluated through extensive simulation studies as well as application to

dataset from AIDS study.

Keywords: Censored data; EM algorithm; HIV viral load; Linear mixed-effects; Semiparametric

models; multivariate-t distribution.

1. Introduction

Longitudinal data analysis has attracted considerable research interest and a large number of

statistical modeling and analysis methods have been suggested to analyze such data with various

features. Linear and nonlinear mixed effects (LME and NLME, respectively) are parametric models

for longitudinal data that have been extensively studied in the last few decades; see Davidian

& Giltinan (1995); Diggle (2002); Pinheiro & Bates (2006) among others, for more ideas and

methodologies for longitudinal data analysis using parametric modeling. These models are very

useful for longitudinal data analysis, as they provide a parsimonious description of the relationship

between the response and its covariance. However, parametric models are efficient when they

are correctly specified, the model misspecification can result in biased estimation. To relax the

assumptions on parametric forms, an attractive approach is the semiparametric mixed model,

which retains the flexibility of the nonparametric model while preserving good properties such as

easy implementation and good interpretability of parametric models.

Semiparametric mixed models have received great attention in the literature with approaches

based on kernel smoothing (Zeger & Diggle, 1994), or, more often, on smoothing spline (Zhang
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et al., 1998). However, these models (LME/NLME and semiparametric) are in general made on the

assumption of Gaussian errors. Some studies have investigated alternative distributions for errors

in LME/NLME, for example, Pinheiro et al. (2001) propose a robust hierarchical linear mixed

model in which the random effects and the within-subject errors have a multivariate t-distribution.

Moreover, Meza et al. (2012) presented an extension of a Gaussian nonlinear mixed effects model

considering a class of heavy tailed multivariate distributions for both random effects and residual

errors. In the semiparametric context, Ibacache-Pulgar et al. (2012) extended semiparametric

mixed linear models with normal errors to elliptical errors in order to permit distributions with

heavier and lighter tails than the normal ones.

At the same time, longitudinal data can be complicated when the response is censored for some

of the observations due to an assay detection limit used to quantify the marker. For example, this

can occur when measuring the chemical content of a collection of samples (Palarea-Albaladejo &

Martin-Fernandez, 2013), when measuring the concentration of some pollutants in environmental

data (Helsel, 2011) or measuring Human Immunodeficiency Virus viral load in blood compartment

(HIV RNA) (Hughes, 1999). Several methods have been proposed to deal with such limits of

detection, censored mixed-effects models are frequently used in the analysis of longitudinal AIDS

data. Lachos et al. (2011) considered a Bayesian treatment of the linear mixed model with censored

responses (LMEC) and the nonlinear mixed model with censored responses (NLMEC) models based

on the normal/independent distributions. Further, Matos et al. (2013b) developed a likelihood-

based inference for LMEC and NLMEC based on the multivariate-t distribution, named as tLMEC

and tNLMEC.

The aim of this paper is to consider the study of censored mixed-effects models using, simulta-

neously, semiparametric techniques such as smoothing splines and the distribution-t multivariate,

due to its capability of down-weighting out lying observations. This paper is organized as follows.

Section 2 describes the multivariate-t distribution and some of its properties. In Section 3, the

Student-t semiparametric censored mixed-effects model is defined, where the estimation and in-

ference procedures of the regression coefficients, nonparametric function, and scale parameter are

presented. Some inferential results and discussions of estimation of the smoothing parameter are

given in Section 4. Moreover, in Section 5, the goodness of fit and model selection procedures are

proposed to check the quality of fit. Some simulation results are presented in Section 6 and an

application to the data set of HIV viral loads is presented in Section 7. Finally, in Section 8 some

concluding remarks are given with some future research directions.

2. The multivariate t distribution

In this section we present the p-variate Student’s t-distribution and some of its useful properties.

The following properties are useful for the implementation of the expectation maximization (EM)

algorithm.

A random variable Y having a p-variate t distribution with location vector µ, scale matrix Σ

(positive definite) and degrees of freedom ν (ν > 0) denoted by Y ∼ tp(µ,Σ, ν), has the probability

density fucntion (pdf):

tp(y|µ,Σ, ν) =
Γ((p+ ν)/2)

Γ(ν/2)πp/2
ν−p/2|Σ|−1/2

(
1 +

δ2(y)

ν

)−(p+ν)/2

,
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where Γ(·) is the standard gamma function and δ2(y) = (y − µ)⊤Σ−1(y − µ) is the Mahalanobis

distance. The cumulative distribution fucntion (cdf) of Y is denoted by

Tp(b|µ,Σ, ν) =

∫
b

−∞

tp(y|µ,Σ, ν)dy.

An important property of the random vector Y is that it can be written as a mixture of a

normal random vector and a positive random variable, i.e.

Y = µ+ U−1/2Z, Z ∼ Np(0,Σ), U ∼ Gamma(ν/2, ν/2),

where Z and U are independent and Gamma(α, β) stands for a gamma distribution with mean

α/β, and density denoted by G(·|α, β). It is important to stress that if ν > 1, µ is the mean of Y,

and if ν > 2, (ν/(ν−2))Σ is its covariance matrix. As ν → ∞, U converges to one with probability

one, and so Y becomes marginally multivariate normal with mean µ and covariance matrix Σ,

denoted by Np(µ,Σ).

In order to introduce some notation, for the multivariate t-distribution, the following property

is useful for our theoretical developments. We start with the marginal-conditional decomposition

of a Student’s t random vector. Details of the proofs are provided in Arellano-Valle & Bolfarine

(1995).

Proposition 1. Let Y ∼ tp(µ,Σ, ν) partitioned as Y = (Y⊤
1 ,Y

⊤
2 )

⊤, with dim(Y1) = p1, dim(Y2) =

p2, where p = p1 + p2. Let µ = (µ⊤
1 ,µ

⊤
2 )

⊤ and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
be the corresponding partions

of µ and Σ. Then, we have

(i) Y1 ∼ tp1
(µ1,Σ11, ν); and

(ii) The conditional cdf of Y2|Y1 = y1 is given by

Y2|Y1 = y1 ∼ tp2

(
y2|µ2.1, Σ̃22.1, ν + p1

)
,

where µ2.1 = µ2 +Σ21Σ
−1
11 (y1 − µ1) and Σ̃22.1 =

(
ν + δ2(y1)

ν + p1

)
Σ22.1 with δ2(y1) = (y1 −

µ1)
⊤Σ−1

11 (y1 − µ1) and Σ22.1 = Σ22 −Σ21Σ
−1
11 Σ12.

A p-dimensional random vector Y is said to follow a truncated Student’s t distribution with

location µ, scale-covariance matrix Σ and degrees of freedom ν over the truncation region A =

{(y1, . . . , yp) ∈ Rp : a1 ≤ y1 ≤ b1, . . . , ap ≤ yp ≤ bp} = {y ∈ Rp : a ≤ y ≤ b}, denoted by

Y ∼ Ttp(µ,Σ, ν;A), if its density is given by:

f(y|µ,Σ, ν;A) =
tp(y|µ,Σ, ν)

Tp(a,b;µ,Σ, ν)
, a ≤ y ≤ b.

The following results provide the truncated moments of a Student’s t random vector. The

proofs of Proposition 2 and 3 are given in Matos et al. (2013b).

Proposition 2. If Y ∼ Ttp(µ,Σ, ν; (a,b)) then it holds that

E

[(
ν + p

ν + δ2(Y)

)r

Y(k)

]
= cp(ν, r)

Tp(a,b;µ,Σ
∗, ν + 2r)

Tp(a,b;µ,Σ, ν)
E[W(k)], k = 0, 1, 2,

where cp(ν, r) =

(
ν + p

ν

)r (
Γ((p+ ν)/2)Γ((ν + 2r)/2)

Γ(ν/2)Γ((p+ ν + 2r)/2)

)
, Σ∗ =

ν

ν + 2r
Σ,

W ∼ Ttp(µ,Σ
∗, ν + 2r; (a,b)), W(0) = 1, W(1) = W, W(2) = WW⊤ and ν + 2r > 0.
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Proposition 3. Let Y ∼ Ttp(µ,Σ, ν; (a,b)). Consider the partition Y = (Y⊤
1 ,Y

⊤
2 )

⊤ with
dim(Y1) = p1, dim(Y2) = p2, p1 + p2 = p, and the corresponding partitions of a, b, µ and
Σ. Then, under the notation of Proposition 1, the conditional k-th moment of Y2 is

E

[(
ν + p

ν + δ2(Y)

)r

Y
(k)
2

∣∣Y1

]
=

dp(p1, ν, r)

(ν + δ2(y1))r
Tp2

(a2,b2;µ2.1, Σ̃
∗

22.1, ν + p1 + 2r)

Tp2(a2,b2;µ2.1, Σ̃22.1, ν + p1)
E[W(k)],

where dp(p1, ν, r) = (ν + p)r
(
Γ((p+ ν)/2)Γ((p1 + ν + 2r)/2)

Γ((p1 + ν)/2)Γ((p+ ν + 2r)/2)

)
,

Σ̃
∗

22.1 =

(
ν + δ2(y1)

ν + 2r + p1

)
Σ22.1, W ∼ Ttp2

(µ2.1, Σ̃
∗

22.1, ν + p1 +2r; (a2,b2)), W
(0) = 1, W(1) = W,

W(2) = WW⊤ and ν + p1 + 2r > 0, k = 0, 1, 2.

3. The Student-t semiparametric mixed effects model with censored responses

3.1. The model specification

Let the sample consist of n subjects, with the ith subject having ni observations over time. Let

yij denote the measurement of the ith subject at time tij , then the semiparametric mixed model

for outcome yij is given by

yij = x⊤
ijβ + f(tij) + z⊤ijbi + ǫij , i = 1, . . . , n, j = 1, . . . , ni, (1)

where β is the p × 1 vector of regression coefficients associated with covariates xij (p × 1), f(·)

is a twice-differentiable smooth function of time, the bi are independent q × 1 vectors of random

effects associated with covariates zij (q × 1), and the ǫij are independent measurement errors.

In order to write model (1) computationally more advantageous, we can express in a matrix

form as

yi = Xiβ +Nif + Zibi + ǫi, (2)

where yi = (yi1, . . . , yini
)⊤ is a (ni × 1) random vector of observed responses from the ith subject,

Xi is an ni × p design matrix with rows x⊤
ij , Ni is an ni × r incidence matrix for the ith subject

connecting ti and t0 such that the (j, s)th element of Ni equals the indicator function I(tij = t0s)

for j = 1, . . . , ni and s = 1, . . . , r, f = (f(t01), . . . , f(t
0
r))

⊤ with t01, . . . , t
0
r being the distinct and

ordered values of tij , Zi is the ni × q design matrix of the random effects with z⊤ij and ǫi is an

ni × 1 vector of within-subjects errors.

In this work, we assume that the random effects and the errors follow a Student-t distribution:

(
bi

ǫi

)
ind.
∼ tq+ni

((
0

0

)
,

(
D 0

0 Ωi

)
, ν

)
, i = 1, . . . , n, (3)

where ν represents the multivariate t-distribution degrees-of-freedom (df), D is a q× q symmetric

positive-definite covariance matrix of the random effects (bi) that depends upon a set of unknown

parameter vector α and Ωi = σ2Ei represents the within-subject variance-covariance matrix for

subject i, σ2 is the scalar within-subject variance parameter and Ei is a ni × ni matrix that

incorparate a time-dependence structure. Note that bi and ǫi are uncorrelated, but not necessarily

independent.

4



Munoz et al. (1992) proposed a family of correlation structures, damped exponential correlation

(DEC) structure, which allows to deal with unequally spaced and unbalanced observations. We

adopt the DEC structure for Ei, defined as

Ei = Ei(φ; ti) =
[
φ
|tij−tik|

φ2

1

]
, 0 ≤ φ1 < 1, φ2 ≥ 0,

where φ1 is the correlation between observations separated by one t-unit in time and φ2 is the

“scale parameter”, which permits attenuation or acceleration of the exponential decay of the au-

tocorrelation function, defining a continuous-time autoregressive model. Examples of particular

cases in this family of correlation structures include the compound symmetry (CS), AR(1), and

MA(1) - moving average of order 1, correlation structures when φ2 takes the values 0,1, and ∞,

respectively. A more detailed discussion of the DEC structure can be found in Munoz et al. (1992).

It follows that the semiparametric mixed model with t-distribution assumes the following joint

distribution:
(

yi

bi

)
ind.
∼ tni+q

((
Xiβ +Nif

0

)
,

(
ZiDZ⊤

i +Ωi ZiD

DZ⊤
i D

)
, ν

)
. (4)

Thus, the yi are independent and marginally distributed as

yi
ind.
∼ tni

(µi,Σi, ν),

where µi = Xiβ +Nif , Σi = ZiDZ⊤
i +Ωi, for i = 1, . . . , n.

As mentioned earlier, the proposed model also considers censored observations, i.e., we assume

that the response yij is not fully observed for all i, j. Let the observed data for the i-th subject be

(Vi,Ci), where Vi represents the vector of uncensored readings (Vij = V0i) or censoring interval

(V1ij , V2ij), and Ci is the vector of censoring indicators, such that:

Cij =




1 if V1ij ≤ yij ≤ V2ij ,

0 if Yij = V0i,
(5)

for all i ∈ {1, . . . , n} and j ∈ {1, . . . , ni}, i.e., Cij = 1 if yij is located within a specific interval. Note

that for a right-censored observation V2ij = ∞, and for a left-censored observation V1ij = −∞.

The model defined in (1)-(5) is henceforth called the DEC-tSMEC model.

For responses with censoring pattern as in (5), we have that marginally

yi|Vi,Ci ∼ Ttni
(µi,Σi, ν;A),

where Ttni
(.;A) denotes the truncated Student-t distribution on the interval A, Ai = Ai1 × . . .×

Aini
, with Aij being the interval (−∞,∞) if Cij = 0 and the interval (V1ij , V2ij ] if Cij = 1.

3.2. The likelihood function

We are interested in maximum likelihood estimation of model (1) when yi has a censored

response. To compute the likelihood function associated with the model defined by (1)-(5), the

first step is to treat separately the observed and censored components of yi. Let yo
i be the no

i -

vector of observed outcomes and yc
i be the nc

i -vector of censored observations for subject i with
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(ni = no
i + nc

i ), such that Cij = 0 for all elements in yo
i and 1 for all elements in yc

i . After

reordering, yi, Vi, µi, and Σi can be partitioned as follows:

yi = vec(yo
i ,y

c
i ), Vi = vec(Vo

i ,V
c
i ), µ

⊤
i = (µo

i ,µ
c
i ) and Σi =

(
Σoo

i Σoc
i

Σco
i Σcc

i

)
,

where vec(.) denotes the function which stacks vectors or matrices of the same number of columns.

Using properties of multivariate Student‘s-t distribution (see Arellano-Valle & Bolfarine, 1995),

we have that

yo
i ∼ tno

i
(µo

i ,Σ
oo
i , ν), and yc

i |y
o
i ∼ tnc

i
(µco

i ,Sco
i , ν + no

i ),

where

µo
i = Xo

iβ +No
i f , µc

i = Xc
iβ +Nc

i f , µco
i = µc

i +Σco
i Σoo−1

i (yo
i − µo

i ),

Sco
i =

(
ν + δ2(yo

i )

ν + no
i

)
Si, Si = Σcc

i −Σco
i Σoo−1

i Σoc
i and

δ2(yo
i ) = (yo

i − µo
i )

⊤Σoo−1
i (yo

i − µo
i ).

Let θ = (β⊤, f⊤, σ2,α⊤,φ, ν)⊤ be the parameters vector. From Matos et al. (2013a), the

likelihood for subject i is given by

Li(θ) = f(yi|θ) = f(Vi|Ci,θ)

= f(yo
i |θ)P (Vc

1i ≤ yc
i ≤ Vc

2i|V
o
i ,θ)

= tno
i
(Vo

i ;µ
o
i ,Σ

oo
i ,ν)Tnc

i
(Vc

1i,V
c
2i;µ

co
i ,Sco

i , ν + no
i ) = Li, (6)

where Tp(a,b;µ,Σ, ν) denotes the cumulative distribution function (cdf) of the multivariate Students-

t distribution with parameters µ,Σ and ν.

The log-likelihood function for the observed data is given by ℓ(θ|y) =
∑n

i=1 logLi, and the

estimates obtained by maximizing the log-likelihood function ℓ(θ|y) are the maximum likelihood

estimates (MLEs). For the reason that f(·) is an infinite-dimensional parameter, the direct maxi-

mization of (6) without imposing restrictions over the function f(·) may cause overfitting and non-

identifiability of β (see Green, 1987). A well-know procedure based on the idea of log-likelihood

penalization and consists of incorporating a penalty function in the log-likelihood, such that

ℓp(θ|y) = ℓ(θ|y)−
λ

2
J(f), (7)

where J(f) denotes the penalty function over f and λ ≥ 0 is a smoothing parameter which controls

the tradeoff between goodness of fit and the smoothness estimated function. By maximizing (7),

one obtains the MPL estimate.

Similarly to Ibacache-Pulgar et al. (2013), we will consider the following penalty function:

J(f) =

∫ b

a

[f ′′(t)]2dt = f⊤Kf ,

where [f ′′(t)] denotes the second derivative of f(t) with [a, b] containing the values t0j , of j = 1, . . . , r

and K is the nonnegative definite smoothing matrix that depends only on the knots defined in

Green & Silverman (1994). In this case, the estimation of f leads to a smooth cubic spline with

knots at the points t0j .
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3.3. The EM algorithm for MPL estimation

In this subsection, we discuss the estimation of θ based on penalized log-likelihood.

The EM algorithm (Dempster et al., 1977) is a popular iterative algorithm for ML estimation

of models with incomplete data and has several appealing features such as stability of monotone

convergence and simplicity of implementation. We adopt a variant of the the EM-type algorithm,

called the ECME algorithm, for computing MPL estimates of model parameters. Liu & Rubin

(1994) showed that ECME typically shares with EM the simplicity and stability, but has a faster

rate of convergence, especially for multivariate t-distribution with unknown degrees-of-freedom.

Based on the essential property of multivariate t-distribution, the model (4) can be expressed

in the following hierarchical model:

yi|bi, ui
ind.
∼ Nni

(µi, u
−1
i Ωi),

bi|ui
ind.
∼ Nq(0, u

−1
i D), (8)

ui
ind.
∼ Gamma

(ν
2
,
ν

2

)
,

where Gamma(a, b) denotes the gamma distribution with mean a/b and variance a/b2. Thus, it is

possible to apply the penalized EM algorithm (Green, 1990) by assuming that y = (y⊤
1 , . . . ,y

⊤
n ),

b = (b⊤
1 , . . . ,b

⊤
n ), and u = (u1, . . . , un)

⊤ are hypothetical missing variables, and augmenting with

the observed variables (V,C) where V = vec(V1, . . . ,Vn), and C = vec(C1, . . . ,Cn). Hence, the

penalized log-likelihood function for the model based on complete data yc = (C⊤,V⊤,y⊤,b⊤,u⊤)⊤

is given by

ℓpc(θ|yc) = ℓc(θ|yc)−
λ

2
f⊤Kf , (9)

with

ℓc(θ|yc) =

n∑

i=1

[
−
ni

2
log σ2 −

1

2
log(|Ei|)−

ui

2σ2
(yi − µi − Zibi)

⊤E−1
i (yi − µi − Zibi)

−
1

2
log |D| −

ui

2
b⊤
i D

−1bi + log h(ui|ν) + C

]
, (10)

where C is a constant that does not depend on the vector parameter θ and h(ui|ν) is the pdf of a

Gamma(ν/2, ν/2) distribution.

Given the current estimate θ = θ̂
(k)

, the E-step calculates the conditional expectation of the

complete-data-penalized log-likelihood function given by

Qp(θ|θ̂
(k)

) = E

[
ℓc(θ|yc)

∣∣∣V,C, θ̂
(k)
]
−

λ

2
f⊤Kf ,

=

n∑

i=1

Q1i(β, f , σ
2,φ|θ̂

(k)
) +

n∑

i=1

Q2i(α|θ̂
(k)

),

where

Q1i(β, f , σ
2,φ|θ̂

(k)
) = −

ni

2
log σ2 −

1

2
log(|Ei|)

−
1

2σ2

[
â
(k)
i − 2µ⊤

i E
−1
i

(
ûiyi

(k)
− Ziûibi

(k)
)
ûi

(k)
µ⊤

i E
−1
i µi

]

−
λ

2n
f⊤Kf
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and

Q2i(α|θ̂
(k)

) = −
1

2
log |D| −

1

2
tr

(
ûibib

⊤
i

(k)

D−1

)
,

with

â
(k)
i = tr

(
ûiyiy

⊤
i

(k)

E−1
i − 2ûiyib

⊤
i

(k)

Z⊤
i E

−1
i + ûibib

⊤
i

(k)

Z⊤
i E

−1
i Zi

)
,

ûibi

(k)
= E

[
uibi

∣∣∣Vi,Ci, θ̂
(k)
]
= ϕi

(
ûiyi

(k)
− ûi

(k)
µi

)
,

ûibib
⊤
i

(k)

= E

[
uibib

⊤
i

∣∣∣Vi,Ci, θ̂
(k)
]
= Λi +ϕi

(
ûiyiy

⊤
i

(k)

− 2ûiyi
(k)

µi + ûi
(k)

µiµ
⊤
i

)
ϕ⊤

i ,

ûiyib
⊤
i

(k)

= E

[
uiyib

⊤
i

∣∣∣Vi,Ci, θ̂
(k)
]
=

(
ûiyiy

⊤
i

(k)

− ûiyi
(k)

µ⊤
i

)
ϕ⊤

i ,

where Λi = (D−1 + Z⊤
i E

−1
i Zi/σ

2)−1 and ϕi = ΛiZ
⊤
i E

−1
i /σ2.

The conditional maximization (CM) steps then conditionally maximizesQp(θ|θ̂
(k)

) with respect

to θ and obtains a new estimate θ̂
(k+1)

, as follows:

β̂
(k+1)

=

(
m∑

i=1

ûi
(k)

X
⊤

i Ê
−1(k)
i Xi

)−1 m∑

i=1

X
⊤

i Ê
−1(k)
i

(
ûiyi

(k) − ûi
(k)

Ni f̂
(k) − Ziûibi

(k)
)

(11)

f̂
(k+1) =

(
m∑

i=1

ûi
(k)

N
⊤

i Ê
−1(k)
i Ni + σ̂2

(k)
λK

)−1 m∑

i=1

N
⊤

i Ê
−1(k)
i

(
ûiyi

(k) − ûi
(k)

Xiβ̂
(k+1)

− Ziûib
(k)
)

(12)

σ̂2
(k+1)

=
1

N

m∑

i=1

[
â
(k)
i − 2µ̂

(k+1)⊤
i E

−1
i

(
ûiyi

(k) − Ziûibi

(k)

i

)
+ ûi

(k)
µ̂

(k+1)⊤
i E

−1
i µ̂

(k+1)
i

]
(13)

D̂
(k+1) =

1

m

m∑

i=1

ûibib
⊤
i

(k)

(14)

φ̂
(k+1) = argmax

φ∈(0,1)×R+

(
−
1

2
log(|Ei|)−

1

2σ̂2
(k+1)

[
â
(k)
i − 2µ̂

(k+1)⊤
i E

−1
i

(
ûiyi

(k) − Ziûibi

(k)

i

)

+ ûi
(k)

µ̂
(k+1)⊤
i E

−1
i µ̂

(k+1)
i

])
(15)

ν̂
(k+1) = argmax

ν

{
m∑

i=1

log Tnc
i

(
V

c
1i,V

c
2i;µ

co(k+1)

i ,S
co(k+1)

i , ν + n
o
i

)

+

m∑

i=1

log tno
i

(
V

o
i ;µ

o(k+1)

i ,Σ
oo(k+1)

i ,ν
)}

, (16)

where N =
∑m

i=1 ni. The algorithm is iterated until a suitable convergence rule is satisfied,

in this case, we adopt the distance involving two successive evaluations of the actual penalized

log-likelihood. So, this process is iterated until some distance between two successive evaluations

of the actual penalized log-likelihood ℓp(θ, λ) in Section 3.2, such as |ℓp(θ̂
(k+1)

) − ℓp(θ̂
(k)

)| or

|ℓp(θ̂
(k+1)

)/ℓp(θ̂
(k)

)− 1|, becomes small enough, for example, ǫ = 10−6.

It is important to stress that from equations (11) to (15), the E-step reduces to the computation

of

ûiyiy
⊤
i = E

[
uiyiy

⊤
i

∣∣∣Vi,Ci,θ
]
, ûiyi = E

[
uiyi

∣∣∣Vi,Ci,θ
]
, and ûi = E

[
ui

∣∣∣Vi,Ci,θ
]
,

that is, the first and second moments of a truncated multivariate-t distribution. These expected

values can be determined in closed form, using Propositions 2-3, as follows:
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1. If the ith subject has only non-censored components, then

ûi =

(
ν + ni

ν + δ2(yi)

)
, ûiyi = ûiyi ûiyiy

⊤
i = ûiyiy

⊤
i ,

where δ2(yi) = (yi − µi)
⊤Σ−1

i (yi − µi).

2. If the ith subject has only censored components then from Proposition 2, we have:

ûi =
Tni

(V1i,V2i;µi,Σ
∗
i , ν + 2)

Tni
(V1i,V2i;µi,Σi, ν)

,

ûiyi = ûiE(Wi),

ûiyiy
⊤
i = ûiE(WiW

⊤
i ),

where W ∼ Ttni
(µi,Σ

∗
i , ν+2; (V1i,V2i)), µi = Xiβ+Nif , Σ

∗
i =

ν

ν + 2
Σi, Σi = ZiDZ⊤

i +

Ωi.

3. If the ith subject has censored and uncensored components and given that (Yi

∣∣Vi,Ci),

(Yi

∣∣Vi,Ci,Y
o
i ), and (Yc

i

∣∣Vi,Ci,Y
o
i ) are equivalent process, then from Proposition 3, we

have

ûi =

(
no
i + ν

ν + δ2(yo
i )

)
Tnc

i
(Vc

1i,V
c
2i;µ

co
i , S̃co

i , ν + no
i + 2)

Tnc
i
(Vc

1i,V
c
2i;µ

co
i ,Sco

i , ν + no
i )

,

ûiyi = vec(ûiy
o
i , ûiE[Wi]),

ûiyiy
⊤
i =

(
ûiy

o
iy

o⊤
i ûiy

o
iE

⊤[Wi]

ûiE[Wi]y
o⊤

i ûiE[WiW
⊤
i ]

)
,

where Wi ∼ Ttnc
i
(µco

i , S̃co
i , ν + no

i + 2, (Vc
1i,V

c
2i)), S̃

co
i =

(
ν + δ2(yo

i )

ν + no
i + 2

)
Si and Si, S

co
i and

µco
i are as in Section 3.2.

Formulas for E[W] and E[WW⊤], where W ∼ Ttp(µ,Σ, ν;A), have been recently developed

using recurrence relations involving the density of multivariate t-distribution. These can be ob-

tained in the R package MomTrunc (Galarza et al., 2020).

3.4. Estimation of the random effects

In this section, we are interested in the estimation of random effects, which is useful for evalu-

ating subject-specific quantities of interest such as individually changed intercepts and slopes. To

estimate the random effects, we consider the conditional mean of bi given the observed data Vi,

and Ci, that is, E[bi|Vi,Ci], empirical Bayes approach. Thus, when the parameter values of θ are

known, the conditional mean of bi given Ci, Vi is

b̂i(θ) = E [bi|Vi,Ci] = ϕi(ŷi −Xiβ −Nif), (17)

where ϕi is defined in Subsection 3.3 and ŷi = E[yi|Vi,Ci] is the first moment of the truncated

t-distribution.

The empirical Bayes estimates of random effects are obtained by substituting the MPL estimates

θ̂ into bi(θ), leading to b̂i = bi(θ̂). In addition, the fitted values of responses can be estimated

directly by ŷi = Xiβ̂ +Nif̂ + Zib̂i.

9



3.5. The expected information matrix

In the context of nonparametric regression, the covariance matrix of the MPL estimates can be

evaluated by inverting the observed information matrix obtained by treating the penalized likeli-

hood as a usual likelihood (Segal et al., 1994). Louis (1982) proposed a technique for computing

the observed matrix within the EM algorithm framework, this method adjust the variance of the

estimated fixed effects for the information lost owing to censoring. Using this method, and from

the results given by Lange et al. (1989), the information matrix for (β, f) can be approximated by

Ip(β, f |y) = Ic(β, f |y)− Im(β, f |y),

where Ip(β, f |y) is the information about (β, f) in the observed data y, Ic(β, f |y) is the conditional

expectation of the complete-data information, and Im(β, f |y) is the missing information. Therefore,

the approximate covariance matrix of (β̂, f̂) is given as

Ĉov(β̂, f̂) ≈ I−1
p (β, f)

∣∣
̂θ
,

where the penalized expected information matrix Ip(β, f) takes the form:

Ip(β, f) =

(
Ip(β,β) Ip(β, f)

I⊤p (β, f) Ip(f , f)

)
,

where

Ip(β,β) =

n∑

i=1

{(
ν + ni

ν + ni + 2

)
X⊤

i Σ
−1
i Xi −X⊤

i Σ
−1
i

[(
ν + ni + 2

ν + ni

)
E2 −E1

]
Σ−1

i Xi

}
,

Ip(β, f) =
n∑

i=1

{(
ν + ni

ν + ni + 2

)
X⊤

i Σ
−1
i Ni −X⊤

i Σ
−1
i

[(
ν + ni + 2

ν + ni

)
E2 −E1

]
Σ−1

i Ni

}
,

Ip(f , f) =

n∑

i=1

{(
ν + ni

ν + ni + 2

)
N⊤

i Σ
−1
i Ni −N⊤

i Σ
−1
i

[(
ν + ni + 2

ν + ni

)
E2 −E1

]
Σ−1

i Ni

}

+ λ2Kff⊤K,

where E1 = (ûiyi − ûiµi)(ûiyi − ûiµi)
⊤ and E2 = (û2

iyiy
⊤
i − û2

iyiµ
⊤
i −µiû

2
iy

⊤
i + û2

iµiµ
⊤
i ). Note

that E1 depend on the computation of ûi, ûiyi that can be obtained in Subsection 3.3 and E2

depend on the following quantities

û2
i = E

[(
ν + ni

ν + δ2(yi)

)2 ∣∣∣Vi,Ci,θ

]
, û2

iyi = E

[(
ν + ni

ν + δ2(yi)

)2

yi

∣∣∣Vi,Ci,θ

]
and

û2
iyiy

⊤
i = E

[(
ν + ni

ν + δ2(yi)

)2

yiy
⊤
i

∣∣∣Vi,Ci,θ

]
.

These expected values can be determined in closed form using Proposition 2 and 3, as follows

1. If the ith subject has only non-censored components, then,

û2
i =

(
ν + ni

ν + δ2(yi)

)2

, û2
iyi = û2

iyi, û2
iyiy

⊤
i = û2

iyiy
⊤
i ,

where δ2(yi) = (yi − µi)
⊤Σ−1

i (yi − µi).

10



2. If the ith subject has only censored components then

û2
i = cp(ν, 2)

Tni
(V1i,V2i;µi,Σ

∗
i , ν + 4)

Tni
(V1i,V2i;µi,Σi, ν)

,

û2
iyi = û2

iE[Wi],

û2
iyiy

⊤
i = û2

iE[WiW
⊤
i ],

where cp(ν, 2) =
(ni + ν)(ν + 2)

ν(ni + ν + 2)
, Wi ∼ Ttni

(µi,Σ
∗
i , ν + 4; (V1i,V2i)), Σ∗

i =
ν

ν + 4
Σi,

µi = Xiβ +Nif , Σi = ZiDZ⊤
i +Ωi.

3. If the ith subject has censored and uncensored components and given that (Yi|Vi,Ci),

(Yi|Vi,Ci,Y
o
i ), and (Yc

i |Vi,Ci,Y
o
i ) are equivalent process, we have

û2
i =

dp(n
o
i , ν, 2)

(ν + δ2(yo
i ))

2

Tnc
i
(Vc

1i,V
c
2i;µ

co
i , S̃co

i , ν + no
i + 4)

Tnc
i
(Vc

1i,V
c
2i;µ

co
i ,Sco

i , ν + no
i )

,

û2
iyi = vec(û2

iy
o
i , û

2
iE[Wi]),

û2
iyiy

⊤
i =

(
û2
iy

o
iy

o⊤
i û2

iy
o
iE

⊤[Wi]

û2
iE[Wi]y

o⊤

i û2
iE[WiW

⊤
i ]

)
,

where dp(n
o
i , ν, 2) =

(ν + ni)(n
o
i + ν + 2)(no

i + ν)

ni + ν + 2
,Wi ∼ Ttnc

i
(µco

i , S̃co
i , ν+no

i+4; (Vc
1i,V

c
2i)),

S̃co
i =

(
ν + δ2(yo

i )

ν + no
i + 4

)
Si and Si, S

co
i and µco

i are as in Subsection 3.2.

It can be noted that here we also need the first and second moments of truncated-t distribution.

And, as mentioned before, these moments can be obtained in the R package MomTrunc (Galarza

et al., 2020).

4. Estimation of the smoothing parameter

In the previous sections we considered the smoothing parameter λ fixed to make inference for

the nonparametric function f . However, in practice, this parameter need to be estimated from

the data. Many authors have pointed out that the proper selection of smoothing parameters is

essential for good a performance of the spline estimates (Green & Silverman, 1994). Wahba &

Wold (1975) examine how much the smoothing should be because if λ is too small, the spline is

too wiggly and picks up too much noise (overfit), and if λ is too large, the spline is too smooth and

the signal is lost (underfit). A classical data-driven approach to selecting the smoothing parameter

is cross validation (CV), which leaves out one subject’s entire data at a time, but this approach is

often computationally expensive (Zeger & Diggle, 1994).

Several authors have shown the connection between a smoothing spline and a linear mixed

effects model for analysis of longitudinal data (see, Wang, 1998; Kohn et al., 1991, for instance,).

Zhang et al. (1998) treated the smoothing parameter as an additional variance component and

estimated it with other variance components simultaneously using REML. According to Green

(1987); Zhang et al. (1998), we can write f via a one-to-one linear transformation as:

f = Tδ +Bd, (18)

11



where δ and d are vectors with dimensions 2 and r − 2, B = L(L⊤L)−1 and L is an r × (r − 2)

full-rank matrix satisfying K = LL⊤ and L⊤T = 0. Given (18), Equation (2) can be reformulated

as:

yi = X∗
iβ

∗ + Z∗
ib

∗
i + ǫi,

where X∗
i = [Xi,NiT], Zi = [NiB,Zi], β

∗ = (β⊤, δ⊤)⊤ are the regression coefficients and b∗ =

(d⊤,b⊤
i )

⊤ are mutually independent random effects with d ∼ tr−2(0,
σ2

λ Ir−2) and bi and ǫi have

the same distributions as those given in Section 3.1.

Motivated by Zhang et al. (1998)’s results and using the connection between the smoothing

spline and the linear mixed models, we propose to estimate λ using the EM algorithm, due to its

simplicity of implementation and stable monotone convergence. This novel procedure is described

as follows. Consider the following model:

yi|b
∗
i , ui ∼ Nni

(X∗
iβ

∗ + Z∗
ib

∗
i , u

−1
i Ωi)

b∗
i |ui ∼ Nr−2+q(0, u

−1
i Ψ),

ui ∼ Gamma(ν/2, ν/2),

where

Ψ =

(
σ2

λ Ir−2 0

0 D

)
.

Let yi denote the observed data and (b∗
i , ui) denote the missing data. Then, we consider

the augmented data vector y∗
ic = (y⊤

i ,b
∗⊤
i , u⊤

i ). In this case, the log-likelihood function for the

augmented data model, dropping all the terms that are not functions of λ, takes the form:

ℓ(λ;y∗
c ) ∝

n∑

i=1

{
−
1

2
log |u−1

i Ψi| −
1

2
uib

∗
iΨ

−1
i b∗⊤

i

}
.

The solution λ̂ can be obtained via the following joint iterative process:

Step 1: Obtain θ̂
(k+1)

, as described in Subsection 3.3;

Step 2: (E-step) Given the observed data, evaluate the expectation of ℓ(λ;y∗
c ) and estimate

in the kth iteration :

Q(λ|λ̂(k)) = E

[
ℓ(λ;y∗

c )|y, λ̂
(k)
]
= −

1

2

n∑

i=1

log |Ψi| −
1

2

n∑

i=1

tr(Ψ−1
i

̂uib
∗
ib

∗⊤
i

(k)

),

with ̂uib
∗
ib

∗⊤
i

(k)

= E

[
uib

∗
ib

∗⊤
i |y, λ̂(k)

]
= Λ∗

i+
ν + ni

ν +Q(yi)
Λ∗

iZ
∗⊤
i Ω−1

i (yi−X∗
iβ

∗)(yi−X∗
iβ

∗)⊤Ω−1
i Z∗

iΛ
∗
i ,

Λ∗
i = (Ψ−1 + Z∗⊤

i Ω−1
i Z∗

i )
−1.

Step 3: (M-step) Uptade λ by

λ̂(k+1) = −
n(r − 2)

∑n
i=1 tr

(
Ψ−1 ∂Ψ

∂λ Ψ−1 ̂uib
∗
ib

∗⊤
i

(k)
) .

Thus, by repeating Step 1, Step 2 and Step 3, this iterative process leads to the MPL estimates

of θ and the smoothing parameter λ.
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5. Goodness of fit and model selection

In this section, we consider diagnoses to assess the adequacy of the fit of the proposed model

and detect influential observations.

Under condition that yi
ind.
∼ tni

(µi,Σi, ν), the Mahalanobis distance, δ2i (θ) = (yi−µi)
⊤Σ−1

i (yi−

µi), has been considered by several authors to detect outliers in multivariate t models. To deal

with the censored values existing in yi, we used the imputation procedure, that is, for censored

values ŷi = E [yi|Vi,Ci]. According to Lange et al. (1989), under t model Fi = δ2i (θ)/ni is F-

distributed with ni and ν degrees of freedom, where ni corresponds to the number of measurements

associated with the ith subject. In addition, F̂i = δ2i (θ̂)/ni has asymptotically the same distribu-

tion as Fi, i = 1, . . . , n. Therefore, using the Wilson-Hilferty approximation (Johnson et al., 1994;

Galea-Rojas, 1995), we have that the transformed distance is

F
[z]
i =

(
1−

2

9ν

)
F

1/3
i −

(
1−

2

9ni

)

[(
2

9ν

)
F

2/3
i +

(
2

9ni

)]1/2 , i = 1, . . . ,m,

and follows approximately a standard normal distribution. Thus, a Q-Q plot of the transformed

distances, F
[z]
i , can be used to assess the fit of the multivariate t distribution.

For a model selection criterion, we adopt the Akaike Information Criterion (AIC) (Akaike,

1974) and the Bayesian information criterion (BIC) (Schwarz et al., 1978, so BIC is also known

as SIC) which have been extended for standard LME and NLME models (Davidian & Giltinan,

1995). For t-SMEC model, we can define the AIC and BIC as follows:

AIC(θ̂) = −2ℓp(θ̂) + 2p∗,

BIC(θ̂) = −2ℓp(θ̂) + p∗ logN,

where ℓp(θ̂) corresponds to the logarithm of the penalized likelihood function, defined in Equation

(7), p∗ is the total number of parameters in the model, and N denotes the size of the sample.

6. Simulation studies

In order to examine the performance of our proposed models and algorithm, we present two

simulation studies. The first one examines the finite sample properties of the estimators. The

second study compares the performance of the estimates of the t-SMEC model and the N-SMEC

model. For both simulation schemes, we simulate longitudinal data from the following model:

yij = β1x1ij + β2x2ij + f(tij) + b0i + b1itij + ǫij , i = 1, . . . , n, , j = 1, . . . , ni. (19)

The parameters were set at β⊤ = (β1, β2) = (2,−1.5), σ2 = 0.13, and D with elements α11 = 0.25,

α12 = 0.01, α22 = 0.1. We chose a smooth function f(tij) = exp(sin(0.3tij) cos(0.6tij)), where

tij = (1, 2, 3, 4, 5, 6, 7). The values x⊤
i = (x1, x2) were generated independently from a uniform

distribution in the intervals (0,1) and (-1,1), respectively, and those values were kept constant

throughout the experiment.

All computational procedures were implemented using the R software (R Core Team, 2020),

which is available from us upon request.
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6.1. Asymptotic properties

In this simulation study, the main focus is to evaluate the finite-sample performance of the

parameter estimates. Another goal is to examine the consistency of the standard errors for the

MPL estimates of β and f . To do, so we generated samples from the t-SMEC model, with

(b0i, b1i)
ind.
∼ t2(0,D, ν) and ǫi ∼ tni

(0,Ωi, ν), where Ωi = σ2Ei, with a correlation structure

AR(1) for Ei considering φ1 = 0.8 and ν = 5. Moreover, to study the effect on the level of

censoring and sample sizes, we consider two censoring proportions (10% and 20%) and sample

sizes fixed at m = 50, 100 and 300. For each combination of sample size and censoring level, we

generated 200 simulated datasets.

To evaluate the computational accuracy and to examine the consistency of the estimates of the

standard erros suggested in Subsection 3.4, we computed the following measures:

• The arithmetic average of estimates:

MC Mean(θ̂i) =
1

200

200∑

j=1

θ̂i
(j)

• The average values of the estimates of the standard erros obtained through the method

described in Subsection 3.4 using the expected information matrix (MC IM).

• The Monte Carlo standard deviation of β and f (MC SD).

Table 1 summarize the simulation results based on 200 Monte Carlo data sets for the model

parameters (β, f). It can be observed that the MC Mean approaches the true value for fixed

components and when the sample size increases the value of MC SD decreases. It can also be

seen that the approximate standard errors (MC IM) obtained in Subsection 3.4 and the standard

deviation estimates (MC SD) closely agree with each other, suggesting that the derived standard

errors work well. From Figure 1 it can be observed that the variability among the estimates of the

nonparametric function declines as the sample size increases, and the censorship does not influence

the estimation of the nonparametric part. Therefore, we can conclude that the t-SMEC model pro-

vides estimates with good asymptotic properties for the fixed components and the nonparametric

part is able to capture the true unknown function.

6.2. Robustness of the estimates

The purpose of this simulation study is to compare the fits of the t-SMEC and N-SMEC models

when we assume the normal distribution for the errors and random effects. Also, we are interested

in comparing the fits when the usual assumption of normality is violated. Then, in this case, we

replace the multivariate normal distribution by the multivariate contaminated normal, which is a

particular case of the SMN distributions.

First, for the normal distribution, we consider (b0i, b1i)
ind.
∼ N2(0,D) and ǫi ∼ Nni

(0,Ωi), where

Ωi = σ2Ei with a correlation structure AR(1) for Ei and φ1 = 0.4. For the contamined normal,

we consider (b0i, b1i)
ind.
∼ N2(0, u

−1
i D), ǫi ∼ Nni

(0, u−1
i Ωi) and

Ui =




0.3 with probability 0.3,

1 with probability 0.7,

14



Table 1: Simulation study - Asymptotic properties. Results based on 200 simulated samples. MC IM, MC
SD are the respective average of the approximate standard errors obtained using the expected information matrix,
and the average of the approximate standard deviations from fitting t-SMEC model.

Cens. level Parameter
m=50 m=100 m=300

MC Mean MC IM MC SD MC Mean MC IM MC SD MC Mean MC IM MC SD

10%

β1 1.9993 0.0362 0.0389 2.0040 0.0263 0.0289 1.9996 0.0148 0.0145
β2 -1.4989 0.0186 0.0199 -1.5020 0.0131 0.0141 -1.4992 0.0073 0.0076

f(1) = 1.2762 1.2759 0.1091 0.1128 1.2777 0.0787 0.0747 1.2713 0.0453 0.0462
f(2) = 1.2270 1.2297 0.1384 0.1397 1.2301 0.1005 0.0933 1.2198 0.0576 0.0566
f(3) = 0.8370 0.8470 0.1759 0.1820 0.8369 0.1281 0.1197 0.8270 0.0733 0.0713
f(4) = 0.5029 0.5120 0.2176 0.2244 0.5020 0.1585 0.1507 0.4915 0.0906 0.0868
f(5) = 0.3725 0.3866 0.2613 0.2675 0.3659 0.1904 0.1818 0.3568 0.1086 0.1059
f(6) = 0.4176 0.4335 0.3061 0.3145 0.4077 0.2230 0.2111 0.3989 0.1272 0.1264
f(7) = 0.6549 0.6785 0.3519 0.3616 0.6456 0.2561 0.2433 0.6349 0.1461 0.1433

20%

β1 1.9981 0.0292 0.0466 2.0037 0.0209 0.0316 1.9987 0.0117 0.0165
β2 -1.4971 0.0150 0.0222 -1.5011 0.0104 0.0166 -1.4986 0.0058 0.0090

f(1) = 1.2762 1.2666 0.0934 0.1129 1.2672 0.0654 0.0783 1.2582 0.0376 0.0477
f(2) = 1.2270 1.2163 0.1184 0.1385 1.2156 0.0833 0.0957 1.1995 0.0478 0.0577
f(3) = 0.8370 0.8301 0.1501 0.1815 0.8174 0.1061 0.1227 0.7999 0.0607 0.0722
f(4) = 0.5029 0.4909 0.1853 0.2254 0.4777 0.1313 0.1543 0.4583 0.0749 0.0874
f(5) = 0.3725 0.3629 0.2221 0.2698 0.3372 0.1577 0.1865 0.3163 0.0898 0.1067
f(6) = 0.4176 0.4055 0.2599 0.3174 0.3731 0.1846 0.2166 0.3522 0.1051 0.1273
f(7) = 0.6549 0.6476 0.2985 0.3649 0.6056 0.2120 0.2483 0.5820 0.1207 0.1443

10% 20%

n
=

5
0

n
=

1
0

0
n

=
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0
0
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−1

0

1

2

−1

0

1

2

−1

0

1

2

t

f

Figure 1: Simulation study - Asymptotic properties. Graphs of the nonparametric components with 200
replications. Adjusted curves (gray lines) and true curves (red lines) for all scenarios.

where Ωi = σ2Ei, with a correlation structure AR(1) for Ei and φ1 = 0.4. We generated M = 200

datasets of size m = 150 with censoring proportion 15%. Once the simulated data were generated,

we fit the N-SMEC model and t-SMEC model to each simulated dataset.
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The model selection criterion as well as the estimates of the model parameters were recorded

for each simulation. The detailed numerical results under the scenarios considered, including the

average BIC values and the MPL estimates are summarized in Table 2. From Table 2, can be

noted that when the data generated follow the normal distribution the performances of the N-

SMEC model and t-SMEC model are similar, indicating that the t-SMEC model gives reliable

estimates. Also, to evaluate the use of the BIC criterion, the N-SMEC model was chosen by the

criterion in 79.5% (159/200) of the samples generated as the best model. When the data generated

follow the contamined normal, the t-SMEC model has better estimates and the standard errors

are less than that of the N-SMEC model. Evaluating the BIC criterion, the N-SMEC model was

chosen in 38.5% (77/200) of the samples.

Another important feature in our model is the ability to detect whether the distribution has

heavily tails or not. It can be seen from Table 2 that when we fit the t-SMEC model to normal

data, the estimate of ν on average is high, that is, the data does not have heavy-tails behavior.

Now, when the data generated is Contaminated normal, the estimated ν on average is small since

we are dealing with a distribution with heavier tails that the normal distribution. Therefore, we

can be observed that the t-SMEC model fits better than the N-SMEC model counterpart when

the data have tails heavier behavior.

7. Application

In this section, we apply our method to analyze a longitudinal dataset corresponding to the

interruption of treatment of UTI (unstructured antiretroviral therapy) in HIV-infected adolescents

at four institutions in the USA.

The UTI data is referred to a study of 72 perinatally HIV-infected children (Saitoh et al., 2008).

This dataset is available in the R package lmec (Vaida & Liu, 2012). Primarily due to treatment

fatigue, unstructured treatment interruptions (UTI) are common in this population. Suboptimal

adherence can lead to antiretroviral (ARV) resistance and diminished treatment options in the

future. The aim of this study was to monitor the HIV-1 viral laod (RNA) after unstructured

treatment interruption. The subjects in the study had taken ARV therapy for at least 6 months

before UTI, and the medication was discontinued for more than 3 months. The HIV viral load

were studied from the closest time points at 0, 1, 3, 6, 9, 12, 18, 24 months after UTI. The number of

observations from baseline (month 0) to month 24 are 71, 62, 58, 57, 43, 34, 24, and 13, respectively.

Out of 362 observations, 26(7%) observations were below the detection limits (50 or 400 copies/mL)

and were left-censored at these values. The individual profiles are shown in Figure 2. This dataset

was analyzed by Vaida & Liu (2009) and Matos et al. (2013b) using the N-LMEC and t-LMEC

models, respectively.

Here, we revisit the UTI data assuming that the functional form of the HIV RNA levels over

time is not known. We considered the following model:

yij = f(tij) + bi + ǫij , (20)

where yij is the log10HIV RNA for subject i at time tij (i = 1, 2, . . . , 72; j = 1, 2, . . . , ni), f(tij)

is an arbitrary smoothing function, bi is the random intercept for the i-th subject, and ǫij are
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Table 2: Simulation study - Robustness of the estimates. Summary statistics based on 200 simulated AR(1)
samples for the estimates parameters.

Fit

Distribution Parameter
Normal Student-t

MC Mean MC IM MC SD MC Mean MC IM MC SD

Normal

β1 (2) 2.0065 0.0475 0.0406 1.9968 0.0349 0.0413
β2 (-1.5) -1.5071 0.0233 0.0197 -1.5011 0.0172 0.0197
f(1) = 1.2762 1.2798 0.0640 0.0583 1.2869 0.0601 0.0611
f(2) = 1.2270 1.2287 0.0780 0.0719 1.2387 0.0751 0.0767
f(3) = 0.8370 0.8428 0.0980 0.0994 0.8526 0.0948 0.1048
f(4) = 0.5029 0.5130 0.1208 0.1203 0.5236 0.1168 0.1274
f(5) = 0.3725 0.3889 0.1435 0.1414 0.3981 0.1394 0.1486
f(6) = 0.4176 0.4434 0.1673 0.1670 0.4487 0.1628 0.1733
f(7) = 0.6549 0.6867 0.1918 0.1958 0.6881 0.1868 0.2014
σ2 (0.13) 0.1396 0.0993
α11 (0.25) 0.2606 0.2294
α12 (0.01) 0.0124 0.0108
α22 (0.1) 0.0967 0.0845
φ1 (0.4) 0.3212 0.3929
ν - 24.5473
λ 3.0217 1.3226
BIC 1490.536 1500.18

Contamined
Normal

β1 (2) 1.9966 0.0552 0.0458 1.9950 0.0373 0.0474
β2 (-1.5) -1.4998 0.0271 0.0257 -1.4992 0.0182 0.0244
f(1) = 1.2762 1.2910 0.0806 0.0761 1.2874 0.0652 0.0696
f(2) = 1.2270 1.2463 0.0991 0.0931 1.2263 0.0814 0.0899
f(3) = 0.8370 0.8706 0.1247 0.1168 0.8582 0.1037 0.1121
f(4) = 0.5029 0.5494 0.1539 0.1548 0.5279 0.1279 0.1457
f(5) = 0.3725 0.4314 0.1835 0.1863 0.3984 0.1529 0.1735
f(6) = 0.4176 0.4930 0.2142 0.2225 0.4552 0.1785 0.2044
f(7) = 0.6549 0.7400 0.2458 0.2523 0.6884 0.2049 0.2288
σ2 (0.13) 0.2190 0.0932
α11 (0.25) 0.4311 0.2135
α12 (0.01) 0.0215 0.0120
α22 (0.1) 0.1603 0.0810
φ1 (0.4) 0.3593 0.3925
ν - 3.8593
λ 4.7094 24.0673
BIC 1925.797 1920.187

random errors. The model (20) can be express in matrix form as:

yi = Nif + Zibi + ǫi, (21)

where yi is a (ni × 1) vector of responses for the i-th children, Ni is the incidence matrix, f is a

(8 × 1) vector whose components are function f(·) evaluated at the times in the set t0 = (t01 =

0, t02 = 1, t03 = 3, . . . , t08 = 24), Zi = 1ni
, with 1ni

a (ni × 1) vector of ones and ti = [ti1, . . . , tini
]⊤,

bi = bi the random intercept and ǫi = (ǫi1, . . . , ǫini
)⊤ represents the within-subject random error.

We acknowledge four cases of correlation structure to specify the matrix Ei: the continuous-time

AR(1) structure, the compound symmetry (CS), the damped exponential (DEC) and the uncor-
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Figure 2: UTI data. Individual profiles (in log10 scale) for HIV viral load at different follow-up times.

related (UNC). Table 3 represents the MPL estimates of θ = (f⊤, σ2, α,φ⊤, ν)⊤, the smoothing

parameter estimate (λ), the corresponding penalized log-likelihood function evaluated at θ̂ in the

fitted models, and the values of AIC and BIC. These results reveal that the model with an UNC

structure has lower AIC and BIC compared to the other structures, that is, the measures over the

time of the same subject are not correlated. From the fit of (20), estimates of individual profiles

are shown for six subjects in Figure 3a, it can be seen that the model seems to provide a good fit.

Table 3: UTI dataset. Parameter estimates of the t-SMEC model (20) for the UTI dataset. SE indicates the
standard errors.

AR(1) CS DEC UNC

Parameter Estimate SE Estimate SE Estimate SE Estimate SE

f1 4.1106 0.0948 4.0863 0.1169 4.1276 0.0998 4.0929 0.1082
f2 4.2219 0.0921 4.1853 0.1137 4.2146 0.0975 4.2116 0.1039
f3 4.3647 0.0991 4.3462 0.1243 4.3563 0.1046 4.3672 0.1126
f4 4.5284 0.0975 4.5213 0.1218 4.5226 0.1029 4.5323 0.1103
f5 4.6484 0.1013 4.6294 0.1277 4.6324 0.1066 4.6478 0.1153
f6 4.6795 0.1048 4.6704 0.1331 4.6729 0.1108 4.6786 0.1195
f7 4.7080 0.1129 4.7161 0.1446 4.7132 0.1200 4.7090 0.1300
f8 4.8736 0.1309 4.8499 0.1691 4.8542 0.1389 4.8697 0.1516
σ2 0.0777 0.4668 0.3407 0.1036
α 0.3171 0.0615 0.0559 0.3741
φ1 0.0007 0.7369 0.7777
φ2 1 0 0.0317
ν 3.0344 3.0998 3.036 3.0978
λ 699.1542 2095.618 2137.032 695.6855

loglikp -341.2195 -339.7186 -340.5147 -339.4198
AIC 706.439 703.4372 707.0294 700.8397

BIC 753.1388 750.1369 757.6208 743.6477

For the t-SMEC model under UNC correlation structure (our best model), we present in Figure

3b the curve of the estimated nonparametric function and the corresponding confidence bands. It

can be noted that the estimated nonparametric function increase gradually. This is the evidence

of the negative effect of the antiretroviral therapy interruption on the viral load levels. It means,
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the viral load increments consistently along the time when the antiretroviral therapy begins to be

interrupted. For the fit model, the mean viral load (E(yij) = f(tij)) increases from 4.09 at the

time of UTI to 4.87 at 24 months.
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Figure 3: UTI dataset. (a) Viral loads in log10 scale (solid line) for 6 randomly chosen subjects and estimated
trajectories (red, dotted line) for the t-SMEC model in the UNC structure. (b) Fitted curve of nonparametric part.

The shaded regions denote the 95% confidence intervals obtained by f̂ ± 1.96

√
V̂ar(f̂).

Figure 4 displays the transformed distance plots, for the Student-t (Figure 4a) and the normal

(Figure 4c) models. The transformed distance under the Student-t model seems to be closer to

normality than under the normal model. Therefore, it can be seen that the adjusted model t-SMEC

with the UNC correlation structure seems to present an adequate adjustment. Identification of

outlying observations under the t-SMEC model may be performed, for instance, by the scatter

plot between the estimated weight and the estimated Mahalanobis distance, Figure 4b. As can be

seen, the subject 42 receive a smaller weight and the higher Mahalanobis distance. Besides, in this

Figure, it can be observed that many observations present smaller weights, verifying the robust

aspects of the MPL estimation under the Student’s t-distribution.

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

Expected normal deviate

T
ra

n
s
fo

rm
e
d
 d

is
ta

n
c
e

(a)

42

0.0

0.5

1.0

1.5

2.0

2.5

0 30 60 90 120

 Mahalanobis distances

w
e
ig

h
ts

(b)

-2

0

2

4

-2 -1 0 1 2

Expected normal deviate

T
ra

n
s
fo

rm
e
d
 d

is
ta

n
c
e

(c)

Figure 4: UTI dataset. (a) Normal probability plot for the transformed distance under the t-SMEC model with
UNC structure. (b) Estimated weights (ûi) for the estimated t-SMEC model with UNC structure. (c) Normal
probability plot for the transformed distance under the N-SMEC model with UNC structure.
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8. Conclusion

In this paper, we proposed a semiparametric mixed model for the analysis of longitudinal

censored data, assuming that the within-individual measurement errors and the random effects

were distributed with t-multivariate distribution. This work can be considered as an extension of

Matos et al. (2013b), where a linear/nonlinear mixed effects model was considered for censored

data with t-distribution.

In practical implementation, the EM algorithm is used to obtain MPL estimates of the re-

gression coefficients of the parametric part and to estimate the nonparametric component as a

natural cubic spline. We proposed the EM algorithm to estimate the smoothing parameter using

a modification of the mixed model proposed by Green (1987). The first simulation study validates

the performance of our method and the second study indicates that there is an efficiency gain of

the t-SMEC model in relation to the N-SMEC model for data with tails heavier than normal. A

real data set previously analyzed under N-LMEC and t-LMEC models is reanalyzed under the

semiparametric mixed model, showing the flexibility of the t-SMEC model to fit the data set in

which we do not know the functional form that relates the variables. The codes in R (R Core

Team, 2020) used in the application can be obtained from the authors upon request.

In this work, we have discussed the estimation of a single nonparametric function. But the

methods can be generalized to additive mixed models in the presence of multiple nonparametric

additive covariate effects and non-Gaussian outcomes (Ibacache-Pulgar et al., 2013). Although

the t-SMEC model considered here has shown great flexibility for modeling symmetric data with

indications of lighter or heavier tails than the normal distributions, its robustness against outliers

can be seriously affected by the presence of skewness. Thus, it is of interest to generalize the

t-SMEC model by considering a more flexible family of distributions, such as the scale mixtures of

skew-normal (SMSN) distribution class, to accommodate the censoring, skewness, and heaviness

in tails simultaneously.
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