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RESUMO

A selegdo de genotipos superiores, através da aplicacdo de selecdo gendmica (SG) e estudos de
associacdo gendmica ampla (GWAS), melhoraram drasticamente a velocidade e a escala da
genética aplicada no melhoramento florestal. No entanto, a escolha da melhor metodologia a ser
adotada varia de acordo com os objetivos a serem alcangados em cada etapa de desenvolvimento
do programa de melhoramento. A SG ¢ uma excelente estratégia a ser adotada nas fases iniciais e
intermediaria de programas de melhoramento, para a sele¢do de gendtipos superiores. Nos tltimos
anos, os esfor¢os para o melhoramento de espécies perenes se voltaram para a SG, pois ela deve
permitir que a maioria das fontes de variagdo para caracteristicas complexas sejam rastreadas.
Neste contexto de SG, também vem se destacando a incorporacdo de métodos avangados de
aprendizado de maquina, devido ao fato destes algoritmos permitirem treinamento usando
representacdo de dados mais complexos e por ndo exigirem pressuposicdes quanto ao modelo.
Dentre os varios métodos de aprendizado existentes, a sele¢do de atributos foi o escolhido para
estudo na presente tese. A selecdo de atributos permite a redugdo da densidade de marcadores e
constru¢ao de modelos simples e abrangentes de predi¢do, evitando a atribuicdo de efeitos nao
genéticos aos marcadores e aumentando o poder preditivo dos fenotipos de interesse.
Complementarmente & SG, com o objetivo de ampliar o entendimento da arquitetura e base
genética dos fenotipos estudados, também foi adotada a estratégia de estudo quantitativo da
interacdo genotipo-fenotipo através do GWAS. Para a interpretagdo de como os genes descobertos
por GWAS e SG influenciam nas caracteristicas analisadas, foram adotadas estratégias de anotagdo
de vias genéticas e ontologias identificadas com transcriptomas. Redes de co-expressdo génica
foram construidas, com intuito de desenvolver uma compreensdo global da expressdo génica e
fungdo bioldgica possivelmente correlacionada com os genes candidatos a modulagdo dos
fenotipos de interesse. A combinagdo de diferentes estatisticas e analises gendmicas, como SG,
aprendizado de maquina, GWAS e redes de co-expressdo gé€nica, se torna uma estratégia
promissora para que seja possivel lidar efetivamente com o melhoramento de caracteres

complexos. Desta forma, o objetivo central da tese que se apresenta foi integrar multiplas analises

omicas: SG, GWAS, ML e rede de co-expressdo génica para selecdo de gendtipos superiores em

espécies arboreas.



Palavras-chave: Selecdo Gendmica, Associacdo gendémica ampla (GWAS), Aprendizado de

Maquina, Melhoramento Florestal, Caracteristicas Complexas



ABSTRACT

The selection of superior genotypes, through the application of genomic selection (GS) and
genome-wide association studies (GWAS), has dramatically improved the speed and scale of
genetics applied to forest breeding. However, the choice of the best methodology to be adopted
varies according to the aims to be achieved in each stage of development of the breeding program.
GS is an excellent strategy to be adopted in the initial and intermediate steps of breeding programs,
for the selection of superior genotypes. In recent years, efforts to improve perennial species have
turned to GS, as it should allow tracking of most sources of variation for complex traits. In this
context of GS, the incorporation of advanced methods of machine learning has also been
highlighted, due to the fact that these algorithms allow training using more complex data
representation and because they do not require assumptions about the model. Among the various
existing learning algorithms, we applied in the present study, the feature selection, which aims to
reduce the density of markers and build simple and comprehensive prediction models, avoiding
the attribution of non-genetic effects to the markers and increasing the predictive power of the
phenotypes. In addition to GS, with the objective of expanding the understanding of the
architecture and genetic basis of the phenotypes studied, the strategy with GWAS was also
adopted. For the interpretation of how the genes discovered by GWAS and GS influence the
analyzed traits, strategies of annotation of genetic pathways and ontologies identified with
transcriptomes were adopted. Gene co-expression networks were constructed in order to develop
a global understanding of gene expression and biological function possibly correlated with
candidate genes for modulating the phenotypes of interest. The combination of different statistics
and genomic analyses, such as SG, machine learning, GWAS and gene co-expression networks,
becomes a promising strategy to effectively deal with the improvement of complex traits. Thus,
the main objective of this thesis was to integrate multiple omic analyses: SG, GWAS, ML and
gene co-expression networks for the selection of superior genotypes in forest trees.

Keywords: Genomic Selection, Genome Wide Association Studies (GWAS), Machine

Learning, Forestry Breeding, Complex Traits
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2. PREFACIO

A presente tese esta organizada no formato de capitulos. As diferentes etapas desenvolvidas
neste trabalho s3o apresentadas no formato de dois artigos cientificos e um capitulos de livro.

Inicialmente, serdo apresentadas uma introdugdo geral e uma revisdo bibliografica, que
compreende os seguintes topicos: (1) Melhoramento de pinus e (2) Abordagem integrada de
analises de Selecdo Gendmica, Aprendizado de Maquina, GWAS e redes de co-expressdo génica
no melhoramento de espécies arboreas.

Em seguida, ¢ apresentado o capitulo I, em formato de artigo, dedicado a abordagem das
estratégias multi-Omicas de melhoramento florestal em pinus, proposta nos principais objetivos da
presente tese: Integrar multiplas andlises 6micas: SG, GWAS, ML e rede de co-expressdo génica
para sele¢dao de genotipos superiores em pinus.

No capitulo II ¢ apresentado o artigo sobre resposta a frio em seringueira, onde foi aplicado
a analise de redes de co-expressdo génica para descoberta das principais vias metabodlicas
envolvidas na expressdo génica dessas arvores sobre estresse de baixas temperaturas.

O capitulo IIT apresenta dois topicos escritos pela aluna, que irdo compor dois capitulos de
um livro sobre transcriptome da editora Elsevier, sendo eles: (1) “Analysis of transcript expression
and gene regulation (research involving fungi that act mainly on the degradation of biomass)” e
(2) “Transcriptomics in the context of abiotic or biotic stress / agricultural sciences (mainly
cultivated plants and models with wild forest trees)”.

Ambos os capitulos, sdo parte do livio: TRANSCRIPTOME PROFILING: PROGRESS
AND PROSPECTS” by M.A. Ali and J. Lee, em processo de edicdo. Os dois topicos escritos pela
aluna e compdem uma revisdo bibliografica sobre estudos utilizando transcriptomas em plantas.
Os topicos escritos pela aluna sdo:

e Expression analysis/differential expression analysis: Programs, statistical analysis,
validation of differential expression analysis

e Transcriptome and breeding in Orphan crops
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Os resultados obtidos nos capitulos I e II sdo apresentados no Capitulo IV- “Principais
resultados”, seguido das conclusdes e perspectivas para o prosseguimento dos estudos genéticos e
gendmicos em espécies florestais cultivadas.

No Anexo, encontram-se a descri¢do e principais os resultados obtidos nos dois periodos
de em estagio no exterior, (1) Universidade da Florida—uma ano e (2) SRUC — 3 meses, realizados

durante o periodo de doutorado.
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3.1 INTRODUCAO GERAL

Loblolly pine, a espécie de pinus com um dos maiores genomas conhecidos, e seringueira,
a arvore com maior producdo de latex para borracha natural, sdo importantes espécies florestais,
com relevancia econdmica a nivel mundial. L. pine, além da sua grande importancia para os EUA,
também tem papel significativo para a economia do Brasil, pois € a espécie de pinus mais cultivada
no pais e oferece diversos produtos fundamentais para a sociedade, como madeira, celulose,
borracha, algodao etc.

Assim como em seringueira, devido ao longo ciclo de vida de pinus, os programas de
melhoramento dependem de novas tecnologias para aumentar a produtividade das florestas
plantadas, selecionar caracteristicas de interesse no setor e reduzir impactos ambientais. Portanto,
as informagdes gendmicas nestas arvores florestais sdo necessarias para preparar o caminho para
o melhoramento das proximas geragoes.

A aplicagdo da selecdo genomica (SG), desde seu desenvolvimento ha quase duas décadas
(Meuwissen et al. 2001), melhorou drasticamente a velocidade e a escala da genética aplicada e da
pesquisa de melhoramento (Daetwyler et al. 2013). Modelos de SG sdo treinados em uma
populacdo reprodutora com um subconjunto de dados genotipicos e fenotipicos, permitindo aos
criadores prever valores genéticos para individuos genotipados com fenotipos desconhecidos
(Meuwissen et al. 2001).

O desenvolvimento de tais modelos de previsdo permite acelerar o melhoramento e
compreender melhor o controle genético da resisténcia de pragas, bem como caracteristicas de
interesse econdmico como crescimento e qualidade da madeira (Burdon and Wilcox, 2011).

Por causa da proliferagdo de tecnologias gendmicas e um declinio constante nos custos de
genotipagem (Heffner et al. 2010; Thomson 2014), ha um forte impulso para os melhoristas
aproveitarem ao maximo a disponibilidade de extensos conjuntos de marcadores moleculares para
ganhos de selecdo na agricultura e silvicultura (Grattapaglia e Resende, 2011; Iwata et al., 2011;
Crossa et al., 2011; Hayes et al., 2013; De Los Campos et al., 2013; Souza et al., 2019).

Os esfor¢os para o melhoramento de espécies perenes se voltaram para a SG, pois a
disponibilidade do grande conjunto de SNPs, que essa estratégia requer, deve permitir que a

maioria das fontes de variag¢do para caracteristicas complexas sejam rastreadas. Assim, estimar os
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efeitos de milhares de marcadores permite a inclusdo de informagdes de todos os marcadores
genotipados, em vez de basear conclusdes apenas em loci que alcancam significancia em todo o
genoma. Esta estratégia, portanto, permite capturar mais da variancia genética aditiva do que na
selecdo tradicional assistida por marcadores com base em loci de caracteristicas quantitativas
(QTL) detectados em Genome-Wide Association Studies (GWAS) (Heffner et al. 2009, Beaulieu
et al., 2011; Porth et al., 2013, Turner-Hissong et al., 2020).

Os melhoristas tém sido capazes de implementar o SG aproveitando a0 maximo os avangos
nas tecnologias de genotipagem de alto rendimento, acumulando milhares de alelos favoraveis
para desenvolver linhas de cultivo resilientes, com alto potencial de rendimento. Um grande
nimero de marcadores de DNA que cobrem todo o genoma deve ser considerado para que o
desequilibrio de liga¢do (LD) entre os marcadores e a maioria das fontes de variagao para fenotipos
complexos valiosos possa ser rastreado. Portanto, o sucesso da SG depende da extensdo da LD
entre os marcadores de DNA e os loci que afetam as caracteristicas complexas para prever o mérito
genético dos individuos.

Esta ndo dependéncia de loci de grande efeito d4 uma vantagem estatistica a SG
(Meuwissen et al. 2001), funcionando bem para caracteristicas complexas (Goddard et al. 2009;
de Los Campos et al. 2013), como volume para espécies florestais, altura das plantas, qualidade e
crescimento da madeira. A aplicacdo da SG para prever o crescimento e a qualidade da madeira
mostraram resultados bem-sucedidos em diferentes espécies de arvores, por exemplo, seringueira
(Souza et al., 2019; Cros et al., 2019), pinus (Resende, et al., 2012; Zapata — Valenzuela et al.,
2013; Isik et al., 2016), eucalipto (Mphahlele et al., 2020) ) e abeto (Beaulieu, et al., 2014;
Beaulieu, Doerksen, et al., 2014; Ratcliffe et al., 2015; Lenz et al., 2017; Chen et al., 2018).

Complementarmente a associagdo gendmica e a predicao gendmica, notou-se a necessidade
de associar os genes e vias biossintéticas envolvidas com as caracteristicas complexas. Prever o
desempenho e a estabilidade do gendtipo ¢ ainda mais desafiador devido as condi¢des ambientais
futuras incertas (de Los Campos et al., 2020).

As plantas precisam desenvolver uma série de mecanismos de ajuste para lidar com muitos
tipos diferentes de estresses abiodticos (temperatura, seca, sal e metais pesados) e bidticos (interacao

das plantas com insetos e patdgenos). Esses estresses podem impedir que a planta atinja o
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crescimento ideal e gerar um impacto significativo na produgao (Bai et al., 2018; Chen et al., 2020;
Garbeva et al., 2020).

Para tolerar esses diferentes estresses, as plantas desenvolveram ampla regulagdo de varios
genes para mediar processos fisioldgicos e bioquimicos. A compreensdo do papel dos genes
envolvidos nesses mecanismos ¢ necessaria para o desenvolvimento de ferramentas
biotecnoldgicas que melhorem caracteristicas agrondmicas desejaveis, como crescimento €
produtividade das plantas (Chen et al., 2020).

A inclusdo de informagdes de mapeamento genético, estudos GWAS, anotagdo de vias
genéticas e ontologias identificadas em transcriptomas e experimentos “in silico”, além de abertura
de cromatina e caracteristicas evolutivas (Ramstein et al. 2020, Lozano et al. 2017), possibilita
explorar com mais detalhes a base genética de diferentes fendtipos (Li et al. 2012).

Essas informagdes adicionais tém grande potencial para aprimorar os estudos de SG e
GWAS. Atualmente, ha uma nova tendéncia de incorporar a partigdo gendmica em métodos de
predi¢do. O particionamento gendmico € capaz de melhorar a SG por ser um framework para testar
hipoteses guiadas, por meio da relagdo entre a influéncia das caracteristicas gendmicas na variancia
explicada para caracteristicas complexas. A incorporagao de particdes genomicas, como multiplos
efeitos aleatorios na avaliagdo de caracteristicas complexas, permite avaliar o tamanho dos efeitos
aleatorios entre diferentes categorias de variantes (Turner-Hissong et al., 2020).

Diferentes camadas de dados 6micos podem ser integradas por meio da genética de
sistemas, ajudando a dissecar e entender melhor a arquitetura de caracteristicas complexas. O
crescente interesse pela genética de sistemas se deve a capacidade de identificar polimorfismos
que modulam a expressdo génica e, a partir do mapeamento dessas variantes genéticas, podemos
decifrar redes bioldgicas e caminhos envolvidos nessas caracteristicas complexas (Balmant et al.,
2020). Nesse contexto, podemos vincular os loci detectados por GWAS a informacdes de redes de
regulagdo génica para obter uma compreensdo mais profunda dos mecanismos subjacentes as
caracteristicas complexas. Apesar do potencial promissor, essa integracdo entre GS, GWAS e
dados genéticos, como expressdo génica e dados de anotacdo, ainda ndo foi feita para a maioria
das espécies arboreas.

Uma forma atual e promissora para integracao de dados gendmicos de selecdo e associacido

gendmica, com foco na capacidade preditiva e conexdo ldgica por tras dos padrdes biologicos
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identificados em marcadores moleculares e dados fenotipicos, ¢ através do uso de modelos de
aprendizado de méaquina (Machine Learning - ML) (Azodi et al., 2020).

O uso de ML vem ganhando espago ao se tratar do desafio de analisar grande quantidade
de dados e em situagdes em que o numero de parametros ¢ muito maior que o numero de
observagdes. O aprendizado de maquina tem sido amplamente aplicado em dados de
processamento de imagem, reconhecimento de dudio e mineragdo de texto, e os algoritmos de
aprendizado sdo livres de especificacdo de modelo e podem capturar informag¢des imprevistas de
conjuntos de dados de alto rendimento (Namin et al., 2018). Isso é atraente em estudos de
associacdo gendémica (Tong and Nikoloski, 2021). Alguns algoritmos avangados de aprendizado
de maquina, como métodos de conjunto e algoritmos de aprendizado profundo, podem ajudar na

previsao habilitada para genoma (Aono et al., 2020).
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3.2 REVISAO BIBLIOGRAFICA

3.2.1 Melhoramento de pinus

Em um contexto em que as mudancas climaticas estdo ameagando florestas e afetando o
rendimento atual e futuro de espécies agricolas, se faz urgente a aplicacdo de esforcos para lidar
com essas mudangas (NOAA National Centers for Environmental Information, 2020).

As espécies florestais sdo organismos estacionarios que enfrentam o grande desafio de ter
que ajustar continuamente sua fisiologia para responder aos estresses durante seu longo ciclo de
vida (Gonzalez et al., 2018; Polle et al., 2019; Vieira et al., 2019). Esses estresses abioticos, como
extremos de temperatura, seca, sal e metais pesados, e estresses bidticos, como, por exemplo,
resisténcia a pragas e doengas, podem impedir que a planta atinja o crescimento ideal, impactando
significativamente a produ¢do (Chen et al., 2020).

Desde a década de 1950, grandes empresas de produtos florestais comecaram a investir em
silvicultura de plantagcdes e melhoramento de arvores por meio de manejo florestal agressivo para
atender a demanda global por madeira e fibra (Carter et al., 2015). A substituicdo da selecdo
fenotipica pela selecdo genotipica trouxe maior eficiéncia e precisdo ao melhoramento genético.
Viérias espécies importantes de arvores coniferas, como Pinus taeda, (loblolly pine, LP), Larix
gmelinii e Pinus elliottii, foram geneticamente melhorados por vérias geracdes. O melhor material
parental foi selecionado para cruzamento através da predi¢ao de valores genéticos, gerando ganhos
de 20% em volume individual (Lai et al., 2017; Zhang et al., 2020; Emhart et al., 2007).

Considerada a principal arvore florestal para as industrias de madeira, celulose e papel no
sudeste dos Estados Unidos (EUA), LP ¢ uma das arvores florestais de maior importancia
econdmica do mundo (Plomion et al., 2007; Lu et al., 2017). LP ¢ uma conifera dipléide e de vida
longa, que pertence a familia Pinaceae. Para alcangar melhorias em caracteristicas
economicamente importantes em LP, como altura da arvore, volume do caule, qualidade da
madeira e resisténcia a ferrugem fusiforme, através do melhoramento cléssico, requer cerca de 30
anos de ciclo. Além disso, esses tracos complexos variam substancialmente entre as populagdes
(Lauer et al., 2020).

O ciclo de melhoramento tradicional, em pinus, inclui: o periodo para reproducao, de pelo

menos 10 anos, testes de campo, por pelo menos 8§ anos, e propagacio, por pelo menos mais 8 anos
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(Harfouche et al., 2012). Nos EUA, por exemplo, foram necessarios 55 anos para completar trés
ciclos de reproducdo em um programa de melhoramento de LP (Zapata-Valenzuela, 2013).

Mesmo com mais de seis décadas de reproducdo, esta espécie ainda ¢ considerada em
grande parte ndo domesticada, e tem havido uma pressdo crescente para o seu melhoramento (Isik
and McKeand, 2019, Telfer et al., 2019). Nesse contexto, os esfor¢os de melhoramento de LP se
voltaram para abordagens de todo o genoma devido ao seu potencial para acelerar o melhoramento
genético (Ingvarsson and Street, 2011).

Avangos recentes no sequenciamento de proxima geracdo (NGS) e metodologias
biocomputacionais, levaram ao rapido desenvolvimento de recursos gendmicos para LP, como
sequéncias gendmicas (Zimin et al., 2017; Lu et al., 2016), marcadores moleculares de larga escala
(Eckert et al., 2009; De La Torre et al., 2019; Eckert et al., 2010) e mapas genéticos (Neves et al.,
2014). LP possui um genoma complexo, mal caracterizado e extremamente grande
(aproximadamente 21,6 Gb) (Wegrzyn, 2014; O’Brien et al., 1996), que até¢ o momento, pode ser
montado em apenas uma sequéncia de referéncia altamente fragmentada, com mais de um milhao
de scaffolds e até 82 % conteudo de varios elementos de DNA altamente repetitivos (Perera et al.,
2018). Devido a essa complexidade, a maioria dos estudos gendmicos de LP tem se concentrado
na andlise de sequéncias de genes nucleares, que sdo importantes para a aplicacdo de dados
gendmicos para o aprimoramento desta conifera (Carrasco et al., 2017; Baker et al., 2018; de
Oliveira Junkes et al., 2019; Mao et al., 2019), mesmo em casos de informagoes limitadas (Soltis
and Soltis, 2013).

Inicialmente, os melhoristas florestais investiram na sele¢do assistida por marcadores
(MAS), que ¢ uma técnica utilizada para prever o ganho genético através do uso uma pequena
colegdo de variantes (tipicamente polimorfismos de nucleotideo tinico [SNPs]), ligadas a loci de
caracteristicas quantitativas conhecidas (QTL) (Zapata-Valenzuela, 2012). Porém, considerando a
alta complexidade do genoma de LP, sdo esperados erros na defini¢do de um limite estatistico
suficiente para declarar um efeito significativo de um determinado QTL. O poder estatistico para
deteccdo de associacdes entre marcadores e os fenotipos ¢ inversamente proporcional as
correlagdes quadradas (r2) entre os alelos em um locus do marcador e a variante causal (Pritchard
e Przeworski 2001). Portanto, a extensdo do desequilibrio de ligagdo ¢ importante para se

determinar as densidades de marcadores necessarias para representar segmentos de haplétipos nao
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recombinaveis nas populagdes florestais (Yan et al. 2009). A estimativa do desequilibrio de
ligacdo entre loci distantes no mesmo cromossomo ou, em cromossomos diferentes, deve ser
utilizada para investigar a possibilidade de associagdes falso-positivas ou falso-negativas (Platt et
al. 2010).

LP, por ser considerada uma espécie florestal ainda ndo completamente domesticadas, ¢
caracterizada por populacdes que apresentam rapido decaimento no desequilibrio de ligagao
(Neale & Kremer, 2011). O cruzamento dentro de populagdes de coniferas, com grandes
tamanhos populacionais efetivos, geralmente apresenta esse rapido decaimento (r2) para menos de
0,1 em 500 a 1500 bases (Pavy et al. 2012; Brown et al. 2004). Por outro lado, em cruzamentos
multifamiliares usados para estudos de associacdo genética e selecdo gendmica, espera-se que 12
decaia em distancias maiores, proporcionais aos niveis de parentesco (Flint-Garcia et al. 2003).

Além das grandes porcentagens de falso-positivo encontrados com o uso de MAS, esta
técnica também apresenta outra relevante limitacdo, com relacdo a capacidade de prever
caracteristicas complexas controladas por muitos loci de efeito pequeno ndo identificados, como ¢
frequentemente visto nas caracteristicas de maior crescimento econdmico, como crescimento,
tolerancia a seca e qualidade da madeira de arvores florestais.

Considerando tais limitagdes do MAS, os melhoristas passaram a voltar suas atencdes a
uma outra técnica de uso de marcadores moleculares correlacionados a fenotipos de interesse, a
chamada sele¢do gendmica. A SG utiliza variantes distribuidas ao longo do genoma para prever o
valor genético de gendtipos com fenotipos ndo observados (Spindel e McCouch, 2016; Xu et al.,
2020). O uso de SG reduziu a fase de testes de campo para varios meses (Harfouche et al., 2012),
tornando desnecessaria a avaliagdo baseada no fendtipo e permitindo a genotipagem baseada em
marcadores assim que as sementes estavam disponiveis. Tal estratégia reduziu quase pela metade
o ciclo de reproducgdo de LP por possibilitar a avaliacdo de plantas em uma idade muito jovem
(Resende et al., 2012).

SG em LP aumento a eficiéncia do melhoramento dos tragos de interesse economico entre
53-112% em comparagdo com o melhoramento tradicional (Resende et al., 2012), proporcionando
um aumento no rendimento desta cultura florestal, uma vez que acelera o melhoramento de plantas.
No entanto, as ameagas climaticas estdo ocorrendo cada vez com maior intensidade, tornando

necessario acelerar ainda mais a reprodu¢do e melhoramento das plantas em direcdo a adaptagdo
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e resisténcias a essas novas condi¢gdes climdticas extremas. Neste sentido, incorporar novas
abordagens de melhoramento, como a de aprendizado de maquina apoiard a melhoria das culturas
para ajudar a combater os resultados adversos das mudancas climaticas na producdo agricola

(Bayer et al., 2021).

3.2.2 Abordagem integrada de andlises de Selecio Genomica, Aprendizado de Maquina,

GWAS e redes de co-expressao génica no melhoramento de espécies arboreas

Selecio Genomica

A selegdo gendmica envolve a estimativa dos efeitos de um grande ntimero de marcadores
moleculares em uma populagdo de melhoramento através do desenvolvendo um modelo misto para
prever o valor genético dos fendtipos em um diferente conjunto populacional (Meuwissen, Hayes
e Goddard, 2001).

A SG surgiu como uma variante da selegdo assistida por marcadores se vem se
consolidando como uma ferramenta poderosa no auxilio na selecdo de gendtipos superiores,
possibilitando a identificacdo de individuos superiores a partir da predicdo de seus valores
genéticos, obtidos pela analise de milhares de dados de polimorfismo de DNA e de um reduzido
conjunto de dados fenotipicos (Meuwissen et al., 2001).

Nesta abordagem, marcadores distribuidos por todo o genoma sao utilizados para predizer
o mérito genético de individuos, visando a selecdo de materiais com desempenho desejado de
acordo com o carater em estudo (Meuwissen et al. 2001). Em geral, os modelos estatisticos
utilizados em SG sdo baseados na pressuposi¢ao de normalidade dos valores fenotipicos. Visando
contornar essa limitacdo, Pérez e de los Campos (2014) propuseram a utilizagdo de modelos
lineares generalizados sob o enfoque bayesiano (BGLR) estendendo assim a sele¢do gendmica a
modelos continuos e discretos. Desta forma, os métodos mais tradicionais para analises de SG sdo
baseados em diferentes suposicdes sobre os dados de entrada. Dois principais pressupostos
dividem tais métodos: 1) métodos Bayesianos, que permitem que a maioria dos SNPs tenha
variancia independente, como os BLUP de regressdo de crista: BayesA, BayesB, propostos por
Meuwissen et al., 2001; Bayes C, proposto por Habier et al., 2011, Bayesian Lasso de Park &
Casella, 2008, reproduzindo o espago de Hilbert do kernel (Gianola et al. al., 2006) e; 2) métodos
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que assumem que todos os SNPs contribuem igualmente para o fendtipo, como o BLUP gendmico

(GBLUP) (VanRaden, 2008).

Aprendizado de Maquina

Apesar do consagrado uso de SG no melhoramento de plantas, existem fatores
complicadores aos modelos convencionais de predigdo, tais como epistasia e dominancia, que sao
efeitos que precisam ser estabelecidos a priori para a utilizagdo do modelo. Uma alternativa para
lidar com as restricdes associadas aos dados de alta dimensdo utilizados na SG, ¢ o uso de
abordagens de aprendizado de méaquina e aprendizado profundo nas tarefas de predicdo gendmica
(Montesinos-Lopez et al., 2021).

O aprendizado profundo ¢ um subcampo do aprendizado de maquina, que por sua vez, ¢ um
subcampo da inteligéncia artificial. O aprendizado profundo compreende métodos que
implementam modelos ndo paramétricos, sendo interessantes por sua capacidade de se adaptar a
associacdo complicada entre os dados e seus padrdes ocultos de estrutura desconhecida, que nao
poderiam ser incorporados de inicio em modelos paramétricos (Kononenko et al., 2007).

A crescente incorporagdo de métodos avangados de ML, como por exemplo as Redes
Neurais Artificiais (RNA) e Florestas Aleatorias, no contexto de sele¢do gendmica, se deve pelo
fato dos algoritmos permitirem treinamento usando representacdo de dados mais complexos e por
ndo exigirem pressuposigdes quanto ao modelo. Os resultados de ML ndo dependem da
distribuicdo das varidveis e si, mas sim do processo de aprendizagem. Essa caracteristica dos
métodos de aprendizado estatistico permite que se possa modelar efeitos ndo aditivos menores, tal
como a interagdo entre genotipos e entre fendtipos (Bayer et al., 2021).

Muitas variantes dos métodos estatisticos tradicionais de GS foram propostas utilizando ML
(Montesinos-Lopez et al., 2019), como o BLUP de multiplos loci ajustados por parentesco (Yin et
al., 2020), que utiliza métodos desenvolvidos em ML para otimizar pardmetros de um modelo
linear misto enquanto se ajusta a estrutura populacional. Outra alternativa para otimizagao dos
modelos de previsdo, € o uso de ML para selecdo de atributos (feature selection — FS).

A FS tem por objetivo, a redugdo do niimero de SNPs em um conjunto de dados de
sequenciamento, identificando um subconjunto de marcadores com maior capacidade preditiva,

removendo marcadores com menor significado ao fenétipo predito (Dash e Liu, 1997). A reducao
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da densidade de marcadores e constru¢ao de modelos simples e abrangentes de predigdo, evitando
a atribui¢do de efeitos ndo genéticos aos marcadores (Hickey at al., 2014), torna a FS, um método
de grande interesse para o aumento do poder preditivo de fenotipos de interesse (Li et al., 2018).
Além do ganhos em precisdo, a FS também oferece vantagem a SG em termos de redugdo de
tempo, necessario para analises computacionais, € custos de genotipagem para criagdo de um

conjunto de SNPs suficientes para predi¢ao fenotipica (Aono et al., 2020).

GWAS e redes de co-expressio génica

Além da predi¢do gendmica, ha outro método estatistico denominado associagdo genomica
ampla (GWAS), do qual podemos fazer uso para identificacdo das complexas relagdes entre as
variagdes genotipicas e fenotipicas dos porta- enxertos em seringueira. O estudo de GWAS ¢ um
método onde marcadores associados com os tragos de interesse sdo determinados via desequilibrio
de ligagdo e frequéncia de alelos (Weir, 2008).

Atualmente, com o alto nivel de rendimento tecnoldgico para sequenciamento e maior
facilidade de acesso a informagdes fenotipicas, presentes na grande quantidade de populacao de
melhoramento florestal de referéncia, o GWAS também se tornou uma interessante estratégia para
selecdo de genotipos superiores. A associagdo genOmica possibilita o aprofundamento do
conhecimento sobre o grau de associacdo entre alguns marcadores genéticos e regides
génicas/cromossOmicas com a expressao fenotipica de caracteristicas de interesse (HUANG &
HAN, 2014).

O GWAS tem potencial para identificar as variantes genéticas com maior efeito sobre a
caracteristica fenotipica estudada, especialmente caracteristicas que sofrem efeito de um ou alguns
genes, a fim de utilizd-las nas avaliagdes genéticas das plantas. Para fendtipos que sdo afetados
por numerosos loci de caracteristicas quantitativas menores, 0 GWAS tem se mostrado menos
eficiente (Kainer et al., 2015), principalmente pelo desafio na identifica¢do de genes causais. Além
do desafio na identificacdo de uma lista de potenciais genes causais, ha poucas fontes de
informagdes funcionais que podem ajudar na identificagdo desses genes ligados a um fendtipo,
dificultando a interpretacdo bioldgica de locus identificados.

Desta forma, para suprir este gargalo no desenvolvimento de uma nova compreensao global

de como os genes influenciam as caracteristicas moduladas por varios genes em plantas, surge a
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necessidade de conciliar os estudos de GWAS com outras estratégias genomicas, como o uso de
redes de co-expressdo génica. A partir de dados de transcriptomas, fonte valiosa de informagdes
génicas e anotagoes, ¢ possivel construir redes de co-expressdo, que permitem o levantamento do
perfil de expressdo génica em diferentes contextos (diferentes tecidos e fases de desenvolvimento),
permitindo a contextualizacdo das informacdes de expressdo génica, sua funcdo bioldgica e
possiveis associacdes com variagdes no fendtipo. Como a rede de co-expressdo fornece uma
medida global de relacionamentos funcionais, inclusive a de variagdes genéticas que conduzem o
fenotipo, espera-se que as redes fornegam um poderoso recurso para interpretar os loci capturados
pelo GWAS (Schaefer et al., 2018).

Adicionalmente a possibilidade de capturar relagdes funcionais por meio das relagdes de co-
expressao de varios genes diferentes que podem estar associados a um fendtipo, as redes de co-
expressao apresentam uma forma potencial de classificacdo dos genes identificados por GWAS.
Essa classificagdo pode ser realizada quanto a centralidade dos genes candidatos do GWAS na
modulagdo da caracteristica fenotipica. Genes identificados como centrais na rede, podem ser
classificados como moduladores diretos da caracteristica associada, enquanto, os genes periféricos,
afetam tal caracteristica por meio de seus efeitos indiretos nas redes, através das suas correlagdes
com os genes centrais (Liu et al., 2019).

A combinacdo de diferentes estatisticas e analises gendmicas, como SG, aprendizado de
maquina, GWAS e redes de co-expressdo génica, se torna uma estratégia promissoras para que
seja possivel lidar efetivamente com o melhoramento de caracteres complexos. A implementacao
destas técnicas de melhoramento em espécies florestais se apresenta como solucdo inovadora e
promissora para lidar com as caracteristicas biologicas e genéticas destes organismos complexos,
considerando a importancia dos caracteres quantitativos complexos e, muitas vezes estruturados
nestas espécies. Além disso, a dificuldade e o elevado custo da fenotipagem em arvores, também
torna atrativo o uso de genotipagem em larga escala para predi¢ao de fendtipos com caracteristicas

melhoradas.
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4. OBJETIVOS

4.1 OBJETIVO GERAL

Integrar multiplas analises dmicas: SG, GWAS, ML e rede de co-expressdo génica para

selecdo de gendtipos superiores em espécies arboreas.

4.2 OBJETIVOS ESPECIFICOS

1) Aplicar modelos de predicao gendmica usando caracteristicas de importancia econdmica
para espécies florestais, como volume, para a selecdo precoce de gendtipos superiores usando um
extenso conjunto de dados de marcadores SNP e dados fenotipicos de LP.

2) Avaliar a aplicacdo de técnicas de aprendizado de maquina, através da selegdo de
atributos (FS), para constru¢do de subconjuntos dos dados SNP utilizados em tarefa preditiva,
comparando o ML como ferramenta complementar as técnicas tradicionais de SG.

3) Aplicar Associagdo Gendmica (GWAS) para identificar marcadores moleculares
associados a caracteristica fenotipica de volume em pinus

4) Usar redes de co-expressao génica para investigar as vias metabolicas relacionadas a

volume em pinus e, resposta a frio em seringueira.
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5. CAPITULO I: ARTIGO CIENTIFICO SOBRE SG, ML, GWAS E REDES DE CO-
EXPRESSAO GENICA EM PINUS

Unraveling growth molecular mechanisms in Pinus taeda with GWAS, machine

learning and gene coexpression networks

Abstract

Pinus taeda (loblolly pine LP), a long-lived tree species, is one of the world's most economically
important forest trees. Genetic improvement programs for pine trees have focused on survival,
early and rapid growth, resistance to diseases and pests, and stem shape. Among the growth traits,
volume is one of the most important variables in forests, and monitoring it is one of the main tasks
of regional management plans. Despite the great interest in increasing forest volume, there is a
great challenge in unraveling the molecular mechanisms behind this quantitative trait since it is
presumably influenced by the action of an unknown network of genes interacting through complex
molecular mechanisms. This challenge becomes even greater considering the extremely large size
and high complexity of the Pinus genome, making the characterization, sequencing and
computational analysis difficult. In this study, we present the first comprehensive integrated
analysis of LP involving genetic markers in association with volume (via GWAS) and ML-selected
markers for genomic selection (GS) to understand which biological pathways are involved with
good phenotypes for volume. The objective of this data integration was to provide a functional
characterization of the genetic marker regions selected by GWAS and ML. We used a population
of LP in the 2nd cycle of breeding and testing composed of full-sib progenies established at seven
sites by the Cooperative Forest Genetics Research Program at the University of Florida. A total of
1,692 individuals were phenotyped and genotyped using sequence capture probes targeting
putative genes. Probes were developed based on an elite germplasm transcriptome from LP. A
total of 31,589 SNPs were identified and used to perform a GWAS through a multilocus mixed
model. A precision core marker set with 7,864 SNPs selected through machine learning, i.e.,
feature selection (FS), was used for GS, providing a predictive accuracy (R Pearson coefficient)
of 0.79. For genome annotation and the construction of gene coexpression networks, three

transcriptomes were assembled based on data from different pine species (Pinus taeda, Pinus
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elliottii and Pinus radiata). We selected genes associated with the target trait and assessed the
cascade of related molecular mechanisms within coexpression networks. These results advance
our understanding of the genetics influencing wood traits and reveal candidate genes for future
functional studies, as well as increase our understanding of quantitative genetics and the genomics
of complex phenotypic variations in LP.

Keywords: Machine learning, RNA-Seq, genomic prediction, GWAS, gene coexpression network,

forest breeding

1. Introduction

Since the 1950s, large forest product companies have started to invest in plantation
silviculture and tree breeding through aggressive forest management to meet the global demand
for wood and fiber (Carter et al., 2015). Considered the leading forest tree for the timber, pulp and
paper industries in the southeastern United States (US), Pinus taeda (loblolly pine, LP) is one of
the most economically important forest trees in the world (Plomion et al., 2007; Lu et al., 2017).
Even with more than six decades of breeding, this species is still considered largely
undomesticated, and there has been increasing pressure for its improvement with lasting effects on
forest productivity, forest values and ecosystem services (Isik and McKeand, 2019; Telfer et al.,
2019).

The LP breeding cycle with traditional phenotypic selection based on economically
important traits requires 15 to 30 years, including at least 8 years of field testing (Harfouche et al.,
2012). Even though classical pine breeding strategies have provided significant gains for the last
30 years, efforts in biotechnology and omics-based approaches have been suggested as a tool to
expand such genetic gains (Poovaiah et al., 2020; Caballero et al., 2021; Goralogia et al., 2021;
Shalizi et al., 2022); for LP, the development of such strategies is hindered by the complex genome
of the species.

Even with recent advances in sequencing technologies, the pine genome could only be
assembled into a highly fragmented draft reference with more than one million scaffolds and up to
an 82% content of various highly repetitive DNA elements (Perera et al., 2018). This fact is
explained by its complex, poorly characterized and extremely large genome (1C=21.6 Gb)

(O'Brien et al., 1996; Wegrzyn et al., 2014; Zimin et al., 2017). Such complexity has led LP studies
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to focus on restricted genomic analyses, mostly on nuclear gene sequences, which have been the
main source of molecular data for the improvement of this conifer (Mao et al., 2019; de Oliveira
Junkes et al., 2019; Carrasco et al., 2017; Baker et al., 2018). In this context, the inclusion of
additional molecular data sources can benefit LP efforts, especially for high quantitative traits,
such as stem volume (SV).

SV is one of the most important physiological variables in forest trees, and its monitoring
is one of the main tasks of regional management plans (Shalizi and Isik, 2019). The targeting of
genetic breeding programs to produce varieties with high volume is increasing for many forest
species, including LP (Shalizi and Isik, 2019; Lu et al., 2018), in which an enlarged volume is
related to increased fuelwood production (Bouvet et al., 2020). However, the challenge of
increasing volume in LP forestry production is precisely the greater clarification of the polygenic
basis of this complex trait that can explain the phenotypic variations, which vary substantially
between populations (Lauer et al., 2020).

Statistical models for associating genotypes with phenotypes have been of great interest
for breeding, especially as a tool for genomic selection (GS) and a means of deciphering relevant
associations through genome-wide association studies (GWASs). These models use multiple
methods with varying degrees of complexity, computational efficiency and predictive accuracy
(Jannink et al., 2010; Desta and Ortiz, 2014; Wang et al., 2018). A number of proof-of-concept
studies have demonstrated the success of GS implementation in forest trees, leading to more
dynamic breeding programs and ensuring adaptation to the influence of abiotic and biotic stresses
in less time (Resende et al. 2012b; Zapata-Valenzuela et al. 2012; Grattapaglia 2014; Beaulieu et
al. 2014; Isik et al. 2016; Lenz et al. 2020).

Even though theoretical genomic prediction models are based on the estimation of additive
effects through a large number of molecular markers capable of representing the phenotypic
contributions of coding and noncoding regions of the genome (Meuwissen et al., 2001), such a
theory has not been sufficient to elucidate which evolutionary forces maintain the wide variation
in the complex genome of coniferous trees. On the other hand, through GWASs, it is possible to
assess how this genomic variation is maintained and to estimate the forces that shape the genetic
architecture of complex traits (De La Torre et al., 2019). However, even combining large-scale

phenotypic and genotypic datasets with robust statistical models, the genetic markers identified by
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a GWAS often reside outside annotated gene boundaries and can be relatively far from the actual
causal polymorphisms (Schaefer et al., 2018). For a deeper comprehension, additional
methodologies to GS and GWAS are needed, and the integration of different layers of omics can
provide a greater picture of unknown molecular interactions.

Nonparametric models for genomic prediction can be an alternative for modeling
genotype-phenotype associations, with the role of machine learning (ML) still not fully understood
(Wang et al., 2018). Additionally, multiomics joint analyses have demonstrated a high potential to
dissect and better understand the architecture of complex traits, mapping genetic variants with
unknown biological roles to molecular mechanisms through integrative methodologies, such as
gene coexpression networks (Schaefer et al., 2018; Francisco et al., 2021). Loci detected under
association with a trait can be linked to genes within coexpressed modules, providing a deeper
comprehension of the mechanisms underlying the complex traits (Francisco et al., 2021).

In this study, we used a targeted genotyping approach and SV phenotypes of 1,999
individuals from a breeding population of LP to identify genetic markers in association with
volume via GWAS and ML-based prioritization. The employed GWAS approach elucidated the
genetic architecture of volume in seven populations in Florida. In addition, we showed that in
addition to accurately predicting volume phenotypes, we could employ genomic prediction models
for broader marker prioritization with ML approaches. Finally, all the selected markers were linked
to genes, and a gene coexpression network was leveraged to assess how the volume influenced

plant growth, ultimately assisting breeders in the direction of the selection.

2. Material and Methods
2.1. Breeding population and plant material

Phenotypic measurements were collected from the 2nd cycle of breeding and selection
performed by the Cooperative Forest Genetics Research Program (CFGRP) at the University of
Florida. The population was derived from crosses of twenty-eight LP progenitors, which were used
as females and males. A total of 25,080 full-sib progenies from 45 crosses (hereafter families)
were field tested at seven different sites established in 2006: AT238, BT240, FT239, HT243,
1T244, L1242 and WT245. The complete individual distribution is described in the Supplementary

Material (Section 1). The experimental design was a randomized complete block design with
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single-tree plots arranged in an alpha lattice with 20 incomplete blocks in 12 replications with 300
trees. The analysis was focused on the stem volume (SV) trait, calculated based on the stem height
(SH) and the diameter at breast height (DBH) at 1.4 meters. These measures were obtained at ages
3 and 4 years, converted into decimeters (dm) and used for estimating SV in dm? based on the
inside-bark total stem equation (Sherrill et al., 2011):

SV =0.20571 — 0.00237 x (DBH? x SH)

2.2. Phenotypic Data Analysis

SV phenotypes were analyzed using ASReml v.2 (Gilmour, et al., 2006) according to the
linear mixed model created:

Yiigmn =+ Ry + Bjy + Py + Q@ + G + Fi + €3

where Y is the phenotypic measure of the ith genotype considering the j¢i block, the 4 replication,
and the mth and nth positions (rows and columns). The overall mean is represented by u, and the
fixed effects of the rth replication are represented by R,. The random effects were modeled to
estimate the contributions of (1) the jt4 block in the r¢h replication (B;.); (2) the mth row in the rth
replication (Pn); (3) the nth column in the rth replication (Q); (4) the ith genotype (G)); (5) the
family of the ith genotype (£7); and (6) the residual error e.

All the remaining analyses were performed using R statistical software (Team et al., 2013).
Individual narrow-sense heritability 4> was calculated as the ratio of the additive variance o; to

the total phenotypic variance (0§ + 05 + 0f + 0§ + 0 + 0Z). The dominance ratio (d*) was

estimated as 4 X g2 divided by the total phenotypic variance. Term 4 is included because of the
presence of half-siblings within the block and the replication.

Data distributions were plotted using the ggplot2 R package (Wickham, H, 2016). As the
final measure, we discarded phenotypic measurements of trees that died and considered for each
genotype the adjusted predicted least square means across sites. Differences among sites were

assessed using analysis of variance (ANOVA).

2.3. Genotypic Analyses
Genomic DNA from 1,692 LP seedling samples was extracted and sequenced using

sequence capture by Rapid Genomics (Gainesville, FL). These genotypes were selected from four
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sites (AT23804, BT24004, HT24304 and 1T24404) and 45 families. Polymorphisms were
evaluated in genomic regions captured by 11,867 probes designed based on the probe set used for
sequence capture containing 54,773 probes representing 14,729 P. taeda unigenes (Neves et al.,
2013). Target enriched libraries were sequenced by the company RapidGenomic using outputs
from Illumina HiSeq 2000. The approaches of reduced representation of the LP genome using
sequence capture, as well as other approaches such as exome capture (Neves et al., 2013) and
Pita50K array (Caballero et al., 2021), are robust strategies for detecting variants from different
fragments from the many genome copies within each sample. In this way, sequence capture has
become a cost-effective alternative to whole-genome sequencing (Lebedev et al., 2020). The use
of probes (single-stranded sequence of DNA selected from reference sequence data including
genomes and/or transcriptomes used) were used to hybridize with its complementary sequence in
the samples of genotypes, allowing target SNPs, genes and QTLs at the same time to produce
sequence data in each region.

Raw reads from sequence capture data from genotypes were aligned against the LP
reference genome v.2.0 (GenBank accession GCA_000404065.3) (Zimin et al., 2017) using the
Bowtie2 v.2.2.9 algorithm (Langmead and Salzberg, 2012). Only the regions of the probes with a
500 bp extension for each side of the sequence were considered for read mapping. SNP variant
discovery was performed with FreeBayes v1.3.1 software (Garrison and Marth, 2012) with default
parameters, followed by the use of VCFtools (Danecek et al., 2011) and BCFtools v.1.3.1
(Danecek et al., 2015) for SNP filtering. The filtering criteria included the removal of SNPs with
a quality less than 20, a minimum depth of 8, a minimum QUAL score of 30, minimum and
maximum allele frequencies of 0.05 and 0.95, respectively, and a maximum of 10% of individuals
with missing information per SNP. Missing data were imputed as the means.

Principal component analysis (PCA) was performed using the snpReady R package
(Granato et al., 2018). Linkage disequilibrium (LD) between loci was estimated using Pearson
correlation coefficients (R?) for markers within the same scaffold. LD decay was assessed using
the exponential model y = a + be("¢¥) (Tenesa et al., 2004), where x and y are the physical
distance (base pairs) and R?, respectively a + b is the mean level of disequilibrium for loci at the

same location, and e is the exponential term.
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2.4. RNA-Seq Analysis

Data available in the SRA database from three independent experiments were employed in
this research (Mao et al., 2019; de Oliveira Junkes, et al., 2019; Carrasco, et al., 2017). The first
experiment (SRP155070) involved RNA sequencing (RNA-Seq) of three Illumina libraries from
secondary xylem tissues of three 15-year-old P. taeda (Pta) trees from the Yingde Research
Institute of Forestry in Guangdong Province, China, to determine the genes involved in the
terpenoid biosynthesis pathway. The second experiment (PRINAS550136) involved RNA-Seq of
sixteen Illumina libraries extracted from the vascular cambium of four sixteen-year-old trees of P.
elliottii (Pel, slash pine) under field commercial resinosis to better understand the molecular bases
of resin production, a major source of terpenes for the industry. The third experiment
(PRINA295331) involved RNA-Seq of twenty-six Illumina nonnormalized cDNA libraries
synthesized using the stem tissue of 17-month-old genotypes (resistant (G1) and susceptible
(G10)) of P. radiata (Pra). We developed a common bioinformatics pipeline to be applied to these
different sets of data, separated into (I) quality filtering using Trimmomatic v.0.39 (Bolger et al.,
2014), (IT) transcriptome assembly with Trinity v.2.11.0 software (Grabherr et al., 2011), (III)
transcript quantification with Salmon v.1.1.0 software (Patro et al., 2015) (k-mer of 31), (IV)
assembly evaluation with BUSCO v.5.1.2 (Seppey et al., 2019), and (V) transcriptome annotation
with the Trinotate v.3.2.1 pipeline (Bryant et al., 2017).

To detect correspondence of the transcripts to the genomic regions containing probes, all
the assembled transcripts were aligned to the corresponding scaffolds with the BLASTn v.2.11.0
tool (Altschul, et al., 1990), considering only alignments with a minimum e-value of 1e-30 and a
transcript coverage of at least 75%.

To assign GO terms and EC numbers to the assembled contigs, we used Trinotate software
together with the SwissProt database (Supplementary Table 6). All of these assembled contigs

were aligned against LP scaffolds to obtain putative correspondence of probes with transcripts.

2.5. Genome-Wide Association
The first analysis performed in this study for investigation of genotipic markers with
significant effects on phenotypic variation were GWAS. The markers with the main effects in SV

were used for functional inferences based on the neighboring genes and the putative corresponding
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proteins. A GWAS was conducted with the Fixed and Random Model Circulating Probability
Unification (FarmCPU) method implemented in the rMVP R package v.1.0.6 (Yin et al., 2020).
To include genotype-environment correlation in the association mapping, we incorporated the site
information into FarmCPU. SNPs were considered significantly associated with the phenotypes if
the p value was below 0.05/N (Bonferroni correction), with N representing the number of tests
performed. The first tests of the GWAS were performed without covariates (Supplementary Table
7, Supplementary Figs. 6-7).

The functional profiles of significant SNPs were estimated using the assembled
transcriptome data. We assigned for each marker the correspondences from the alignments
performed on RNA-Seq data, considering a window of 10,000 bp from the right and left sides of
the SNP position (20,001 bp in total). We retrieved Gene Ontology (GO) terms and Enzyme

Commission (EC) numbers from the transcriptome annotations.

2.6. Genomic Prediction and Feature Selection

In addition to the GWAS performed, we also investigated the potential of the set of
identified SNP markers for predicting the SV trait in a genomic prediction (GP) model. For such
a task, we used a Bayesian ridge regression (BRR) approach with the R package BGLR (Pérez &
de Los Campos, 2014). Considering our genotype dataset as a matrix Z,,y,,, With n genotypes and
m loci codified as 0 (reference homozygote), 1 (heterozygote) and 2 (alternative homozygote), the
SNP effects (y) were estimated considering the equation:

y=1lu+Zy+e

where y represents the SV trait, u the overall population mean, and e the model residuals
(e~MVN(0,,102,)). The SNP effects were assumed to follow the same normal prior distribution
(y|02y~N (0, azy)) across all loci, with 0%, representing the genetic variance.

Contrasted with the predictions obtained with the models estimated using the entire set of
markers, we evaluated the feasibility of feature selection (FS) techniques for subsetting the SNP
data through putative phenotype-genotype associations. We selected the intersection between at
least two out of three methods established: (i) the gradient tree boosting (GTB) regressor model,
(i1) Pearson correlations (maximum p value of 0.05), and (iii) the support vector machine (SVM)

regression system. With such an estimated dataset, we evaluated the importance of each SNP for
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prediction by calculating their feature importance using two different tree-based ML algorithms:
decision tree (DT) and random forest (RF).

All the models created for prediction were evaluated considering a k-fold (k=10) cross-
validation scenario repeated 100 times and created with the scikit-learn Python v.3 module
(Pedregosa et al., 2011). As evaluation metrics, we used the R Pearson correlation coefficient and

the mean squared error, calculated based on the comparison of the predicted and real values.

2.8. Coexpression Networks

To evaluate the impact of phenotype-associated markers from a broader perspective, we
created gene coexpression networks using Pel and Pra RNA-Seq data and a weighted gene
coexpression network analysis (WGCNA) approach implemented in the R package WGCNA
(Langfelder & Horvath, 2008). After calculating a Pearson correlation matrix based on the
expression of gene pairs, we estimated a soft power B for fitting the network into a scale-free
topology. With the transformed correlations, we calculated a topological overlap matrix (TOM),
which was converted into a dissimilarity matrix for the definition of groups of coexpressed genes
using an average linkage hierarchical clustering approach together with adaptive branch pruning
(Langfelder & Horvath, 2008).

After identifying coexpressed groups containing the genes surrounding SV-associated
markers, we performed an enrichment analysis in each gene set to retrieve enriched biological
process GO terms. We used the topGO R package (Alexa et al., 2006) considering Fisher’s exact
test and a multiple-comparison Bonferroni correction (p value of 0.01).

Based on the proportion of genes putatively associated with SVs inside each coexpressed
group, we selected the specific modules for modeling another gene coexpression network;
however, we used the highest reciprocal rank (HRR) approach (Mutwil et al., 2010) to investigate
specific gene connections and the network topology through centrality measures: (i) degree
(Barabasi and Oltvai, 2004); (i1) stress (Brandes, 2001); (iii) short path length value (Watts and
Strogatz, 1998); (iv) betweenness centrality (Brandes, 2001); and (V) neighborhood connectivity
(Maslov and Sneppen, 2002). To build the network, we considered Pearson correlations with a

minimum coefficient of 0.8 and the 30 strongest connections for each gene. To visualize the
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behavior of the groups modeled by WGCNA in the HRR networks, we used Cytoscape software
v3.7.0 (Shannon, et al. 2003).
Additionally, we used the REVIGO tool (Supek et al., 2011) to summarize GO categories.

3. Results

3.1. Phenotyping

Several LP families representing seedlings planted across seven sites were used in this
study (Supplementary Fig. 1, Supplementary Table 1). All the raw measures for SV phenotyped
in these individuals were corrected based on the mixed model described (Supplementary Fig. 2).
Individuals who did not survive in the field until the phenotyping period were excluded from
further analysis. A total of 19,933 (~80%) surviving individuals were considered for phenotypic

analyses. Heritabilities and dominance ratios were estimated across sites (Supplementary Table 2).

3.2. Genotyping

For genotyping, 1,692 individuals from four environments and 45 families were selected
(Supplementary Table 3). The genotyping process was performed using a probe set used for
sequence capture containing 54,773 probes representing 14,729 P. taeda unigenes (Neves et al.,
2013), resulting in a total of 11,867 probes with adjacent nonoverlapping 120-nt-long regions
extracted as putative probes from the inner part of the UniGene sequence (or predicted exon).
These probes are located in 10,412 sequences from the P. taeda reference genome. The sequencing
experiment generated 996,611 million reads, which were mapped against the probe region
extracted from the P. taeda reference genome with an extension of 500 bp. This step led to the
collapse of probe sequences with close proximity (reducing the 11,867 probes to 10,412
sequences).

Among the sequenced reads, 84.5% were mapped against the probe sequences, resulting in
an initial count of 133,199 markers, including only biallelic SNPs with a minimum quality of 30
and inside sites with a quality above 10 and mapping quality of 30 (minimum allele frequency of
0.01 and no more than 30% missing data). To produce the final dataset to be used in the GWAS,

we used more stringent parameters (maximum of 10% missing genotypes at a SNP and minimum
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and maximum allele frequencies of 0.05 and 0.95, respectively), resulting in 31,589 SNPs
distributed among almost all probes with different quantities depending on the reference sequence
length (Supplementary Fig. 3).

The PCA performed with the SNP data suggested the presence of genetic clusters for each
family (Fig. 1-I), which was not observed when considering the different locations of the
populations. LD decay was estimated with the squared Pearson correlation coefficient (R?)
between SNP pairs linked within respective probes. We observed a rapid decay to the half
maximum R2 = (.05 within less than 100 kb (Fig. 1-1I).
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Fig. 1. Genotypic analyses performed on the SNP data separated into (I) linkage disequilibrium
(LD) decay considering squared Pearson correlations (R?) and distances calculated based on the
respective probes (measured in kilobase pairs); (II) principal component analysis (PCA) scatter
plot of the Pinus taeda individuals colored according to family (the percentage of variance
explained was approximately 5% and 4% for the first and second principal components,

respectively).

3.3. RNA-Seq Analysis

The functional characterization genotypic data can only be better understood through

functional genomics (Ding et al., 2022). In this sense, to refine the biological and annotation
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information of the SNPs, three independent RNA-Seq experiments were used to generate a gene
coexpression network and to supply evidence of biological inferences for genomic regions
containing SV-associated markers. Gene expression profiles can be compared and quantified in
different contexts (tissues, developmental stage, or stress conditions) to indicate joint gene
regulation and shared function (Eisen et al., 1998).

We selected experiments from Pta, Pra and Pel (Supplementary Table 4). All the data
processing procedures were the same for the three experiments. The filtering procedures applied
to the RNA-Seq data retained approximately 85% of the reads, which were assembled with Trinity
software. We generated a total of 75,897, 137,103, and 50,781 genes for Pta, Pra and Pel,
respectively. To evaluate the general quality, precision, contiguity and integrity of the three de
novo assembled transcriptomes, we used different metrics (Supplementary Table 5) together with
BUSCO annotation (Supplementary Fig. 4). These evaluations revealed that the transcriptome sets
are well represented and can serve as a de novo assembled reference; however, we still selected a
subset of genes based on the expression results (Supplementary Table 5), generating final numbers
of 38,472, 37,499, and 33,374 genes for Pta, Pra and Pel, respectively.

A total of 9,537 (92%), 8,132 (78%) and 9,521 (91%) scaffolds containing probes could
be related to the Pta, Pel and Pra transcriptomes, respectively (Supplementary Fig. 5).

3.4. GWAS

We identified seven candidate loci for the SV trait. However, to avoid environmental
biases, we included the sites and family structure as covariates in the final GWAS model. Figure
2-1 shows the quantile-quantile (QQ) plot for the GWAS. This approach enabled the identification
of seven SNPs associated with the SV phenotype (Supplementary Table 8, Supplementary Fig. 8),

with five of them also identified using the model without covariates.
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Fig. 2. (I) Quantile-quantile (QQ) plot of FarmCPU models in the genome-wide association study
(GWAS) with the stem volume (SV) trait. The set of markers associated with SV together with the
other SNPs in linkage disequilibrium (R* > 0.5) is displayed in (II), which is a network

representing these associations within the set.

This set of markers was extended by LD tests, as shown in Figure 2-II and listed in
Supplementary Table 9. No correlations were identified between the SNPs found in association
with SV through GWAS (Supplementary Fig. 9). Surrounding the markers identified through
GWAS and LD tests, we could establish a wide set of genes in such genomic regions through
comparative alignments against the transcriptomes assembled. From the Pra transcriptome, we
found 236 genes for GWAS (830 isoforms) and 191 genes for LD (725 isoforms). From the Pel
dataset, 65 genes were found through GWAS (133 isoforms) and 96 through the LD set (139
isoforms). Finally, from the Pta transcriptome, we found 564 genes (1218 isoforms) associated
with GWAS results and 472 (1004 isoforms) associated with the LD set.

Even though different quantities of genes could be retrieved for every transcriptome
aligned against these genomic regions, there was a clear consensus for the biological functions
retrieved (Supplementary Tables 8-9). Interestingly, the genes identified in the neighborhood of
the marks found by GWAS were mostly transposon elements (TEs) of retrovirus-related Pol
polyprotein from transposon 17.6 (9, TE-17.6), retrovirus-related Pol polyprotein from transposon
RE1 (9, RE1)) and retrovirus-related Pol polyprotein from transposon TNT 1-94 (9, TNT 1-94),

representing 16.17% of these annotations. When we analyzed the annotations of the expanded
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marks in LD, we noticed a similar pattern, containing a large number of TEs, mainly of the TNT-

1-94 type (13), representing 6% of the identified genes.

3.5. Genomic Prediction

Using the SNP dataset, we created genomic prediction models using the BRR methodology
in a 10-fold cross-validation scenario repeated 100 times. With the total set of 31,589 SNPs, the
mean predictive accuracy (R Pearson coefficient) was 0.79 (mean squared error of 0.00023) (Fig.

3-11I), showing the high predictive capability of the dataset employed for predicting SV.
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Fig. 3. Genomic prediction results for stem volume using a total of 31,589 SNPs (All) and 7,864
selected through feature selection (FS) based on (a) Pearson correlations (p value of 0.05), (b)
gradient tree boosting (GTB), and (c) support vector machine (SVM). (I) Markers selected through
each FS method. (II) Distribution of the feature importance estimated for each of the 7,864 SNPs
obtained through a decision tree (DT) and a random forest (RF) model. (IIT) Predictive evaluations.

In addition, different FS techniques were used to decrease the dimensionality of the SNP
data: (i) GTB (498 SNPs retrieved); (ii) Pearson correlations (20,957 SNPs retrieved); and (iii)
SVM (11,440 SNPs retrieved) (Fig. 3-1). From such techniques, we selected a final subset of SNPs
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for estimating the SV predictive model as the intersection of at least two out of the three FS
methods, totaling 7,864 SNPs (~24.89% of the initial marker data). From such markers, we
obtained similar accuracy results (Fig. 3-1II), showing that most of the phenotypic variance could
be associated with this smaller dataset. The similar results of predictive capacity using the total of
markers and those selected with FS (reducing the initial dataset of SNPs by approximately 75%)
point to the potential of SNP selection in GS, representing a major advance in reducing the time
required for predictive computational analyses and supplying reduced markers for studying
phenotype and genotype associations.

Using this dataset selected, we employed an ML-based approach for retrieving additional
phenotype-genotype associations. Through the DT and RF models, we estimated the feature
importance of each SNP for predicting SV, evaluated their distribution in separated boxplots (Fig.
3-II), and retrieved the outliers (1,506 for DT and 635 for RF). From such outliers, we selected the
intersection of these markers found by each model, forming a final set of 128 SNPs, which were
investigated together with GWAS results. Interestingly, all GWAS-associated SNPs were included
in this defined ML set.

3.6. Coexpression Networks

To investigate the implications of GWAS-associated genes in the molecular mechanisms
of pine from a broader perspective, we created different coexpression networks using Pra and Pel
data. We did not include Pta quantifications due to the low sample size. Using a WGCNA
approach, we modeled a different network for each species, considering an estimated soft-power
B of 14 for Pel (R* of ~0.90 and mean connectivity of ~53.10) and Pra (R? of ~0.81 and mean
connectivity of ~143.20). 251 (minimum and maximum sizes of 81 and 14616 with a mean of
471.79) and 83 groups (minimum and maximum sizes of 50 and 4858 with a mean of 132.96)
could be established for the Pra and Pel networks, respectively.

For each one of the groups defined in each network, we evaluated the presence of genes
associated with (i) GWAS markers (7 SNPs); (ii) markers associated with LD with (i) (7 SNPs);
and (iii) ML established markers (128 SNPs). Considering a minimum quantity of two genes
associated with (i) in each group, we performed enrichment analyses for biological process GO

terms (Supplementary Table 10). Two groups (G12 and G159) of the Pel expression network, with
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the expression of 3 ML-selected markers, were enriched for catabolic lignin, relating the
importance of these genes involved in chemical reactions and pathways that result in lignin
breakdown to associate genotypes with the volume trait. The lignin catabolic process also appeared
enriched in the Pra expression network in 3 groups (G13, G36 and G57) involving the coexpression
of 8 markers selected by ML.

Another interesting genetic orthology found in groups (G13, G15 and G19, G65) with
coexpression of 9 markers selected by ML was cellulose metabolic process and biosynthetic
cellulose in Pra. G12, from the Pel network, also showed enrichment of hemicellulose metabolic
processes.

From the groups identified in the network analyses, we found two in the Pra network (G39
and G68) with a significant proportion of genes associated with the selected markers (~92.78% of
194 genes in G39 and ~57.69% from 78 genes in G68) when contrasted to the other modules (mean
proportion of ~1%). For this reason, we considered such groups of genes as a promising set of data
for investigating SV molecular mechanisms and used it to create a novel network based on HRR
methodology. We could create a cohesive network with 270 genes (only two did not present
significant connections) and 3,008 connections (Fig. 4-1). From a treemap created with the
biological process GO terms from such a set of genes (Fig. 4-1I), we can identify biological
processes involved with DNA integration and recombination, cellular aromatic compound
metabolic process, cellular nitrogen compound metabolic, nitrogen compound metabolic process
and transposition, viral latency and viral genome integration into host DNA and cell
(Supplementary Table 10).

In addition to the associated GO terms, the presence of important elements in such a
network was also investigated through centrality measures (Supplementary Table 11). We
identified as hubs of the HRR network the genes TRINITY DN34225 c0 gl, annotated for the
peptidyl-prolyl cis-trans isomerase enzyme, and the gene TRINITY DN37756 c0 gl without
known annotation, both identified by the GWAS, presenting the highest degree value (57). Other
metrics were also analyzed to identify genes with great importance in the network, such as
TRINITY DN12054 c0 g3, annotated for GTP cyclohydrolase 1 enzyme, with the highest stress
value (320134), TRINITY DN3090 cO gl with the lowest short path length value (2) and the
highest value of betweenness centrality (0.206), identified by the FS, and the gene
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TRINITY DN72617 c0 gl, annotated for the nonlysosomal glucosylceramidase enzyme,

showing a higher value of neighborhood connectivity (48).

Fig. 4. (I) Coexpression network created with the highest reciprocal rank (HRR) methodology

considering groups of coexpressed genes selected in the weighted gene coexpression network
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analysis (WGCNA) modeled for Pinus radiata transcriptome data. Each node represents a gene,
colored with (a) gray (nondirect association with stem volume (SV) phenotype), (b) light blue
(genes surrounding markers associated with SV through machine learning methodologies), and
dark blue (genes of (b) and surrounding GWAS SNPs). (IT) Gene Ontology (GO) terms from the

network summarized in a tree map.

4. Discussion

4.1. Pine Populations

Two key questions for forest breeders are which phenotypes to measure and which trees to
select (Matallana-Ramirez et al., 2021). Although the answer to this question depends on the
location of the populations evaluated and the level of diversity involved, volume growth, a trait
evaluated in this work, is one of the traits that forest breeders most often focus on for the evaluation
and selection of phenotypes (Zobel and Talbert, 1984; Shalizi and Isik, 2019; Shalizi et al., 2022).
Since the 1960s and early 1970s, breeders have been able to produce 7-12% more volume per
hectare at harvest than trees grown from wild seeds (Li et al., 1999). In our work, we performed
an in-depth investigation of genomic associations with SV configurations, providing a rich
characterization of not only such putative associations but also the genes and biological processes
involved.

The selection of elite genotypes in LP populations can provide a gain in volume of these
trees of up to 50% in relation to unimproved genotypes (McKeand et al., 2006). The response to
selection is closely related to the heritability of the evaluated phenotype, and the greater this
heritability is, the greater the response to selection (Schmidt et al., 2019; Li et al., 2021). However,
breeding programs that use genetic markers for selection, even to improve traits with low
heritability values, such as volume, can have their efficiency increased considerably. The narrow-
sense heritability estimates for SV in LP vary considerably depending on the statistical strategies
used and are substantially higher for more complex models (Shalizi and Isik, 2019, Schmidt et al.,
2019). We found heritability values for SV ranging from 0.17 to 0.32 among the seven sites
analyzed, indicating that there are different trends of heritability at each site, but in general, the

heritability values are moderate considering the ages of the plants. Such heritability values were
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similar to those of other authors (Shalizi et al., 2020; Xiang et al., 2003). We know that the trend
in volume heritability in LP is increasing over time and that there are also age-age correlations
with other growth traits. The recommended age for selection can be as early as 3 for height and as
early as 4 for diameter at breast height (DAP) or volume (Xiang et al., 2003), which was the age
measured in the data from the present work. The distribution of SVs among the sites indicates that
the distinct genetic origin obtained by crossing the families influences the heritability of each site;
however, the specific characteristics of each site make it difficult to generalize the heritability by
family, considering the very different genetic architectures between the populations.

In addition to the SV distribution across populations, we observed in the PCA performed
with the genetic data a structure that corroborates the division by group families (Fig. 1-1I) and not
by population locations. This structure caused by families was included in the predictive models
to minimize their possible negative effects, especially those related to spurious associations (Wu
etal., 2007; Liu et al., 2016; Norman et al., 2018; Sul et al., 2018).

The results of the SV phenotypic distribution in the breeding populations of LP half-sib
trees used in this study are presented as a good example for the application of quantitative genetics
methods to study 1) the association of genotypes and their phenotypes, as well as 2) the selection
of superior genotypes through GS. GS is an important strategy for long breeding cycles, such as
those required by pine trees, early selection of genotypes with good performance of complex traits
(Bhat et al., 2016) and with good dispersion of the phenotypes, as found here. Previous experiences
with GS for growth and wood quality traits in forest trees showed moderate to high accuracy of
selection models with correlations of 0.6 to 0.8 for full-sib families. The half-sibling family
structure seems to require more markers and the GS accuracy is approximately 0.3 to 0.5. Lower
GS prediction values have been reported for unrelated individuals (Lenz et al., 2017). Here, we
achieve high GS values, as has been previously obtained in full-sib families, with the advantage
of using a very small set of markers.

The high quality of the set of genotypic markers used here for GS may also have been
influenced by the sequence capture method. Reducing genome complexity in LP is a smart strategy
to deal with the challenges of representing and characterizing the extremely large genome in LP,
which makes it difficult to analyze GS and capture most QTL effects in large breeding populations

(Chen et al. al., 2018). The adoption of this type of low-cost and time-saving genotyping strategy
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is an important way to continue making the application of GS in conifers attractive (Neves et al.,
2013). In this sense, the choice of targeted hybridization methods has become popular with its use
for the GS of different forest trees (Chen et al., 2019, Li et al., 2019, Thistlethwaite et al., 2019).
The choice of sequence capture genotyping, based on probes, was based on the challenges
of interrogating the LP megagenome and enabled the detection of high confidence variants. The
sequencing approach considering the selected probes and the polymorphic nature of the
populations, combined with bioinformatics strategies, provided high-quality variants for this work.
The use of Capture-Seq in this work allowed efficient genotyping, with the identification
of a total of 31,589 markers, even using high-quality filters. These SNPs showed LD (Figure 1)
along the genome similar to those reported in other studies using probes designed based on loblolly
pine exome capture: the NimbleGen SeqCap EZ method (Lu et al. al., 2016). That wide range of
genomic information about the breeding material used, is critical to the success of the GS, GWAS

and ML analyses performed.

4.2. GWAS for pine breeding

Despite studies employing GWAS in some pine populations (De La Torre et al., 2019;
Ding et al. 2022), especially for growth traits (Santini et al., 2020), several challenges still remain
related to the many single nucleotide polymorphisms (SNPs) associated with complex traits and
the limited understanding of the functional mechanisms by which these genetic variants are
associated (Khatiwada et al., 2022). Finding a gene underlying a QTL is an enormous task, even
more so in a species with genomes as large as LP.

Brown et al., 2003 used GWAS to associate LP genotypes with wood property traits and
found the relationship of C4H, C3H, 4CL and CCoAOMT of monolignol synthesis with the trait
studied. However, limitations regarding the characteristics of the population studies (strong
linkage disequilibrium) required validation in different populations to test the association of SNPs
in candidate genes with wood property phenotypes. In this sense, the populations studied here
include genomic evaluations in natural populations with a wide distribution on the east coast of
the USA, which is an interesting resource for the study of volume in LP. De La Torre et al., 2018

also used LP populations to find associations between genotypes and 409 variables, including
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morphological and molecular traits. All these studies, including our results, contribute to the
current genomic resources available for LP.

Among the genotypic markers found in association with SV, it was possible to observe
annotations of genes and proteins with an important role in the development of LP volume. One
of these related proteins was cysteine protease RD19, which was already associated with responses
to biotic stresses, including mechanisms impacting genes of resistance to Ralstonia solanacearum
(RSS1-R) (Bernoux et al., 2008), a bacterium already described as responsible for extensive
damage in forest trees (Alfenas et al., 2006).

It was also possible to identify genes involved in the production of important plant
compounds, such as the tryptophan synthase alpha chain protein, which is necessary for the
biosynthesis of indole-3-glycerol phosphate, which is essential for plant growth (Ouyang, et al.,
2000). Another important protein identified was ABC transporter C family member 5, which is
related to the regulation of processes mediated by abscisic acid (ABA), including stomatal opening
and germination (Gaedeke et al., 2001; Martinoia et al., 2001; Martinoia et al., 2002; Klein et al.,
2003; Lee et al., 2004). Additionally, we also found acyl-CoA-binding domain-containing protein
6, which acts as an intracellular transporter of acyl-CoA esters, conferring resistance to cold and
interacting with phosphatidylcholine and derivatives, impacting phospholipid metabolism
(Engeseth et al., 1996; Chen et al., 2008).

In addition to the markers identified by GWAS, five new markers were also selected
through LD associations, indicating a putative impact on SV, but with smaller effects due to this
coassociation (Yuan et al., 2012). Interestingly, the annotation of this set of markers showed many
TEs, which have already been described as impacting plant development, responses to external
stimuli and gene expression (Kashkush et al., 2003; Matsunaga et al., 2015; Traylor-Knowles et
al., 2017; Tran and Choi, 2020, Francisco et al., 2021).

Looking at this data thinking about deepening the genotypic and phenotypic associations,
the nest step was contemplate additional association analysis using genetic markers selected by
ML and SF, which help to reduce the risks of false positives and negatives. The genetic markers
identified by GWAS, and ML form a successful proof of concept to combine volume phenotyping

with capture sequence genotyping. In addition to helping to better elucidate the genetic architecture
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of phenotypic variation in pine, our work also used association analysis to integrate with a gene
coexpression network to clarify the hub and key genes that were strongly associated with volume.

Although growth is a complex trait governed by several genes (Santini et al. 2020;
Francisco et al., 2021), several markers were identified to be associated with Pinus by GWAS.
Santini et al. (2020) argues that despite the use of high-throughput phenotyping, growth-associated
SNPS do not capture all observed phenotypic variation. GWAS approaches present limitations
intrinsic to the technique, mainly related to the low heritability and proportion of phenotypic
variance explained by the identified markers (Manolio et al., 2009; Korte and Farlow, 2013; Tam
et al., 2019). Ding et al. 2022 tried to overcome such limitations of GWAS by integrating the
results of these analyses with coexpression networks in P. elliottii. This approach identified
important functional modules in which it was possible to make biological inferences about the
interactions of genes involved in species growth (Ding et al. 2022). Such multiomica strategies are
increasingly being used in tree species, aiming to overcome the individual limitations of these
different omics in addition to showing great importance for a deep understanding of the molecular
mechanisms involved in the definition of the agronomic trait (Francisco et al., 2021; Ding et al.

2022).

4.3. Genomic selection

In practice, because of the quantitative aspect of most economically important traits, the
application of GWAS-associated markers as a marker-assisted selection tool in genetic
improvement programs is not feasible (Lebedev et al., 2020), paving the way for GS. Instead of
relying on specific QTL regions, GS approaches employ genome-wide variants to predict breeding
values (Spindel and McCouch, 2016; Xu et al., 2020). The implementation of GS has been very
promising for increasing the gain per unit of time and improving the accuracy of selection
(Grattapaglia and Resende, 2012). Despite the low heritability of the volume trait, this parameter
has a relatively small impact on the predicted accuracy of GS in pines, as described by Grattapaglia
and Resende (2012); therefore, we also tested the efficiency of genomic prediction models for such
an estimation.

Especially in terms of the time of tree selection, which can take approximately 20 to 30

years (Lebedev et al., 2020), GS was already associated with a reduction of 50% in the LP breeding



49

cycle, in addition to achieving an efficiency 53-112% higher than that in traditional breeding
(Resende et al., 2012). GS has already been implemented in LP selection, both to predict polygenic
growth traits, such as height and wood quality, and oligogenic traits (resistance to fusiform rust)
(Resende et al., 2012; de Almeida Filho et al., 2016). For several generations, important species
of coniferous trees, such as LP, Pinus elliottii Engelm. and Larix gmelinii (Rupr.), have been
genetically improved to select the best parental material, and the prediction of breeding values
generated individual volume gains of approximately 20% (Embhart et al., 2007, Lai et al., 2017,
Zhang et al., 2020).

Despite the current interest and application of GS in forest species (Lebedev et al., 2020),
there is still concern about optimizing genotypic data and bioinformatics analysis, which inspired
our choice to use FS to direct a more accurate selection of genetic markers for genomic prediction.

Testing for growth traits in clonal varieties of P. taeda planted in different environments is
expensive and time-consuming; however, estimates of genomic prediction accuracy already
observed in previous studies are moderate to high, ranging from 0.34 to 0.76 (Zapata-Valenzuela
et al. 2012, 2013; Resende et al. 2012a). More recent research has also estimated the difference
between the predictive ability of estimated breeding values in stem volume considering scenarios
with randomly assigned clonal varieties and a family cross-validation scenario. The results showed
a greater predictive ability of stem volume by random genotypes (0.43) than considering the
canaries of families (0.36) (Shalizi et al., 2022).

Although there are different GS models that are being used for genomic predictions of
forest species, as well as different methodologies to evaluate the effectiveness or accuracy of these
models, what these studies have shown are similar results for the application of most of these
models (Chen et al., 2018.; Isik et al., 2016; Calleja-Rodriguez et al., 2020). Calleja-Rodriguez et
al., 2020 demonstrated that the application of genomic best linear unbiased prediction (GBLUP),
BRR or Bayesian LASSO (BL) models provided similar prediction efficiencies for growth
characteristics and wood quality in maritime pine. Despite this trend of similarity of SG results for
most complex forest traits, in LP, Resende et al., 2012, found better results for disease resistance
using Bayesian methods when compared with BLUP-based methods. Thus, in this work, we chose
to use only the BRR model, since no significant influence on the effectiveness of volume estimates

is expected when the forecast model is changed. On the other hand, what can have an impact on
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the SG, such as the ability to predict breeding values, is the selection of subsets of SNPs. The
selection of marker subsets can be done in several ways, and here, we apply FS to compare
predictive performance using a selected subset of SNPs and a total set of markers for SG. FS can
offer a more efficient way of selecting genotypes, optimizing the use of markers considering the
influence of SNPs on the phenotype to be selected (Aono et al., 2020).

Even though GS has driven significant improvements in forest breeding programs,
correctly estimating the effects of a wide set of markers into a quantitative trait through genomic
prediction models is still challenging (Lebedev et al., 2020). The large dimensionality of markers
associated with a small number of observations (small p, big n problem) makes it difficult to
estimate such a large number of parameters (Neves et al., 2021). Some previous experimental
studies on forest tree species have already discussed the predictive ability using relatively moderate
genotyping densities (Grattapaglia, 2017). For example, in Scotch pine, subsets of markers
representing 40% of the full set were sufficient to achieve the same predictive abilities and
accuracies (Calleja-Rodriguez et al., 2021); in Picea abies, accuracy reached a plateau using 4,000
to 8,000 SNPs (Chen et al., 2019).

Satisfactory accuracy results for prediction using lower densities of markers may be
efficient, as found in this work, but a higher density may be necessary where the training and test
populations do not genetically originate from the same primary population (White et al., 2007).
The good result of selecting a reduced set of markers with good predictive power depends on how
this selection is made. Selection based on feature selection, unlike a random selection of marker
subsets, is able to indicate independent datasets and a possible set of predictors that are stable and
less sensitive to changes in the training set (Piles et al., 2021). In this way, it is possible to work
with data that do not require excessive adjustments (necessary due to high dimensionality) and
allow for a reduction in computational requirements (Chandrashekar and Sahin, 2014). et al.,
2018). The difficulty of selecting subsets of markers for genomic prediction lies in the existence
of the basic requirement that the markers must be distributed along the genome with at least one
marker in linkage disequilibrium (LD) with each QTL (Hayes and Goddard, 2001). However,
when you have a number of predictors, which are the genetic markers, much greater than the
number of genotypes, it is very difficult to fit the prediction models due to overfitting between the

predictors (Neves et al., 2012).
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Faced with these challenges, the use of FS with ML tools emerged as a useful tool to deal
with a large dimensionality of data, often due to redundant, irrelevant or noise elements (Aono et
al., 2022). Using different evaluation criteria, FS aims to build a subset of elements that provide
an optimized input for the construction of ML models (Kumar and Minz, 2014).

Running DT and RF models to recover additional phenotype-genotype associations, it was
possible to identify that within the large arsenal of important markers for GS, a reduced number
of 217 markers are associated with the volume trait, which enhances the role of these markers in
QTL regions for this trait that is difficult to monitor due to its quantitative characteristic. Further
strengthening the results of the importance of these 217 markers identified by ML, we observed
that the GWAS markers were also contained in this subset of SNPs, minimizing the identification

of false positives.

4.4.1 Inferences into pine growth

The strategy of combining the transcriptomes of LP-related species and LP genomes to
annotate the regions of the markers made it possible to identify variants within and around genes,
along with variants substantially further upstream or downstream that can capture important
regulatory elements. Given the difficulty of finding functional and quality data to represent the
genomic complexity of Pinus taeda, we chose to use RNA-seq experiments of correlated species,
with a significant number of repetitions and good experimental design, to contribute functional
information on the coexpression developed.

Furthermore, gene coexpression network has been successfully used to characterize
GWAS results (Francisco et al., 2021; Lee and Lee, 2018), such as identifying functionally related
genes (Wem et al., 2018). This combination of quantitative analyses with gene expression data
minimizes the problem of false positives or negatives and improves the understanding of the
genomic structure of complex traits. The analysis of transcripts and their correlations is a highly
informative and easily measurable source of functional information, in addition to allowing the
tracking of expression patterns related to phenotype variation (Schaefer et al., 2018).

The global measure of functional relationships that the coexpression network presents
allows the association of certain phenotypes to biological processes controlled by several

coexpressed genes. Thus, if the genetic variation that drives the phenotype, detected by GWAS, is
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encoded by coregulated genes, we will be able to capture part of the functional relationships of the
genotypes studied (Schaefer et al., 2018).

Gene coexpression networks allow us to associate a function with genes coexpressed in the
same cluster through the logic known as the “guilt-by-association principle” (Oliver S. 2000). In
this way, it is possible to correlate several transcripts from pine trees with the genetic markers that
we found to be associated with the volume trait. Considering that the phenotypic effect of each
SNP selected by GWAS, and FS can be very small, grouping the important genes according to
their expression tendencies allows the identification of a key physiological process or regulatory
network involving most of these genes (Baranzini et al., 2009). Genes with high correlation and
influence on networks are called hub genes and may be related to mutations (Lamara et al., 2016)

and QTLs of interest.

4.4.2 WGCNA results

In a recent study, a combination of methodologies was also used with transcriptome and
metabolome to investigate gene expression and metabolic differences in different tissues of P.
taeda to provide information on the genetic association of small molecule metabolites (Mao et al.,
2021). The results of the present study can complement such information, considering that some
groups of the gene coexpression network analyzed here showed enrichment for small-molecule
metabolite processes, such as group 13 of Pra, which was associated with 3 ML markers. Processes
of "flavonoid biosynthetic process", "flavonoid metabolic process", "flavone biosynthetic
process", and "flavonol biosynthetic process" were linked to 3 ML markers, indicating that these
metabolic processes are associated with SV in LP.

It was also possible to identify the importance of biological pathways linked to the
"carbohydrate transmembrane transport", "carbohydrate metabolic process", "carbohydrate
derivative catabolic processes. ", "carbohydrate transport" and "cellular carbohydrate metabolic
process" in group 1 of the Pra network, linked to 14 Ml brands and 1 GWA brand linked to volume.

This significant participation of processes linked to the storage of carbohydrates, available
during the green period of the plant, may be linked to the recent results of phenology measurements

documented by repeated digital photographs by Luo et al., 2020. Volume growth is positively
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related to longer periods of green, or at least with carbohydrate storage to meet carbon demand at
the beginning of the season (Sampson et al., 2001).

This same group 1 of the Pra gene coexpression network shows expressive participation of
cold response pathways in pine, such as "response to cold", "cellular response to freezing",
"response to temperature stimulus", "response to freezing", "response to external stimulus", and
"response to abiotic stimulus", which corroborates the findings of Gao et al., 2021, that volume
growth is associated with winter values, where higher winter values were associated with further
growth in volume. Trees with more active foliage during the winter are likely to have more
carbohydrates stored, which can meet growth demands when the current photosynthate is
insufficient during the green period.

Group 39, composed of more than 92% of markers selected by ML, showed significant
transcripts related to the nitrogen metabolic process. The annotation of the genes coexpressed in
group 39 was enriched with the "cellular nitrogen compound metabolic process" and "nitrogen
compound metabolic process" pathways. The low availability of nitrogen (N) is an important
limiting factor for the growth and development of trees. The acquisition, assimilation, storage,
recycling, and efficient metabolic use of nitrogen largely determine vascular development, forest
tree productivity and biomass production (Canovas et al., 2018). This important biological
pathway of tree development indicates that this group of the Pra network was able to capture an
important genetic region of LP.

In this same group 39, the participation of the "metabolic process of cellular aromatic
compounds" among the ML marks is notorious. Zhang et al. 2018 reported an improvement in
nitrogen use efficiency when, under low nitrogen, excess carbon is redirected to the biosynthesis
of aromatic amino acids and lignin. This nitrogen use efficiency mechanism deserves special
attention (Canovas et al., 2018) and has practical value in terms of biomass production.

Group 68 of Pra, the second group in terms of representativeness of ML and GWAS
markers, is directly linked to group 39 and showed significance for biological responses linked to
the "nitrogen compound metabolic process". However, curiously, the great representation of GO
in this group is linked to viral responses such as "viral latency", "establishment of viral latency",

"viral genome integration into host DNA", "viral entry into host cell entry into host cell", "entry

into cell of other organism involved", "viral life cycle" and "viral process". In this sense, it is



54

possible to link the importance of the viral response to the development of volume in more
productive individuals.

Considering that glutamine synthetase is a key enzyme in nitrogen metabolism for popular
growth and biomass production (Canovas et al., 2018; Fu et al., 2003), we also found interesting
results in the Pel coexpressed network related to "glutamine family amino acid catabolic process"
in group 39 (with 2 ML markers and 1 GWAS mark); 2 ML markers and 1 GWAS mark associated
with "regulation of glutamine family amino acid" in group 58; and "glutamine family amino acid
metabolic process" and "glutamine family amino acid catabolic process" linked to 3 ML markers
in group 48.

The fluoride response was identified by group 14 of the Pel network as a mechanism linked
to ML-selected markers and markers in association with the volume trait (2 GWAS markers and 8
ML-selected markers). Fluoride (F-) is a phytotoxin that can cause extensive damage to the plant
by disturbing its metabolism and enzymatic activities (Ruan et al. 2003). Thus, LP may be sensitive
to F— and present a mechanism that aims to protect and tolerate the toxicity of this phytotoxin in
relation to tolerance to F —, as identified in other perennial species (Camellia sinensis) (Pan et al.,
2021).

Cluster 32 in the Pel network showed enrichment for genes linked to light stimulus and
radiation, such as "response to light stimulus", "response to radiation", "regulation of cellular
response to X-ray", and "response to UV-C". In this group, enrichment directed at the metabolism
of cell walls and macromolecules was also noted.

The involvement of radiation as a limiting factor for growth is already known and seems
to be involved in pine responses. In LP, volume growth is related to intercepted radiation (Cannell,
1989), to light interception, in which volume growth per unit of absorbed light increases with
increasing stand density (Albaugh et al., 2018) and with increasing leaf area index (Vose and Allen,
1988). Recent studies in LP indicate that radiation intensity and intercepted light are captured by
different densities of LP stands, which becomes a significant predictor variable of volume growth
using a linear model and equally important in the random forest model (Gao et al., 2021).

The purine biosynthesis pathway appears to be linked to the markers selected in group 18
of the Pra network. Rescue enzymes in this pathway may play a special role in activating resting

cells and responding to environmental changes (Stasolla et al., 2003). Purine and pyrimidine
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catabolism is one of the components of nucleotide metabolism, which is an essential process in
plants, as it is a signaling component and precursor of cytokinin phytohormone biosynthesis
(Buchanan et al., 2002), provides energy and blocks construction for nucleic acids. In Arabidopsis,
altered levels of nucleobases or nucleosides (purines) can act as physiological signals that affect
stress responses (Daumann et al., 2015). The enrichment of GO terms associated with the processes

of 'purine metabolism', "purine nucleotide metabolic process", "purine nucleoside triphosphate

n"non n.n

metabolic process", "purine ribonucleoside triphosphate metabolic process", "purine nucleoside
monophosphate metabolic process", "purine ribonucleoside monophosphate metabolic process",
and "purine ribonucleotide metabolic process" in this group suggests that physiological signals for

volume development in LP, involving "photosynthesis", "cellular respiration" and "ATP metabolic

process", are directly involved with nucleoside levels.

4.5 HRR results

A search for overlap between genes implicated by WGCNA allowed the correlation
between genes from LP transcriptomes with the markers associated with volume phenotypes, thus
allowing the functional understanding of genes involved in the same modules identified by
coexpression networks. AIl GWAS genes overlap with the ML gene pool. This matching of the
results of the GWAS and ML analyses allowed WGCNA to detect many biological pathways
related to the phenotypic variation studied. To deepen the biological meaning of the main gene
modules found in the WGCNA, another gene coexpression network was constructed using the
HRR method, which made it possible to increase the correlation between the global coexpression
network and the enrichment of the annotation of the Gene Ontology. The analysis of the most
significant modules in the gene coexpression network using HRR, considering the 128 markers
identified by ML and the candidate genes from GWAS, allowed a global understanding of which
biological processes are important for volume in pine. The two hub, for the degree metric, genes
of the HRR coexpression network match exactly with two of the genes found by GWAS, one of
which, TRINITY DN34225 0 gl, was annotated for the enzyme peptidyl-prolyl cis-trans
isomerase (PPlases).

These enzymes are associated with plant growth and development, and PPlase genes have

previously been indicated as suitable candidate genes to increase the abiotic stress tolerance of
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plants for industrial processes and agricultural applications (Singh et al., 2021). Although the
TRINITY DN37756 c0 gl gene has no known annotation, it was identified as maintaining the
highest degree in the network, being of great importance to maintain its stability (Barabasi and
Oltvai, 2004) and therefore of great importance for the definition of the phenotype of interest.

Another gene with great importance in the coexpression network,
TRINITY DN12054 c0 g3, annotated for GTP cyclohydrolase 1 enzyme, with the highest stress
value (320134), was also a marker present in the selection of ML, reinforcing the significance of
this marker for the development of volume in LP. GTP is part of the biosynthesis pathway of plant
folate, which is an essential micronutrient for plant health and development, playing essential roles
in photorespiration and in the synthesis of chlorophyll, plastoquinone, and tocopherol (Simkin et
al., 2019). We also identified a nonlysosomal glucosylceramidase enzyme (TRINITY DN72617
pude cO gl gene) identified by the FS with the highest value of neighborhood connectivity (48),
which the other genes in the network are of great importance, thus playing a role in defining the
phenotype role. The nonlysosomal glycosylceramidase enzyme, related in humans, was recently
discovered as a plant GCD homolog in Arabidopsis thaliana, indicating its participation in the
catabolism of sphingolipid glucosylceramide (GlcCer), a lipid with important structural and
signaling functions (Dai et al., 2020). The TRINITY DN3090 c0 gl gene, with no known
annotation, was also fundamental to maintain the network topology, with the lowest short path
length value, also indicating great importance for the dissemination of information through the
network (Watts and Strogatz, 1998), and a higher value of betweenness places it as fundamental
for the integration of network components (Brandes, 2001).

The characterization of these volume-associated marks by ML and GWAS allows us to
investigate the biological processes linked to loci of known quantitative traits (QTL) of growth in
pine trees, which are important for predicting the genetic merit of volume.

The networks of genes and transcription modules identified in volume show that the genetic
interactions involved in the developmental processes in pine are abundant, as reported in other
studies of omics (Ingvarsson and Street, 2011). This complex structure of interaction of gene
expression networks makes it a complex task to select genes in isolation for characterization
studies, since the variation in the expression of most genes will exert at least some degree of

influence on several other genes. In this way, the integrated results of quantitative analyses
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(GWAS and SG) with transcriptome data and gene coexpression networks allow the targeting of

which genomic modules are important for the expression of good volume phenotypes.

4.6. Adoption of different genomic strategies during forest improvement cycles

Plant breeding is a process of continuous genetic improvement carried out by the selection
and recombination of superior strains. The “breeder equation” expresses multiple factors that
influence the selection response or rate of genetic gain (Lush, 1936). Optimizing available
resources to maximize this selection response is essential to the success of a breeding program
(Rutkoski, 2019). Therefore, breeders need to constantly re-evaluate breeding strategies,
considering the arsenal of available technologies and the challenge of effectively implementing
these new technologies (Santantonio et al., 2020).

The implementation of GS has great potential in a phased approach in breeding programs,
especially when the initial step is the routine genotyping of all materials that are evaluated for yield
(Santantonio et al., 2020). In the early stages of a breeding program, the adoption of ML for the
selection of small subsets of molecular markers, with medium accuracy but with low cost, may be
sufficient to select genotypes within a large arsenal of population genotypic diversity. In the final
cycles, when the number of genotypes is reduced, a greater density of molecular markers can be
used, focusing on a more accurate result on the accuracy of prediction.

The adoption of GWAS in the phases with greater refinement of the selection of genotypes
to be improved can be coupled with gene coexpression networks to identify target genes that can
be used in genetic editing strategies, as with the use of CRISPR, for example. Studies for gene
editing aim to study the overexpression or cancellation of target genes, observing the results in the
phenotype. With our study addressing the study of biological pathways linked to genes in
association, transcriptome and ML-selected marks, we can achieve significant advances in more
assertive selection of target genes for genomics breeding, presenting great potential to face the

technical obstacles of the selection of genes associated with CRISPR (Goralogia et al., 2021).

Conclusion
This work made it possible to identify a reduced and precise set of genetic markers (128

markers) with a significant influence on the volume trait in the populations analyzed in pine, as
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validated by the combination of GWAS, ML and SG analyses. The application of machine learning
models, DT and RF, to recover additional phenotype-genotype associations using the dataset
identified by FS for GS allowed the narrowing of the large list of important SNPs for volume
prediction in pine. The genetic markers identified in our results are important advances for the
genetic improvement of LP. The unprecedented combination of different quantitative genetics and
bioinformatics strategies for data analysis of LB full-sib populations proved to be an efficient way
to select genotypes with better results for volume. The modules indicated by the gene coexpression
networks, based on the analyzed transcriptomes, demonstrate that genes identified by GWAS and
by ML for SG involving volume traits allowed a greater understanding of which important

biological pathways are associated with pine growth and development.
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Supplementary Material

1. Plant Material

The experimental design included 12 replicates of 300 trees in the seven evaluated
environments (AT23804, BT24004, FT23904, HT24304, 1T24404, LT24204 and WT24504),
resulting in 25,080 trees. Herein, single-tree plots represent the experimental units. A check lot
(CCK) for comparisons among tests was developed for each region to represent the average genetic
performance. One hundred twenty-eight loblolly pine progenitors were used in the mating scheme
and separated into females and males:

Females (128): TBO1, TB02, TB04, TB05, TB06, TB07, TB08, TB09, TB10, TB14, TB15,
TB17, TCO1, TC02, TCO3, TCO5, TCO8, TC09, TC10, TC11, TC16, TC18, TC21, TE05, TE06,
TE07, TEOS, TE09, TE10, TE11, TE12, TE13, TE17, TE18, TE19, TE20, TFO1, TF02, TF03,
TF04, TFOS5, TF06, TF07, TFOS, TF10, TF11, TF12, TF13, TF14, TF15, TF16, TF17, TF18, TF20,
TF21, TF24, THO1, THO2, THO4, THOS, THO7, TH09, TH10, TH11, TH13, TH14, TH16, THI1S,
TH19, TH21, TH22, TH24, TI01, TI03, TI06, TI07, TI0S, TI10, TI11, TI12, TI16, TI17, TIIS,
TI19, TL15, TMO1, TM02, TM03, TM04, TM06, TM07, TM08, TM09, TM10, TM11, TM12,
TM13, TM14, TM15, TM16, TM17, TM18, TM19, TM20, TS01, TS03, TS05, TS06, TS14,
TW02, TW03, TW04, TW05, TW06, TW07, TW08, TW09, TW10, TW11, TW12, TW13, TW14,
TW15, TW16, TW17, TW18, TW19, TW20.
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Males (126): TBO1, TB02, TB04, TB06, TB07, TB08, TB09, TB11, TB14, TB15, TB16,
TB17, TB18, TC03, TC07, TCO8, TC09, TC11, TC13, TC15, TC16, TC19, TC21, TE03, TEO0S,
TE07, TE0S, TE09, TE10, TE11, TE13, TE16, TE17, TE18, TFO1, TF02, TF03, TF04, TFO05,
TF06, TFOS, TF09, TF13, TF14, TF15, TF16, TF18, TF20, TF21, TF22, TF24, TF25, TF26,
THO02, THO4, THOS, THO6, TH11, TH12, TH14, TH16, TH21, TH22, TH23, TH24, TI03, TI06,
TIO7, TI11, TI12, TI16, TI17, TI18, TI19, TI20, TI21, TI22, TI23, TL17, TMO1, TM02, TMO03,
TMO04, TM05, TM06, TM07, TMO0S8, TM09, TM10, TM11, TM12, TM13, TM14, TM15, TM16,
TM17, TM18, TM19, TM20, TM21, TS03, TS05, TS06, TS14, TS15, TS18, TWO01, TW02,
TWO03, TW04, TW05, TW06, TW07, TW08, TW09, TW10, TW11, TW12, TW13, TW14, TW15,
TW16, TW17, TW18, TW19, TW20.

These progenitors generated a total of 308 families with a mean of approximately 81
individuals per family. Among environments, the distribution of quantities was similar, as shown
in Supplementary Fig. 1 and Supplementary Table 1.
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Supplementary Fig. 1. Distribution of quantities of individuals per family across environments.
The mean is shown in the centre of the violin plots.
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Supplementary Table 1. Quantities of families, individuals and progenitors per environment.

Individuals Families

AT23804 3,588 307
BT24004 3,600 307
FT23904 3,545 307
HT24304 3,588 308
1724404 3,588 307
LT24204 3,600 307
WT24504 3,571 307
All 25,080 308
Filler/CCK 108 -

2. Phenotypic Analyses

Volume (V) measures presented significant differences among environments; however,
significant differences were not observed after correction (Supplementary Fig. 2). Using a Tukey
test of multiple comparisons, we separated the measures into groups: (a) BT240, FT239 and
WT245; (ab) AT238 and 1T244; (b) HT243; and (c) LT242.
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Supplementary Fig. 2. Distribution of volume (V) measures after correction separated according
to the seven environments used (ANOV A p-value = 0.469).

Supplementary Table 2. Posterior estimates for individual-tree heritability and dominance (+
standard error) for volume.

Environment Individual-tree Heritability Dominance Ratio
AT238 0.22 (£ 0.04) 0.20 (£ 0.06)
BT240 0.22 (£ 0.04) 0.14 (£ 0.05)
FT239 0.18 (£ 0.04) 0.15 (£ 0.05)
HT243 0.17 (£ 0.04) 0.11 (+0.05)
1T244 0.32 (£ 0.05) 0.13 (£ 0.06)
LT242 0.18 (£ 0.04) 0.11 (£ 0.07)
WT245 0.22 (£ 0.04) 0.12 (£ 0.05)
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3. Genotypic Analyses

For genotyping, 1,692 individuals from four environments (AT238, BT240, HT243, and
IT244) and 45 families (TCO1 x TC11, TCO1 x TC16, TC02 x TC07, TC02 x TC09, TC02 x TC13,
TCO02 x TC21, TCO03 x TC11, TCO8 x TC16, TC09 x TCO7, TC09 x TC11, TC10 x TCO08, TC10
x TC13, TC10x TC15, TC11 x TC07, TC11 x TC13, TC18 x TC03, TC18 x TC07, TC18 x TCO09,
TC18 x TC11, TC21 x TC07, TC21 x TC13, TC21 x TC15, TEOS x TE16, TE06 x TE07, TE06 x
TEO08, TE06 x TE11, TEO6 x TE18, TEO8 x TE09, TE09 x TE11, TE09 x TE13, TE10 x TEOS,
TE10 x TE16, TE10 x TE17, TE11 x TEO7, TE11 x TEOS, TE12 x TE09, TE12 x TE17, TE13 x
TE16, TE17 x TE13, TE18 x TEO7, TE19 x TE03, TE19 x TEOS, TE19 x TEO7, TE20 x TEOS,
and TE20 x TE10) were selected (Supplementary Table 2).

Supplementary Table 3. Quantities of families, individuals and progenitors per environment
considering only the genotyped trees.

Individuals Families Mean Individuals
Per Family
AT23804 477 45 10.6
BT24004 490 45 10.9
HT24304 447 45 9.9
1724404 278 29 9.6
All 1,692 45 37.6
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Supplementary Fig. 3. Distribution of SNP markers across probes (x axis) used for sequencing.

4. RNA-Seq Assembly and Annotation

Supplementary Table 4. RNA-Seq experiments were selected for the developed study from the

Sequence Read Archive (SRA) of the National Center for Biotechnology Information (NCBI).

SRA Age Instrument Organism Tissue
SRR7589385 15 years [llumina HiSeq 4000 Pinus taeda Cambium
SRR7589386 15 years [llumina HiSeq 4000 Pinus taeda Cambium
SRR7589387 15 years [llumina HiSeq 4000 Pinus taeda Cambium
SRR9417402 16 years [llumina HiSeq 2500 Pinus elliottii Vascular cambium
SRR9417403 16 years [llumina HiSeq 2500 Pinus elliottii Vascular cambium
SRR9417404 16 years [llumina HiSeq 2500 Pinus elliottii Vascular cambium
SRR9417405 16 years [llumina HiSeq 2500 Pinus elliottii Vascular cambium
SRR9417406 16 years [llumina HiSeq 2500 Pinus elliottii Vascular cambium
SRR9417407 16 years [llumina HiSeq 2500 Pinus elliottii Vascular cambium
SRR9417408 16 years [llumina HiSeq 2500 Pinus elliottii Vascular cambium
SRR9417409 16 years [llumina HiSeq 2500 Pinus elliottii Vascular cambium
SRR9417386 16 years [llumina HiSeq 2500 Pinus elliottii Vascular cambium
SRR9417387 16 years [llumina HiSeq 2500 Pinus elliottii Vascular cambium




SRR9417388 16 years [llumina HiSeq 2500 Pinus elliottii Vascular cambium
SRR9417389 16 years [llumina HiSeq 2500 Pinus elliottii Vascular cambium
SRR9417390 16 years [llumina HiSeq 2500 Pinus elliottii Vascular cambium
SRR9417391 16 years [llumina HiSeq 2500 Pinus elliottii Vascular cambium
SRR9417392 16 years [llumina HiSeq 2500 Pinus elliottii Vascular cambium
SRR9417393 16 years [llumina HiSeq 2500 Pinus elliottii Vascular cambium
SRR3111638 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3113360 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3130544 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3111615 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3113316 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3130546 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3111624 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3113338 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3130548 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3123622 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3123623 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3123625 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3123626 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3123627 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3123642 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3122144 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3122249 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3122250 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3123366 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3123370 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3123374 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3123606 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3123607 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3123610 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3123611 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3123612 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3123613 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3111571 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3113314 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3130567 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3111627 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3113349 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
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SRR3130550 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3111576 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3113315 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3130551 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3111623 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3113327 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3130553 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3123614 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3123615 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3123616 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3123617 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3123619 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3123620 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3130556 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3130558 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3122248 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3123334 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3123336 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3123368 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3123376 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3123378 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3130559 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3130561 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3130562 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3123350 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3123352 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3123358 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3123379 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3123383 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3123386 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3130563 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3130564 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3130566 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3111565 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3113312 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
SRR3130568 17 months  |Illumina Genome Analyzer IIx Pinus radiata Stem
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Supplementary Table 5. De novo assembly Trinity statistics for each species.

Species ID Pinus taeda Pinus radiata Pinus elliottii
Illumina sequencing raw reads 60,899,426 482,672,571 278,299,413
Reads maintained after filtering 51,121,782 455,253,550 276,114,142
Total assembled bases 190,245,856 343,900,274 102,646,851
Total isoforms 146,652 271,721 96,424
Total genes 75,897 137,103 50,781
Median contig length 772 bp 849 bp 789 bp
Average contig length 1,297.26 bp 1,265.64 bp 1,064.54 bp
Contig N50 2071 1921 1499
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Supplementary Fig. 4. Total groups of orthologues inferred from the BUSCO search of plant
databases for Pinus elliottii (Pel), Pinus taeda (Pta) and Pinus radiata (Pra).
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Supplementary Table 6. Retrieved annotations from transcriptomes of Pinus elliottii, Pinus taeda
and Pinus radiata against the SwissProt database and the correspondences considering Gene
Ontology (GO) terms and Enzyme Commission (EC) numbers.

Species Isoforms (Gene Isoforms with Isoforms with GO Isoforms with EC
Correspondences) Correspondences in | Annotations Numbers (Genes)
SwissProt (Genes) (Genes)

P. elliottii | 96,424 (50,781) 47,634 (23,973) 46,804 (23,565) 14,251 (7,115)

P. radiata | 271,721 (137,103) 136,234 (57,090) 133,917 (56,176) 38,468 (15,661)

P. taeda 146,652 (75,897) 77,897 (33,221) 76,592 (32,567) 23,583 (10,016)
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Supplementary Fig. 5. Distribution of genes (assembled from RNA-Seq experiments) per
genomic sequence (scaffolds with probes) according to comparative alignments. Genes from the
transcriptomes of Pinus elliottii, Pinus radiata and Pinus taeda were used.
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5. Genome-Wide Association Analyses

Supplementary Table 7. Significant SNP markers were found to be associated with volume
phenotypes used: volume (V). The model used was FarmCPU, and no covariates were included in
the genome-wide association analysis.

Phenotype Sequence Position P-value
A" super1496 457445 8.60e-09
v super3461 42253 3.43e-10
v scaffold23393 29322 1.34e-06
A% scaffold67087 208847 1.35e-06
v scaffold73604 618978 6.04e-07
v scaffold109055 54249 6.36e-08
v C5175585 188933 4.51e-07
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Supplementary Figure 6. Quantile-quantile plots for the FarmCPU models created for the
identification of SNP associations with volume without covariates.
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Supplementary Figure 7. Manhattan plots for the p-values obtained from the association tests
(FarmCPU models without covariates) performed for the identification of SNP associations with
volume. Each point in the scatter plot denotes a SNP coloured according to the scaffold on which
it is located.

Supplementary Table 8. Significant SNP markers found to be associated with volume. The model
used was FarmCPU, and the environmental information was included as a covariate in the genome-
wide association analysis. Annotations of these genomic regions were performed with genes
assembled from the transcriptomes of Pinus elliottii (Pel), Pinus radiata (Pra) and Pinus taeda
(Pta).

PH Sequence Position P-value Annotation (Enzyme/Gene Ontology)

SV super1496 457445 5.96¢-09 (i) Chloroplast unusual positioning protein, putative, expressed; (ii)
Hydroxyproline-rich glycoprotein family protein

SV super3461 42253 4.00e-13 (i) Cystathionine beta-synthase (CBS) protein; (ii) CBS domain
containing membrane protein, putative, expressed

SV scaffold11937 131008 1.15e-06 alpha/beta-Hydrolases superfamily protein
SV scaffold67087 208847 8.39¢-07
SV scaffold73604 618978 8.05e-07
SV scaffold109055 54249 1.08e-07

SV scaffold187212 226376 1.02e-06
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Supplementary Figure 8. Manhattan plots for the p-values obtained from the association tests
(FarmCPU models with environment as covariates) performed for the identification of SNP
associations with volume. Each point in the scatter plot denotes a SNP coloured according to the
scaffold on which it is located.

Supplementary Table 9. SNPs found in linkage disequilibrium (> > 0.5) with the markers
identified by the association tests against volume (V). Annotations of these genomic regions were
performed with genes assembled from the transcriptomes of Pinus elliottii (Pel), Pinus radiata
(Pra) and Pinus taeda (Pta).

PH Sequence Position Annotation (Enzyme/Gene Ontology)
SV super1496 457298 Hydroxyproline-rich glycoprotein family protein
SV super1496 457450 (i) Chloroplast unusual positioning protein, putative, expressed; (ii) Hydroxyproline-rich

glycoprotein family protein

SV scaffold67087 208715

SV scaffold67087 208932 Uncharacterized protein At4g04980

SV scaffold73604 618877

Supplementary Figure 9. Linkage disequilibrium network constructed for the SNPs found in
linkage disequilibrium (R? > 0.5) with the markers. Each point labelled in the network represents
a SNP.
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6. Co-expression Networks

Supplementary Table 10. Gene Ontology (GO) terms detected for genes associated with volume
(V), identified through co-expressed genes from the assembled transcriptomes of Pinus elliottii
(Pel) and Pinus radiata (Pra).

Phenotype GO Terms

Pel V(148 GO [GO:0016887, GO:0030896, GO:0006457, GO:0004674, GO:0051539, GO:0004664, GO:0004568, GO:0022857, GO:0006811, GO:0008272,
terms) G0:0016702, GO:0030983, GO:0003864, GO:0015299, GO:0006979, GO:0004602, GO:0005515, GO:0003854, GO:0030833, GO:0015743,
GO:0016779, GO:0030244, GO:0000077, GO:0005524, GO:0004553, GO:0003871, GO:0005094, GO:0030599, GO:0042626, GO:0016760,
GO:0008134, GO:0007264, GO:0005669, GO:0004650, GO:0046854, GO:0006357, GO:0043631, GO:0006352, GO:0004652, GO:0016747,
GO:0016161, GO:0016762, GO:0006032, GO:0003333, GO:0010333, GO:0004672, GO:0016157, GO:0004386, GO:0009094, GO:0016998,
GO:0016616, GO:0006801, GO:0045735, GO:0005975, GO:0016829, GO:0034314, GO:0033926, GO:0005092, GO:0006812, GO:0006073,
GO:0016853, GO:0004601, GO:0046983, GO:0048544, GO:0008270, GO:2001070, GO:0015629, GO:0006952, GO:0015940, GO:0006862,
GO:0016788, GO:0008168, GO:0046872, GO:0006629, GO:0006694, GO:0003677, GO:0007017, GO:0007059, GO:0005471, GO:0005737,
G0:0030286, GO:0046527, GO:0004842, GO:0009435, GO:0051301, GO:0005509, GO:0009247, GO:0016491, GO:0004857, GO:0016846,
G0:0006520, GO:0009086, GO:0005516, GO:0042578, GO:0020037, GO:0005634, GO:0043565, GO:0004556, GO:0004806, GO:0008171,
G0:0016592, GO:0015116, GO:0016787, GO:0003723, GO:0030170, GO:0016705, GO:0009058, GO:0043531, GO:0000272, GO:0006298,
G0:0042545, GO:0005525, GO:0016020, GO:0006468, GO:0016021, GO:0006508, GO:0005985, GO:0003924, GO:0016773, GO:0000940,
G0:0016209, GO:0016567, GO:0055085, GO:0005885, GO:0003824, GO:0016765, GO:0005506, GO:0005216, GO:0032977, GO:0008017,
G0:0004523, GO:0006355, GO:0055114, GO:0048046, GO:0003676, GO:0015986, GO:0005876, GO:0009250, GO:0005992, GO:0000786,
G0:0050662, GO:0006813, GO:0008987, GO:0003712, GO:0008289, GO:0005618, GO:0016758, GO:0004252

Pra SV (139 GO [GO:0008234, GO:0005506, GO:0008017, GO:0006355, GO:0004665, GO:0055114, GO:0005992, GO:0043666, GO:0000786, GO:0042157,
terms) GO:0004866, GO:0004506, GO:0050662, GO:0008061, GO:0004126, GO:0008289, GO:0016758, GO:0004252, GO:0043531, GO:0045095,
G0:0000272, GO:0016020, GO:0003700, GO:0008610, GO:0047429, GO:0006468, GO:0016021, GO:0016032, GO:0006508, GO:0016773,
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Supplementary Figure 10. REVIGO summarization of Gene Ontology (GO) terms for genes
associated with volume found in the Pinus elliottii transcriptome.



84

Supplementary Figure 11. REVIGO summarization of Gene Ontology (GO) terms for genes
associated with volume found in the Pinus radiata transcriptome.
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Abstract

Hevea brasiliensis, a tropical tree species from the Amazon rainforest, is the main world source of
natural rubber. Due to the high pressure of fungal diseases in hot humid regions, rubber plantations
have been moved to “escape areas”, which are dryer and present lower temperatures during the
winter. We carried out a study with a primary (GT1) and a secondary (RRIM 600) young rubber
tree clones, which present different cold tolerance strategies, to analyze gene expression regulation
while under 24 hours of cold exposure (10°C). Together with traditional differential expression
approaches, a RNA-seq gene co-expression network (GCN) was established with 27,220 genes

that were grouped into 205 gene clusters. Through the GCN, we could relate the predominance of



86

rubber tree molecular responses on cold stress to 31 clusters, which were divided in three GCN
modules: a down-regulated group with 16 clusters and two up-regulated groups with twelve and
three clusters, respectively. The hub genes of the cold-responsive modules were identified and
analyzed as well. Each genotype has a well defined group of gene clusters with little occurrence
of both clones in the same cluster. The GT1 gene clusters were enriched mostly for cell wall
biogenesis, furthermore there are also several DEGs present in the photosynthesis clusters.
RRIM600 clone clusters were enriched for protein translation, with DEGs located in clusters
related to stress response and respiration. As a result of the GCN strategy applied in this study, we
could not only access single DEGs related to Hevea cold responses, but also provide insights into
a deeper cascade of associated mechanisms involved in the response to cold stress in young rubber
trees. Our results may represent the species genetic stress responses developed during its evolution
since the varieties chosen for this work are genotypes selected during the early years of rubber tree
domestication. The understanding of H. brasiliensis cold response mechanisms can greatly
improve the breeding strategies for this crop that has such a narrow genetic base, is being impacted

by climate change and is the only source for large scale rubber production.
1 Introduction

Hevea brasiliensis, mainly known as rubber tree, is an allogamous perennial tree species
native from the Amazon Rainforest, belonging to the Euphorbiaceae family (Priyandarshan and
Clément-Demange, 2004). Although rubber trees are the main world source of natural rubber
(Pootakham et al., 2017; Gongalves and Fontes, 2009; De Fay and Jacob, 1989), these tree species
are a recent crop, being still in domestication (Priyadarshan and Clément-Demange, 2004). The
dispersal and domestication of rubber trees around the world was based on only about 20 seedlings
that were introduced in Southeast Asia in the late 19th century. These seedlings were the only
survivors of a collection of thousands of seeds from the Amazon Basin, originating the selection
of elite trees and controlled hybridization for reproduction in Hevea. Thus, until the present day,
almost all commercial varieties of H. brasiliensis planted are derived from these seedlings,
therefore, their genetic variability is quite narrow (Gongalves and Fontes, 2009; Souza et al., 2015).

Although the Amazon Basin offers ideal conditions for rubber tree cultivation, the
occurrence of the fungal South American Leaf Blight (SALB) disease in the region hinders the

establishment of rubber tree plantations in the area. To overcome this situation, Brazilian rubber
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tree plantations were moved to sub-optimum or escape areas such as the Brazilian Center and
South East regions, which are dryer and present lower temperatures during the winter
(Priyadarshan et al., 2009). The South East Asian countries, which have similar Amazonian
climate conditions and successfully avoided the introduction of SALB, are the major rubber
producers worldwide. Nevertheless, these Asian plantations have already suffered heavy losses
because of other fungal disease outbreaks (Priyadarshan and Gongalves, 2003; IRCo, 2019;
Pornsuriya et al., 2020), being expanded to suboptimal areas as well, such as Southern China and
Northeast India (Priyadarshan et al., 2009). Thus, rubber tree varieties adapted to areas with new
edaphoclimatic conditions are of key interest.

Among the stressing factors characteristic of the escape areas, low temperatures heavily
affect H. brasiliensis development, causing damage to leaves and latex production (Priyadarshan
et al., 2005). For a rubber tree plantation, a prolonged low temperature period or a frost occurrence
may cause the plants’ death (Priyadarshan et al., 2009). Cold stress triggers a massive
reprogramming of plants’ gene expression to adjust their metabolic processes to cope with the cold
environment (Theocharis et al., 2012). In order to promote breeding towards cold tolerance in H.
brasiliensis, a deeper understanding of the species cold response mechanisms is necessary.

In the last years, due to the impact of low temperatures in rubber tree plantations and rubber
production, there is an increase of studies about H. brasiliensis molecular cold stress responses,
especially through comparative transcriptomics (Deng et al., 2018, Gong et al., 2018, Mantello et
al., 2019). The modification of Hevea gene expression under cold treatments has already enabled
the identification of thousands of differentially expressed genes (DEGs) (Mohamed Sathik et al,
2018; Deng et al., 2018; Cheng et al., 2018). However, despite these comparative transcriptome
analysis between resistant and cold-sensitive clones show that cold is a key factor in latex
production, more precise information on the main biological pathways and metabolic processes
involved in the cold response has not yet been elucidated in rubber trees. Recently, Ding et al.
(2020) modeled a gene coexpression network (GCN) and associated a network module with cold
treatment. Although the cold response mechanisms were not assessed, the GCN created
represented a rich source of data for investigating cold response.

Here we carried out a study based on a GCN modeled with transcriptomic data from two

of the earliest H. brasiliensis clones to identify novel patterns between the genes involved in H.
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brasiliensis response to cold stress, aiming to supply a deeper insight on how young rubber tree
plants cope with low temperatures. The use of the transcriptome from a cold experiment with two
genotypes, one resistant and one susceptible, allowed the identification of central genes in the
created networks underlying cold stress in rubber trees. Thus, this study is one of the pioneers in
the association of molecular mechanisms of Hevea through GCNs, being the first one to unveil

rubber tree cold stress responses in important commercial varieties.
2 Material and Methods
2.1 RNA-Seq Experiment

In this work, two genotypes of H. brasiliensis recommended for escape areas (Mantello et
al., 2019), GT1 and RRIM600, were evaluated. Under low temperatures, RRIM 600 presents an
avoidance physiological strategy while GT1 balances between photosynthetic/growth activities
and stress response (Mai et al., 2010; Mantello et al., 2019). The cold experiment consisted of
exposing three six-months-old seedlings of each genotype to a temperature of 10°C for 24 hours
(12h light/12h dark). During this period, leaf material was collected at a time series of 0 hours (Oh
- control), 90 minutes (90m), 12 hours (12h), and 24 hours (24h). The RNA extracted from these
samples was employed to construct cDNA libraries, and it was subsequently sequenced using an
[llumina Genome Analyzer IIx with the TruSeq SBS 36-Cycle Kit (Illumina, San Diego, CA,
USA) for 72 bp PE reads. The transcriptome assembled by Campos Mantello et al. (2019) was

used for the analyzes of the present work.
2.2 Bioinformatics and Differential Gene Expression Analysis

The reads of each genotype evaluated with their respective times and replicates of treatment
were mapped with the Bowtie2 aligner (Langmead & Salzberg, 2012) in the reference genome
(Tang et al., 2016). The estimated abundance of reads for each sample was calculated by RSEM
(Li & Dewey, 2011) and, subsequently, a matrix was constructed with expression values and
abundance estimates between samples and replicates. Genes with a minimum of 10 counts per
million (CPM) in at least three samples were maintained for further analyses. These samples were
normalized by the quantile method and transformed into log2 counts per million (log2cpm) by the

edgeR package (Robinson et al., 2010).
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From the normalized data, a principal component analysis (PCA) was performed using the
R software, to explore the data and verify the behavior of the samples. For DEG analysis, the
datasets from GT1 and RRIM600 were combined in an attempt to create an unique H. brasiliensis
expression dataset. An empirical Bayes smoothing method implemented in the edgeR package
(Robinson et al., 2010) was used to identify DEGs between cold exposure sampling times, in which
the following comparisons were performed: (i) Oh vs 90m; (ii) Oh vs 12h; (ii1) Oh vs 24h; (iv) 90m
vs 12h; (v) 90m vs 24h; and (vi) 12h vs 24h. The p-values were adjusted using a Bonferroni

correction and genes with p-value < 0.05 were considered DEGs.

Rubber tree DEGs were compared between the time-points evaluated with Venn plots
constructed with the venn R package (Dusa, 2017). For all genes, we selected the respective
annotation obtained with the Trinotate v2.0.1 pipeline (Bryant et al, 2017;

https://trinotate.github.io/). Untranslated transcripts were searched against the SwissProt/UniProt

database using BLASTX and filtered with an e-value of 1e-5 and placed into a tab-delimited file.
Transcripts were also associated with Gene Ontology (GO) (Harris et al., 2004).

23 Gene Coexpression Network (GCN) Analysis

The GCN was inferred through R Pearson correlation coefficients with a cut-off of 0.8
(Van Noort et al., 2004). The R values of the GCN were normalized using the highest reciprocal
rank (HRR) approach limited to the top 10 connections, and the heuristic cluster chiseling
algorithm (HCCA) was used to organize the network into communities (Mutwil et al., 2010). The
HRR networks and the HCCA results were visualized with Cytoscape software v.3.8.0 (Shannon
et al., 2003).

2.4 Cold Stress Association

The number of DEGs in the clusters was used to pinpoint the most probable groups
involved in Hevea cold stress response. Hub genes in the selected clusters were analysed using the
node degree distribution (DD), betweenness centrality (BC) and stress centrality distribution (SC)
parameters of the networks that were obtained using the Cytoscape software v.3.8.0 (Shannon et
al., 2003). Genes with high DD that presented high values of BC and SC were considered highly

influential in the selected clusters’ co-expression dynamics. For each network cluster, at least one
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hub gene was identified, and they were evaluated by their functional annotation and/or the genes

they interacted with.
2.5 Functional Enrichment

Overrepresented GO terms in the clusters were determined with BINGO plugin v.3.0.4
(Maere et al., 2005) using a customized reference set created from the transcriptome annotation
data. A hypergeometric distribution and false discovery rate (FDR) < 0.05 were used in the
analyses. GO enrichment analyses were performed with EnrichmentMap plugin v.3.3.1 (Merico
et al., 2010) with FDR Q-values < 0.05 and the BiNGO output files. Both plugins were used in the
Cytoscape software v.3.8.0 (Shannon et al., 2003).

3 Results
3.1 Bioinformatics and Differential Expression Analysis

Approximately 530 million paired-end (PE) reads were obtained for the RRIM600
genotype and 633 million for the GT1 genotype. After quality filtering, around 933 million PE
reads were retained and used to assemble the transcriptome in the Trinity software. A total of
104,738 isoforms (51,697 genes) were identified with sizes between 500 bp and 22,333 bp, with
an average of 1,874 bp and N50 of 2,369. From these genes, we could identify a total of 74,398
unique proteins related to 9,417 different GOs (Supplementary Table 1 - Access in
https://docs.google.com/spreadsheets/d/1AkQICDVW60e6Ftrdfr8QjHVx814Ve22qGNvUKkjkB

ql/edit?usp=sharing). For DEG analyses, we employed a filtering criteria based on genes that

presented at least 10 counts per million (CPM) in at least 3 samples, which resulted in a final
amount of 30,407 genes. From these genes, the PCA employed revealed a distinct profile of
samples belonging to each different genotype (Figure 1A).

The number of DEGs per time period comparison showed different responses, regarding
not only the number of DEGs (Table 1), but also the associated genes (Supplementary Table 2 —
Access in

https://docs.google.com/spreadsheets/d/10GunmT70kMwkCnXkxvV1XkaTmVSoxjRc4z04hi4O

Lvl/edit?usp=sharing). Although there were evident intersections among the tests established

(Figure 1B), it is clearly observed a joint mechanism of several genes for cold response. Regarding
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the GO enrichment analysis, the full DEG set was enriched for response to stress and response to
chitin terms. The down-regulated group of genes did not present any overrepresented category. In
contrast, the up-regulated genes’ group was enriched for the following terms: response to chitin,
defense response, response to wounding, cell death, photoprotection, calcium ion transmembrane

transporter activity and integral to plasma membrane.

Table 1. Number of Hevea brasiliensis differentially expressed genes (DEGs) that were
modulated by cold stress.

Time period comparison DEGs g%-ézgulated g%v(v}l;-regulated
Oh vs 90m 32 32 0

Oh vs 12h 673 558 115

Oh vs 24h 1,208 852 356

90m vs 12h 526 455 71

90m vs 24h 917 700 217

12h vs 24h 18 15 3

(Oh + 90min) vs (12h + 24h) 2,436 1,575 861
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Figure 1. (A) Principal component analysis (PCA) scatter plot performed on the first two principal
components (PCs) of rubber tree transcriptome data (GT1 and RRIM600 genotypes). Each point
represents a different sample, colored according to the respective genotype. (B) Venn diagrams
for differentially expressed genes (DEGs) found on the conditions established.

After 90 minutes of cold treatment, only thirty-two transcripts were characterized as DEGs,
all of them were up-regulated during the plantlets’ early response to cold stress. Of these, 26 genes
were successfully annotated (Supplementary Table 1 - Access in

https://docs.google.com/spreadsheets/d/1 AKQICDVW60e6Ftrdfr8QiHVx814Ve22qGNvUKK kB

ql/edit?usp=sharing). The annotated DEGs are known to be induced by cold as well as other abiotic

stressors, such as drought and salt stresses. They are involved with cell wall tightening processes,
growth inhibition, oxidative-stress protection, calcium (Ca2+) signaling and cold-induced RNA
processing. The late response, considered as the interval between twelve hours and 24 hours of
cold treatment, contained 18 DEGs, including genes that stimulate an increase in the membrane

diffusion barriers and cell wall modifications.

One hundred and thirty eight DEGs were annotated with the GO term DNA-binding
transcription factor activity, being 103 up-regulated and 35 down-regulated. All of them, but one,
were grouped in the cold stress response gene clusters (see below). An analysis of overrepresented
GO terms in the 138 DEGs showed that they are involved with the regulation of cellular metabolic

processes: negative and positive regulations are modulated by the up- and down-regulated groups
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respectively. While the up-regulated genes are responsive to stress and other stimuli, the down-

regulated genes promote plant development and growth.

Non-specific serine/threonine Protein kinases (EC: 2.7.11.1) were the most represented
enzymes among the annotated DEGs: 165 were up-regulated while 57 were down-regulated. The
up-regulated kinases have an overrepresentation of GO terms related to reproduction processes,
response to ABA stimulus, calmodulin binding and signal transmission, while the down-regulated
kinases were enriched for post-translational protein modification. The second most differentially
expressed enzyme-types were RING-type E3 Ubiquitin Transferases (EC: 2.3.2.27) with 42 and

11 genes up- and down-regulated respectively.
3.2  Rubber Tree GCN Analysis

From the transcriptome data of both genotypes, we modeled an HRR network in order to
represent the cold response of the species (Figure 2A). This network was composed of 27,220
nodes across 50,650 connections (edges). Only the top 10 Pearson R correlation coefficients
considering a 0.8 cut-off were retained for each gene, being disconsidered the genes disconnected.
The major connected component within the network is composed of 25,608 nodes (94.1%). There
were also other 626 components for the remaining 1,592 genes, with a gene quantity inside each
component ranging from 2 to 11 nodes. In order to identify putative gene associations within
network structure, we analysed the network with the HCCA, identifying 832 clusters (Figure 2B).
From these sets of genes, 626 corresponded to the disconnected components (mean cluster size of
~3), and 206 to the core GCN structure (mean cluster size of ~124), comprising clusters with sizes
ranging from 45 to 280 genes (Supplementary Table 3 - Access in
https://docs.google.com/spreadsheets/d/11g0DBV6vXIO7zTrggNdgpBoJJYSDIpurZ 3mUcSKm

r4/edit?usp=sharing).
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Figure 2. (A) Gene coexpression network (CGN) modeled; each node represents a gene
colored according to the differential expression analysis, and each connection a minimum R
Pearson correlation coefficient of 0.8 (corrected with the highest reciprocal rank approach). (B)
GCN network contracted according to the groups identified by the heuristic cluster chiseling
algorithm (HCCA); each node represents a cluster colored according to the presence of
differentially expressed genes.

A functional coherence is expected across co-expressed genes belonging to the same
cluster. As such, an enrichment analysis of GO terms was performed in each cluster of genes
identified by the HCCA. From the 206 main clusters, 39 (14%) had GO terms that were
significantly enriched, as highlighted in Figure 3 for biological process GO terms. Response to
stress was the most overrepresented term among clusters, encompassing 1,039 genes across 9
groups, which was expected considering the cold experimental design. Two of these clusters (c14
and c28) were enriched for developmental processes as well, indicating the tight correlation
between environmental stimulus and growth. Interestingly, we also observed seven clusters

enriched for virus replication and transposition.
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Figure 3. (A) Gene coexpression network (CGN) modeled; each node represents a gene colored
according to the enriched gene ontology (GO) term found in the related cluster, and each
connection a minimum R Pearson correlation coefficient of 0.8 (corrected with the highest
reciprocal rank approach). (B) GCN network contracted according to the groups identified by the
heuristic cluster chiseling algorithm (HCCA); each node represents a cluster colored according to
the GO term enriched.

In addition to the clustering structure evaluated on the GCN topology, we also assessed the
gene centrality measures (Supplementary Table 3 - Access in

https://docs.google.com/spreadsheets/d/11g0DBV6vXIO7zTrggNdgpBoJJYSDIpurZ 3mUc5Km

r4/edit?usp=sharing). From the total of 27,220 genes inserted into the network, there were only

507 genes with the maximum permitted connections (ten). One of them, annotated as “probable
cytochrome c¢ biosynthesis protein” (CCBS), also presents the highest values of SC and BC
centralities, indicating that this gene exerts great influence in the network. The gene belongs to
cluster ¢8, which was enriched for photosynthesis, but also for cellular respiration and
transposition. By evaluating the inter cluster connections in the HCCA-based contracted network
(Figure 3B and Supplementary Table 4 - Access in https://docs.google.com/spreadsheets/d/1-
peHUKs684MmvI74qUyinc7mIMF9QiylgX xHgmlIK7U/edit?usp=sharing), we found that the

cluster with the highest number of connections is c¢l117 (nine edges), being enriched for

developmental processes.
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3.3  Gene Clusters Mostly Related to Cold Stress Response

Even though the DEGs identified were dispersed among the GCN (Figure 2A), specific
patterns could be observed in several clusters. For identifying molecular associations with cold
stress response, we selected the clusters that, together, account for 70.2% (1,751) of the DEGs
identified. We considered as associated clusters those that contain at least 50% of their genes as
DEGs (Supplementary Table 5 -
https://docs.google.com/spreadsheets/d/1LU2gel.64NmrEPg88SwoTZ5JYPhevc72y32pD5UvVz

Access n

CA/edit?usp=sharing), expanding the module across these clusters’ neighbors considering a

minimum required frequency of 20% of DEGs inside a cluster (Figure 4). Interestingly, we could
establish three GCN modules for the 31 clusters selected: (i) a down-regulated group with 12
clusters, (i1) an up-regulated group with 11 clusters; and (iii) an up-regulated group with 3 clusters.
Even though there were additional clusters containing DEGs, only the most pronounced ones were
used for novel inferences. Among the DEGs in the selected clusters, 480 genes were annotated
with enzyme code (EC) numbers, being 339 up-regulated and 141 down-regulated transcripts, and

180 DEGs were assigned to KEGG pathway maps.

Up selected
Up not selected

CXOX X NOX

Down selected

Down not selected

Up and Down not selected
Not DEG
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Figure 4. (A) Gene coexpression network (GCN) colored according to the modules considered as
associated with cold response; each node represents a gene, and each connection a minimum R
Pearson correlation coefficient of 0.8 (corrected with the highest reciprocal rank approach). (B)
GCN network contracted according to the groups identified by the heuristic cluster chiseling
algorithm (HCCA); each node represents a cluster colored according to modules selected and sized
according to the proportion of DEGs (Supplementary Table 5 - Access in
https://docs.google.com/spreadsheets/d/1LU2gel 64NmrEPg88SwoTZ5JYPhevc72y32pD5UvVz
CA/edit?usp=sharing).

The down-regulated module (i), as a whole, did not present any overrepresented GO
category; however the cluster c68, by itself, was enriched for cell cycle. The GO enrichment of the
module (ii) showed that signaling processes were amplified since MAP kinase kinase kinase and
calcium ion (Ca®*) transmembrane transporter activities were overrepresented. The group was also
enriched for response to stress, photoprotection and plant-type hypersensitive response.
Additionally, we also observed in (ii) clusters enriched for specific GO terms. Twenty-five early
response genes were grouped into cluster c14, which was the cluster with more overrepresented
GO categories among the groups of the modules selected, being enriched for response to high light
intensity, response to reactive oxygen species and transcription regulation activity. Other clusters
from this module were enriched for stress response (c28, c126 and c159), ion transport (c34),
development (c28) and translation (c143). Intriguingly, the second transcript with the highest BC
and SC values in the whole network is in cluster ¢28 and does not have a functional annotation. It
has seven connections, four of which with genes from different clusters. Its sequence is conserved

among plant species and it is described as an uncharacterized protein.

The genes clustered in the second up-regulated module (iii), according to the enrichment
analysis, are mostly involved with carbohydrate metabolic processes, lipid phosphorylation and
phosphatidylinositol phosphate biosynthetic processes. By itself, cluster c106 was enriched for

developmental growth and water homeostasis.

The GO terms identified in the modules selected were summarized into several biological
processes, separated into up (Figure 5A) and down-regulated (Figure 5B) associated categories.
Although up and down-regulated DEGs from these modules present evident similarities into the
GO visualization, it is clearly observed that the same biological processes are affected in specific

ways.
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Figure 5. Gene ontology (GO) terms for the cold response modules selected: (A) Up modules; (B)
Down module.
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In order to evaluate the importance of genes inside these modules, we evaluated the
presence of central genes inside each cluster, the hubs. For defining a gene as a hub, we selected
those ones with the highest degree value (Supplementary Table 6 - Access in
https://docs.google.com/spreadsheets/d/1UynT3MQvedZVKOEBUKuAwpMaYVZ17Ds3v_Bd
CU9hA WE/edit?usp=sharing). Although the network structure allows the insertion of ten edges

for each node respecting the minimum Pearson correlation of 0.8, we did not observe this

maximum quantity in all the clusters. Interestingly, one two hubs were not among the set of DEGs.
4 Discussion

The optimal conditions for H. brasiliensis development are temperatures between 22-30
°C, relative humidity of 70% or higher, and annual rainfall between 1,500 and 3,000 mm. In rubber
trees, suboptimal conditions directly affect plant development, impacting rubber production (Rao
& Kole, 2016). Currently, rubber tree plantations are mostly located in Southeast Asia, which has
the ideal edaphoclimatic conditions for the crop development. Interestingly, such varieties are
genetically closer to genotypes derived from the southern part of the Amazon basin (Souza et al.,
2015), also presenting an adaptation capacity to the Amazon Rainforest dynamics. In this context,
Brazilian rubber tree breeding programs have been focused on the development of genotypes with
both high productivity and tolerance to stress imposed by escape areas, especially cold, which
inhibits biochemical reactions, reduces photosynthetic capacity and alters membrane permeability

(Sage & Kubien, 2007; Sevillano et al., 2009; Mai et al., 2010).

Acclimatization is essential for the development of rubber tree crops not adapted to the
environmental conditions of the place to be developed, many plants increase their tolerance to
freezing when exposed to low temperatures (Tomashow, 1999). The expression of specific genes
is altered at the transcriptional level during the cold acclimation process, forming several cooling-
responsive pathways from a signaling network (Tomashow, 1999; Carvallo et al., 2011; Jeon &
Kim, 2013). Thus, the work carried out in this paper, which starts from transcripts of genotypes
that represent a good part of the genomic characterization of rubber trees, opened paths for
understanding the response to cold in the species and which biological pathways to focus on the

next steps of rubber tree breeding.
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GT]1 is a primary clone obtained through open pollination of the wild seedlings introduced
in South East Asia and their unselected progeny. RRIM600 was selected in the first rubber tree
breeding cycle, when breeders first used controlled pollinations. Both genotypes are prime
progenitors of modern rubber tree clones (Priyadarshan et al., 2009). Considering rubber tree long
life cycle and the few generations that occurred these clones are substantially close to its wild
ancestors, therefore they may be considered as genotypes bearing the wild Hevea natural genetic
variation. For such a reason, we performed inferences on H. brasiliensis cold resistance using these

genotypes.

We started our analyses by identifying genes modulated in different periods of cold
response through differential expression tests. We observed contrasted quantities of DEGs for the
conditions established, being the highest quantity of DEGs identified when comparing Oh and 24h
and the smallest amount for Oh and 90min. These results may indicate that the seedlings are able
to withstand a short period of cold exposure without massive activation or repression of genes.
After twelve hours of exposure to the cold, we can observe that both genotypes underwent a
reprogramming in their expression profiles (DEGs identified in Oh vs 12h), with the new changes
being practically maintained over the next twelve hours (DEGs identified in 12h vs 24h). About
93% of the down-regulated genes and 96% of the up-regulated genes could be annotated, being
the ubiquitin protein the most prominent annotation among the DEGS. The ubiquitin proteasome
system (UPS) plays an important role in the plant response to diverse environmental stimuli, and
RING E3 ubiquitin proteins are essential for UPS because of their functions in different
developmental processes and stress responses since these proteins recruit the substrate to be

degraded (Cho et al., 2017).

In addition to DEG analyses, we expanded the inferences on cold response using GCNs.
Analyses based on such a structure is a promising approach to better elucidate the participation of
genes linked to cooling stress. Considering that such a tolerance is the result of a network of
complex biochemical pathways, an appropriate way to understand such a regulation is not
evaluating a single gene, but a set of connected genes corresponding to a broad molecular
mechanism. The correlation of how the coordinated expression of genes involved in multiple
metabolic pathways act in response regulation can be elucidated through the definition of clusters

within the GCN (Umer et al, 2020; Sun et al., 2021). Recently, Ding et al. (2020) modeled a GCN
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using several public rubber tree transcriptomes, providing insights into rubber biosynthesis. Even
with a high potential, such approaches are incipient in rubber tree research and this study is the

first initiative on evaluating Hevea cold response in a more holistic perspective.
4.1 Selection of cold response associated clusters

From the GCN clusters selected as associated with cold response, we could supply a range
of molecular mechanisms triggered by such a stress. It was possible to observe an over
representation of the transmembrane transporter activities of MAP kinase kinase and calcium ion
(Ca2+) transmembrane. This mechanism of action to cold stress has been reported in other studies
where several metabolites act as low temperature sensors, after which cells release calcium through
phosphatidylinositol signaling and inositol phosphate metabolism through the MAPK signaling
pathway . This MAPK signaling pathway triggers signal transduction via TFs such as ERF, bHLH
and MYB TFs (Sun, 2021).

By performing an analysis of enzymes and correspondent metabolic pathways within such
groups, we could find diverse associations into cold response. The cold exposure triggered the up-
regulation of enzymes involved in the synthesis of protective photosynthetic pigments, such as
zeaxanthin and lutein (c106) (Dall'Osto et al., 2006), and lipoic acid (lipoamide) (c194), which
protects against oxidative stress (Navari-Izzo et al., 2002). Several enzymes from the nucleotide
sugars’ metabolic pathway were up-regulated (c101, c106, c121, c130, c143, c16, c161, ¢34, c53).
Nucleotide sugars are essential for cell wall biosynthesis and can function as signaling molecules,
being sugar donors for the targeted-glycosylation of different compounds (Figueroa et al., 2021).
Interestingly, enzymes from the methionine metabolism pathway that produce ethylene as their
final product were also up-regulated (c121, c28, c34), as well as, a-linolenic acid metabolism
enzymes that synthetize oxylipins, which are jasmonic acid (JA) precursor molecules that also
have signaling functions in cold stress (c126, ¢159, ¢34, ¢53) (Du et al., 2013; Maynard et al.,
2018; Wang et al., 2020).

The starting point of rubber tree cold stress response mainly resides in cluster c14, which
harbors several sequences annotated as ethylene-responsive transcription factors (ERFs). ERFs
are activated by the ethylene signaling pathway and regulate the transcription of ethylene-

responsive genes, which negatively impact plant growth (Miiller and Munné-Bosch, 2015; Van
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den Broeck et al., 2017). The ERF family in rubber tree is comprised of 115 members (Duan et
al., 2013) and the overexpression of an arabidopsis ERF'I orthologue in rubber tree plants enhanced
their tolerance to abiotic stresses and augmented laticifer cell differentiation (Lestari et al., 2018).
In our analysis, all degs annotated as ERFs were up-regulated, suggesting that H. brasiliensis
plantlets maintained the ethylene-mediated stress response active during the whole experiment.
The up-regulation of ethylene biosynthesis enzymes also indicates that ethylene plays a
constitutive role in rubber tree cold stress response. Surprisingly, only six enzymes were early
responsive to the cold treatment and all were placed in this cluster as well and four of them are
RING-type E3 ubiquitin transferases. Two were annotated as RING-H2 finger proteins ATL2
(PASA cluster 59724 and PASA cluster 65327). RING-H2 finger proteins, in special the ATL
genes, are involved in the regulation of plant response to different type of stresses (Bopopi et al.,
2010; Serrano et al., 2006; Song et al., 2016; Kim et al., 2020), being ATL2 an early responsive
gene in Arabidopsis (Salinas-Mondragon et al., 1999). The other two were annotated as E3
ubiquitin-protein ligase RING1 (PASA cluster 150375 and PASA cluster 47183), which are
involved in the regulation of programmed cell death during plant hypersensitive response (Lin et

al., 2008; Lee et al., 2011).

Considering the subnetwork formed with the first up-regulated module, c14 is solely
connected to cluster ¢159, indicating a direct mechanism associated. In addition to being enriched
for response to stress and protein ubiquitination, the cluster c159 has transcripts annotated as ERFs,
calmodulin binding proteins, serine/threonine protein kinases and disease-responsive genes. Three
early-responsive transcripts are present in this cluster, but only two were annotated: Nematode
resistance protein-like HSPRO2, a hub gene of this cluster (see below), and BON1-associated
protein 2 (BAP2), a gene that is connected to two c14 genes. HSPRO-like proteins are associated
with disease resistance, being up-regulated after pathogen infection (Murray et al., 2007
Nemchinov et al., 2017). BAP proteins are negative regulators of cell death in plants, which is
essential for plant development and hypersensitive response, and their expression is modulated by
temperature (Yang et al., 2007; Cao et al., 2019; Hou et al., 2018). c159 is connected to two other
clusters: ¢53, which did not present any overrepresented GO category but has transcripts annotated
as proteins involved with protein phosphorylation and serine/threonine kinase activity, and cluster

cl43.
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Other up-regulated clusters presented important associations into cold response. Cluster
c143 was enriched for the translation process, more specifically for negative regulation of
translation. This group has three members of the C Carbonatabolite-Repressor 4 (CCR4)—
associated factor 1 (CAF1) gene family that were up-regulated in response to the cold treatment.
These deadenylase proteins are part of the CCR4- negative on Tata (CCR4-NOT) complex that
promotes the deadenylation of mRNAs, which leads to the suppression of translation and mRNA
degradation (Collart 2016, Fang et al., 2020). In plants, CAF1 proteins were shown to be necessary
for proper development and stress response processes (Sarowar et al., 2007; Liang et al., 2009;
Walley et al., 2010; Shimo et al., 2019; Fang et al., 2020, 2021; Wang et al., 2021). In addition,
stress-responsive TFs, nucleotide sugar biosynthesis’ enzymes and cell wall biogenesis’ proteins

were assigned to c143 as well. In the HCCA network, c143 is connected to clusters c34 e c28.

In addition to being enriched for stress responses and developmental processes, the GO
terms “positive regulation of protein kinase activity” and “DNA-binding transcription factor
activity” were overrepresented in cluster c28. Among the 108 transcripts that have a functional
annotation, 25 (23%) are TFs involved in the regulation of plant defense response. The most
represented TF family was WRKY with eight members. WRKY's are one of the largest plant-
specific TF families and they participate in the regulation of plant growth and development as well
as promoters of plant stress response mechanisms by activation and inhibition of target-genes
transcription and modulation of signaling cascades (Jiang et al., 2017). This cluster also harbors
transcripts similar to enzymes from the ethylene biosynthesis pathway, calmodulin-binding
proteins and small auxin up-regulated RNA (SAUR) proteins. Plants have several SAUR genes
and they are essential growth factors for regular plant development and adaptive growth under
stress conditions. They are responsive to different environmental factors and to other
phytohormones besides auxin (Stortenbeker and Bemer, 2019; He et al., 2021). In addition, this
cluster has a strong candidate for further analysis into rubber tree cold stress response:
PASA cluster 65283, the uncharacterised protein with the second highest BC and SC values in
the whole GCN. Five of its connected transcripts were annotated and the proteins are involved
with plant meiotic recombination (Homologous-pairing protein 2 homolog, c143) (Uanschou et
al., 2013; Shi et al., 2019), zeaxanthin synthesis (Beta-carotene 3-hydroxylase 1, chloroplastic,
c106) (Fiore et al., 2006), JA-dependent defense response (Suppressor of NPR1-1 Constitutive 4,
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c28) (Bi et al., 2010), stress-induced osmotic solutes accumulation (Probable polyol transporter 4,
¢28) (Noiraud et al., 2001) and Ca**-signaling (Probable calcium-binding protein CML36, ¢28)
(Astegno et al., 2017).

Another cluster that also showed enrichment for stress response was cluster ¢126, which
only showed connection with cluster c28 in the HCCA network. There was an overrepresentation
of GO terms for phenylalanine biosynthesis and sphingolipid biosynthesis processes.
Phenylalanine, apart from its role in protein biosynthesis, is the precursor of several plant phenolic
compounds, such as lignin, flavonoids and anthocyanins (Maeda and Dudareva, 2012), and
salicylic acid (SA) (Lefevere et al., 2020). Sphingolipids constitute a significant part of plant
plasma membrane lipids and are also involved in the control of PCD and mediating SA-signaling

in plant stress response (Pata et al., 2010; Alden et al., 2011; Rivas-San Vicente et al., 2013).

Stress responses and plant growth can also be associated with the c34 cluster, enriched for
ionic transport, more specifically for transmembrane transport of Ca2+. Ca2+ is widely known as
a second messenger in plants, being (Zhu, 2016; Yuan et al., 2018; Michailidis et al., 2020). Cluster
c34 is the most connected cluster in the first up-regulated group, being connected to clusters c143,
c53,c161 and c121 in the HCCA network. Low temperature stimulus is well established as a main
trigger of cell Ca2+ influx by the activation of Ca2+ channels, which leads to the Ca2+-signaling
cascade of plant cold stress response (Mori et al., 2018; Liu et al., 2021; Mao et al., 2021).
Considering the overrepresentation of proteins with Ca2+ transporter activity in cluster c34, it
could be seen as the cluster controlling Ca2+-influx, therefore regulating Ca2-+-signaling, which

agrees with the cluster central position in the up-regulated module (ii).

The remaining five clusters in module (ii) did not present any overrepresentation of GO
terms in the enrichment analysis, nevertheless the genes present in these clusters are involved with
signaling processes, response to stress and transcription regulation. Cluster ¢53 houses members
of ERF and TIFY/JAZ transcription factor families. TIF'Y/JAZ TF family is specific to plants and
its members are negative regulators of JA-induced responses. Nevertheless, their expression is
induced by JA, which creates a regulatory feedback loop for fine-tuning of JA-signaling (Chini et

al., 2007). Different types of stresses induce the expression of these genes and they are essential
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for plant growth-defense balance (Zhu et al., 2014; Major et al., 2017; Guo et al., 2018; He et al.,
2020).

Cold acclimatization and response to low temperatures was also associated with cluster
101, where there is positive expression of cognate 70 kilodalton heat shock proteins (Neven et al.,
1992) in the period between 90 min and 24 hours of stress by cold in rubber tree. In addition,
cluster c101 has the action of BAMI, a receptor protein kinase involved in plant development
(DeYoung et al., 2006). This protein also has a role in drought stress response, being required for
long distance signaling for stomatal closure (Takahashi et al., 2018). c101 also houses a transcript
similar to DELLA protein RGLI1, which is a negative regulator of growth promoting
phytohormone gibberellin (GA) signaling pathway (Wen and Chan, 2002). Poplar plants
overexpressing this gene showed severe dwarfed phenotypes (Busov et al., 2006). This cluster has
aregulator of PCD as well. Myb108 is a negative regulator of ABA biosynthesis and ABA-induced
cell death (Cui et al., 2013) and is highly induced in rose plants under chilling (4°C) and freezing
(-20°C) treatments. Arabidopsis plants overexpressing the rose ortholog showed improved cold
tolerance and better performance under other stresses as well as a shorter growth cycle than the

wild type (Dong et al., 2021).

The cluster with the most enzymes mapped to the KEGG pathways was c¢121, with forty-
four transcripts assigned to EC numbers. Enzymes that synthesize scopolin and lignins in the
phenylpropanoid biosynthesis pathway were placed in this cluster. The coumarin scopolin and its
precursor, scopoletin, accumulate in plant tissues in response to stress conditions (Kai et al., 2006;
Zandalinas et al., 2017) and are believed to be involved in ROS scavenging (Chong et al., 2002;
Lee etal., 2013). Members of the plant ACT domain-containing protein family (ACR4 and ACRS)
are present in cluster c161, and their expression is induced by cold treatment in Arabidopsis (Hsieh
and Goodman, 2002). Regarding PCD, c161 bears both proteins that positively (E3 ubiquitin-
protein ligase RINGI1) or negatively (Accelerated cell-death ACDI11) regulate cell death.
Expression of RINGI is induced by biotic stress and the protein is necessary for the activation of
the PCD process (Lin et al., 2008; Lee et al., 2011). ACD11 is a sphingolipid transfer protein that
controls cell death through the regulation of sphingolipid levels (Brodersen et al., 2002; Simanchu
etal., 2014). It is down-regulated by the UPS machinery after pathogen infection (Liu et al., 2017),
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however ACD11 transiently accumulates under low concentrations of ABA and under salt and

drought stress and its overexpression confers abiotic stress tolerance (Li et al., 2020).

Cluster ¢194 has proteins involved with negative regulation of SA-mediated PCD (MACPF
domain-containing proteins CAD1 and NSLI1) (Tsutsui et al., 2006, Noutoshi et al., 2006),
regulation of photoperiod gene expression and circadian clock (WD repeat-containing protein
LWDI1) (Wu et al., 2008; Wang et al., 2011), sugar transporters involved with cell wall biogenesis
(UDP-galactose transporter 2) (Norambuena et al., 2005), and plant growth and stress response
(Sugar transport protein 13) (Schofield et al., 2009; Lee and Seo 2021), besides having lignin

synthesizing proteins as well.

4.2  Identification of key elements within cold response associated modules

In addition to evaluating the functional profile of all the associated genes within the
modules selected, we performed inferences into the importance of these genes for the cold response
mechanisms. Genes with high centrality within a GCN may be described as core regulators
(Amrine et al., 2015), being known as hubs. Through the criteria defined for selecting hubs, we
could identify for each cluster of the cold stress gene modules the hub genes, being considered key

elements into the cold resistance definition (Carlson et al., 2006; Koido et al., 2018).

From the clusters selected as associated with cold down-regulation, we could identify
nineteen hub genes. Almost all hubs of these clusters were identified as DEGs in the comparison
performed both at Oh and 90min with 12h and 24h. The functional annotation of two of these hubs
indicated a down-regulation of photosynthetic pathway genes (clusters c42 and c166). The c42
hub gene was annotated as lycopene beta cyclase, chloroplastic/chromoplastic (LCYB), an enzyme
of the carotenoid biosynthesis process. Carotenoids form pigment-protein complexes in the
photosystems protecting the machinery from reactive oxygen species (ROS) created by abiotic
stresses (Dall’Osto et al., 2014; Shi et al., 2015; Kang et al., 2018). The hub from cluster c166 was
annotated as OTP51, a pentatricopeptide repeat-containing protein, that is required for the proper
assembly of photosystems I and II in Arabidopsis and rice (de Longevialle et al., 2008; Ye et al.,
2012). Combined with low temperature, light promotes an enhancement in transcription of cold-

responsive and photosynthesis-related genes (Soitamo et al., 2008). The down-regulation of both
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genes in rubber trees might be linked to the reduction of photosynthetic activity due to cold stress;

nevertheless this modulation was detected in the dark period of the experiment.

In addition to the regulation of photosynthetic activity from the cold down-regulation
genes, it was also possible to identify two hubs representing proteins involved in abscisic acid
(ABA) signaling, which is essential for development and responses to abiotic stress. A transcript
similar to a protein phosphatase 2C (PP2C) is one of the hubs in cluster c171. Chao et al. (2020),
in a genome-wide identification and expression analysis of the phosphatase 2A family in rubber
trees, identified cis-acting elements related to the low temperature responsiveness (LTR) category.
Under non-stress conditions, PP2C proteins negatively regulate the ABA-mediated signaling
pathway by inactivating ABA-responsive genes. Once under stress, ABA-receptors bind PP2Cs
and inhibit their activity, consequently activating ABA signals (Cai et al., 2017). The other hub
gene belongs to cluster c134 and was annotated as zinc finger CONSTANS-like 4 protein (COL4),
a transcription factor. COL4 is a flowering inhibitor by repressing the flowering locus T (FT) gene
expression (Steinbach, 2019) and, strikingly, it is also involved in abiotic stress responses through
the ABA-dependent signaling pathway in Arabidopsis (Min et al., 2015). Considering that ABA
concentration might have increased in the rubber trees during the cold exposure, which is enforced
by the down-regulation of a transcript similar to a PP2C protein, one could expect that this gene
would be up-regulated instead. ABA is known for delaying flowering, nevertheless, under severe
drought conditions, ABA up-regulates florigen genes, which is part of the drought escape (DE)
strategy. DE prompts plants to accelerate their vegetative growth and reproduction stages during
the high water availability period. In the drought season, the plants enter a dormant stage (Verslues

and Juenger 2011; Yildirim and Kaya 2017).

The hub from the cluster c156 was annotated as histone acetyltransferase of the MYST
family (HAM) 1/2 proteins, which are involved in UV-B DNA damage repair (Campi et al., 2012).
In Arabidopsis, HAM1 and HAM?2 proteins are expressed mainly in growing tissues and double
mutants are lethal (Latrasse et al., 2008). Interestingly, these proteins positively regulate the
expression of FLOWERING LOCUS C (FLC) gene, therefore being a flowering repressor as well
(Xiao et al., 2013). The down-regulation of this transcript in H. brasiliensis plantlets might be due
to a decrease in damaged DNA by UV-B because of the absence of light. In addition, the down-
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regulation of ¢196 hub annotated with Down Homeobox protein BEL1 homolog from different
metabolic processes that are flowering repressors (Bhatt et al., 2003) suggests that rubber trees

may have a DE-type strategy to deal with abiotic stresses.

The down-regulation of three other strongly co-expressed hub genes, from the c184, c171
and c153 clusters, detected in the last phase of the cold experiment, also suggests an increase in
ABA synthesis by the H. brasiliensis plantlets connected to an inhibition of growth and the
photoperiod. The hub identified for cluster c184 was annotated as homeobox-leucine zipper (HD-
Zip) protein HATS (AtHB1) and it was detected as a down-regulated gene after 12 hours of rubber
tree cold exposure. HD-Zip transcription factors seem to be a plant-specific TF family and its
members take part in plant development and stress response (Ariel et al., 2007), each member
having its own expression pattern under different environmental conditions (Li et al., 2019; Li et
al., 2020). In Arabidopsis, HATS expression is down-regulated by salt stress and low temperature,
but up-regulated by darkness (Henriksson et al., 2005) and is a positive regulator of growth by
modulating the expression of genes involved in cell elongation and cell wall composition (Capella
et al., 2015). This hub was connected to not only c171 hub, but also to ¢153 hub, which was
annotated as leaf rust receptor-like kinase 10-like (LRK10L) protein. LRK 10 is a disease resistance
gene first described in wheat (Feuillet et al., 1997) and wheat members of its family were shown
to be induced by stresses and light. Interestingly, in the dark period these genes were down-
regulated even though the plants were under biotic stress (Zhou et al., 2007). The Arabidopsis’
homolog gene codes for two different proteins: one is involved in ABA-signaling and is down-
regulated by drought stress and ABA treatment, while the other is up-regulated in these conditions,
which indicates that these transcripts might regulate each other (Lim et al., 2015). These three hub
genes were strongly co-expressed together in rubber trees, directly connecting three different
clusters. Their down-regulation was detected in the latter phase of the cold experiment, which is
suggestive of an increase in ABA synthesis by the H. brasiliensis plantlets connected to an

inhibition of growth and the photoperiod.

Considering the differences in cold stress response from two H. brasiliensis clones
obtained in the early years of rubber tree domestication, we attempted to have a glimpse of Hevea

general genetic responses to cold stress. As a tropical tree species, rubber tree most probably did
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not have to deal with prolonged periods of low temperatures during its evolution; nevertheless the
few wild genotypes that were successfully introduced in Southeast Asia carried so much genetic
diversity that breeding for varieties that are cold tolerant is still possible. As a result of the GCN
strategy applied in this study, we could visualize Hevea’s primary reprogramming of gene
expression and the relationship among the genes involved in the cold stress response. In the short
period of cold exposure used in this work, the plantlets activated the ethylene-mediated signaling
pathway since the beginning of the stress treatment and kept ethylene signaling active. PCD plays
a major role in the rubber tree cold response process, being tightly regulated by the signaling
cascades. Growth inhibition and cell wall thickening are implemented by the plantlets, which can
be correlated to a possible drought escape strategy triggered by the cold stress. In view of the
genotypes analyzed, our results may represent the species’ genetic stress responses developed
during its evolution. The understanding of how H. brasiliensis copes with low temperature stress
can improve greatly the breeding strategies for this crop as well as emphasize the importance of
rubber tree genetic diversity preservation, since it has such a narrow genetic base, is being

impacted by climate change and is the only source for large scale rubber production.
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7. CAPITULO IIT: TOPICOS PARA LIVRO “ TRANSCRIPTOME PROFILING:
PROGRESS AND PROSPECTS” by M.A. Ali and J. Lee - ELSEVIER

1)Transcriptome and breeding in Orphan crops

Seventy percent of the calories that are part of human food correspond to the consumption
of only 15 cultivated species. More than 50% of these calories consumed come from three major
cereal crops in the world: rice, corn and wheat (Dawson et al., 2019). Despite this consumption
concentrated in a few varieties of food sources, there are more than 2,500 species in the process of
domestication, of which 300 have been fully domesticated (Fernie and Yan, 2019).

The concentration of food production makes up a food system far from a sustainable food
supply for humanity (Khoury et al., 2014; Dawson et al., 2019). The lack of diversification in
agricultural production reduces global food security against the current scenario of accelerated
population growth and increased demand for food (Chang et al., 2019). In this context, the
cultivation of orphan species play an important role in global food and nutritional security,
particularly in the developing world (Jamnadass et al. 2020), in addition to presenting a complex
of valuable gene pools for the improvement of future crops (Mabhaudhi et al., 2019). Thus, the
nutritional and energy situation of the population, the conservation of biodiversity, sustainable use
of natural resources and the consequences of global climate change (Kameny et al., 2021) are the
main challenges for the genetic improvement of plants, especially for orphan crops.

One of the solutions with good prospects to face these challenges is the use of orphan crops,
increasing agricultural production, food sources, sources of biocompounds and contributing to
expand the genetic resources of resilient plants. In the approaching genomic Era, there are great
prospects for the genetic improvement of orphan and main crops, including "de novo"
domestication of orphan crops (Ye and Fan, 2021). New techniques for plant breeding, such as the
transcriptome and other "omics", have made it possible to accelerate basic research and facilitate
the exploration of orphan crops.

Many orphan cultures have been identified as intelligent in their ability to respond to the
abiotic stresses they are exposed to. This developed adaptation to climatic conditions presents

opportunities to promote these crops to a higher level of production and increase the degree of
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molecular knowledge and improvement of more resilient plants. Increased drought and heat
resulting from climate change have made current agricultural production particularly challenging
(Mabhaudhi et al., 2019). Drought is one of the main abiotic constraints limiting agricultural
production worldwide, and several orphan species exhibit high levels of tolerance to water stress,
such as millet (Krishnamurthy et al. 2016), millet (Setaria italica) (Puranik et al. . 2011), pea
(Lathyrus sativa L.) (Hanbury et al. 2000) and quinoa (Chenopodium quinoa Willd.) (Hinojosa)
(Hinojosa et al. 2018).

Although the drought response stability mechanisms are not yet fully elucidated, among
the known drought response mechanisms reported in these orphan plantations are the efficient
antioxidant potential (Jiang et al. 2013), association with arbuscular mycorrhiza (Tyagi et al.
2017). ), osmotic adjustment (Jiang et al. 2013) et al. 2013; Tyagi et al. 2017), reduction in green
leaf area and stomatal conductance (Cullis and Kunert 2017).

In addition, orphan crops have been a reference in the development of genetic and
molecular mechanisms to survive to the others abiotic stress factors such as soil salinity tolerance
(Bray et al. 2000; Shailaja and Thirumeni 2007; Rahman et al. 2014). One of the most salt-tolerant
species in the world is an orphaned annual dicotyledon with diverse uses (Patel 2016), the common
Glasswort (Salicornia europaea L.), (Loconsole et al. 2019).

Other adaptations to specific agrosystems make orphan crops examples of responses to
poor soils, flooding and consequent hypoxia, temperature extremes (Levizou et al. 2004), soils
poor in fertility and deficiencies (Thilakarathna and Raizada 2015; Cullis et al. 2018; Mabhaudhi
et al. 2019), nutrients and contaminated with toxic metals (Chandra et al. 2016; Sharma et al. 2010;
Shinozaki et al. 2015; Mkumbo et al. 2012; Raskin et al. 1997).

Orphan crops, in addition to their importance as a source of food diversity, production of
biofuels, soil phytoremediation, also have a large role in the production of medicines and
pharmaceuticals and cosmetics (Pootakham and Nawae et al., 2021). For centuries native people
have applied empirical knowledge to the medicinal use of plants, and today this knowledge has
been extended to sciences such as herbal medicine, herbology and other ways of exploring the
medicinal resources of plants. Caper (Capparis spinosa L.), a rich source of bioactive compounds
with important nutritional and medicinal values, had its transcriptome sequenced and its

transcription dataset provided an important resource for discovering genes and markers of a plant
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with promising potential for agrosystems threatened by global warming (Mercati et al., 2019).
Another plant of high nutritional value that had its transcriptome sequenced with the aim of
improving the placement of the pulp and peel was Pitaya. These characteristics are essential for
the cultivation and improvement of the species, and the transcriptome allowed to elucidate the
candidate genes and the main metabolites involved in these phenotypes (Zhou et al., 2020).

Orphan crops have also been presented as a solution to the problem of biotic stress and
plant health, since many of them have been shown to be tolerant to some of the pests and diseases
when grown in diversified agricultural systems (Hendre et al. 2019).

The growing demand for biofuels has led to the identification of yet another interest for
orphan crops, their use as sources of "second generation" biofuels. The use of translational
genomics allows the identification and modification of several of the genes, mainly in plant clades
that share high levels of genomic synteny between members and include bioenergy cultures
(Pancaldi and Trindade, 2020). There are even platforms specifically designed for orphan cultures
without a sequenced genome, but for which transcriptomes can be developed, such as, for example,

Orphan Crops Browser; (Kamei et al., 2016).

Sequences of genomic data, and especially transcribed data from orphan crops and their
wild relatives, provide great potential benefits to plant breeding through: 1) providing valuable
genetic resources related to environmental adaptation for the improvement of major crops; 2)
construction of new models of biological responses, such as a model for photosynthesis and
characteristics of C4 plants to increase cereal productivity, facilitating genome editing; 3)
revealing mechanisms that support the ability to compete with major crops and helped to create
cultivars with competitive advantages, for example, with elucidation of mechanisms of allelopathic
interactions (Guo et al., 2018). Transcriptome allows for the discovery and search of genes
involved in the main metabolic pathways and important biotic and abiotic responses to agricultural
production.

Transcriptome sequencing has been widely used to detect expression profiles relevant to
abiotic stress resilience in plants. Furthermore, this technique has helped most complete genome
assembly projects, guiding the complete annotation of the generated genome. This scenario

favored the characterization of most model species, but still does not include most orphan species.
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Although the ideal for genome annotation is to use transcriptome from the same species that was
used for sequencing (Yang et al. 2016; Pati et al. 2019, Song et al. 2019, VanBuren et al. 2020),
reality stops in most cases of orphan species, it is the use of the existing transcriptome from a close
relative or a well-annotated transcriptome from a model culture. Thus, despite resource limitations,
there has been a growing interest in expanding the characterization of transcriptomes from orphan
species, in order to broaden the knowledge of specific answers to varied biological questions.
Before NGS was cheaper and expanded beyond model species, the microarray method was widely
used for transcriptome analysis in orphan cultures, such as white lupine (Zhu et al. 2010), tef (Degu
2019), African belladonna (Solanum nigrum) (Schmidt and Baldwin 2009), wild mustard
(Srivastava et al. 2015) and buckwheat (Fagopyrum esculentum) (Golisz et al. 2008). The currently
most used method of choice has been RNA sequencing (RNA-seq) (Ozsolak and Milos 2011). For
example, Ranasinghe et al. (2019) identified 2,416 differentially expressed genes during the salt
stress response profile in quinoa (Chenopodium quinoa). In Juta-malva, a transcription analysis
was done to identify genes related to water stress (Yang et al. 2017).

A new trend in this area of transcript analysis is the [ISO-seq sequencing by PacBio Sequel
II platform. This platform makes it possible to sequence entire transcribed isoforms, from the 5'
end to the 3' polyA tail in high quality. The generation of complete transcribed sequences can
greatly simplify the analysis, eliminating the need to reconstruct the transcripts by genomic
assembly and thus impacting the quality of isoform inference, which is very prone to errors due to
the use of short reads. Furthermore, these transcripts can help annotate the construction of new

genomes (Pootakham and Nawae et al., 2021).
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2) Expression analysis/differential expression analysis: Programs, statistical analysis,

validation of differential expression analysis

One of the most definitive steps of a transcriptome analysis is the inference of relative, or
absolute, gene and/ or isoform expression, by means of quantification and statistical modeling of
genetic sequences with a pipeline of bioinformatics tools. An example of a classic approach
adopted for molecular expression measurements is the Tuxedo Suite, a combination of the
execution of TopHat and Cufflinks programs, in sequence (Trapnell et. al, 2013). Since gene

expression is a very dynamic biological mechanism (Roundtree et. al., 2017), the characterization
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of its profiles is heavily dependent on time based measurements, the experimental design and
control samples (Robles et. al, 2012). Therefore, if the experimental design is not planned
cautiously and the data not manipulated accordingly, it can lead to very discrepant outcomes and
conclusions.

With the increasing popularity of RNA-Sequencing (RNA-Seq) technology, new and
refined approaches to manipulate transcripts data are frequently published and get obsolete very
quickly. Considering this scenario, it is very easy for a molecular data analyst to lose track of
recent advances and most sophisticated software available. Here, it is described the concepts of
the essential steps for a differential expression analysis with RNA-Seq data, in addition to the most

accepted and up-to-date software to perform them.

Counting methods

The essential measure that initiates the analyses of a gene expression dataset is the raw
count of transcribed reads that were accurately mapped against a reference genome or
transcriptome. This preliminary mensuration gives us a more immediate overview of the
transcriptome assembly, and check for issues detected in the dataset used or with the parameters
applied in previous analysis steps, like wrong sample labeling, detection of outliers, mapping
constraints that were too broad or too tight, and even problems in an extraction batch can be
identified.

The abundance of transcripts in a RNAseq library can be estimated based on gene level or
transcript level. The first can be done by initially removing reads that map to multiple reference
locations (multi-mapped) and then count the remaining reads overlapping the same targets (genes,
exons) (Soneson et. al., 2015). Tools like HTSeq-count (Anders et. al., 2015) and featureCounts
(Liao et. al., 2014) are among the most used for gene level quantification.

The transcript level quantification aims to quantity individual transcripts, and usually can
be achieved by two distinct approaches: 1) By performing a transcriptome alignment-based
quantification, like employed by RSEM (Li and Dewey, 2011), which aligns reads against an
assembled transcriptome using mapping softwares like bowtie2 (Langmead & Salzberg, 2012) or
CuffLinks (Trapnell et al., 2010), and then estimates transcripts counts and abundance based on

accurate aligned sequences; 2) The second method is based on free-alignment quantification,
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which became very popular due to is high accuracy, even in the absence of a traditional mapping
and robust genome reference. By eschewing the mapping step also makes them considered ‘wicked
fast” when compared to other counting methods (Patro et. al., 2014). One way to perform a free-
alignment quantification is by constructing a de Bruijn graph based on k-mers built from sequence
reads, perform a hash lookup (key-values associations) of these k-mers with an indexed
transcriptome and then estimate its abundance based on a probabilistic likelihood expectation-
maximization algorithm (EM). This procedure was named pseudoalingment, and was proposed by
the kallisto tool (Bray et. al., 2016), as a way to circumvent, efficiently, the mapping step. Salmon
(Patro et. al., 2017) is another, widely used, free-alignment quantification tool, it’s computing
strategy is similar with the one applied by kallisto, but it executes the hash look up step with a
suffix array instead of a de Brujing graph, this procedure, called quasi-mapping, was introduced
by the RapMap program (Srivastava et. al., 2016), and it allows the extraction of more information
than the pseudoaligment. The high popularity of Salmon is also due to its great efficiency on
correcting sample-specific bias, like positional and fragment GC content bias and normalization
for library size and transcript length, which are overlooked or not properly implemented in other

alignment tools, and Salmon manages to achieve it without loosing its speed performance.

Data Normalization and Statistical Procedures

On top of the raw count of reads, a data normalization statistic is applied to decrease noise
from sequencing, sampling or preference lower gene counts. The data from gene expression
quantification is initially skewed by biases that are primarily originated from library preparation
protocols done prior to sequencing and, if overlooked, can greatly impact the results of a different
expression analysis (Bullard et. al., 2010). A few normalization methods have already been
proposed to adjust the biased data for downstream analysis, and the most relevant are discussed in
this topic (Dillies et al. 2013; Li et al. 2015).

The library sequencing does not produce identical number of sequenced reads (sequencing
depth) between different samples, and it is one of the most impactful bias present in a RNAseq
data. If a library contains more sequenced reads than another, it is most likely to have more counts
for a specific read present in both samples, even if they are built from repetitions of a same

experimental condition. Ergo, the read counts should be expressed proportionally to its library size,
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and this is done by counting up the total reads sequenced present in the library sample and dividing
it by 1,000,000, resulting in a scale factor (CPM) that the individual reads count will then be
divided by, producing then a reads per million (RPM) value, that will be the sequence depth
adjusted read count value (Mortavazi et. al., 2008).

During the RNAseq library preparation, the transcripts molecules are broken down into
smaller fragments in order to increase coverage of the entire transcript's lengths, which leads to a
higher portion of the sequenced reads to be mapped to longer transcripts than to shorter ones, even
if they have a similar expression (Oshlack & Wakefield, 2009), which makes the counting step to
be biased by the transcript length, hence it should also be submitted to a normalization correction
prior to downstream analysis. This correction is done by dividing the reads count value of a
transcript by its length in kilobases, resulting in a read per kilobase value (RPK). These two
normalization techniques (RPM and RPK) are commonly done in sequence, resulting in a reads
per kilobase per million value, also known as RPKM, or, for paired-end RNAseq, fragments per
kilobase per million (FPKM), in which the fact that two reads could be originated from the same
transcript will be accounted for, and then won’t be counted twice. Li and Dewey (2011) proposed,
in the RSEM publication paper, a reversion of the FPKM operations order resulting in unit-less
values that would be easier to manipulate and to be used in comparisons between samples, the
TPM (transcript per million) metric, as it is called, is done by correcting the length bias first (RPK),
then creating a scaling factor by dividing the sum of these RPK values in the samples by 1,000,00
(RPM), and finally dividing these RPM values by the scaling factor, resulting in a TPM count
value. Although this combination of normalization procedures accounts for both sequencing depth
and gene length, and therefore, they are recommended for gene count comparisons within a sample
or between samples of the same group, they, alone, are not suited for different expression analysis.

To be fully adequate for a DE analysis, there is another feature of the RNAseq protocol
that should be accounted for: the library composition. If there is a greatly different expressed gene
in a sample, it would substantially increase the total number of counts in the sample, resulting in
a greater scale factor (CPM) that the read counts of the transcripts of its sample would be divided
by, resulting in an apparent lower expression of these reads when compared to a different sample
that doesn’t have this gene with a very high expression. To make up for this feature, the edgeR

packet for R programming language (Mark et al., 2010) proposed a weighted trimmed mean of
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log expression ratios between samples, that were named trimmed mean of M-values (TMM). In a
whole different fashion, edgeR doesn’t use RPKM or TPM at all, because they don’t adjust for
library composition. EdgeR’s normalization approach is based on the presumption that none of the
genes are differentially expressed in the sample, so it starts by removing all genes with 0 read
counts in all samples, then it picks one of the samples, independently of experimental condition
or treatment, that is the most balanced in terms of noise and average read count, to be the reference
sample, this sample will then be used to normalize all other samples against. This normalization is
done by comparing, with different statistical procedures, sample by sample against the reference
sample, filtering out genes that are biased by the log fold differences between them, these biased
genes are so called when they are much more expressed in a sample than in the other, or when they
are too much or too little expressed in both samples all together, leaving out, then, genes that don’t
have much bias and have moderate reads mapped to them in both samples. After some weighting,
scaling and centering procedures it outputs the final TMM values, that, edgeR then will use for
different expression analysis, alongside with calculated p-values and false discovery rates (FDR).
To the present moment, the TMM normalization method have been widely accepted and applied
in the academic community, and have been classified, in different benchmark papers(), as the most

appropriated normalization technique for different expression analysis to the date.

Comparison of different expression profiles

The choice of different methods for differential expression analysis depends on the sample
design. Since some of these tools can only perform pairwise comparisons, others such as edgeR,
limma-voom (Law et. al., 2014), DESeq (Love et. al., 2014) and maSigPro (Conesa & Nueda,
2006) can perform multiple comparisons. Differential expression analysis packages differ, mainly,
in the statistical methods adopted. There are software based on negative binomial distributions
(NB), such as edgeR and DESeq; and there are software that use Bayesian approaches based on a
negative binomial model, such as baySeq (Hardcastle & Kelly, 2010) and EBSeq (Leng et. al.,
2013).

After the comparisons and distribution estimation, a common approach is to test them for

the null hypothesis, or the presumption that no genes are expressed differentially. Initially, the
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probabilistic significance of the difference between the count of a gene in one sample compared
to others (p-value) is calculated, then, this value is adjusted for a False Discovery Rate (FDR),
becoming the g-value. If a p-value threshold of 0.05 is set, it means that 5% of all tests are false
positives, on the other hand, a g-value of 0.05 would imply that 5% of the significant tests are false
positives, resulting in a less stringent and more specific way to filter the abundance data for the
most relevant values. The threshold or cutoff value of the g-value can be selected to filter out less
significant expression differences, this cutoff can be set depending on the type of the analysis, eg.
a cutoff for a co-expression analysis and another for GO enrichment analysis.

The estimation of the log fold change between different expression values is another
common procedure in DE analysis, it provides a ratio value related to the changes in genes
expression across two samples or conditions. It’s value can be negative, meaning that an
expression decreased and, therefore, the gene expression is down-regulated, positive for increased
expressions (up-regulated genes) and values closer to the baseline (0) for genes not expressed

significantly between the samples samples compared.

Visualization

Different expression data are usually organized into tables and/or matrices with thousands
of rows representing the genes and columns expressing different types of numeric metrics, like
raw counts, normalized counts, p-values, FDR and so on. Several types of charts can be plotted to
monitor every step of the pipeline to ensure that the tools and the data are being properly

manipulated.
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A bar plot is very useful to compare samples abundance before and after a library size

normalization procedure.
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Figure. Bar plots contrasting genes abundance in different samples after a library size
normalization

Multi-Dimensional Scaling plots (MDS) are widely used to check if the expression profiles
of the samples are behaving accordantly with the experimental conditions, it converts the distance
between the gene counts values across samples to a 2D graph, grouping samples based on their
similarities, allowing for validation of experimental replication and identification of outliers that
will have to be accounted for, or excluded from subsequent analysis.

The correlation plot is another alternative to visualize similarities between gene expression
profiles across different samples, but instead of Cartesian data points as produced in the MDS plot,
the correlation plots present the similarities based on a spectrum of colors, the more similar the
samples are, the closer their colors will look on the chart.

For an overview of the relationship between expression changes across two experimental
conditions (log fold change, M) and the log of the mean of normalized gene counts(A), an MA
plot (2D scatter plot) can be used. Genes with no relevant expression changes between the
experimental conditions will cluster around M=0, those that are plotted away from M=0 are
colored in opposition to those that are not, resulting in a colored contrast. As stated above, this plot

is only useful for a general comparison between experimental conditions, since it doesn't consider
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p-values or adjusted p-values it can not tell if the different expression of the genes are actually

statistical significant.

Validation

The validation process is an important part of gene expression studies, as it allows verifying
the reliability and accuracy of the transcriptome data and validating the differential expression
results. In this scenario, reverse transcription quantitative PCR (RT-qPCR) has become a powerful
technology to detect and quantify gene expression in biological samples because of its sensitivity,
rapid execution and accuracy, even at low expression levels (Kubista et al., 2006; Derveaux et al.,
2010).

In summary, RT-qPCR technique involves seven main steps: (i) availability of
experimental samples; (ii) extraction of total RNA from experimental samples; (iii) evaluation of
RNA concentration and quality; (iv) synthesis of cDNA from extracted total RNA through reverse
transcription; (v) optimizing conditions for the qPCR assay; (vi) running the qPCR reaction under
optimized conditions; and (vii) data analysis using appropriate normalization methods (Kuang et
al., 2018; Taylor et al., 2019). Despite the accuracy and sensitivity of the qPCR technique to
quantify gene expression, the quality of the results obtained may be affected by variations in the
way the steps described above are conducted in different laboratories. Also, the precision of this
technique is influenced by several factors including the quality of RNA, PCR efficiency, and very
important, for accurate normalization strategies and selection of suitable reference genes, which
must be stable for analyzed experimental conditions (Phillips et al., 2009). These factors can
influence the result of the technique and make it difficult to compare results between
transcriptomic studies (Radonic et al., 2014; Kuang et al., 2018).

The main motivation in the validation step using the RT-qPCR technique is to confirm
whether the genes are really expressed differently in the analyzed samples and if there is biological
reproducibility between them. For this, it is important to access a minimal expression variation in
the tissue, treatment or condition to be analyzed (Pombo et al., 2019). Also, it is recommended to
validate a set that includes genes that exhibited down-regulation, up-regulation or no significant
change once the selected genes are validated by the technique and confirm the reliability of RNA-

Seq results.
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8. CAPITULO IV: PRINCIPAIS RESULTADOS

A seguir estdo apresentados os principais resultados referentes ao capitulo I da tese, cujo

objetivo foi a aplicacdo de SG, ML, GWAS e redes de co-expressdo génica em populagdes de

melhoramento de P. taeda:

Um total de 19.933 (~80%) individuos sobreviventes foram avaliados nas analises
fenotipicas para caracteristica de volume, apresentando herdabilidade moderada variando
entre 0.17 e 0.32 nos sete locais de coleta.

1.692 individuos foram genotipados em quatro ambientes e 45 familias. O processo de
genotipagem foi realizado com um protocolo de captura de sequéncias por sondas
previamente desenvolvidas.

Para produzir o conjunto de dados final usado no GWAS, usamos parametros rigorosos
(maximo de 10% de gendtipos ausentes em um SNP e frequéncias alélicas minimas e
maximas de 0,05 e 0,95, respectivamente), resultando em 31.589 SNPs distribuidos entre
quase todas as sondas, com quantidades diferentes dependendo do comprimento da
sequéncia de referéncia.

A PCA realizada com os dados do SNP sugeriu a presenca de clusters genéticos para cada
familia, o que ndo foi observado quando consideradas as diferentes localiza¢des das
populagdes.

O decaimento de LD foi estimado com o quadrado do coeficiente de correlagdo de Pearson
(R?) entre pares de SNP ligados dentro das respectivas sondas. Observamos decaimento
rapido para a metade do maximo R2 = 0,05 em menos de 100 Kb.

Foram selecionados experimentos de transcriptomas, em bancos de dados publicos, de trés
espécies de pinus, Pta, Pra e Pel, para complementar a anotacao das sequéncias genotipicas
analisadas e para a constru¢do das redes de co-expressao génica.

O conjunto de transcritos de cada experimento foi utilizado para montagem de novo do
transcriptoma de cada espécie, gerando uma quantidade final de 38.472, 37.499 e 33.374

genes para Pta, Pra e Pel, respectivamente.
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A partir das analises de GWAS, foram identificados sete /oci candidatos para o volume em
P. taeda. Para evitar vieses ambientais, incluimos os locais ¢ a estrutura familiar como
covariavel no modelo GWAS final.

Usando o conjunto de dados do SNP, criamos modelos de previsdo gendmica usando a
metodologia BRR em um cendrio de validagdo cruzada de 10 vezes repetido 100 vezes.
Com o conjunto total de 31.589 SNPs, a acuricia preditiva média (coeficiente R Pearson)
foi de 0,79 (erro quadratico médio de 0,00023), mostrando a alta capacidade preditiva do
conjunto de dados empregado para predizer VS.

Diferentes técnicas de sele¢ao de atributos foram usadas para reduzir o tamanho dos dados
de SNP para andlise de SG (i) GTB (498 SNPs recuperados); (ii) Correlagdes de Pearson
(20.957 SNPs recuperados); e (iii) SVM (11.440 SNPs recuperados). A partir de tais
técnicas, selecionamos um subconjunto final de SNPs para estimar o modelo preditivo de
volume como a interse¢do de pelo menos dois dos trés métodos de FS, totalizando 7.864
SNPs (~24,89% dos dados iniciais do marcador). A partir desses marcadores, conseguimos
obter resultados de precisdo semelhantes, (0,78), mostrando que a maior parte da varidncia
fenotipica pode estar associada a esse conjunto de dados menor.

Usando esse conjunto de dados selecionado, empregamos uma abordagem baseada em ML
para recuperar associacdes adicionais de fendtipo-genotipo. Usando modelos DT e RF,
estimamos a importancia das caracteristicas de cada SNP para prever volume, avaliamos
sua distribuicdo em boxplots separados e recuperamos outliers (1.506 para DT e 635 para
RF). A partir desses outliers, selecionamos a intersecao desses marcadores encontrados em
cada modelo, formando um conjunto final de 128 SNPs, que foram investigados
juntamente com os resultados do GWAS. Curiosamente, todos os SNPs associados ao
GWAS foram incluidos neste conjunto de ML definido.

Usando uma abordagem WGCNA, modelamos uma rede diferente para cada espécie Pra e
Pel, considerando um soft-power 3 estimado de 14 para Pel (R? de ~0,90 e conectividade
média de ~53,10) e Pra (R? de ~0,81 e conectividade média de ~143,20 ). 251 (tamanhos
minimo e maximo de 81 e 14616 com média de 471,79) e 83 grupos (tamanhos minimo e
maximo de 50 e 4858 com média de 132,96) puderam ser estabelecidos para as redes Pra

e Pel, respectivamente.
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Para cada um dos grupos definidos em cada rede, avaliamos a presenca de genes associados
a: (i) marcadores GWAS (7 SNPs); (ii) marcadores associados por LD com (i) (7 SNPs); e
(ii1) marcadores ML estabelecidos (128 SNPs).

Considerando uma quantidade minima de dois genes associados a (i) em cada grupo,
realizamos andlises de enriquecimento para termos GO do processo bioldgico. Dois grupos
(G12 e G159) da rede de expressdo Pel, com expressao de 3 marcadores selecionados ML,
foram enriquecidos para catabolismo de lignina, relacionando a importancia desses genes
envolvidos em reagdes quimicas e vias que resultam na quebra de lignina para associar
gendtipos com a caracteristica de volume. O processo catabdlico da lignina também
apareceu enriquecido na rede de expressdo de Pra, em 3 grupos (G13, G36 ¢ G57)
envolvendo a co-expressdo de 8 marcadores selecionados por ML.

Outra ortologia genética interessante encontrada em grupos (G13, G15 e G19, G65) com
co-expressdo de 9 marcadores selecionados por ML foram o processo metabolico da
celulose e a celulose biossintética em Pra. G12, da rede Pel, também apresentou

enriquecimento do processo metabdlico da hemicelulose.

Como principais resultados para a analise da expressao diferencial e construcao de redes de co-

expressdo génica em experimento de frio em seringueira, apresentada no capitulo II da tese,

temos:

O experimento de frio consistiu na exposi¢do de trés mudas com seis meses de idade de
cada genotipo (RRIM600 e GT1) a uma temperatura de 10°C por 24 horas (12h claro/12h
escuro). Durante esse periodo, o material foliar foi coletado em séries temporais de 0 horas
(Oh - controle), 90 minutos (90m), 12 horas (12h) e 24 horas (24h). O RNA extraido dessas
amostras foi empregado para construir bibliotecas de ¢cDNA, e posteriormente foi
sequenciado usando um Analisador de Genoma Illumina IIx.

A partir do sequenciamento foi realizado uma montagem de novo, no qual foram
identificadas 104.738 isoformas (51.697 genes) com tamanhos entre 500 bp e 22.333 bp,
com média de 1.874 bp e N50 de 2.369. A partir desses genes, pudemos identificar um
total de 74.398 proteinas Unicas relacionadas a 9.417 GOs diferentes. Para as analises de

DEG, empregamos um critério de filtragem baseado em genes que apresentaram pelo
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menos 10 contagens por milhdo (CPM) em pelo menos 3 amostras, o que resultou em uma
quantidade final de 30.407 genes.

PCA empregado revelou um perfil distinto de amostras pertencentes a cada genotipo
diferente.

A comparagdo do nimero de DEGs por periodo de tempo apresentou respostas diferentes,
ndo apenas quanto ao nimero de DEGs mas também quanto aos genes associados. Pode se
observar claramente um mecanismo conjunto de varios genes para resposta ao frio. Em
relacdo a andlise de enriquecimento GO, o conjunto DEG completo foi enriquecido para
resposta ao estresse e resposta aos termos de quitina. O grupo de genes com regulacao
negativa ndo apresentou nenhuma categoria super-representada. Em contraste, o grupo de
genes regulados positivamente foi enriquecido para os seguintes termos: resposta a quitina,
resposta de defesa, resposta ao ferimento, morte celular, fotoprotegdo, atividade do
transportador transmembranar de ions de célcio e integral a membrana plasmatica.

Ap6s 90 minutos de tratamento a frio, apenas trinta e dois transcritos foram caracterizados
como DEGs, todos eles foram regulados durante a resposta inicial das plantulas ao estresse
por frio. Destes, 26 genes foram anotados com sucesso. Os DEGs anotados sdo conhecidos
por serem induzidos pelo frio, bem como por outros estressores abidticos, como a seca € o
sal. Eles estdo envolvidos com processos de endurecimento da parede celular, inibi¢do do
crescimento, protecdo contra o estresse oxidativo, sinalizacdo de calcio (Ca2+) e
processamento de RNA induzido pelo frio. A resposta tardia, considerada como o intervalo
entre doze horas e 24 horas de tratamento a frio, continha 18 GDEs, incluindo genes que
estimulam o aumento das barreiras de difusdo da membrana e modificagdes da parede
celular.

A partir dos dados do transcriptoma de ambos os genotipos, modelamos uma rede HRR
para representar a resposta ao frio da espécie. Essa rede ¢ composta por 27.220 noés em
50.650 conexdes (bordas). Apenas os 10 melhores coeficientes de correlacdo de Pearson R
considerando um ponto de corte de 0,8 foram retidos para cada gene, sendo
desconsiderados os genes desconectados. O principal componente conectado dentro da

rede € composto por 25.608 nos (94,1%).
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Para avaliar a importancia dos genes dentro desses modulos, avaliamos a presenga de genes
centrais dentro de cada cluster, os hubs. Para definir um gene como hub, selecionamos
aqueles com o maior valor de degree. Embora a estrutura da rede permita a inser¢ao de dez
arestas para cada no, respeitando a correlagdo minima de Pearson de 0,8, ndo observamos
essa quantidade méxima em todos os clusters.

Segundo a rede de co-expressdo génica, construida neste trabalho, o ponto de partida da
resposta ao estresse por frio da seringueira reside principalmente no cluster c14, que abriga
varias sequéncias anotadas como fatores de transcri¢ao responsivos ao etileno (ERFs). Os
ERFs sdo ativados pela via de sinalizagdo do etileno e regulam a transcricdo de genes
responsivos ao etileno, que impactam negativamente o crescimento das plantas. A familia
ERF em seringueira ¢ composta por 115 membros e a superexpressao de um ortélogo ERF1
de arabidopsis em seringueiras aumentou sua tolerancia a estresses abidticos e
diferenciagdo celular de laticiferos aumentada.

Em nossa andlise, todos os graus anotados como ERFs foram regulados positivamente,
sugerindo que as plantulas de H. brasiliensis mantiveram a resposta ao estresse mediada
por etileno ativa durante todo o experimento. A regulagdo positiva das enzimas da
biossintese de etileno também indica que o etileno desempenha um papel constitutivo na
resposta ao estresse por frio da seringueira. Surpreendentemente, apenas seis enzimas
responderam precocemente ao tratamento a frio e todas foram colocadas neste cluster

também e quatro delas sdo ubiquitina transferases E3 do tipo RING.
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9. DISCUSSAO

A aplicacdo inovadora de metodologias de aprendizado de méaquina e biologia de sistemas
no desenvolvimento do estudo de associag@o génica e sele¢do gendmica em uma espécie florestal,
de genoma altamente complexo, possibilitou bons resultados de acurécia preditiva e identificacao
de genes candidatos para serem implementados no melhoramento de pinus, como apresentado no
capitulo I da presente tese.

Neste sentido, os resultados apresentados no artigo do capitulo I possibilitaram a
identificacdo de um reduzido e preciso conjunto de marcadores genéticos (128 marcadores) com
influéncia significativa na caracteristica de volume, nas populagdes analisadas em pinus, validado
pela combinagdo das analises GWAS, ML e SG. A aplicagdo dos modelos de DT e RF, para
recuperar associacdes adicionais de fendtipo-genotipo, utilizando o dataset identificado por FS
para GS, possibilitou o estreitamento da grande lista de SNPs importantes para predigdo gendmica,
que influencia para volume em pinus.

Esses marcadores genéticos identificados em nossos resultados sdo avangos importantes
para o melhoramento genético de pinus. A combinacdo inédita de diferentes estratégias de genética
quantitativa e bioinformatica para andlise de dados de populagdes de irmaos completos pinus
provou ser uma forma eficiente de selecionar gendtipos com melhores resultados para volume. O
uso das redes de coexpressdo genica em combinacdo com as marcas de GWAS e ML,
possibilitaram a identificagdo de modulos funcionais chaves para o entendimento dos processos
bioldgicos envolvidos com expressdo dos genes associados a volume.

Os resultados do capitulo II desta tese mostram a eficiéncia da ado¢do das analises
utilizando redes de co-expressdo génica em associa¢do com estudos de expressdo diferencial, para
identificacdio de genes chaves na resposta ao frio em seringueira. O artigo apresentado
complementou um estudo anterior do grupo, realizado apenas com andlises de genes
diferencialmente expressos, possibilitando aprofundar a investigacdo e analise dos dados de
transcriptomas em seringueira. A construcao de redes de co-expressdo permitiu a visualizacao da
reprogramagdo primaria da expressdo génica de H. brasiliensis e a relagdo entre os genes
envolvidos na resposta ao estresse pelo frio. Foi possivel identificar que, no curto periodo de

exposicao ao frio, as seringueiras ativam a via de sinalizacdo mediada pelo etileno e mantem a
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sinalizacdo do etileno ativa. Também foi possivel identificar que o PCD (programmed cell death)
desempenha um papel importante no processo de resposta ao frio da seringueira, sendo fortemente
regulado pelas cascatas de sinalizacdo. A inibi¢do do crescimento e o espessamento da parede
celular sdo implementados pelas plantulas, o que pode ser correlacionado a uma possivel estratégia
de fuga a seca desencadeada pelo estresse por frio. A elucidagdo de como o H. brasiliensis lida
com o estresse por baixas temperaturas pode melhorar muito as estratégias de melhoramento para

esta cultura, bem como enfatizar a importancia da preservagdo da diversidade genética na espécie.
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10. CONCLUSAO

A aplicagdo inovadora de diferentes 6micas (gendmica, transcritpdmica, protedmica, etc)
integrada as redes de co-expressdo génica, associada as metodologias de aprendizado de maquina
e biologia de sistemas no desenvolvimento do estudo de associacdo génica, sele¢cdo gendmica e
identificagdo de genes e marcadores de interesse, lavaram ao aumento da acuricia preditiva e a
identificacdo de genes de grande importancia para abordagens visando o melhoramento molecular

de espécies florestais.
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11. PERSPECTIVAS

Os trabalhos desta tese apresentaram multiplas estratégias para se trabalhar com um amplo
conjunto de dados gendmicos e fenotipicos em espécies florestais. Ao longo das andlises, nds
identificamos a necessidade de usar novas abordagens estatisticas, incluindo o uso de diferentes
algoritmos de aprendizado de maquina para predi¢do gendmica, em pinus, € uso de integracao de
dados gendmicos e transcriptomicos para modelar interagcdes de SNPs, genes e fendtipos, em pinus
e seringueira.

Desta forma, os esforcos do presente trabalho em desenvolver uma nova metodologia de
andlise integrada de dados genomicos e fenotipicos, puderam ndo apenas validar a metodologia
em Pinus (com dados do Lab. do Prof Matias Kirst, da UF), mas como também tem grande
perspectiva para implementagdo em uma ampla gama de espécies florestais, incluindo a
seringueira, espécie alvo de estudo do segundo capitulo da tese. A aplicag@o destes novos modelos
preditivos em pinus, tal como sua combinacdo com analises de associagcdo gendmica e redes de
co-expressdo génica, também servird de modelo para a aplicacdo destas multiplas andlises Omicas
em uma populacdo de melhoramento de seringueira, cujo enfoque ¢ o estudo da influéncia de
porta-enxerto para sele¢do de clones superiores.

Este ¢ um dos trabalhos pioneiros do nosso grupo voltado a aplicag@o conjunta da biologia
de sistemas em espécies florestais, unindo as andlises de Selecdo Genomica, GWAS e redes de
coexpressdo génica. Os resultados gerados irdo contribuir com novas perspectivas, tanto para
trabalhos em andamento quanto para futuras pesquisas. Além disso, o continuo avango nos
métodos estatisticos e de bioinformatica deste trabalho, abre um grande leque de possibilidades

para que outros estudos sejam realizados utilizando o mesmo conjunto de dados.
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13. ANEXOS

Durante o doutorado, eu realizei dois periodos de estagio no exterior: um ano no laboratorio
do Prof. Matias Kirst, na Universidade da Florida (abril de 2018 a abril de 2019) e; trés meses de
estagio com o grupo de pesquisa dos Professores lan Mackay e Wayne Powell, no Scotland’s Rural
College (SRUC) (novembro de 2019 a fevereiro de 2020). Durante este periodo de doutorado
sanduiche, foram desenvolvidos trabalhos estreitamente relacionados a linha de estudos
quantitativos e gendmicos que desenvolvemos em meu projeto de pesquisa de doutorado.

No comeco no doutorado, com o interesse em aplicar gendmica ao melhoramento de
arvores, eu iniciei um contato com o Prof. Matias Kirst, lider do laboratorio de gendmica florestal
na Universidade da Flérida, Estados Unidos, visando um estagio em um dos laboratdrios pioneiros
na aplicagdo de sele¢dao gendmica em espécies arboreas. O Dr. Kirst, além de professor de genética
quantitativa, ¢ coordenador do programa de pos graduagao “Plant Molecular and Cellular Biology
Program (PMCB)” e possui amplo conhecimento em Bioinformatica e estudos quantitativos
concentrados na arquitetura gendmica de populacdes de espécies florestais.

Contemplada por uma bolsa sanduiche vinculada ao projeto “Biologia Computacional na
Andlise da variagdo Genética” (aprovado na Chamada CAPES Biologia Computacional Edital
051/2013), coordenado pela Profa. Anete Pereira de Souza, eu puder realizar um ano de estadgio no
laboratorio do Dr. Kirst, trabalhando em um projeto para desenvolver analises de sele¢do gendmica
aplicada a duas espécies de pinus do sul dos Estados Unidos.

Considerando as limitagdes de orgamento destinados a tecnologia por parte de produtores
florestais e, o fato da genotipagem requerida para as andlises de selecdo gendmica demandar
bastante investimento, eu trabalhei em meu projeto de sanduiche, com analises voltadas a sele¢do
gendmica por familia florestais, ao invés de genotipagem por individuo. A selecdo de familias
pode ser uma alternativa a SG tradicional, reduzindo custos de genotipagem ao focar o
desenvolvimento e selecdo do modelo para as familias e, reduzindo o numero de amostras

necessarias para analise.
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Figura 1: Sele¢do Genomica no programa de melhoramento de pinus
Para avaliar essa abordagem, foi desenvolvido um pipeline para obter e avaliar dados por
familia de uma populagcdo de melhoramento de pinus, para futura implementagdo da sele¢ao de

familias usando SG.
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Figura 2: Metodologia para genotipagem por familia.

Para esta analise, foram obtidos dados genomicos de 60 familias compostas por 999
individuos de uma populacdo reprodutora. Os dados gendmicos foram obtidos usando captura de
sequéncia e a chamada de SNPs foi realizada usando o software FreeBayes, seguidos de etapas de
filtragem usando vcflib. Apds a filtragem, um indice de informagdes da familia foi adicionado no
arquivo vcf, e foram geradas estimativas de profundidade de leitura total (DP), profundidade de
leitura de alelos alternativos e de referéncia (AD e RD, respectivamente). A informacao da familia
de profundidade de leitura foi definida como a soma da profundidade de leitura de todos os
individuos dentro de uma familia. Os genétipos foram obtidos pela razdo entre AD e DP. Esses
dados variaram continuamente entre 0 e 1. Um total de 60.333 SNPs foi usado na anélise. Para
avaliar esses dados uma matriz de relacionamento foi calculada usando o pacote AGHmatrix e os
parametros de genética de populacdes foram estimados usando o pacote R adegenet. Apds a analise
com dados faltantes, foram selecionados 56896 (3437 dados excluidos) marcadores. Apos remover
valores faltantes <0,10 tivemos 2% de dados faltantes remanescentes que foram substituidos pela
média das frequéncias continuas. Qualquer familia tinha menos de 50% de data ausente. O DAPC
indicou a presenga de dois grupos entre as familias. A anélise de heterozigosidade mostrou uma
frequéncia populacional de AA (p2) = 151443846; Aa (2pq) = 30937102; Aa (q2) = 13562113 ¢
frequéncia relativa AA =0,77289721; Aa=0,15788822 e aa = 0,06921456. Os valores de acuracia
de selecdo gendmica por familia foram correspondentes aos valores indicados para a selecdo por

individuos, em torno de 0.64.
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Este trabalho foi fundamental para a consolidagdo do aprendizado desta metodologia de
andlises de genética quantitativa em meu projeto, que de sequéncia as analises de sele¢do gendmica
em pinus por individuos, devido ao nimero de familias analisadas.

Em meu segundo periodo de doutorado sanduiche, no SRUC, fui selecionada para trabalhar
no projeto “Desenvolvimento de uma plataforma para a genética e melhoramento da alga vermelha
Palmaria palmata para compostos bioativos de alto valor".

Palmaria palmata ¢ uma alga vermelha quem vem sendo utilizada para consumo humano
durante séculos. A sua distribuigdo ocorre ao redor das zonas de mar¢ baixa e subtidal das costas
americanas e europeias do Atlantico Norte. Atualmente P. palmata nao ¢ cultivada
comercialmente, embora isso seja necessario, pois a crescente demanda por algas, para varias
utilidades, resulta em maiores pressdes sobre os estoques selvagens. A produgdo experimental no
mar em cordas e em terra em tanques estd sob investigagdo. O desenvolvimento deste projeto e
interesse em sele¢do genomica de P. palmata surgiu diante de um mercado em ascensdo focado
na utilizagdo desta alga para seguintes finalidades:

e Produtos baseados em seu valor nutricional

e Produtos da extracdo de compostos bioativos de alto valor para uso em produtos
farmacéuticos e cosméticos,

e Producdo de biocombustiveis

e Aditivo alimentar para ruminantes, considerando o efeito antimetanogénico das
algas vermelhas, que tem sido atribuido a presenca de bioativos como bromoférmio
e diclorometano. Estudos recentes mostraram o potencial das algas vermelhas para
reduzir as emissdes de metano em até 99%, o que poderia promover maiores taxas
de crescimento e eficiéncia de conversao alimentar em ruminantes.

Desta forma, eu trabalhei para o desenvolvimento de estudos genéticos com énfase nos
efeitos antimetanogénicos e de caracteristicas bioquimicas de alto valor de P. palmata. O objetivo
desta pesquisa foi implementar melhorias na identificacdo de locais para produ¢do off-shore com
germoplasma coletado localmente e para melhoramento genético de estoque para cultivo on-shore.
Além disso, o projeto focou no desenvolvimento de marcadores moleculares para P.palmata,
pesquisando a variagdo genética ao redor das costas do Reino Unido, para o desenvolvimento de

populacdes de mapeamento e detectando QTL para caracteristicas bioquimicas nessas populagdes.
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Figura 3: Plano de trabalho de P. palmata no SRUC.
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Figura 4: Locais de coleta de P. palmata para analise do experimento in vitro.

Para o estudo da associagdo entre caracteristicas de interesse econdmico nas algas
vermelhas, medidas in silico e dados genéticos das mesmas amostras (base para sele¢do gendmica),
foi primeiro realizada uma etapa de desenvolvimento de primers para estudo da diversidade
genética nas amostras coletas.

Tabela 1: Primers desenvolvidos para analise da diversidade de P.palmata nas amostras coletadas.
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Primers | Basedon ______[sze | Application

1) rrl ribosomal RNA

2) Cytochrome apocytochrome b
(coB)

3) cytochrome oxidase subunit 1
(COl) gene

4) rps3 ribosomal protein S3

5) rbcL ribulose-1,5-bisphosphate

6) ITS
(internal transcribed spacer 1) B

7) cox2 cytochrome c oxidase
subunit 2

8) psaA photosystem | P700
chlorophyll a apoprotein Al

9) psaB photosystem | P700
chlorophyll a apoprotein A2

10) psbA photosystem Il protein
D1

mitochondrion, complete
genome

mitochondrion, complete
genome

BARCODE (Bringloe,T. and
Saunders,G.W) - mitochondrial

mitochondrion, complete
genome

plastid, complete genome

genomic sequence
(Saunders,G.W. et |, 2017)

mitochondrion, complete
genome

plastid, complete genome

plastid, complete genome

plastid, complete genome

INCLUDED REGION SIZE: 3638
PRODUCT SIZE: 692

INCLUDED REGION SIZE: 1143
PRODUCT SIZE: 876

INCLUDED REGION SIZE: 642
PRODUCT SIZE: 605

INCLUDED REGION SIZE: 684
PRODUCT SIZE: 613

INCLUDED REGION SIZE: 1467
PRODUCT SIZE: 849

REGION SIZE: 923
PRODUCT SIZE: 799

INCLUDED REGION SIZE: 774
PRODUCT SIZE: 705

INCLUDED REGION SIZE: 2259
PRODUCT SIZE: 1620 Literature
(psaA, ~1,600 bp)

INCLUDED REGION SIZE: 2205
PRODUCT SIZE: 1270 Literature
(psaB, ~1,250 bp)

INCLUDED REGION SIZE: 1083
PRODUCT SIZE: 909 Literature
(psbA, ~950 bp)

Phylogenetic and to explore
deeper relationships providing a
summary of PCR primers and
profiles to that time

Phylogenetic

Phylogenetic

Phylogenetic

Phylogenetic (barcode)

Population level analyses, and for
resolving relationships

Population level

Phylogenetic

Phylogenetic

Phylogenetic

Para gerar os dados fenotipicos a serem avaliados nas anélises de genética quantitativa, eu
realizei um experimento in vitro, para avaliacio da implementacdo de P. palmata na
suplementagdo bovina e consequente redu¢cdo na emissdo de metano durante o processo de
digestdo. Este experimento consistiu na avaliagdo do efeito in vitro de amostras de Palmaria

palmata (diferentes locais, estacdes e anos) na fermentag¢ao ruminal e producdo de metano.



159

b

[
. Strained
) ) | rumen fluid
Rumen fluid donors (4 replicates)
A 4

Diet/fermentation substrate

Additives/compounds at ;

different concentrations

Incubation at 39C
pH
@ Ammonia
Volatile
Sampling over time or fatty acids
at the end of Gas
experiment (24 h) Methane L&H—A—

Figura 5: Culturas em in vitro - Parametros de fermentacdo

A realizagdo deste experimento consistiu inicialmente na selecao de 50 amostras secas de
Palmaria palmata de 122 amostras (diferentes locais, estagdes e anos) fornecidas pela New Wave
Food para teste. O delineamento experimental consistiu de um controle (sem aditivo) e 50
amostras de P. palmata adicionadas a 2 g/L da incubagdo -> 60 mg por frasco). O experimento foi
conduzido em quadruplicata, utilizando fluido ruminal de quatro vacas Jersey canuladas em
fenacdo, em duas semanas consecutivas (2 vacas por semana).

O conteudo ruminal foi filtrado através de musselina e diluido 1:2 em solucdo tampao de
saliva (Menke e Steingass (1978). Aliquotas (30 mL) do liquido ruminal coado diluido foram
adicionados anaerobicamente a frascos de 120 mL de trigo contendo 0,3 g de uma mistura racao
(50:50 feno:cevada), previamente moida para passar por peneira de malha de 1 mm2. Os frascos
foram lacrados e incubados a 39-C, recebendo uma mistura suave antes da amostragem as 24 h.

O padrao de fermentagdo, em termos de pH, amonia, acidos graxos volateis (AGV) e
emissdes de metano, foi determinado apos 24 h da incubagdo. Apds o registro da producao de gés,
uma amostra foi retirada do headspace para a determinagdo da concentracdo de metano por

cromatografia gasosa. Em seguida, as garrafas foram abertas e o pH medido. Uma subamostra (1,6
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mL) foi diluida com 0,4 mL de solucdo desproteinizante (200 mL/L de &cido ortofosforico
contendo 20 mmol L/ de 4cido 2-etilbutirico como padrio interno) para a determinacdo de AGV
por cromatografia gasosa, conforme descrito por Stewart e Duncan (1985). Outra subamostra (0,8
mL) foi diluida com 0,2 mL de acido tricloroacético a 25% (p/vol) para analise de amonia por

método colorimétrico (Weatherburn 1967).

Calculated GasVol based on PSI
(Pounds per square inch)

Average Gas Vol
70.0

6

o
o

50.0

400

300

200

100

0.0

3 e g
£ 2222

Gills Bay121
Gills Bay111
Gills Bayo11
Skirza091¢
KeissO91

N
a
h
n
v
v
Huna011:
Easter Haven011¢
West Mey011
West Mey101

Easter Haven02 1

Easter Have

Ham to Scarfskerry101
Ham to Scarfskerry011

Ham to Scarf sk
Ham to Scarf:

St Abbs4379619

Figura 6: Resultado da cromatografia gasosa da produgdo de gases volateis por amostra.
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Figura 7: Resultado da cromatografia gasosa da produ¢dao de metano por amostra.
Alguns resultados preliminares foram obtidos e analisados, ainda durante o meu periodo
de estagio, mas requerem maiores investigacdes para as seguintes andlises de combinacdo das

informagdes genéticas e fenotipicas.
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