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“The perfect gift.
A girl trapped in a box.

She only dances when someone else opens the lid,
when someone else winds her up.

If this is a story I’m telling,
I must be telling it to someone.

There’s always someone, even when there is no one.
I will not be that girl in the box.”

-(The Handmaid’s Tale.)



Resumo
Esta dissertação é inspirada no trabalho desenvolvido por Shilnikov, onde é observado
um comportamento interessante em campos vetoriais suaves, onde uma trajetória
conecta um ponto de equilíbrio a si mesmo. Este tipo de trajetória é chamada de
órbita homoclínica. Shilnikov estudou um tipo especial de órbita homoclínica, que
conecta um ponto de “sela-foco” a si mesmo e, além disso, estudou o comportamento
do campo vetorial próximo a tal órbita. Como o estudo de campos vetoriais suaves
por partes é de nosso interesse, tendo em vista a grande utilidade desses campos para
desenvolvimento de modelos aplicados, Novaes e Teixeira buscaram generalizar o
conceito de órbita homoclínica, (particularmente a órbita homoclínica de Shilnikov)
para o contexto de campos suaves por partes no artigo Shilnikov problem in Filippov
dynamical systems, onde observaram um resultado análogo ao de Shilnikov. Posterior-
mente, Novaes, Ponce e Varão provaram a existência de um comportamento caótico
próximo a tal orbita em Chaos induced by sliding phenomena in Filippov systems. Por
fim, Carvalho, Novaes e Gonçalves mostraram a existência desta órbita em ummodelo
biológico em Sliding Shilnikov connection in Filippov-type predator–prey model.

Palavras-chave: Órbita Deslizante de Shilnikov, Campos Vetoriais Suaves por Partes,
Bernoulli Shift, Caos.



Abstract
This dissertation is inspired by the work developed by Shilnikov, where an interesting
behavior is observed in smooth vector fields, where a trajectory connects an equi-
librium point to itself. This type of trajectory is called a homoclinic orbit. Shilnikov
studied a special type of homoclinic orbit, which connects a “saddle-focus” point to
itself, and furthermore, he studied the behavior of the vector field near such an orbit.
As the study of piecewise smooth vector fields is of interest, given their great utility
in the development of appliedmodels, Novaes and Teixeira sought to generalize the
concept of homoclinic orbit (particularly Shilnikov’s homoclinic orbit) to the context of
piecewise smooth fields in the article Shilnikov problem in Filippov dynamical systems,
where they observed a result analogous to Shilnikov’s. Subsequently, Novaes, Ponce,
andVarão proved the existence of chaotic behavior near such an orbit inChaos induced
by sliding phenomena in Filippov systems. Finally, Carvalho, Novaes, and Gonçalves
demonstrated the existence of this orbit in a biological model in Sliding Shilnikov
connection in Filippov-type predator–prey model.

Keywords: Sliding Shilnikov Orbit, Piecewise Vector Field, Bernoulli Shift, Chaos.
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Introduction

In classical theory, differential equations are closely related to vector fields.
To study real-world problems, many researchers developmathematical models using
ODEs (Ordinary Differential Equations). However, in order to achieve a better approxi-
mation, it was necessary to develop the study of piecewise smooth vector fields. In the
case of smooth vector fields, linear algebra provides tools for the qualitative study of
these solutions. On the other hand, to understand the concepts of trajectory, singulari-
ties and stability of a piecewise vector field, we assume the Filippov convention, (1),
which is necessary for a good notion of trajectory.

So we can approximate real problems by numerical models, even if these
problems are “strange”. Some interesting behavior was observed by Shilnikov (2, 3),
where he studied a “homoclinic” connection, i.e., a trajectory of a smooth vector field,
which connects an equilibrium point to itself. Then, he establishes the homoclinic
Shilnikov orbit, which we are going to introduce formally. First, consider the vector
field given by

¤𝑥 = 𝑓 (𝑥),

where f P 𝐶 𝑟 (𝑈 ), 𝑟 ě 1, and𝑈 Ă ℝ3. Assume that the vector field admits an equilib-
rium point 𝑝 P ℝ3 such that the eigenvalues associated with the point 𝑝 are given by
𝜆1, 𝜆2 and 𝜆3, with 𝜆1 P ℝ and 𝜆2, 𝜆3 are complex conjugate with part real nonzero. If
𝑠𝑖 𝑔𝑛𝜆1 ≠ 𝑠𝑖 𝑔𝑛 (𝑅𝑒 (𝜆2)) = 𝑠𝑖 𝑔𝑛 (𝑅𝑒 (𝜆3)), then we say that 𝑝 is a saddle-focus.

Definition 0.1 (Shilnikov’s homoclinic orbit). Let ¤𝑥 = 𝑓 (𝑥) as given above and sup-
pose that this vector field admits a saddle-focus equilibrium point. Associated with
the eigenvalue 𝜆1 there exists an invariant curve that we call𝑊1 and, associated with
the complex eigenvalues 𝜆2 and 𝜆3, there exists a sub-manifold of dimension 2 that we
call𝑊2. A Shilnikov homoclinic orbit is a solution of the vector field that connects the
saddle-focus to itself.

Now we introduce the result that inspired this work, which determines a
chaotic behavior on a smooth differential equation system.
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𝑊1

𝑊2

Figure 1 – Example of a Shilnikov homoclinic orbit.

Theorem 0.2 (Shilnikov). Consider the following differential equation system
¤𝑥 = 𝜌𝑥 ´ 𝜔𝑦 + 𝑃 (𝑥, 𝑦 , 𝑧, 𝜇)
¤𝑦 = 𝜔𝑥 + 𝜌𝑦 +𝑄 (𝑥, 𝑦 , 𝑧, 𝜇)
¤𝑧 = 𝜆𝑧 + 𝑅 (𝑥, 𝑦 , 𝑧, 𝜇)

(1)

where 𝜇 is the bifurcation parameter, ¤𝑃 (0, 0, 0, 𝜇) = ¤𝑄 (0, 0, 0, 𝜇) = ¤𝑅 (0, 0, 0, 𝜇) = 0,
𝜆𝜌 ă 0 and 𝜔 ≠ 0. Assuming that the system 1 admits a Shilnikov homoclinic orbit
namely Γ, if | 𝜌

𝜆
|ă 1 then there exists infinitely many periodic orbits in a neighborhood

of Γ. If | 𝜌
𝜆

|ě 1, then Γ is isolated of periodic orbits. The condition | 𝜌
𝜆

|ă 1 is called
Shilnikov Condition.

In order to generalize the study of Shilnikov, we define an equivalent result
for piecewise vector fields, the sliding Shilnikov orbit. Furthermore, we can verify that a
vectorfieldwith suchanorbit presents a chaoticbehavior. Thisdissertation isorganized
as follows:

1. In chapter 1, we introduce some basic concepts for the study of smooth vector
fields;

2. In chapter 2 we generalize the concepts in chapter 1.1 for piecewise vector fields;

3. In chapter 3 we define ourmain object of study, the sliding Shilnikov orbit, and
study the behavior of a piecewise smooth vector field close to the orbit;

4. In chapter 4 we study, using ergodic theory, the chaotic behavior of a sliding
Shilnikov orbit ;
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5. Finally, in chapter 5, we prove that a biological model admits such orbit.
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Chapter 1

Preliminary

The objective of this chapter is to provide an introduction to fundamental
concepts and findings in the theory of smooth vector fields. To accomplish this, we
will explore the local behavior of vector fields, establish the connections between
differential equations and dynamical systems, and review essential results mentioned
in section 1.1.In section 1.2, we delve into the examination of the global behavior of a
dynamical system, focusing on its stability properties. Moving on to section 1.3, we
introduce the concept of bifurcation and specifically explore a notable type known as
the saddle-node bifurcation. In both section 1.4 and section 1.5, we provide precise
definitions for a first integral of the vector field and establish formal definitions for
periodic orbits and limit cycles. Additionally, we present Dulac’s criteria. Finally, in
section 1.6, we investigate the behavior of a predator-prey system.

Let’s begin with a classical definition.

Let𝑈 be an open subset of ℝ𝑛 , and 𝐶 1(𝑈 ) represent the set of 𝐶 1-vector
fields defined on𝑈 . We define a dynamical system as a function 𝜙 (𝑡 , 𝑥) that is defined
for all 𝑡 P ℝ and 𝑥 P 𝑈 . This function describes the manner in which points 𝑥 P 𝑈

"move" or evolve over time. To formalize this concept, we state the following definition:

Definition 1.1. Let𝑈 Ă ℝ𝑛 be an open subset. A dynamical system in𝑈 is a𝐶 1-map

𝜙 : ℝ ˆ𝑈 Ñ 𝑈 ,

where 𝜙𝑡 (𝑥) := 𝜙 (𝑡 , 𝑥) satisfies the following properties:

• 𝜙0(𝑥) = 𝑥 @𝑥 P 𝑈 ;

• (𝜙𝑡 ˝ 𝜙𝑠 ) (𝑥) = 𝜙𝑡+𝑠 (𝑥).

It is worth noting that in general, if 𝜙𝑡 (𝑥) represents a dynamical system on
𝑈 , then the function

𝑓 (𝑥) = 𝑑

𝑑𝑡
𝜙𝑡 (𝑥) |𝑡=0
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defines a𝐶 1-vector field on𝑈 .

In this context, the function𝜙𝑡 canbe interpreted as the timemapassociated
with the flow ¤𝑥 = 𝑓 (𝑥). Conversely, if we consider the differential equation

¤𝑥 = 𝑓 (𝑥), (1.1)

it generates a smooth dynamical system, also known as a smooth vector field. This
is because the time map of the flow, given by 𝜙𝑡 , is well-defined and continuously
differentiable for all 𝑡 P ℝ.

1.1 Local Behavior of a Vector Field
In this section, we recall some basic definitions and results that will be used

in this paper. Let’s introduce the following definition:

Definition 1.2. Consider an open subset𝑈 Ă ℝ𝑛 and suppose that 𝑓 is continuously
differentiable on𝑈 . A function 𝑥 (𝑡 ) is a solution of the differential equation ¤𝑥 = 𝑓 (𝑥)
on an interval 𝐼 Ă ℝ if 𝑥 (𝑡 ) is differentiable on 𝐼 and satisfies ¤𝑥 (𝑡 ) = 𝑓 (𝑥 (𝑡 )) for all 𝑡 P 𝐼

where 𝑥 (𝑡 ) P 𝑈 .

Given 𝑥0 P 𝑈 , we say that 𝑥 (𝑡 ) is a solution of the initial value problem{
¤𝑥 = 𝑓 (𝑥)

𝑥 (𝑡0) = 𝑥0
, (1.2)

on the interval 𝐼 , if 𝑡0 P 𝐼 , 𝑥 (𝑡0) = 𝑥0, and 𝑥 (𝑡 ) is a solution of the differential equation
¤𝑥 = 𝑓 (𝑥) on 𝐼 .

Thisdefinitionestablishes the concept of a solution to adifferential equation
and an initial value problem associated with the differential equation ¤𝑥 = 𝑓 (𝑥). It speci-
fies that a function 𝑥 (𝑡 ) is considered a solution if it satisfies the equation ¤𝑥 (𝑡 ) = 𝑓 (𝑥 (𝑡 ))
for all 𝑡 in the given interval 𝐼 , where 𝑥 (𝑡 ) belongs to the open subset𝑈 . Additionally,
for an initial value problem, a solution 𝑥 (𝑡 ) should fulfill both the differential equation
and the specified initial condition 𝑥 (𝑡0) = 𝑥0 at a specific time 𝑡0.

In general, the systemwill have a solution if 𝑓 is continuous, but the con-
tinuity of 𝑓 is not sufficient to guarantee the uniqueness of the solution. Additional
conditions or assumptionsmay be necessary to establish the uniqueness of solutions.

Example 1.3. The initial value problem{
¤𝑥 = 3𝑥 2

3

𝑥 (0) = 0
, (1.3)

has two different solutions through the origin. Indeed, we have that 𝑥1(𝑡 ) ” 0 and
𝑥2(𝑡 ) = 𝑡 3 are two solutions of the system 1.3.
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Nowwe recall the Fundamental Existence-Uniqueness Theorem.

Theorem 1.4. Let𝑈 Ă ℝ𝑛 be an open subset containing a point 𝑥0 and assume that
𝑓 P 𝐶 1(𝑈 ). Then there exists an 𝜀 ą 0 such that the initial value problem 1.2 has a
unique solution 𝑥 (𝑡 ) on the interval [𝑡0 ´ 𝜀, 𝑡0 + 𝜀].

A proof of this theorem can be found in (4).

The existence-uniqueness theorem is typically formulated in a local context.
To apply this theorem to a more general and “interesting” space, it is necessary to
consider the additional condition that the solution 𝑥 (𝑡 ) depends continuously on the
initial condition 𝑥0. In light of this, we can consider the following complementary
theorems:

Theorem 1.5 (Dependence on Initial Condition). Let𝑈 be an open subset ofℝ𝑛 con-
taining 𝑥0 and assume that 𝑓 P 𝐶 1(𝑈 ). Then there exists an 𝜀 ą 0 and𝑉 Ă 𝑈 such that,
for all 𝑦 P𝑉 , the initial value problem{

¤𝑥 = 𝑓 (𝑥)
𝑥 (𝑡0) = 𝑦

,

has a unique solution 𝑥 (𝑡 , 𝑦 ) in [𝑡0 ´ 𝜀, 𝑡0 + 𝜀] ˆ𝑉 .

Theorem1.6 (Dependence on Parameters). Let𝑈 be an open subset ofℝ𝑛+𝑚 containing
the point (𝑥0, 𝜇0), with 𝑥0 P ℝ𝑛 and 𝜇0 P ℝ𝑚 . Assuming that 𝑓 P 𝐶 1(𝑈 ), then there exists
an 𝜀 ą 0 and𝑉 Ă 𝑈 such that for all (𝑦 , 𝜇) P𝑉 , the initial value problem{

¤𝑥 = 𝑓 (𝑥, 𝜇)
𝑥 (𝑡0) = 𝑦

,

has a unique solution 𝑥 (𝑡 , 𝑦 , 𝜇) in [𝑡0 ´ 𝜀, 𝑡0 + 𝜀] ˆ𝑉 .

In addition,wehave theunique solutionof 1.1 definedonamaximal interval
of existence. These results can be found in (4).

The following local theorem demonstrates that in the vicinity of a hyper-
bolic equilibrium point 𝑥0, the nonlinear system ¤𝑥 = 𝑓 (𝑥) exhibits similar qualitative
behavior as the linear system ¤𝑥 = 𝐴𝑥 , where 𝐴 = 𝐷𝑓 (𝑥0).

Let’s establish some concepts regarding the local structure of a system of
differential equations.

Definition 1.7. Two autonomous systems of differential equations, such as ¤𝑥 = 𝑓 (𝑥) and
¤𝑥 = 𝐴𝑥 (where 𝐴 = 𝐷𝑓 (𝑥0)), are said to be topologically equivalent in a neighborhood
of 𝑥0 if there exists an open set𝑈 containing 𝑥0, and a homeomorphism ℎ : 𝑈 Ñ 𝑉 ,
where 𝑥0 P𝑉 and𝑉 is an open set, such that trajectories of ¤𝑥 = 𝑓 (𝑥) in𝑈 are mapped to
trajectories of ¤𝑥 = 𝐴𝑥 in𝑉 by ℎ, while preserving the orientation with respect to time.
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Studying the behavior of a nonlinear vector field can sometimes be chal-
lenging. However, there are certain conditions under which the local behavior of a
nonlinear vector field is topologically equivalent to that of a linear vector field. In this
context, the following results hold.

Theorem 1.8 (Hartman-Grobman, (4)). Let𝑈 be an open subset ofℝ𝑛 containing 𝑥0,
𝑓 P 𝐶 1(𝑈 ) and 𝜙𝑡 be the flow of the nonlinear system 1.1. Suppose that 𝑓 (𝑥0) = 0 and
that the matrix 𝐴 = 𝐷𝑓 (𝑥0) has no eigenvalue with zero real part. Then there exists a
homeomorphism𝐻 of a neighborhood𝑉 of 𝑥0 onto an open set𝑊 containing the origin
such that, for each 𝑦 P𝑉 , there is an open interval 𝐼𝑦 Ă ℝ, containing zero, and

𝐻 ˝ 𝜙𝑡 (𝑦 ) = 𝑒𝐴𝑡𝐻 (𝑦 ), @𝑡 P 𝐼𝑦 .

Theorem 1.9 (Hartman, (4)). Let𝑈 be an open subset ofℝ𝑛 containing 𝑥0, 𝑓 P 𝐶 2(𝑈 )
and 𝜙𝑡 be the flow of the nonlinear system 1.1. Suppose that 𝑓 (𝑥0) = 0 and that the
matrix 𝐴 = 𝐷𝑓 (𝑥0) has all eigenvalues with a negative (or positive) real part. Then there
exists a𝐶 1

´diffeomorphism𝐻 of a neighborhood𝑉 of 𝑥0 onto an open set𝑊 containing
the origin such that, for each 𝑦 P 𝑉 , there is an open interval 𝐼𝑦 Ă ℝ, containing zero,
and

𝐻 ˝ 𝜙𝑡 (𝑦 ) = 𝑒𝐴𝑡𝐻 (𝑦 ), @𝑡 P 𝐼𝑦 .

This theorem is of great importance to the study of the derivative of a first
return map defined on a neighborhood of the object that we are interested in, the
sliding Shilnikov orbit.

1.2 Global Behavior of a Smooth Vector Field
This sectionaims to extendour concepts and realize a global studyof the vec-

tor fields. Nowwe generalize the notions of topologically equivalent and topologically
conjugate vector fields.

Definition 1.10. Consider open subsets𝑈1,𝑈2 Ă ℝ𝑛 , and let 𝑓 P 𝐶 1(𝑈1) and 𝑔 P 𝐶 1(𝑈2).
The two autonomous systems of differential equations

¤𝑥 = 𝑓 (𝑥) (1.4)

and
¤𝑥 = 𝑔 (𝑥), (1.5)

are said to be topologically equivalent if there exists a homeomorphism ℎ : 𝑈1 Ñ 𝑈2
that maps trajectories of 1.4 onto trajectories of 1.5 while preserving their orientation
with respect to time.
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If𝑈1 = 𝑈2 = 𝑈 , then the systems 1.4 and 1.5 are said to be topologically
equivalent on𝑈 , and the vector fields 𝑓 and 𝑔 are said to be topologically equivalent on
𝑈 .

This definition clarifies that two systems of differential equations are topo-
logically equivalent if there exists a homeomorphism that maps trajectories of one
system to trajectories of the other systemwhile preserving their orientation in time.
Furthermore, if the systems aredefinedon the sameopen subset𝑈 , they are considered
topologically equivalent on that subset, and their vector fields are also regarded as
topologically equivalent on𝑈 .

In the given context, it is important to note that while the homeomorphism
ℎ preserves the orientation of trajectories over time, it is not necessarily required to
preserve the parameterization of trajectories. However, if ℎ does preserve the parame-
terization by time, then the vector fields 𝑓 and 𝑔 are said to be topologically conjugate,
which can be defined as follows:

Definition 1.11. Let𝑈 ,𝑉 Ă ℝ𝑛 and 𝑓 P 𝐶 1(𝑈 ), 𝑔 P 𝐶 1(𝑉 ). We say that 𝑓 and 𝑔 are
conjugate if there is a homeomorphism ℎ :𝑈 Ñ𝑉 such that ℎ satisfies the conjugacy
equation ℎ ˝ 𝑓 = 𝑔 ˝ ℎ. We say that the vector fields 𝑓 and 𝑔 are 𝐶 𝑟 -conjugate, if the
homeomorphism ℎ is𝐶 𝑟 .

In order to study the global behavior of a dynamical system, we have to
extend our results. The following theorem guarantees the global existence of a solution
on a topologically equivalent system to Equation 1.1.

Theorem 1.12 ((4)). For 𝑓 P 𝐶 1(ℝ𝑛) and each 𝑥0 P ℝ𝑛 , the initial value problem
¤𝑥 =

𝑓 (𝑥)
1 + | 𝑓 (𝑥) |

𝑥 (𝑡0) = 𝑥0,
(1.6)

has a unique solution 𝑥 (𝑡 ) defined for all 𝑡 P ℝ. So 1.6 defines a dynamical system onℝ𝑛 ,
and 1.6 is topologically equivalent to 1.1 onℝ𝑛 .

Theorem 1.13 ((4)). Suppose that𝑈 is an open subset of ℝ𝑛 and that 𝑓 P 𝐶 1(𝑈 ). Then
there exists a function 𝑔 P 𝐶 1(𝑈 ) such that

¤𝑥 = 𝑔 (𝑥) (1.7)

defines a dynamical system on𝑈 and 1.7 is topologically equivalent to 1.1 on𝑈 .

The study of topological equivalency between vector fields guarantees cer-
tain “stability” on a neighborhood of some vector field. In the next chapter, we general-
ize this concept to piecewise vector fields.
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1.3 Saddle-node Bifurcation
In this section, we explore some illustrative examples of bifurcations that

arise in nonlinear systems. We begin by noting that the concept of bifurcation involves
perturbing a vector field and observing the resulting changes in its behavior.

Consider a system described by the equation:

¤𝑥 = 𝑓𝜇 (𝑥) = 𝑓 (𝑥, 𝜇), (1.8)

where 𝜇 P ℝ. We assume that 𝑓𝜇 is a 𝐶8 function that depends on the parameter 𝜇.
A bifurcation occurs when a significant alteration in the system’s structure can be
observed, typically resulting from changes in the parameter 𝜇.

Example 1.14. Consider the first-order equation

¤𝑥 = 𝑓𝜇 (𝑥) = 𝑥2 + 𝜇.

Then, if 𝜇 = 0, the equation has a single eigenvalue at 𝑥 = 0. Since 𝑓 1
0 (0) = 0 and

𝑓 2
0 (0) = 2 ≠ 0, for 𝜇 ą 0 this equation has no equilibrium points and, for 𝜇 ă 0 has a
pair of equilibrium points˘

a

´𝜇. Then we have the following bifurcation diagram:

𝜇

𝑥

Figure 2 – Bifurcation diagram for the example 1.14.

We focus on a certain type of bifurcation, called saddle-node bifurcation. In
a saddle-node bifurcation, a distinct behavior can be observed based on the location
of the parameter value 𝜇0 and a specific interval 𝐼 along the 𝑥-axis. The behavior of the
differential equation in this bifurcation can be summarized as follows:

• If 𝜇 ă 𝜇0, there exist two equilibrium points within the interval 𝐼 .

• If 𝜇 = 𝜇0, there is a single equilibrium point within the interval 𝐼 .
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• If 𝜇 ą 𝜇0, there are no equilibrium points within the interval 𝐼 .

To specifically identify this type of bifurcation, we rely on the following theorem:

Theorem 1.15 (Saddle-Node Bifurcation, (5)). Suppose that

¤𝑥 = 𝑓𝜇 (𝑥)

is a first-order differential equation for which the following holds:

1. 𝑓𝜇0 (𝑥0) = 0;

2. 𝑓 1
𝜇0 (𝑥0) = 0;

3. 𝑓 2
𝜇0 (𝑥0) ≠ 0;

4.
B 𝑓𝜇0

B𝜇
(𝑥0) ≠ 0.

Then, this differential equation undergoes a saddle-node bifurcation at 𝜇 = 𝜇0.

Consider the following example:

Example 1.16. Let the system {
¤𝑥 = 𝑥2 + 𝜇
¤𝑦 = ´𝑦

(1.9)

𝑥 𝑥 𝑥

𝑦𝑦 𝑦

Figure 3 – Phase-portrait of the system 1.9 when 𝜇 ă 0, 𝜇 = 0 and 𝜇 ą 0, respectively.

When 𝜇 = 0, the system described by equation 1.9 possesses a single equilib-
rium point, specifically located at the origin (0, 0). Notably, trajectories along the 𝑦 -axis
converge towards the origin as 𝑡 approaches infinity. On the other hand, the remaining
solutions move towards the right and diverge to infinity as 𝑡 tends to infinity.

In the case where 𝜇 ą 0, the system exhibits ¤𝑥 ą 0, causing all solutions
to move towards the right. As a result, the equilibrium point ceases to exist. On the
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other hand, when 𝜇 ă 0, a pair of equilibrium points emerges: 𝜆1 = (
a

´𝜇, 0) and
𝜆2 = (´

a

´𝜇, 0). The point 𝜆1 represents a saddle point, while 𝜆2 corresponds to a sink,
attracting nearby trajectories.

1.4 First Integrals
In this section, we introduce the concept of a first integral, which plays

a crucial role in the analysis of differential equation systems with non-hyperbolic
equilibrium points. Specifically, when dealing with two-dimensional vector fields, the
phaseportraits of the systemcanbe fully characterizedby thepresenceof afirst integral.
Consider the vector field of the form

¤𝑥 = 𝑓 (𝑥),

where 𝑥 P 𝑈 Ă ℝ𝑛 and 𝑓 P 𝐶 𝑟 (𝑈 ), 𝑟 ě 1. A function with scalar values 𝐹 : 𝑈 Ñ ℝ is
called a first integral of the vector field above, if it is constant along its trajectories, that
is, 𝐹 (𝑥 (𝑡 )) = 𝑐 , where 𝑥 (𝑡 ) is a trajectory and 𝑐 P ℝ. Then, 𝐹 (𝑥) is a first integral if, and
only if, satisfies

⟨∇𝐹 (𝑥), 𝑓 (𝑥)⟩ = 0,

for all points 𝑥 where 𝐹 is defined.

Additionally, it isworthnoting that the level surfacesof the function𝐹 remain
unchanged under the flow of the vector field. As a result, for two-dimensional vector
fields that possess a first integral, the trajectories of the vector field lie entirely within
the level curves of the function 𝐹 . This property further aids in understanding and
visualizing the behavior of the system.

Figure 4 – 3D plot of the first integral 𝐹 of the vector field 1.10.
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Example 1.17. Consider the following differential equation system onℝ2{
¤𝑥 = 𝑦

¤𝑦 = ´𝑥
(1.10)

and the function 𝐹 : ℝ2
Ñ ℝ given by 𝐹 (𝑥, 𝑦 ) = 𝑥2 + 𝑦 2. Let (𝑥 (𝑡 ), 𝑦 (𝑡 )) be a

solution of our system and note that

⟨∇𝐹 (𝑥, 𝑦 ), 𝑓 (𝑥, 𝑦 )⟩ = ⟨(2𝑥, 2𝑦 ), (𝑦 ,´𝑥)⟩ = 2𝑥𝑦 ´ 2𝑦𝑥 = 0.

Therefore, the function 𝐹 is the first integral of the system.

1.5 Periodic Orbits and Limit Cycles
As observed earlier, it is convenient to consider the system 1.1 as defining a

dynamical system or a smooth vector field 𝜙 (𝑡 , 𝑥) on the open subset𝑈 . For any point
𝑥 P 𝑈 , the function 𝜙 (¨, 𝑥) : ℝ Ñ 𝑈 represents a trajectory of the system 1.1 passing
through the initial point 𝑥0 in𝑈 . We can define the notion of𝜔-limit points and 𝛼-limit
points for trajectories of the system 1.1 as follows:

Definition 1.18. A point 𝑝 P 𝑈 is an 𝜔-limit point of the trajectory 𝜙 (¨, 𝑥) of the system
1.1 if there exists a sequence (𝑡𝑛) P ℝ such that lim

𝑛Ñ8
𝑡𝑛 = 8 and lim

𝑛Ñ8
𝜙 (𝑡𝑛 , 𝑥) = 𝑝 .

Similarly, a point 𝑞 P 𝑈 is an 𝛼-limit point of the trajectory 𝜙 (¨, 𝑥) if there
exists a sequence (𝑡𝑛) P ℝ such that lim

𝑛Ñ8
𝑡𝑛 = ´8 and lim

𝑛Ñ8
𝜙 (𝑡𝑛 , 𝑥) = 𝑞 .

The set of all 𝜔-limit points of a trajectory Γ is called the 𝜔-limit set of Γ,
denoted by 𝜔 (Γ). Similarly, the set of all 𝛼-limit points of a trajectory Γ is called the
𝛼-limit set of Γ, denoted by 𝛼 (Γ).

These concepts allow us to analyze the long-term behavior of trajectories
and provide insights into the stability and asymptotic properties of the system.

We can define the concept of a cycle or periodic orbit in the system 1.1 as
follows:

Definition 1.19. A cycle or periodic orbit of the system 1.1 is a closed solution curve
that is not an equilibrium point of 1.1.

A periodic orbit Γ is called stable if for every 𝜀 ą 0, there exists a neighborhood
𝑈𝜀 of Γ such that for all 𝑥 P 𝑈𝜀 and 𝑡 ą 0, 𝑑 (𝜙 (𝑡 , 𝑥), Γ) ă 𝜀. In other words, all trajectories
starting sufficiently close to Γ remain close to Γ for all future time.

A periodic orbit is called unstable if it is not stable, meaning that there exist
trajectories starting arbitrarily close to Γ that eventually diverge from Γ.
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A periodic orbit is called asymptotically stable if it is stable and for any point
𝑥 in a neighborhood𝑈 of Γ, the distance between𝜙 (𝑡 , 𝑥) and Γ approaches zero as 𝑡 tends
to infinity, i.e., lim

𝑡Ñ8
𝑑 (𝜙 (𝑡 , 𝑥), Γ) = 0.

The stability properties of a periodic orbit provide information about the
long-termbehaviorof trajectories in the systemandcanhelpusunderstand the stability
and convergence of solutions.Notice that cycles of the system1.1 are periodic solutions
of this system. Theminimal value𝑇 for which 𝜙 (𝑡 +𝑇 , 𝑥0) = 𝜙 (𝑡 , 𝑥0) is called the period
of the periodic orbit 𝜙 (¨, 𝑥0).We now consider periodic orbits of a planar system 1.1.

Definition 1.20. A limit cycle Γ in a planar system 1.1 is a cycle of 1.1 that serves as the
𝛼-limit or 𝜔-limit set of a trajectory of 1.1, excluding Γ itself.

A limit cycle Γ is classified as stable if it is the 𝜔-limit set for every trajectory
within a certain neighborhood of Γ. This means that all trajectories starting sufficiently
close to Γ converge to Γ as 𝑡 tends to infinity.

Conversely, if Γ is the 𝛼-limit set for every trajectory within a neighborhood of
Γ, then Γ is consideredanunstable limit cycle. In this case, trajectories starting sufficiently
close to Γ diverge from Γ as 𝑡 tends to negative infinity.

Limit cycles play a crucial role in the dynamics of nonlinear systems, repre-
senting recurring patterns or periodic behavior. Their stability properties determine
whether the system’s trajectories converge to or diverge from the cycle, providing valu-
able insights into the long-term behavior of the system.

Example 1.21. Consider the following system of differential equations with 𝜔 ą 0{
¤𝑥 = ´𝑦 + 𝜔𝑥 (1 ´ 𝑥2 ´ 𝑦 2)
¤𝑦 = 𝑥 + 𝜔𝑦 (1 ´ 𝑥2 ´ 𝑦 2)

.

Making a polar change of coordinates, we have 𝑥 = 𝑟 cos 𝜃 and 𝑦 = 𝑟 sin𝜃 and the system
on the new coordinates is: {

¤𝑥 = ¤𝑟 cos 𝜃 ´ 𝑟 𝑠𝑒𝑛𝜃 ¤𝜃 , (˚)
¤𝑦 = ¤𝑟 𝑠𝑒𝑛𝜃 + 𝑟𝑐𝑜𝑠𝜃 ¤𝜃 . (˚˚)

Multiplying (˚) by cos 𝜃 and (˚˚) by sin𝜃 , we can find ¤𝑟 :

¤𝑟 =
¤𝑥𝑥 + ¤𝑦𝑦
𝑟

.

Similarly,
¤𝜃 =

¤𝑦𝑥 ´ ¤𝑥𝑦
𝑟 2

.

Replacing 𝑥, ¤𝑥, 𝑦 , ¤𝑦 , we have the new system{
¤𝑟 = 𝜔𝑟 (1 ´ 𝑟 2)
¤𝜃 = 1

.
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Solving these ODE’s, we get

𝑟 (𝑡 , 𝑟0) =
[
1 +

(
1
𝑟 20

´ 1
)
𝑒´2𝜔𝑡

]´1/2

and 𝜃 = 𝑡 + 𝑐 , 𝑐 P ℝ.

𝑟 = 1

Figure 5 – Phase-portrait of the example1.21.

When 𝑟0 = 1, then 𝑟 (𝑡 , 𝑟0) =
[
1 +

( 1
12 ´ 1

)
𝑒´2𝜔𝑡

]´1/2
= 1 = 𝑟0. On this initial

value 𝑟 (𝑡 , 1) = 1 for all 𝑡 P ℝ, so the circle of radius 𝑟 = 1 is a closed orbit of our system
of period 2𝜋 . For 𝑟 ă 1, ¤𝑟 (𝑟 ) ą 0 and for 𝑟 ą 1, ¤𝑟 (𝑟 ) ă 0. So the trajectory starting on a
point 𝑟 ă 1 is increasing. On the other hand, the trajectory starting on a point 𝑟 ą 1 is
decreasing. So, the limit cycle is stable.

Our last theorem of this section establishes conditions under which the
planar system has no limit cycles.

Theorem 1.22 (Dulac´s Criteria, (4)). Let𝑈 be a simply connected region on ℝ2 and
𝑓 P 𝐶 1(𝑈 ). If there exists a function 𝑔 P 𝐶 1(𝑈 ) such that ∇ ¨ (𝑔 𝑓 ) is not identically zero
and does not change its sign in𝑈 , then the system 1.1 has no closed orbit lying entirely
in𝑈 .

1.6 Predator-Prey Systems
Mathematicians Alfred Lotka andVito Volterra developed amodel that seeks

to solve a very interesting type of problem, the prey-predator problem. This model
deals with two species that share an environment, where prey have plenty of food
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available animals andpredators feedonprey.Note that amodel representedbyonly two
populations cannot express the different types of events existing in the environment,
thus ignoring important factors such as climate or human actions, but the study of a
simple model is what makes it possible, later, to advance in research to understand
advanced phenomena.

Tomodel the interaction between predators and prey, we consider a system
involving two species: the predators (denoted by 𝑦 ) and the prey (denoted by 𝑥). We
make the following assumptions:

• The prey population 𝑥 is the total food supply for the predators;

• In the absence of predators, 𝑥 grows at a rate proportional to the current popula-
tion, i.e., if 𝑦 = 0, ¤𝑥 = 𝑎𝑥 where 𝑎 ą 0;

• When 𝑦 ≠ 0, 𝑥 decreases at a rate proportional to the number of predator-prey
encounters.

We canmodel this systemusing the differential equation ¤𝑥 = 𝑎𝑥´𝑏𝑥𝑦 , where𝑏 ą 0 rep-
resents the interaction strength between predators and prey. This equation describes
the dynamics of the prey population.

Next, let’s consider the predator population (𝑦 ) and make the following
assumptions:

• In the absence of prey, 𝑦 declines at a rate proportional to the current population,
i.e., if 𝑥 = 0, ¤𝑦 = ´𝑐𝑦 where 𝑐 ą 0;

• When 𝑥 ≠ 0, 𝑦 increases at a rate proportional to the number of predator-prey
encounters.

Combining these assumptions, we arrive at a simplified predator-prey sys-
tem: {

¤𝑥 = 𝑎𝑥 ´ 𝑏𝑥𝑦

¤𝑦 = ´𝑐𝑦 + 𝑑𝑥𝑦 .
(1.11)

This system captures the dynamics of predator-prey interactions. To study the prop-
erties of such systems, we can refer to the result presented in (5). It provides valuable
insights into the behavior and stability of predator-prey systems.

Theorem 1.23 ((5)). Every solution of the predator-prey system, except for the equilib-
rium point and the coordinate axes, is a closed orbit.
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Chapter 2

Filippov System

The objective of this chapter is to introduce the fundamental concepts of Fil-
ippov systems. Thedynamics of these systems cannot bedeterminedusing the classical
theory of smooth dynamical systems. Therefore, the first step in understanding these
systems is to establish the notions of trajectory, orbit, and singularity. In section 2.1,
we define Filippov’s convention, and in section 2.2, we examine the singularities of a
piecewise vector field. Finally, in section 2.3, we extend the concepts of topological
equivalence and topological conjugacy to vector fields.

2.1 Filippov’s Convention
Let𝑈 be an open bounded subset of ℝ3, and let 𝐾 = 𝑈̄ be its closure. We

define the set𝐶 𝑟 (𝐾 ,ℝ3) as the collection of all𝐶 𝑟 vector fields𝑋 : 𝐾 Ñ ℝ3. Additionally,
we introduceΩ𝑟

ℎ (𝐾 ,ℝ
3) as the space of piecewise vector fields given by:

𝑍 (𝑥) =
{
𝑋 (𝑥) if ℎ (𝑥) ą 0,
𝑌 (𝑥) if ℎ (𝑥) ă 0,

(2.1)

Here,𝑋 and𝑌 belong to𝐶 𝑟 (𝐾 ,ℝ3), andℎ : 𝐾 Ñ ℝ is a differentiable function
with zero as a regular value. The notation often used for Equation 2.1 is 𝑍 = (𝑋 ,𝑌 ),
and it is referred to as a Filippov system. The set Σ = ℎ´1(0) represents the switching
surface of codimension 1.

It is worth noting that 𝐶 𝑟 (𝐾 ,ℝ3) is equipped with the 𝐶 𝑟 topology, while
Ω𝑟
ℎ (𝐾 ,ℝ

3) is endowed with the product topology. The switching manifold Σ can be
divided into regions exhibiting different dynamical behaviors. For any 𝑝 belonging
to Σ, we define 𝑋ℎ (𝑝) as the Lie derivative of ℎ (𝑝) in the direction of the vector 𝑋 (𝑝).
Considering the notation in Equation 2.1, we can state the following:

• Σ𝑐 Ă Σ is referred to as a crossing region if 𝑋ℎ (𝑝)𝑌 ℎ (𝑝) ą 0 for 𝑝 P Σ.
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X X X

Y Y Y
Σ

Figure 6 – Sliding, crossing, and escape regions, respectively.

• Σ𝑒 Ă Σ is referred an escaping region if 𝑋ℎ (𝑝)𝑌 ℎ (𝑝) ă 0 with 𝑋ℎ (𝑝) ą 0 and
𝑌 ℎ (𝑝) ă 0.

• Σ𝑠 Ă Σ is referred as a sliding region if 𝑋ℎ (𝑝)𝑌 ℎ (𝑝) ă 0 with 𝑋ℎ (𝑝) ă 0 and
𝑌 ℎ (𝑝) ą 0.

This definition does not include the points of tangency, which are points where one of
the two vector fields is tangent to Σ. These points are on the boundary of the regions
Σ𝑒 , Σ𝑠 and Σ𝑐 , that we will denote by BΣ𝑒 , BΣ𝑠 and BΣ𝑐 , respectively. If 𝑝 P Σ𝑐 , then the
trajectory passing through 𝑝 is the concatenation of the trajectories of the vectors 𝑋
and𝑌 by that point.

Σ𝑐

𝑋

𝑌

Figure 7 – Sketch of the crossing region.

To understand the flow of 𝑍 = (𝑋 ,𝑌 ) on the region Σ𝑒 Y Σ𝑒 we define a new
vector field:

Definition 2.1. In the context above, for all𝑝 P Σ𝑒 Y Σ𝑠 we define the sliding vector field
of 𝑍 , called 𝑍 , by:

𝑍 (𝑝) = 𝑌 ℎ (𝑝)𝑋 (𝑝) ´ 𝑋ℎ (𝑝)𝑌 (𝑝)
𝑌 ℎ (𝑝) ´ 𝑋ℎ (𝑝) . (2.2)
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Σ𝑠

𝑍 (𝑝)𝑝

𝑋

𝑌

Figure 8 – Sketch of the sliding vector field

To facilitate the analysis of the orbits of the sliding vector fields, it is advan-
tageous to introduce the normalized sliding vector field,˜̃

𝑍 (𝑝) = 𝑌 ℎ (𝑝)𝑋 (𝑝) ´ 𝑋ℎ (𝑝)𝑌 (𝑝). (2.3)

Thenormalized sliding vector field has the samephase portrait as𝑍 butwith
the direction of the flow reversed in the escape region. So we can define the trajectory
of the Filippov system given by 2.1.

Definition 2.2 (See (6)). Let𝜓𝑍 (𝑡 , 𝑝) be the local trajectory of ¤𝑥 = 𝑍 (𝑥) passing through
a point 𝑝 P ℝ3 at a time 𝑡 P 𝐼𝑝 Ă ℝ, where𝜓𝑍 (0, 𝑝) = 𝑝 and 0 P 𝐼𝑝 denotes the interval of
definition of𝜓𝑍 (𝑡 , 𝑝). The Filippov’s conventions can be summarized as follows:

• If ℎ (𝑝) ą 0 (resp. ℎ (𝑝) ă 0), then 𝑍 (𝑝) = 𝑋 (𝑝) (resp. 𝑍 (𝑝) = 𝑌 (𝑝)), and the
trajectory is defined as𝜓𝑍 (𝑡 , 𝑝) = 𝜓𝑋 (𝑡 , 𝑝) (resp.𝜓𝑍 (𝑡 , 𝑝) = 𝜓𝑌 (𝑡 , 𝑝)) for 𝑡 P 𝐼𝑝 .

• For 𝑝 P Σ𝑐 such that 𝑋ℎ (𝑝) ą 0 and 𝑌 ℎ (𝑝) ą 0, the trajectory is defined as
𝜓𝑍 (𝑡 , 𝑝) = 𝜓𝑌 (𝑡 , 𝑝) for 𝑡 P 𝐼𝑝 X 𝑡 ă 0 and 𝜓𝑍 (𝑡 , 𝑝) = 𝜓𝑋 (𝑡 , 𝑝) for 𝑡 P 𝐼𝑝 X 𝑡 ą 0.
When 𝑋ℎ (𝑝) ă 0 and𝑌 ℎ (𝑝) ă 0, the definition is the same but with reversed time.

• For 𝑝 P Σ𝑒 Y Σ𝑠 such that 𝑍 (𝑝) ≠ 0, the trajectory is defined as𝜓𝑍 (𝑡 , 𝑝) = 𝜓𝑍 (𝑡 , 𝑝)
for 𝑡 P 𝐼𝑝 .

• For 𝑝 P BΣ𝑐 Y BΣ𝑒 Y BΣ𝑠 such that the definitions of trajectories for points in Σ on
both sides of 𝑝 can be extended to 𝑝 and coincide, the trajectory passing through 𝑝
is considered to be the same as this extended trajectory. We refer to 𝑝 as a tangency
regular point.

• For any other point 𝑝 where𝜓𝑍 (𝑡 , 𝑝) = 𝑝 for all 𝑡 P ℝ, we have singularities of the
vector fields 𝑋 ,𝑌 , and 𝑍 . This includes tangency points in Σ that are not regular,
which we refer to as singular tangency points.
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2.2 Singularities
Now we present the definitions of singular points of the Filippov system

𝑍 = (𝑋 ,𝑌 ) P Ω𝑟 .

Definition 2.3. A point 𝑝 P Σ is a tangency point of 𝑋 if 𝑋ℎ (𝑝) = 0. We say that a
tangency point 𝑥 P Σ is a visible fold of 𝑋 (resp.𝑌 ) if (𝑋 )2ℎ (𝑥) ą 0 (resp. (𝑌 )2ℎ (𝑥) ă 0).

𝑝 𝑝
Σ Σ

𝑋𝑋

Figure 9 – A visible and invisible fold regular points of 𝑋 , respectively.

Reversing the inequalities we call the tangency point invisible fold.

Definition 2.4. A point 𝑝 P Σ is a Σ-regular point of the vector field 𝑋 (resp. 𝑌 ), if
𝑋ℎ (𝑝) ≠ 0 (resp.𝑌 ℎ (𝑝) ≠ 0).

In this case, for a visible fold 𝑝 P Σ of 𝑋 such that 𝑝 is a Σ-regular point of𝑌 ,
we say that𝑝 is a fold-regular point of Z with respect to 𝑋 or a fold-regular point of 𝑋 .

𝑝

𝑌

𝑋

Σ

Figure 10 – A fold-regular point of Z with respect to 𝑋

So, the singularities of the Filippov system 2.1 can be classified as follows:

• 𝑝 P 𝑋 (resp.𝑌 ) such that ℎ (𝑝) ą 0 (resp. ℎ (𝑝) ă 0) and 𝑋 (𝑝) = 0 (resp.𝑌 (𝑝) = 0);

• 𝑝 P Σ𝑒 Y Σ𝑠 such that 𝑍 (𝑝) = 0 and we say that 𝑝 is a pseudo-equilibrium of 𝑍 ;

• 𝑝 P BΣ𝑐 Y BΣ𝑒 Y BΣ𝑠 , the tangency points of 𝑍 where 𝑋ℎ (𝑝) = 0 or𝑌 ℎ (𝑝) = 0.
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Any other point of 𝑍 is called a regular point.

Definition 2.5. When 𝑝˚ is a hyperbolic singularity of 𝑍 , it is referred to as a hyperbolic
pseudo-equilibrium. Specifically, if 𝑝˚

P Σ𝑠 (resp. Σ𝑒 ) is an unstable (stable) hyperbolic
focus of 𝑍 , then 𝑝˚ is classified as a hyperbolic pseudo-saddle-focus.

2.3 Structural Stability and Topological Conjugacy
We can generalize the concepts of vector fields topologically equivalent of

the section 1.2.

Definition 2.6. Let 𝑍1 and 𝑍2 P Ω𝑟 . We say that 𝑍1 and 𝑍2 are topologically equivalent
if there exists a homeomorphism 𝜙 :𝑈 Ñ 𝑈 satisfying 𝜙 (Σ𝑍1) = Σ𝑍2 and sending orbits
of 𝑍1 to orbits of 𝑍2 preserving time orientation.

Definition 2.7. We say that a Filippov System 𝑍0 = (𝑋0,𝑌0) P Ω𝑟 is structurally stable if
there exists an open neighborhood 𝐵 Ă Ω𝑟 of 𝑍0 such that, if 𝑍 = (𝑋 ,𝑌 ) P 𝐵 is a Filippov
System, then 𝑍 and 𝑍0 are topologically equivalent.

Proposition2.8 (See (7)). Given𝑍 = (𝑋 ,𝑌 ) P Ω𝑟
ℎ (𝐾 ,ℝ

3), if𝑞 P BΣ𝑒 YBΣ𝑠 is a fold-regular
point of Z with respect to X, then the sliding vector field 𝑍 is transverse to BΣ at q and
there exists a neighborhood𝑉 of q such that𝑈 :=𝑉 X (BΣ𝑒 Y BΣ𝑠 ) and 𝑍 |𝑈 is structurally
stable.

Proof. For 𝑍 = (𝑋 ,𝑌 ) we denote 𝑋 ,𝑌 P 𝐶 𝑟 by 𝑋 = (𝑋1, 𝑋2, 𝑋3) and 𝑌 = (𝑌1,𝑌2,𝑌3).
Consider ℎ (𝑥, 𝑦 , 𝑧) = 𝑧 and 𝑞 P Σ = ℎ´1(0) such that 𝑋ℎ (𝑞) = 0, 𝑋 2ℎ (𝑞) ą 0 and
𝑌 ℎ (𝑞) ≠ 0. For 𝑝 P Σ𝑒 Y Σ𝑠 we have the sliding vector field

𝑍 (𝑝) = 𝑌 ℎ (𝑝)𝑋 (𝑝) ´ 𝑋ℎ (𝑝)𝑌 (𝑝)
𝑌 ℎ (𝑝) ´ 𝑋ℎ (𝑝) =

𝑌3(𝑝)𝑋 (𝑝) ´ 𝑋3(𝑝)𝑌 (𝑝)
𝑌3(𝑝) ´ 𝑋3(𝑝)

,

and 𝑋ℎ (𝑝) = 𝑋3(𝑝).Now, for 𝑞 we have

𝑍 (𝑞) = 𝑌3(𝑞)𝑋 (𝑞)
𝑌3(𝑞)

∴ 𝑍 (𝑞) = (𝑋1(𝑞), 𝑋2(𝑞), 0).
Now,

⟨𝑍 (𝑞),∇𝑋ℎ (𝑞)⟩ = ⟨(𝑋1(𝑞), 𝑋2(𝑞)), (𝑋 1
3 (𝑞), 𝑋

2
3 (𝑞))⟩.

On the other hand, we have

𝑋 2ℎ (𝑞) = ⟨∇𝑋ℎ (𝑞), 𝑋 (𝑞)⟩ = ⟨(𝑋 1
3 (𝑞), 𝑋

2
3 (𝑞), 0), (𝑋1(𝑞), 𝑋2(𝑞), 𝑋3(𝑞))⟩.

Since 𝑋 2ℎ (𝑞) ą 0, we have ⟨𝑍 (𝑞),∇𝑋ℎ (𝑞)⟩ = 𝑋 2ℎ (𝑞) ą 0 and the sliding vector field 𝑍
is transverse to BΣ at 𝑞 . The structural stability property follows from Proposition 5.2
found in (7). ■
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Chapter 3

Sliding Shilnikov Orbit

Inorder togeneralize the studyof Shilnikov,NovaesandTeixeira ((8)) defined
an equivalent result for piecewise vector fields, the sliding Shilnikov orbit and analyzed
the behavior of the systems that exhibits such an orbit. In section 3.1, is presented the
sliding Shilnikov orbit and state the main results for this chapter. In section 3.2, we
construct a first returnmap in the neighborhood of the sliding Shilnikov orbit, which
will be used to prove the theorems in section 3.3.

3.1 Statement of the Results
The following definition introduces the concept of sliding Shilnikov orbit.

𝑞˚

𝑝˚

Σ𝑠

BΣ𝑠

𝑋

Figure 11 – Sliding Shilnikov orbit.

Definition 3.1 (See (8)). Let 𝑍 = (𝑋 ,𝑌 ) be a piecewise continuous vector field having a
hyperbolic pseudo-saddle-focus 𝑝˚

P Σ𝑠 and let 𝑞˚
P BΣ𝑠 be a visible fold-regular point

of Z with respect to X such that:
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• the backward trajectory of Z starting at 𝑞˚ follows the sliding vector field 𝑍 and
converges to 𝑝˚.

• the forward trajectory of Z, starting at 𝑞˚, intersects the switching surface only at
crossing points before reaching 𝑝˚. It eventually reaches 𝑝˚ at a finite time 𝑡0 ą 0

Through 𝑝˚ and 𝑞˚ we can characterize a sliding loop Γ. We call Γ a sliding Shilnikov
orbit. We denote Γ+ = Γ X 𝑋 and Γ𝑠 = Γ X Σ𝑠 .

If 𝑍𝜇 = (𝑋𝜇,𝑌𝜇) P Ω𝑟 is a 1-parameter family of Filippov systems breaking the
slidingShilnikovorbit for𝜇 ≠ 0, then this family is referred toasa splittingof Γ0. Thefirst

Figure 12 – A splitting of Γ0.

main result in this part demonstrates that if 𝑍0 P Ω𝑟 exhibits a sliding Shilnikov orbit,
then any neighborhood𝑈 Ă Ω𝑟 of 𝑍0 contains infinitely many topological equivalence
classes of vector fields. This result is proven in subsection 3.3.1.

Theorem 3.2 ((8)). Assuming that 𝑍0 = (𝑋0,𝑌0) P Ω𝑟 belongs to Ω𝑟 and has a sliding
Shilnikov orbit Γ0, and considering 𝑈 Ă Ω𝑟 be a small neighborhood of 𝑍0, we can
conclude the following:

There exists a function 𝑓 :𝑈 Ñ ℝ, with 0 as a regular value, such that 𝑍 P 𝑈

admits a sliding Shilnikov orbit if and only if 𝑓 (𝑍 ) = 0. Moreover, there are in𝑈 infinitely
many topological equivalence classes of Filippov vector fields present.

The second main result in this part is a version of Shilnikov’s Theorem
concerning the existence of sliding periodic orbits of 𝑍𝜇 that are 1-periodic within
a neighborhood of a sliding Shilnikov orbit. The proof of this result is presented in
subsection 3.3.2.

Theorem 3.3 ((8)). Assuming that 𝑍0 = (𝑋0,𝑌0) P Ω𝑟 and has a sliding Shilnikov orbit
Γ0, and considering 𝑍𝜇 = (𝑋𝜇,𝑌𝜇) P Ω𝑟 as a splitting of Γ0, the following statements hold:

• for 𝜇 = 0, every neighborhood𝑈 Ă ℝ3 of Γ0 contains countably infinitely many
sliding periodic orbits of 𝑍0;
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• Let𝑊 Ă ℝ3 be a small neighborhood of Γ0. Then, for each |𝜇 | ≠ 0 sufficiently
small, W contains at least a finite number𝑁 (𝜇) ą 0 of sliding periodic orbits of
𝑍𝜇. Moreover,𝑁 (𝜇) Ñ 8when 𝜇 Ñ 0.

3.2 First Return Map
Studying the first returnmap in a small neighborhood𝑉 Ă BΣ𝑠 of 𝑞˚ allows

us to comprehend the behavior of a system near a sliding Shilnikov orbit. Therefore,
consider 𝑍0 P Ω𝑟

ℎ as a Filippov system that possesses a sliding Shilnikov orbit Γ0, and
let 𝑍𝜇 represent a splitting of Γ0.

Consider 𝑥𝑠 P Σ𝑠 and 𝑣 P ℝ3 with ℎ (𝑣 ) ą 0. Let 𝜓𝑍 (𝑡 , 𝑥𝑠 ) and 𝜓𝑋 (𝑡 , 𝑣 ) de-
note the solutions of the differential systems induced by 𝑍 and 𝑋 , respectively. These
solutions satisfy the initial conditions:

𝜓𝑍 (0, 𝑥𝑠 ) = 𝑥𝑠 and𝜓𝑋 (0, 𝑣 ) = 𝑣.

Take 𝑟 ą 0 sufficiently small such that𝜂𝑟 := 𝐵𝑟 (𝑞˚) X BΣ𝑠 is a subset of the
fold line, where 𝐵𝑟 (𝑞˚) Ă Σ is the ball with center 𝑞˚ and radius r.

We have the following claim:

Claim 3.4. For 𝑟 ą 0 sufficiently small, we can find a function 𝑡̃ : 𝜂𝑟 Ñ ℝ˚
+, such that

𝜓𝑋 (𝑡̃ (𝑥𝑠 ), 𝑥𝑠 ) P Σ𝑠 and this contact is transversal for all 𝑥𝑠 P 𝜂𝑟 .

Proof. FromDefinition 3.1, there exists 𝑡0 ą 0 such that𝜓𝑋 (𝑡0, 𝑞˚) = 𝑝˚
P Σ𝑠 and the

intersection of this flowwith Σ𝑠 is transversal at 𝑝˚.

So we define the function

𝑓 : ℝ ˆ𝜂𝑟 Ñ ℝ+

(𝑡 , 𝑥𝑠 ) ÞÑ ℎ (𝜓𝑋 (𝑡 , 𝑥𝑠 )).

Then, 𝑓 (𝑡0, 𝑞˚) = ℎ (𝜓𝑋 (𝑡0, 𝑞˚)) = ℎ (𝑝˚) = 0 since 𝑝˚
P Σ.

Furthermore, B

B𝑡
𝑓 (𝑡0, 𝑞˚) = ∇ℎ (𝑝˚) ¨ 𝑋 (𝑝˚) ≠ 0 since 𝑝˚ is a regular point

of 𝑋 . Then, by the Implicit function theorem, taking an appropriate 𝑟 , there exists
a function 𝑡̃ defined on 𝜂𝑟 such that 𝑡̃ (𝑞˚) = 𝑡0 and 𝑓 (𝑡̃ , 𝑥𝑠 ) = 0 for all 𝑥𝑠 P 𝜂𝑟 . Then,
𝜓𝑋 (𝑡̃ (𝑥𝑠 ), 𝑥𝑠 ) P Σ𝑠 for every 𝑥𝑠 P 𝜂𝑟 . This function 𝑡̃ is just the time that𝜂𝑟 takes to get to
Σ𝑠 under the flow of 𝑋 . So we proved the claim. ■

Now, we define 𝛼𝑟 := {𝜓𝑋 (𝑡̃ (𝑥𝑠 ), 𝑥𝑠 ); 𝑥𝑠 P 𝜂𝑟 } and consider 𝛾 : 𝜂𝑟 Ñ 𝛼𝑟 the
diffeomorphism

𝛾 (𝑥𝑠 ) = 𝜓𝑋 (𝑡̃ (𝑥𝑠 ), 𝑥𝑠 ). (3.1)
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𝜂𝑟
𝛼𝑟 𝜂

𝜇
𝑟

𝛼
𝜇
𝑟

Figure 13 – Sketch of the diffeomorphisms𝛾 and𝛾𝜇, respectively.

Here this diffeomorphism is well defined because 𝛼𝑟 is taken as the forward saturation
of𝜂𝑟 . In a similar manner, we can construct a diffeomorphism𝛾𝜇 : 𝜂𝜇𝑟 Ñ 𝛼

𝜇
𝑟 . However,

it should be noted that the pseudo-saddle-focus is no longer included within 𝛼𝜇𝑟 .

Claim 3.5. For sufficiently small values of 𝑟 ą 0, the backward saturation of𝜂𝑟 through
the flow of 𝑍 intersects the curve 𝛼𝑟 an infinite countable number of times. Moreover, a
first returnmap 𝜋 can be defined on a subsetV𝑟 Ă 𝜂𝑟 that maps into𝜂𝑟 .

Proof. Proposition 2.8 establishes that the intersection of Γ𝑠 and BΣ𝑠 at 𝑞˚ is transversal.
Thus, by choosing a sufficiently small 𝑟 ą 0, the backward saturation B𝑟 of𝜂𝑟 through
theflowof𝑍 converges to𝑝˚ due to the fact that𝜓𝑍 (𝑡 , 𝑥𝑠 ) is adiffeomorphism.Therefore

B𝑟 X 𝛼𝑟 =

8⋃
𝑖=1

𝐽𝑖 , (3.2)

where 𝐽𝑖 X 𝐽𝑗 = H if 𝑖 ≠ 𝑗 and, since 𝑝˚
P 𝛼𝑟 , lim

𝑖Ñ8
𝐽𝑖 = {𝑝˚}.

For each 𝑖 P ℕ we define 𝐼𝑖 := 𝛾´1( 𝐽𝑖 ) Ă 𝜂𝑟 . Since 𝛾 is a diffeomorphism,
then 𝐼𝑖 X 𝐼 𝑗 = H if 𝑖 ≠ 𝑗 and

lim
𝑖Ñ8

𝐼𝑖 = lim
𝑖Ñ8

(𝛾´1( 𝐽𝑖 )) = 𝛾´1( lim
𝑖Ñ8

𝐽𝑖 ) = {𝑞˚}.

𝑞˚

𝑝˚

𝐽1

𝐽2

𝐽3
𝐽4

𝐼1

𝐼2

𝐼3
𝐼4

Figure 14 – Construction of the intervals 𝐽𝑖 and 𝐼𝑖 .
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Wepoint out that there exist a function 𝑡̃𝑍 : 𝛼𝑟 z{𝑝˚} Ñ ℝ˚
+ such that, for each

𝑦 P 𝛼𝑟 z{𝑝˚}, 𝑡̃𝑍 is the time such that𝜓𝑍 (𝑡̃𝑍 (𝑦𝑠 ), 𝑦𝑠 ) P 𝜂𝑟 . Defining

V𝑟 :=
⋃
𝑖Pℕ

𝐼𝑖 , (3.3)

we finally can establish the first returnmap 𝜋 : V𝑟 Ñ 𝜂𝑟 as

𝜋 (𝑥𝑠 ) = 𝜓𝑍 (𝑡̃𝑍 (𝜓𝑋 (𝑡̃ (𝑥𝑠 ), 𝑥𝑠 )),𝜓𝑋 (𝑡̃ (𝑥𝑠 ), 𝑥𝑠 )). (3.4)

When |𝜇 | ≠ 0 is sufficiently small, we can follow the previous procedure to
construct a first returnmap 𝜋𝜇 : V𝜇

𝑟 Ñ 𝜂
𝜇
𝑟 using the splitting system 𝑍𝜇. However, in

this case, the backward saturation of𝜂𝜇𝑟 through the flow of 𝑍𝜇 intersects 𝛼𝜇𝑟 in a finite
number of connected components. As a result, the setV𝜇

𝑟 will be a finite union of 𝑛𝜇
intervals:

V𝜇
𝑟 =

𝑛𝜇⋃
𝑖=1

𝐼
𝜇

𝑖
,

Here, each interval 𝐼 𝜇
𝑖
corresponds to the inverse image of 𝐽𝜇

𝑖
under the

diffeomorphism𝛾𝜇.

■

The subsequent result aims to comprehend the behavior of the aforemen-
tioned first returnmap.

Proposition 3.6 (See (9)). ConsideringV𝑟 as defined in 3.3, there exists a sufficiently
small 𝑟 ą 0 such that |𝜋 1(𝑥𝑠 ) | ą 1 for every 𝑥𝑠 P V𝑟 . As a result, for |𝜇 | ≠ 0 sufficiently
small, |𝜋 1(𝑥𝑠 ) | ą 1 holds for every 𝑥𝑠 P V𝜇

𝑟 .

Proof. We saw that, for 𝑟 ą 0 small, that the curve 𝛼𝑟 is transversal to the flow of the
vector field 𝑍 and the focus 𝑝˚ is contained in this curve.

Claim 3.7. There exists 𝑅1, 𝑅2 ą 0 such that, for each 0 ă 𝑟 ď 𝑅1, a first return map
𝜁𝑟 : 𝛼𝑟 Ñ 𝛼𝑅2 is well defined.

Proof. Indeed, since the point 𝑝˚ is a focus of the sliding vector field, we know that, for
a small neighborhood of 𝑝˚, the trajectories spiral around 𝑝˚ tending to 𝑝˚ in negative
timeand, forpositive time, these trajectories are increasing.Then, for𝑅1 ą 0 sufficiently
small, there exist 𝑡 ą 0 and 𝑅2 ą 0 such that𝜓𝑍 (𝑡 , 𝑦𝑠 ) P 𝛼𝑅2 for every point 𝑦𝑠 P 𝛼𝑅1 .
Since 𝛼𝑟 Ă 𝛼𝑅1 for all 0 ă 𝑟 ď 𝑅1, then we can define the first returnmap

𝜁𝑟 : 𝛼𝑟 Ñ 𝛼𝑅2 ,

by composing the flow of the sliding vector field𝜓𝑍 . ■
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Since 𝑝˚ is a hyperbolic fixed point of 𝜁𝑟 , define

𝜁𝑟 (𝑥𝑠 ) = 𝜁𝑟 (𝑥𝑠 ) ´ 𝑝˚,

and we can see that 𝜁𝑟 (𝑝˚) = 0. By Theorem 1.9 there exists a neighborhood𝑉 1 of the
origin and a𝐶 1-diffeomorphism𝐻 :𝑉 1

Ñ𝑉 1 such that

𝜁𝑟 (𝑥𝑠 ) = 𝐻 ˝ 𝜆 ˝𝐻´1(𝑥𝑠 ),

with |𝜆| ą 1. As we are just moving our point, the behavior is the same close to 𝑝˚, so,
without loss of generality, we can assume that there exists a neighborhood𝑉 Ă 𝛼𝑅1 of
𝑝˚ and a𝐶 1-diffeomorphism𝐻 :𝑉 Ñ𝑉 such that

𝜁𝑟 (𝑥𝑠 ) = 𝐻 ˝ 𝜆 ˝𝐻´1(𝑥𝑠 ),

for all 𝑥𝑠 P𝑉 , where |𝜆| ą 1.

We can choose 0 ă 𝑟 ă 𝑅1 sufficiently small such that 𝛼𝑟 Ă 𝑉 . So, if
𝜁𝑘´1
𝑟 (𝑥𝑠 ) P𝑉 , then 𝜁𝑘𝑟 (𝑥𝑠 ) = 𝐻 (𝜆𝑘𝐻´1(𝑥𝑠 )).

Given that the backward saturationB𝑟 of𝜂𝑟 through the flow of 𝑍 converges
to 𝑝˚

P𝑉 , we can identify the first connected component of 𝛼𝑟 that lies entirely within
𝑉 X B𝑟 as S. The flow of 𝑍 induces a diffeomorphism 𝜌 between S and𝜂𝑟 , while the
flow of 𝑋 induces a diffeomorphism𝛾 (see 3.1) between𝜂𝑟 and 𝛼𝑟 .

Since 𝜌 and 𝛾 are diffeomorphism and S and𝜂𝑟 are compact subsets, so
𝜌 1 and 𝛾 1 admits minimum points. Then, there exists 𝛿 ą 0 and 𝛿𝑋 ą 0 such that
𝛿 = 𝑚𝑖𝑛{|𝜌 1(𝑥𝑠 ) |; 𝑥𝑠 P S} and 𝛿𝑋 = 𝑚𝑖𝑛{|𝛾 1(𝑥𝑠 ) |; 𝑥𝑠 P 𝜂𝑟 }.

Given 𝑖0 P ℕ, there exists a sufficiently small 0 ă 𝑟 ă 𝑅1 such that 𝜁 𝑖𝑟 XS = H

for every 0 ă 𝑖 ă 𝑖0. Since |𝜆| ą 1 and 𝑖0 is arbitrary, wemay assume that 𝛿𝑋 𝛿 |𝜆|𝑖0 ą 1.

Finally takeV𝑟 as 3.3, for every 𝑥𝑠 P V𝑟 , let𝑚 be a positive integer such that
𝜁𝑚𝑟 (𝛾 (𝑥𝑠 )) P S. From the continuity of themap 𝜁𝑟 , there exists a neighborhood𝑊 Ă V𝑟

of 𝑥𝑠 such that 𝜁𝑚𝑟 (𝛾 (𝑤 )) P S Ă𝑉 for every𝑤 P𝑊 . You can see that𝑚 ě 𝑖0. Therefore,
for every𝑤 P𝑊 , the first returnmap reads

𝜋 (𝑤 ) = 𝜌 ˝ 𝜁𝑚𝑟 ˝𝛾 (𝑤 )
= 𝜌 (𝐻 (𝜆𝑚𝐻´1(𝛾 (𝑤 )))).

Then,

𝜋 1(𝑥𝑠 ) = 𝜌 1(𝐻 (𝜆𝑚𝐻´1(𝛾 (𝑤 )))) ¨ (𝐻 (𝜆𝑚𝐻´1(𝛾 (𝑤 ))))1

= 𝜌 1(𝐻 (𝜆𝑚𝐻´1(𝛾 (𝑤 )))) ¨ (𝐻 1((𝜆𝑚𝐻´1(𝛾 (𝑤 ))) ¨ 𝜆𝑚 (𝐻´1)1(𝛾 (𝑤 )) ¨𝛾 1(𝑤 )
∴ |𝜋 1(𝑥𝑠 ) | ě 𝛿𝑋 𝛿 |𝜆|𝑚 ą 𝛿𝑋 𝛿 |𝜆|𝑖0 ą 1.

Then we proved our result. For a splitting the proof is similar. ■
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3.3 Proof of the main results
To establish a common framework for the proofs, we consider the following

assumptions:

Without lossof generality,wesetℎ (𝑥, 𝑦 , 𝑧) = 𝑧 andconsiderΣ = {(𝑥, 𝑦 , 0); 𝑥, 𝑦 P

ℝ} as our switching surface. Let 𝑍0 = (𝑋0,𝑌0) be a system that possesses a sliding
Shilnikovorbit Γ0. Thisorbit connects thehyperbolicpseudo-saddle-focus𝑝˚ = (0, 0, 0) P

Σ𝑠 (or Σ𝑒 ) to itself and includes the visible fold-regular point 𝑞˚ of 𝑍0 with respect to 𝑋0.
Additionally, we assume that the orbit of𝑍0 connecting𝑝˚ to𝑞˚ intersects the switching
surface Σ only at 𝑝˚ and 𝑞˚.

Let 𝑈 Ă Ω𝑟 be a small neighborhood of 𝑍0. According to the structural
stability property of a fold-regular point (see Proposition 2.8), for each 𝑍 = (𝑋 ,𝑌 ) P 𝑈 ,
there exists a fold-regular point 𝑞˚

𝑍 that lies on a curve of fold-regular points𝜂𝑍𝑟 , where
𝜂𝑍𝑟 Ñ 𝜂𝑟 and 𝑞˚

𝑍 Ñ 𝑞˚ as 𝑍 Ñ 𝑍0.

Similar to the approachused in section3.2,we candeduce that thebackward
trajectories of 𝑍 starting at points on𝜂𝑍𝑟 converge to𝑝˚

𝑍 , and the forward trajectories of
𝑋 , starting at points on𝜂𝑍𝑟 , intersect the switching surface transversely along a curve
denoted as 𝛼𝑍𝑟 . Thus, as 𝑍 Ñ 𝑍0, we have 𝛼𝑍𝑟 Ñ 𝛼𝑟 . It follows that 𝑍 possesses a sliding
Shilnikov orbit if, and only if, 𝑝˚

𝑍 P 𝛼𝑍𝑟 .

3.3.1 Proof of Theorem 3.2

Proof. For simplicity, let us consider 𝛼𝑟 as the curve {(𝑥, 0, 0) | ´𝑟 ď 𝑥 ď 𝑟 }. Now, for
any 𝑍 P 𝑈 , the curve 𝛼𝑍𝑟 can be represented as a graph 𝑦 = 𝑔𝑍 (𝑥) = 𝑐𝑍1 + 𝑐𝑍2 𝑥 + O2(𝑥),
where 𝑐𝑍01 = 𝑐

𝑍0
2 = 0, and 𝑐1 and 𝑐2 are chosen to be sufficiently small inℝ.

Denote the pseudo-equilibrium 𝑝˚
𝑍 = (𝑥𝑧 , 𝑦𝑧 , 0), then we define the function

𝑓 by:
𝑓 : 𝑈 Ñ ℝ

𝑍 ÞÑ 𝑔𝑍 (𝑥𝑍 ) ´ 𝑦𝑍 .
(3.5)

Then 𝑓 is a𝐶 1 function and 𝑓 (𝑍0) = 𝑔𝑍0 ´ 𝑦𝑍0 = 0. To finish the proof, we have to show
that 0 is a regular value of 𝑓 , i.e, the linear transformation 𝑓 1 is surjective for every
𝑍 P 𝑓 ´1(0).

Let 𝑍 P 𝑈 satisfying 𝑓 (𝑍 ) = 0 and take𝑉 P Ω𝑟 . Then, there exist a smooth
curve 𝑍 (𝜏) P Ω𝑟 such that 𝑍 (0) = 𝑍 and 𝑍 1(0) = 𝑉 . So the derivative of 𝑓 at 𝑍 in the
direction𝑉 is given by:

𝑓 1(𝑍 ) ¨𝑉 =
𝑑

𝑑𝜏
𝑓 (𝑍 (𝑣 )) |𝜏=0= lim

𝜏Ñ0
𝑓 (𝑍 (𝜏)) ´ 𝑓 (𝑍 )

𝜏
.
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Now, exists 𝜏 ą 0 such that 𝑝˚
𝑍 (𝜏) = (0, 0, 0) and 𝑔𝑍 (𝜏) (𝑥𝑍 (𝜏)) = 𝜏 because the

pseudo-equilibrium 𝑝˚
𝑍 (𝜏) is not contained in 𝛼

𝑍 (𝜏)
𝑟 . Then we get that 𝑓 (𝑍 (𝜏)) = 𝜏 and,

therefore, 𝑓 1(𝑍 ) ¨𝑉 = 1. This implies that 𝑓 1(𝑍 ) is surjective for every 𝑍 P 𝑓 ´1(0), and 0
is a regular value of 𝑓 .

Consider the splitting 𝑍𝜇 of the sliding Shilnikov orbit Γ0. Since the pseudo
equilibrium𝑝˚

𝜇 of 𝑍𝜇 is not contained in 𝛼𝜇𝑟 for𝜇 ≠ 0, we can observe that the saturation
of𝜂𝜇𝑟 through the backward flow of 𝑍𝜇 intersects 𝛼𝜇𝑅 in a finite number of disjoint sets,
as shown in 3.2. Let 𝑛𝜇 denote the number of such intersections. Thus, we can find
trajectories of 𝑍𝜇 starting at𝜂𝜇𝑟 that intersect 𝛼𝜇𝑟 in exactly 𝑛𝜇 points. Furthermore, it
can be noted that the intersection between 𝛼𝜇𝑟 and any trajectory of 𝑍𝜇 starting at𝜂𝜇𝑟
contains at most 𝑛𝜇 points.

If 𝑍1, 𝑍2 P 𝑈 are topologically equivalent, then the curves 𝜂𝑍1𝑟 and 𝛼𝑍1𝑟 are
mapped to the curves𝜂𝑍2𝑟 and𝛼𝑍2𝑟 , respectively. As a result, wehave𝑛𝜇1 = 𝑛𝜇2 , indicating
that the number of intersections between 𝛼𝑍1𝑟 and trajectories of 𝑍1 starting at𝜂𝑍1𝑟 is
equal to the number of intersections between 𝛼𝑍2𝑟 and trajectories of 𝑍2 starting at𝜂𝑍2𝑟 .
This implies the existence of infinitelymany topological equivalence classes of Filippov
vector fields in any neighborhood𝑈 Ă Ω𝑟 of 𝑍0. Therefore, the proof is concluded.

■

3.3.2 Proof of Theorem 3.3

Proof. Using the notation of section 3.2, we are going to prove the first statement of
Theorem 3.3. For 𝑥𝑠 P Σ𝑠 and 𝑣 P ℝ3 let𝜓𝑍 (𝑡 , 𝑥𝑠 ) and𝜓𝑋 (𝑡 , 𝑣 ) be the flows of 𝑍 and 𝑋 ,
respectively. If we consider 𝑥𝑠 P 𝐼𝑖 , then there exists 𝑡 𝑠𝑖 (𝑥𝑠 ) ă 0 and 𝑡 𝑋𝑖 (𝑥𝑠 ) ă 0 such that
𝜉𝑖 (𝑥𝑠 ) := 𝜓𝑍 (𝑡 𝑠𝑖 (𝑥𝑠 ), 𝑥𝑠 ) P 𝐽𝑖 and𝜓𝑋 (𝑡 𝑋𝑖 (𝑥𝑠 ), 𝜉𝑖 (𝑥𝑠 )) P 𝐼𝑖 . So, define

𝜙𝑖 (𝑥𝑠 ) := 𝜓𝑋 (𝑡 𝑋𝑖 (𝑥𝑠 ), 𝜉𝑖 (𝑥𝑠 )).

Notice that 𝜙𝑖 is a𝐶 𝑟 function and, for each 𝑖 P ℕ, if 𝑦 P 𝐼𝑖 and 𝑥 = 𝜙𝑖 (𝑦 ), then

𝜋 (𝑥) = 𝜋 (𝜙𝑖 (𝑦 )) = 𝜋 (𝜓𝑋 (𝑡 𝑋𝑖 (𝑦 ), 𝜉𝑖 (𝑦 ))) = 𝑦 .

This property implies that a fixed point of 𝜙𝑖 is also a fixed point of 𝜋 . By
the Brouwer fixed point theorem, since 𝜙𝑖 is defined from a compact set to itself, for
each 𝑖 there exists 𝑞𝑖 P 𝐼𝑖 such that 𝜙𝑖 (𝑞𝑖 ) = 𝑞𝑖 . Consequently, we have𝜋 (𝑞𝑖 ) = 𝑞𝑖 , which
means that 𝑞𝑖 is a fixed point of 𝜋 . Therefore, we obtain a sliding periodic orbit in 𝐼𝑖 .

Continuing with this construction, we obtain a sequence (𝑞𝑖 )8
𝑖=1, where 𝑞𝑖 P

𝐼𝑖 and 𝜋 (𝑞𝑖 ) = 𝑞𝑖 . It is worth noting that 𝑞𝑖 converges to 𝑞˚. Thus, every neighborhood
of Γ0 contains countably infinitely many sliding periodic orbits of 𝑍0.
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For the second statement, consider a splitting of Γ0 denoted as 𝑍𝜇, where
𝑝˚
𝜇 is not contained in 𝛼𝜇𝑟 . Let us define the intersection 𝑆𝜇𝑟 X 𝛼

𝜇
𝑟 X𝑊 as a collection of

finite disjoint sets 𝐽𝑖 , with 𝑛𝜇 sets in total. As 𝜇 approaches zero, the value of 𝑛𝜇 tends
to infinity. By observing that the sliding periodic orbits for each 𝑍𝜇 correspond to the
fixed points of 𝜙𝜇

𝑖
(𝑥𝜇𝑠 ) := 𝜓𝑋𝜇 (𝑡

𝑋𝜇
𝑖

(𝑥𝜇𝑠 ), 𝜉
𝜇

𝑖
(𝑥𝜇𝑠 )), we can conclude the proof. ■
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Chapter 4

Chaotic Behavior Close to a Sliding
Shilnikov Orbit

The purpose of this chapter is to demonstrate that a vector field exhibiting a
sliding Shilnikov orbit displays a peculiar behavior referred, in some contexts, to as
chaos. In Section 4.1, we state the main result for this chapter developed by Novaes,
Ponce and Varão, see (9), and introduce fundamental definitions that will be utilized to
assess the chaotic nature of a system. In Section 4.2, we review properties of functions
that preservemeasureonaprobability space. Additionally, in Section4.2.1,we establish
a class of measure-preserving functions known as ergodic functions and provide an
example of such functions known as the Bernoulli shift. Finally, in Section 4.3, we
present a proof of themain result.

4.1 Statement of the Results
The chaotic behavior of a dynamical system is typically characterized by

the presence of an invariant set where the dynamics are transitive, sensitivity to initial
conditions, and set of periodic points is dense. Themain result of this chapter guaran-
tees that a Filippov system exhibiting a sliding Shilnikov orbit indeed possesses these
properties and thus has this type of chaotic behavior.

Theorem 4.1 ((9)). Let 𝑍 = (𝑋 ,𝑌 ) P Ω𝑟 be a Filippov system and assume that 𝑍 admits
a sliding Shilnikov orbit Γ. Denote by 𝜋 the first returnmap defined onV𝑟 in the vicinity
of 𝑞˚. For sufficiently small 𝑟 ą 0, there exists a set Λ Ă V𝑟 satisfying the following
properties:

• For each 𝑛 P ℕ, there exists a 𝜋-invariant Cantor set Λ𝑛 Ă Λ such that 𝜋 | Λ𝑛 is
conjugate to the shift on Σ2 ˆ Σ˚

𝑛 . In other words, there exists a homeomorphism
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ℎ𝑛 : Σ2 ˆ Σ˚
𝑛 Ñ Λ𝑛 such that ℎ𝑛 ˝ 𝜎𝑛 = 𝜋 ˝ ℎ𝑛 . Consequently, the dynamics on Λ𝑛

are transitive, sensitive to initial conditions, and have dense periodic points.

• There exists a homeomorphism ℎ : Σ2 ˆ Σ𝑏 Ñ Λ :=
⋃
𝑛

Λ𝑛 that conjugates the

dynamics of𝜎 and𝜋 .Moreover,ΛY𝑞˚ is a compact set. Inparticular, the topological
entropy of 𝜋 is infinite.

In light of the aforementioned theorem, let us introduce the following defi-
nitions:

1. Invariant Set: A subset Λ of the state space is said to be an invariant set under a
map or flow if, once a point belongs to Λ, its image under themap or flow also
belongs to Λ;

2. Topologically Transitivity: A dynamical system is topologically transitive on an
invariant set Λ if for every pair of nonempty open sets𝑈 and𝑉 in Λ, there exist
𝑥 P 𝑈 , a trajectory of 𝜙 (𝑡 , 𝑥) of the system and 𝑡0 ą 0 such that 𝜙 (𝑡0, 𝑥) P𝑉 ;

3. Sensitivity to Initial Conditions: Sensitivity to initial conditions refers to the
property of a dynamical systemwhere arbitrarily close initial conditions can lead
to significantly different trajectories over time;

4. Dense Periodic Points: A set of periodic points is said to be dense if it is densely
distributed in the state space,meaning that for any open subset of the state space,
there exists at least one periodic point within that subset.

These definitions lay the foundation for understanding the behavior of the
first return map 𝜋 in relation to the sliding Shilnikov orbit and establish the chaotic
nature of the Filippov system.

We are going to introduce some basic notions and results that we use to
prove Theorem 4.1.

4.2 Measure-Preserving Maps
In this section we present the concepts of probability space andmeasure

preservingmaps.

Definition 4.2. A probability space is a triple (𝑋 ,A, 𝜆), where 𝑋 is a topological space,
A is a 𝜎-algebra and 𝜆 is a measure on (𝑋 ,A) such that 𝜆(𝑋 ) = 1.

Given (𝑋 ,A, 𝜆), the probability of an event in some set 𝐵 occurring is 𝜆(𝐵).
We recall the definition of a measurable map:
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Definition 4.3. Let (𝑋 ,A, 𝜆) and (𝑌 ,M,𝜈) be probability spaces and 𝑓 : 𝑋 Ñ 𝑌 . We
say that 𝑓 is measurable if for all 𝐵 P M, 𝑓 ´1(𝐵) P A and we say that 𝑓 is measure-
preserving if for all 𝐵 P M, 𝜆( 𝑓 ´1(𝐵)) = 𝜈 (𝐵).

To understand the notion of ameasure-preservingmap, let us consider an
intuitive example:

Example 4.4. Consider 𝑆1 = ℝ/ℤ the unit circle. We can put the normal Lebesgue
measure from the real line onto 𝑆1. Define R𝛼 : 𝑆1 Ñ 𝑆1 where R𝛼 ( [𝑥]) = [𝑥 + 𝛼], for
𝛼 P ℝ. So R𝛼 is the rotation of the circle by 𝛼.

We observe that R𝛼 is measurable. Furthermore, R𝛼 is measure-preserving
with respect to the Lebesguemeasure. Indeed, notice that rotation does not change arc
length. Thus, the pre-image of any measurable set ifs just a collection of arcs of the same
length.

4.2.1 Ergodicity

In this subsection, we will define a sub-class of measure-preservingmaps
called ergodicmaps. Ergodicity is a crucial property in dynamical systems as it signifies
that the dynamics cannot be “broken down” into simpler or reducible measurable
dynamics. It implies a specific type of chaos within the systemwith respect to a given
measure. Let (𝑋 ,A, 𝜆) be a probability space.

Definition 4.5. A map 𝑓 : 𝑋 Ñ 𝑋 is ergodic if 𝑓 is measure-preserving and for every
𝐵 P A such that 𝑓 ´1(𝐵) = 𝐵 (𝑚𝑜𝑑 (0)), then either 𝜆(𝐵) = 0 or 𝜆(𝐵) = 1.

Ergodicity is clearly a stronger condition for maps than being measure-
preserving. In fact, let us consider what happens if 𝑓 is measure-preserving but not
ergodic. Then, there exist at least one set 𝐵 P A such that 𝜆(𝐵) P (0, 1) and 𝑓 ´1(𝐵) = 𝐵 .
But note that𝜆(𝑋 z𝐵) P (0, 1) and 𝑓 ´1(𝑋 z𝐵) = 𝑋 z𝐵 . Thus, we can break suchmap 𝑓 into
two simpler maps 𝑓 |𝐵 and 𝑓 |𝑋 z𝐵 .

With the notation of Theorem 4.4 we have the following lemma.

Lemma 4.6. Consider the circle 𝑆1 = ℝ/ℤ with Lebesgue measure and the standard
Borel 𝜎-algebra. Let 𝛼 P ℝzℚ an irrational number. Then the rotation by 𝛼, denoted by
R𝛼 , is ergodic.

Proof. It is an elementary result in dynamics that the orbit under R𝛼 of every point in
𝑆1 is dense. Thus, 𝑛𝛼 modℤ is dense in 𝑆1 for all 𝑛 P ℕ. Let 𝐵 Ă 𝑆1 such that R𝛼 (𝐵) = 𝐵 .
Fix 𝜀 ą 0, then there exists a continuous function 𝑓 P 𝐿1(𝑆1) (because continuous
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functions are dense in 𝐿1) such that

∥ 𝑓 ´ 𝜒𝐵 ∥1ă 𝜀.

Because B is invariant under R𝛼 , we can apply the triangle inequality to see that

∥ 𝑓 ˝ R𝑛
𝛼 ´ 𝑓 ∥1ď∥ 𝑓 ˝ R𝑛

𝛼 ´ 𝜒𝐵 ∥1 + ∥ 𝜒𝐵 ´ 𝑓 ∥1ď 2𝜀.

Notice that, R𝑛
𝛼 = 𝑥 + 𝑛𝛼modℤ, so we have that

∥ 𝑓 (𝑥 + 𝑛𝛼) ´ 𝑓 (𝑥) ∥1ď 2𝜀

for all 𝑛 P ℕ and 𝑥 P 𝑆1. Because the orbit 𝑛𝛼 is dense in 𝑆1 and 𝑓 is continuous, we
have that

∥ 𝑓 (𝑥 + 𝑡 ´ 𝑓 (𝑥) ∥1ď 2𝜀 (4.1)

for all 𝑡 P 𝑆1. We can apply Fubini’s theorem to see that

∥ 𝑓 ´

∫
𝑓 (𝑡 )𝑑𝑡 ∥1 =

∫
|
∫

𝑓 (𝑥) ´ 𝑓 (𝑥 + 𝑡 )𝑑𝑡 | 𝑑𝑥

ď

∫ ∫
| 𝑓 (𝑥) ´ 𝑓 (𝑥 + 𝑡 ) | 𝑑𝑥𝑑𝑡

ď 2𝜀

where the last inequality holds by 4.1. Notice that our choice of 𝑓 gives us that

∥ 𝜒𝐵 ´ 𝑓 ∥1ă 𝜀 and ∥ 𝑓 (𝑡 )𝑑𝑡 ´ 𝜇(𝐵) ∥1ă 𝜀.

Therefore, applying the triangle inequality we have

∥ 𝜒𝐵 ´ 𝜇(𝐵) ∥1ď∥ 𝜒𝐵 ´ 𝑓 ∥ + ∥ 𝑓 ´

∫
𝑓 (𝑡 )𝑑𝑡 ∥1 + ∥

∫
𝑓 (𝑡 )𝑑𝑡 ´ 𝜇(𝐵) ∥1ď 4𝜀.

Because our choice of 𝜀 was arbitrary, wemust have that 𝜒𝐵 is constant almost every-
where. Hence, 𝜇(𝐵) is either 0 or 1 and R𝛼 is ergodic. ■

4.2.2 Bernoulli Shifts

In this subsection, we will examine the behavior of the one-sided Bernoulli
shift and establish its ergodicity. Let us begin by defining the relevant sets. Given a
natural number 𝑛 P ℕ˚ := ℕz{0}, we define 𝑋 = {0, 1, . . . , 𝑛 ´ 1} and 𝑋 ˚ = {1, . . . , 𝑛}.
We denote the space of all sequences of natural numbers between 0 and 𝑛 ´ 1 as
Σ𝑛 = {0, 1, . . . , 𝑛 ´ 1}ℕ, and the set Σ˚

𝑛 = {1, . . . , 𝑛}ℕ.

These sets are countableproduct spaces,where each coordinate takes values
from a discrete compact set. By Tychonoff’s theorem, see (10), both Σ𝑛 and Σ˚

𝑛 are
compact, equipped with the product topology induced by the discrete topology on the
spaces 𝑋 and 𝑋 ˚, respectively.
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We can define ametric in this space that generates the product topology as
follows:

𝑑 : Σ𝑛 ˆ Σ𝑛 Ñ ℝ

𝑑
(
(𝑥𝑗 )𝑗Pℕ, (𝑦𝑘 )𝑘Pℕ

)
=


0, if 𝑥𝑗 = 𝑦𝑗 for all 𝑗 P ℕ,
1
2𝑚 , where𝑚 = max{𝑎 P ℕ : 𝑥 (𝑖 ) = 𝑦 (𝑖 ), |𝑖 | ă 𝑎}

This metric quantifies the difference between two sequences by considering the first
index at which they differ. If the sequences are identical, the distance is zero. Otherwise,
the distance is determined by the reciprocal of the power of 2 corresponding to the
first differing index.

We can interpret each element of 𝑋 as a possible outcome of an experiment.
Let each outcome have probability 𝑝0, ..., 𝑝𝑛´1, respectively. In particular we have:

𝑛´1∑︁
𝑖=0

𝑝𝑖 = 1.

Wewill use these probabilities to construct a probability measure on Σ𝑛 . LetA be our
𝜎-algebra (the set of all subsets of 𝑋 ) and for 𝐵 P A we define

𝑝 (𝐵) =
∑︁
𝑥 P 𝐵

𝑝𝑥 ,

where𝑝𝑥 is the probability of event 𝑥 . A probabilitymeasure𝜇 on Σ𝑛 can be constructed
by extending our measure of 𝑋 .

Definition 4.7. Given 𝑗 P ℕ and𝑚 values 𝑎1, ..., 𝑎𝑚 P 𝑋 , a cylinder is the set defined by

𝐶 (𝑗 ;𝑎1, ..., 𝑎𝑚) := {(𝑥𝑖 )𝑖 P ℕ : 𝑥𝑗+1 = 𝑎1, 𝑥𝑗+2 = 𝑎2, ..., 𝑥𝑗+𝑚 = 𝑎𝑚}.

The disjoint union of such cylinder sets form an algebra which generates
the Borel 𝜎-algebra on Σ𝑛 . Thus, we can take 𝜇 as the product measure 𝑝ℕ. This mea-
sure is characterized by its values on cylinders. So, the measure 𝜇 of some cylinder
𝐶 (𝑗 ;𝑎1, ..., 𝑎𝑚) is given by

𝜇(𝐶 (𝑗 ;𝑎1, ..., 𝑎𝑚)) =
𝑚∏
𝑖=1

𝑝𝑎𝑖 .

Such 𝜇 is called a Bernoulli measure. Acting on Σ𝑛 we will consider a class of maps
that “shift” the position of a sequence to the left or the right by some integer amount.

Definition 4.8. The one-sided Bernoulli shift 𝜎 : Σ𝑛 Ñ Σ𝑛 is the transformation where,
for any (𝑥𝑗 ) P Σ𝑛 , 𝜎 ((𝑥𝑗 )) = (𝑥𝑗+1).



Chapter 4. Chaotic Behavior Close to a Sliding Shilnikov Orbit 46

Nowwe can see that𝜎 ismeasure-preserving for anyBernoulli shift𝜎 : Σ𝑛 Ñ

Σ𝑛 . In fact, fix 𝑘 P ℕ and 𝑎1, ..., 𝑎𝑚 P 𝑋 . Let𝐶 (𝑘 ;𝑎1, ..., 𝑎𝑚) be a cylinder set. Then

𝜎´1(𝐶 (𝑘 ;𝑎1, ..., 𝑎𝑚)) = 𝐶 (𝑘 + 1;𝑎1, ..., 𝑎𝑚),

so,
𝜇(𝐶 (𝑘 + 1;𝑎1, ..., 𝑎𝑚)) =

𝑚∏
𝑖=1

𝑝𝑎𝑖 = 𝜇(𝐶 (𝑘 ;𝑎1, ..., 𝑎𝑚)).

So 𝜎 is measure-preserving.

Theorem 4.9. In the above notation, the left shift 𝜎 is ergodic under the Bernoulli mea-
sure 𝜇.

Aproof of this result can be found at (11) but we shall prove it for the reader’s
convenience.

Proof. Suppose𝐴 in the𝜎-algebrageneratedbyunionsof cylinderandsuppose𝜎´1(𝐴) =
𝐴. We will show that 𝜇(𝐴) = 0 or 𝜇(𝐴) = 1 by showing that 𝜇(𝐴)2 = 𝜇(𝐴). Fix 𝜀 ą 0, so

we can choose a finite union of cylinder sets𝐶 :=
𝑘⋃
𝑗=1

{𝐶 𝑗 } such that

𝜇(𝐴△𝐶 ) ă
𝜀

4 ,

where 𝐴△𝐶 = (𝐴z𝐶 ) Y (𝐶 z𝐴) is the symmetric difference. Nowwe can see that

|𝜇(𝐴) ´ 𝜇(𝐶 ) | = |𝜇(𝐴z𝐶 ) + 𝜇(𝐴 X𝐶 ) ´ (𝜇(𝐶 z𝐴) + 𝜇(𝐴 X𝐶 )) |
= |𝜇(𝐴z𝐶 ) + 𝜇(𝐴 X𝐶 ) ´ 𝜇(𝐶 z𝐴) ´ 𝜇(𝐴 X𝐶 ) |
= |𝜇(𝐴z𝐶 ) ´ 𝜇(𝐶 z𝐴) |
ď 𝜇(𝐴z𝐶 ) + 𝜇(𝐶 z𝐴)
ď

𝜀

4 .

(4.2)

How𝐶 is a finite union of cylinders, which have finite coordinates that contribute to
themeasure of𝐶 , then there exists𝑚 P ℕ and 𝐵 P Σ𝑛 such that 𝐵 = 𝜎´𝑚 (𝐶 ) and

𝜇(𝐴△𝐵) = 𝜇(𝐴△𝜎´𝑚 (𝐶 )) = 𝜇(𝜎´𝑚 (𝐴)△𝜎´𝑚 (𝐶 )) = 𝜇(𝐴△𝐶 ) (4.3)

because 𝜎´1(𝐴) = 𝐴 and 𝜎 is measure-preserving. We point out that 𝜇(𝐵 X 𝐶 ) =

𝜇(𝐵)𝜇(𝐶 ) = 𝜇(𝐶 )2 because 𝐶 and 𝐵 are disjoint in the portions that contribute to
their measures. Nowwe observe that

𝐴△(𝐶 X 𝐵) = (𝐴z(𝐶 X 𝐵)) Y ((𝐶 X 𝐵)z𝐴) Ă (𝐴△𝐶 ) Y (𝐴△𝐵) (4.4)



Chapter 4. Chaotic Behavior Close to a Sliding Shilnikov Orbit 47

and by 4.2 and 4.3, 𝜇(𝐴△(𝐶 X 𝐵)) ă
𝜀

2 . Finally,

|𝜇(𝐴) ´ 𝜇(𝐴)2 | = |𝜇(𝐴) ´ 𝜇(𝐶 X 𝐵) + 𝜇(𝐶 X 𝐵) ´ 𝜇(𝐴)2 |
ď |𝜇(𝐴) ´ 𝜇(𝐶 X 𝐵) | + |𝜇(𝐶 X 𝐵) ´ 𝜇(𝐴)2 |

ă
𝜀

2 + |𝜇(𝐶 )2 ´ 𝜇(𝐴)2 |

=
𝜀

2 + |𝜇(𝐶 )2 ´ 𝜇(𝐴)𝜇(𝐶 ) + 𝜇(𝐴)𝜇(𝐶 ) ´ 𝜇(𝐴)2 |

ď
𝜀

2 + |𝜇(𝐶 ) | |𝜇(𝐶 ) ´ 𝜇(𝐴) | + |𝜇(𝐴) | |𝜇(𝐶 ) ´ 𝜇(𝐴) |

ď
𝜀

2 + 2|𝜇(𝐶 ) ´ 𝜇(𝐴) |

ă 𝜀.

Because 𝜀 is arbitrary, we have that 𝜇(𝐴) = 𝜇(𝐴)2 and the shift map 𝜎 is ergodic. ■

In the context of a probability space, ameasurable automorphism 𝑓 : 𝑋 Ñ 𝑋

is referred to as aBernoulli automorphism if it ismeasurable isomorphic to aBernoulli
shift 𝜎 : Σ𝑛 Ñ Σ𝑛 , that is, 𝑓 exhibits similar dynamical properties as the Bernoulli shift
on a finite symbolic space Σ𝑛 .

To prove ourmain result of this chapter wewill work with the spaces Σ2 ˆΣ˚
𝑛 .

For each 𝑛 P ℕ˚, on each Σ2 ˆ Σ˚
𝑛 we have the shift on two-coordinates

𝜎 ((𝑥𝑗 ), (𝑦𝑚)) = ((𝑥𝑗+1), (𝑦𝑚+1)).

Let us define
Σ𝑏 :=

⋃
𝑛Pℕ˚

Σ˚
𝑛 = {{𝑥𝑖 }𝑖 | D𝐿 P ℝ; | 𝑥𝑖 |ď 𝐿, 𝑥𝑖 P ℕ˚

@𝑖 }.

We consider the two coordinates shift

𝜎 : Σ2 ˆ Σ𝑏 Ñ Σ2 ˆ Σ𝑏 .

To simplify the notation, we will denote the restriction of the Bernoulli shift 𝜎 to the
space Σ2 ˆ Σ˚

𝑛 as 𝜎𝑛 .

The topological entropy is a crucial numerical invariant that is closely asso-
ciated with the growth of orbits in a dynamical system. It quantifies the exponential
rate at which the number of distinguishable orbit segments grows when observed with
arbitrary but finite precision. In essence, the topological entropy provides ameasure of
the overall exponential complexity of the orbit structure using a single numerical value.
It offers valuable insights into the intricate dynamics and complexity of a system’s
orbits.

Definition 4.10. For a compact 𝜎-invariant set Υ Ă Σ2 ˆ Σ𝑏 we define the topological
entropy of 𝜎 |Υ as

ℎ𝜎 |Υ := lim
𝑛Ñ8

1
𝑛
#𝑃𝑒𝑟𝑛 (𝜎 |Υ),
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where #𝑃𝑒𝑟𝑛 (𝜎 |Υ)means the number of periodic points of period 𝑛.

As a observation, in the case of the Bernoulli shift 𝜎 : Σ𝑛 Ñ Σ𝑛 , ℎ𝜎 = log(𝑛).

4.3 Proof of Theorem 4.1
Proof. Considering the Filippov system ¤𝑥 = 𝑍 (𝑥) given by 2.1, we denote by 𝜙 (𝑡 , 𝑥)
its solution satisfying the initial value 𝜙 (0, 𝑥) = 𝑥 . Assuming that 𝑍 contains a sliding
Shilnikov orbit Γ, let 𝑝˚

P Σ𝑠 be a hyperbolic pseudo-saddle-focus, and 𝑞˚
P BΣ𝑠 be a

visible fold point of 𝑍 with respect to 𝑋 , as defined in Definition 3.1.

Consider a neighborhood𝜂 Ă BΣ𝑠 of 𝑞˚ for which the first returnmap 𝜋 is
well-defined. Let 𝛼 be the forward saturation of𝜂 through the flow of 𝑋 that intersects
Σ. We will denote the endpoints of𝜂 by 𝑞0 and 𝑞1, and represent𝜂 as [𝑞0, 𝑞1]. According
to Theorem 3.3, the set of points in𝜂 that return infinitely many times to𝜂 through the
forward (Filippov) flow of 𝑍 is non-empty. Let us denote this set by Λ, i.e.,

Λ = {𝑥𝑠 P 𝜂 | D{𝑡𝑛}𝑛 , 𝑡𝑛 Ñ 8, 𝜙 (𝑡𝑛 , 𝑥𝑠 ) P 𝜂}.

We define𝜂0 = [𝑞0, 𝑞˚] and𝜂1 = [𝑞˚, 𝑞1], and consider 𝛼0 and 𝛼1 as the intersections of
Σ with the forward saturation of𝜂0 and𝜂1, respectively. For a point 𝑥𝑠 P Λ, we denote
by 𝜇‹(𝑥𝑠 ), where ‹ P {0, 1}, as the number of intersections that the forward flow orbit
of 𝑥𝑠 has with 𝛼‹ before returning to Λ. In other words,

𝜇‹(𝑥𝑠 ) := #{𝜙 (𝑡 , 𝑥𝑠 ) X 𝛼‹; 0 ă 𝑡 ă 𝑡𝑥𝑠 },

where 𝑡𝑥𝑠 is the first return time of 𝜙 (𝑡𝑥𝑠 , 𝑥𝑠 ) on Λ.

Notice that 𝜇‹(𝑥𝑠 ) counts the amount of times that the flow of 𝑍 intersects
𝛼‹. Our aim is to construct a map

ℎ𝑛 : Σ2 ˆ Σ˚
𝑛 Ñ Λ,

that will conjugate the dynamics of 𝜎𝑛 with 𝜋 . Fix a natural number 𝑛 ą 0 and take a
point (𝑢,𝑣 ) = ((𝑢 𝑗 ), (𝑣𝑗 )) P Σ2 ˆ Σ˚

𝑛 .Wewill define ℎ𝑛 ((𝑢,𝑣 )) by a limit process.

Define 𝑃0(𝑢,𝑣 ) as the points which are in 𝜂𝑢0 , that is, 𝑃0(𝑢,𝑣 ) = 𝜂𝑢0 . So, if
𝑢0 = 0 (resp. 𝑢0 = 1), then𝜂𝑢0 = 𝜂0 (resp.𝜂𝑢0 = 𝜂1). Now, define 𝑃1(𝑢,𝑣 ) as the points
which are in𝜂𝑢0 and, before arriving by the first returnmap to𝜂𝑢1 , touches 𝑣0 times the
segment 𝛼𝑢1 , that is,

𝑃1(𝑢,𝑣 ) = {𝑥𝑠 P 𝑃0(𝑢,𝑣 );𝜇𝑢1 (𝑥𝑠 ) = 𝑣0, 𝜋 (𝑥𝑠 ) P 𝜂𝑢1}.

For example, if we consider (𝑢,𝑣 ) = ((0, 1, ¨ ¨ ¨ ), (3, ¨ ¨ ¨ )), we have 𝑃0(𝑢,𝑣 ) = 𝜂0 and
𝑃1(𝑢,𝑣 ) = {𝑥𝑠 P 𝜂0;𝜇1(𝑥𝑠 ) = 3, 𝜋 (𝑥𝑠 ) P 𝜂1}.
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𝛼0
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𝑝˚

𝜋 (𝑥𝑠 )

Figure 15 – Example for𝑢 = (0, 1, ¨ ¨ ¨ ) and 𝑣 = (3, ¨ ¨ ¨ ).

In general, we define

𝑃𝑚+1(𝑢,𝑣 ) = {𝑥𝑠 P 𝑃𝑚 (𝑢,𝑣 );𝜇𝑢𝑚+1 (𝑥𝑠 ) = 𝑣𝑚 , 𝜋𝑚+1(𝑥𝑠 ) P 𝜂𝑢𝑚+1}.

Now, if we define the following set

𝑃 (𝑢,𝑣 ) :=
⋂
𝑖Pℕ

𝑃𝑖 (𝑢,𝑣 ), (4.5)

we get that 𝑃 (𝑢,𝑣 ) is a point or a interval since 𝑃𝑖 (𝑢,𝑣 ) Ă 𝑃𝑖´1(𝑢,𝑣 ) and each 𝑃𝑖 (𝑢,𝑣 ) is
a closed interval. We want to show that 𝑃 (𝑢,𝑣 ) is, in fact, a point.

Claim 4.11. If 𝑃 (𝑢,𝑣 ) X 𝑃 (𝑢 1, 𝑣 1) ≠ H, then 𝑃 (𝑢,𝑣 ) = 𝑃 (𝑢 1, 𝑣 1). In particular, (𝑢,𝑣 ) =

(𝑢 1, 𝑣 1).

Proof. Indeed, we can see that the set 𝑃 (𝑢,𝑣 ) is uniquely defined by the behavior of a
orbit passing through thepoint (𝑢,𝑣 ). So, if there exists apoint (𝑥, 𝑦 ) P 𝑃 (𝑢,𝑣 )X𝑃 (𝑢 1, 𝑣 1),
then 𝑃 (𝑢 1, 𝑣 1) there must be the same set of 𝑃 (𝑢,𝑣 ). ■

Claim 4.12. 𝜋 (𝑃 (𝑢,𝑣 )) is of the form 𝑃 (𝑢 1, 𝑣 1).

Proof. In fact

𝜋 (𝑃 (𝑢,𝑣 )) = 𝜋

(⋂
𝑖

𝑃𝑖 ((𝑢 𝑗 ), (𝑣𝑗 ))
)
=

(⋂
𝑖

𝜋 (𝑃𝑖 ((𝑢𝑗 ), (𝑣𝑗 )))
)

=
⋂
𝑖

𝑃𝑖 ((𝜋 (𝑢 𝑗 ), 𝜋 (𝑣𝑗 ))) =
⋂
𝑖

𝑃𝑖 ((𝑢 𝑗+1), (𝑣𝑗+1))

= 𝑃 (𝜎 (𝑢,𝑣 )).

(4.6)

And this concludes our lemmawith (𝑢 1, 𝑣 1) = 𝜎 (𝑢,𝑣 ). ■

Claim 4.13. If 𝜋 : Λ Ñ Λ is such that |𝜋 1(𝑥𝑠 ) | ą 1 for all 𝑥𝑠 P Λ, then 𝑃 (𝑢,𝑣 ) is a point
for all (𝑢,𝑣 ) P Σ2 ˆ Σ˚

𝑛 .
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Proof. Let us consider ℓ as the length measure. We have to show that ℓ (𝑃 (𝑢,𝑣 )) = 0.
Suppose by absurd that ℓ (𝑃 (𝑢,𝑣 )) ą 0, then ℓ (𝜋 (𝑃 (𝑢,𝑣 ))) ą ℓ (𝑃 (𝑢,𝑣 )) ą 0. But,
by construction, since 𝜋𝑛 (𝑃 (𝑢,𝑣 )) Ă 𝜂 and ℓ (𝜂) = |𝑞1 ´ 𝑞0 | ă 8, then the family
{𝜋𝑛 (𝑃 (𝑢,𝑣 ))} cannot be pairwise disjoint. In fact, if it could be, we would have

|𝑞1 ´ 𝑞0 | = ℓ (𝜂) ě ℓ (
⋃
𝑛

𝜋𝑛 (𝑃 (𝑢,𝑣 ))) =
∑︁
𝑛

ℓ (𝜋𝑛 (𝑃 (𝑢,𝑣 ))) ą

∑︁
𝑛

ℓ (𝑃 (𝑢,𝑣 )) = 8,

and it is an absurd.

Therefore, there must exist 𝑛0 and 𝑛1 such that

𝜋𝑛0 (𝑃 (𝑢,𝑣 )) X 𝜋𝑛1 (𝑃 (𝑢,𝑣 )) ≠ H.

So by the above lemmas
𝜋𝑛0 (𝑃 (𝑢,𝑣 )) = 𝜋𝑛1 (𝑃 (𝑢,𝑣 )),

and𝜋𝑛0´𝑛1 (𝑃 (𝑢,𝑣 )) = 𝑃 (𝑢,𝑣 )which cannothappen since |𝜋 1 | ą 1.Hence ℓ (𝑃 (𝑢,𝑣 )) = 0
and 𝑃 (𝑢,𝑣 ) is a point. ■

Defining
ℎ𝑛 : Σ2 ˆ Σ˚

𝑛 Ñ Λ

(𝑢,𝑣 ) ÞÑ 𝑃 (𝑢,𝑣 ),

by Theorem 3.6 we know that if 𝑞0 and 𝑞1 are sufficiently close to 𝑞˚, then |𝜋 1 | ą 1 on𝜂.
This ensures that the functions ℎ𝑛 are well-defined, as stated in the lemma.

Now, considering that the domain of ℎ𝑛+1 contains the domain of ℎ𝑛 and
these two functions coincide on the domain of ℎ𝑛 by construction, we can define a
function ℎ : Σ2 ˆ Σ𝑏 Ñ Λ as follows:

(𝑢,𝑣 ) ÞÑ ℎ𝑛 (𝑢,𝑣 ), if (𝑢,𝑣 ) P Σ2 ˆ Σ˚
𝑛 ,

Therefore, the functionℎ iswell-defined.Moreover, sincewehaveproven that𝜋 (𝑃 (𝑢,𝑣 )) =
𝑃 (𝜎 (𝑢,𝑣 )) implies 𝜋 ˝ ℎ𝑛 = ℎ𝑛 ˝ 𝜎𝑛 , it follows that 𝜋 ˝ ℎ = ℎ ˝ 𝜎 .

Claim 4.14. Themaps ℎ𝑛 and ℎ are continuous.

Proof. Let (𝑢,𝑣 ) P Σ2 ˆ Σ˚
𝑛 and 𝜀 ą 0. So we have

ℎ𝑛 (𝑢,𝑣 ) = 𝑃 (𝑢,𝑣 ) =
⋂
𝑖

𝑃𝑖 (𝑢,𝑣 ),

and consider 𝑛𝜀 such that 𝑃𝑛𝜀 (𝑢,𝑣 ) = (´𝜀 + ℎ𝑛 (𝑢,𝑣 ), ℎ𝑛 (𝑢,𝑣 ) + 𝜀) X Λ Ă 𝜂, which is a
open set inΛ.We have to show that the preimage of𝑃𝑛𝜀 is an open set in Σ2ˆΣ˚

𝑛 . Indeed,
letW(𝑢,𝑣 ) be a neighborhood of (𝑢,𝑣 ) in Σ2 ˆ Σ˚

𝑛 given by the cylinder

W(𝑢,𝑣 ) := {(𝑥, 𝑦 ); 𝑥𝑖 = 𝑢𝑖 , 𝑦𝑖+1 = 𝑣𝑖+1, 𝑖 P {0, 1, ..., 𝑛𝜀}}.
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And the continuity follows since

ℎ𝑛 (W(𝑢,𝑣 )) = 𝑃𝑛𝜀 .

The proof for the continuity of ℎ is the same. ■

Claim 4.15. Maps ℎ𝑛 and ℎ are homeomorphisms onto their image.

Proof. To establish the homeomorphism property of ℎ𝑛 : Σ2 ˆ Σ˚
𝑛 Ñ Λ𝑛 , we can

demonstrate its injectivity based on Theorem 4.11. Additionally, we can show that the
inverse of ℎ𝑛 is continuous.

To illustrate the continuity of the inverse, let’s consider a point ℎ𝑛 (𝑢,𝑣 ) and
a neighborhoodU(𝑢,𝑣 ) containing (𝑢,𝑣 ). Here, (𝑥, 𝑦 ) P U(𝑢,𝑣 ) indicates that the first
digits of the sequences (𝑢,𝑣 ) and (𝑥, 𝑦 ) coincide.

By exploiting the continuity of the flow, we can assert that for points suffi-
ciently close toℎ𝑛 (𝑢,𝑣 ), their trajectoriesmust align with the predetermined trajectory
associated with (𝑢,𝑣 ). As a result, the continuity property naturally follows.

In a similar manner, we can establish the homeomorphism property for ℎ,
analogous to the case of ℎ𝑛 .

■

The above lemmas imply Theorem 4.1.

■
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Chapter 5

Sliding Shilnikov Orbit in Filippov
Predator-PreyModel

In this chapter ispresentedabiologicalmodel that exhibits a slidingShilnikov
Orbit. In the field of ecology, the concept of prey switching refers to the adaptive be-
havior of predators, where they adjust their habitat or diet based on the abundance of
available prey.

Thismodel focuses onciliates, a typeof protist characterizedby their animal-
like behavior. These single-celled organisms are commonly found in aquatic environ-
ments and play a significant role in linking the lower and higher levels of marine and
freshwater food webs. The investigation is specifically centered around Lake Con-
stance, located on the border of Germany, Switzerland, and Austria. This lake has been
a subject of scientific study for many years, and based on the existing data, Pilts et
al.,(12), developed a model that captures the dynamics between a predator, its pre-
ferred prey, and alternative prey. Thismodel incorporates a linear trade-offmechanism
that quantifies the predator’s preference between the two types of prey.

Carvalho, Gonçalves and Novaes proved in (13) that a dynamical predator-
preymodel that incorporates a linear trade-off in the predator’s preference for different
types of prey admites a Sliding Shilnikov Orbit, which is the main result of this chapter.

First, we consider ¤𝑢 = ( ¤𝑝1, ¤𝑝2, ¤𝑃 )𝑇 , where (𝑝1, 𝑝2, 𝑃 ) P ℝ3
+, then

¤𝑢 = 𝑍 (𝑢)

where

𝑍 (𝑢) =
{

((𝑟1 ´ 𝛽1𝑃 )𝑝1, 𝑟2𝑝2, (𝑒𝑞1𝛽1𝑝1 ´𝑚)𝑃 ) 𝑖 𝑓 ℎ (𝑝1, 𝑝2, 𝑃 ) ą 0,
(𝑟1𝑝1, (𝑟2 ´ 𝛽2𝑃 )𝑝2, (𝑒𝑞2𝛽2𝑝2 ´𝑚)𝑃 ) 𝑖 𝑓 ℎ (𝑝1, 𝑝2, 𝑃 ) ă 0.

(5.1)

with ℎ (𝑝1, 𝑝2, 𝑃 ) = 𝛽1𝑝1 ´ 𝑎𝑞𝛽2𝑝2.

The switchingmanifold here is the plane ℎ´1(0) and the variables of model
5.1, 𝑝1, 𝑝2 and 𝑃 represents the density of preferred prey, alternative prey and predator
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population, respectively. The parameters 𝑞𝑖 ě 0 represent the preference for prey
𝑖 P {1, 2}, and 𝑎𝑞 ą 0 is the slope of the preference trade-off. The intercept of the
preference trade-off 𝑏𝑞 = 𝑞2 ´ 𝑎𝑞𝑞1 is assumed to satisfy 𝑏𝑞 ě 0. Furthermore, 𝑒 ą 0 is
the proportion of predation that goes into predator growth, 𝛽1 ą 0 and 𝛽2 ą 0 are the
death rates of the preferred prey and alternative prey due to predation, respectively.
Now,𝑚 ą 0 is the predator per capita death rate per day and 𝑟1 ą 𝑟2 ą 0 are the per
capita growth rates of the preferred and alternative prey, respectively.

We can see that the parameters of the system 5.1 are of the form

𝜉 = (𝑟1, 𝑟2, 𝑎𝑞 , 𝑞1, 𝑞2, 𝛽1, 𝛽2,𝑚, 𝑒 ) P ℝ2
𝑟 ˆ ℝ3

𝑏𝑞
ˆ ℝ4

+ = M,

whereℝ2
𝑟 = {(𝑟1, 𝑟2) P ℝ2

+; 𝑟1 ă 𝑟2} andℝ3
𝑏𝑞

= {(𝑎𝑞 , 𝑞1, 𝑞2) P ℝ3
+;𝑞2 ě 𝑎𝑞𝑞1}.

We introduce themain result of this chapter:

Theorem 5.1 ((13)). There exists a codimension one submanifoldN ofM such that the
Filippov system 5.1 possesses a sliding Shilnikov orbit whenever 𝜉 P N . Moreover, there
exists a neighborhoodU Ă M ofN such that the Filippov system 5.1 behaves chaotically
whenever 𝜉 P U.

5.1 Proof of Theorem 5.1
First, wemake the following change of variables:

𝑥 = 𝛽1𝑝1, 𝑦 = 𝑎𝑞𝛽2𝑝2 and 𝑧 = 𝛽1𝑃 .

So, we have
¤𝑥 = 𝛽1 ¤𝑝1, ¤𝑦 = 𝑎𝑞𝛽2 ¤𝑝2 and ¤𝑧 = 𝛽1 ¤𝑃 .

In these new variables, the system 5.1 is given by:

𝑍 (𝑥, 𝑦 , 𝑧) =
{
𝑋 +(𝑥, 𝑦 , 𝑧) , 𝑖 𝑓 ℎ (𝑥, 𝑦 , 𝑧) ą 0,
𝑋 ´(𝑥, 𝑦 , 𝑧) , 𝑖 𝑓 ℎ (𝑥, 𝑦 , 𝑧) ă 0.

(5.2)

where
𝑋 +(𝑥, 𝑦 , 𝑧) = ((𝑟1 ´ 𝑧)𝑥, 𝑟2𝑦 , (𝑒𝑞1𝑥 ´𝑚)𝑧) ,

𝑋 ´(𝑥, 𝑦 , 𝑧) =

(
𝑟1𝑥,

(
𝑟2 ´

𝛽2
𝛽1
𝑧

)
𝑦 ,

(
𝑒𝑞2
𝑎𝑞

𝑦 ´𝑚

)
𝑧

)
,

and ℎ (𝑥, 𝑦 , 𝑧) = 𝑥 ´ 𝑦 .

Now the switchingmanifold Σ is given by the plan {(𝑥, 𝑥, 𝑧) P ℝ3; 𝑥 ě 0, 𝑧 ě

0}. Since we are searching for a sliding Shilnikov orbit, we wnat to show that the system
5.2 satisfy theproperties given inDefinition 3.1. First,we are going to study thebehavior
of the vector fields and their contacts with the switchingmanifold Σ.
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5.1.1 Singularities of the system 5.2.

We point out that the behavior of a flow of the vector field 𝑋 +(𝑥, 𝑦 , 𝑧) can be
understood by studying the behavior of the restricted vector field

𝑋 +(𝑥, 𝑧) = ((𝑟1 ´ 𝑧)𝑥, (𝑒𝑞1𝑥 ´𝑚)𝑧) ,

since the system given by 𝑋 +(𝑥, 𝑦 , 𝑧) is decoupled with respect to 𝑦 . The equilibrium
points of 𝑋 +(𝑥, 𝑧) are 𝐸0 = (0, 0) and 𝐸1 =

(
𝑚

𝑒𝑞1
, 𝑟1

)
. The Jacobian matrix associated

with this vector field is given by

𝐷𝑋 +(𝑥, 𝑧) =
(
𝑟1 ´ 𝑧 ´𝑥

𝑒𝑞1𝑧 𝑒𝑞1𝑥 ´𝑚

)
, (5.3)

and𝐷𝑋 +(𝐸0) have eigenvalues 𝜆10 = 𝑟1 and 𝜆20 = ´𝑚 with eigenvectors (1, 0) and (0, 1),
respectively. By Theorem 1.8, the equilibrium 𝐸0 is topologically equivalent to a saddle
point. On the other hand, the equilibrium 𝐸1 has pure imaginary eigenvalues, 𝜆11 =

𝑖
?
𝑚𝑟1 and 𝜆21 = ´𝑖

?
𝑚𝑟1, so we cannot use Theorem 1.8 is this case. To study the

behavior of the equilibrium point 𝐸1 we shall construct a first integral for the vector
field as in section 1.4. Define

𝐹 : ℝ2
Ñ ℝ

(𝑥, 𝑧) ÞÑ 𝑒𝑞1𝑥 + 𝑧 ´𝑚 log
(𝑒𝑞1𝑥
𝑚

)
´ 𝑟1 log

(
𝑧

𝑟1

)
´ (𝑚 + 𝑟1),

(5.4)

So we can calculate

⟨∇𝐹 (𝑥), 𝑋 +(𝑥, 𝑧)⟩ =

〈(𝑒𝑞1𝑥 ´𝑚

𝑥
,
𝑧 ´ 𝑟1
𝑧

)
, ((𝑟1 ´ 𝑧)𝑥, (𝑒𝑞1𝑥 ´𝑚)𝑧)

〉
= (𝑒𝑞1𝑥 ´𝑚) (𝑟1 ´ 𝑧) + (𝑧 ´ 𝑟1) (𝑒𝑞1𝑥 ´𝑚)
= 0.

It implies that the behavior close to the point 𝐸1 is a center type. Since
the system 𝑋 + is decoupled with respect to y and the solution of ¤𝑦 = 𝑟2𝑦 is given by
𝑦 (𝑡 ) = 𝑦0𝑒 𝑟2𝑡 with 𝑦0 ą 0, then when 𝑡 Ñ 8, 𝑦 (𝑡 ) Ñ 8 and the trajectories of 𝑋 + spiral
from {(𝑥, 0, 𝑧); 𝑥 ě 0, 𝑧 ě 0} on the 𝑦 direction until cross Σ.

5.1.2 Contact points of 𝑋 + and 𝑋 ´ with Σ.

Nowwe have to calculate the Lie derivative of our vector fields with respect
to the function ℎ to determine tangency points. Note that we are looking for visible
fold regular points of 𝑍 with respect to 𝑋 +. Let 𝑝 = (𝑥, 𝑥, 𝑧) P Σ, then the Lie derivative
of our vector fields are given by

𝑋 +ℎ (𝑝) = ⟨(1,´1, 0), 𝑋 +(𝑝)⟩ = (𝑟1 ´ 𝑧)𝑥 ´ 𝑟2𝑥 = (𝑟1 ´ 𝑟2 ´ 𝑧)𝑥,
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and
𝑋 ´ℎ (𝑝) = ⟨(1,´1, 0), 𝑋´(𝑝)⟩ = 𝑟1𝑥 ´

(
𝑟2 ´

𝛽2
𝛽1
𝑧

)
𝑥 =

(
𝑟1 ´ 𝑟2 +

𝛽2
𝛽1
𝑧

)
𝑥.

Solving 𝑋 +ℎ (𝑝) = 0, the tangency points of the vector field 𝑋 + are living on
the lines 𝑆+1 = {(0, 0, 𝑧); 𝑧 ě 0} and 𝑆+2 = {(𝑥, 𝑥, 𝑟1 ´ 𝑟2); 𝑥 ą 0}.

In the sameway, the tangencypoints of the vector𝑋 ´ areon the lines𝑆´

1 = 𝑆+1

and 𝑆´

2 =

{(
𝑥, 𝑥,

𝛽1(𝑟2 ´ 𝑟1)
𝛽2

)
; 𝑥 ą 0

}
. How 𝑟1 ą 𝑟2 ą 0 and we are considering points

with positive coordinates, the curve 𝑆´

2 is not contained on our interested domain.
Studying the sign of the Lie derivative, we have, for 𝑝 P Σ, the following:

• 𝑋 +ℎ (𝑝) ą 0 ô 𝑧 ă 𝑟1 ´ 𝑟2;

• 𝑋 +ℎ (𝑝) ă 0 ô 𝑧 ą 𝑟1 ´ 𝑟2;

• 𝑋 ´ℎ (𝑝) ą 0 ô 𝑧 ą
𝛽1(𝑟2 ´ 𝑟1)

𝛽2
;

• 𝑋 ´ℎ (𝑝) ă 0 ô 𝑧 ă
𝛽1(𝑟2 ´ 𝑟1)

𝛽2
ă 0.

Then the switchingmanifold can be partitioned into two open regions:

Σ𝑐 = 𝑋 +ℎ (𝑝)𝑋 ´ℎ (𝑝) ą 0 = {(𝑥, 𝑥, 𝑧); 0 ă 𝑧 ă 𝑟1 ´ 𝑟2},

and
Σ𝑠 = 𝑋 +ℎ (𝑝)𝑋 ´ℎ (𝑝) ă 0 = {(𝑥, 𝑥, 𝑧); 𝑧 ą 𝑟1 ´ 𝑟2}.

The tangency points that we are interested in are on the boundary of the sliding region,
so they are in 𝑆+2 to to. Solving the Lie derivative of order 2 with respect of the vector
field 𝑋 + for a point 𝑞 P 𝑆+2 , we have:

(𝑋 +)2ℎ (𝑞) = ⟨∇𝑋 +ℎ (𝑞), 𝑋 +(𝑞)⟩ = ⟨(0, 0,´𝑥), 𝑋 +(𝑞)⟩ = ´𝑥 (𝑒𝑞1𝑥 ´𝑚) (𝑟1 ´ 𝑟2).

So
(𝑋 +)2ℎ (𝑞) = 0 ô 𝑥 = 0 or 𝑥 =

𝑚

𝑒𝑞1
.

Then, for 0 ă 𝑥 ă
𝑚

𝑒𝑞1
, we have that (𝑋 +)2ℎ (𝑞) ą 0 and we define a subset of the

curve 𝑆+2 of visible fold points as 𝑆+𝑣 =

{
(𝑥, 𝑥, 𝑟1 ´ 𝑟2); 0 ă 𝑥 ă

𝑚

𝑒𝑞1

}
. Our first result of

this section proves that the forward saturation of any point in 𝑆+𝑣 through the flow of
𝑋 + intersects transversely the switchingmanifold Σ in finite time:
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Claim5.2. Let 𝑥0 P

(
0, 𝑚
𝑒𝑞1

)
. The forward trajectory of𝑋 + passing through (𝑥0, 𝑥0, 𝑟1´𝑟2)

intersects the switchingmanifold Σ transversely at a point denoted as

𝜇(𝑥0) = (𝑢 (𝑥0), 𝑢 (𝑥0), 𝑣 (𝑥0)).

In other words, the saturation of 𝑆+𝑣 through the forward flow of 𝑋 + intersects Σ trans-
versely along the curve {𝜇(𝑥0); 0 ă 𝑥0 ă

𝑚

𝑒𝑞1
}. Furthermore, the following statements

hold:

1. For 𝑥0 ă
𝑚

𝑒𝑞1
sufficiently close to 𝑚

𝑒𝑞1
, we have

𝑢 (𝑥0) =
𝑚

𝑒𝑞1
´ 3

(
𝑥0 ´

𝑚

𝑒𝑞1

)
+ O

(
𝑥0 ´

𝑚

𝑒𝑞1

)2
,

𝑣 (𝑥0) = 𝑟1 ´ 𝑟2 + O
(
𝑥0 ´

𝑚

𝑒𝑞1

)2
;

2. Given 𝑥0 P

(
0, 𝑚
𝑒𝑞1

)
, for 𝑟2 ą 0 sufficiently small, we have

𝑢 (𝑥0) = 𝑥0 + O(𝑟2),
𝑣 (𝑥0) = 𝑟1 + ((2𝑟1𝑇 (𝑥0) (𝑚 ´ 𝑒𝑞1𝑥0))𝑟2)1/2 + O(𝑟 3/22 ),

Here,𝑇 (𝑥0) represents the period, when 𝑟2 = 0, of the solution (𝑥 (𝑡 , 𝑥0, 𝑟2), 𝑧 (𝑡 , 𝑥0, 𝑟2)).

Proof. Take (𝑥0, 𝑥0, 𝑟1 ´ 𝑟2) P 𝑆+𝑣 . The construction of the proof uses the parameter 𝑟2 to
control the trajectory of the vector field 𝑋 + and it will be a bifurcation parameter value.

Let 𝜙 (𝑡 , 𝑥0, 𝑟2) := (𝑥 (𝑡 , 𝑥0, 𝑟2), 𝑦 (𝑡 , 𝑥0, 𝑟2), 𝑧 (𝑡 , 𝑥0, 𝑟2)) be the solution of 𝑋 +

such that 𝜙 (0, 𝑥0, 𝑟2) = (𝑥0, 𝑥0, 𝑟1 ´ 𝑟2).Notice that:

B𝑥

B𝑡
(0, 𝑥0, 𝑟2) = ((𝑟1 ´ 𝑧 (𝑡 , 𝑥0, 𝑟2))𝑥 (𝑡 , 𝑥0, 𝑟2)) |𝑡=0= 𝑟2𝑥0;

B2𝑥
B𝑡 2

(0, 𝑥0, 𝑟2) =

(
´

B𝑧

B𝑡
(𝑡 , 𝑥0, 𝑟2)𝑥 (𝑡 , 𝑥0, 𝑟2) + (𝑟1 ´ 𝑧 (𝑡 , 𝑥0, 𝑟2))

B𝑥

B𝑡
(𝑡 , 𝑥0, 𝑟2)

)
|𝑡=0

= ´(𝑒𝑞1𝑥0 ´𝑚) (𝑟1 ´ 𝑟2)𝑥0 + 𝑟 22𝑥0

= 𝑟 22𝑥0 + 𝑥0(𝑟1 ´ 𝑟2) (𝑚 ´ 𝑒𝑞1𝑥0);
B𝑦

B𝑡
(0, 𝑥0, 𝑟2) = 𝑟2𝑦 (0, 𝑥0, 𝑟2) = 𝑟2𝑥0;

B2𝑦
B𝑡 2

(0, 𝑥0, 𝑟2) = 𝑟2
B𝑦

B𝑡
(0, 𝑥0, 𝑟2) = 𝑟 22𝑥0.

Then we have
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• 𝑥 (0, 𝑥0, 𝑟2) = 𝑦 (0, 𝑥0, 𝑟2),

• B𝑥

B𝑡
(0, 𝑥0, 𝑟2) =

B

B𝑡
(0, 𝑥0, 𝑟2),

• B2𝑥
B𝑡 2

(0, 𝑥0, 𝑟2) ą
B2𝑦
B𝑡 2

(0, 𝑥0, 𝑟2).

For 𝑡 ą 0 sufficiently small, we have 𝑥 (𝑡 , 𝑥0, 𝑟2) ą 𝑦 (𝑡 , 𝑥0, 𝑟2). We point out that the
solution 𝑥 (𝑡 , 𝑥0, 𝑟2) is bounded for every 0 ă 𝑥0 ă

𝑚

𝑒𝑞1
since the equilibrium point 𝐸1

is a center, and the solution 𝑦 (𝑡 , 𝑥0, 𝑟2) is unbounded increasing. Then, it must exist
𝑡1(𝑥0, 𝑟2) ą 0 such that

𝑥 (𝑡1(𝑥0, 𝑟2), 𝑥0, 𝑟2) = 𝑦 (𝑡1(𝑥0, 𝑟2), 𝑥0, 𝑟2)
= 𝑥0𝑒 𝑟2𝑡1 (𝑥0,𝑟2) .

(5.5)

So for each 𝑥0 we have that exists a time 𝑡1(𝑥0, 𝑟2) such that the trajectory passing
tangentially by (𝑥0, 𝑥0, 𝑟1 ´ 𝑟2) reaches transversely the switchingmanifold Σ at a point
𝜙 (𝑡1(𝑥0, 𝑟2), 𝑥0, 𝑟2).

Then we define 𝜇(𝑥0) := 𝜙 (𝑡1(𝑥0, 𝑟2), 𝑥0, 𝑟2),where𝑢 (𝑥0) = 𝑥 (𝑡1(𝑥0, 𝑟2), 𝑥0, 𝑟2)
and 𝑣 (𝑥0) = 𝑧 (𝑡1(𝑥0, 𝑟2), 𝑥0, 𝑟2).

For the second part of the lemmawe have to prove that the Taylor series of
𝑢 (𝑥0) around

𝑚

𝑒𝑞1
is given by

𝑢 (𝑥0) =
𝑚

𝑒𝑞1
´ 3

(
𝑥0 ´

𝑚

𝑒𝑞1

)
+ O

(
𝑥0 ´

𝑚

𝑒𝑞1

)2
.

First, we study the difference 𝑥 (𝑡 , 𝑥0, 𝑟2) ´ 𝑦 (𝑡 , 𝑥0, 𝑟2) = 𝑥 (𝑡 , 𝑥0, 𝑟2) ´ 𝑥0𝑒 𝑟2𝑡 around 𝑡 = 0.
Defining 𝜃 (𝑡 , 𝑥0) = 𝑥 (𝑡 , 𝑥0, 𝑟2) ´ 𝑥0𝑒 𝑟2𝑡 , we have:

𝜃 (0, 𝑥0) = 𝑥0 ´ 𝑥0 = 0;
𝜃 1(0, 𝑥0) = 𝑟2𝑥0 ´ 𝑟2𝑥0 = 0;
𝜃2(0, 𝑥0) = 𝑥0(𝑟1 ´ 𝑟2) (𝑚 ´ 𝑒𝑞1𝑥0);
𝜃3(0, 𝑥0) = (𝑟1 ´ 𝑟2)𝑥0(𝑒𝑞1𝑥0(´𝑒𝑞1𝑥0 ´ 4𝑟2 + 2𝑚) +𝑚 (3𝑟2 ´𝑚));

...

(5.6)

and then, around 𝑡 = 0 we have:
𝑥0(𝑟1 ´ 𝑟2) (𝑚 ´ 𝑒𝑞1𝑥0)

2 𝑡 2+ (𝑟1 ´ 𝑟2)𝑥0(𝑒𝑞1𝑥0(´𝑒𝑞1𝑥0 ´ 4𝑟2 + 2𝑚) +𝑚 (3𝑟2 ´𝑚))
6 𝑡 3+O4(𝑡).

So we can define a function 𝜃 (𝑡 , 𝑥0) :=
𝜃 (𝑡 , 𝑥0)
𝑡 2

.

Since we want to study the behavior when 𝑥0 is sufficiently close to 𝑚

𝑒𝑞1
, we

apply the implicit function theorem for the point
(
0, 𝑚
𝑒𝑞1

)
:
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We have

𝜃

(
0, 𝑚
𝑒𝑞1

)
= 0 and B𝜃

B𝑡

(
0, 𝑚
𝑒𝑞1

)
=

´𝑟2𝑚2(𝑟1 ´ 𝑟2)
6𝑒𝑞1

≠ 0.

Then, there exists a unique function 𝑡2(𝑥0) defined on a neighborhood of
𝑚

𝑒𝑞1
such

that 𝑡2
(
𝑚

𝑒𝑞1

)
= 0 and 𝜃 (𝑡2(𝑥0), 𝑥0) = 0 for every 𝑥0 in this neighborhood. Since we have

𝑢 (𝑥0) = 𝑥 (𝑡1(𝑥0, 𝑟2), 𝑥0, 𝑟2), from the uniqueness of 𝑡2, for 𝑥0 sufficiently close to 𝑚

𝑒𝑞1
,

𝑡1(𝑥0, 𝑟2) = 𝑡2(𝑥0). Using that,

𝑡 1
2

(
𝑚

𝑒𝑞1

)
= ´

B𝜃

B𝑥0

(
0, 𝑚

𝑒𝑞1

)
B𝜃

B𝑡

(
0, 𝑚

𝑒𝑞1

) =
´3𝑒𝑞1
𝑚𝑟2

,

we calculate𝑢 (𝑥0) and 𝑣 (𝑥0) around 𝑥0 =
𝑚

𝑒𝑞1
:

𝑢 (𝑥0) = 𝑢

(
𝑚

𝑒𝑞1

)
+ B𝑢

B𝑥0

(
𝑚

𝑒𝑞1

) (
𝑥0 ´

𝑚

𝑒𝑞1

)
+ O2

(
𝑥0 ´

𝑚

𝑒𝑞1

)2
=

𝑚

𝑒𝑞1
´ 3

(
𝑥0 ´

𝑚

𝑒𝑞1

)
+ O2

(
𝑥0 ´

𝑚

𝑒𝑞1

)2
;

𝑣 (𝑥0) = (𝑟1 ´ 𝑟2) + O2

(
𝑥0 ´

𝑚

𝑒𝑞1

)2
.

(5.7)

Finally, for the second statement, we shall prove that given 𝑥0 P

(
0, 𝑚
𝑒𝑞1

)
,

there exists a neighborhoodU of 𝑥0 and 𝑟2 ą 0 such that 𝑢 (𝑥0) ă
𝑚

𝑒𝑞1
and 𝑣 (𝑥0) ą 𝑟1

for every (𝑥0, 𝑟2) P U ˆ (0, 𝑟2]. So, we define the following function

𝜗 (𝑡 , 𝑟2) = 𝑥 (𝑡 , 𝑥0, 𝑟2) ´ 𝑥0𝑒 𝑟2𝑡 .

Since (𝑥 (𝑡 , 𝑥0, 𝑟2), 𝑧 (𝑡 , 𝑥0, 𝑟2)) is periodic in the variable 𝑡 (because we have predator-
prey system), for 𝑟2 = 0, denote by𝑇 (𝑥0) ą 0 the period of the solution

(𝑥 (𝑡 , 𝑥0, 0), 𝑧 (𝑡 , 𝑥0, 0)),

i.e,
(𝑥 (𝑇 (𝑥0), 𝑥0, 0), 𝑧 (𝑇 (𝑥0), 𝑥0, 0)) = (𝑥0, 𝑟1).

We can see that 𝜗 (𝑇 (𝑥0), 0) = 𝑥 (𝑇 (𝑥0), 𝑥0, 0) ´ 𝑥0 = 0.

Now, using Theorem 1.9, we are going to show that there is a saddle-node
bifurcation occurring at 𝑡 = 𝑇 (𝑥0), where the bifurcation parameter is 𝑟2 = 0. Notice
that we have the first integral given by 5.4 of the decoupled system, so,

𝐹 (𝑥 (𝑡 , 𝑥0, 𝑟2), 𝑧 (𝑡 , 𝑥0, 𝑟2)) = 𝐹 (𝑥0, 𝑟1 ´ 𝑟2).
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Computing the derivative in the variable 𝑟2 of the expression above at 𝑡 = 𝑇 (𝑥0) and
𝑟2 = 0, we get

B𝑥

B𝑟2
(𝑇 (𝑥0), 𝑥0, 0) = 0.

Thus, we get

• B𝜗

B𝑡
(𝑇 (𝑥0), 0) = (𝑟1 ´ 𝑟1)𝑥0 = 0;

• B2𝜗
B𝑡 2

(𝑇 (𝑥0), 0) = 𝑟1(𝑚 ´ 𝑒𝑞1𝑥0)𝑥0 ą 0;

and
B𝜗

B𝑟2
(𝑇 (𝑥0), 0) = ´𝑥0𝑇 (𝑥0) ă 0. (5.8)

Then, by Theorem 1.9, we get the existence of a saddle-node bifurcation at 𝑡 = 𝑇 (𝑥0).
Now, to conclude this proof, we shall explicitly compute the solutions bifurcating from
𝑡 = 𝑇 (𝑥0).

Since 𝜗 (𝑇 (𝑥0), 0) = 0 and
B𝜗

B𝑟2
(𝑇 (𝑥0), 0) ă 0, from the implicit function theo-

rem, exist a neighborhood 𝐼1 of𝑇 (𝑥0) and 𝐼2 of 0 and a unique differentiable function
𝜚 : 𝐼1 Ñ 𝐼2 such that 𝜚(𝑇 (𝑥0)) = 0 and 𝜗 (𝑡 , 𝜚(𝑡 )) = 0 for all 𝑡 P 𝐼1.

Moreover,

𝜚1(𝑇 (𝑥0)) = ´

B𝜗
B𝑡
(𝑇 (𝑥0), 0)

B𝜗
B𝑟2

(𝑇 (𝑥0), 0)
=

(𝑟1 ´ 𝑧 (𝑇 (𝑥0), 𝑥0, 0))𝑥 (𝑇 (𝑥0), 𝑥0, 0)
´𝑥0𝑇 (𝑥0)

= 0

and
𝜚2(𝑇 (𝑥0)) =

𝑟1(𝑚 ´ 𝑒𝑞1𝑥0)
𝑥0𝑇 (𝑥0)

.

For 𝑡 sufficiently close to𝑇 (𝑥0), 𝑟2 = 𝜚(𝑡 ), and then,

𝑟2 =
𝑟1(𝑚 ´ 𝑒𝑞1𝑥0)
2𝑥0𝑇 (𝑥0)

(𝑡 ´𝑇 (𝑥0))2 + O3(𝑡 ´𝑇 (𝑥0))3. (5.9)

Consider now the change 𝑠 = (𝑡 ´𝑇 (𝑥0)), then equation 5.9 gives 𝑟2 =
𝑟1(𝑚 ´ 𝑒𝑞1𝑥0)
2𝑥0𝑇 (𝑥0)

𝑠 +

O3( |𝑠 |3/2).

Define the function 𝜌̃ :𝑈1 Ñ 𝑈2 by

𝜌̃ (𝑠 ) = 𝑟1(𝑚 ´ 𝑒𝑞1𝑥0)
2𝑥0𝑇 (𝑥0)

𝑠 + O3( |𝑠 |3/2),

where 𝑠 P 𝑈1 and 𝑟2 P 𝑈2 are open neighborhoods containing 0. Since 𝜌̃ is differentiable
and 𝜌̃ 1 is an isomorphism, then, by the inverse function theorem, we get the existence
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of neighborhoods𝑉1 and𝑉2 of 0 and a unique differentiable function 𝜌 :𝑉1 Ñ𝑉2 such
that

𝑠 = 𝜌 (𝑟2), 𝜌 (0) = 0 and 𝜌 1(0) = 2𝑥0𝑇 (𝑥0)
𝑟1(𝑚 ´ 𝑒𝑞1𝑥0)

ą 0.

Then, going back through the change 𝑠 = (𝑡 ´ 𝑇 (𝑥0))2, we get two distinct positive
times 𝑡 = 𝑇 (𝑥0) ˘

a

𝜌 (𝑟2) bifurcating from 𝑡 = 𝑇 (𝑥0).

Since 𝑡1(𝑥0, 𝑟2) is the first return time, we conclude that

𝑡1(𝑥0, 𝑟2) = 𝑇 (𝑥0) ´
a

𝜌 (𝑟2)

= 𝑇 (𝑥0) ´

(
𝜌 (0) + 𝜌 1(𝑜)𝑟2 + O(𝑟 22 )

) 1
2

= 𝑇 (𝑥0) ´
(
𝑟2(𝜌 1(0) + O(𝑟2))

) 1
2

= 𝑇 (𝑥0) ´ 𝑟
1
2
2

(
𝜌 1(0) + O(𝑟2)

) 1
2

= 𝑇 (𝑥0) ´ (𝜌 1(0)𝑟2)
1
2 + O(𝑟

3
2
2 )

= 𝑇 (𝑥0) ´

( 2𝑥0𝑇 (𝑥0)
𝑟1(𝑚 ´ 𝑒𝑞1𝑥0)

𝑟2

) 1
2
+ O(𝑟

3
2
2 ).

(5.10)

Now, we compute, for 𝑟2 ą 0 sufficiently small and 𝑡 close to𝑇 (𝑥0), 𝑣 (𝑥0) is
given by

𝑧 (𝑡 , 𝑥0, 𝑟2) = 𝑧 (𝑡 , 𝑥0, 0) +
B𝑧

B𝑟2
(𝑡 , 𝑥0, 0)𝑟2 + O(𝑟 22 )

= 𝑧 (𝑇 (𝑥0), 𝑥0, 0) +
B𝑧

B𝑡
((𝑇 (𝑥0), 𝑥0, 0) (𝑡 ´𝑇 (𝑥0)) + O((𝑡 ´𝑇 (𝑥0))2)

= 𝑟1 + (𝑒𝑞1𝑥 (𝑇 (𝑥0), 𝑥0, 0) ´𝑚)𝑟1(𝑡 ´𝑇 (𝑥0)).

And, finally, we can compute𝑢 (𝑥0) and 𝑣 (𝑥0) for 𝑟2 ą 0 sufficiently small:

𝑢 (𝑥0) = 𝑥0𝑒 𝑟2𝑡1 (𝑥0,𝑟2) = 𝑥0𝑒𝑥𝑝

(
𝑟2𝑇 (𝑥0) ´

( 2𝑥0𝑇 (𝑥0)𝑟2
𝑟1(𝑚 ´ 𝑒𝑞1𝑥0)

𝑟2

)1/2
+ 𝑟2O(𝑟 3/22 )

)
= 𝑥0 + O(𝑟2);

𝑣 (𝑥0) 𝑟1 + (𝑒𝑞1𝑥 (𝑇 (𝑥0), 𝑥0, 0) ´𝑚)𝑟1(𝑡1(𝑥0, 𝑟2) ´𝑇 (𝑥0))

= 𝑟1 + (𝑒𝑞1𝑥0 ´𝑚)𝑟1

(
𝑇 (𝑥0) ´

( 2𝑥0𝑇 (𝑥0)
𝑟1(𝑚 ´ 𝑒𝑞1𝑥0)

𝑟2

) 1
2
+ O(𝑟

3
2
2 ) ´𝑇 (𝑥0)

)
= 𝑟1 + (𝑚 ´ 𝑒𝑞1𝑥0)𝑟1

(( 2𝑥0𝑇 (𝑥0)
𝑟1(𝑚 ´ 𝑒𝑞1𝑥0)

𝑟2

) 1
2
+ O(𝑟

3
2
2 )

)
= 𝑟1 + (2𝑥0𝑇 (𝑥0) (𝑚 ´ 𝑒𝑞1𝑥0)𝑟2)

1
2 + O(𝑟

3
2
2 ).

(5.11)

And this concludes the proof. ■

Our next result establishes some conditions that we are going to use to find
the sliding Shilnikov orbit.
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Claim 5.3. There exists 𝑎, 𝑏, 𝑐 and 𝑑 , with 0 ă 𝑎 ă 𝑏 ă
𝑚

𝑒𝑞1
and 0 ă 𝑐 ă 𝑑 , such that

0 ă 𝑢 (𝑥0) ă
𝑚

𝑒𝑞1
and𝑣 (𝑥0) ą 𝑟1 for every (𝑥0, 𝑟2) P [𝑎, 𝑏]ˆ [𝑐 , 𝑑].Moreover, for 𝑟2 P [𝑐 , 𝑑],

𝜇(𝑥0) is differentiable on [𝑎, 𝑏] and𝑢 1(𝑥0)2 +𝑣 1(𝑥0)2 ≠ 0 for every (𝑥0, 𝑟2) P [𝑎, 𝑏] ˆ [𝑐 , 𝑑].

Proof. From the above result, we have that 𝑢 (𝑥0) ą
𝑚

𝑒𝑞1
for 𝑥0 sufficiently close to

𝑚

𝑒𝑞1
and, for a fixed 𝑥0 P

(
0, 𝑚
𝑒𝑞1

)
, there exists 𝑟2 ą 0 such that 𝑢 (𝑥0) ă

𝑚

𝑒𝑞1
for every

𝑟2 P (0, 𝑟2].

Therefore, since 𝑢 (𝑥0) is continuous, for 𝑟2 ă 𝑟2 there exists 𝑥˚
0 P

(
0, 𝑚
𝑒𝑞1

)
such that𝑢 (𝑥˚

0 ) =
𝑚

𝑒𝑞1
and𝑢 (𝑥0) ă

𝑚

𝑒𝑞1
for 𝑥0 ă 𝑥˚

0 sufficiently close to 𝑥˚
0 .

Moreover, 𝑣 (𝑥˚
0 ) ą 𝑟1, and, consequently, 𝑣 (𝑥0) ą 𝑟1 for 𝑥0 ă 𝑥˚

0 because(
𝑚

𝑒𝑞1
, 𝑟1

)
is a critical point for the first integral 5.4.

Take now 𝑥1 ă 𝑥˚
0 such that 𝑣 (𝑥1) ą 𝑟1 and 𝑢 (𝑥1) ă

𝑚

𝑒𝑞1
. Thus, from the

continuous dependence of solutions on the initial conditions and parameters, we get
the existence of 𝑎, 𝑏, 𝑐 and 𝑑 , with 0 ă 𝑎 ă 𝑥1 ă 𝑏 ă

𝑚

𝑒𝑞1
and 0 ă 𝑐 ă 𝑟2˚

ă 𝑑 such that

0 ă 𝑢 (𝑥0) ă
𝑚

𝑒𝑞1
and 𝑣 (𝑥0) ą 𝑟1 for every (𝑥0, 𝑟2) P [𝑎, 𝑏] ˆ [𝑐 , 𝑑].

Now, we define

Θ(𝑡 , 𝑥0, 𝑟2) = 𝑥 (𝑡 , 𝑥0, 𝑟2) ´ 𝑥0𝑒 𝑟2𝑡 ,

and we have to show that 𝜇 is differentiable.

Indeed, from claim 5.2, we know that, for each (𝑥0, 𝑟2) P [𝑎, 𝑏] ˆ [𝑐 , 𝑑], we
get the existence of 𝑡1(𝑥0, 𝑟2) ą 0 such that Θ(𝑡1(𝑥0, 𝑟2), 𝑥0; 𝑟2) = 0.

Observe that
BΘ

B𝑡
(𝑡1(𝑥0, 𝑟2), 𝑥0𝑟2) =

B𝑥

B𝑡
(𝑡1(𝑥0, 𝑟2), 𝑥0𝑟2) ´ 𝑥0𝑟2𝑒 𝑟2𝑡1 (𝑥0,𝑟2)

= (𝑟1 ´ 𝑟2 ´ 𝑣 (𝑥0))𝑢 (𝑥0) ≠ 0,

then, by the implicit function theorem, there exists a unique differentiable function
𝑡2(𝑥0, 𝑟2) defined in a neighborhood𝑉 of (𝑥0, 𝑟2), such that

𝑡2(𝑥0, 𝑟2) = 𝑡1(𝑥0, 𝑟2),

andΘ(𝑡2(𝑥0, 𝑟2), 𝑥0, 𝑟2) = 0 for every (𝑥0, 𝑟2) P𝑉 . According to theuniquenessproperty, it
follows that 𝑡1 = 𝑡2, which implies the differentiability of 𝑡1 at (𝑥0, 𝑟2) and, consequently,
the differentiability of 𝜇 at 𝑥0 = 𝑥0 and 𝑟2 = 𝑟2. Since (𝑥0, 𝑟2) was taken arbitrarily in the
compact set [𝑎, 𝑏] ˆ [𝑐 , 𝑑], we conclude the differentiability of 𝜇 for every (𝑥0, 𝑟2).
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Finally, notice that𝑢 1(𝑥0) = 𝑣 1(𝑥0) = 0 and computing the derivative of the
last identity in the variable 𝑥0, we get that 𝑥0 =

𝑚

𝑒𝑞1
. Then,𝑢 1(𝑥0)2 + 𝑣 1(𝑥0)2 ≠ 0 for every

(𝑥0, 𝑟2) P [𝑎, 𝑏] ˆ [𝑐 , 𝑑]. ■

5.1.3 The sliding vector field of the system 5.2.

The goal of this subsection is to study the behavior of the sliding vector field
seeking to guarantee the conditions for the existence of the sliding Shilnikov orbit.
Considering the system 5.2, we are going to do another change of variables tomake
our work easier. Let𝑤 = 𝑥 ´ 𝑦 and 𝑝 = (𝑥,𝑤, 𝑧), then 5.2 is written as

𝑍 (𝑝) =


((𝑟1 ´ 𝑧)𝑥, 𝑟2𝑤 + 𝑥 (𝑟1 ´ 𝑟2 ´ 𝑧), (𝑒𝑞1𝑥 ´𝑚)𝑧) , if ℎ (𝑝) ą 0,(
𝑟1𝑥, 𝑟1𝑥 ´ (𝑥 ´𝑤 )

(
𝑟2 ´

𝛽2
𝛽1
𝑧

)
,

(
𝑒𝑞2
𝑎𝑞

(𝑥 ´𝑤 ) ´𝑚

)
𝑧

)
, if ℎ (𝑝) ă 0.

(5.12)
where ℎ (𝑝) = ℎ (𝑥,𝑤, 𝑧) = 𝑤 and (𝑥,𝑤, 𝑧) P ℝě0 ˆ ℝ ˆ ℝě0. As we defined before, we
can calculate the sliding vector field given by the formula 2.2 and

𝑍 (𝑝) =
©­­­­«

𝑥

(
𝛽1𝑟2 + 𝛽2𝑟1
𝛽1 + 𝛽2

´
𝛽2𝑧

𝛽1 + 𝛽2

)
´𝑚𝑧 + 𝑥

(
𝑒 (𝑎𝑞𝑞1 ´ 𝑞2) (𝑟1 ´ 𝑟2)𝛽1

𝑎𝑞 (𝛽1 + 𝛽2)
+
𝑒 (𝛽1𝑞2 + 𝑎𝑞𝛽2𝑞1)𝑧

𝑎𝑞 (𝛽1 + 𝛽2)

) ª®®®®¬
. (5.13)

The vector field 5.13 have two equilibrium points, (0, 0) and

𝑝˚ = (𝑥˚, 𝑧˚) =
(

𝑎𝑞𝑚 (𝛽1𝑟2 + 𝛽2𝑟1)
𝑒 (𝛽1𝑞2𝑟2 + 𝑎𝑞𝛽2𝑞1𝑟1)

, 𝑟1 +
𝛽1𝑟2
𝛽2

)
. (5.14)

Now, we have
0 ă 𝑥˚

ă
𝑚

𝑒𝑞1
and 𝑧˚

ą 𝑟1.

In order to study the behavior of𝑝˚ and determine when it can be a hyperbolic pseudo-
saddle-focus, we have the following lemma.

Lemma 5.4. Let 𝜉 P M and assume that

𝑚 ă
4(𝛽1 + 𝛽2) (𝑟2𝛽1 + 𝑟1𝛽2) (𝑞2𝑟2𝛽1 + 𝑎𝑞𝑞1𝑟1𝛽2)2

(𝑞2 ´ 𝑎𝑞𝑞1)2(𝑟1 ´ 𝑟2)2𝛽21𝛽
2
2

. (5.15)

As such, the following statements hold:

• the equilibrium 𝑝˚ is a repulsive focus;

• there exists𝑥 P

[
0, 𝑚
𝑒𝑞1

)
such that thebackwardorbit of𝑍 ofanypoint of the straight

segment 𝐿 =

{
(𝑥, 𝑟1 ´ 𝑟2); 𝑥 ă 𝑥 ď

𝑚

𝑒𝑞1

}
Ă 𝑆+𝑣 is contained in Σ𝑠 and converges

asymptotically to the equilibrium 𝑝˚.
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Proof. The Jacobianmatrix of 𝑍 at (𝑥˚, 𝑧˚) is given by

©­­­«
0 ´

𝑎𝑞𝑚𝛽2(𝑟2𝛽1 + 𝑟1𝛽2)
𝑒 (𝛽1 + 𝛽2) (𝑞2𝑟2𝛽1 + 𝑎𝑞𝑞1𝑟1𝛽2)

𝑒

(
𝑞1𝑟1 +

𝑞2𝑟2𝛽1
𝑎𝑞𝛽2

)
´
𝑚 (𝑎𝑞𝑞1 ´ 𝑞2) (𝑟1 ´ 𝑟2)𝛽1𝛽2
(𝛽1 + 𝛽2) (𝑞2𝑟2𝛽1 + 𝑎𝑞𝑞1𝑟1𝛽2)

ª®®®¬
Let 𝜆1 and 𝜆2 be the eigenvalues of thematrix given above. So we have

𝜆1 =
𝐴 ´ 𝐵

𝐶
and 𝜆2 =

𝐴 + 𝐵
𝐶

,

where

𝐴 = 𝑎𝑞𝑒𝛽1𝛽22𝑚 (𝑟1 ´ 𝑟2) (´𝑎𝑞𝑞1 + 𝑞2),

𝐵 = 𝑎𝑞𝛽2𝑒

[
𝑚

(
𝑎2𝑞𝛽

2
2𝑞

2
1
(
𝛽21𝑚 (𝑟1 ´ 𝑟2)2 ´ 4𝑟 21 (𝛽1 + 𝛽2) (𝛽2𝑟1 + 𝛽1𝑟2)

)
´ 2𝑎𝑞𝛽1𝛽2𝑞1𝑞2

(
𝛽1𝛽2

(
𝑚 (𝑟1 ´ 𝑟2)2 + 4𝑟1𝑟2(𝑟1 + 𝑟2)

)
+ 4𝛽22𝑟 21 𝑟2 + 4𝛽21𝑟1𝑟 22

)
+ 𝛽21𝑞

2
2
(
𝛽22

(
𝑚 (𝑟1 ´ 𝑟2)2 ´ 4𝑟1𝑟 22

)
´ 4𝛽1𝛽2𝑟 22 (𝑟1 + 𝑟2) ´ 4𝛽21𝑟 32

) )]1/2
,

𝐶 = 2𝑎𝑞𝛽2𝑒 (𝛽1 + 𝛽2) (𝑎𝑞𝛽2𝑞1𝑟1 + 𝛽1𝑞2𝑟2).

By condition 5.15, we have 𝐼𝑚 (𝜆𝑗 ) ≠ 0, and𝑅𝑒 (𝜆𝑗 ) =
𝐴

𝐶
ą 0, 𝑗 P {1, 2}. Since

the real part is nonzero, by Theorem 1.8, the equilibirum 𝑝˚ is a hyperbolic repulsive
focus of 𝑍 and, then, a hyperbolic pseudo saddle-focus. Now we have to show the
second part of the lemma.

Claim 5.5. The vector field 𝑍 does not admit a limit cycle lying on the open region
ℝ2

+ = {(𝑥, 𝑧); 𝑥 ą 0, 𝑧 ą 0}.

Proof. Let be the function
𝑔 : ℝ2

+ Ñ ℝ

(𝑥, 𝑧) ÞÑ
1
𝑥𝑧
.

(5.16)

Since 𝑥 ą 0 and 𝑧 ą 0 , the function 𝑔 is well defined and is𝐶 1 inℝ2
+. Now,

∇ ¨ (𝑔𝑍 ) is given by the expression

B

B𝑥

(1
𝑧

(
𝛽1𝑟2 + 𝛽2𝑟1 ´ 𝛽2𝑧

𝛽1 + 𝛽2

))
+ B

B𝑧

(́
𝑚

𝑥
+1
𝑧

(
𝑒 (𝑎𝑞𝑞1 ´ 𝑞2) (𝑟1 ´ 𝑟2)𝛽1 + 𝑒 (𝛽1𝑞2 + 𝑎𝑞𝛽2𝑞1)𝑧

𝑎𝑞 (𝛽1 + 𝛽2)

))
=
𝑒 (𝑞2 ´ 𝑎𝑞𝑞1) (𝑟1 ´ 𝑟2)𝛽1

𝑎𝑞 (𝛽1 + 𝛽2)𝑧2
ą 0, for all (𝑥, 𝑧) P ℝ2

+.

(5.17)



Chapter 5. Sliding Shilnikov Orbit in Filippov Predator-Prey Model 64

So, by Theorem 1.22, 𝑍 does not admits a limit cycle inℝ2
+. ■

We observe that the sliding vector field 𝑍 can be written in the following way

𝑍 (𝑥, 𝑧) = 𝑍 (𝑥, 𝑧) +
(
0, 𝑒 (𝑎𝑞𝑞1 ´ 𝑞2) (𝑟1 ´ 𝑟2)𝛽1𝑥

𝑎𝑞 (𝛽1 + 𝛽2)

)
,

where
𝑍 (𝑥, 𝑧) =

(
(𝛽1𝑟2 + 𝛽2𝑟1 ´ 𝛽2𝑧)𝑥

𝛽1 + 𝛽2
,´𝑚𝑧 +

𝑒 (𝛽1𝑞2 + 𝑎𝑞𝛽2𝑞1)𝑥𝑧
𝑎𝑞 (𝛽1 + 𝛽2)

)
.

Then, 𝑍 (𝑥,𝑣 ) is a predator-prey systemwith the following first integral:

𝐹0(𝑥, 𝑧) = ´𝑚 ´
𝑟2𝛽1 + 𝑟1𝛽2
𝛽1 + 𝛽2

+
𝑒 (𝑎𝑞𝑞1𝛽2 + 𝑞2𝛽1)𝑥

𝑎𝑞 (𝛽1 + 𝛽2)
+ 𝛽2𝑧
𝛽1 + 𝛽2

´𝑚 log
(
𝑒 (𝑎𝑞𝑞1𝛽2 + 𝑞2𝛽1)𝑥
𝑎𝑞𝑚 (𝛽1 + 𝛽2)

)
´
𝑟2𝛽1 + 𝑟1𝛽2
𝛽1 + 𝛽2

log
(

𝛽2𝑧
𝑟2𝛽1 + 𝑟1𝛽2

)
.

Now, if we take 𝑎 =
(𝛽1 + 𝛽2) (𝑞2𝑟2𝛽1 + 𝑎𝑞𝑞1𝑟1𝛽2)
(𝑞2𝛽1 + 𝑎𝑞𝑞1𝛽2) (𝑟2𝛽1 + 𝑟1𝛽2)

ą 0, we can see that 𝐹0(𝑎𝑥˚, 𝑧˚) = 0.

How ⟨∇𝐹0(𝑎𝑥, 𝑧), 𝑍 (𝑥, 𝑧)⟩ =
(𝑞2 ´ 𝑎𝑞𝑞1) (𝑟1 ´ 𝑟2)𝛽1(𝑟2𝛽1 + (𝑟1 ´ 𝑧)𝛽2)2

𝑟2𝛽1 + 𝑟1𝛽2
ą 0

for every (𝑥, 𝑧) ą (0, 0)with 𝑧 ≠ 𝑧˚,weget that the level curvesof𝐹0(𝑎𝑥, 𝑧) arenegatively
invariant, i.e., the trajectories of the sliding vector field 𝑍 points outward to the level
curves of 𝐹0. By claim 5.5, the vector field 𝑍 has no limit cycles, then the focus (𝑥˚, 𝑧˚)
must attract the orbits of every point in the positive quadrant when 𝑡 Ñ ´8. Then we
have proved that the focus𝑝˚ attracts the orbits in the first quadrant. To finish, we have
to show that

Consider 𝜙 (𝑡 ) the trajectory of 𝑍 passing through
(
𝑟1 ´ 𝑟2,

𝑚

𝑒𝑞1

)
. We define

𝑥 as follows:

• If there exists 𝑡𝑠>0 such that 𝜙 (𝑡𝑠 ) P 𝑆+𝑣 , then take 𝑥 = 𝜙 (𝑡𝑠 );

• Otherwise, take 𝑥 = 0.

In both cases, 𝑥 ă
𝑚

𝑒𝑞1
.

Indeed, if 𝑥 ě
𝑚

𝑒𝑞1
, there would exist a periodic solution passing through(

𝑟1 ´ 𝑟2,
𝑚

𝑒𝑞1

)
and the forward flow of the point

(
𝑟1 ´ 𝑟2,

𝑚

𝑒𝑞1

)
by the vector field 𝑋 +

which is an absurd since there is no closed orbit in this region. So we have 𝑥 ă
𝑚

𝑒𝑞1
.

■



Chapter 5. Sliding Shilnikov Orbit in Filippov Predator-Prey Model 65

5.1.4 Existence of a sliding Shilnikov orbit and chaotic behavior of 5.2.

Let’s put all the pieces of this puzzle together and guarantee the existence
of a sliding Shilnikov orbit as in definition 3.1. By claim 5.2, we know that the satu-
ration of 𝑆𝑣+ through the forward flow of 𝑋 + reaches Σ transversely in a curve 𝜇(𝑥0) =
(𝑢 (𝑥0), 𝑢 (𝑥0), 𝑣 (𝑥0)), where 0 ă 𝑥0 ă

𝑚

𝑒𝑞1
.

Moreover, from claim 5.3, there exist 𝑎, 𝑏, 𝑐 and 𝑑 , with 0 ă 𝑎 ă 𝑏 ă
𝑚

𝑒𝑞1
and

0 ă 𝑐 ă 𝑑 , such that 0 ă 𝑢 (𝑥0) ă
𝑚

𝑒𝑞1
and 𝑣 (𝑥0) ą 𝑟1 for every (𝑥0, 𝑟2) P [𝑎, 𝑏] ˆ [𝑐 , 𝑑].

Then, there exists 𝑥0 P [𝑎, 𝑏] such that (𝑢 (𝑥0), 𝑣 (𝑥0)) = (𝑥˚, 𝑧˚). We assume
𝑐 ă 𝑟2 ă 𝑑 (to use 5.3) and

𝑚 ă
4𝑟2𝑣 (𝑥0) (𝑣 (𝑥0) ´ (𝑟1 ´ 𝑟2)) (𝑎𝑞𝑞1𝑟1 + 𝑞2(𝑣 (𝑥0) ´ 𝑟1))2

(𝑟1 ´ 𝑟2)2(𝑞2 ´ 𝑎𝑞𝑞1)2(𝑣 (𝑥0) ´ 𝑟1)2
.

Then, from lemma5.4, (𝑥˚, 𝑧˚) P Σ𝑠 is a repulsive focus of𝑍 and there exists 𝑥 P

[
0, 𝑚
𝑒𝑞1

)
such that the backward orbit of any point in the straight segment 𝐿 = {(𝑥, 𝑟1 ´ 𝑟2); 𝑥 ă

𝑥 ď
𝑚

𝑒𝑞1
} is contained in Σ𝑠 and converges asymptotically to 𝑝˚.

If 𝑥 = 0, then from lemma 5.4, we have characterized a sliding Shilnikov
connection through the fold-regular point (𝑥0, 𝑥0, 𝑟1 ´ 𝑟2) and the pseudo-equilibrium
provided by (𝑢 (𝑥0), 𝑢 (𝑥0), 𝑣 (𝑥0)) and our job here is done.

Suppose now that 𝑥 ≠ 0.

Claim 5.6. In the context above, if (𝑥˚, 𝑧˚) = (𝑢 (𝑥0), 𝑣 (𝑥0)), then 𝑥 ă 𝑥0.

Proof. We can see that the points (𝑥˚, 𝑧˚) = (𝑢 (𝑥0), 𝑣 (𝑥0)) and (𝑥0, 𝑟1 ´ 𝑟2) lie in the
same level set of the first integral F given by 5.4. Define

𝐶 := 𝐹´1(𝐹 (𝑥˚, 𝑧˚)).

Firstly, we have to study the behavior of 𝑍 on𝐶 . Since we are interested in qualitative
behavior, we just have to study the sign of the following product

⟨∇𝐹 (𝑥, 𝑧), 𝑍 (𝑥, 𝑧)⟩ =
(𝑟1 ´ 𝑟2 ´ 𝑧) (𝑒𝑞2𝑥 (𝑟1 ´ 𝑧) + 𝑎𝑞 (´𝑒𝑞1𝑟1𝑥 +𝑚𝑧))𝛽1

𝑎𝑞𝑧 (𝛽1 + 𝛽2)
,

where (𝑥, 𝑧) P 𝐶 . But we observe that 𝑎𝑞 (𝛽1 + 𝛽2) ą 0 and, since 𝑧 P Σ𝑠 Y 𝑆+𝑋 , 𝑧 ě 𝑟1 ´ 𝑟2,
then we just have to study the sign of

𝑒𝑞2𝑥 (𝑟1 ´ 𝑧) + 𝑎𝑞 (´𝑒𝑞1𝑟1𝑥 +𝑚𝑧).
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So, if we take the equation 𝑒𝑞2𝑥 (𝑟1 ´ 𝑧) + 𝑎𝑞 (´𝑒𝑞1𝑟1𝑥 +𝑚𝑧) = 0, we have a hyperbole
containing points (0, 0) and (𝑥˚, 𝑧˚) and each connected component of the hyperbole
intersects𝐶 at most in two points. If we solve the equation in 𝑧 , then we have:

𝑒𝑞2𝑥 (𝑟1 ´ 𝑧) + 𝑎𝑞 (´𝑒𝑞1𝑟1𝑥 +𝑚𝑧) = 0 ñ 𝑧 = 𝑧̃ (𝑥) =
𝑒 (𝑞2 ´ 𝑎𝑞𝑞1)𝑟1𝑥
𝑒𝑞2𝑥 ´ 𝑎𝑞𝑚

.

Now, we observe that

• 𝐹 (𝑥, 𝑧̃ (𝑥)) ą 𝐹 (𝑥˚, 𝑧˚) if (𝑥, 𝑧̃ (𝑥)) P 𝑒𝑥𝑡 (𝐶 ),

• 𝐹 (𝑥, 𝑧̃ (𝑥) ă 𝐹 (𝑥˚, 𝑧˚) if (𝑥, 𝑧̃ (𝑥)) P 𝑖𝑛𝑡 (𝐶 ),

• 𝐹 (𝑥, 𝑍 (𝑥)) = 𝐹 (𝑥˚, 𝑧˚) if (𝑥, 𝑧̃ (𝑥)) P 𝐶 ,

and 𝐹 (𝑥˚, 𝑧̃ (𝑥˚)) ´ 𝐹 (𝑥˚, 𝑧˚) = 0. Then, for every 𝑥 P (0, 𝑥˚), we have

𝐹 (𝑥, 𝑧̃ (𝑥)) ă 𝐹 (𝑥˚, 𝑧˚) and 𝑒𝑞2𝑥 (𝑟1 ´ 𝑧) + 𝑎𝑞 (´𝑒𝑞1𝑟1𝑥 +𝑚𝑧) ă 0.

So, ⟨∇𝐹 (𝑥, 𝑧), 𝑍 (𝑥, 𝑧)⟩ ą 0 and the vector field 𝑍 points outward𝐶 since (𝑥, 𝑧) P 𝐶 and
𝑥 P (0, 𝑥˚).

Finally, let 𝜙 (𝑡 ) be the trajectory of 𝑍 passing through
(
𝑟1 ´ 𝑟2,

𝑚

𝑒𝑞1

)
. Since

𝑥 = 𝜋𝑋𝜙 (𝑡𝑠 ) for some 𝑡𝑠 ą 0and𝜙 (𝑡𝑠 ) P 𝑆+𝑋 , there exists 𝑡 1
𝑠 P (0, 𝑡𝑠 ) such that𝜋𝑋𝜙 (𝑡 1

𝑠 ) = 𝑥˚.

Hence, 𝜙 (𝑡 ) P 𝑒𝑥𝑡 (𝐶 ) for 𝑡 P [𝑡 1
𝑠 , 𝑡𝑠 ] and 𝑥 ă 𝑥0. ■

By lemma 5.4, there exists a sliding Shilnikov orbit. To establish the conclu-
sion of ourmain result, we need to demonstrate the existence of a codimension one
submanifold inM such that the system 5.1 possesses a sliding Shilnikov orbit for any
point 𝜉 lying on this submanifold.

In fact, we can define the set Ñ as the collection of parameter vectors 𝜉 =

(𝑟1, 𝑟2, 𝑎𝑞 , 𝑞1, 𝑞2, 𝛽1, 𝛽2, 𝑒 ,𝑚) P M that satisfy all the inequalities specified in the preced-
ing constructions. Consequently, for every 𝜉 P Ñ , the Fillipov system 5.1 exhibits a
sliding Shilnikov orbit.

Claim5.7. A codimension one submanifold exists within Ñ such that Theorem5.1 holds.

Proof. By the inequalities constructed on the proofs above and the fact that (𝑥˚, 𝑧˚) =
(𝑢 (𝑥0), 𝑣 (𝑥0)), we define the following functions:

𝜛(𝑥0, 𝑟2) =
4𝑟2𝑣 (𝑥0) (𝑣 (𝑥0) ´ (𝑟1 ´ 𝑟2)) (𝑎𝑞𝑞1𝑟1 + 𝑞2(𝑣 (𝑥0) ´ 𝑟1))2

(𝑟1 ´ 𝑟2)2(𝑞2 ´ 𝑎𝑞𝑞1)2(𝑣 (𝑥0) ´ 𝑟1)2
;
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𝜄(𝑥0) =
𝑎𝑞𝑚𝑣 (𝑥0)

(𝑎𝑞𝑞1𝑟1 + 𝑞2(𝑣 (𝑥0) ´ 𝑟1))𝑢 (𝑥0)
,

and
𝜅 (𝑥0) =

𝑟2𝛽1
𝑣 (𝑥0) ´ 𝑟1

.

Let us begin by observing that 𝜛 is a positive continuous function and,
as a result, it assumes a minimum value 𝑀 ą 0 on the compact set [𝑎, 𝑏] ˆ [𝑐 , 𝑑].
Additionally, we have 𝜄1(𝑥0)2 + 𝜅 1(𝑥0)2 ≠ 0 for every 𝑥0 P (0,𝜏). Indeed, we observe that
𝜄1(𝑥0)2 + 𝜅 1(𝑥0)2 = 0 if and only if𝑢 1(𝑥0)2 + 𝑣 1(𝑥0)2 = 0, which would contradict 5.3.

Let us assume, without loss of generality, that there exists 𝑥0 P (𝑎, 𝑏) such
that𝜅 1(𝑥0) = 0. By the inverse function theorem, we can locally invert the function𝜅 .
This means that there exists a neighborhood 𝐵 of 𝜅 (𝑥0) and a unique function 𝜅´1 :
𝐵 Ñ (𝑎, 𝑏) such that𝜅 ˝ 𝜅´1(𝛽2) = 𝛽2 for any 𝛽2 P 𝐵 .

Now, consider 𝑐 ď 𝑟2 ď 𝑑 ,𝑚 ď 𝑀 , 𝛽2 P 𝐵 , and 𝑒 = 𝜄 ˝ 𝜅´1(𝛽2). We can verify
that the inequalities of the constructionmentioned above are satisfied.

Therefore, for 𝜉 = (𝑟1, 𝑟2, 𝑎𝑞 , 𝑞1, 𝑞2, 𝛽1, 𝛽2, 𝑒 ,𝑚) P M, we define N Ă Ñ as
follows:

N = {𝜉 P M : 𝑐 ă 𝑟2 ă 𝑑,𝑚 ă 𝑀, 𝛽2 P 𝐵 and 𝑒 = 𝜄 ˝ 𝜅´1(𝛽2)}.

It is important to note thatN represents a codimension one submanifold of
M since it is a graph defined in an open domain. Furthermore, we can establish the
existence of a neighborhood𝑈 Ă M aroundN such that whenever 𝜉 P 𝑈 , the Filippov
system 5.1 exhibits chaotic behavior.

■

This concludes the proof of our main result of this chapter.
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