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A B S T R A C T

Spatial and temporal information on the structural and chemical properties of tropical forest canopies are key to
understanding ecosystem processes. However, such information is usually limited to field studies performed at
the plot level (~1 ha). The combination of imaging spectroscopy with physically based radiative transfer (RT)
models holds great promise for generalizing and extrapolating insights from plot-based studies to whole land-
scapes. Here, we tested the capacity of a simplified 3D RT approach to retrieve the structural and chemical traits
of individual tree crowns (ITCs) from a highly diverse tropical forest. We first produced two datasets called
measured and simulated. The measured dataset was composed of ITC reflectance extracted from sunlit imaging
spectroscopy pixels. The simulated dataset was produced using a look-up-table approach and the discrete ani-
sotropic radiative transfer (DART) model. We then compared the simulated and measured reflectances of ITCs in
terms of shape difference by computing the spectral angle. The results showed small disagreements between the
simulated and measured reflectances. Such differences impacted neither the spectral variability nor the spectral
regions recognized as useful for species discrimination, showing that the spectral angle was a suitable measure of
spectral similarity. Simulation robustness was assessed by comparing model parameters obtained by inversion to
imaging spectroscopy vegetation indices and the proportion of non-photosynthetic vegetation (NPV), green
photosynthetic vegetation (GV) and shade estimated within ITCs. DART canopy structural parameters were
related to NPV (R2=0.71), GV (R2=0.78) and shade (R2=0.55). DART canopy foliar parameters such as
chlorophyll and carotenoids were related to the ratio of TCARI/OSAVI (R2=0.80) indices and the simple ratio
between reflectances at 515 nm and 570 nm (R515/R570) (R

2=0.54), respectively. Species-related differences in
NPV, GV and shade were explained by variations in crown architectural characteristics. The simulation fra-
mework employed in this study can be applied to retrieve structural and chemical traits of ITCs from other areas
in which high-resolution imaging spectroscopy data are available.

1. Introduction

Tropical forests are key Earth biomes. They harbor at least two-
thirds of the world's terrestrial biodiversity (Gardner et al., 2009) and
provide ecosystem services for humanity such as carbon (C) storage
with 55% of the global forest C stock (Pan et al., 2011) and nutrient

cycling with fixation of 70% of terrestrial nitrogen (Wang and Houlton,
2009). Most of our knowledge about the dynamics of tropical forests
comes from field measurements performed at the plot level (~1 ha), but
data that encompass broader spatial extents are needed to better un-
derstand the complex structure and functions of these important eco-
systems. Remote sensing holds great promise for generalizing and
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extrapolating insights emerging from plot-based studies to whole
landscapes (Asner et al., 2015b). Plant canopy foliage exhibits multiple
interactions with solar radiation from the visible to the shortwave in-
frared regions of the electromagnetic spectrum (VSWIR, 400–2500 nm).
These interactions are related to leaf functional traits involved in the
production of carbohydrates such as photosynthetic pigments (e.g.,
chlorophylls, carotenoids and anthocyanins) and others that provide
defense against herbivory or physical hazards, such as cellulose and
lignin (Wright et al., 2004). Thus, information is increasingly needed
about spatial and temporal variation in canopy foliar properties related
to ecosystem function and processes (Asner and Martin, 2016).

Imaging spectroscopy, also known as hyperspectral remote sensing,
has proven to be a pivotal technology that can fill this need. Imaging
spectroscopy has emerged as a promising way to map tropical forest
canopy diversity (Féret and Asner, 2014; Laurin et al., 2014; Schäfer
et al., 2016), to identify species at the individual tree crown (ITC) level
(Clark et al., 2005a; Féret and Asner, 2013; Baldeck et al., 2015;
Ferreira et al., 2016) and to estimate canopy chemical properties (Asner
and Martin, 2009; Asner et al., 2015a, 2015b; Chadwick and Asner,
2016). Imaging spectroscopy data are acquired by sensors capable of
measuring reflected radiation from the forest canopy over a spectral
continuum of many narrow bands, which allows detection of subtle
variations in the spectral response of tree species. Such variations are
induced by canopy chemical traits and biophysical properties such as
the leaf area index (LAI), but vegetation is not the only contributor to
the variability in canopy reflectance: illumination, geometry of acqui-
sition, background (understory plants, litter, soil, etc.) and atmospheric
effects also influence the signal finally measured by the sensor (Asner,
1998; Huesca et al., 2016). This fact challenges our ability to retrieve
canopy traits or information regarding biodiversity from imaging
spectroscopy, particularly in tropical environments in which the canopy
is spectrally and structurally very complex. A better understanding of
diffusive and absorptive processes occurring within the canopy of tro-
pical forests and influencing canopy reflectance is needed to address
these issues. Radiative transfer models (RTMs) are valuable tools for
improving our understanding of these processes and their influence on
the electromagnetic signal.

RTMs are physical models that describe photon transport mechan-
isms acting within the canopy (leaves, branches, twigs, etc.) and the
background and are capable of simulating the spectral response of
forest areas. Once a physical model produces realistic simulations, it
can be used to estimate biophysical and biochemical vegetation traits
from canopy reflectance in different ways. RTMs are known to be more
generalizable than data-driven models adjusted with measurements
because they can simulate remote sensing data in a variety of acquisi-
tion and environmental conditions (Myneni et al., 2002; Verrelst et al.,
2015) and are less prone to bias induced by the sampling strategy of
measured data. A large number of RTMs exist, differing by their com-
plexity and by the hypotheses upon which they rest. Operational re-
gional monitoring requires computationally efficient RTMs and proce-
dures applicable to satellite imagery acquired by sensors with coarse-to-
moderate spatial resolution (MODIS, Thematic Mapper). Such appli-
cations usually rely on hypotheses about the homogeneity of the ve-
getation stand, which makes one-dimensional (1D) RTMs particularly
appropriate, because they describe vegetation as a turbid medium to
statistically represent light interactions in a given volume (e.g., group of
leaves, atmosphere or water) (Verhoef et al., 2007; Jacquemoud et al.,
2009; Houborg et al., 2015). In the case of heterogeneous canopies
characterized by complex architectures, including substantial sha-
dowing effects and variations in branching pattern, three-dimensional
(3D) RTMs are more appropriate (Schneider et al., 2014; Gastellu-
Etchegorry et al., 2015) because they can deal with explicitly described
canopy structures. The level of details and type of information required
by the existing 3D RTMs to describe this canopy structure may vary
depending on the model in use and objectives pursued. A number of
models featuring integration of canopy architecture have been

developed (for a recent review refer to Widlowski et al., 2015), in-
cluding the discrete anisotropic radiative transfer (DART) model
(Gastellu-Etchegorry et al., 2015).

DART is currently one of the most comprehensive 3D RTMs and has
been widely used to simulate the radiative transfer of forest canopies,
helping to interpret the radiometric signal measured by remote sensors.
Simulations of various types of forested ecosystems have been per-
formed so far from alpine forests to diverse tropical forests for ecolo-
gical and forestry purposes (Gastellu-Etchegorry et al., 1996; Schneider
et al., 2014). These simulations comprised a wide range of remotely
sensed data (including imaging spectroscopy data and very high spatial
resolution data) to generate textural and spectral information.
Malenovský et al. (2008) used DART to investigate the influence of
woody elements on the canopy spectral response and the LAI retrieval
of a Norway spruce (Picea abies) forest. Simulations were performed in
the 450–800 nm spectral range and compared with top of canopy (TOC)
reflectance acquired by an airborne imaging spectroscopy sensor. The
authors highlighted the importance of including woody elements in
radiative transfer-based approaches to retrieve LAI, particularly when
individual tree crowns were considered. In the same study area, DART
was successfully used by Malenovský et al. (2013) to retrieve leaf
chlorophyll content from imaging spectroscopy. For this purpose, they
simulated the imaging spectroscopy data in a spectral region sensitive
to chlorophyll absorption located between 650 and 720 nm; then, they
inverted the model using artificial neural networks. In tropical en-
vironments, Barbier et al. (2010) used DART to verify the relationship
between canopy textural attributes and crown diameters and quantify
the impact of satellite image acquisition parameters (viewing and il-
lumination angles) on the results of the FOTO method (Couteron, 2002)
that was applied to determine crown size and heterogeneity. Morton
et al. (2016) used DART to build a 3D Amazon forest scene and study
the diurnal and seasonal variability in light utilization. The model was
parameterized with high-density light detection and ranging (LiDAR)
data and in situ measurements. A realistic representation of the forest
stand permitted the authors to investigate the influence of the forest
structure on light interactions occurring within the canopy.

To investigate the potential and limitations of the various types of
remote sensing data for applications dedicated to the retrieval of ca-
nopy chemical traits and biophysical properties of forest ecosystems
using 3D RTMs, researchers require the ability to produce realistic and
accurate simulations of the remote sensing signal. The realism and ac-
curacy of these modeling tools should then be compatible with the level
of details available to run the simulations. Thus, forward modeling
studies are necessary to gain knowledge on model limitations, costs
required for realistic simulations and photon transport mechanisms
contributing to the variability in canopy reflectance. Moreover, forward
modeling provides an efficient way to identify spectral regions showing
high fidelity or discrepancies between measured and simulated data.
This information helps to select suitable spectral ranges to be used
when applying the model to retrieve a certain canopy variable and to
improve the model itself (Schlerf and Atzberger, 2006; Zeng et al.,
2016).

State-of-the-art 3D RTMs, such as DART, handle the description of
many factors that influence the signal measured by a remote sensor.
This ability makes it a powerful tool for understanding light diffusion
processes that set up the radiation field of forest canopies. However, a
very comprehensive description requires a large amount of information
to parameterize the many parameters controlling all possible scattering
mechanisms in the scene, which is usually not fully available.
Therefore, performing 3D modeling of complex heterogeneous canopies
requires a certain number of assumptions and trade-offs to establish the
optimal description level for each factor based on available information
and, importantly, to fully understand the effects resulting from default
values set for variables missing experimental measurements.

To date, little is known about the performance of 3D RTMs for si-
mulating airborne imaging spectroscopy data acquired over diverse
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tropical forests. Ideally, simulating the spectral response of individual
tropical trees would require a detailed parameterization of the 3D
crown architecture, which can be derived from high-density airborne or
terrestrial LiDAR and extensive field measurements (Morton et al.,
2016; Schneider et al., 2014) combined with intensive field spectro-
scopy information to characterize the optical properties of each scene
component (leaves, trunk, branches, understory). This process is ex-
tremely time consuming and expensive. Most studies involving 3D
modeling of forests use assumptions regarding canopy architecture and
optical properties when no field data or LiDAR acquisitions are avail-
able: simplified geometric shapes such as ellipsoidal volumes are used
to represent trees, which are partially or completely filled with a turbid
medium representing the leaves and characterized by uniform proper-
ties (density, leaf angle distribution, and leaf optical properties).

Here, we test the validity of simplified geometric representations of
tropical trees and turbid description of their foliage and non-photo-
synthetic elements when simulating their reflectances at the canopy
level. The work tests the following hypotheses: (i) information on
structural and chemical properties of tropical trees can be retrieved by
combining imaging spectroscopy and a simplified 3D RTM approach
based on assumptions regarding crown architecture, understory vege-
tation, branch optical and leaf structural properties and (ii) tree spe-
cies–related differences in the proportion of green vegetation (GV),
non-photosynthetic vegetation (NPV) and shade are driven by crown
architectural characteristics.

We designed a methodology aiming at comparing airborne imaging
spectroscopy data acquired over a complex tropical forest with DART
simulations obtained after application of a certain number of simplifi-
cations. This methodology was based on the generation of a look-up
table (LUT) of ITC reflectance using DART simulations obtained by
realistic combinations of biophysical and chemical vegetation proper-
ties as well as a simplified geometric architecture of the trees. We
performed a sensitivity analysis to understand how each DART para-
meter affects the simulated canopy reflectance. Structural and chemical
traits of ITCs were retrieved by inversion of simulations that were
spectrally similar to measured data. Subsequently, the drivers of spe-
cies-related differences in the proportion of GV, NPV and shade were
analyzed.

2. Materials

2.1. Study area

The study area is a well-preserved tropical seasonal semi-deciduous
forest located in the municipality of Campinas, São Paulo State,
southeastern Brazil (22°49′13.4″S 47°06′43.6″W) (Ferreira et al., 2016).
It is an old-growth forest area that is approximately 630m a.s.l., subject
to a 5-month dry season (April to September) (Leitão Filho, 1982) and
characterized by deciduous and evergreen tree species. The elevation of
the area ranges from 580 to 610m. The site receives approximately
1503mm of precipitation per year, with<100mm/month during the
dry season. Mean annual temperature is 20.5 °C, ranging from 11 to
28.5 °C. The area has high floral diversity, with> 100 tree species per
hectare (Farah et al., 2014).

2.2. Imaging spectroscopy data

Imaging spectroscopy data were acquired under clear sky conditions
on June 7, 2010 using the AISA Eagle (Spectral Imaging, Inc., Oulu,
Finland) sensor that covered the visible/near-infrared (VNIR,
400–970 nm) wavelength range. AISA Eagle's standard radiometric
calibration was achieved with a Labsphere USS-2000-V uniform source,
providing data that were within±5% of absolute radiance. The central
wavelength locations of this output were known and certified within
0.5 nm accuracy. AISA Eagle was mounted on an aircraft that flew
1350m above ground level at a speed of 130 kts, resulting in a spatial

resolution of 1m. The area covered comprised 251.8 ha. Ten flightlines
were acquired in 28min in the north-south direction, starting at
1:27 PM, when the sun's zenith and azimuth angles were 47.1 and
345.0°, respectively. Using a radiometric resolution of 12 bits, 122
VNIR spectral bands spaced 5 nm apart and with a full width at half
maximum (FWHM) varying from 5.6 to 6.7 nm were acquired. The data
collected were atmospherically and geometrically corrected according
to the procedures described in Ferreira et al. (2016). Spectral bands
located below 450 and above 920 nm were discarded due to their low
signal-to-noise ratio (SNR). Finally, 99 bands covering the 450–920 nm
spectral range were retained for further use.

2.3. Individual tree crown dataset

The high spatial resolution of the imaging spectroscopy data per-
mitted visualization of ITCs that were outlined throughout the study
area. These ITCs were visited and identified to the species level in the
field, following the approach of Ferreira et al. (2016). Seven species
were identified from 268 ITCs (Table 1). Photographs of some trees
were taken during the field work (Fig. 1).

3. Methods

In this section, we first describe the methodological steps used to
build our measured dataset. Next, we detail the RTM strategy employed
to simulate canopy reflectance with the DART model, thereby gen-
erating a simulated dataset. Then, we describe the sensitivity analysis
applied to the simulated dataset to understand the influence of each
parameter of interest on the final reflectance value simulated with
DART. Finally, we introduce the criteria used to compare measured
data with simulations and the methods used to retrieve canopy traits
from measured data based on the similarity with simulated data. Fig. 2
summarizes the methodological steps applied to the retrieval of che-
mical and structural properties of ITCs.

3.1. Production of the measured dataset

We first extracted pixels corresponding to the manually delineated
ITCs from the imaging spectroscopy data and filtered them to discard
those influenced by shadows. This choice was motivated by the higher
SNR ratio corresponding to sunlit pixels (Malenovský et al., 2013). We
defined a threshold value for NIR (870 nm) reflectance to differentiate
between sunlit and shaded pixels: pixels with NIR reflectances above
25% were defined as sunlit (Fig. 3). Finally, we averaged the re-
flectances corresponding to sunlit pixels for each ITC and obtained a
measured dataset with 268 reflectance spectra.

3.2. Production of the simulated dataset

3.2.1. DART radiative transfer

DART is a 3D radiative transfer model that simulates radiation

Table 1

Species list, number of individual tree crowns (ITCs), mean crown size, number
of pixels and diameter at breast height (DBH).

Species name Code ITCs Mean crown size
(pixels)

Pixels DBH (cm)

Aspidosperma

polyneuron

AP 25 112 2631 48–96

Astronium graveolens AG 59 100 5929 30–57
Cariniana legalis CL 50 266 13,290 52–111
Croton piptocalyx CP 83 80 6353 35–71
Diatenopteryx sorbifolia DS 18 21 376 49–63
Hymenaea courbaril HC 18 210 3650 65–95
Pachystroma

longifolium

PL 15 60 901 50–70

M.P. Ferreira et al. Remote Sensing of Environment 211 (2018) 276–291

278



propagation in urban, agricultural and natural landscapes (Gastellu-
Etchegorry et al., 2015). DART allows for the simulation of the signal
acquired by various types of passive and active sensors in the optical
domain, including airborne and spaceborne sensors, such as imaging
spectroscopy and LiDAR sensors. A DART scene is a 3D representation
of the Earth's surface characterized by a given level of details. Scenes
can range from simple structures, such as turbid layers, to highly de-
tailed 3D objects. The 3D scene is then divided into volume elements
(voxels). The user can define the voxel size to optimize radiation scat-
tering and simulate types of scene elements. The scene can contain
triangles to position elements exactly (e.g., leaves, branches or walls)
and/or turbid media. In a leaf voxel, leaves are represented by small
plane surfaces with scattering phase functions. These functions are the
sum of a Lambertian component representing radiation that penetrates
the leaf and a specular component associated with radiation reflected
by leaf surface (Gastellu-Etchegorry et al., 1996). A turbid medium that
represents leaves inside a crown is defined by its leaf surface density
(m2/m3), leaf angle distribution (LAD) and individual leaf optical
properties (reflectance and transmittance spectra). Each voxel can be
filled independently with a turbid medium and/or triangles. Further
details about the DART model can be found in Gastellu-Etchegorry et al.
(1996, 2015). When using a simplified geometric representation of
trees, individual trees can be described as elementary geometrical
shapes (conic, spherical or ellipsoidal) filled with a turbid medium

containing a mix of foliage and woody elements, combined with facets
(triangles) to represent the trunk. A fraction of empty voxels within the
crown can also be used to add variability and induce an effect that can
be compared to the clumping effect (Smolander and Stenberg, 2003).
Thus, parameters defining a single tree include structural parameters
(i.e., size and shape of the crown, distribution of leaves and empty cells
within the crown) and optical parameters (e.g., optical properties of
leaves and branches).

We employed a unique simplified representation to simulate the
spectral response of trees at the ITC level: each tree was depicted as a
single tree located at the center of a 10×10 m scene. The crown was
round with a diameter of 10m centered at a height of 20 m. This crown
was voxelized to obtain 0.5× 0.5× 0.5m3 voxels filled with foliage
and woody branches modeled as two separated turbid media, each
medium defined by its density and optical properties. We opted for a
voxel half the size of a pixel to optimize multiple scattering of leaves
and branches within the crown. The proportion of full and empty voxels
within the crown was also studied as a parameter influencing the tree's
reflectance. Branch reflectance spectra were set to a measured bark
spectrum. Each combination of branch, leaves, understory density and
proportion of empty voxels resulted in a particular global scene PAI
(Plant Area Index: LAI+woody elements). The forest understory was
represented by a turbid plot of 2.5m height (± 0.5 m) covering a flat
ground. Standard spectra from the DART dataset were used to

Fig. 1. Individual tree crowns from species considered in the study. Photographs were taken during the dry season. Photos credit: M. P. Ferreira.
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characterize optical properties of the understory vegetation and litter
(Fig. 4). Leaf optical properties were simulated with the PROSPECT-5
model (Féret et al., 2008). PROSPECT-5 simulated leaf directional-
hemispherical reflectance and transmittance over the 400–2500 nm
spectral range using the following input parameters: chlorophyll a+ b

(Cab, μg·cm
−2), carotenoids (Cxc, μg·cm

−2), equivalent water thickness
(Cw, g·cm

−2), dry matter content (Cm, g·cm
−2) and the leaf structure

parameter (N). The N parameter accounted for leaf anatomy.
The bidirectional reflectance factor (BRF) was modeled using a flux

ray tracking approach based on the exact kernel and discrete ordinate

Extraction of sunlit imaging

spectroscopy pixels within 

individual tree crowns (ITCs)

Measured dataset

Generation of a look-up-table (LUT) of 

ITC simulated reflectance with 

PROSPECT+DART models

Simulated dataset

Comparison in terms of 

spectral angle

Model parameters yielding simulations 

that are similar to measured data

Chemical and structural 

properties of ITCs

Fig. 2. The methodological steps of the study for the retrieval of chemical and structural properties of individual tree crowns (ITCs). Ellipsoidal boxes represent data
processing. Rectangular boxes refer to inputs or outputs of data processing.
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Fig. 3. Sunlit pixels selected within individual tree crowns to perform the
comparison between simulated and measured reflectances. A true color com-
position of the imaging spectroscopy data (R=638 nm; G=548 nm;
B= 460 nm) is shown in the background.
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methods (Kimes and Kirchner, 1982; Gastellu-Etchegorry et al., 2015),
in which the sun and the atmosphere were the only radiation sources.
The atmosphere was simulated using a rural aerosol model with 23 km
of visibility (RURAL23) and a tropical gas model derived from MOD-
TRAN (Berk et al., 2011). Reflectance at the top of the canopy was
obtained by iteratively tracking radiation fluxes along 100 discrete di-
rections (Yin et al., 2013). Instrumental specifications of the sensor and
geometry at the moment of image acquisition were set to simulate AISA
Eagle images: spectral filter functions of the bands, FWHM, field of view
(FOV), viewing direction, altitude and sun position. Simulations were
conducted for 99 bands covering the VNIR spectral range using DART
version 5.6.1 with the multithreading functionality in a UNIX en-
vironment and a fast computer (6-core processor, 64 GB RAM).

3.2.2. LUT generation

Users can set a large number of parameters in the DART model, so
we selected a reasonable set of parameters to be investigated in our
study. The first goal was to identify these parameters and their corre-
sponding ranges of variation. Because our study focuses on the com-
parison between measured and simulated data for a single airborne
acquisition, we set all variables related to atmospheric properties and
geometry of acquisition to unique values (view angle= nadir; sun ze-
nith angle= 47.1°; sun azimuth angle= 345°; tropical gas model and
visibility= 23 km). The ranges of variation of the other parameters
were based, whenever possible, on the literature and on our own ex-
perience, always including some extremes to ensure capture the po-
tential boundary conditions.

The DART parameters could be divided into three main categories:
canopy structural properties, leaf chemical and structural properties
(corresponding to the input parameters of PROSPECT-5, described in
Section 3.2.1) and scene optical properties (corresponding to scene
materials other than leaves). The canopy structural properties are as
follows:

• Leaf angle distribution (LAD): six functions were considered to
characterize LAD, according to De Wit (1965): planophile (horizontal
leaves were most frequent), erectophile (vertical leaves were most
frequent), plagiophile (oblique leaves were most frequent), ex-

tremophile (oblique leaves were least frequent), spherical (relative
frequency of leaf angle was the same as the surface elements of a
sphere) and uniform (proportion of the leaf angle was the same at
any angle). The mean leaf angle corresponding to each LAD function
was as follows: 26.76° for planophile LAD; 63.24° for erectophile LAD;
45° for plagiophile, extremophile and uniform LAD and 57.3° for
spherical LAD. For simplicity, leaves were treated as Lambertian
surfaces.

• Density of branches per voxel (DBV): proportion of infinitely small
flat surfaces with branch optical properties within voxels. This
parameter accounted for non-photosynthetic vegetation within the
crown.

• Density of leaves per voxel (DLV): volume density (m2/m3) of in-
finitely small flat surfaces with leaf optical properties. DLV de-
scribed the green photosynthetic vegetation and leaf density within
the crown.

• Proportion of full voxels within the tree crown (pVoxels): percen-
tage of full voxels filled with leaves randomly distributed within the
crown. The proportion of voxels filled with branches was fixed to
50% for all simulations. Low pVoxel values meant a high proportion
of empty voxels with the crown and, consequently, an increase of
internal-crown shadows.

The scene optical parameters are

• Optical reflectance factor of branches (OBF): additive offset applied
to the branch spectra.

• Optical reflectance factor of the ground (OGF): additive offset

applied to the ground spectra.

These parameters and their corresponding ranges of variation are
summarized in Table 2. For each simulation, we opted for the random
selection (uniform distribution) of a value within the ranges of varia-
tions of each parameter as shown in Table 2. Because DART simulations
were computationally demanding (when compared with other simpler
physical models such as the SAIL model), we generated 3500 LUT en-
tries, which appeared a reasonable trade-off between the number of
simulations and processing time.

3.3. Sensitivity analysis

Once the LUT was generated, we investigated the influence of each
parameter on the spectral response of the simulated tree to identify the
spectral regions most sensitive to changes in each input parameter. To
achieve that goal, we performed a one-at-a-time sensitivity analysis
(OAT-SA). OAT-SA consisted in varying each DART parameter one at a
time by specific increments, keeping all other parameters at their base-
case values (Table 2). For each simulation, we extracted TOC re-
flectances of all pixels within a radius of eight meters from the center of
the crown, aiming to avoid mixed pixels at the border of the crown. The
results of the OAT-SA were presented using the mean and standard
deviation computed from reflectances of the pixels comprising the si-
mulated tree.

3.4. Comparison between simulated and measured reflectances

The retrieval of vegetation variables from reflectance measurements
using physically based approaches depended, among other things, on i)
the ability of the model to generate realistic simulations and ii) the
criterion defined to compute the spectral similarity. Here, we compared
measured and simulated reflectances based on a shape criterion. To
evaluate the suitability of this measure, we also quantified the relative
importance of simulated and measured bands to differentiate among
species. Our hypothesis was that spectral regions recognized as relevant
for species discrimination should be the same for measured and simu-
lated datasets if simulations were realistic. Moreover, the spectral
variability computed within and among species should be similar be-
tween these datasets.

3.4.1. Shape difference

We compared simulated and measured reflectance of the ITCs using
the spectral angle (θ) as a criterion for spectral similarity according to
Price (1994):
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where θM, E is the spectral angle, measured in degrees if multiplied by
(180/π), between a given measured spectrum (M) and its simulated
counterpart (S) in the spectral interval λa to λb, i.e., 450 to 920 nm.
Within a given species there is a systematic offset between spectra
caused by variation in amplitude, which increased the spectral varia-
bility even if the spectral shapes were the same. Variations in amplitude
were caused by brightness differences and were not adequate to en-
hance spectral differences or to characterize the ITCs spectrally. The
spectral angle, also known as the shape difference, removed the influ-
ence of the amplitude between two spectra.

The spectral angle was also a suitable measure of the spectral
variability within and among species (Ferreira et al., 2016; Richter
et al., 2016). Here, we were interested to know whether the spectral
variability was preserved in the simulated dataset. The spectral angle
was computed at two levels using all 99 VNIR bands: (i) within species,
θ was calculated for all pairwise combinations between the reflectances
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of a given species, and (ii) among species, θ was computed for all
pairwise combinations between the reflectances of a given species and
all other species, one at a time. The results were presented in two
confusion matrices. One matrix showed the spectral angle within and
among species based on measured data only, and the other matrix
showed the spectral angle computed between simulated and measured
data.

3.4.2. Feature importance

One step toward the realism of simulations is to test if measured
data and corresponding simulated data share the same spectral bands of
interest to discriminate among species. We used a feature importance
procedure to estimate the relative importance of different spectral
bands from measured and simulated reflectance to discriminate the
seven species (Table 1). The aim was to verify whether spectral regions
recognized as relevant to classify the species were the same on both
simulated and measured data.

The random forest (RF) algorithm computes indicators of feature
importance that have been widely used in remote sensing and ecology
applications (Chan and Paelinckx, 2008; Cutler et al., 2007; Guo et al.,
2011; Pal, 2005). RF is a tree-based ensemble classifier, i.e., it is
composed of a combination of ntree decision trees. The classification task
is achieved by a majority vote of the output of the individual trees. To
build an ensemble, RF randomly creates new training sets with re-
placement by resampling the original data as many times as the number
of samples. At each split, the method uses only a random subset of input
features, composed of mtry features that the user must define.

Feature importance metrics are based either on the permutation
importance measure, which is also called mean decrease in accuracy
(MDA), or the Gini impurity, known as the mean decrease in Gini
(MDG) (Breiman, 2001). While the majority of previous studies have
focused on the first, we focused on the second because it proved to be
more stable and has been successfully applied to spectral data (Menze
et al., 2009; Calle and Urrea, 2011). MDG is derived from the training of
the RF classifier. At each decision tree node, the optimal split is sought
using the Gini impurity, i.e., a measure of how well a potential split
separates the samples of this particular node (Menze et al., 2009). MDG
is then calculated by summing all of the decreases in Gini impurity at
each node split, normalized by the number of trees (Breiman, 2001;
Menze et al., 2009).

MDG was used to assess the contribution of each measured and si-
mulated band to differentiate the species. First, based on the θ criterion,
we selected the most similar simulated reflectances from the LUT to the
measured reflectances. Second, we used a balanced set containing the

measured spectral response of ten ITCs per species to train the RF al-
gorithm and obtain a value of MDG per band. We selected ten ITCs per
species because the RF algorithm tends to favor the majority classes
(Chen et al., 2004), which can lead to erroneous results. MDG was
computed 100 times changing at each realization the ITCs used to train
the classifier. This procedure allowed us to consider all ITCs and avoid
the problem of class imbalance. Finally, the abovementioned process
was repeated using the simulated counterparts of the measured re-
flectances. The results were shown by the average of the MDG com-
puted over the 100 realizations for both measured and simulated data.
For this experiment, the RF parameters were set to ntree=500 and
mtry=80. The R packages ‘randomForest’ (Liaw and Wiener, 2002) and
‘varSelRF’ (Diaz-Uriarte, 2007) were used.

3.5. Retrieval of chemical and structural properties of individual trees

Radiative transfer models such as DART can simulate almost any
reflectance spectrum depending on the range of traits (model para-
meters) available for simulations. Obtaining simulations that are si-
milar to measured data does not prove that the model is suitable for the
retrieval of a given vegetation variable. It is necessary to know if the
underlying combinations of model parameters are realistic. In this
section, we recorded the model parameters yielding simulations that
were similar to measured data (smallest θ; Eq. (1)), a procedure called
LUT inversion. Ideally, inverted parameters should be compared to field
measurements of the traits used to parameterize the DART model.
However, such data were not available for this study. Therefore, we
assessed the robustness of the inverted parameters using narrow-band
vegetation indices and subpixel fractions that described canopy che-
mical and structural properties, respectively. Finally, we demonstrated
how the developed methodology could be applied to map structural and
chemical characteristics of ITCs.

3.5.1. LUT inversion

Inversion of radiative transfer models consists of finding the set of
model parameters that yields simulations that are spectrally similar to
measured data. However, this approach is usually ill-posed. A common
method to address this issue is to consider the set of parameters that
generate n solutions with the lowest θ and to derive the mean value for
a given parameter to estimate. The inversion was performed by aver-
aging the DART parameters that originated the 20 spectra that are most
similar to each measured spectrum (smallest θ; Eq. (1)). The inversion
procedure was performed on sunlit imaging spectroscopy pixels to map
structural and chemical traits of individual trees, from which field

Table 2

DART+PROSPECT parameters, their ranges of variation, increments and nature used to build the look-up table (LUT) and to perform the one-at-a-time sensitivity
analysis (OAT-SA).

Canopy structural parameters Unit/Type Range of variation Increment LUT Increment OAT-SA Base-case OAT-SA Nature

Leaf Angle Distribution (LAD) Planophile Planophile to uniform – – Planophile Categorical
Erectophile

Plagiophile

Extremophile

Spherical

Uniform

Density of branches per voxel (DBV) Volume % 0–0.25 0.25 0.25 0.25 Categorical
Density of leaves per voxel (DLV) m2/m3 0.5–3 – 0.5 1.5 Continuous
Proportion of full voxels within the tree crown (pVoxels) % 40–100 20 20 80 Categorical
Scene optical parameters
Optical reflectance factor of branches (OBF) – 0–1 0.5 0.5 1 Categorical
Optical reflectance factor of the ground (OGF) – 0–1.5 0.5 0.5 1 Categorical

PROSPECT-5 parameters
Chlorophyll a+ b (Cab) μg·cm−2 10–110 – 20 30 Continuous
Carotenoids (Cxc) μg·cm−2 5–25 – 5 10 Continuous
Equivalent Water Thickness (Cw) g·cm−2 0.002–0.042 – 0.01 0.012 Continuous
Dry Matter Content (Cm) g·cm−2 0.003–0.033 – 0.005 0.008 Continuous
Leaf Structure (N) – 1.4–3.4 – 0.5 1.9 Continuous
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photographs were available.

3.5.2. Spectral mixture analysis

The simulation approach developed in this work (Section 3.2.1) was
based on a simplified tree representation with known assumptions.
Specifically, crown architecture was simulated by voxels that contain
branch and leaf optical properties and a proportion of empty voxels
within the crown. To test whether this approach could capture species-
specific differences in canopy structure, we compared DART canopy
structural parameters (Table 2) obtained by inversion to the proportion
of GV, NPV and shade for each ITC. The DBV, DLV and pVoxels were
expected to be related to the NPV, GV and shade fractions, respectively.

The shade fraction estimated by spectral unmixing of imaging
spectroscopy data proved to be related to vegetation complexity or
canopy roughness (Huesca et al., 2016). Field observations revealed
that tree species under consideration feature different crown archi-
tectural characteristics defined by size, shape, leaf cover and branching
(Fig. 1) that might produce variations in the amount of crown-internal
shadows, foliage and NPV. To quantify the proportion of GV, NPV and
shade within ITCs, we performed multiple endmember spectral mixture
analysis (MESMA; Roberts et al., 1998) on the imaging spectroscopy
data. Spectral mixture analysis (SMA) generates linear models using a
set of endmembers (“pure” spectra; Adams et al., 1993) and selects the
model with the lowest root mean square error (RMSE) for each pixel.
MESMA is an SMA that varies the type and number of a single class
endmember (Roberts et al., 1998). First, candidate endmembers of GV
and NPV were collected in the images using spatial information

(coordinates collected by a GPS device) obtained in the field. Second,
an SMA using three endmembers (GV, NPV and photometric shade) was
performed with no constraints. The resulting fraction images were
analyzed in 2D-scatterplots, used to select true GV and NPV end-
members. These image endmembers presented the highest values of
their own fraction and the lowest (negative) values of the other two
fractions. The final fraction images were obtained using a MESMA with
the following data constraints: fraction thresholds between −0.05 and
1.05 and RMSE ≤0.025. The endmember fractions were constrained by
a sum equal to 1.0 (i.e., spectrum 100% modeled by the endmembers)
and averaged for each ITC. SMA and MESMA were run in VIPER Tools
(Roberts et al., 2007). To facilitate comparison among subpixel frac-
tions, data were normalized to the [0–1] range based on the minimum
and maximum value of each fraction.

3.5.3. Narrow-band vegetation indices

Narrow-band spectral indices can provide information on bio-
chemical properties of vegetation. We selected two indices that proved
useful to the retrieval of canopy chemical traits from imaging spectro-
scopy data acquired in the VNIR. The first index, called TCARI/OSAVI,
is sensitive to Cab content and known to be less influenced by canopy
background (soil) reflectance and NIR scattering caused by canopy
structure. This index was proposed by Haboudane et al. (2002) and is
defined as the ratio of:

⎜ ⎟= ⎡
⎣
⎢ − − − ⎛

⎝
⎞
⎠
⎤
⎦
⎥TCARI ρ ρ ρ ρ

ρ

ρ
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Fig. 5. Variation in the spectral response of the simulated individual tree crown after varying each DART parameter and keeping all other parameters fixed at their
reference values (one at a time sensitivity analysis (OAT-SA)) (see Table 2).
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The second index was proposed by Hernández-Clemente et al.
(2012) and is related to leaf Cxc content of forest canopies. The index is
defined as a simple ratio between reflectances at 515 nm and 570 nm
and is referred to as R515/R570. Zarco-Tejada et al. (2013) successfully
used R515/R570 to estimate leaf Cxc concentration in vineyards. Here, we
assessed whether model parameters describing canopy chemical traits
(Cab and Cxc) are related to TCARI/OSAVI and R515/R570 for each ITC.

4. Results

4.1. Sensitivity analysis

The sensitivity analysis provided the opportunity to better under-
stand how each DART parameter affected the simulated TOC spectral
response (Fig. 5). The VIS range was highly influenced by the leaf op-
tical properties. Most notably, Cab variations changed the reflectance
from 550 to 750 nm, which more severely impacted the green peak and
the red edge. More subtly, Cxc and N also affected the VIS, while N
impacted the entire region by increasing the amplitude of the re-
flectance spectra. Cxc produced variations only in the vicinity of
525 nm. Cm and Cw made negligible contributions to variations in the
visible, with the former intensely affecting the NIR and the latter pro-
ducing no variations at all. All canopy structural parameters produced
remarkable changes in the NIR domain. This spectral range was more
affected by LAD, DBV and DLV.

4.2. Spectral similarity

4.2.1. Shape differences between measured and simulated reflectances

Shape differences between measured reflectances and their simu-
lated counterparts (based on minimized θ criterion; Eq. (1)) for seven
species (Table 1) were small and did not exceed 1.5° of the spectral
angle (Fig. 6). For comparison, the spectral angle between the un-
derstory green vegetation spectrum and the litter spectrum shown in
Fig. 2 was 16°. Specifically, the mean of the spectral angle varied from
0.76° to 1.01° for Astronium graveolens and Pachystroma longifolium,
respectively (Fig. 6). The shape difference distribution, which is illu-
strated by the width of the violin plots in Fig. 6, was highly variable for
the species. For Aspidosperma polyneuron, the shape difference was
concentrated at approximately 0.76°, while for Diatenopteryx sorbifolia

it was more homogeneously distributed over the range of variation.
This result was related to the standard deviation of the spectral angle,
which reached 0.07° for Aspidosperma polyneuron and 0.15° for

Diatenopteryx sorbifolia.
Table 3 shows the within- and among-species spectral variability

based on measured data. Spectral angles computed within species (di-
agonal of Table 3) were significantly lower than those computed among
species. The highest difference regarding spectral shape was verified
between Pachystroma longifolium (PL) and Diatenopteryx sorbifolia (DS)
(4.98°). The lowest difference was attributed to Hymenaea courbaril

(HC) and Croton piptocalyx (CL) (1.70°). Table 4 shows the spectral
angles calculated between simulated and measured data. The diagonal
values refer to the mean of the shape differences between measured
reflectances and their simulated counterparts. The values outside the
diagonal in Table 4, which refer to the spectral angle computed among
species, were similar to those in Table 3. More precisely, the absolute
difference between among-species spectral angles based solely on
measured spectra and those computed between measured reflectances
and their simulated counterparts ranged from 0.02° (HC against AG) to
0.27° (PL against AP). This result meant that simulated data were a
correct proxy containing information on the spectral variability that
originally existed among species.

4.2.2. Feature importance

Feature importance was performed to assess whether relevant
spectral features for discriminating seven species (Table 1) were pre-
served in simulations. This result was confirmed by the similar patterns
of the MDG obtained with simulated and measured data (Fig. 7). The RF
algorithm used a limited amount of spectral information to differentiate
among species. Such information was concentrated at approximately
525 nm and 725 nm and was preserved in the simulations, despite the
observed shape differences between simulated and measured re-
flectances (Fig. 6). This result suggested that the spectral similarity
measure used to compare simulated and measured data was suitable.

4.3. Sub-pixel fraction differences among species

After performing the spectral mixture analysis to obtain subpixel
fractions for each ITC, we found that the proportion of NPV, GV and

Fig. 6. Violin plots of the distribution of the spectral angle (Eq. (1)) between
measured reflectances of the species and their simulated counterparts. The
black dot within each violin plot represents the mean. The vertical lines above
and below the mean show±1SD. The width of the violin plots represents
frequency. Length refers to the range of variation.

Table 3

Spectral angle (in degrees) computed within (highlighted in bold) and among
species based on measured data. Full species names are provided in Table 1.

Measured data

AP AG CL CP DS HC PL

Measured data AP 1.75

AG 2.01 1.77

CL 1.79 1.93 1.06

CP 2.00 2.07 2.51 1.62

DS 3.30 3.56 2.28 4.21 1.40

HC 2.56 2.71 1.70 3.34 1.98 1.90

PL 2.66 2.20 3.14 1.96 4.98 4.01 1.17

Table 4

Spectral angle (in degrees) computed within (highlighted in bold) and among
species for simulated and measured data. Full species names are provided in
Table 1.

Simulated data

AP AG CL CP DS HC PL

Measured data AP 0.80

AG 2.12 0.76

CL 1.93 2.01 0.79

CP 2.12 2.14 2.56 0.87

DS 3.22 3.48 2.22 4.12 0.95

HC 2.61 2.73 1.79 3.37 2.10 0.81

PL 2.39 2.00 2.87 1.85 4.73 3.76 1.05
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shade varied among the seven species (Fig. 8). The species showed the
highest separability on the NPV fraction in which only two were not
statistically significantly different (Kruskal-Wallis test p-value> 0.05).
The highest NPV fraction values were observed in Diatenopteryx sorbi-

folia, Hymenaea courbaril and Cariniana legalis, reaching on average
0.31, 0.30 and 0.24, respectively. For the GV fraction, four out of seven
species showed statistically significant differences, with Croton pipto-

calyx corresponding to the highest value (mean of 0.62). Conversely,
this species showed the lowest shade fraction values (0.4), while the
highest ones were observed in Diatenopteryx sorbifolia and Cariniana

legalis (0.71 and 0.67, respectively). Considering ITCs for all species, an
inverse pattern was found between the GV and shade fractions (Fig. 9a)
and a positive relationship was found between shade and NPV (Fig. 9b),
indicating that the crown's shaded areas were attributed to NPV.

4.4. LUT inversion

4.4.1. Relationships between subpixel fractions and DART canopy

structural parameters

The DART canopy structural parameters that yielded simulations
that were similar to measured data (smallest θ values; Eq. (1)) were
related to subpixel fractions of NPV, GV and shade, which were esti-
mated for each ITC using a spectral mixture analysis of imaging spec-
troscopy data (Fig. 10). The DBV and the DLV were positively related to
the proportions of NPV and GV within the crowns, respectively
(Fig. 10a,b). Conversely, the pVoxels was negatively related to the
shade fraction (Fig. 10c). A small value of pVoxels meant a high pro-
portion of empty voxels within the simulated tree crown, which in-
creased the frequency of gaps and internal-crown shadows. The DBV
and DLF parameters controlled, respectively, the proportion of non-
photosynthetic (branches) and green photosynthetic (leaves) material
within the simulated tree. Strong positive relationships between these
parameters and the NPV and GV fractions computed for measured ITCs
(Fig. 10a,b) showed that model parameters obtained by inversion were
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Fig. 7. Importance of the visible/near-infrared bands by MDG for discriminating trees of seven species using (a) measured reflectances of individual tree crowns
(ITCs) and (b) their simulated counterparts. MDG was computed 100 times with a balanced training set with the spectral response of ten ITCs randomly selected per
species. ITCs changed at each realization. The mean spectral response of Croton piptocalyx is plotted for clarity in (a) and (b).

Fig. 8. Notched boxplots showing the variability of subpixel fractions among individual tree crowns of seven species (Table 1). (a) Non-photosynthetic vegetation
fraction, (b) green vegetation fraction and (c) shade fraction. The central lines within each box are the medians, and the black dots are the means. The upper and
lower quartiles are represented by the boxes' edges. The Kruskal-Wallis test (Theodorsson-Norheim, 1986) was performed to assess differences among species. The
global p-values of the Kruskal-Wallis test are shown in the lower left corner of each panel, while the resulting p-values from multiple comparisons are represented
above each boxplot. ‘ns’=non-significant (p-value> 0.05); ‘*’: p-value ≤0.05; ‘**’: p-value ≤0.01; ‘***’: p-value ≤0.001 and ‘****’: p-value ≤0.0001.
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realistic.

4.4.2. Relationships between vegetation indices and DART canopy foliar

parameters

Inversion of DART simulations (Section 3.5.1) revealed that canopy
foliar parameters were related to vegetation indices that were com-
puted with the imaging spectroscopy bands for each ITC (Fig. 11). The
data points of the scatter plots in Fig. 11 represented the mean values
(and respective standard deviations) of the Cab and Cxc parameters
yielding the 20most similar (smallest θ values; Eq. (1)) simulated re-
flectances to each measured reflectance. The standard deviation varied
from 5.8 to 9.4 μg·cm−2 for Cab and from 1.6 to 2.3 μg·cm−2 for Cxc.
Previous studies showed that TCARI/OSAVI and R515/R570 were nega-
tively related to Cab and Cxc, respectively (Zarco-Tejada et al., 2013;
Hernández-Clemente et al., 2012). The relationship between these in-
dices and DART parameters obtained by inversion revealed that LUT
entries underlying simulations were valid.

The Cab varied from 34.2 to 78.6 μg·cm−2, with Pachystroma long-

ifolium reaching the highest values (mean of 76.4 μg·cm−2) (Fig. 12a).
Cxc varied from 14.6 to 18.8 μg·cm−2, with lowest and highest mean
values attributed to Hymenaea courbaril (mean of 16.2 μg·cm−2) and
Croton piptocalyx (mean of 17.9 μg·cm−2), respectively. In general,
pigment concentration among ITCs of a given species was highly

variable, except for Pachystroma longifolium, in which the difference
between the upper and lower quartiles was only 1.4 μg·cm−2 for Cab

(Fig. 12a) and 0.2 μg·cm−2 for Cxc (Fig. 12b).

4.4.3. Map of structural and chemical traits

An example map of the structural and chemical traits obtained by
inversion of the DART model on sunlit imaging spectroscopy pixels is
displayed in Fig. 13. Photographs taken in the field of representative
trees corroborated the results of model inversion. For example, Croton
piptocalyx featured a fully foliated crown (Fig. 13a) and a high density
of leaves per voxel (Fig. 13e). Conversely, the density of branches per
voxel was low in this species (Fig. 13d). Cariniana legalis usually has
large crowns (> 20m in diameter), low leaf cover and exposed bran-
ches (Fig. 1 and Fig. 13a). These characteristics agreed with inversion
results that showed high densities of branches and low densities of
leaves per voxel for Cariniana legalis ITCs.

5. Discussion

5.1. Simulation of the spectral response of ITCs

The sensitivity analysis provided a general overview of the influence
of each DART parameter on the simulated reflectance, which was

Fig. 9. Relationships between the shade fraction with the green vegetation fraction (a) and with the non-photosynthetic vegetation fraction (b) for each tree crown
(black dots). Sub-pixel fractions were obtained by spectral mixture analysis of the imaging spectroscopy data.

Fig. 10. Relationships between DART canopy structural parameters and subpixel fractions estimated with spectral mixture analysis of the imaging spectroscopy data.
(a) Relationship between the non-photosynthetic vegetation fraction (NPV) and the density of branches per voxel (DBV). (b) Relationship between the green
vegetation fraction (GV) and the density of leaves per voxel (DLV). (c) Relationship between the shade fraction (SF) and the proportion of full voxels within the tree
crown (pVoxels).
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important for assessing the 3D radiative transfer approach employed.
For example, Malenovský et al. (2013) showed that the most suitable
spectral region for the retrieval of canopy chlorophyll was located be-
tween 550 nm and 750 nm. The sensitivity analysis revealed that top of
canopy reflectances in this spectral range were highly affected by sys-
tematic changes in the Cab parameter (Fig. 5). This result meant that the
simulation framework correctly modeled variations in canopy re-
flectance caused by chlorophyll content. Similarly, sensitivity analysis
results showed that the Cxc parameter influenced the simulated canopy
reflectance at approximately 525 nm (Fig. 5). The role played by leaf
carotenoids on reflectance at this waveband has been demonstrated in
previous works (e.g., Gitelson et al., 2002; Zarco-Tejada et al., 2013).
Moreover, from the leaf level, canopy reflectance was sensitive to
variations on N and Cm (Fig. 5), which supported the findings of Xiao
et al. (2014).

The observed influence of canopy structural parameters was also
corroborated by the literature. The DBV parameter increased re-
flectance when its value decreased to approximately zero (Fig. 5),
which is a pattern that was also verified by Asner (1998) when

observing the effects of woody stem material on canopy reflectance.
Malenovský et al. (2008) studied the influence of woody elements on
DART-simulated canopy reflectance and found that high light absor-
bance by woody elements decreased NIR reflectance, which agreed
with the DBF pattern observed here. The DLF and LAD parameters also
affected canopy reflectance, particularly in the NIR domain (Fig. 5),
which concurred with previous study results (Asner, 1998; Schneider
et al., 2014).

The impact of the pVoxels was noteworthy. When it reached 100%,
which meant the crown had no empty voxels, the reflectance values
increased. This result was expected because a higher number of voxels
filled with foliage and woody material enhanced multiple scattering
and increased the amount of radiance leaving the crown.

The shape differences between measured reflectances and their si-
mulated counterparts did not exceed 1.5° in spectral angle (Fig. 6).
These differences did not significantly impact either the spectral
variability or relevant spectral regions for species discrimination
(Fig. 7), which also confirmed that the spectral angle was a suitable
measure of spectral similarity.

Fig. 11. (a) Relationship between the TCARI/OSAVI ratio (Eqs. (2) and (3)) computed from imaging spectroscopy and chlorophyll a+ b (Cab) content obtained by
inversion of the DART model. (b) Relationship between the R515/R570 ratio computed from imaging spectroscopy and carotenoid (Cxc) content obtained by inversion
of the DART model. Each point represents the mean (and associated± 1SD bars) of the Cab or Cxc parameter that yielded the 20most similar simulated reflectances to
each measured reflectance of the individual tree crowns.

Fig. 12. Notched boxplots showing variable (a) chlorophyll a+ b (Cab) and (b) carotenoids (Cxc) contents in individual tree crowns of seven species (Table 1)
obtained by inversion of the DART model on imaging spectroscopy data. The central line within each box represents the median, and the black dots are the means.
The upper and lower quartiles are represented by the edges of the boxes. The Kruskal-Wallis test was performed to assess differences among species. The global p-
values of the Kruskal-Wallis test are shown in the lower left corner of each panel, while the resulting p-values from multiple comparisons are represented above each
boxplot. ‘ns’=non-significant (p-value> 0.05); ‘*’: p-value ≤0.05; ‘**’: p-value ≤0.01; ‘***’: p-value ≤0.001 and ‘****’: p-value ≤0.0001.
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The feature importance procedure (Section 3.4.2) revealed that
bands located approximately at 525 nm and 725 nm provided in-
formation to classify the species. Previous research showed that these
wavelengths were useful for retrieving leaf biochemical pigments (e.g.,
Gitelson et al., 2002; Malenovský et al., 2013), particularly carotenoids
and chlorophylls, suggesting that they might drive species discrimina-
tion. However, further investigation was required to better assess the
utility of the selected bands because they may differ depending on the
machine learning algorithm used (Fassnacht et al., 2016). Here, the

feature importance measure of random forest was employed only to
verify whether relevant spectral features were preserved in simulations.
Even if other bands were selected by another method, spectral regions
recognized as relevant to separate the species were expected to remain
largely unchanged when simulated and measured data were compared.

The simulation framework employed in this work was based on
assumptions regarding crown architecture, understory vegetation,
branch optical and leaf structural properties. Architecture refers to the
overall shape of the crown and the spatial distribution of its elements

Fig. 13. Maps of chemical and structural traits of individual tree crowns obtained by inversion of the DART model on sunlit imaging spectroscopy pixels. (a) True
color composition of the imaging spectroscopy data (R=638 nm; G=548 nm; B=460 nm) and photographs of Croton piptocalyx and Cariniana legalis taken in the
field (photos credit: M. P. Ferreira); (b) Chlorophyll a+ b content; (c) Carotenoid content; (d) Density of leaves per voxel; and (e) Density of branches per voxel.
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(e.g., branching pattern and foliage arrangement). The crown archi-
tecture of a tropical tree is complex and depends on several factors,
such as its position in the forest canopy, neighboring trees, species and
height (Poorter et al., 2006). Understory vegetation is characterized by
juveniles of canopy trees and a wide range of small trees, shrubs and
herbs in all life stages (Wright, 2002). In the tropics, leaves often have
specular reflectance caused by wax layers or trichomes, which sig-
nificantly influence the reflectance spectra (Levizou et al., 2005). Ad-
ditionally, bark properties vary due to structural differences among
species (presence of cavities and lenticels) or external influences such as
lichen cover (Clark, 2009).

In our study, the simulated tropical tree featured a simple crown
architecture defined by a round shape and a diameter of 10m (Section
3.2.1). The branching pattern and foliage arrangement were modeled
using structural parameters such as DBF, DLV, LAD and pVoxels. The
optical properties of understory vegetation and branches were set using
a standard vegetation spectrum from the DART database and a mea-
sured bark spectrum, respectively. Leaves were assumed to be Lam-
bertian surfaces on which incidental light was equally reflected in all
directions. These assumptions tended to be over-simplistic for highly
diverse tropical forests, but they were necessary to model these com-
plex environmental radiation fields, particularly when field information
was limited or not available. Future work involves incorporating the
spectral response of different types of branches and understory vege-
tation in the simulation framework. We also intend to associate a
specular component with simulated radiation reflected by leaf surface
types. Moreover, terrestrial laser scanning and high-resolution images
acquired by unmanned aerial vehicles (UAVs) could be used to char-
acterize crown architecture (e.g., Morsdorf et al., 2018).

5.2. Retrieval of chemical and structural properties

Our first hypothesis was that the simplified 3D RTM approach em-
ployed, when combined with imaging spectroscopy data, can be used
for the retrieval of structural and chemical properties of individual
trees. This notion was supported by the LUT inversion results (Section
4.4). Subpixel fractions were strongly related to DART canopy struc-
tural parameters obtained by inversion (Fig. 10). Previous investiga-
tions have shown that subpixel fractional abundance of GV, NPV and
shade were correct proxies for canopy structure (Clark, 2005; Bohlman,
2008; Huesca et al., 2016), as they were related to the green leaves,
bark and roughness of the crown, respectively. DART canopy foliar
parameters obtained by inversion were related to narrow-band vege-
tation indices (Fig. 11). These indices were designed and validated
specifically to retrieve biochemical compounds. TCARI/OSAVI proved
useful for canopy chlorophyll retrieval in a range of vegetation types
(Haboudane et al., 2002; Albrechtova et al., 2008; Zarco-Tejada et al.,
2013), whereas the capacity of the R515/R570 index to estimate leaf
carotenoid content was demonstrated by Hernández-Clemente et al.
(2012) and Zarco-Tejada et al. (2013).

By relating subpixel fractions and narrow-band vegetation indices
(derived from the imaging spectroscopy data) to DART parameters
(obtained by inversion), we proved that model parameterization un-
derlying simulations of the spectral response of ITCs is rather realistic.
We recognize, however, that a straightforward validation is required to
assess the accuracy of the inversions. This result can be achieved solely
with field and imaging spectroscopy data acquired synchronously, be-
cause of the rapid changes in the ITCs' biochemical and biophysical
properties.

The robustness of simulations was also corroborated by field ob-
servations of individual trees, as shown in Fig. 13. The true color
composition of the imaging spectroscopy data revealed a high diversity
of colors (Fig. 13a), which were related to spectral differences arising
from vegetation biochemical and biophysical properties. Croton pipto-

calyx showed vivid green tones due to its fully leaved crown. Con-
versely, ITCs of Cariniana legalis were characterized by purplish tones

caused by low leaf cover and a high proportion of exposed branches.
These characteristics agreed with results of model inversion that
showed high DLV and DBV for Croton piptocalyx and Cariniana legalis,
respectively. More research is needed to understand the physical
meaning of these parameters and their relation to known biophysical
variables, such as LAI and PAI.

Our study was based on imaging spectroscopy data acquired in the
VNIR. Nevertheless, important plant properties could be retrieved from
shortwave infrared (SWIR, 1000–2500 nm) reflectance. In a recent
work performed in the study area, Ferreira et al. (2016) showed that
SWIR information increased the classification accuracy of the species by
up to 10%. The authors highlighted the relevance of bands centered at
1700 nm and at approximately 2100 and 2300 nm, which were related
to the concentration of non-pigment biochemical constituents such as
nitrogen, cellulose and lignin. An additional interesting research op-
portunity would be to test the developed simulation framework on
imaging spectroscopy data acquired in the SWIR. This process could
better characterize the spectral response of the ITCs and possibly reduce
the ill-posed problem of model inversions. Moreover, the retrieval
might be possible of important canopy foliar traits such as the
equivalent water thickness and specific leaf area.

Some issues might arise when simulating remote sensing data in the
SWIR. For example, the signal-to-noise ratio in this spectral region was
lower than in the VNIR due to effects of atmospheric water vapor ab-
sorption. Moreover, the solar radiance is weaker from short to long
wavelengths, thereby reducing the signal measured by the sensor in the
SWIR. Such effects could alter the spectral shape, which impacted the
comparison between simulated and measured reflectance. Finally,
VNIR and SWIR data should be acquired with a single optics imager to
avoid distortions in the reflectance spectrum caused by two detector
arrays and instantaneous fields of view (IFOVs).

5.3. Differences in imaging spectroscopy subpixel fractions among species

The proportions of GV, NPV and shade estimated within ITCs varied
among the investigated species (Fig. 8). Such differences could be ex-
plained by the crown architecture. For example, Cariniana legalis and
Hymenaea courbaril showed high NPV fraction values (Fig. 8a). Field
observations (Fig. 1) revealed that these species usually feature large
crowns (> 15m in diameter) with thick branches emerging from the
main tree stem. This feature, combined with the low leaf density, made
the spectral response of such branches more prone to being detected by
the imaging spectroscopy sensor, thereby increasing the NPV fraction of
these species. The presence of large branches also contributed to the
amount of internal-crown shadows, producing high shade fraction va-
lues (Fig. 8c).

Diatenopteryx sorbifolia was another species featuring high NPV
fraction values. The species was found in a monospecific patch in the
study area, with trees forming a well-defined deciduous canopy 25 to
30m high (Nave, 1999). During the dry season, leaf cover was low, and
the sparse and short (< 4m tall) understory layer allowed detection of
reflected sunlight from the forest floor, which was composed mainly of
litter (non-photosynthetic material). Aspidosperma polyneuron, Astro-

nium graveolens and Croton piptocalyx showed the highest GV fraction
values (Fig. 8b). This result was usually related to the fully foliated
crowns of these species, as revealed by field observations (Fig. 1). These
species also presented intense leaf flushing during the dry season
(Morellato, 1991), particularly Croton piptocalyx and Astronium grave-

olens, which explained the high variability of the GV fraction among
ITCs.

Differences in canopy chemical traits among species were also ob-
served (Fig. 12). Most interestingly, Pachystroma longifolium showed a
very peculiar pattern, reaching high Cab values (Fig. 12a) with rela-
tively low variability. This result probably arose from its dark green
leathery leaves with high chlorophyll contents (Alcalá, 2010). More-
over, Pachystroma longifolium is an evergreen species that forms dense
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monospecific patches over the study area (Gandolfi et al., 2007). The
other species showed highly variable pigment concentrations among
ITCs, which challenged our ability to separate them based only on these
traits.

As detailed above, species-related differences in imaging spectro-
scopy subpixel fractions were driven by crown architectural char-
acteristics, supporting our second hypothesis. The number of species
investigated in our study was limited in comparison to the number of
species found in the area (> 100 per hectare). Moreover, the high
plasticity of structural and chemical traits among ITCs of a given species
made their separation based on traits (either structural or chemical)
very unlikely. However, as noted by Fassnacht et al. (2016), most stu-
dies focused on improving the classification accuracy without ex-
amining the vegetation traits that cause variations on the remote sen-
sing signal and, thereby, enable species detection. The use of imaging
spectroscopy data could be improved by understanding vegetation
traits that affect species discrimination. For example, airborne acqui-
sitions can be scheduled to a given season when the target species are
more prone to be detected (i.e., with the presence or absence of leaves).
Here, we showed that crown architecture and branching pattern in-
fluence the NPV fraction and are important traits for identifying
emergent trees such as Cariniana legalis and Hymenaea courbaril, two
endangered species logged heavily due to their high wood quality.

6. Conclusions and outlook

In this study, we tested the capacity of a simplified 3D radiative
transfer approach—based on assumptions regarding crown archi-
tecture, understory vegetation, branch optical and leaf structural
properties—to simulate the spectral response and retrieve structural
and chemical traits of individual trees from a highly diverse tropical
forest area. The observed variations in the simulated canopy re-
flectance, which were caused by systematic changes in DART para-
meters (one at a time sensitivity analysis), were corroborated by the
literature. Measured reflectance from 268 ITCs gathered from seven
species showed small differences from their simulated counterparts.
Such differences impacted neither the spectral variability nor spectral
regions recognized as important for species discrimination. Therefore,
the spectral angle used to compare simulated and measured reflectance
proved to be a useful criterion of spectral similarity. Simulation realism
was assessed by comparing model parameters obtained by inversion to
imaging spectroscopy subpixel fractions and narrow-band vegetation
indices. Our findings revealed that species-related differences in the
proportion of NPV, GV and shade are driven by crown architectural
characteristics.

The methodology developed in this study for the retrieval of canopy
structural and chemical traits could be applied to other areas in which
high-resolution imaging spectroscopy data are available. The simula-
tion framework was designed to reproduce the spectral response of the
canopy at the ITC level. Thus, the spatial resolution of the imaging
spectroscopy data should be sufficient to comprise several pixels within
the tree crowns. Soon, the methodology will be applied to imaging
spectroscopy data acquired using a UAV. These platforms are capable of
collecting images featuring a submetric spatial resolution. Tree crown
delineation algorithms can be applied to images to improve the spectral
signatures of tree species by reducing spectral mixing effects.

Finally, the presented approach has the potential for mapping
functional diversity over large areas. Functional diversity can be mea-
sured by combining multiple functional traits (e.g., Schneider et al.,
2017), such as photosynthetic pigments (chlorophylls and carotenoids),
and are key to understanding ecosystem functioning. For example,
photosynthetic pigments play a prominent role in the production of
carbohydrates in the leaves, since they are responsible for light capture
and utilization. Plants are able to accumulate carbohydrates in the form
of woody tissues in a process known as terrestrial net primary pro-
duction (NPP), which has a significant role in the global carbon cycle

(Ito, 2011).
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