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The nowadays notable development of all the modern technology, fundamental for the progress and well

being of world society, imposes a great deal of stress in the realm of basic Physics, more precisely on Thermo-

Statistics. We do face situations in electronics and optoelectronics involving physical-chemical systems far-

removed-from equilibrium, where ultrafast (in pico- and femto-second scale) and non-linear processes are

present. Further, we need to be aware of the rapid unfolding of nano-technologies and use of low-dimensional

systems (e.g., nanometric quantum wells and quantum dots in semiconductor heterostructures). All together

this demands having an access to a Statistical Mechanics being efficient to deal with such requirements. It is

worth noticing that the renowned Ryogo Kubo once stated that “statistical mechanics has been considered a

theoretical endeavor. However, statistical mechanics exists for the sake of the real world, not for fictions. Fur-

ther progress can only be hoped by close cooperation with experiment”. Moreover, one needs to face the study

of soft matter and fluids with complex structures (usually of the average self-affine fractal-like type). This is

relevant for technological improvement in industries like, for example, that of polymers, petroleum, cosmetics,

food, electronics and photonics (conducting polymers and glasses), in medical engineering, etc. It is then re-

quired to introduce a thermo-hydrodynamics going well beyond the classical (Onsagerian) one. Moreover, in

the both type of situations above mentioned there often appear difficulties of description and objectivity (ex-

istence of so-called “hidden constraints”), which impair the proper application of the conventional ensemble

approach used in the general, logically and physically sound, and well established Boltzmann-Gibbs statistics.

A tentative to partially overcome such difficulties consists in resorting to non-conventional approaches. Here

we briefly describe the construction of a Non-Equilibrium Statistical Ensemble Formalism (NESEF) that can

deal, within a certain degree of success, with the situations above described. Several particular instances involv-

ing experimental observations and measurements in the area of semiconductor physics and in physics of fluids,

which were analyzed in the context of the theory, are summarized. They comprise the cases of ultrafast optical

spectroscopy; optical and transport processes in low-dimensional complex semiconductors; nonlinear transport

in doped highly-polar semiconductors (of use in “blue diodes”) under moderate to high electric fields; nonlinear

higher-order thermo-hydrodynamics in fluids under driven flow, in normal solutions and in complex situations

as in solutions of polymers, micelles, DNA, and in microbatteries.

Keywords: statistical physics; irreversible thermodynamics; science and society

I. INTRODUCTION

It can be noticed that at the present moment, in what some

authors call the “Third Industrial Revolution”, or others argue

that it is a large evolution of the “Second Industrial Revolu-

tion”, the notable development of the so-called “first point

technologies” (or “advanced modern technologies”) and the

accompanying intense R&D (research and development), ask

for Physics to bring to the forefront the Physics of Systems

far-away-from Equilibrium [1-4] (the condition of function-

ing of many systems), and with it the Physics of Non-Linear

Processes [5-7]. Nonlinearity (in the kinetic equations pro-

viding the evolution laws of the macroscopic state of the sys-

tem) comes to have a relevant role, and with it enters into

play the disciplines of Synergetic and Self-Organization [8,9]

associated to systems with complex behavior (for short, com-

plex systems); namely, formation of coherent structures orga-

nized at a macroscopic level (space, time, or functional orga-

nization), as it is the case of the omnipresent laser or life in

the biosphere [10,11]. Finally, it needs be also considered the

Mesoscopic Physics [12-16], necessary to deal with processes

in nanometric scale in space and femto-second scale in time

[17-22], the case of the so-called fractal structures [23], the

emerging area of soft matter [24], and so on.

Thus, the nowadays notable development of all the mod-

ern technologies, fundamental for the progress and well be-

ing of world society, posses, a great deal of stress in the

realm of basic Physics, more precisely on Thermo-Statistics.

We do face situations in electronics and optoelectronics in-

volving physical-chemical systems far-removed-from equi-

librium, where ultrafast (in pico- and femto-second scale)

and non-linear processes are present. Further, we need to

be aware of the rapid unfolding of nano-technologies and

use of low-dimensional systems (e.g., nanometric quantum

wells and quantum dots in semiconductors heterostructures).

All together this demands having an access to a Statistical

Mechanics being efficient to dea1 with such requirements.

Moreover, one needs to face the study of soft matter and

fluids with complex structures (usually of the average self-

affine fractal-like type). This is relevant for technological im-

provement in industries like, for example, that of polymers,

petroleum, cosmetics, food, electronics and photonics (con-

ducting polymers and glasses), in medical engineering, etc.

It is then required to introduce a thermo-hydrodynamics go-

ing well beyond the classical (Onsagerian) one. In the both

type of situations above mentioned there often appear diffi-

culties of description and objectivity (existence of so-called
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“hidden constraints”), which impair the proper application of

the conventional ensemble approach used in the general, log-

ically and physically sound, and well established Boltzmann-

Gibbs statistics. A tentative to partially overcome such diffi-

culties consists in resorting to non-conventional approaches.

In addition, the present technological moment, and commer-

cial interest, claims for miniaturization of devices, and then

this rises the question if our comprehension of the physics of

devices and their functioning can be extrapolated to the ultra-

small and ultra-short scales, in space and time respectively. It

is Statistical Mechanics (or Thermo-Statistics) that provides

the basic scientific foundations to the above questions, more

precisely, Nonequilibrium Statistical Mechanics whose evo-

lution we describe in next Section. It is followed by a brief

description of the construction of a Non-Equilibrium Statisti-

cal Ensemble Formalism (NESEF) that can deal with the situ-

ations above mentioned. Particularly, it has been applied with

success in the cases of ultrafast optical spectroscopy; optical

and transport processes in low-dimensional complex semi-

conductors; nonlinear transport in doped highly-polar semi-

conductors (of use in “blue Diodes”) under moderate to high

electric fields; nonlinear higher-order thermo-hydrodynamics

in fluids under driven flow, in normal solutions and in com-

plex situations as in solutions of polymers, micelles, DNA,

and in microbatteries.

II. NONEQUILIBRIUM STATISTICAL MECHANICS

Back in 1979 Oliver Penrose [25] stated that Statistical

Mechanics is notorious for conceptual problems to which it

is difficult to give a convincing answer. This notwithstand-

ing, Statistical Mechanics for systems in equilibrium pro-

vides – via Gibb’s ensemble algorithm – an extraordinarily

precise description of large physical systems. When a quite

few experimental measurements (which, it is recalled, are of a

macroscopic character) are available to define the state of the

system, generally information associated to constants of mo-

tion, the description advocated by Gibbs provides results that

are impressive. Nowadays the development of sophisticated

mathematical techniques allow us to calculate in detail the

contribution of the interactions between the particles to the

physical properties of the system. In this way the essential

characteristics of the systems in equilibrium are well under-

stood. However, the situation is at present not so glossy in the

case of systems far-away-from equilibrium.

Let us recall that what Gibbs called, for the first time,

Statistical Mechanics [26] is a careful and brilliant theoret-

ical construction of a large scope that superseded the kinetic

theory of the nineteenth century. Gibbs’s theory looks, on

the one side, for an acceptable and fundamental foundation,

on microscopic basis, of phenomenological thermodynamics

in its both aspects, namely, the physical and the conceptual.

However, on the other side, it went beyond that, trying to de-

scribe all the macroscopic physical properties of matter from

a microscopic level by also providing foundations to response

function theory. Moreover, related to this, there is in a sense

another objective that can be denominated as the inverse prob-

lem, that is, to built microscopic models for the description of

the underlying dynamics that may lead to the prediction of

macroscopic observables, trying ways to test such models of

microscopic interactions.

The construction of the truly successful Gibbs method is

usually described in the textbooks on the subject in a scheme

that we may call as orthodox: Basically, deterministic and re-

versible mechanics (based in the classical case on the notion

of well defined trajectories in phase space and integrability,

and in the quantum case on the state evolution governed by

Schrödinger equation) is accompanied with a component bor-

rowed from probability theory together with ad hoc hypothe-

ses as the principle of macroscopic reproducibility and that of

equal a priori probabilities for the isolated system, in order

to built the basic ensemble known as the microcanonical one,

from which the others are derived.

Probability theory appears to be an “inexorable” necessity

in any construction with which we may be trying to describe

phenomena at the macroscopic level. Richard Feynman has

stated [27] that, it is not our ignorance of the internal gears,

of the internal complications, that makes nature to have prob-

ability in it. It seems to be somehow intrinsic; Nature herself

does not even know which way a system is going to go. Later

on Jacob Bronowski advanced the idea that [28]

“this is the revolutionary thought in modern science. It replaces

the concept of the inevitable effect by that of the probable trend.

Its technique is to separate so far as possible the steady trend from

local fluctuations. The future does not already exist; it can only be

predicted”.

Bronowski and others have emphasized the concept of

probability as seemingly fundamental to the development of

the science thought. And this seems to go well beyond the

field of the natural sciences, including also the sociocultural

ones, because it appears to be a concept fundamental to the

scientific study of any type of dynamic systems, let it be

physical, chemical, biological, ecological, economic, histor-

ical, archeological, social, etc. As a political scientist put

it, we are evolving towards a world that is more complex,

with more freedom, more diversity, with more possibilities of

change, and, consequently, less stability. In fact, again fol-

lowing Bronowski: “The different branches of science may seem

so far apart only because we lack the common method on which they

grow and which holds them together organically [...] The statistical

concept of chance may come as dramatically to unify the scattered

pieces of science future [...] We are on the threshold of another sci-

entific revolution. The concept of natural law is changing”. [28]

It is generally considered that the aim of Statistical Me-

chanics of many-body systems away from equilibrium is to

determine their thermodynamic properties, and the evolution

in time of their macroscopic observables, in terms of the dy-

namical laws which govern the motion of their constitutive

elements. This implies, first, in the construction of an irre-

versible thermodynamics and a thermo-hydrodynamics (the

latter meaning the particle and energy motion in fluids, rhe-

ological properties, etc., with the transport coefficients de-

pending on the macroscopic thermodynamic state of the sys-

tem). Second, we need to face the all-important derivation

of a generalized nonlinear quantum kinetic theory and a re-

sponse function theory, which are of fundamental relevance

to connect theory with observation and experiment, basic for

the corroboration of any theory (e.g. Ref. [29]), that is, the

aspect of synthesis in the scientific method born in the seven-

teenth century.

As stated at the beginning of this section, Oliver Penrose
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[25] has noted that Statistical Mechanics is notorious for con-

ceptual problems to which is difficult to give a convincing

answer, which are, mainly:

• What is the physical significance of a Gibbs’ ensemble?

• How can we justify the standard ensembles used in

equilibrium theory?

• What are the right ensembles for nonequilibrium?

• How can we reconcile the reversibility of microscopic

mechanics with the irreversibility of macroscopic be-

havior?

Moreover, related to the case of many-body systems out

of equilibrium, Ryogo Kubo, in the opening address in the

Oji Seminar [30], told us that statistical mechanics of non-

linear phenomena is just in its infancy and further progress

can only be hoped by closed cooperation with experiment.

Some progress has been achieved since then, and we try in

this paper to describe some attempts in the direction to pro-

vide a path for one particular initial programme to face the

questions posited above.

In the study of the macroscopic state of nonequilibrium

systems we face greater difficulties than those in the theory

of equilibrium systems. This is mainly due to the fact that a

more detailed analysis is necessary to determine the temporal

dependence of measurable properties, and to calculate trans-

port coefficients which are time-dependent (that is, depend-

ing on the evolution in time of the nonequilibrium macrostate

of systems where dissipative processes are unfolding), and

which are also space dependent. That dependence is non-

local in space and non-instantaneous in time, as it encom-

passes space and time correlations. Robert Zwanzig [2] has

summarized the basic goals of nonequilibrium statistical me-

chanics as consisting of:

1. To derive transport equations and to grasp their struc-

ture;

2. To understand how the approach to equilibrium occurs

in natural systems;

3. To study the properties of the steady state; and

4. To calculate the instantaneous values and temporal

evolution of the physical quantities which specify the

macroscopic state of the system.

Also according to Zwanzig, for the purpose to face these

questions there exist several approaches which can be classi-

fied as:

(a) Intuitive techniques;

(b) Techniques based on the generalization of the kinetic the-

ory of gases;

(c) Techniques based on the theory of stochastic processes;

(d) Expansions from an initial equilibrium ensemble;

(e) Generalizations of Gibbs’ ensemble formalism;

and nowadays we should also include

(f) Computational Modelling Methods.

The last two are presently the most favorable approaches

for providing very satisfactory methods for dealing with

nonequilibrium system in general situations.

The Nonequilibrium Molecular Dynamics (NMD) is a

computational method created for modelling physical sys-

tems at the microscopic level, in time and distance, being a

good technique to study the molecular behavior of several

physical processes [31]. Together with the so-called Monte

Carlo method are part of what is know as Numeric Simula-

tion Methods (e.g. [32]), or Computational Physics (which

is to be added to the old classification of Experimental and

Theoretical Physics) [33].

NMD is a method used for the study of properties of matter

in which the direct integration of the dynamic equations of

motion of the many-body system is done. The first numerical

simulation is due to Alder and Wainwright [34], done for a

system of hard spheres. Years later Rahman solved the case of

molecules interacting through a Lenard-Jones potential [35].

Later on Car and Parrinello largely improved the approach in

what is dubbed as ab initio molecular dynamics [36,37]. Here

classical and quantum dynamics are coupled in such a way

that it is possible to extend the simulation to systems which

are of difficult modelation.

The other approach, which we favor here, is the one of

item (e) above, i.e. connected with Penrose’s question stated

previously concerning if there are, and which are, right en-

sembles for nonequilibrium problems. In the absence of a

Gibbs-style ensembles approach, for a long time different ki-

netic theories were used, with variable success, to deal with

the great variety of nonequilibrium phenomena occurring in

physical systems. An approach for constructing a Nonequi-

librium Statistical Ensemble Formalism (NESEF for short),

which appears to provide grounds for a general prescription

to choose appropriate ensembles for nonequilibrium systems,

is briefly described in next Section. The formalism has an

accompanying nonlinear quantum transport theory of a large

scope (which encompasses as particular limiting cases Boltz-

mann’s and Mori’s approaches and in its general form pro-

vides far-reaching generalization of them), a response func-

tion theory for arbitrarily-away-from equilibrium systems, a

statistical thermodynamics (the so-called Informational Sta-

tistical Thermodynamics), and an accompanying higher-order

thermo-hydrodynamics.

NESEF appears as a very powerful, concise, based on

sound principles, and elegant formalism of a broad scope

to deal with systems arbitrarily away from equilibrium.

Zwanzig sated that the formalism “has by far the most appeal-

ing structure, and may yet become the most effective method

for dealing with nonlinear transport processes” [2].

Later developments have confirmed Zwanzig’s prediction.

The present structure of the formalism consists in a vast ex-

tension and generalization of earlier pioneering approaches,

among which we can pinpoint the works of Kirkwood [38],

Green [39], Mori-Oppenheim-Ross [40], Mori [41], and

Zwanzig [42]. NESEF has been approached from different

points of view: some are based on heuristic arguments, oth-

ers on projection-operator techniques (the former following

Kirkwood and Green and the latter following Zwanzig and

Mori).
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The formalism has been particularly systematized and

largely improved by the Russian School of statistical physics,

which can be considered to have been initiated by the

renowned Nicolai Nicolaievich Bogoliubov (e.g. see ref.

[43]) and we may also name Nicolai Sergeievich Krylov [44],

and more recently mainly through the relevant contributions

by Dimitrii Zubarev [1,45], Sergei Peletminskii [46,47], and

others. We present in Refs. [3,4,48,49] a systematization,

as well as generalizations and conceptual discussions of the

matter.

It may be noticed that these different approaches to NE-

SEF can be brought together under a unique variational prin-

ciple. This has been originally done by Zubarev and Kalash-

nikov [50], and later on reconsidered in Refs. [3,45]. It

consists on the maximization, in the context of Information

Theory, of Gibbs statistical entropy (that is, the average of

minus the logarithm of the statistical distribution function,

which in Communication Theory is Shannon informational

entropy [51-53]) subjected to certain constraints and includ-

ing non-locality in space, retro-effects, and irreversibility on

the macroscopic level.

Let us briefly describe its foundations and construction (for

a complete in depth presentation see Refs. [3,4]).

III. BRIEF REVIEW OF NESEF

A brief review of the foundations of the Non-Equilibrium

Statistical Ensemble Formalism (NESEF) [1,3,4,40,45-47] is

presented. For such purpose first it needs be noticed that for

systems away from equilibrium several important points need

be carefully taken into account in each case under considera-

tion:

1. The choice of the basic variables (a wholly different

choice than in equilibrium when it suffices to take a

set of those which are constants of motion), which is

to be based on an analysis of what sort of macroscopic

measurements and processes are actually possible, and

moreover, one is to focus attention not only on what

can be observed but also on the character and expec-

tative concerning the equations of evolution for these

variables (e.g. Refs. [2-4]). We also notice that even

though at the initial stage we would need to introduce

all the observables of the system, and eventually vari-

ances, as time elapses more and more contracted de-

scriptions can be used when it enters into play Bogoli-

ubov’s principle of correlation weakening and the ac-

companying hierarchy of relaxation times [54].

2. The question of irreversibility (or Eddington’s arrow of

time) on what Rudolf Peierls stated that: “In any theo-

retical treatment of transport problems, it is important

to realize at what point the irreversibility has been in-

corporated. If it has not been incorporated, the treat-

ment is wrong. A description of the situation that pre-

serves the reversibility in time is bound to give the an-

swer zero or infinity for any conductivity. If we do not

see clearly where the irreversibility is introduced, we

do not clearly understand what we are doing” [55].

3. Historicity needs be introduced, that is, the idea that

it must be incorporated all the past dynamics of the

system (or historicity effects), all along the time inter-

val going from a starting description of the macro-state

of the sample in the given experiment, say at t0, up to

the time t when a measurement is performed. This is

a quite important point in the case of dissipative sys-

tems as emphasized among others by John Kirkwood,

Melvin Green, Robert Zwanzig and Hazime Mori [38-

42].

Concerning the question of the choice of the basic vari-

ables, differently to the case in equilibrium, immediately af-

ter the open system of N particles, in contact with external

sources and reservoirs, has been driven out of equilibrium

it would be necessary to describe its state in terms of all

its observables and eventually, introducing direct and cross-

correlation fluctuations. But, this is equivalent to have access

to the so-called one-particle (or single-particle), n̂1, and two-

particle, n̂2, dynamical operators.

This is so because, we recall, all observable quantities and

their variances can be expressed, at the microscopic mechani-

cal level, in terms of these dynamical operators. For a descrip-

tion of mechanical states by means of these reduced density

operators we refer to the already classical paper by Ugo Fano

[56].

For the sake of completeness, we notice that in classical

mechanics the one particle and two-particle operators, n̂1 and

n̂2 are given, respectively, by

n̂1(r,p) =
N

∑
j=1

δ(r− r j)δ(p−p j), (1)

n̂2(r,p,r′,p′) =
N

∑
j 6=k=1

δ(r−r j)δ(p−p j)δ(r′−rk)δ(p′−pk),

(2)

where r j and p j are the coordinate and linear momentum of

the j-th particle in phase space and r,p, etc., the continu-

ous values of position and momentum, which are sometimes

called field variables (for simplicity we take the case of a sin-

gle class of particles; otherwise we must write dynamical op-

erators for each kind of particle).

In quantum mechanics the one- and two-particle density

operators are (σ is the spin index)

n̂1(r,σ,r′,σ′) = ψ†
σ(r)ψσ′(r′), (3)

n̂2(r1,σ1,r2,σ2,r
′
2,σ

′
2,r

′
1,σ

′
1) = ψ†

σ1
(r1)ψ

†
σ2

(r2)×

ψσ′
2
(r′2)ψσ′

1
(r′1), (4)

where ψ(ψ†) are single-particle field operators in second

quantization (an excellent didactic description of them is

available in the article by B. Robertson of Ref. [57]).

Hence, on the one hand, the non-equilibrium statistical

operator ℜε(t) is dependent on these quantities, and, on

the other hand, the macro-variables for describing the non-

equilibrium thermodynamic state of the system are the av-

erage value of the same quantities over the non-equilibrium

ensemble, i.e.

f1(r,p; t) = Tr{n̂1(r,p)ℜε(t)}, (5)
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f2(r,p,r′,p′; t) = Tr{n̂2(r,p,r′,p′)ℜε(t)}, (6)

in classical mechanics; f1(r,p; t) has the role of a generalized

Boltzmann distribution function and Tr, we recall, stands for

performing the trace operation (integration over phase space

in classical mechanics).

On the question of irreversibility Nicolai S. Krylov [44]

considered that there always exists a physical interaction be-

tween the measured system and the external world that is con-

stantly “jolting” the system out of its exact microstate. Thus,

the instability of trajectories and the unavoidable finite in-

teraction with the outside would guarantee the working of a

“crudely prepared” macroscopic description. In the absence

of a proper way to introduce such effect, one needs to resort

to the so-called interventionist’s approach, which is grounded

on the basis of such ineluctable process of randomization

leading to the asymmetric evolution of the macro-state.

The “intervention” consists into introducing in the Liou-

ville equation of the statistical operator of the otherwise iso-

lated system, a particular source accounting for Krylov’s

“jolting” effect, in the form (written for the logarithm of the

statistical operator)

∂

∂t
lnℜε(t)+

1

i~
[lnℜε(t), Ĥ] = −ε[lnℜε(t)− lnℜ̄ε(t,0)],

(7)

where ε (kind of reciprocal of a relaxation time) is taken to

go +0 after the calculations of average values has been per-

formed. Such mathematically inhomogeneous term, in the

otherwise normal Liouville equation, implies in a continuous

tendency of relaxation of the statistical operators towards a

referential one, ℜ̄, which, as discussed below, represents an

instantaneous quasi-equilibrium condition.

We can see that Eq. (7) consists of a regular Liouville equa-

tion but with an infinitesimal source, which provides Bogoli-

ubov’s symmetry breaking of time reversal and is responsible

for disregarding the advanced solutions [1,3,58]. This is de-

scribed by a Poisson distribution and the result at time t is

obtained by averaging over all t ′ in the interval (t0, t), once

the solution of Eq. (7) is

ℜε(t) = exp




−Ŝ(t,0)+

t∫

t0

dt ′eε(t ′−t) d

dt ′
Ŝ(t ′, t ′− t)




 , (8)

where

Ŝ(t,0) = − lnℜ̄(t,0), (9)

Ŝ(t ′, t ′− t) = exp

{
−

1

i~
(t ′− t)Ĥ

}
Ŝ(t ′,0)×

exp

{
1

i~
(t ′− t)Ĥ

}
, (10)

and the initial condition at time t0, when the formalism begins

to be applied, is

ℜε(t0) = ℜ̄(t0,0). (11)

This time t0, of initiation of the statistical description, is usu-

ally taken in the remote past (t0 −→−∞) introducing an adi-

abatic switch on of the relaxation processes, and in Eq. (8)

the integration in time in the interval (t0, t) is weighted by the

kernel expε(t ′− t). The presence of this kernel introduces a

kind of evanescent history as the system macro-state evolves

toward the future from the boundary condition of Eq. (11)

at time (t0 −→−∞) (a result of the presence of the exponen-

tial in Eq. (8) which accounts for the dissipative evolution

of the state of the system, a fact evidenced in the resulting

kinetic theory [1,3,4,40,45,47,57,59] which clearly indicates

that a fading memory process has been introduced). More-

over, in most cases we can consider the system as composed

of the system of interest (on which we are performing an ex-

periment) in contact with ideal reservoirs. Thus, we can write

ℜε(t) = ρε(t)×ρR, (12)

where ρε(t) is the statistical operator of the nonequilibrium

system and ρR the stationary one of the ideal reservoirs, with

ρε(t) given then by

ρε(t) = exp




−Ŝ(t,0)+

t∫

−∞

dt ′eε(t ′−t) d

dt ′
Ŝ(t ′, t ′− t)




 , (13)

having the initial value ρ̄(t0,0) (t0 −→−∞), and where

Ŝ(t,0) = − ln ρ̄(t,0), (14)

Ŝ(t ′, t ′− t) = exp

{
−

1

i~
(t ′− t)Ĥ

}
ln ρ̄(t ′,0)×

exp

{
1

i~
(t ′− t)Ĥ

}
. (15)

Finally, it needs be provided the auxiliary statistical opera-

tor ρ̄(t,0). It defines an instantaneous distribution at time t,

which describes a “frozen” equilibrium which at such given

time defines the macroscopic state of the system, and for that

reason is sometimes dubbed as the quasi-equilibrium statis-

tical operator. On the basis of this (or, alternatively, via the

extremum-principle procedure [3,60-65], and considering the

description of the non-equilibrium state of the system in terms

of the single- and two-particle density operators, the refer-

ence or instantaneous quasi-equilibrium statistical operator is

taken as a canonical-like one given by

ρ̄(t,0) = exp{−φ(t)−
∫

d3r

∫
d3 pF1(r,p; t)n̂1(r,p)−

−
∫

d3r

∫
d3 p

∫
d3r′

∫
d3 p′ ×

F2(r,p;r′,p′; t)n̂2(r,p,r′,p′)} (16)

in the classical case, with φ(t) ensuring the normalization of

ρ̄, and playing the role of a kind of a logarithm of a partition

function, say, φ(t) = ln Z̄(t). Moreover, in this Eq. (16), F1

and F2, are the non-equilibrium thermodynamic variables as-

sociated to each kind of basic dynamical variables, n̂1 and n̂2

respectively (Lagrange multipliers in the extremum-principle

approach).

An alternative equivalent and complete description, highly

convenient for deriving a kinetic theory of hydrodynamic

(a nonlinear higher-order one), consists in the construction

of a generalized nonequilibrium grand-canonical distribu-

tion. Considering for simplicity the case of retaining only
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n̂1 as basic dynamical variable, this follows by redefining the

nonequilibrium thermodynamic variable F1 in the form

F1(r,p; t) = Fn(r; t)+
p

m
·Fn(r; t)+

p2

2m
Fh(r; t)+

+
p2

2m

p

m
·Fh(r; t)+

+ ∑
r≥2

[
F

[r]
h (r, t)⊗

p2

2m
u[r](p)+

+F
[r]
n (r, t)⊗u[r](p)

]
, (17)

where

u[r](p) =
[ p

m
· · ·(r− times) · · ·

p

m

]
, (18)

is a r-rank tensor consisting of the tensorial product of r-times

the velocity p/m, and ⊗ stands for fully contracted product of

tensors, which when introduced in the statistical operator of

Eq. (16), after disregarding the contribution F2n̂2, it acquires

the form

ρ̄(t,0) = exp
{
−φ(t)−

∫
d3r

[
Fh(r, t)ĥ(r)+

+Fn(r, t)n̂(r)+Fh(r, t) · Îh(r)+

+Fn(r, t) · În(r)+ ∑
r≥2

[
F

[r]
h (r, t)⊗ Î

[r]
h (r)+

+F
[r]
n (r, t)⊗ Î

[r]
n (r)

]]}
, (19)

where

ĥ(r) =
∫

d3 p
p2

2m
n̂1(r,p); n̂1(r) =

∫
d3 p n̂1(r,p) , (20)

Îh(r) =
∫

d3 p
p

m

p2

2m
n̂1(r,p);

În(r) =
∫

d3 p
p

m
n̂1(r,p) , (21)

Î
[r]
h (r) =

∫
d3 p u[r](p)

p2

2m
n̂1(r,p) ;

Î
[r]
n (r) =

∫
d3 p u[r](p)n̂(r,p), (22)

which are the densities of energy, ĥ, and particles, n̂, and their

fluxes of all orders (the vectorial ones and the tensorial with

r ≥ 2). They have as the conjugated nonequilibrium thermo-

dynamic variables set

{
Fh(r, t),Fn(r, t),Fh(r, t),Fn(r, t),{F

[r]
h (r, t)},

{F
[r]
n (r, t)}

}
, (23)

and it can be noticed that, alternatively, this set of vari-

ables completely describe the non-equilibrium thermody-

namic state of the system. They are related to the basic set

of macro-variables by the relations (which can be considered

as the equations of state in arbitrary non-equilibrium condi-

tions [3,4,13-16])

I
[r]
h (r, t) = Tr{Îh(r)ρ̄(t,0)} = −

δφ

δF
[r]
h (r, t)

=

= −
δ ln Z̄(t)

δF
[r]
h (r, t)

, (24)

I
[r]
n (r, t) = Tr{În(r)ρ̄(t,0)} = −

δφ

δF
[r]
n (r, t)

=

= −
δ ln Z̄(t)

δF
[r]
n (r, t)

, (25)

where r = 0 for the densities, r = 1 for vector (first order)

fluxes, and r ≥ 2 for the higher-order tensor fluxes, we have

used that ρε and ρ̄, at each time t, define the same average val-

ues for the basic variables only [1,3], and δ stands for func-

tional differential [66]. A complete description of the NESEF

foundations for Irreversible Thermodynamics is available in

Refs. [13-16].

IV. NESEF-BASED KINETIC THEORY

The NESEF-based Nonlinear Kinetic Theory of relaxation

process basically consists into taking the average over the

nonequilibrium ensemble of Heisenberg (or Hamilton at the

classical level) equations of motion of the dynamical operator

for the observable, say, A(r, t) under consideration, i.e.

d

dt
A(r, t) =

d

dt
Tr{Â(r)ρε(t)} = Tr

{
1

i~
[Â(r), Ĥ]ρε(t)

}
.

(26)

The practical handling of this NESEF-Kinetic Theory is de-

scribed in Refs. [1,3,47,67-69] and mainly in [59].

Here we briefly noticed that the Markovian limit of the ki-

netic theory is of particular relevance as a result that, for a

large class of problems, the interactions involved are weak

and the use of this lowest order in the equations of mo-

tion constitutes an excellent approximation of good practical

value. By means of a different approach, E. B. Davies [70]

has shown that in fact the Markovian approach can be vali-

dated in the weak coupling (in the interaction) limit (retaining

only the quadratic contribution). Essentially it implies in only

retaining the interaction strengths up to second order.

Explicitly written, the Markovian equations in the kinetic

theory for a set of quantities {A j(r, t)} with j = 1,2, ... are

∂

∂t
A j(r, t) = J

(0)
j (r, t)+ J

(1)
j (r, t)+ J

(2)
j (r, t), (27)

where

J
(0)
j (r, t) = Tr

{
1

i~
[Â j(r), Ĥ0]ρ̄(t,0)×ρR

}
, (28)

J
(1)
j (r, t) = Tr

{
1

i~
[Â j(r), Ĥ

′]ρ̄(t,0)×ρR

}
, (29)
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and J
(2)
j (r, t) = IJ

(2)
j (r, t) + IIJ

(2)
j (r, t), with

IJ
(2)
j (r, t) =

1

(i~)2

t∫

−∞

dt ′eε(t ′−t) ×

Tr{[Ĥ ′(t ′− t)0, [Ĥ
′, Â j(r)]]×

ρ̄(t,0)ρR}, (30)

IIJ
(2)
j (r, t) =

1

i~
∑
k

t∫

−∞

dt ′eε(t ′−t) ×

Tr{[Ĥ ′(t ′− t)0, Âk(r)]ρ̄(t,0)×

ρR}
δJ

(1)
j (r, t)

δAk(r, t)
, (31)

and we recall that J
(0)
j and J

(1)
j , which in Mori’s terminol-

ogy [41] are called precession terms, are related to the non-

dissipative part of the motion, while dissipative effects are

accounted for in J
(2)
j . Subindex nought indicates evolution

in the interaction representation, δ indicates functional dif-

ferentiation [66], it has been written for the Hamiltonian

Ĥ = Ĥ0 + Ĥ ′, where Ĥ0 stands for the kinetic energy and Ĥ ′

contains the interaction potential energies.

This NESEF-based nonlinear kinetic theory allows for

the derivation of generalized kinetic equations for far-from-

equilibrium many body systems [71], which we briefly sum-

marize. First it can bee noticed that dynamical processes in

many-body systems that are described by kinetic equations

are often dealt within certain approximations , e. g., Boltz-

mann equation for a dilute gas, Vlasov equation for a plasma,

Landau equation for a weakly interacting gas, Focker-Planck

equation for a Brownian particle, and so on [72]. Their

common feature is that they involve the dynamics of single-

particle distributions. A question that has been one of the

central themes of nonequilibrium statistical mechanics, ever

since Boltzmann, is the one of giving solid foundations to ki-

netic equations from microscopic dynamics for, on the one

hand, understanding their approximate validity and, on the

other, to be able to go beyond removing the restrictions be-

ing imposed in the approximate treatments. Moreover, it has

also been noticed that one of the complicated problems of the

nonequilibrium theory of transport processes in dense gases

and liquids is the fact that their kinetics and hydrodynamics

are intimately coupled, and must be treated simultaneously

(e.g., see Ref. [73]). On this we may say that microscopic de-

scriptions of hydrodynamics, that is, associated to derivation

of the kinetic equations from classical or quantum mechanics

containing kinetic (transport) coefficients written in terms of

correlation functions, is a traditional problem of long stand-

ing. An important aspect is the derivation of constitutive laws

which express thermodynamic fluxes, as those of matter and

energy, in terms of appropriate thermodynamic forces (typ-

ically gradients of densities as those of matter and energy).

In their most general form these laws are nonlocal in space

and non-instantaneous in time. The nonlocality is usually

dealt with in terms of spatial Fourier transforms, and then the

laws are expressed in the reciprocal space of wave-vectors Q.

A first kinetic-hydrodynamic approach can be considered to

be the so-called classical (or Onsagerian) hydrodynamics; it

gives foundations to, for example, the classical Fourier’s and

Fick’s diffusion laws. But it works under quite restrictive con-

ditions, namely, local equilibrium; linear relations between

fluxes and thermodynamic forces (meaning weak amplitudes

in the motion) with Onsager’s symmetry laws holding; near

homogeneous and static movement (meaning that the motion

can be well described with basically Fourier components with

long wavelengths and low frequencies, and then involves only

smooth variation in space and time); weak and rapidly re-

gressing fluctuations (e.g., Ref. [74]).

Hence, and under the pressure for obtaining a deep phys-

ical insight on the physical phenomena governing the pro-

cesses that are fundamental to the development of modern-

day technologies with industrial/economic relevance, a sat-

isfactory construction of kinetic theories is highly desirable.

They should allow to deal with ultrafast (pico- and femto-

second scales) kinetic and relaxation processes, low dimen-

sional and ultra-small (nanometric scale) systems, and dis-

playing nonlinear behavior. Here are involved the technolo-

gies for electronic and opto-electronic devices, soft-matter

engineering (polymers, micelles), food engineering, cosmet-

ics, oil industry, and so on. It may be noticed that for systems

in far-from-equilibrium conditions involving ultra-fast relax-

ation processes, and displaying nonlinear behavior, the emer-

gence of instabilities and synergetic self-organization may

eventually arise, as in cases in biophysics [75] and semi-

conductor physics, producing nonequilibrium Bose-Einstein-

like condensations [76]. We may also mention the case of

laser-plasma interactions [77]. Furthermore, it can be no-

ticed that the formalism presented below, can be extended to

deal with the so-called non-conventional or “anomalous” sit-

uations which are associated to disordered media, consisting

in systems showing a complex structure of a fractal-like (self-

affine in average) characteristics, whose range of applicability

and of physical interest is large [23]. Fall on this area the dis-

tinctive behavior of polyatomic structures such as colloidal

particles, surfactant micelles, and polymer and biopolymer

(as DNA) molecules in a liquid, which are classical examples

of what is presently referred to as soft condensed matter [24].

For illustration we consider the Hamiltonian dynamics of a

system consisting of a fluid of interacting particles embedded

in a fluid acting as a thermal bath, the latter at rest and in ther-

mal equilibrium with an external reservoir [71]. The former

is subjected to external forces – driving it out of equilibrium –

and the latter (the thermal bath) is taken in a state of constant

equilibrium with an external thermal reservoir at temperature

To. An analogous case, but at the quantum mechanical level,

is the one of carriers embedded in the ionic lattice in doped or

photoinjected semiconductors (see, for example Ref. [78]).

We write for the Hamiltonian

H = HS +HB +W +Hext , (32)

where,

HS =
N

∑
j=1

p2
j

2m
+

1

2

N

∑
j 6=k

V
(∣∣r j − rk

∣∣) (33)

is the one of the system of particles of mass m consisting of

the kinetic energy and their pair interaction via a central force
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potential;

HB =
NB

∑
µ=1

P2
µ

2M
+

1

2

NB

∑
µ6=ν=1

ΦB

(∣∣Rµ −Rν

∣∣) (34)

is the Hamiltonian of the bath particles of mass M, consisting

of their kinetic energy plus their pair interaction via a central

force potential ;

W = ∑
j,µ

Φ
(∣∣r j −Rµ

∣∣) (35)

is the interaction Hamiltonian of the particles with the thermal

bath, and

Hext = ∑
i

Vext(ri,pi, t)

is the Hamiltonian associated to the external force acting on

the particles of the system, depending in its most general form

on r, p and t.

Under the stated condition that the bath (solvent) is in con-

stant thermal equilibrium with an external reservoir at temper-

ature To, its macroscopic state is characterized by the canoni-

cal distribution

ρB = Z−1 exp
{
−βo

[ NB

∑
µ=1

P2
µ

2M
+

+
1

2

NB

∑
µ6=ν=1

ΦB

(∣∣Rµ −Rν

∣∣)
]}

, (36)

where βo = [kBTo]
−1

and Z is the corresponding partition

function. The auxiliary nonequilibrium statistical operator of

the whole system has then the factorized form

ℜ(t,0) = ρ(t,0)×ρB , (37)

and for the auxiliary statistical operator of the system, ρ, we

take the one of Eq. (16), i.e. in terms of n̂1 and n̂2 of Eqs. (1)

and (2) or (3) and (4). But, in a first approach it is supposed

that the nonequilibrium state of the system is specified by

the single-particle distribution function f1 (r,p; t) then, in that

case, we choose the single particle phase density, n̂1(r,p | Γ),
as the only relevant dynamical variable required. It means

that we are considering dilute solutions (large distance in av-

erage between the system particles). Hence, the auxiliary

nonequilibrium statistical operator for the particles embedded

in the bath is

ρ(t,0) = exp
{
−φ(t)−

∫
d3r

∫
d3 p×

F1 (r,p; t) n̂1 (r,p)
}

=
N

∏
j=1

ρ j (t,0)

ρ j (t,0) = exp
{
−φ j (t)−

∫
d3r

∫
d3 p F1 (r,p; t)×

δ(r− r j)δ(p−p j)
}

, (38)

where ρ j is a probability distribution for an individual parti-

cle, with φ(t) and φ j (t) ensuring the normalization condition.

The average of n̂1 over this NESEF-nonequilibrium ensem-

ble, that is

f1 (r,p; t) = Tr{n̂1 (r,p)ρε (t)} = Tr{n̂1 (r,p)ρ(t,0)}
(39)

is a NESEF-based Boltzmann-type single-particle distribu-

tion function. The trace operation Tr in Eq. (39) is in this

classical approach to be understood as an integration over

phase space, and we recall that for the basic dynamical vari-

ables, and only for them, the trace with ρε (t) coincides with

the one taken with ρ.

According to Eq. (27), after identifying A with f1 (r,p; t),
we do have in the Markovian approximantion that f1 satisfies

the evolution equation

∂

∂t
f1 (r,p; t) = J

(0)
1 (r,p; t)+ J

(1)
1 (r,p; t)+ J

(2)
1 (r,p; t) .

(40)

The first two terms on the right are

J
(0)
1 (r,p; t) = Tr{{n̂1 (r,p) ,Ho}ρ(t,0)×ρB} =

= −(p/m) ·∇ f1 (r,p; t) , (41)

J
(1)
1 (r,p; t) = Tr

{{
n̂1 (r,p) ,H ′

}
ρ(t,0)×ρB

}
=

= −∇pVext (r,p; t) ·∇ f1 (r,p; t)+

+∇Vext (r,p; t) ·∇p f1 (r,p; t)+

+∇U (r; t) ·∇p f1 (r,p; t) , (42)

with

U (r; t) =
∫

d3r,
∫

d3 p,V (|r− r,|) f1 (r,,p,; t) (43)

playing the role of a mean-field potential of interaction be-

tween the particles. The last term is the collision integral

J
(2)
1 (r,p; t) =

∫ t

−∞
dt ′ eε(t ′−t)Tr{{H ′

(
t ′− t

)
o
,

{
H ′, n̂1 (r,p)

}
ρ(t,0)×ρB +

+
∫ t

−∞
dt ′ eε(t ′−t)

∫
d3r′

∫
d3 p′ ×

Tr{
{

H ′
(
t ′− t

)
o
, n̂1

(
r′,p′

)}
ρ(t,0)}}×

×ρB}
δJ

(1)
1 (r,p; t)

δ f1 (r′,p′; t)
. (44)

where H ′ contains the potential energies V and Φ of Eqs. (33)

and (35), that is, the contributions to J
(2)
1 that come from the

second order pair interactions between the system particles,

and of the system particles with those of the thermal bath.

Lengthy but straightforward calculations provide the follow-

ing kinetic equation,

∂

∂t
f1 (r,p; t)+

P(r,p; t)

m
·∇ f1 (r,p; t)+

+F(r,p; t) ·∇p f1 (r, p; t)−

A
[2]
2 (p)⊗ [∇p∇] f1 (r,p; t)−

−B
[2]
2 (p)⊗ [∇p∇p] f1 (r,p; t)−B(p) f1 (r,p; t) =
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= J
(2)
S (r,p; t) , (45)

where

P(r,p; t)

m
=

p

m
−A1 (p)+∇pVext (r,p; t) , (46)

F(r,p; t) = −∇Vext (r,p; t)−B1 (p)−Fnl (r; t)−∇U (r; t) ,

(47)

Fnl (r; t) =
∫

d3r,
∫

d3 p, f1 (r,,p,; t)×

Gnl (r
, − r,p,) , (48)

In Eqs. (45) to (48) dot stands as usual for scalar product of

vectors; we wrote ⊗ for fully contracted product of tensors,

and U(r; t) is given in Eq. (43). In these equations A1, B1,

Gnl , A
[2]
2 , B

[2]
2 and B are kinetic coefficients whose detailed

expressions we omit to write down (they contain the square

modulus of the Fourier transform of the particle-bath inter-

action), and JS is the collision integral arising out of the two

particle interaction which takes the form in this case of one in

the weak-coupling limit (complete details in Ref. [71]).

When Eq. (45) is compared with the, say, standard Boltz-

mann kinetic equation, it contains several additional interest-

ing contributions. First, P(r,p; t), Eq. (46), can be interpreted

as a modified momentum, composed of the linear one, p, plus

a contribution arising out of the interaction with the thermal

bath, mA1 (p), and another given by the p -gradient of the po-

tential energy associated to the external force (if it depends on

p). The force F(r,p; t), see Eq. (47), is composed of the ex-

ternal force, plus B1 (p) arising out of the interaction with the

thermal bath. Also we have an interesting third one, Fnl (r; t),
which is an effective force between pairs of particles gener-

ated through the interaction of each of the pair with the ther-

mal bath. A similar presence of an induced effective coupling

of this type has been evidenced in the case of two Brown-

ian particles embedded in a thermal bath [79] and also, it is

of the same kind that leads to the formation of Cooper pairs

in type-I superconductivity, in the hydrodynamic of polymer

solutions, etc. Such contribution is of a nonlinear (bilinear in

f1) character, and the last is the Vlasov force term. The fourth

and fifth terms on the left of Eq. (45) consists of a cross dou-

ble differentiation, [∇p∇], which take account of cross effects

of anisotropy caused by non-uniformity, and a double differ-

entiation in the momentum variable, [∇p∇p], of f1 related to

anisotropy and diffusion in momentum space; both are con-

sequence of the presence of the interaction with the thermal

bath. The last term on the left side, proportional to the distri-

bution, is a kind of source term with a rate of pumping B−1,

which together with the force term B1 (p) give rise to the dy-

namic frictional force in the Brownian limit. Finally, on the

right is the contribution associated to the system pair parti-

cle collisions in the weak coupling limit. This is equivalent

to the so-called weakly coupled gas collision integral (e.g.

[80]). Hence, to go beyond the Markovian approximation,

one needs to go back to the kinetic equation (45) [71] to in-

clude memory and vertex renormalization effects and higher

order collision integrals.

Moreover, Eq. (45) embraces two particular results. The

first is the Markovian approximation of a weakly coupled

closed gas which we get turning off the interaction with ther-

mal bath, i.e., setting Φ = 0. Balescu [80] has obtained the

same equation using the dynamics of correlations approach

of the Brussels school. Zubarev et al. [45] obtained the same

equation exploring the classical diagram technique to handle

the hierarchy of equations for the correlation functions. The

second is a generalization of the kinetic equation known as

the Kramers-Chendrasekhar-Fokker-Planck [81]. We get this

result setting to zero the interaction V
(∣∣r j − rk

∣∣) of Eq. (33).

Here we have derived the same equation using the NESEF

method which, we believe, contributes to clarify the equiva-

lence of these several approaches.

A last remark: knowledge of f1 (r,p; t) implies complete

information about the actual distribution of particles, and

therefore of the physical properties of the system. Alterna-

tively, knowing all the moments of the distribution allows to

have a complete knowledge of its characteristics. A knowl-

edge of some moments is not sufficient to determine the dis-

tribution completely; it implies in only possessing partial

knowledge of the characteristics of this distribution [81]. On

this H. Grad noticed that the question of the general solutions

of the standard Boltzmann equation can be tackled along two

distinct lines. One is to attempt to solve Boltzmann equation

for the distribution f1 itself in specific problems. Other is to

obtain new phenomenological equations which generalize the

usual (classical-Onsagerian) fluid dynamical equations. The

aim is to show the transition from the Boltzmann equation in

which a state is given by f1 (r,p; t) to the conventional fluid

description in which a state is given by the density n(r, t), the

velocity field v(r, t) , and the stress tensor T [2] (r, t), in a suf-

ficient generality to cover a broad class of problems. This ap-

proach was initiated by Maxwell [82] and continued by Grad

[83] (it was called Grad’s moments procedure [84]). In this

vein, Eq. (45) can be associated with a quite extensive gen-

eralization of this moments procedure, consisting into intro-

ducing the full set of moments of f1 (r,p; t) in the variable

p. These moments produce quantities with a clear physical

meaning, namely, the densities of particles and of energy and

their fluxes of all order, namely, the two vectorial fluxes, or

currents, the tensorial fluxes, beginning with the second-order

tensor flux (which is related to the pressure tensor), and all the

other higher-order fluxes. In that way we obtain a quite gener-

alized Nonlinear Higher-Order Hydrodynamics, coupled to a

Non-Equilibrium Thermodynamics, all together in the kinetic

approach provided by NESEF, and where it can be evidenced

the presence and influence of the several contributions above

described [85].

V. ON PROCESSES INVOLVED IN PRESENT DAY

ADVANCED TECHNOLOGIES AND COMPETITIVE

INDUSTRIES

Such processes are associated to, in general, optical and

transport properties in systems away from equilibrium, dis-

playing ultrafast relaxation processes, being in constrained

geometries, and presenting nonlinear behavior. This is to be

expected in multiple situations involving technological appli-

cations and manufacturing processes. Also, when applying

the theoretical formalism to these questions one is making

contact with the fundamental point in the scientific method
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of corroborating theory through comparison with experiment

[29]. It is worth mentioning S. J. Gould’s observation that “a

detail, by itself, is blind; a concept without a concrete illustra-

tion is empty [...] Darwin, who had such keen understanding

of fruitful procedure in science, knew in his guts that theory

and observation are Siamese twins, inextricably intertwined

and continually interacting” (emphasis is ours) [86]. In par-

ticular, in the present question of statistical thermodynamics

we restate the call of Ryogo Kubo, who expressed that “sta-

tistical mechanics has been considered a theoretical endeavor.

However, statistical mechanics exists for the sake of the real

world, not for fictions. Further progress can only be hoped by

close cooperation with experiment” [30].

As pointed out by several authors in multiple occasions,

any theory in Physics, besides being logically consistent and

mathematically correct, requires fundamentally for its vali-

dation the comparison with experimental data, and of course,

to show a good agreement between calculated and measured

values of observables, as well to properly predict new results

and phenomena (e.g. [87-90]).

It is worth citing Stephen Hawking [91] who expressed that

“I do not demand that a theory corresponds to reality. But

that does not bother me. I do not demand that a theory cor-

responds to reality because I do not know what it is. Reality

is not a quality you can test with litmus paper. All I am con-

cerned with is that the theory should predict the results of

measurement”.

Imagination and boldness in making theory must always

be policed by experience. As the German painter Ferdi-

nand Lèger (1881-1955) put it, “To be free and yet not lose

touch with reality, that is the drama of that epic figure who

is variously called scientist, artist, or poet” (quoted and trans-

lated by Douglas Cooper in Ferdinand Lèger and the nouvelle

space).

The pioneers Bacon, Galileo, and Newton were of this per-

suasion; Harvey (in his treatise on the circulation of blood) el-

egantly and concisely summarized the point in his statement

that “the facts cognizable by the senses wait upon no opin-

ions, and the works of nature bow to no antiquity...” (quoted

in Ref. [88]).

We clarify that what is done in the following Sections is, in

a sense, to present a kind of catalog of a certain chosen set of

experiments, which have been theoretically dealt with in the

framework provided by NESEF. No detail of the experiments

and the calculations is presented, what is unnecessary once

this is done in published articles, and then, for details, we

refer the reader to them, which are in each case indicated in

the text and listed in the bibliography.

Seven areas of particular interest where the formalism has

full and quite useful application are those indicated below on

which a vast amount of very successful experimental studies

is available in the scientific literature on the subjects. We shall

concentrate the attention on a description of some examples

for the sake of illustration of the workings of the formalism.

A number of other applications, including a report on earlier

applications of the formalism, is described in the review arti-

cle of Ref. [92].

In the following Sections we very briefly describe several

examples of optical and transport properties in systems away

from equilibrium showing ultrafast relaxation processes, con-

strained geometries, and nonlinear behavior, to be expected in

working conditions of devices in technological applications

and their end use. They are:

VI. Ultrafast Relaxation Processes in Semiconductors

VII. Low-Dimensional Semiconductor Devices

VIII. Nonlinear Transport in Highly-Polar Semiconductors

IX. Nonlinear Higher-Order Thermo-Hydrodynamics

X. Coherent States and Nonequilibrium Bose-Einstein-like

Condensations

XI. Thermo-Statistics of Complex Structured Systems

XII. Nonconventional Thermo-Hydrodynamics

VI. ULTRAFAST RELAXATION PROCESSES IN

SEMICONDUCTORS

In this Section we present some general comments on

the thermo-statistical aspects of the ultrafast evolution of the

nonequilibrium state of highly photoexcited polar semicon-

ductors. These processes can be evidenced, and its evolu-

tion followed, in experiments of ultrafast laser spectroscopy,

which is an excellent technique for also studying other sys-

tems, e.g., biological systems, polymers, etc. [93-99]. On

this we reproduce parts of the Introduction of the article “Big

Payoffs in a Flash” by J.M. Hopkins and W. Sibbett in Scien-

tific American, September 2000 issue [97], who wrote that

“How long did it take you to read this sentence? Just recognizing

the first letter took only milliseconds. Around 0.05 millisecond, or 50

microseconds, passes each time chemicals diffuse across a synapse,

carrying a signal from one neuron to another in your brain. Are you

holding the magazine at a comfortable reading distance? It takes

light one or two nanoseconds to travel from the page to your eye and

about 20 picoseconds to pass through the lens in your eye. And yet

these brief natural events are epically long compared with the short-

est man-made events, which proceed 1,000-fold more swiftly: pulses

of laser light that last for only a few femtoseconds (quadrillionths

of a second). The science and technology of ultrashort-pulse lasers

have enjoyed much exciting progress since they were developed in

the mid-1960s. In particular, the past decade has seen pulses shorter

than 10 femtoseconds and the emergence of a new generation of ver-

satile, compact ultrashort-pulse lasers a revolutionary change from

their large, temperamental, power-hungry ancestors. Such laser de-

signs, which make use of sophisticated nonlinear optical phenomena

and concurrent advances in diode lasers, increasingly meet the strin-

gent specifications and reliability necessary for many industrial and

medical applications. As we enter the 21st century, ultrashort-pulse

lasers are becoming more impressive in scope and intensity, pro-

ducing beams that span the electromagnetic spectrum from X-rays

to T-rays (terahertz radiation, beyond infrared) and generating op-

tical peak powers as colossal as petawatts (billions of megawatts).

As a result, many new applications in physics, chemistry, biology,

medicine, and digital optical technology are emerging and attract-

ing worldwide interest in science and industry.”

Studies of the optical and transport properties of semicon-

ductors under high levels of excitation have shown a pleiad

of novel and quite interesting features evidenced in ultrafast
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laser spectroscopy (UFLS). This powerful experimental tech-

nique involves the interaction of matter with radiation, which

is one of the most studied areas of physics and has played

a decisive role in the development of modern physics at the

beginning of the XX century. However, until the second half

of that century, all processes investigated have been associ-

ated with weak radiation fields for which the usual pertur-

bation theory, and the accompanying linear response theory

near equilibrium, is applicable. Although this approach has

been remarkably successful in explaining a great variety of

phenomena, in the last decades – and in the present one ap-

proaching the end of the twentieth century – the new and

greatly improved technological situation involving the advent

of lasers, providing us with sources of intense electromag-

netic radiation, requires new and sophisticated theoretical ap-

proaches, that is, a response theory capable to deal with arbi-

trarily far-from-equilibrium systems. Moreover, the notable

improvements in time-resolved laser spectroscopy have made

it a very useful tool to be used with a high degree of confi-

dence in the investigation of very rapid microscopic mecha-

nisms in the physical and biological realms (see for example

Refs. [93-99]).

In particular, ultrafast responses and functioning under far-

from-equilibrium conditions in semiconductor systems pose

new, interesting, and quite engaging problems in the physics

of condensed matter. These systems, as we have already em-

phasized in several occasions, become an extremely useful

testing ground for theoretical ideas in the domain of nonequi-

librium statistical thermodynamics of many-body systems.

Besides the interest in the comprehension of the basic phys-

ical principles underlying these significant situations, there

exists a parallel relevant technological interest arising out of

the fact that semiconductors working in nonequilibrium con-

ditions have multiple practical applications in electronic de-

vices. Picosecond and femtosecond laser spectroscopy allows

to probe ultrafast nonlinear irreversible processes in matter,

thus providing an extremely adequate and sophisticated ex-

perimental instrument for the study of the nonequilibrium

thermodynamic evolution of highly excited semiconductor

samples [78,99,100].

The theories appropriate for the treatment of these far-

from-equilibrium many-body systems ought to make it pos-

sible to determine the detailed time evolution of the nonlin-

ear irreversible processes that take place in the system while

it is probed. This is a quite attractive and actual problem

connected with the nonequilibrium nonlinear statistical me-

chanics and thermodynamics of dynamical processes. UFLS

studies of the highly photoexcited plasma in semiconductors

(HEPS, which consists of electron and hole pairs – as mobile

carriers – created by an intense laser pulse which are moving

in the background of lattice vibrations) have received partic-

ular attention along the last decades. These studies provide

information on the kinetic of relaxation of the photoexcited

carriers and of the nonequilibrium phonon field, as well as on

ultrafast transient transport. A detailed description is given in

the special issue on UFLS of the Braz. J. Phys. (vol. 26, no.

2) [100].

VII. LOW-DIMENSIONAL SEMICONDUCTOR DEVICES

Terrel Hill noticed in 1962 [101] that there are some im-

portant respects in which small thermodynamic systems dif-

fer experimentally from macroscopic systems. In general,

measurements are not made on a single small system but

on a large number of small systems. An example is a

very dilute solution of a macromolecule: the “small system”

is one macromolecule; the solution contains many macro-

molecules; but the solution must be very dilute as that the

macromolecules do not interact with each other. Moreover,

a macroscopic system immersed in a reservoir may exchange

heat, molecules, etc., with the reservoir, but the intermolec-

ular interaction between the system and the reservoir at the

surface of contact is of negligible order. This is, in general,

no longer the case for a small system immersed in a solvent.

Also, certain properties which can be varied experimentally

at will for a macroscopic system cannot be so varied with a

small system, e.g., the volume of a colloidal particle.

Nowadays this question has acquired an enormous rele-

vance because of the technological and commercial interest it

involves, which extends to the areas of biology and medicine.

Mihail Roco, in an article in Forum Section of Scientific

American [102], notice that:

“Today nanotechnology is still in a formative phase – not un-

like the condition of computer science in the 1960s or biotechnology

in the 1980s. Yet it is maturing rapidly. Between 1997 and 2005,

investment in nanotech research and development by governments

around the world soared from $432 million to about $4.1 billion, and

corresponding industry investment exceeded that of governments by

2005. By 2015, products incorporating nanotech will contribute ap-

proximately $1 trillion to the global economy. About two million

workers will be employed in nanotech industries, and three times

that many will have supporting jobs [...] Over the next couple of

decades, nanotech will evolve through four overlapping stages of

industrial prototyping and early commercialization. The first one,

which began after 2000, involves the development of passive nanos-

tructures: materials with steady structutures and functions, often

used as parts of a product. The second stage, which began in 2005,

focuses on active nanostructures that change size, shape, conductiv-

ity or other properties during use. New drug-delivery particles could

release therapeutic molecules in the body only after they reached

their targeted diseased tissues. Electronic components such as tran-

sistors and amplifiers with adaptive functions could be reduced to

single, complex molecules. Starting 2010, workers will cultivate ex-

pertise with systems of nanostructures, directing large numbers of

intricate components to specified ends. One application could in-

volve the guided self-assembly of nanoelectronic components into

three-dimensional circuits and whole devices. Medicine could em-

ploy such systems to improve the tissue compatibility of implants,

or to create scaffolds for tissue regeneration, or perhaps even to

build artificial organs. After 2015-2020, the field will expand to

include molecular nanosystems – heterogeneous networks in which

molecules and supramolecular structures serve as distinct devices.

The proteins inside cells work together this way, but whereas biolog-

ical systems are water-based and markedly temperature-sensitive,

these molecular nanosystems will be able to operate in a far wider

range of environments and should be much faster. Computers and

robots could be reduced to extraordinarily small sizes. Medical ap-

plications might be as ambitious as new types of genetic therapies

and antiaging treatments. New interfaces linking people directly to
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electronics could change telecommunications. Over time, therefore,

nanotechnology should benefit every industrial sector and health

care field. It should also help the environment through more efficient

use of resources and better methods of pollution control.”

In this field one has to deal with systems in which one or

more directions are in the nanometric space scale (e.g., quan-

tum wells, 2D, quantum wires, 1D, quantum dots, 0D), which

as a rule exhibit, significantly, the novel phenomena and pro-

cesses. As noticed, the field is present in modern technolo-

gies.

The topic is further considered at the end of Section XI,

once in small systems boundary conditions are of large rel-

evance in determining the physical properties of the system

and, therefore, its end-use utility. The interfaces always

present a structure (rugousness) with characteristic in a nano

and subnanometer scale, thus of the order of the space ex-

tension of the material [23]. Because the researcher does

not have in general an access to the details of the surface

structure it is said that we have in hands a problem with

“hidden constraints”. In Section XI two cases of technolog-

ical/industrial/commercial interest are presented, namely, the

characterization of nanometric quantum wells in semiconduc-

tor heterostructures by optical spectroscopy, and characteriza-

tion of nanometric electrodes in microbatteries.

VIII. NONLINEAR TRANSPORT IN HIGHLY-POLAR

SEMICONDUCTORS

In a general article in Physics Today, issue of October 2000

[103], it was stated that: “The recent achievement of compact

blue-emitting gallium nitride semiconductor lasers is likely

to have far-reaching technological and commercial effects.

The lasers’ short wavelengths – around 400 nm, half that

of gallium arsenide-based lasers, permit higher spatial res-

olution in applications such as optical storage and printing.

And the high photon energy will open up new applications

for these inexpensive, compact light sources. An aesthetic

satisfaction with these devices stems from finally extending

the existing and mature semiconductor laser technology for

the near-infrared and red to encompass the “new frontier”

of blue and near-ultraviolet regions, thereby bridging the en-

tire visible spectrum”. It was also commented that: “At the

same time, there are significant research opportunities aris-

ing from a plethora of poorly understood microscopic issues

in the underlying material system, which include such funda-

mental properties as charge control, transport, and formation

of optical gain for stimulated emission”.

Moreover, it was there called the attention to the facts that

one major commercial impact of blue diode lasers is to oc-

cur in high-density optical storage in digital versatile disks.

Moreover, in the case of color projection displays and high-

resolution laser printers. Also a huge technological opportu-

nity is offered by GaN-based light-emitting diodes (LEDs),

in which incoherent light is produced by spontaneous as op-

posed to stimulated emission.

As example of commercial uses were indicated the case of

green LEDs for traffic lights and violet LEDs that can be com-

bined with phosphors to produce white lighting, a possible re-

placement for the ubiquitous incandescent lightbulb, and blue

and green nitride LEDs for being integrated into large-scale

outdoor displays.

It is also worth noticing a journalistic article in Scientific

American (August 2000) [104], from where we extract the

sentence that: “For more than 25 years, LEDs were like a

third of a rainbow. Red, orange, yellow, and the yellowish

green were all you could get. Engineers wanted blue and true

green because with those colors, along with the red they al-

ready had, they could built fabulous things, such as white-

light-emitting devices as much as 12 times more efficient and

longer-lasting than ordinary lightbulbs. Small wonder, then,

that analysts say LEDs are poised to revolutionize the lighting

industry and more beyond their familiar role as mere indica-

tor light. In the mean time, colored LEDs are being deployed

as traffic lights and in displays, the biggest being the eight-

story-tall Nasdaq display in New York City’s Time Square.

And a blue semiconductor laser, similar to a LED, will soon

quadruple the storage of capacity of DVD and CD players

and the resolution of laser prints. Most of the milestones on

the way to these optoelectronics triumphs took place, oddly

enough, on the island of Shikoku, something of a backwater

in the Japanese chain. [from Nichia Corporation, a once ob-

scure Japanese maker of phosphors for cathode-ray tubes and

fluorescent lights].”

The recent successful commercialization of III-Nitrides-

based light-emitting diodes in the blue-yellow range, and

the development of injection lasers and ultraviolet detectors,

drove initially the focus of basic research on these wide-gap

semiconductors to the understanding of their optical proper-

ties [105-108]. However, soon it was also recognized their

favorable properties for the implementation of electronic-

power devices, high-performance and high-frequency transis-

tors [109-113], with superior characteristics than those based

on silicon [114,115]. The efforts undertaken on the investiga-

tion of the III-Nitrides steady-state transport properties, look-

ing for a better determination of bulk material parameters and

band structure [116], are relevant for establishing their fig-

ure of merit for electronic devices with certain confidence.

However, despite the improved understanding of the steady-

state transport properties of III-Nitrides obtained in the last

few years, the agreement of the carriers’ mobility data with

theoretical descriptions varies from broad to very good [117];

only a qualitative agreement was obtained between theoreti-

cal predictions and the recent measurements of the electron

velocity-field characteristics in GaN [118].

Focus on the improvement of III-Nitrides-based devices

with submicron channels has stimulated research on their

transient-transport properties, since in such cases the carriers

may not attain the steady-state transport regime. The possibil-

ity of transient ballistic transport in GaN was demonstrated to

occur for applied electric fields greater than 140 kV/cm [119],

and investigations on the transient transport regime have in-

dicated the possibility of existence of an overshoot effect in

both the electron-drift velocity [120-123] and mean energy

[123]. In the work of Ref. [123], the explanation for the exis-

tence of the overshoot effect in the III-Nitrides, in conditions

where intervalley scattering is negligible, was considered to

be due to the interplay of energy and momentum relaxation

times: no overshoot occurs when the momentum relaxation

time, which is smaller than the energy relaxation time shortly

after application of the electric field, becomes predominantly

larger than the other; on the other hand, the overshoot fol-
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lows at intermediate to high fields when the relaxation time

for energy remains larger than the one for momentum. But,

no detailed explanation was presented confirming the validity

of the above arguments.

In Ref. [124] we present such detailed derivation, obtaining

analytical expressions for the so-called characteristic time for

conduction (or current) and the momentum relaxation time,

from which the conditions for the onset of the electrons’ drift-

velocity overshoot, in the case of these polar semiconduc-

tors in the parabolic-conduction band approximation can be

clearly evidenced. For that purpose we obtain the equations of

evolution for the energy of electrons and longitudinal-optical

and acoustic phonons, Ec(t), ELO(t), EAC(t) (the TO phonons

are ignored, once they weakly interact with the electrons in

the conduction band), and the electrons’ momentum P(t). In

summary, we may say that as a general rule, in the study

of transport phenomena analytical-type methods have been

based on Boltzmann-like transport theories, which, however,

have limitations when nonlinear effects become to have rele-

vance. Thus, improved analytical methods, that is nonlinear

quantum kinetic theories for studying physical phenomena in

systems arbitrarily away from equilibrium, are desirable. An

advantage over Monte Carlo computational methods resides

in that the analytical equations may provide a better physical

insight and interpretation of the results. This is the NESEF-

based nonlinear kinetic theory described in Sections III and

IV.

The study of transport properties of semiconductors under

high level of excitation, eventually following nonlinear laws,

are of great interest not only for its relevance in the function-

ing of electronic and optoeletronic devices, but also because

of providing an excellent testing ground for theoretical ideas

in the field of many-body systems in far-from-equilibrium

conditions as we do here. Hence, as noticed, nonlinearities

are present in both transport properties and relaxation pro-

cesses, which may give origin to new and interesting phe-

nomena.

Let us consider the case of polar semiconductors described

by a two-inverted-parabolic bands model (in the effective

mass approximation, and conduction band secondary valleys

are ignored), where a concentration ne of electrons or nh of

holes has been created by doping. A constant electric field of

intensity F in, say, x-direction is applied, which accelerates

these carriers (“hot” carriers) while there follows a transfer-

ring of their energy and momentum (in excess of equilibrium)

to the phonon field. The sample is in contact with a thermal

reservoir at temperature T0, with the phonons being warmed

up in scattering events involving Fröhlich, deformation poten-

tial, and piezoelectric interactions with the hot carriers. Scat-

tering by impurities is neglected in comparison with the one

due to lattice vibrations.

The Hamiltonians takes the form Ĥ0 + Ĥ ′, with Ĥ0 con-

sisting of the free Hamiltonians of the carriers (electrons or

holes) and of the phonons, while Ĥ ′ contains the carrier-

phonon interactions and the coupling with the external elec-

tric field. Coulomb interaction between carriers (contributing

to very fast – subpicosecond scale – relaxation processes) is

incorporated in Ĥ0 but through the random phase approxi-

mation. For the basic microdynamical variables, as noticed

above, are chosen the free Hamiltonian Ĥ0 (the one of the

carriers Ĥa and those of the phonons ĤLO, ĤTO, ĤA) and the

particle number N̂a (a = e or h for electrons and holes re-

spectively). Next, on the basis that the electric field produces

a current it is introduced the linear momentum P̂a (which is

the flux of mass). Consequently, the basic macrodynamical

variable are [78]

{Ea(t),Pa(t),ELO(t),ETO(t),EA},

whose evolution equations characterize the macroscopic evo-

lution of the system. They are:

d

dt
Ea(t) =

eaF

m∗
a

·Pa(t)−|J
(2)
Ea

(t)| , (49)

d

dt
Pa(t) = naVeaF+ |J

(2)
Pa

(t)| , (50)

d

dt
ELO(t) = |J

(2)
ELO

(t)|+ |J
(2)
ELO,A

(t)| , (51)

d

dt
ETO(t) = |J

(2)
ETO

(t)|+ |J
(2)
ETO,A

(t)| , (52)

where V is the volume of sample and ee = −e and eh = e

and we recall that the A phonons remain in equilibrium at

temperature T0, and then EA is constant in time. In Eq. (49)

the first term on the right accounts for the pumping of energy

on the carrier system arising out of the presence of the electric

field, while the second represents the rate of excess energy

transferred to the lattice (LO, TO and A phonons).

In Eq. (50) the first term on the right is the force produced

by the presence of the electric field, and the second the rate of

momentum transferred to the lattice. In Eqs. (51) and (52) we

have the term of gain of energy pumped on the phonons by

the nonequilibrated (“hot”) carriers and the transfer of such

energy to the A phonons (at temperature T0), the latter acting

as a thermal bath.

Defining time-dependent carrier-momentum τPa(t) and

carrier-energy τEa(t) relaxation times as

|J
(2)
Pa

(t)| ≡ naV m∗
a

|va(t)|

τPa(t)
, (53)

|J
(2)
Ea

(t)| =
Ea(t)−E

eq
a

τEa(t)
, (54)

where va(t) is the drift velocity in the direction of the electric

field (i.e. Pα(t) = mαvα(t)) and E
eq
a the energy of the carriers

in equilibrium with the A phonons (and then the reservoir) at

temperature T0.

Using Eqs. (53) and (50) we find an equation of evolution

for the drift velocity, namely

d

dt
va(t) = (ea/m∗

a)F−
va(t)

τPa(t)
, (55)

which is an equation of the Newton-Langevin type but with

a time-dependent relaxation time (evolving in time with the

macroscopic state of the system). Equation (55) can be alter-

natively written in the form of the integral equation

va(t) = (ea/m∗
a)Fτca(t) , (56)
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where

τca(t) = exp{−Ψa(t)}

t∫

0

exp{Ψa(t
′)}dt ′ , (57)

with

Ψa(t) =

t∫

0

dt ′(τPa(t
′))−1 , (58)

and it has been taken the initial condition va(0) = 0. More-

over, defining the current density

Ia(t) = naeava(t) , (59)

after replacing in it the expression of Eq. (56) we have that

Ia(t) = σa(t)F , (60)

thus introducing a time-dependent Drude-type conductivity,

namely

σa(t) = (nae2/m∗
a)τca(t) , (61)

and we call τca(t) the characteristic time for conduction,

which is dependent on the evolution of the macroscopic

(nonequilibrium thermodynamic) state of the system.

This NESEF-based nonlinear transport theory has been

successfully applied to the study of carriers in polar semi-

conductors (e.g., GaAs, GaN, and others) under intermediate

to strong electric fields [123,125].

IX. NONLINEAR HIGHER-ORDER

THERMO-HYDRODYNAMICS AND NON-NEWTONIAN

RHEOLOGY

Hydrodynamics constitutes an old field of scientific and

technical interest, and within its domain we can notice the

work of the great polymath and artistic genius Leonardo da

Vinci (1452-1519) in the fifteen century. It has been written

[126] that “Throughout his life, Leonardo was obsessed with

the movement of water, and there were many occasions when

he turned this interest to useful ends”.

Nowadays, Hydrodynamics also enters into the line of a

discipline in search for a large improvement in order to cover

the theme of this publication, namely, to accompany the no-

table developments in technology, and the pursue of contin-

uous improvements in industrial processes, looking for more

efficient productivity and better quality. Evidently, several ar-

eas are involved, and we can mention, hydraulic engineering,

ecology, food engineering, soft-matter (including polymers)

engineering, petroleum production, aerospatial engineering,

and so on and so forth.

We begin noticing that, as a rule, what is involved consists

in dealing with the transport of fluids, and on that it has been

noticed that one of the complicated problems of the nonequi-

librium theory of transport processes in dense gases and liq-

uids is the fact that their kinetics and hydrodynamics are in-

timately coupled, and must be treated simultaneously (e.g.,

see Ref. [45,73,74,127-129]). On this we may say that mi-

croscopic descriptions of hydrodynamics, that is, associated

to derivation of kinetic equations from classical or quantum

mechanics containing kinetic (transport) coefficients written

in terms of correlation functions, is a traditional problem of

long standing. An important aspect is the derivation of con-

stitutive laws which express thermodynamic fluxes, as those

of matter and energy, in terms of appropriate thermodynamic

forces (typically gradients of densities as those of matter and

energy). In their most general form these laws are nonlo-

cal in space and non-instantaneous in time. The nonlocality

is usually dealt with in terms of spatial Fourier transforms,

and then the laws are expressed in the reciprocal space of

wave-vectors Q. A first kinetic-hydrodynamic approach can

be considered to be the so-called classical (or Onsagerian)

hydrodynamics; it gives foundations to, for example, the clas-

sical Fourier’s and Fick’s diffusion laws. But it works under

quite restrictive conditions, namely, local equilibrium; linear

relations between fluxes and thermodynamic forces (mean-

ing weak amplitudes in the motion) with Onsager’s symme-

try laws holding; near homogeneous and static movement

(meaning that the motion can be well described with basi-

cally Fourier components with long wavelengths and low fre-

quencies, and then involves only smooth variation in space

and time); weak and rapidly regressing fluctuations (see, for

example, Refs. [74,130]).

Hence, more advanced approaches are required to lift these

restrictions. Consider first near homogeneity, which im-

plies validity in the limit of long wavelengths (or wavenum-

bers Q approaching zero), and to go beyond it is neces-

sary to introduce a proper dependence on Q valid, in prin-

ciple, for intermediate and short wavelengths (intermediate to

large wavenumbers). In phenomenological theories this cor-

responds to go from classical irreversible thermodynamics to

extended irreversible thermodynamics [12,131,132]. This is

what has been called generalized hydrodynamics, a question

extensively debated for decades by the Statistical Mechanics

community. Several approaches have been used, and a de-

scription can be consulted in Chapter 6 of the classical book

on the subject by Boon and Yip [127]. Introduction of non-

local effects for describing motions with influence of ever

decreasing wavelengths, going towards the very short limit,

has been done in terms of expansions in increasing powers of

the wavenumber, which consists in what is nowadays some-

times referred to as higher-order hydrodynamics (HOH). At-

tempts to perform such expansions are the so-called Burnett

and super-Burnett approaches in the case of mass motion,

and Guyer-Krumhansl approach in the case of propagation

of energy (see for example Refs. [133,134]). An usual ap-

proach has been based on the moments solution procedure

of Boltzmann equation, as in the work of Hess [135], us-

ing a higher-order Chapman-Enskog solution method. The

Chapman-Enskog method provides a solution to Boltzmann

equation consisting of a series in powers of the Knudsen num-

ber, Kn, given by the ratio between the mean-free path of the

particles and the scale of change (relevant wavelengths in the

motion) of the hydrodynamic fields. Retaining the term linear

in Kn there follows Navier-Stokes equation, the term in K2
n in-

troduces Burnett-like contributions, and the higher-order ones

(K3
n and up) the super-Burnett contributions.

A satisfactory development of a HOH being also nonlin-

ear and including fluctuations is highly desirable for cover-

ing a large class of hydrodynamic situations, and, besides
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its own scientific interest, also for obtaining insights into

technological-industrial processes having an associated eco-

nomic interest. Also, we can mention its fundamental rel-

evance in Oceanography and Metereology (e.g. [136,137]),

and that it has been stated [138] that the idea of promoting

hydraulics by statistical inference is appealing because the

complete information about phenomena in hydraulics seldom

exists, for example sediment transport, and also the more fun-

damental problem in fluid mechanics of describing the veloc-

ity distribution in fluids under flow [139-141]. Indeed, the

nonlocal terms become specially important in miniaturized

devices at submicronic lengths (e.g., [142]), or in the design

of stratospheric planes, which fly in rarefied gases in a den-

sity regime between the independent particle description and

the purely continuous description. Another particular prob-

lem to it related is the one of obtaining the structures of shock

waves in fluids for wide ranges of Mach numbers (e.g., [143]).

Moreover, Burnett approximation of hydrodynamics has been

shown to provide substantial improvement on many features

of the flow occurring in several problems in hydrodynamics,

e.g. the case of Poiseuille flow [144] and others [145].

The microscopic derivation of a HOH, together with the

analysis of the validity of existing theories, is still a point

in question. It has been shown [146] that for the case of

Maxwellian molecules, whereas Navier-Stokes approxima-

tion yields equations which are stable against small perturba-

tions, this is not the case when are introduced Burnett con-

tributions to the equations. It follows that small perturba-

tions to the solutions, which are periodic in the space variable

with a wavelength smaller than a critical length, are exponen-

tially unstable. This fact has been called Bobylev’s instabil-

ity. More recently, Garcia-Colin and collaborators [147] have

extended Bobylev’s analysis for the case of any interaction

potential, and have correctly argued that one can interpret the

fact as to give a bound for a Knudsen number above which

the Burnett equations are not valid. Moreover, Karlin [148]

reconsidered the question looking for exact solutions to sim-

plified models.

Furthermore, inclusion of nonlinearity in the theory, in a

Nonlinear Higher-Order Thermo-Hydrodynamics (NLHOTH

for short and meaning thermal physics of fluid continua),

leads to additional possible singularities, called hydrody-

namic singularities, as, for example, those described in Refs.

[149,150]. A satisfactory construction of a NLHOTH is

highly desirable for covering a large class of hydrodynamic

situations obtaining an understanding of the physics involved

from the microscopic level, and, as already noticed, in the

last instance gaining insights into technological and indus-

trial processes as in, for instance, hydraulic engineering, food

engineering, soft-matter engineering, and so on, which have

an associated economic interest.

We recall what was said before that nowadays two ap-

proaches appear to be the most favorable for providing

very satisfactory methods to deal with hydrodynamics within

an ample scope of nonequilibrium conditions. They are

Nonequilibrium Molecular Dynamics (NMD) [31-37] and

the kinetic theory based on the far reaching generalization

of Gibbs’ ensemble formalism, the Nonequilibrium Statisti-

cal Ensemble Formalism (NESEF for short) [1,3,4,151,152]

presented in sections III and IV. NMD is a computational

method created for modeling physical system at the micro-

scopic level, being a good technique to study the molecu-

lar behavior of several physical processes.Together with the

so-called Monte Carlo method are part of what is known as

numeric simulation methods [32], or Computational Physics

(which is to be added to the old classification in specialities

of Experimental and Theoretical Physics) [33].

An extensive derivation of a NLHOTH on the basis of

the kinetic theory founded on NESEF, quite appropriate to

deal with systems in far-from-equilibrium conditions involv-

ing the development of ultrafast relaxation processes, and dis-

playing nonlinear behavior leading, eventually, to instabilities

and synergetic self-organization [153] is presented in Refs.

[3,71,87,133,134].

It may be noticed that the formalism can be extended to

deal with the so-called non-conventional or “anomalous” hy-

drodynamics which is associated to disordered media [154],

consisting in systems showing a complex structure of a

fractal-like (self-affine on average) characteristics, whose

range of applicability and of physical interest is large. Fall

on this problem the case of the distinctive behavior of poly-

atomic structures such as colloidal particles, surfactant mi-

celles, and polymer and biopolymer (as DNA) molecules in

a liquid, which are classical examples of what is presently

referred to as soft condensed matter [24,155]. One partic-

ular case of apparently unusual behavior is the one associ-

ated to hydrodynamic motion leading to a so-called “anoma-

lous” diffusion, better called non-Fickian diffusion, described

by a time evolution following a kind of fractional-power law

[156]: The question is considered in Section XII.

The generalized higher-order hydrodynamics built in the

framework of NESEF-kinetic theory is characterized by the

microdynamical variables consisting of the density of parti-

cles, n̂(r), the density of energy, ĥ(r), and their fluxes of

all order, i.e., the tensors of rank r, Î
[r]
n (r) and Î

[r]
h (r), with

r = 1,2, ..., given by (see Eqs. (20) to (22) in section III)

n̂(r) =
∫

d3 p n̂1(r,p) , (62)

ĥ(r) =
∫

d3 p
p2

2m
n̂1(r,p) , (63)

În(r) =
∫

d3 p
p

m
n̂1(r,p) , (64)

Îh(r) =
∫

d3 p
p

m

p2

2m
n̂1(r,p) , (65)

Î
[r]
n (r) =

∫
d3 p u[r](p)n̂(r,p) , (66)

Î
[r]
h (r) =

∫
d3 p u[r](p)

p2

2m
n̂1(r,p) , (67)

where

u[r](p) =
[ p

m
· · ·(r− times) · · ·

p

m

]
, (68)
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which is the tensorial product of r vectors p/m, defining a

r-rank tensor (it has the dimensions of velocity to the power

r).

The average over the nonequilibrium ensemble of the quan-

tities above provides the set of macrovariables

{n(r, t) ,h(r, t) ,In(r, t) , Ih(r, t) ,{I
[r]
n (r, t)},{I

[r]
h (r, t)}} ,

(69)

with r = 2,3, ... which define the generalized hydrodynamics.

It can be noticed that those associated to the energy are con-

tained in those associated to the movement of matter: Begin-

ning with I
[2]
n the contraction of the first two indexes provide

the expression for the energy; such contraction in I
[3]
n results

in the flux of energy (heat current), and so on. Therefore,

in what follows we deal only with the macrovariables of the

former (index n), that is to say

I
[r]
n (r, t) =

∫
d3 p u[r](p) f1(r,p; t) , (70)

with r = 0 providing the density n(r, t) , r = 1 the vectorial

flux In(r, t) , and r > 2, the higher-order tensorial fluxes, and

where f1(r,p; t) is NESEF-Boltzmann single-particle distri-

bution function in space (r,p) of Eq. (45) in Section IV.

Moreover, it can be shown that we can write for the flux

In(r, t) = n(r, t)v(r, t) , (71)

where v(r, t) is the field of barycentric velocity, and for the

second-order flux that

mI
[2]
n (r, t) = P[2](r, t)+m[v(r, t)v(r, t)] , (72)

where P[2] is the pressure tensor and the last term on the right

is the convective pressure tensor.

The equations of evolution of these macrovariables provide

us with the hydrodynamic equations in this NLHOH. They

are

∂

∂t
I
[r]
n (r, t) =

∫
d3 p u[r](p)

∂

∂t
f1(r,p; t) , (73)

∂

∂t
I
[r]
h (r, t) =

∫
d3 p

p2

2m
u[r](p)

∂

∂t
f1(r,p; t) , (74)

that is, are all determined by the equation of evolution of the

single-particle distribution f1, which is given in Eq. (45). Per-

forming the lengthy calculations involved one finally arrives

at the general evolution equations (ℓ = 0,1,2, ...)

∂

∂t
I
[ℓ]
n (r, t)+∇ · I

[ℓ+1]
n (r, t) =

= −
1

m

ℓ

∑
s=1

{τ(1,s)
[
F(r, t)⊗ I

[ℓ−1]
n (r, t)

]
+

+θ−1
ℓ I

[ℓ]
n (r, t)}+aLo

ℓ

∑
s=1

{τ(1,s)
[
∇I

[ℓ−1]
n (r, t)

]
+

+2ℓaL1∇ · I
[ℓ+1]
n (r, t)+S

[ℓ]
n (r, t)} , (75)

where we have put into evidence the presence of the fluxes

neighboring the one of order ℓ, namely I[ℓ−1] and I[ℓ+1]. The

symbol τ(1,s) is an operator that performs the transposition

of indexes 1 and s of the following tensor. And F(r, t) is

minus the force term of Eq. (47), after deleting B1(p). The

ℓ-rank tensor S
[ℓ]
n (r, t) contains the contributions involving all

the other fluxes, the thermo-striction effects, and the action of

the external sources, having a pretty cumbersome expression.

Moreover,

θ−1
ℓ = −ℓ [|aτ0|+(ℓ−1) |bτ1|] (76)

is playing the role of a Maxwell-characteristic time for the

ℓ-th flux, and the several kinetic coefficients a’s and b’s are

given elsewhere [85]. These characteristic times follow a hi-

erarchy of values; in fact, we do have that

θℓ+1

θℓ
=

ℓ

ℓ+1

5ζ+ ℓ−1

5ζ+ ℓ
, (77)

for ℓ = 1,2,3, ..., where ζ is a quantity depending on the ratio

of masses m and M, such that it is verified the succession of

decreasing values

θ1 > θ2 > θ3 > ... > θℓ > θℓ+1 > .. . , (78)

which can be considered to represent Boguliubov’s hierarchy

of characteristic times [56,58] in generalized hydrodynamics.

Evidently, Eq. (75) consists of a set of nonlinear integro-

differential equations coupling all the densities and fluxes,

being of unmanegeable proportions. However, in practical

situations enters into play Boguliubov’s principle of corre-

lation weakening [54,58] and the accompanied hierarchy of

relaxation times, which in this case, as noticed above, con-

sists of the hierarchy of Eq. (78). Hence resorting to Boguli-

ubov’s principle it is possible to introduce a contraction in

the set of hydrodynamic evolution equations [3,4]. Thus, tak-

ing only the densities (accompanied with constitutive equa-

tion for their first fluxes) constitutes a NLHOH of order zero,

and it leads to the standard Fick and Fourier diffusion equa-

tions. Taking the densities and their first fluxes, we do have a

NLHOH of order 1, leading to the Maxwell-Cattaneo evolu-

tion equations for the densities. Taking the densities and their

first and second fluxes, we have a NLHOH of order 2, leading

to the to evolution equations of the densities of third order in

time, and so on and so forth [3,4,54,58].

X. COHERENT STATES AND NONEQUILIBRIUM

BOSE-EINSTEIN-LIKE CONDENSATIONS

It has been noticed by D. Snoke [76] that Bose-Einstein

condensations occurs when many particles enter into the

same, coherent quantum state, and is now claimed to occurs

in various systems of “quasiparticles” in solids. But is it the

right term to use here?

He is talking about the particular phenomena that arise

in bosons systems in nonequilibrium conditions, as those

mentioned below. He argues that in that cases, rather than

haggling over the exact meaning of the term Bose-Einstein

condensation, we can adopt a more general concept that al-

lows us to use the same language to talk about many sys-

tems. This concept is the spontaneous emergence of coher-

ence. However, it may be noticed that such situations belong



Brazilian Journal of Physics, vol. 40, no. 1, March, 2010 79

to a, say, discipline defining and studying synergetic self-

organization initiated around half century ago by Hermann

Haken [8] and Ilya Prigogine [9]. It precisely covers these,

so-called, nonequilibrium phase transitions arising out of or-

der through fluctuations (sometimes referred to as order out of

chaos [157]), also involving the so-called complex behavior.

Complex systems is the name for short of systems dis-

playing some kind or other of complex behavior, which can

emerge when the system is sufficiently far-from equilibrium

and governed by a nonlinear macroscopic kinetics. As no-

ticed above it is present in systems of bosons when under such

conditions. We can cite:

• “Bose-Einstein-like condensation” of LO phonons

(Fröhlich effect) in biopolymers, generated by dark ex-

citation, which is accompanied by the emission of soli-

tons of the Schroedinger-Davydov type, possessing a

very long half life [158] (of interest in Physiology and

Neurology).

• “Bose-Einstein-like condensation” of acoustic phonons

in biological material, generated by sonic excitation,

which is accompanied, as in the previous case, by

the emission of solitons of the Schroedinger-Davydov

type with a very long life time [159] (of interest in

Medicine).

• “Bose-Einstein-like condensation” and propagation of

Schroedinger-Davydov solitons of very long life time

of excitons: the case of the “excitoner” (“laser” of co-

herent excitons) [160].

• “Bose-Einstein-like condensation” of acoustic

phonons, generated by drifting-electron excitation

(“saser” or “laser” of acoustic phonons) [161,162].

• “Bose-Einstein-like condensation” of LO phonons gen-

erated by drifting-electron excitation (“laser” of LO

phonons) [163].

• Emission of LO phonons in so called coherent states by

electromagnetic excitation, of interest in semiconduc-

tor devices [164].

As already noticed, the case of systems far from equilib-

rium encompasses an area of particular interest, namely sys-

tems that may display the so-called complex behavior, which

can arise in systems whose evolution is governed by nonlin-

ear macroscopic kinetic laws (see for example [8-11]). Cer-

tainly, NESEF has a relevant role in the realm of Complexity

Theory and a fundamental place in the expanding domain of

nonlinear physics. Nonlinearity has a fundamental role in de-

termining complex behavior in open systems far-away-from

equilibrium. In many cases it shall lead to the emergence of

self-organized synergetic behavior at the macroscopic level,

in the form of the so-called Prigogine’s dissipative structures

[9,10,165-167]. Dissipation is not in such circumstances a

source of decay but has a constructive role, maybe includ-

ing the emergence of life, natural evolution, and the astound-

ing functioning of living systems. This is the question of

order out of chaos in complex systems, i.e. synergetic pro-

cesses leading to self-organization in open systems far-from-

equilibrium, when, as noticed, are governed by nonlinear

macroscopic kinetic laws.

Such kind of complex behavior can arise in solid state mat-

ter, and we briefly summarize a few examples in semicon-

ductors, polymers, and biological systems. In Refs. [158-

164,168-173] is given an overview of the role of the irre-

versible thermodynamics based on NESEF in dealing with

biosystems. On the question of the relation of Biology and

Physics we may say that the sometimes mentioned gap be-

tween both disciplines has been slowly shrinking along recent

decades. The old difficulty with this sought after connection,

which resided into looking exclusively at the microscopic-

mechanicist level of Physics, disappears when one begins to

consider the macroscopic level of Physics. An important role

is played by the thermodynamics of nonlinear nonequilibrium

open dissipative systems, as it is the Informational-Statistical

Thermodynamics, build on the basis of the NESEF [13-16],

already mentioned in Section III. NESEF has been applied to

the determination of the complex behavior that may result in

biopolymers, namely, Fröhlich-Bose-Einstein-like condensa-

tion and propagation of Davidov’s solitary-wave-like excita-

tions, which are of relevance in Bioenergetics. The question

of the lifetime of the latter at physiological conditions was

discussed, and the case was illustrated in a comparison with

experiments performed in the case of an organic molecular

polymer, as it is briefly described below, with no detail be-

ing presented which can be obtained in the references that are

cited.

The interesting phenomenon of the so-called Fröhlich-

Bose-Einstein-like condensation [174] – as viewed from the

NESEF angle – has been considered in several articles.

Mesquita et al. [158] have considered the nonequilibrium and

dissipative evolution, and the steady state of the population

of vibrational polar modes in a chain of biomolecules. These

polar modes are excited through a coupling with a pumping

source of metabolic energy and are in anharmonic interaction

with an elastic continuum. Groups of polar modes are cou-

pled in this way through nonlinear terms in the kinetic equa-

tions. This nonlinearity is shown to be the source of an unex-

pected phenomenon characterizing complex behavior in this

kind of system: after a threshold of intensity of the pumping

source is achieved, polar modes with the lowest frequencies

increase enormously their population in a way reminiscent of

a Bose-Einstein condensation (Fröhlich effect). The transient

time for the steady-state condensate to follow is very short

(picosecond time scale) and the condensation appears even

for weak values of the anharmonic coupling strength respon-

sible for its occurrence. Further, it seemingly requires acces-

sible levels of pumping power of metabolic energy in order to

be produced and sustained.

The question was further pursued in [158,168-172], where

the above mentioned Fröhlich effect – consisting, as noticed,

of a coherent behavior of boson-like excitations in biological

and molecular polymers – is fully derived and analyzed in

terms of NESEF. It was shown that when double (or multiple)

processes of excitation of the boson system are possible there

follows a positive-feedback phenomenon that greatly favors

and enhances the effect [174].

An alternative possibility for Fröhlich condensation to fol-

low due to higher-order relaxation processes mediated by

carriers – as for example in proteins –, was considered by

L. Lauck et al. [173], who took into account the above

model of a biological system consisting of a long chain of
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proteins possessing polar modes of vibration, and where en-

ergy is pumped through metabolic processes. It was con-

sidered the effect produced by free electrons that are usu-

ally present as hole carriers in proteins with electron-donor

molecules. NESEF was used for the derivation of the kinetic

equations and introducing the non-linearities due to interac-

tions of the polar vibrations with the carriers and with the

thermal bath. These non-linearities arising out of higher or-

der relaxation processes lead to the emergence of the Fröhlich

effect in the polar modes, i.e., as noticed, the occurrence of

a peculiar (nonequilibrium) Bose-Einstein-like condensation.

It also points to an instability of the system that seems to be

followed by a morphological transformation in the form of a

spatially ordered dissipative structure.

Another phenomenon, which is closely related to this

phenomenon of Fröhlich-Bose-Einstein condensation in a

nonequilibrium phase (in the sense that it is a result of the

same many-body system microdynamics, being governed by

the same Hamiltonian operator and nonlinear macroscopic ki-

netic effects), consists in the propagation of solitary waves in

several systems. Solitary waves are ubiquitous and of rel-

evance in a number of situations in applied science [175].

They play a fundamental role in the case of conducting poly-

mers (for use in electric car batteries, microcircuits, etc.)

[176-179]. In biological systems, the so-called Schrödinger-

Davydov’s solitary waves [180] may have a relevant role;

they have been considered within NESEF in [181], where it

was analyzed Davydov’s biophysical model in the context of

NESEF-based nonequilibrium statistical thermodynamics. It

was shown that excitations of the Davydov-soliton type that

can propagate in the system, which are strongly dampened

in near-equilibrium conditions, become near dissipation-free

in the Fröhlich-Bose-Einstein condensate and that this oc-

curs after a certain threshold of pumped metabolic energy is

reached. This implies in the propagation of excitations at long

distances in such biosystems. The question have been further

analyzed and extended in [182], and in [183] is considered

the case of the organic polymer acetanilide, which mimics

some aspects of certain biopolymers and has been subjected

to extensive experimental analysis.

We close this section mentioning some applications of NE-

SEF to the study of complex behavior – of the type of for-

mation of Prigogine’s dissipative structures – in far-from-

equilibrium many-body systems. Morphological ordering

of the reaction-diffusion Turing type is considered in [184],

where is analyzed the dissipative thermodynamic regime of

an electron system in bulk matter under the action of an ex-

ternal source of energy, which generate electron-hole pairs

with a nonequilibrium distribution in energy space. It was

shown that with increasing values of the source power (fur-

thering the distance from equilibrium), and strictly in the

case of a p-doped material, the carrier system displays com-

plex behavior characterized by undergoing a succession of

transitions between synergetically self-organized dissipative

structures. The sequence goes from the homogeneous steady

state (or stochastic thermal chaos), to sinusoidal spatial de-

viations (morphological ordering), to intricate ordered states

(subharmonic bifurcations), and finally to a situation resem-

bling turbulent-like-chaos (a multi- periodic spatial organiza-

tion). The phenomenon may arise, for example, in semicon-

ductor systems, molecular polymers, and protein molecular

chains in biosystems.

Moreover, in [185] is considered the nonlinear macro-

scopic kinetics of evolution of the carrier system in the pho-

toinjected plasma in semiconductors under the action of con-

stant illumination with ultraviolet light. It was shown that the

spatially homogeneous steady-state becomes unstable, and a

charge-density wave emerges after a critical intensity of the

incident radiation is achieved. For intensities beyond this

critical threshold an increasing number of modes provide fur-

ther contributions (subharmonics) to the space inhomogene-

ity, leading the system to display chaotic-like behavior, as it is

in [184]. It was shown that this phenomenon can only follow

in doped p-type materials as semiconductors and some molec-

ular and biological polymers, the latter when under dark bio-

chemical excitation.

XI. THERMO-STATISTICS OF COMPLEX STRUCTURED

SYSTEMS AND NESEF

More than twenty years ago Montroll and Shlesinger wrote

that in the world of the investigation of complex phenom-

ena that requires statistical modelling and interpretation sev-

eral competing styles have been emerging, each with its own

champions [186]. What is at play consists in that in the study

of certain physico-chemical systems we may face difficul-

ties when handling situations involving fractal-like structures,

correlations (spatial and temporal) with some type of scal-

ing, turbulent or chaotic motion, small size (nanometric scale)

systems with eventually a low number of degrees of freedom,

and so on: It is in these situations that we are faced with the

existence of so-called hidden constraints to which we do not

have access. The interest on the study of such kind of com-

plex physical systems has been recently enhanced as a con-

sequence that they are part of electronic and opto-electronic

devices of the nowadays advanced technologies, and also in

technological/industrial areas involving the use of disordered

systems, polymeric solutions and materials, ion-conducting

glasses, the case of microbatteries, and others. The question

involves the fact that the researcher faces difficulties in sat-

isfying Fisher’s Criteria of Efficiency and Sufficiency [187]

in the conventional approach to the well established, phys-

ically and logically sound Boltzmann-Gibbs statistics (“The

criterion of efficiency is satisfied by those statistics which, de-

rived from large samples, tend to a normal distribution with

the least possible standard deviation” and, “A statistics satis-

fies the criterion of sufficiency when no other statistics which

can be calculated from the same sample provides any addi-

tional information as the value of the parameter to be esti-

mated”, which for the purposes of statistical mechanics is to

be taken as the existence of an incomplete description of the

physical situation in hands [188]). In Statistical Mechanics

the question typically consists in that one needs to confront

some impairment on how to correctly include the presence of

large fluctuations (and eventually higher-order variances) and

to account for the relevant and proper characteristics of the

system – implying in lack of efficiency and sufficiency, re-

spectively. As a consequence, in an attempt to assuage these

difficulties, and thus allowing to improve the predictions, one

may resort to statistical approaches other than the consistent

canonical one of Boltzmann-Gibbs ensemble formalism.
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Among existing approaches we can mention:

1. The one used by P. T. Landsberg showing that func-

tional properties of the (informational) entropies give

in fact origin to different types of unusual thermo-

statistics, and rise the question of how to select a

“proper” one, that is, are some better than others?

[189];

2. For decades it has been in use Lèvy Statistics, intro-

ducing modified non-Gaussian distributions which has

been applied to a variety of problems, and recently it

had a revival with its application to the study of chaotic

dynamics (see for example Ref. [186,190,191]);

3. The approach of W. Ebeling who has addressed the

question of the statistical treatment of a class of sys-

tems that are in some sense “anomalous”: They con-

tain those in nature and society which are determined

by its total history. Usually the given examples are

the evolution of the Universe and of our planet, phe-

nomena at the biological, ecological, climatic, social

levels, etc. The approach consists into introducing

conditional probabilities in the context of Boltzmann-

Gibbs formalism in Shannon-Jaynes approach, leading

to a thermo-statistics appropriate for describing com-

plex processes with long-ranging memory and includ-

ing correlations [192-194].

4. So-called Superstatistics developed by C. Beck and E.

G. D. Cohen for non-equilibrium systems with com-

plex dynamics in stationary states with large fluctua-

tions on long-time scales [195];

5. The generally called Non-Extensive Thermo-Statistics,

based on Havrda-Charvat approach [196], which ap-

plied to several cases is described in the Conference

Proceedings of Ref. [197];

6. Renyi approach [198] has been introduced in the scien-

tific literature, as noticed in Ref. [199], with, for ex-

ample, P. Grassberger and I. Procaccia [200,201] using

it in a modified form as a valuable method for charac-

terizing experimental chaotic signals. Recently P. Jizba

and T. Arimitzu [202] have presented an extensive anal-

ysis of it in a paper called “The world according to

Renyi”, where they show that making extremal Shan-

non’s entropy on a multifractal is equivalent to directly

making extremal Renyi’s entropy without invoking the

multifractal structure explicitly;

7. Sharma-Mittal approach [203] or better to say a vari-

ation of it (called Kappa or Deformational Statistics),

was used by V. M. Vasyliunas in problems of astrophys-

ical plasma [204] and by G. Kanadiakis in the case of

relativistic systems [205].

We recall that in Statistical Mechanics the probability dis-

tribution (statistical operator), usually derived from heuristic

arguments, can also be derived from an extremum-principle

formalism once is made connection with Information Theory

[3,206,207]. It consists into making a maximum, subjected to

certain constraints, a functional (superoperator) of the prob-

ability distribution (statistical operator). Such quantity, first

introduced in Shannon’s Theory of Communication [51-53],

can be referred-to as measure of uncertainty of information.

It has also been called statistical measure and entropy, with

the understanding that it is information-theoretic entropy. It

is worth to emphasize – in view of some confusion that has

recently pervaded the scientific literature – that the different

possible information-theoretic entropies are not to be inter-

preted as the thermodynamic entropy of the physical system:

the renowned theoretical statistician R. T. Cox has noticed

that the meaning of such entropies is not the same in all re-

spects as that of anything which has a familiar name in com-

mon use, and it is therefore impossible to give a simple verbal

description of it, which is, at the same time, an accurate defi-

nition [208]. Moreover, E. T. Jaynes has also commented that

it is an unfortunate terminology, and a major occupational

disease in that there exists a persistent failure in discerning

between the informational entropy, which is a property of any

probability distribution, and the experimental entropy of ther-

modynamics which is instead a property of a thermodynamic

state: Many research papers are flawed fatally by the au-

thors’ failure to distinguish between these entirely different

things, and in consequence providing nonsense results [209].

Gibbs-Boltzmann-Shannon information-theoretic entropy

(Kullback-Leibler measure in Information Theory [210]) is

given by

SGBS(t) = −Tr{ρ(t) lnρ(t)} , (79)

with ρ(t) being the statistical operator for the correspond-

ing Gibbs’ ensemble. The derivation of the statistical oper-

ator ρ(t) has been done using various consistency arguments:

see for example the review article by Balian and Balazs in

Ref. [211]. Among them we can highlight the one based

on heuristic arguments (as it is usual in the textbooks for the

case of equilibrium, and for non-equilibrium systems see for

example [212,213]), and the one using an extremum-principle

approach consisting in maximizing SGBS(t) subjected to con-

straints [3,206] (the so-called MaxEnt formalism).

As emphasized by Balian and Balazs [211], this GBS def-

inition relies on an invariance property, the invariance un-

der unitary transformations, and it is the only function of the

density operator which satisfies the sub-additivity inequality

for compound systems [189,214,215]. Moreover, as already

noticed, there is no reason for abandoning the information-

theoretic Shannon (Kullback-Leibler) entropy, which is the

only consistent probabilistic measure of information.

On the other hand, the Havrda-Charvat structural α-

entropy and others of the like (in principle infinitely-many)

are measures of uncertainty of information which have been

used in different areas of knowledge since the mid nineties

(see Ref. [216]) and the one due to Paul Lèvy since the

1930’s [186]. In Physics, as noticed, they can be used as an

auxiliary formalism to make predictions when dealing with

systems displaying some kind or other of complex behavior,

in which there are hidden constraints (relevant to character-

ize the state – either macroscopic and/or microscopic – of the

system), that is, constraints to which we do not have access.

We briefly describe these alternative approaches, and

its use within the extremum-principle formalism MaxEnt-

NESEF (for Maximization of Informational Entropy in

the Non-Equilibrium Statistical Ensemble Formalism
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[1,3,45,50]), for deriving non-conventional non-equilibrium

statistical-mechanical distributions.

We begin noticing that Statistical Mechanics of many-body

systems has a long and successful history; see Section II. The

introduction of the concept of probability in physics origi-

nated mainly from the fundamental essay of Laplace [217],

who incorporated and extended some earlier seminal ideas

(see an historical review in Ref. [218]). As well known, Sta-

tistical Mechanics attained the status of a well established dis-

cipline at the hands of Maxwell, Boltzmann, Gibbs, and oth-

ers, and went through some steps related to changes, not in its

fundamental structure, but just on the substrate provided by

microscopic mechanics. Its application to the case of systems

in equilibrium proceeded rapidly and with exceptional suc-

cess: equilibrium statistical mechanics gave – starting from

the microscopic level – foundations to Thermostatics, and the

possibility to build a Response Function Theory. Applica-

tions to non-equilibrium systems began, mainly, with the case

of local equilibrium in the linear regime following the pio-

neering work of Lars Onsager [130,219].

For systems arbitrarily deviated from equilibrium and gov-

erned by nonlinear macroscopic kinetic laws, the derivation

of an ensemble-like formalism proceeded at a slower pace

than in the case of equilibrium, and somewhat cautiously,

with a long list of distinguished scientists contributing to

such development. It can be noticed that Statistical Mechan-

ics gained in the nineteen fifties an alternative approach sus-

tained on the bases of Information Theory [61,206,218,220-

223]: It invoked the ideas of Information Theory accom-

panied with ideas of scientific inference [224,225], and an

extremum-principle formalism (the latter being Jaynes’ prin-

ciple of maximization of informational uncertainty – the so

called informational-entropy as notice before – and called

MaxEnt for short), compounding from such point of view a

theory dubbed Predictive Statistical Mechanics. It should be

noticed that this is not a new paradigm in Statistical Physics,

but a quite useful and practical variational method which cod-

ifies the derivation of probability distributions, which are usu-

ally obtained by either heuristic approaches or projection op-

erator techniques. It is particularly advantageous for building

non-equilibrium statistical ensembles allowing for the sys-

tematization of the relevant work on the subject that renowned

scientists provided along the past century as describe in the

book of Ref. [3] and commented upon in Sections II and III.

Moreover, it has been noticed that MaxEnt is not a physical

principle in the proper sense, and should be carefully distin-

guished from the “entropy maximum principle” of thermody-

namics: The latter is not a rule of inference but a condition of

thermodynamic equilibrium [225].

MaxEnt, apparently first proposed by W. Elssasser [60],

was analyzed in depth, largely systematized and extended by

E. T. Jaynes, who proposed it as an extension of the classi-

cal principle of insufficient reason. It has been claimed that

MaxEnt is single out as a unique method of statistical infer-

ence that agree with certain compelling consistency require-

ments: The point has been critically reviewed by J. Uffink

[226]. Moreover, Rolf Landauer [227] has argued that “ad-

vocacy of MaxEnt is perpertuated by selective decision mak-

ing in the generation of papers [...] MaxEnt is likely to be

sound, but often it is dreadfully difficult to understand what

the constraints are”. Mario Bunge stated [228] that “when

confronted with a random or seemingly random process, one

attempts to build a probabilistic model that could be tested

against empirical data; no randomness, no probability. More-

over, as Poincaré pointed out long ago, talk of probability

involves some knowledge; it is not a substitute for ignorance

(and Bunge adds, not correctly in what refers to the statistical

mechanics we are discussing here, that) this is not how the

Bayesian or personalists view the matter: when confronted

with ignorance or uncertainty, they use probability – or rather

their own version of it. This allows them to assign prior

probabilities to facts and propositions in an arbitrary man-

ner [again, this is not the case in MaxEnt-NESEF] – which

is a way of passing off mere intuition, hunch, or guess for

scientific hypothesis [...]; it is all a game of belief rather than

knowledge”.

Sometimes arguments against MaxEnt in terms of playing

dices have been advanced. To this, it must be recalled that the

question we are addressing here does not deal with gambling,

but with many-body theory. That is, we deal with systems

with very many degrees of freedom, and then is necessary to

have in mind the distinction between interpretations in terms

of microscopic and macroscopic variables.

Concerning the arguments that knowledge arises out of ig-

norance, this is simply unnecessary confusion coming from

a wrong interpretation of, maybe, a sometimes not correct

phrasing used by some practitioners of MaxEnt in areas other

than Many-Body Physics. Quite to the contrary, the spirit

of the formalism is to make use of the restricted knowledge

available, but without introducing any spurious one. Quot-

ing Laplace [217], “the curve described by a molecule of air

or of vapor is following a rule as certainly as the orbits of the

planets: the only difference between the two is our ignorance.

Probability is related, in part to this ignorance, in part to our

knowledge”. Also, as pointed out by Bricmont [229], “the

part due to our ignorance” is simply that we use probabilistic

reasoning. If we were omniscient, it would not be needed (but

the averages would remain what they are, of course). The part

“due to our knowledge” is what makes reasoning work [...].

But this is the way things are: our knowledge is incomplete,

and we have to live with that. Nevertheless, probabilistic rea-

soning is extraordinarily successful in practice, but, when it

works, this is due to our (partial) knowledge. It would be

wrong to attribute any constructive role to our ignorance. And

it is also erroneous to assume that the system must be some-

how indeterminate when we apply probabilistic reasoning to

it.” (see also Ref. [230]).

It has been noticed that to derive the behavior of the macro-

scopic state of the system from partial knowledge has been al-

ready present in the brilliant original work of Gibbs. Werner

Heisenberg wrote [89] “Gibbs was the first to introduce a

physical concept which can only be applied to an object when

our knowledge of the object is incomplete”. Furthermore, it

can be considered that the dismissal of a theoretical approach

in Physics cannot (and should not) be done on the basis of

general verbal arguments, which may or may not be sensi-

ble, but which need be strongly fundamented on the scien-

tific method. In other words, the merits, or rather demer-

its, of a theory reside in establishing its domain of validity

(see for example Refs. [87] and [90]), when tested against

the experimental results it predicts. This point has recently

been forcefully stressed by Stephen Hawkings [231]. On the
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particular case of the extremum-principle approach in Jaynes

style (as an alternative way [212] to, e.g., the heuristic one [4]

for building NESEF) Lawrence Sklar has summarized that

Jaynes firstly suggested that equilibrium statistical mechan-

ics can be viewed as a special case of the general program of

systematic inductive reasoning, and that, from this point of

view, the probability distributions introduced into statistical

mechanics have their bases not so much in an empirical in-

vestigation of occurrences in the world, but, instead in a gen-

eral procedure for determining appropriate a priori subjective

probabilities in a systematic way [151,232].

Additional analyses are present in the work of B. C. van

Fraassen [233-235], where it is discussed the possibility of

alternative rules of construction of generalized (information-

theoretic) entropy expressions containing a free continuous

parameter (so-called Renyi entropies), that is, of the type of

those considered here: Uffink noticed that it seems that more

research would be needed to assess their performance in con-

crete cases and in general. Moreover, in an article properly ti-

tled Entropies Galore! [189], Peter Landsberg have called the

attention to the fact that (see Ref. [216]) very-many of these

information-theoretic entropies can be proposed; and adds the

question of how to select a “proper” one, or, “Are some bet-

ter than others?” No clear “selection rule” can be forwarded.

At this point we reiterate our comment that a most used is

Renyi’s information-theoretic entropy (ITE) [198], which ap-

pears as the most convenient one to deal with multifractal

complex systems [202]. It can also be noticed that Havrda-

Charvat ITE [196] (or structural α-entropy, recently renamed

q-entropy) provides the same probability distribution than the

one that follows from Renyi ITE (they differ in the definition

of the Lagrange multipliers that the extremum-principle ap-

proach introduces, and it can be noticed that Renyi ITE avoids

difficulties associated to the other). It can be mentioned that

they have been used in a particular problem (with “hidden

constraints”) of marketing of different brands of toilet soup

[236], producing the same result [216], as it should.

The informational-based approach has been quite success-

ful in its application to the cases of equilibrium and near

equilibrium conditions [212,213,221,237,238], and in the last

decades has been, and is being, also applied to the construc-

tion of a generalized ensemble theory for systems arbitrarily

away from equilibrium [3,14,15,45,49,239]. NESEF provides

mechanical-statistical foundations to irreversible thermody-

namics (in the form of Informational Statistical Thermody-

namics (ITE for short [13-16]), a nonlinear quantum kinetic

theory [1,3,45,59,67-69,240] and a response function theory

[3,241] of a large scope for dealing with many-body systems

arbitrarily away from equilibrium. NESEF has been applied

with success to the study of a number of non-equilibrium sit-

uations in the physics of semiconductors (see for example the

review articles of Ref. [78]) and polymers [183], as well as

to studies of complex behavior of boson systems in, for ex-

ample, biopolymers (e.g. Refs. [158-160,168-172,181-184])

phonon systems [162-164], and magnon systems [161]. It

can also be noticed that the NESEF-based nonlinear quan-

tum kinetic theory provides, as particular limiting cases, far-

reaching generalizations of Boltzmann and Mori equations

[67-69,71] and a Higher-Order Hydrodynamics, linear and

nonlinear [85,133,134].

As already noticed, NESEF is built on the bases of heuris-

tic standard arguments (see for example [4], or within the

scope of the extremum-principle method based on the max-

imization of the information-theoretic-entropy of Shannon-

Jaynes approach in Boltzmann-Gibbs statistics [3], that is,

the average of minus the logarithm of the time-dependent –

i.e. depending on the irreversible evolution of the macro-

scopic state of the system – non-equilibrium statistical oper-

ator. We again emphasize that information-theoretic-entropy

is in fact the quantity of uncertainty of information, and has

the role of a generating functional for the derivation of prob-

ability distributions (for tackling problems in Communica-

tion Theory, Physics, Mathematical Economics, and so on).

There is one and only one situation when Shannon-Jaynes

informational-entropy coincides with the physical entropy of

Clausius in thermodynamics, namely, the case of strict equi-

librium [188,242-244].

We recall that the extremum-principle approach produces

the well established equilibrium statistical mechanics, and

is providing a satisfactory formalism for describing non-

equilibrium systems in a most general form. Such conven-

tional (or canonical) approach in Boltzmann-Gibbs Statisti-

cal Mechanics allows for a proper description of the physics

of condensed matter, but in some kind of situations, for ex-

ample, involving nanometric-scale systems with some type

or other of fractal-like structures or systems with long-range

space correlations, or particular long-time correlations, it be-

comes difficult to apply because of a deficiency in the proper

knowledge of the characterization of the states of the system

in the problem one is considering (at either the microscopic,

macroscopic or mesoscopic levels): In other words we are

then studying a system facing the difficulty of being present

hidden constraints to which we do not have access.

We have already called the attention to the classical and

fundamental paper of 1922 [187] by R. A. Fisher, titled

“On the Mathematical Foundations of Theoretical Statistics”,

where the basic criteria that a statistics should satisfy in order

to provide valuable results are presented. We reiterate that

in present day Statistical Mechanics in Physics two of them

are of major relevance, namely the Criterion of Efficiency and

the Criterion of Sufficiency already described at the beginning

of this section. This is so because of particular constraints

that are present, for example, in physical situations involving

small systems where, on the one hand, the number of degrees

of freedom entering in the statistics may be small and, on

the other hand, structures, including boundary conditions of a

fractal-like character strongly influence the properties of the

system. Such facts make it difficult to introduce sufficient in-

formation for deriving a proper Boltzmann-Gibbs probability

distribution, and we may mention the examples of nanotech-

nology, nanobiophysics, quantum dots and nanometric het-

erostructures in semiconductor devices, one-molecule tran-

sistors, fractals-electrodes in microbatteries, and so on. Other

case when the sufficiency criterion is difficult to satisfy is the

one of large systems of fluids whose hydrodynamic motion

is beyond the domain of validity of the classical standard ap-

proach. It is then required the use of a nonlinear higher-order

hydrodynamics, eventually including correlations and other

variances (a typical example is the case of turbulent motion)

and in, for example, the study of the hydrodynamic motion

of complex (average-fractal like) structures in polymer solu-

tions.
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As described in the first part of this Section, a way to im-

prove our capacity to make predictions about the properties

and physical characteristic in such kind of situations involv-

ing the presence of hidden constraints, consists into resort-

ing to the introduction of modified forms of the information-

theoretic-entropy (that is, others than the consistent one of

Shannon), which are built in terms of the available charac-

terization one does have of the system. These information-

theoretic entropies, via MaxEnt, led to the derivation of non-

conventional probability distributions (statistical operators),

with which it is possible to make predictions on properties

and responses of the system, allowing to analyze its expected

physical behavior (when constituting a part of a device one

can make predictions on its functioning and on eventual mod-

ifications for improving its performance). In the process it is

introduced a free parameter (one or several), let us call it the

infoentropic index, which has the important role of modify-

ing the weight of the contributions of the different dynamical

states that are involved in the processes developing in the sys-

tem under observation: In that way predictions are improved

as compared with the conventional ones in the insufficient de-

scription.

This alternative approach originated in the decades of the

1950’s and 1960’s at the hands of theoretical statisticians (a

pioneering proposal is due to P. Lèvy in the 1930’s), being

extensively used in different disciplines (economy, queueing

theory, regional and urban planning, nonlinear spectral anal-

ysis, and so on). Some approaches were adapted for use in

physics leading to what can be dubbed as Non-Conventional

Statistical Mechanics (NCSM for short, see also P. T. Lands-

berg considerations in Refs. [189] and [215]).

A large number of possible information-theoretic entropies

can be explored: An infinite family is the one that can be de-

rived from Csiszer’s general measure of information-theoretic

entropy (see for example [216]). They, being generating

functionals of probability distributions, give rise to particu-

lar forms of statistics. These information-theoretic entropies

are related to a family of so-called statistical measures in a

metric space of statistical distributions, when it is provided a

distance from the sought-after statistical distribution to a ref-

erence distribution: A principle of minimization of this dis-

tance (MinxEnt for short) is equivalent to the maximization

of the associated infoentropy (MaxEnt) [216]. A complete

presentation of the matter is available in Ref. [245].

XII. NONCONVENTIONAL

THERMO-HYDRODYNAMICS

It has been noticed that the question of a so-called non-

standard or “anomalous” hydrodynamics is associated to dis-

ordered media [246], consisting in that disordered systems do

not follow the classical laws which describe transport in or-

dered systems, and that this leads to many kinds of “anoma-

lous” physical properties, that is, following unexpected laws

differing from the ones of standard hydrodynamics. The

range of applicability and of physical interest is enormous.

Fall on this problem the case of the distinctive behavior

of polyatomic structures such as colloidal particles, surfac-

tant micelles, and polymer molecules in a liquid, which are

classical examples of what is presently referred to as soft-

condensed matter [24,247]. One particular case of apparently

unusual behavior is the so-called “anomalous” diffusion, bet-

ter called non-Fickian diffusion, described by a time evolu-

tion following a kind of fractional-power law. This seems

to be connected with the fact that the motion is proceeding

in a medium with a fractal-like structure as a result that the

growth (manufacture) of samples inevitably produces fractal-

like structures [23]. This is of relevance for decisions in the

technological and industrial-commercial areas in present-day

competitive global economy.

As particular examples of the presence of hidden con-

straints, we may mention here the case of “anomalous” lu-

minescence in quantum wells with fractal-like boundaries in

semiconductor heterostructures [248], used for characteriz-

ing and controlling the growth in these materials, in a non-

destructive testing procedure, and the case of “anomalous”

results in cyclic voltammetry experiments involving fractal

electrodes in microbatteries which can be interpreted in terms

of “anomalous” diffusion of charges in the electrolyte [249],

with, in both cases, application of the theory considered here

was done. In those references it is presented a full systematic

study of these two examples of systems of high technologi-

cal/industrial/commercial interest.

As noticed, of particular large relevance in this question

are polymers, which are an attractive subject not only for

the own scientific interest but also, and importantly, for their

technological-industrial-commercial interest. On this we may

mention Ref. [250] for a view on general applications, and

it is worth calling the attention to the nowadays importance

of polymers in Electronics and Photonics [251-257] and the

case of conducting polymers for, e.g., more efficient batter-

ies [250-253]. These materials display a wide variety of un-

usual rheological phenomena, which are of great importance

to the synthesis, processing, performance, and end-use char-

acteristics of them. It is considered that probably a major-

ity of rheological research in the last decades has been de-

voted to the study of polymeric materials [258]. It has been

stated that, when under flow, the kinetic effects associated to

the latter exert a major restructuring influence on these flu-

ids. Also, the effects of structure on flow can also be rele-

vant, and these and other aspects of soft-matter rheology are

still baffling [257,258]. For example, the diffusion behav-

ior of many polymers cannot be adequately described by the

usual Fick equation. Generally, this is the case with the so-

called glassy polymers which are said to exhibit “anomalous”

or “non-Fickian” behavior [156,259]. We can also include in

this class of materials the case of micelles. In those cases it

has recently surged the question of how flow (advective mo-

tion, particularly under shear flow [260]) affects the system.

It is recognized that it is vital to control the flow of poly-

mers and surfactant micelles in many situations, including the

production of food, derivatives of petroleum, and household

goods, and in various applications in medicine. Particularly,

the prediction of the flow of complex fluids, such as solutions

of surfactants or polymers, through porous media is of par-

ticular interest to various industrial processes: e.g. many oil

industry treatment fluids fall in that category [261].

In such cases modelling based on macroscopic approxima-

tions tends to fail [261]. A study of the motion of a com-

plex structured fluid in the presence of a forced flow (advec-

tive motion) is presented in Ref. [141]. It implies in the in-
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troduction of a particular kind of unification of kinetic and

hydrodynamic approaches for the description of processes in

active systems, e.g. [45,73,262], described elsewhere [85],

adapted for dealing with complex structured systems. In that

way it is provided a microscopic-based approach to earlier at-

tempts [263,264] – showing in the process which is the phys-

ical interpretation of the hydrodynamic motion developing in

the media, and how is obtained the description in terms of

“anomalous” hydrodynamic equations – which is used for the

purpose of adjusting the description of the motion.

In the case of the hydrodynamic motion in complex-

structured fluids mentioned above [141] the “hidden con-

straints” consist in that the polymer macromolecules differ

in number of monomers, and then in mass, (then differences

in the translational degrees of motion), in configuration (then

differences in internal degrees of motion), and questions of

dangling and entanglement. Thus one does not have the

complete physical picture of the phenomenon, and then to

make predictions obtaining a relatively clear interpretation of

the facts involved in the physical processes under way Reny

statistics was used. As stated, this is described in Ref. [141],

where the use of the theory is fully illustrated, and compar-

ison with experiments done, through its application to the

study of surfactant micelles and polymer solutions under flow.

Also, for this particular case there is an equivalence of results

with those obtained in a description in terms of Lévy flights

(see also Ref. [245]).

XIII. CONCLUDING REMARKS

We have presented in this “Feature Article”, first, an In-

troduction with some considerations on the question of the

aspects and interrelationships of Science, Technology, Gov-

ernment and Society in the modern world. There it was also

called the attention to the “stress” that present day advanced

technologies and industrial processes place on the “realm” of

Physics, or better to say, to be more specific, on Thermo-

Statistics of systems driven arbitrarily far from equilibrium.

Hence, in Sections II, III and IV it is described the evolu-

tion that for that purpose is occurring in Statistical Mechanics

of Non-Equilibrium Systems (which is accompanied with a

Generalized Irreversible Thermodynamics). Finally, in Sec-

tions V to XII we comment on the main physico-chemical

processes that are involved in present day advanced technolo-

gies and competitive industries of the nowadays “globalized

world”.

They included, Section VI: Ultrafast Relaxation Processes

in Semiconductors; Section VII: Low-Dimensional Semi-

conductor Devices; Section VIII: Nonlinear Transport in

Highly-Polar Semiconductors; Section IX: Nonlinear Higher-

Order Thermo-Hydrodynamics, Section X: Coherent State

and Nonequilibrium Bose-Einstein-Like Condensations; Sec-

tion XI: Thermo-Statistics of Complex Structure Systems;

Section XII: Non-Conventional Thermo-Hydrodynamics.
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J. Kolnı́k , I.H. Oğuzman, K.F. Brennan, R. Wang, P.P. Ruden

and Y. Wang, Electronic transport studies of bulk zincblende

and wurtzite phases of GaN based on an ensemble Monte

Carlo calculation including a full zone band structure, J.

Appl. Phys. 78, 1033 (1995);

M. Shur, B. Gelmont and M.A. Khan, J. Electron. Mater. 25,

777 ( 1996);

S.K. O’Leary, B.E. Foutz, M.S. Shur, U.V. Bhapkar and L.F.

Eastman, Electron transport in wurtzite indium nitride, J.

Appl. Phys. 83, 826 (1998);

E. Bellotti, B.K. Doshi, K. Brennan, J.D. Albrecht and P.P.

Ruden, Ensemble Monte Carlo study of electron transport in

wurtzite InN, J. Appl. Phys. 85, 916 (1999).

[117] B.K. Ridley, B.E. Foutz and L.F. Eastman, Phys. Rev. B 61,

16862 (2000);

J.W. Orton and C.T. Foxon, Semicond. Sci. Technol. 13, 310

(1998);

V.W. Chin, T.L. Tansley and T. Osotchan, Electron mobilities

in gallium, indium, and aluminum nitrides, J. Appl. Phys. 75,

7365 (1994);

S. Dhar and S. Ghosh, Low field electron mobility in GaN, J.

Appl. Phys. 86, 2668 (1999);

D.C. Look and R.J. Molnar, Appl. Phys. Lett. 70, 3377

(1997).

[118] M. Wraback, H. Shen, J.C. Carrano, T. Li, J.C. Campbell,

M.J. Schurman and I.T. Ferguson, Time-resolved electroab-

sorption measurement of the electron velocity-field character-

istic in GaN, Appl. Phys. Lett. 76, 1155 (2000);

M. Wraback, H. Shen, J.C. Carrano, C.J. Collins, J.C. Camp-

bell, R.D. Dupuis, M.J. Schunnan and I.T. Ferguson, Time-

resolved electroabsorption measurement of the transient elec-

tron velocity overshoot in GaN, Appl. Phys. Lett. 79, 1303

(2001);

R. Collazo, R. Schlesser, A. Roskowski, R.F. Davis and Z.

Sitar, Hot electron transport in AlN, J. Appl. Phys. 88, 5865

(2000);

R. Collazo, R. Schlesser and Z. Sitar, Experimental observa-

tion of electron velocity overshoot in AlN, Appl. Phys. Lett.

81, 5189 (2002).

[119] N. Mansour, K.W. Kim, N.A. Bannov and M.A. Littlejohn,

Transient ballistic transport in GaN, J. Appl. Phys. 81, 2901

(1997).

[120] B.E. Foutz, L.F. Eastman, U.V. Bhapkar and M.S. Shur, Com-

parison of high field electron transport in GaN and GaAs,

Appl. Phys. Lett. 70, 2849 (1997).

[121] E.W.S. Caetano, R.N.C. Filho, V.N. Freire and J.A.P. Costa,

Velocity overshoot in zincblende and wurtzite GaN, Solid

State Commun. 11099), 469 (1999).

[122] B.E. Foutz, S.K. O’Leary, M.S. Shur and L.F. Eastman, Tran-

sient electron transport in wurtzite GaN, InN, and AlN, J.

Appl. Phys. 85, 7727 (1999).

[123] C.G. Rodrigues, V.N. Freire, A.R. Vasconcellos and R. Luzzi,

Velocity overshoot onset in nitride semiconductors, Appl.

Phys. Lett. 76, 1893 (2000).

[124] C.G. Rodrigues, A.R. Vasconcellos, R. Luzzi and V.N. Freire,

Transient transport in III-nitrides: interplay of momentum

and energy relaxation times, J. Phys.: Condens. Matter 19,

346214 (2007).

[125] C.G. Rodrigues, V.N. Freire, J.A.P. Costa, A.R. Vasconcellos,

R. Luzzi, Hot electron dynamics in zincblende and wurtzite

GaN, Phys. Stat. Sol. (b) 216, 35 (1999);

C.G. Rodrigues, A.R. Vasconcellos, R. Luzzi, V. Lemos,

V.N. Freire, Structured ultrafast carrier drift velocity in pho-

toexcited zincblende GaN, Materials Science Forum 338-342,

1579 (2000);

C.G. Rodrigues, A.R. Vasconcellos, V.N. Freire, R. Luzzi, Ur-

bach’s tail in III-nitrides under an electric field, J. Appl. Phys.

90, 1879 (2001);

C.G. Rodrigues, V.N. Freire, A.R. Vasconcellos, R. Luzzi,

Electron mobility in nitride materials, Braz. J. Phys. 32(2A),

439 (2002);

A.R. Vasconcellos, R. Luzzi, C.G. Rodrigues, V.N. Freire,

Hot phonon bottleneck in the photoinjected plasma in GaN,

Appl. Phys. Lett. 82, 2455 (2003);

C.G. Rodrigues, J.R.L. Fernandez, J.R. Leite, V.A. Chitta,

V.N. Freire, A.R. Vasconcellos, R. Luzzi, Hole mobility in

zincblende GaN, J. Appl. Phys. 95, 4914 (2004);

C.G. Rodrigues, A.R. Vasconcellos, R. Luzzi, Ultrafast relax-

ation kinetics of photoinjected plasma in III-nitrides, J. Phys.

D - Appl. Phys. 38, 3584 (2005);

C.G. Rodrigues, A.R. Vasconcellos, R. Luzzi, V.N. Freire,

Nonlinear transport properties of III-nitrides in electric field,

J. Appl. Phys. 98, 043702 (2005);

C.G. Rodrigues, A.R. Vasconcellos, R. Luzzi and V.N. Freire,

Nonlinear transport properties of doped III-N and GaAs po-

lar semiconductors: a comparison, J. Appl. Phys. 98, 043703

(2005);

C.G. Rodrigues, A.R. Vasconcellos, R. Luzzi, Nonlinear

charge transport in III-N semiconductors: mobility, diffusion,

and a generalized Einstein relation, J. Appl. Phys. 99, 73701

(2006);

C.G. Rodrigues, A.R. Vasconcellos, R. Luzzi, Non-linear

electron mobility in n-doped III-nitrides, Braz. J. Phys.

36(2A), 255 (2006);

C.G. Rodrigues, A.R. Vasconcellos, R. Luzzi, Nonlinear

transport in n-III-nitrides: selective amplification and emis-

sion of coherent LO phonons, Solid State Commun. 140, 135

(2006);

C.G. Rodrigues, Electron drift velocity in n-doped wurtzite

GaN, Chinese J. Phys. 44, 44 (2006);

C.G. Rodrigues, Electron mobility in n-doped zinc sulphide,

Microelectronics Journal 37, 657 (2006);

C.G. Rodrigues, A.R. Vasconcellos, R. Luzzi, Nonlinear hole

transport and nonequilibrium thermodynamics in group III-

nitrides under the influence of electric fields, J. Appl. Phys.

102, 073714 (2007);

C.G. Rodrigues, Electron transport in GaN(ZB) and

AlN(WZ), J. Mater. Sci. 42, 396 (2007);

C.G. Rodrigues, Hot-carrier relaxation in photoinjected



Brazilian Journal of Physics, vol. 40, no. 1, March, 2010 89

ZnSe, Microelectronics Journal 38, 24 (2007);

C.G. Rodrigues, Ultrafast transport transient in photoexcited

ZnSe, Eur. Phys. J. Appl. Phys. 41, 201 (2008);

C.G. Rodrigues, A.R. Vasconcellos, R. Luzzi, Theoretical

calculations of nonlinear electronic transport behavior in III-

nitrides: GaN and AlN, Phys. Status Solidi (b) 246(2), 417

(2009);

C. G. Rodrigues, A. R. Vasconcellos, R. Luzzi, Optical prop-

erties of III-nitrides in electric fields, Eur. Phys. J. B 72, 67

(2009);

C.G. Rodrigues, Influence of the concentration, temperature

and electric field intensity on the electron mobility in n-doped

zinc sulphide, Eur. Phys. J. B 72(3), 405 (2009);

[126] R. Wallace, The World of Leonardo (Time-Life, New York,

USA, 1966).

[127] J.P. Boon and S. Yip, Molecular Hydrodynamics (McGraw-

Hill, New York, USA, 1980; Reprinted by Dover, New York,

USA, 1991).

[128] S.K. Belyaev, Phys.-Uspekhi 38, 287 (1995).

[129] D.N. Zubarev, V.G. Morosov, I.P. Omelyan, and M.V.

Tokarchuk, Theor. Math. Phys. 96, 997 (1994).

[130] H.G.B. Casimir, On Onsager’s principle of microscopic re-

versibility, Rev. Mod. Phys. 17, 343 (1945).

[131] I. Müller and T. Ruggeri, Extended Thermodynamics

(Springer, Berlin, Germany, 1993).

[132] D. Jou, J.Casas-Vazquez, and G. Lebon, Rep. Prog. Phys. 51,

1105 (1998) and ibid. 62, 1035 (1999).

[133] D. Jou, J. Casas-Vazquez, J.R. Madureira, A.R. Vasconcellos,

and R. Luzzi, Higher-order hydrodynamics: Extended Fick’s

Law, evolution equation, and Bobylev’s instability, J. Chem.

Phys. 116(4), 1571 (2002).

[134] D. Jou, J. Casas-Vazquez, J.R. Madureira, A.R. Vasconcellos,

and R. Luzzi, J. Mod. Phys. B 32, 4211 (2001).

[135] S. Hess, Z. Naturforsh. A 32, 678 (1977).

[136] C. Wunsch, Oceanography: what is the thermohaline circu-

lation?, Science 298, 1179-1181 (2002).

[137] J.D. Neelin and M. Latif, El Niño dynamics, Phys. Today

51(12), pp. 32-36 (1998).

[138] C-L Chiu, J. Hydraulic. Eng. 129, 248 (2003).

[139] D. Jou, J. Casas-Vazquez and Criado-Sancho, Thermodynam-

ics of Fluids Under Flow (Springer, Berlin, Germany, 2001).
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