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SÉRGIO SZPIGEL

Centro de Ciências e Humanidades, Universidade Presbiteriana Mackenzie

São Paulo, SP 01302-907, Brazil

szpigel@mackenzie.br

VARESE S. TIMÓTEO
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In this work we study the similarity renormalization group (SRG) evolution of chiral
effective field theory (ChEFT) nucleon-nucleon (NN) interactions derived within the
framework of the subtracted kernel method (SKM) approach. We apply the SRG trans-
formation to evolve the leading-order (LO) ChEFT NN potential in the 1S0 and the
3S1 −3 D1 partial-wave channels and calculate the corresponding phase-shifts.
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1. Introduction

The similarity renormalization group (SRG) formalism, developedby Glazek and

Wilson1,2 and independently by Wegner,3 is an approach based on a series of con-

tinuous unitary transformations that evolve hamiltonians with a cutoff on energy

differences. Viewing the hamiltonian as a matrix in a given basis, the SRG trans-

formations suppress off-diagonal matrix elements as the cutoff is lowered, forcing

the hamiltonian towards a band-diagonal form. Recently, the SRG approach has

been applied to evolve phenomenological and chiral effective field theory (ChEFT)

NN potentials to phase-shift equivalent softer forms,4,5,6,7,8 effectively decoupling

low-energy observables from high-energy degrees of freedom. It has been shown that

such a decoupling leads to more perturbative NN potentials, greatly simplifying

calculations in nuclear few and many-body problems.

In this work we study the SRG evolution of ChEFT NN interactions derived

within the framework of the subtracted kernel method (SKM), a renormalization

approach based on a subtracted scattering equation.9,10,11,12 We apply the SRG

transformation to evolve the SKM leading-order (LO) ChEFT NN potential in the
1S0 and the 3S1−

3D1 partial-wave channels and calculate the corresponding phase-

shifts. In previous work13 we have described in detail the SKM renormalization
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procedure and the SRG evolution of the SKM-LO ChEFT NN potential in the 1S0

partial-wave channel.

2. Similarity Renormalization Group Formalism

Consider an initial hamiltonian in the center of mass frame for a system of two

nucleons, which can be written in the form H = Trel + V , where Trel is the relative

kinetic energy and V is the NN potential. Here and in what follows we use units

such that ~ = c = M = 1, where M is the nucleon mass. The SRG transformation

is defined by a unitary operator designed to act on the hamiltonian and evolve it

with a cutoff λ on energy differences at the interaction vertices,

Hλ = U(λ) H U †(λ) ≡ Trel + Vλ . (1)

In this work, we employ the formulation of the SRG developed by Wegner,3

based on a flow equation that governs the unitary evolution of the hamiltonian

with a flow parameter s,

dHs

ds
= [ηs, Hs] , (2)

which is to be solved with the boundary condition Hs|s→s0
≡ Hs0 .

The flow parameter s has dimensions of (energy)−2 and ranges from 0 to ∞.

In terms of a similarity cutoff λ, here with dimensions of momentum, the flow

parameter is given by the relation s = λ−4. The SRG transformation is generated

by the anti-hermitian operator ηs = [Gs, Hs], which is defined by the choice of the

operator Gs. Wegner’s choice in the original formulation is the full diagonal part of

the hamiltonian in a given basis, Gs = diag(Hs). Here we use the free hamiltonian,

Gs = Trel, which yields the flow equation

dVs(p, p
′)

ds
= −(p2 − p′2)2 Vs(p, p

′)

+
2

π

∫ ∞

0

dq q2 (p2 + p′2 − 2q2) Vs(p, q) Vs(q, p
′), (3)

where Vs(p, p
′) is a brief notation for the projected NN potential matrix elements

V
(JLL′S;I)
s (p, p′) in a partial-wave relative momentum space basis, | q(LS)J ; I 〉,

with normalization given by

1 =
2

π

∫ ∞

0

dq q2 | q(LS)J ; I 〉 〈 q(LS)J ; I |. (4)

The superscripts J , L(L′), S and I denote respectively the total angular momen-

tum, the orbital angular momentum, the spin and the isospin quantum numbers

of the NN state. For non-coupled channels (L = L′ = J), the NN potential ma-

trix elements Vs(p, p
′) are simply given by Vs(p, p

′) = V
(JJJS;I)
s (p, p′). For coupled

channels (L,L′ = J ± 1), the Vs(p, p
′) represent 2 × 2 matrices of matrix elements

In
t. 

J. 
M

od
. P

hy
s. 

E 
20

11
.2

0:
21

0-
21

8.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 U

N
IV

ER
SI

D
A

D
E 

ES
TA

D
U

A
L 

D
E 

C
A

M
PI

N
A

S 
on

 1
0/

18
/2

3.
 R

e-
us

e 
an

d 
di

st
rib

ut
io

n 
is

 st
ric

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s a

rti
cl

es
.



December 28, 2011 17:46 WSPC/INSTRUCTION FILE
S0218301311040815

212 S. Szpigel & V. S. Timóteo

for the different combinations of L and L′:

Vs(p, p
′) =







V
(JLLS;I)
s (p, p′) V

(JLL′S;I)
s (p, p′)

V
(JL′LS;I)
s (p, p′) V

(JL′L′S;I)
s (p, p′)






. (5)

The scattering observables for each NN interaction channel can be calculated

by iterating the corresponding SRG evolved potential through the LS equation for

the partial-wave T -matrix (for simplicity, we drop the subscript s denoting the flow

parameter and the superscripts denoting the quantum numbers of the NN state):

T (p, p′; k2) = V (p, p′) +
2

π

∫ ∞

0

dq q2
V (p, q)

k2 − q2 + i ǫ
T (q, p′; k2) . (6)

The phase-shifts are then obtained from the relation between the T -matrix and the

S-matrix “on-shell”, S(k2) = 1− 2ik T (k, k; k2).

3. Subtracted Kernel Method Approach

We begin by considering the formal Lippmann-Schwinger (LS) equation for the

T -matrix of a two-nucleon system, written in operator form as

T (E) = V + V G+
0 (E) T (E) , (7)

where V is the NN potential and G+
0 (E) = [E − H0 + iǫ]−1 is the free Green’s

function for the NN system with outgoing-wave boundary conditions. For singular

NN potentials, Eq. (7) becomes ill-defined due to the ultraviolet divergencies that

appear in the momentum integrals. In the SKM approach,9,10,11,12 a regularized and

renormalized LS equation is derived by performing subtractions in the propagator

at a certain energy scale.

Consider a singular potential containing a regular term plus a Dirac-delta con-

tact interaction. In momentum space such a potential is given by V = Vreg + C0,

where C0 is the strength of the contact interaction. Using Eq. (7), the potential V

can be formally written in terms of the T -matrix at a given energy scale −µ2:

V =
[

1 + T (−µ2) G+
0 (−µ2)

]−1
T (−µ2) . (8)

Replacing the potential V in Eq. (7) by its expression in terms of T (−µ2) given

in Eq. (8) we obtain (after some manipulation) the subtracted kernel LS equation

for the T -matrix

T (E) = T (−µ2) + T (−µ2)
[

G+
0 (E)−G+

0 (−µ2)
]

T (E) . (9)

The subtracted kernel LS equation provides a finite solution for the T -matrix

at any given energy E, once its value at the subtraction scale −µ2 is known. Thus,

the input for the solution of Eq. (9) is T (−µ2), which is called “driving term”

and contains the physical information apparently lost due to the removal of the
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propagation through intermediate states at the scale −µ2. A simple ansatz consists

in considering that the driving term is given by

T (−µ2) = V (−µ2) = Vreg + C0(−µ2) , (10)

where C0(−µ2) is the renormalized strength of the contact interaction at the sub-

traction scale −µ2, which is fixed by fitting data for scattering observables and,

therefore, encodes the physical information.

Once C0(−µ2) in Eq. (10) is fixed, and so the driving term T (−µ2) is known, a

renormalized potential VR can be formally defined from Eq. (8):11

V → VR ≡
[

1 + T (−µ2) G+
0 (−µ2)

]−1
T (−µ2) . (11)

Replacing V by VR in Eq. (7), we obtain the LS equation for the renormalized

T -matrix:

TR(E) = VR + VR G+
0 (E) TR . (12)

Although VR is not well defined for singular interactions, for a driving term

T (−µ2) containing a regular term plus a Dirac-delta contact interaction, Eq. (12)

gives a finite solution for the T -matrix that is equivalent to the one obtained from

the subtracted kernel LS equation Eq.(9), i.e. TR(E) = T (E).

4. Numerical Results and Discussion

We solve Eq. (3) numerically, obtaining a non-perturbative solution for the evolu-

tion of the SKM-LO ChEFT potential in the 1S0 and the 3S1 −
3 D1 partial-wave

channels. The relative momentum space is discretized on a grid of gaussian in-

tegration points, leading to a system of non-linear first-order coupled differential

equations which is solved using an adaptative fifth-order Runge-Kutta algorithm.

The boundary condition for Eq. (3) is set at s = 0 (λ → ∞), such that the initial

potential is given by the fixed-point potential VR(p, p′) derived by implementing

the SKM scheme for the LO ChEFT interaction, which consists of the one-pion

exchange potential (OPEP) plus Dirac-delta contact interactions,

V (~p, ~p′) = V1π(~p, ~p′) +
1

2π2

[

Cs
0

(

1− ~τ1 · ~τ2
4

)

+ Ct
0

(

3 + ~τ1 · ~τ2
4

)]

. (13)

The coefficients Cs
0 and Ct

0 correspond to the strengths of the contact interactions

respectively for the 1S0 and 3S1 channels and V1π(~p, ~p′) is the OPEP, given by

V1π(~p, ~p′) = −
g2a

4(2π)3f2
π

~τ1 · ~τ2
~σ1 · (~p′ − ~p) ~σ2 · (~p′ − ~p)

(~p′ − ~p)2 +m2
π

, (14)

where σi and τi are the usual spin and isospin Pauli matrices for nucleon i, ga = 1.25

is the axial coupling constant, fπ = 93 MeV is the pion weak-decay constant and

mπ = 138 MeV is the pion mass.

For convenience, in our calculations we use the K-matrix (reactance matrix).

The LS equation for the K-matrix is similar to the one for the T -matrix, except
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that standing-wave boundary conditions are imposed for the Green’s function. In

this way, the iǫ prescription used in the LS equation for the T -matrix is replaced

by the principal value such that the K-matrix is real.

The relation between the T -matrix and the K-matrix “on-shell” is given by:

K−1(k, k; k2) = T−1(k, k; k2) + i k . (15)

We also introduce an ultraviolet momentum cutoff Λ which is convenient for the

numerical calculations when we further consider the evolution of the SKM renormal-

ized potential through the SRG transformation. It is important to emphasize that

such a cutoff acts just as an instrumental regulator for the numerical integrations.

The subtracted kernel LS equations for the K-matrices in the 1S0 and the
3S1 −

3 D1 channels are respectively given by:

K00
s (p, p′; k2) = V (1),00

s (p, p′;−µ2) +
2

π
P

∫ Λ

0

dq q2
(

µ2 + k2

µ2 + q2

)

×

×
V

(1),00
s (p, q;−µ2)

k2 − q2
K00

s (q, p′; k2) , (16)

K l1l2
t (p, p′; k2) = V

(1),l1l2
t (p, p′;−µ2) +

2

π

∑

l3

P

∫ Λ

0

dq q2
(

µ2 + k2

µ2 + q2

)

×

×
V (1),l1l3(p, q;−µ2)

k2 − q2
K l3l2

t (q, p′; k2) , (17)

where the driving terms V
(1),00
s (p, p′;−µ2) and V

(1),l1l2
t (p, p′;−µ2) are defined by

the ansatz

V (1),00
s (p, p′;−µ2) ≡ K00

s (p, p′;−µ2) = V 00
1π,s(p, p

′) + Cs
0(−µ2) , (18)

V
(1),l1l2
t (p, p′;−µ2) ≡ K l1l2

t (p, p′;−µ2) = V l1l2
1π,t (p, p

′) + Ct
0(−µ2) δl2,0 δl1,0 . (19)

The renormalized strengths of the contact interactions Cs
0(−µ2) and Ct

0(−µ2)

are fixed at the subtraction scale µ = 25 fm−1 by fitting the experimental values

of the scattering lengths for the 1S0 and the 3S1 channels, respectively given by

as = −23.7 fm and as = 5.43 fm.

Once the driving terms are known, we can obtain the renormalized potentials

V
(1),00
R,s (p, p′) and V

(1),l1l2
R,t (p, p′) by solving the integral equations,

V
(1),00
R,s (p, p′) = V (1),00

s (p, p′;−µ2)−

−
2

π
P

∫ Λ

0

dq q2
V

(1),00
s (p, q;−µ2)

−µ2 − q2
V

(1),00
R,s (q, p′) , (20)

V
(1),l1l2
R,t (p, p′) = V

(1),l1l2
t (p, p′;−µ2)−

−
2

π

∑

l3

P

∫ Λ

0

dq q2
V

(1),l1l3
t (p, q;−µ2)

−µ2 − q2
V

(1),l3l2
R,t (q, p′) , (21)
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which are derived by manipulating Eq. (11).

In Fig. 1 we show the results obtained for the SRG evolution of the SKM-LO

ChEFT potential in the 1S0 channel. As one can observe, the off-diagonal matrix

elements are systematically suppressed as the similarity cutoff λ is lowered, such

that the potential is driven towards a band-diagonal form.

Fig. 1. (Color online) SRG evolution of the SKM-LO ChEFT potential in the 1S0 channel.

In Fig. (2) we show the phase-shifts in the 1S0 channel obtained for the initial

potential VR(p, p′) and for the SRG potentials evolved up to several values of the

similarity cutoff λ. As expected for a unitary transformation, the results obtained

for the initial potential and for the SRG evolved are the same (apart from relative

numerical errors smaller than 10−9).
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Fig. 2. (Color online) Phase-shifts in the 1S0 channel as a function of the laboratory energy.
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Fig. 3. (Color online) SRG evolution of the SKM-LO ChEFT potential in the 3S1 −
3 D1 channel.
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Fig. 4. (Color online) Phase-shifts and mixing parameter in the 3S1 −3 D1 channel as a function
of the laboratory energy.

In Fig. 3 we show the results obtained for the SRG evolution of the SKM-LO

ChEFT potential in the 3S1 −
3 D1 channel. In Fig. 4 we show the phase-shifts in

the 3S1 and 3D1 channels and the mixing parameter ǫ1 obtained for the initial

potential VR(p, p′) and for the SRG potentials evolved up to several values of the

similarity cutoff λ. As one can observe, the results are similar to those obtained

for the 1S0 channel: the potential is driven towards a band-diagonal form and the

phase-shifts are preserved as the SRG cutoff is lowered.
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