

UNIVERSIDADE ESTADUAL DE CAMPINAS SISTEMA DE BIBLIOTECAS DA UNICAMP REPOSITÓRIO DA PRODUÇÃO CIENTIFICA E INTELECTUAL DA UNICAMP

Versão do arquivo anexado / Version of attached file:

Versão do Editor / Published Version

Mais informações no site da editora / Further information on publisher's website: https://www.worldscientific.com/doi/10.1142/S0218301311040815

DOI: 10.1142/S0218301311040815

Direitos autorais / Publisher's copyright statement: © 2011 by World Scientific Publishing. All rights reserved.

DIRETORIA DE TRATAMENTO DA INFORMAÇÃO

Cidade Universitária Zeferino Vaz Barão Geraldo CEP 13083-970 – Campinas SP Fone: (19) 3521-6493 http://www.repositorio.unicamp.br

SIMILARITY RENORMALIZATION GROUP EVOLUTION OF NUCLEAR FORCES

SÉRGIO SZPIGEL

Centro de Ciências e Humanidades, Universidade Presbiteriana Mackenzie São Paulo, SP 01302-907, Brazil szpigel@mackenzie.br

VARESE S. TIMÓTEO

Faculdade de Tecnologia, Universidade Estadual de Campinas Limeira, SP 13484-332, Brazil varese@ft.unicamp.br

In this work we study the similarity renormalization group (SRG) evolution of chiral effective field theory (ChEFT) nucleon-nucleon (NN) interactions derived within the framework of the subtracted kernel method (SKM) approach. We apply the SRG transformation to evolve the leading-order (LO) ChEFT NN potential in the ${}^{1}S_{0}$ and the ${}^{3}S_{1} - {}^{3}D_{1}$ partial-wave channels and calculate the corresponding phase-shifts.

Keywords: Renormalization group; chiral effective field theory.

1. Introduction

The similarity renormalization group (SRG) formalism, developedby Glazek and Wilson^{1,2} and independently by Wegner,³ is an approach based on a series of continuous unitary transformations that evolve hamiltonians with a cutoff on energy differences. Viewing the hamiltonian as a matrix in a given basis, the SRG transformations suppress off-diagonal matrix elements as the cutoff is lowered, forcing the hamiltonian towards a band-diagonal form. Recently, the SRG approach has been applied to evolve phenomenological and chiral effective field theory (ChEFT) NN potentials to phase-shift equivalent softer forms,^{4,5,6,7,8} effectively decoupling low-energy observables from high-energy degrees of freedom. It has been shown that such a decoupling leads to more perturbative NN potentials, greatly simplifying calculations in nuclear few and many-body problems.

In this work we study the SRG evolution of ChEFT NN interactions derived within the framework of the subtracted kernel method (SKM), a renormalization approach based on a subtracted scattering equation.^{9,10,11,12} We apply the SRG transformation to evolve the SKM leading-order (LO) ChEFT NN potential in the ${}^{1}S_{0}$ and the ${}^{3}S_{1} - {}^{3}D_{1}$ partial-wave channels and calculate the corresponding phaseshifts. In previous work¹³ we have described in detail the SKM renormalization procedure and the SRG evolution of the SKM-LO ChEFT NN potential in the ${}^{1}S_{0}$ partial-wave channel.

2. Similarity Renormalization Group Formalism

Consider an initial hamiltonian in the center of mass frame for a system of two nucleons, which can be written in the form $H = T_{\rm rel} + V$, where $T_{\rm rel}$ is the relative kinetic energy and V is the NN potential. Here and in what follows we use units such that $\hbar = c = M = 1$, where M is the nucleon mass. The SRG transformation is defined by a unitary operator designed to act on the hamiltonian and evolve it with a cutoff λ on energy differences at the interaction vertices,

$$H_{\lambda} = U(\lambda) \ H \ U^{\dagger}(\lambda) \equiv T_{\rm rel} + V_{\lambda} \ . \tag{1}$$

In this work, we employ the formulation of the SRG developed by Wegner,³ based on a flow equation that governs the unitary evolution of the hamiltonian with a flow parameter s,

$$\frac{dH_s}{ds} = \left[\eta_s, H_s\right],\tag{2}$$

which is to be solved with the boundary condition $H_s|_{s \to s_0} \equiv H_{s_0}$.

The flow parameter s has dimensions of $(\text{energy})^{-2}$ and ranges from 0 to ∞ . In terms of a similarity cutoff λ , here with dimensions of momentum, the flow parameter is given by the relation $s = \lambda^{-4}$. The SRG transformation is generated by the anti-hermitian operator $\eta_s = [G_s, H_s]$, which is defined by the choice of the operator G_s . Wegner's choice in the original formulation is the full diagonal part of the hamiltonian in a given basis, $G_s = \text{diag}(H_s)$. Here we use the free hamiltonian, $G_s = T_{\text{rel}}$, which yields the flow equation

$$\frac{dV_s(p,p')}{ds} = -(p^2 - p'^2)^2 V_s(p,p') + \frac{2}{\pi} \int_0^\infty dq \ q^2 \ (p^2 + p'^2 - 2q^2) V_s(p,q) V_s(q,p'),$$
(3)

where $V_s(p, p')$ is a brief notation for the projected NN potential matrix elements $V_s^{(JLL'S;I)}(p, p')$ in a partial-wave relative momentum space basis, $|q(LS)J;I\rangle$, with normalization given by

$$1 = \frac{2}{\pi} \int_0^\infty dq \ q^2 \mid q(LS)J; I \rangle \langle q(LS)J; I \mid.$$
(4)

The superscripts J, L(L'), S and I denote respectively the total angular momentum, the orbital angular momentum, the spin and the isospin quantum numbers of the NN state. For non-coupled channels (L = L' = J), the NN potential matrix elements $V_s(p, p')$ are simply given by $V_s(p, p') = V_s^{(JJJS;I)}(p, p')$. For coupled channels $(L, L' = J \pm 1)$, the $V_s(p, p')$ represent 2×2 matrices of matrix elements for the different combinations of L and L':

$$V_{s}(p,p') = \begin{pmatrix} V_{s}^{(JLLS;I)}(p,p') & V_{s}^{(JLL'S;I)}(p,p') \\ V_{s}^{(JL'LS;I)}(p,p') & V_{s}^{(JL'L'S;I)}(p,p') \end{pmatrix} .$$
 (5)

The scattering observables for each NN interaction channel can be calculated by iterating the corresponding SRG evolved potential through the LS equation for the partial-wave *T*-matrix (for simplicity, we drop the subscript *s* denoting the flow parameter and the superscripts denoting the quantum numbers of the NN state):

$$T(p,p';k^2) = V(p,p') + \frac{2}{\pi} \int_0^\infty dq \ q^2 \ \frac{V(p,q)}{k^2 - q^2 + i \ \epsilon} \ T(q,p';k^2) \ . \tag{6}$$

The phase-shifts are then obtained from the relation between the *T*-matrix and the *S*-matrix "on-shell", $S(k^2) = 1 - 2ik T(k,k;k^2)$.

3. Subtracted Kernel Method Approach

We begin by considering the formal Lippmann-Schwinger (LS) equation for the T-matrix of a two-nucleon system, written in operator form as

$$T(E) = V + V G_0^+(E) T(E) , (7)$$

where V is the NN potential and $G_0^+(E) = [E - H_0 + i\epsilon]^{-1}$ is the free Green's function for the NN system with outgoing-wave boundary conditions. For singular NN potentials, Eq. (7) becomes ill-defined due to the ultraviolet divergencies that appear in the momentum integrals. In the SKM approach, ^{9,10,11,12} a regularized and renormalized LS equation is derived by performing subtractions in the propagator at a certain energy scale.

Consider a singular potential containing a regular term plus a Dirac-delta contact interaction. In momentum space such a potential is given by $V = V_{\text{reg}} + C_0$, where C_0 is the strength of the contact interaction. Using Eq. (7), the potential V can be formally written in terms of the T-matrix at a given energy scale $-\mu^2$:

$$V = \left[1 + T(-\mu^2) \ G_0^+(-\mu^2)\right]^{-1} \ T(-\mu^2) \ . \tag{8}$$

Replacing the potential V in Eq. (7) by its expression in terms of $T(-\mu^2)$ given in Eq. (8) we obtain (after some manipulation) the subtracted kernel LS equation for the T-matrix

$$T(E) = T(-\mu^2) + T(-\mu^2) \left[G_0^+(E) - G_0^+(-\mu^2) \right] T(E) .$$
(9)

The subtracted kernel LS equation provides a finite solution for the *T*-matrix at any given energy *E*, once its value at the subtraction scale $-\mu^2$ is known. Thus, the input for the solution of Eq. (9) is $T(-\mu^2)$, which is called "driving term" and contains the physical information apparently lost due to the removal of the propagation through intermediate states at the scale $-\mu^2$. A simple *ansatz* consists in considering that the driving term is given by

$$T(-\mu^2) = V(-\mu^2) = V_{\text{reg}} + C_0(-\mu^2) , \qquad (10)$$

where $C_0(-\mu^2)$ is the renormalized strength of the contact interaction at the subtraction scale $-\mu^2$, which is fixed by fitting data for scattering observables and, therefore, encodes the physical information.

Once $C_0(-\mu^2)$ in Eq. (10) is fixed, and so the driving term $T(-\mu^2)$ is known, a renormalized potential $V_{\mathcal{R}}$ can be formally defined from Eq. (8):¹¹

$$V \to V_{\mathcal{R}} \equiv \left[1 + T(-\mu^2) \ G_0^+(-\mu^2)\right]^{-1} \ T(-\mu^2) \ . \tag{11}$$

Replacing V by $V_{\mathcal{R}}$ in Eq. (7), we obtain the LS equation for the renormalized T-matrix:

$$T_{\mathcal{R}}(E) = V_{\mathcal{R}} + V_{\mathcal{R}} G_0^+(E) T_{\mathcal{R}} .$$
⁽¹²⁾

Although $V_{\mathcal{R}}$ is not well defined for singular interactions, for a driving term $T(-\mu^2)$ containing a regular term plus a Dirac-delta contact interaction, Eq. (12) gives a finite solution for the *T*-matrix that is equivalent to the one obtained from the subtracted kernel LS equation Eq.(9), i.e. $T_{\mathcal{R}}(E) = T(E)$.

4. Numerical Results and Discussion

We solve Eq. (3) numerically, obtaining a non-perturbative solution for the evolution of the SKM-LO ChEFT potential in the ${}^{1}S_{0}$ and the ${}^{3}S_{1} - {}^{3}D_{1}$ partial-wave channels. The relative momentum space is discretized on a grid of gaussian integration points, leading to a system of non-linear first-order coupled differential equations which is solved using an adaptative fifth-order Runge-Kutta algorithm.

The boundary condition for Eq. (3) is set at s = 0 ($\lambda \to \infty$), such that the initial potential is given by the fixed-point potential $V_{\mathcal{R}}(p, p')$ derived by implementing the SKM scheme for the LO ChEFT interaction, which consists of the one-pion exchange potential (OPEP) plus Dirac-delta contact interactions,

$$V(\vec{p}, \vec{p'}) = V_{1\pi}(\vec{p}, \vec{p'}) + \frac{1}{2\pi^2} \left[C_0^s \left(\frac{1 - \vec{\tau}_1 \cdot \vec{\tau}_2}{4} \right) + C_0^t \left(\frac{3 + \vec{\tau}_1 \cdot \vec{\tau}_2}{4} \right) \right] .$$
(13)

The coefficients C_0^s and C_0^t correspond to the strengths of the contact interactions respectively for the 1S_0 and 3S_1 channels and $V_{1\pi}(\vec{p}, \vec{p'})$ is the OPEP, given by

$$V_{1\pi}(\vec{p},\vec{p'}) = -\frac{g_a^2}{4(2\pi)^3 f_\pi^2} \vec{\tau}_1 \cdot \vec{\tau}_2 \frac{\vec{\sigma}_1 \cdot (\vec{p'} - \vec{p}) \vec{\sigma}_2 \cdot (\vec{p'} - \vec{p})}{(\vec{p'} - \vec{p})^2 + m_\pi^2} , \qquad (14)$$

where σ_i and τ_i are the usual spin and isospin Pauli matrices for nucleon i, $g_a = 1.25$ is the axial coupling constant, $f_{\pi} = 93$ MeV is the pion weak-decay constant and $m_{\pi} = 138$ MeV is the pion mass.

For convenience, in our calculations we use the K-matrix (reactance matrix). The LS equation for the K-matrix is similar to the one for the T-matrix, except that standing-wave boundary conditions are imposed for the Green's function. In this way, the $i\epsilon$ prescription used in the LS equation for the *T*-matrix is replaced by the principal value such that the *K*-matrix is real.

The relation between the T-matrix and the K-matrix "on-shell" is given by:

$$K^{-1}(k,k;k^2) = T^{-1}(k,k;k^2) + i k .$$
(15)

We also introduce an ultraviolet momentum cutoff Λ which is convenient for the numerical calculations when we further consider the evolution of the SKM renormalized potential through the SRG transformation. It is important to emphasize that such a cutoff acts just as an instrumental regulator for the numerical integrations.

The subtracted kernel LS equations for the K-matrices in the ${}^{1}S_{0}$ and the ${}^{3}S_{1} - {}^{3}D_{1}$ channels are respectively given by:

$$K_s^{00}(p, p'; k^2) = V_s^{(1),00}(p, p'; -\mu^2) + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} dq \ q^2 \ \left(\frac{\mu^2 + k^2}{\mu^2 + q^2}\right) \times \\ \times \frac{V_s^{(1),00}(p, q; -\mu^2)}{k^2 - q^2} K_s^{00}(q, p'; k^2) ,$$
(16)

$$K_t^{l_1 l_2}(p, p'; k^2) = V_t^{(1), l_1 l_2}(p, p'; -\mu^2) + \frac{2}{\pi} \sum_{l_3} \mathcal{P} \int_0^{\Lambda} dq \ q^2 \ \left(\frac{\mu^2 + k^2}{\mu^2 + q^2}\right) \times \frac{V^{(1), l_1 l_3}(p, q; -\mu^2)}{k^2 - q^2} K_t^{l_3 l_2}(q, p'; k^2) , \qquad (17)$$

where the driving terms $V_s^{(1),00}(p,p';-\mu^2)$ and $V_t^{(1),l_1l_2}(p,p';-\mu^2)$ are defined by the ansatz

$$V_s^{(1),00}(p,p';-\mu^2) \equiv K_s^{00}(p,p';-\mu^2) = V_{1\pi,s}^{00}(p,p') + C_0^s(-\mu^2) , \qquad (18)$$

$$V_t^{(1),l_1l_2}(p,p';-\mu^2) \equiv K_t^{l_1l_2}(p,p';-\mu^2) = V_{1\pi,t}^{l_1l_2}(p,p') + C_0^t(-\mu^2) \,\delta_{l_2,0} \,\delta_{l_1,0} \,.$$
(19)

The renormalized strengths of the contact interactions $C_0^s(-\mu^2)$ and $C_0^t(-\mu^2)$ are fixed at the subtraction scale $\mu = 25 \text{ fm}^{-1}$ by fitting the experimental values of the scattering lengths for the 1S_0 and the 3S_1 channels, respectively given by $a_s = -23.7$ fm and $a_s = 5.43$ fm.

Once the driving terms are known, we can obtain the renormalized potentials $V_{\mathcal{R},s}^{(1),00}(p,p')$ and $V_{\mathcal{R},t}^{(1),l_1l_2}(p,p')$ by solving the integral equations,

$$V_{\mathcal{R},s}^{(1),00}(p,p') = V_s^{(1),00}(p,p';-\mu^2) - \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} dq \ q^2 \ \frac{V_s^{(1),00}(p,q;-\mu^2)}{-\mu^2 - q^2} \ V_{\mathcal{R},s}^{(1),00}(q,p') \ , \tag{20}$$

$$V_{\mathcal{R},t}^{(1),l_1l_2}(p,p') = V_t^{(1),l_1l_2}(p,p';-\mu^2) - \frac{2}{\pi} \sum_{l_3} \mathcal{P} \int_0^{\Lambda} dq \; q^2 \; \frac{V_t^{(1),l_1l_3}(p,q;-\mu^2)}{-\mu^2 - q^2} \; V_{\mathcal{R},t}^{(1),l_3l_2}(q,p') \;, \quad (21)$$

which are derived by manipulating Eq. (11).

In Fig. 1 we show the results obtained for the SRG evolution of the SKM-LO ChEFT potential in the ${}^{1}S_{0}$ channel. As one can observe, the off-diagonal matrix elements are systematically suppressed as the similarity cutoff λ is lowered, such that the potential is driven towards a band-diagonal form.

Fig. 1. (Color online) SRG evolution of the SKM-LO ChEFT potential in the ${}^{1}S_{0}$ channel.

In Fig. (2) we show the phase-shifts in the ${}^{1}S_{0}$ channel obtained for the initial potential $V_{\mathcal{R}}(p, p')$ and for the SRG potentials evolved up to several values of the similarity cutoff λ . As expected for a unitary transformation, the results obtained for the initial potential and for the SRG evolved are the same (apart from relative numerical errors smaller than 10^{-9}).

Fig. 2. (Color online) Phase-shifts in the ${}^{1}S_{0}$ channel as a function of the laboratory energy.

Fig. 3. (Color online) SRG evolution of the SKM-LO ChEFT potential in the ${}^{3}S_{1} - {}^{3}D_{1}$ channel.

Fig. 4. (Color online) Phase-shifts and mixing parameter in the ${}^{3}S_{1} - {}^{3}D_{1}$ channel as a function of the laboratory energy.

In Fig. 3 we show the results obtained for the SRG evolution of the SKM-LO ChEFT potential in the ${}^{3}S_{1} - {}^{3}D_{1}$ channel. In Fig. 4 we show the phase-shifts in the ${}^{3}S_{1}$ and ${}^{3}D_{1}$ channels and the mixing parameter ϵ_{1} obtained for the initial potential $V_{\mathcal{R}}(p,p')$ and for the SRG potentials evolved up to several values of the similarity cutoff λ . As one can observe, the results are similar to those obtained for the ${}^{1}S_{0}$ channel: the potential is driven towards a band-diagonal form and the phase-shifts are preserved as the SRG cutoff is lowered.

Acknowledgments

This work was supported by CNPq, FAPESP and Fundo Mackenzie de Pesquisa.

References

- 1. S. D. Głazek and K. G. Wilson, Phys. Rev. D48, 5863 (1993).
- 2. S. D. Głazek and K. G. Wilson, Phys. Rev. D49, 4214 (1994).
- 3. F. Wegner, Ann. Physik **3**, 77 (1994).
- 4. S. K. Bogner, R. J. Furnstahl and R. J. Perry, Phys. Rev. C75, 061001 (2007).
- 5. E. D. Jurgenson et al., Phys. Rev. C78, 014003 (2008).
- S. K. Bogner, R. J. Furnstahl, R. J. Perry and A. Schwenk, Phys. Lett. B 649, 488 (2007).

- S. K. Bogner, R. J. Furnstahl, P. Maris, R. J. Perry, A. Schwenk and J. P. Vary, Nucl. Phys. A801, 21 (2008).
- E. Anderson, S. K. Bogner, R. J. Furnstahl, E. D. Jurgenson, R. J. Perry and A. Schwenk, Phys. Rev. C 77, 037001 (2008).
- 9. T. Frederico, V. S. Timóteo and L. Tomio, Nucl. Phys. A 653, 209 (1999).
- 10. T. Frederico, A. Delfino, and L. Tomio, Phys. Lett. B 481, 143 (2000).
- 11. T. Frederico, A. Delfino, L. Tomio e V. S. Timóteo, [arXiv: hep-ph/0101065].
- 12. V. S. Timóteo, T. Frederico, L. Tomio, and A. Delfino, Nucl. Phys. A790, 406c (2007).
- 13. S. Szpigel, V. S. Timóteo and F. O. Durães, Annals Phys. 326, 364 (2011).