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Resumo

A morfologia matemática é uma teoria não linear para análise e processamento de imagens
baseada em conceitos topológicos e geométricos que pode ser desenvolvida utilizando a teoria de
reticulados. A estrutura de reticulados completos é conveniente para estudos teóricos e práticos
na morfologia matemática. A morfologia matemática é aplicada a imagens binárias, tons de cinza
e imagens multivariadas. Imagens obtidas por operadores morfológicos em imagens coloridas em
que o espaço de cores possui uma ordem parcial podem conter cores falsas. As imagens obtidas
por operadores morfológicos em imagens coloridas em que o espaço de cores possui uma ordem
total, não apresentam cores falsas. Entretanto, apresentam imperfeições que se assemelham a um
serrilhado. Essas imperfeições nas imagens aparecem em operadores morfológicos multivariados
baseados em uma ordem total e é chamada de irregularidade. Essa tese propõe construir uma
medida de irregularidade para morfologia matemática multivariada. Para este propósito define-se
o índice de irregularidade global utilizando-se a métrica de Wasserstein e a soma generalizada
da distância entre duas imagens pixel a pixel. Além disso, define-se um índice de irregularidade
local devido a impossibilidade computacional de medir a irregularidade para imagens multi-
variadas reais devido ao alto custo do problema de otimização para obtenção da métrica de
Wasserstein. Prova-se que o índice de irregularidade local é um limitante inferior para o índice
de irregularidade global e mostram-se resultados computacionais em imagens naturais. Utiliza-se
também um método de entropia regularizada como forma de aproximação para a métrica de
Wasserstein com o intuito de calcular o índice de irregularidade local com baixa complexidade
computacional. Ainda, observações entre as medidas de irregularidade de acordo com o tamanho
do elemento estruturante e das janelas locais que são utilizadas para o cálculo do índice de
irregularidade local são realizadas. A partir desses resultados, é possível concluir que os índices
de irregularidade global e local são medidas satisfatórias para irregularidades provenientes de
operadores morfológicos multivariados. Por fim, utilizam-se abordagens morfológicas como
a solução do problema do caixeiro viajante e os mapas auto-organizáveis de Kohonen para
justificar a dificuldade de se obter uma ordem total que minimize a irregularidade.

Palavras-chave: Morfologia matemática multivariada, inteligência computacional, processa-

mento de imagens, transporte ótimo, medidas de irregularidade (Matemática).



Abstract

Mathematical morphology is a nonlinear theory for analyzing and processing images based on
topological and geometric concepts that can be developed using lattice theory. The complete
lattice theory is suitable for theoretical and practical studies in mathematical morphology.
Mathematical morphology is applied to binary, grayscale, and multivariate images. Images
obtained by morphological operators in color images where the color space is endowed with
a partial order may contain false colors. The images obtained by morphological operators
in color images in which the color space is endowed with a total order do not present false
colors. However, they present aliases that resemble jaggies. The aliasing on images appears in
multivariate morphological operators based on a total order and is called irregularity. This thesis
proposes to build an irregularity measure for multivariate mathematical morphology. For this
purpose, the global irregularity index is defined using the Wasserstein metric and the generalized
sum of pixel-wise distances of the two images. Furthermore, a local irregularity index was defined
because of the computational impossibility of measuring the irregularity for natural multivariate
images due to the high cost of the optimization problem to obtain the Wasserstein metric. We
prove that the local irregularity index is a lower bound for the global irregularity index and
show computational results with natural images. Also, the entropic regularized method is used
as an approximation for the Wasserstein metric in order to calculate the local irregularity index
with low computational complexity. Additionally, remarks between the irregularity measures
according to the size of the structuring element and the local windows used to calculate the local
irregularity index are given. From these results, it is possible to conclude that the global and local
irregularity indices are satisfactory measures for irregularities from multivariate morphological
operators. Finally, morphological approaches based on the solution of the traveling salesman
problem and Kohonen’s self-organizing maps are used to justify the hardness of obtaining a total
order that minimizes the irregularity.

Keywords: Multivariate mathematical morphology, computational intelligence, image process-
ing, optimal transportation, irregularity measures (Mathematics).
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Chapter 1

INTRODUCTION

In this thesis, we present an irregularity measure for multivariate mathematical
morphology. Mathematical morphology is a powerful nonlinear theory in the field of mathematics
and computation that deals with the analysis and processing of digital images. Specifically, the
word “morphology” comes from the aim of analyzing the shape and forms of objects, and
the word “mathematical” comes in the sense that the analysis is based on set theory, integral
geometry, and lattice theory. Mathematical morphology holds a significant position within the
realm of image analysis and processing, serving as a fundamental instrument across various
applications. Its extensive scope and adaptable nature render it indispensable for tackling intricate
issues within the domain of computer vision and image processing.

Illustrative instances underscore the significance of mathematical morphology in the
domains of edge detection and image segmentation. In the context of edge detection, morpho-
logical operators enable the amplification of contour attributes, facilitating the discernment of
substantial intensity transitions within images. This proves particularly invaluable in scenarios
like medical diagnostics, industrial quality assessment, and pattern identification. As for image
segmentation, mathematical morphology occupies a pivotal role in partitioning images into
regions or objects of interest, thereby being applied within the medical sectors and industry
(Serra, 1982; Soille et al., 2003).

Multivariate mathematical morphology refers to the extension of the basic principles
of mathematical morphology to multivariate data, allowing for the analysis and processing of
digital images that contain multiple channels. Multivariate mathematical morphology has a wide
range of applications such as segmentation, remote sensing, image decomposition, medical
imaging, automatic image reconstruction, edge detection, and pattern recognition (Braga-Neto &
Goutsias, 2004; González-Hidalgo et al., 2015; Rittner et al., 2013; Serra, 2006; Soille, 1999;
Najman & Talbot, 2013).

The origins of mathematical morphology can be traced back to its utilization as a
method for examining random sets, primarily within the context of the mining industry. However,
as time progressed, the technique was expanded to encompass the analysis of multidimensional
images within a deterministic framework. This progression began with the examination of
binary images, and subsequently extended to include grayscale, color, and multivariate images
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(Matheron, 1975; Serra, 1986).

Two basic operations of mathematical morphology, which are called dilation and
erosion, were introduced by Matheron and Serra. These operations were initially defined as
Minkowski addition and subtraction on subsets of the Euclidean space. Subsequently, Serra and
Matheron generalized the morphological operations of dilation and erosion by using complete
lattices. A complete lattice is a poset in which all subsets have both an infimum and a supremum.
The adoption of complete lattices to generalize set theory in mathematical morphology has
demonstrated its utility in broadening the scope of the field. Moreover, the utilization of mathe-
matical morphology defined on complete lattice can simplify the application of morphological
operators to grayscale images (Heijmans & Ronse, 1990, 1991; Heijmans, 1991, 1994, 1995;
Goutsias et al., 1995; Ronse, 1990).

The extension of morphological processing in the field of multivariate images is
facilitated by the utilization of a total order. A widely used approach is based on reduced
orderings (h-ordering) combined with look-up tables. An h-ordering ranks the multivariate
values according to a surjective mapping h. The ranking of images can be performed based
on specific criteria, such as intensity, color, texture, among others. These rankings can also be
obtained through the implementation of both supervised and unsupervised approaches (Angulo,
2007; Aptoula & Lefèvre, 2007; Lézoray, 2016).

While using a total order can simplify the handling of multivariate morphological
processing as discussed in the paragraph above, Chevallier & Angulo (2016) showed that
an intricate problem of irregularity arises when considering a total order and morphological
operators. This study formalizes the irregularity issue that naturally arises in multivariate images
because the total order do not consider the natural topology of the metric space. In other words,
the authors showed that situations may occur where we have elements a, b, and c in the metric
space such that a ď b ď c, but we have dpa, cq ă dpa, bq, where d denotes the metric. The
problem of irregularity introduces imperfections like aliasing in the output images, affecting
geometric and topological attributes. Chevallier and Angulo called these imperfections by
irregularity issue.

1.1 Outline of the Thesis

This thesis is mainly concerned with multivariate mathematical morphology. In this
section, we explain the focus of this thesis, including the following key elements:

1.1.1 Problem Statement: This subsection defines the problem being addressed in
the thesis and provides background information on the subject.

1.1.2 Research Objective: This subsection addresses our main research objective,
explaining the goals of the thesis.
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1.1.3 Hypothesis and Methodology: This subsection explains our research hypothesis
and the methods we use for its design.

1.1.4 Key Contributions: This subsection highlights the major contributions the thesis
makes to the field of multivariate mathematical morphology, detailing the new understanding
that is gained as a result of the study.

1.1.5 Structure of the thesis: This subsection provides an overview of the organization
and layout of the thesis, outlining the main chapters and sections that make up the research.

1.1.1 Problem Statement

A naturally arising issue in multivariate mathematical morphology is the one demon-
strated by Chevallier & Angulo (2016), which is referred to as the irregularity issue. The authors
have shown that a total order does not contain enough information to accurately depict the
topology of the range set of a multivariate image. Specifically, let the value set V be a totally
ordered set as well as metric space, with metric d : V ˆ V Ñ r0,`8q. Chevallier and Angulo
showed that there are some elements a, b, c P V such that a ď b ď c and dpa, cq ă dpa, bq

under mild conditions with respect to the connectivity of V. As a consequence, multivariate
morphological operators may introduce irregularities and aliasing on images. It is important
to note that the term “aliasing” is commonly observed in digital images and refers to visual
distortions that can occur in a low-resolution image unable to represent all color details, such
as variations in color and texture. In our context, we refer to such aliasings as irregularities in
multivariate mathematical morphology or simply as irregularities.

Color image Opened image

Figure 1.1 – Color image and the result of applying an opening operation.

For example, Figure 1.1 presents a color image and its morphological opening. We
can see irregularities in some parts of the opened image, e.g., in the arms of the woman, around
the face of the woman, on the chair, on the table, on the red wall, and on the blue book. All
irregularities that we can identify are obtained due to the problem of topological inconsistency
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with the metric on V. Therefore, for a total order ď in V and a multivariate image I : D Ñ V,
the images obtained by morphological operators might present the problem of irregularity.

1.1.2 Research Objective

Let us consider I as an input image and ψ as a morphological operator. If we apply
the operator ψ on the image I, we obtain the output image J “ ψpIq. It is important to note
that if two total orders, denoted as ď1 and ď2, are used, the resulting output images, J1 “ ψpIq

and J2 “ ψpIq, obtained with orders ď1 and ď2, respectively, will differ and will have different
irregularities. In this scenario, one may inquire about the degree of irregularity present in images
J1 and J2 when compared to the input image I. In other words, one may inquire if there exists a
measure Φ that quantifies the degree to which image J1 presents a greater or lesser degree of
irregularity than image J2, both in relation to I.

Our research objective is to formulate a quantitative measure that evaluates the
irregularity in multivariate images produced by a morphological operator. Specifically, given an
input multivariate image I and the output multivariate image J “ ψpIq, with ψ a morphological
operator, our aim is to formulate a measure Φ that provides us with a quantitative measure of the
irregularity of J in relation to image I.

1.1.3 Hypothesis and Methodology

Our goal is to obtain a measure of irregularity Φ that provides us with a percentage
of irregularity that makes sense with our visual perception. Specifically, given an image I and
J “ ψpIq, if we visually verify that the image J has much irregularity, ΦpI,Jq should give a high
value. Conversely, when our visual perception does not indicate much irregularity in J, ΦpI,Jq

should give a low value.

Additionally, we have the hypothesis that if we calculate the irregularity of an image
I in relation to the image itself, it is natural that ΦpI, Iq “ 0 because we have the same pixels,
with the same amount of values and in the same position. This provides an indication that the
measure of irregularity needs to take into account the metric d and the values of I and J. This
realization led us to consider analyzing this problem by solving a transportation problem while
considering the minimum cost of transforming image I into image J. As a result, we establish
an irregularity measure Φ for multivariate mathematical morphology related to the Wasserstein
metric.

We analyze the results of the irregularity measure for 100 distinct tiny color images
using different orders and morphological operators. For comparison purposes, we use two
approaches involving partial orders and three approaches involving total orders.

It is worth noting that unfortunately, it is not possible to calculate the Wasserstein
metric on natural images due to computational complexity. However, we develop a measure for
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irregularity in natural images, which we refer to in this work as the local irregularity index. In a
similar manner, we analyze the results of the local irregularity measure for 100 distinct natural
color images. For comparison purposes, we use the same five orders used in the analysis of Φ. In
addition, we present a theorem showing that the local irregularity index is a lower bound for the
global irregularity index.

Furthermore, we consider the entropic regularized method which adds a penalty to
the transportation problem, allowing us to obtain an approximation for the Wasserstein metric
with a low computational complexity. In this thesis, we utilize the Sinkhorn algorithm and find
that the calculation of irregularity can be performed using the entropic regularization.

Finally, we developed two new approaches to demonstrate the hardness of obtaining
a total order that minimizes irregularity. The first approach is based on the traveling salesman
problem (TSP). The second approach is based on self-organizing maps (SOMs). Both approaches
were tested on a set of tiny color images and the results were compared with the existing methods
performed before.

1.1.4 Key Contributions

This thesis makes a contribution to the field of multivariate mathematical morphology
by incorporating optimal transport techniques to obtain an irregularity measure for multivariate
mathematical morphology.

Furthermore, this research presented innovative in addressing the irregularity issue
in a multivariate mathematical morphology using the Wasserstein metric, and has resulted in the
publication of two research works.

The first work was presented at the IAPR International Conference on Discrete
Geometry and Mathematical Morphology (DGMM 2021), in Sweden, and was published as a
book chapter:

Valle, Marcos Eduardo; Francisco, Samuel; Granero, Marco Aurélio and Velasco-
Forero, Santiago. Measuring the Irregularity of Vector-Valued Morphological Op-

erators Using Wasserstein Metric. In: Lindblad J., Malmberg F., Sladoje N. (eds).
Discrete Geometry and Mathematical Morphology. DGMM 2021. Lecture Notes in
Computer Science, vol. 12708. Springer, Cham.

The second work was published in the Journal of Mathematical Imaging and Vision
in 2022:

Valle, Marcos Eduardo; Francisco, Samuel; Granero, Marco Aurélio and Velasco-
Forero, Santiago. Irregularity Index for Vector-Valued Morphological Operators.

Journal of Mathematical Imaging and Vision, 64 (7), 754–770, 2022.
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Additionally, a manuscript is currently being prepared for submission to the scientific
community, which explains the hardness of obtaining a total order that minimizes the irregularity.

1.1.5 Thesis Organization

The thesis is organized with the following structure:

In Chapter 2, called Fundamental Definitions, we review the main mathematical
concepts related to multivariate mathematical morphology, such as the concepts of complete
lattice, adjunction, dilation, erosion, opening, and closing operations. In addition, we discuss
some ordering approaches for multivariate images such as the marginal, Loewner, lexicographic,
supervised based on SVM, and unsupervised projection depth orderings. Finally, we discuss the
challenges in multivariate mathematical morphology that naturally arise when using a partial
order or a total order. One of the challenges is what we present as the irregularity issue.

In Chapter 3, called Measuring the Irregularity, we present our theory of the global
irregularity index for two images I and J “ ψpIq. For this purpose, we recall the Wasserstein
metric and the generalized sum of pixel-wise distances and then define the global irregularity
index. We finish this chapter with illustrative examples in some tiny color images.

In Chapter 4, called Calculating the Irregularity Measure, we present our theory
for handling the irregularity index for natural color images. We define the local irregularity
index and present the results in natural images. Furthermore, we discuss the entropic regularized
methods to approximate the Wasserstein metric and the changes in the local irregularity index
with different sizes of the local window or structuring element.

In Chapter 5, called The Hardness of Obtaining a Total Order that Minimizes the
Irregularity, we present two new morphological approaches based on total order. The first one
is called the Traveling Salesman Problem (TSP) approach and the second is called the self-
organizing maps (SOMs) approach. We present the computational results of the irregularity
measures obtained from these two approaches.

Finally, we finish this thesis with our Conclusions and some possible recommenda-
tions for future works.
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Chapter 2

FUNDAMENTAL DEFINITIONS

In this chapter we discuss the fundamental definitions that are important for our work
regarding mathematical morphology (MM).

Mathematical morphology (MM) emerged in the mid-1960s by Georges Matheron
and Jean Serra at École des Mines in Paris. These researches introduced a set formalism for
analyzing binary images. The advancement of research in mathematical morphology by these
researchers continued with the extension to complete lattices. Their work was extended by
Heijmans (1987) where he devoted a study to the T-operators on a complete lattice with the
assumption that T is an abelian automorphism group. This approach characterized mathemat-
ical morphology as an algebraic structure that proved convenient in expanding the scope of
mathematical morphology (Matheron, 1975; Serra, 1982; Heijmans & Ronse, 1990; Ronse,
1990).

In the following, we present a framework for mathematical morphology that utilizes
the algebraic structure of complete lattices, which is well-suited for the binary and grayscale
images (Heijmans, 1995; Ronse, 1990) and that there are extensive works for multivariate images
(Angulo, 2007; Aptoula & Lefèvre, 2007; Velasco-Forero & Angulo, 2014).

2.1 Partially and Totally Ordered Sets

Morphological operators need an ordering relationship between the elements to be
processed. Thus, it is fundamental to define binary relations, partial orders, and total orders.

Definition 2.1 (Binary relation). Given two sets X and Y , a binary relation R over X and Y is a
subset of X ˆ Y “ tpx, yq|x P X and y P Y u.

The statement px, yq P R means that the element x of X is related to the element y
of Y and we write xRy.

A binary relation R in P ˆ P is called a relation on P . For example, the graph
Gpfq “ tpx, fpxqq|x P Ru Ă R ˆ R of a function f : R ÝÑ R is a relation on P “ R.

Definition 2.2 (Partial order). Given a nonempty set P , a relation on P is a partial order, denoted
by ď, if the following properties holds for all x, y, z P P :
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1. x ď x. (reflexive)

2. x ď y and y ď x ùñ x “ y. (antisymmetric)

3. x ď y and y ď z ùñ x ď z. (transitive)

Remark 2.1. A binary relation that is reflexive and transitive is called a preorder. All partial
orders are preorders, but there exist preorders that are not partial orders because they do not
satisfy the antisymmetry property.

Definition 2.3 (Partially ordered set). A set P endowed with a partial order ď is called a partially
ordered set or poset and denoted by the pair pP,ďq.

The converse of a relation R on P is the relation Ř on P such that xŘy ðñ yRx,
for all x, y P P .

Given any poset P we can form a new poset P B (the dual of P ) by defining x ď y

to hold in P B if and only if y ď x holds in P . For each statement about the poset P there
corresponds a statement about P B (Birkhoff, 1993; Davey & Priestley, 2002).

Definition 2.4 (Dual of a poset P ). The dual of a poset P is the poset P B defined by the converse
partial ordering relation on the same elements.

Let us give some examples of posets.

Example 2.1. Let R2
“ R ˆ R be the Euclidean space and let ďM be the partial order relation

given by
px1, y1q ďM px2, y2q ðñ x1 ď x2 and y1 ď y2.

The pair pR2,ďM q is a poset since the relation is reflexive, antisymmetric, and transitive.

Note in Example 2.1 that if we consider x “ p2, 3q,y “ p5, 2q P R2, then p2, 3q ęM

p5, 2q and p5, 2q ęM p2, 3q, where ęM means that x ďM y is not valid. Thus, in a poset P , two
elements x, y P P does not need to be comparable, i.e., given x, y P P , we do not necessarily
have x ď y or y ď x. As a result, we have the following definition of totally ordered set.

Definition 2.5 (Totally ordered set and total order). A total order is a partial order in which any
two elements are comparable. A set endowed with a total order is called a totally ordered set or a
chain.

Remark 2.2. Note that a preorder is a more general concept than a partial order, and a partial
order is more general than a total order.

Example 2.2. The sets N,Z,Q,R, ra, bs “ tx P R : a ď x ď b and a ă bu with the usual
order ď are chains.
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Example 2.3. This example illustrates the partial order known as the marginal order. Let
P “ Rd

“ tpx1, x2, . . . , xdq : xi P R, d ą 1u be the d-dimensional space endowed with the
order ďM defined by

x ďM y ðñ xi ď yi for all i P t1, 2, . . . , du,

where x “ px1, x2, . . . , xdq and y “ py1, y2, . . . , ydq. The pair pP,ďM q is a poset and, like
Example 2.1, there are elements of P that are not comparable for all d ą 1. For instance, let
x “ p1, 2, 255q,y “ p5, 10, 4q be elements of R3, we have that x and y are not comparable.

Example 2.4. This example presents a total order known as the alphabetical order, dictionary
order, lexical order, or lexicographical ordering. This order is defined in many mathematical
contexts. According to Aptoula & Lefèvre (2008), the lexicographical ordering is defined in a
conditional manner based on some marginal components. Consider n posets pX1,ď1q, pX2,ď2q,

. . ., pXn,ďnq. We define the lexicographical ordering ďL on X1 ˆ ¨ ¨ ¨ ˆ Xn “

n
ź

i“1
Xi, as

x ďL y ðñ

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

x1 ă1 y1 or

x1 “1 y1 and x2 ă2 y2 or

x1 “1 y1, x2 “2 y2, and x3 ă3 y3 or
...

x1 “1 y1, x2 “2 y2, . . . , xn´1 “n´1 yn´1, and xn ďn yn,

where x “ px1, x2, . . . , xnq,y “ py1, y2, . . . , ynq P X1 ˆ ¨ ¨ ¨ ˆ Xn. In a compact way, we can
write px1, . . . , xnq ďL py1, . . . , ynq if, and only if, there is i P t1, . . . , n´ 1u such that xi ăi yi

and for all j ă i, xj “j yj , or xn ďn yn and for all j ă n, xj “j yj .

If P “ r0, 1s ˆ r0, 1s ˆ r0, 1s “ r0, 1s
3 and we consider in r0, 1s the usual order ď,

then pP,ďLq is a poset. Observe now that all elements of P are comparable, i.e., given x,y P P ,
we have that x ďL y or y ďL x and therefore pP,ďLq is a chain.

Remark 2.3. In Examples 2.1 and 2.3,
`

R2,ďM

˘

and
`

Rd,ďM

˘

, with d ą 1, are posets, but they

are not chains. Furthermore, if in Example 2.4 the sets pXi,ďiq are chains, then

˜

n
ź

i“1
Xi,ďL

¸

is also a chain.

Moreover, for a poset P , we have the following definitions (Birkhoff, 1993).

Definition 2.6 (Least and greatest element). Let P be a poset. We say that l P P is the least
element in P if l ď x, for all x P P . An element u P P is the greatest element in P if x ď u, for
all x P P .

A poset P can have at most one least and one greatest element. Indeed, if l1, l2 P P

are two least elements in P , then l1 ď l2 and l2 ď l1. Therefore, l1 “ l2 by the antisymmetric
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property. Similarly, if u1, u2 P P are two greatest element in P , then u1 ě u2 and u2 ě u1 and,
in the same way, we have u1 “ u2.

Next, we have the following important definitions.

Definition 2.7 (Lower and upper bound). Let P be a poset and X Ă P . A lower bound or
minorant of X is an element a P P such that a ď x, for all x P X . An upper bound or majorant
of X is an element b P P such that x ď b, for all x P X .

Definition 2.8 (Infimum and supremum). Let P be a poset and X Ă P a nonempty set. We
denote

ľ

X , called the infimum or meet of X , the greatest lower bound of X . We denote
ł

X ,
called the supremum or join of X , the least upper bound of X .

Remark 2.4. If l is the least element of X , then
ľ

X “ l and if u is the greatest element of X ,

then
ł

X “ u.

If X “ txi : i P Iu, we write
ľ

X “
ľ

iPI

xi and
ł

X “
ł

iPI

xi. In particular, if

I “ t1, 2, 3, . . . , nu, we denote
ľ

X “

n
ľ

i“1
xi and

ł

X “

n
ł

i“1
xi. Furthermore, if X “ tx, yu,

we denote
ľ

X “ x ^ y and
ł

X “ x _ y.

Example 2.5. Let P “ R be the real numbers set, let X1 “ r0, 1q and X2 “ t0, 1, 2, 3, . . . , 255u

be subsets of P . Then
ľ

X1 “ 0,
ł

X1 “ 1,
ľ

X2 “

255
ľ

i“0
i “ 0, and

ł

X2 “

255
ł

i“0
i “ 255.

Remark 2.5. Note that the infimum and supremum of a subset X of a poset P may or may not
belong to X .

We shall be interested in a poset P that x ^ y and x _ y exist for all elements of P .
Thus, we will need the following important definitions (Birkhoff, 1993; Grätzer & others, 2003;
Davey & Priestley, 2002).

Definition 2.9 (Lattice). Let L be a poset. L is a lattice if for all x, y P L, the infimum x^ y and
the supremum x _ y exist and belong to L.

Definition 2.10 (Complete lattice). A lattice L is a complete lattice if for all subset X Ă L, we
have

ľ

X P L and
ł

X P L.

Definition 2.11 (Bounded lattice). A lattice L is bounded if
ľ

L P L and
ł

L P L. In this

case, we denote 0L “K“
ľ

L and 1L “ J “
ł

L.

Since L Ă L, it implies that every complete lattice is bounded. Moreover, if a poset
P is a chain, then P is a lattice. In fact, given x, y P P , we have x ď y or y ď x. If x ď y, then
x ^ y “ x and x _ y “ y. Otherwise, x ^ y “ y and x _ y “ x.

To finish this section, we give some examples of lattices.
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Example 2.6. Consider L1 “ R, L2 “ r0, 1s and L3 “ t0, 1, ..., 255u with the usual order ď.
All the sets are lattices, L2 and L3 are complete lattices and as L1 is not bounded, then L1 is not
a complete lattice.

Note that every lattice can be embedded into a bounded lattice by adding a least and
a greatest element. For our example, we can add ´8 and `8 to L1 . In this case, we denote
R “ R Y t´8,`8u, called the extended real numbers line. The set

`

R,ď
˘

is another example
of a complete lattice and, therefore, a bounded lattice.

Example 2.7. Let
`

Rd,ďL

˘

and
`

r0, 1s
d,ďL

˘

with d ě 2. In this case, Rd is a lattice and r0, 1s
d

is a complete lattice.

2.2 Mathematical Morphology on Complete Lattices

In a complete lattice, four elementary morphological operators are defined in the
following way:

Definition 2.12 (Dilation operator). Let pL1,ď1q and pL2,ď2q be two complete lattices. A
dilation from pL1,ď1q to pL2,ď2q is an operator δ : L1 Ñ L2 that commutes with the supremum:

δ

˜

ł

iPI

xi

¸

“
ł

iPI

δpxiq, @pxiqiPI Ă L1.

Definition 2.13 (Erosion operator). Let pL1,ď1q and pL2,ď2q be two complete lattices. An
erosion from pL1,ď1q to pL2,ď2q is an operator ε : L1 Ñ L2 that commutes with the infimum:

ε

˜

ľ

iPI

xi

¸

“
ľ

iPI

εpxiq, @pxiqiPI Ă L1.

Definition 2.14 (Anti-dilation operator). Let pL1,ď1q and pL2,ď2q be two complete lattices. An
anti-dilation from pL1,ď1q to pL2,ď2q is an operator δ̄ : L1 Ñ L2 if

δ̄

˜

ł

iPI

xi

¸

“
ľ

iPI

δ̄pxiq, @pxiqiPI Ă L1.

Definition 2.15 (Anti-erosion operator). Let pL1,ď1q and pL2,ď2q be two complete lattices. An
anti-erosion from pL1,ď1q to pL2,ď2q is an operator ε̄ : L1 Ñ L2 if

ε̄

˜

ľ

iPI

xi

¸

“
ł

iPI

ε̄pxiq, @pxiqiPI Ă L1.

Remark 2.6. A dilation δ and an erosion ε are increasing operators, i.e., for all x, y P L1,
x ď1 y implies δpxq ď2 δpyq and εpxq ď2 εpyq. Indeed, if x ď1 y then δpxq ď2 δpxq _ δpyq “

δpx _ yq “ δpyq and εpxq “ εpx ^ yq “ εpxq ^ εpyq ď2 εpyq.
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A fundamental notion in this algebraic framework is the one of adjunction (Gierz
et al., 1980; Heijmans & Ronse, 1990; Velasco-Forero & Angulo, 2014).

Definition 2.16 (Adjunction). Let L be a complete lattice and δ, ε : L Ñ L be operators. We say
that pε, δq is an adjunction if for every x, y P L, we have

δpxq ď y ðñ x ď εpyq. (2.1)

In an adjunction pε, δq, ε is called the upper adjoint and δ is called the lower adjoint.

Remark 2.7. Note that (2.1) can be expressed in a dual form with ě instead of ď, i.e., we can
write

εpyq ě x ðñ y ě δpxq. (2.2)

Therefore, according to Heijmans & Ronse (1990), δ and ε always play a dual role. In fact, pε, δq

is an adjunction on pL,ďq if, and only if, pδ, ϵq is an adjunction on the dual lattice
`

LB,ě
˘

.

If pε, δq is an adjunction, then δ is a dilation and ε is an erosion (Heijmans, 1994).
Furthermore, for each dilation δ, there is only one erosion ε such that pε, δq is an adjunction.
Similarly, for each erosion ε, there is only one dilation δ such that pε, δq is an adjunction (Gierz
et al., 1980; Heijmans & Ronse, 1990).

Remark 2.8. The concept of adjunction between dilation and erosion operators in mathematical
morphology is closely related to the concept of Galois connection between posets (Atif et al.,
2013; Birkhoff, 1993; Heijmans & Ronse, 1990; Velasco-Forero & Angulo, 2014). Let pP,ď1q

and pQ,ď2q be two posets. Let α : P Ñ Q and β : Q Ñ P be two maps. Then pα, βq forms a
Galois connection between pP,ď1q and pQ,ď2q if for every x P P and y P Q, we have

x ď1 βpyq ðñ y ď2 αpxq. (2.3)

Dilation, erosion, anti-dilation, and anti-erosion are elementary morphological oper-
ators because they can be used to compose many other operators, such as opening, closing, and
the morphological gradient (Banon & Barrera, 1993; Serra, 1986, 1988; Ronse, 1990; Heijmans
& Ronse, 1991).

Definition 2.17 (Opening and closing operators). Let L be a complete lattice, and let pε, δq be
an adjunction. An operator γ : L Ñ L defined by γ “ δ ˝ ε :“ δε is called opening or, more
precisely, algebraic opening. An operator ϕ : L Ñ L defined by ϕ “ ε ˝ δ :“ εδ is called closing
or, more specifically, algebraic closing.

The opening and closing operators are used, for example, in granulometry and noise
reduction, as pointed out by Heijmans (1995) and Soille (1999).

To finish this section, we address morphological dilation and erosion operators
defined through a structuring element S (Soille, 1999).
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We regard the set of values V as a complete lattice structure and the image I as a
mapping from a nonempty set of points D to the set of values V, that is, I : D Ñ V. The set of
all images I : D Ñ V is denoted by V “ VD and, in this work, we consider D to be finite with
ND “ CardpDq points. Furthermore, D is contained in E , where pE ,`q is an abelian group. For
our purposes, we can take E “ R2 or E “ Z2 with the usual addition.

In the event that the set of values V forms a complete lattice, the operators δS, εS :
V Ñ V defined by the following equations, where S Ď E is a finite set, are a dilation and an
erosion respectively:

δSpIqppq “
ł

sPS
p´sPD

Ipp ´ sq and εSpIqppq “
ľ

sPS
p`sPD

Ipp ` sq, for all p P D. (2.4)

In other words, a dilation operator acts on an image I of V and transforms it into an
image J1 of V . For each p P D, the dilation is given by the supremum of Ipp ´ sq for s in the
structuring element S such that p ´ s belongs to the domain of I. Similarly, an erosion operator
acts on an image I of V and transforms it into an image J2 of V . Similarly, for each p P D, the
erosion is given by the infimum of Ipp ` sq for s in the structuring element S such that p ` s

belongs to the domain of I.

2.3 Multivariate Mathematical Morphology

A multivariate image I is obtained when V Ă Rd, with d ě 2, i.e., I : D Ñ V Ă Rd.
A color image is an example of a multivariate image (Valle et al., 2022; Velasco-Forero &
Angulo, 2014). In practice, we usually consider a color image I mapping x “ pi, jq P D to a
vector Ipxq P r0, 1s

3, where V “ r0, 1s
3 is the RGB space denoted by CRGB. For instance, if

Ipx1q “ p0, 0, 0q, Ipx2q “ p1, 1, 1q, Ipx3q “ p0, 0, 1q, and Ipx4q “ p0.005, 0, 0q, then we have
for the pixels x1, x2, x3, x4 P D, the colors pure black, pure white, pure blue, and a color that
resembles black, respectively.

Figure 2.1 shows an example of a color image. The image I has a resolution of 481 ˆ

321. For each pixel x P D, we assigned a color Ipxq P CRGB . The color image I shown in Figure
2.1 belongs to the Berkeley Segmentation Dataset (BSDS) available at https://www2.eecs.
berkeley.edu/Research/Projects/CS/vision/grouping/segbench/.

The RGB color space is only one representation of a color space. We point out that
there are several other color spaces in the literature, for example, the HSV space, HSL space,
CIELab space, and so on (Hanbury & Serra, 2001b,a; Angulo & Serra, 2003; Valle & Valente,
2016).

For instance, the HSV color model is denoted by CHSV , and the HSL color model
is denoted by CHSL. The HSV color model represents a color using three components ph, s, vq

where h means hue, s means saturation, and v means value, and the HSL color model represent

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
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Color image I

Figure 2.1 – Illustrative example of a color image I : D Ñ CRGB.

a color using three components ph, s, lq, where the value v of the third component in CHSV is
replaced by l that means lightness. It is observed that the hue component represents the type
of color like red, blue, and green and is usually represented as an angle around a color wheel.
Saturation controls the intensity of the color, with 0 saturation resulting in a grayscale color and
maximum saturation representing the purest form of the color. Lightness controls the brightness,
where 0 represents black, 1 represents white, and 0.5 corresponds to the original color. The HSL
color space facilitates color transformations like hue rotations and saturation adjustments, which
are essential in image processing tasks such as color correction and enhancement.

Furthermore, we have some variants of color spaces as the variant space of HSL color
space, known as the m-HSL color space or m-HCL color space. The m-HCL is an extension
of the traditional HSL model. It offers a unique geometric representation with a cone-like
shape having two tips (vertices) located at p0, 0, 1q and p0, 0,´1q. The circular base of this cone
intersects the origin and is parallel to the xy-plane. This geometric representation allows for a
more comprehensive and effective representation of colors. In the m-HCL color space, chroma
(c) replaces saturation, which is calculated as the difference between the maximum and minimum
RGB color channel values. Additionally, luminance (l) is modified to l̃ “ 2l ´ 1. In Subsection
2.3.3, we will employ the m-HCL color space, as proposed by Burgeth & Kleefeld (2013), for
the Loewner approach.

Multivariate erosions and dilations can be defined using (2.4) as long as the set V is
a complete lattice. The main challenge of multivariate mathematical morphology is to find an
appropriate ordering for vectors. Although there are several studies with techniques for ordering
multivariate data, they can be broadly grouped into several non-exclusive categories as outlined
in the literature (Aptoula & Lefèvre, 2007; Barnett, 1976; Hardie & Arce, 1991; Velasco-Forero
& Angulo, 2011). The categories are:



Chapter 2. Fundamental Definitions 29

Marginal ordering (M-ordering): The marginal ordering is obtained by compar-
ing separately the components of the vectors. Precisely, the components u1, u2, . . . , ud and
v1, v2, . . . , vd of the vectors u,v P V Ă Rd are ordered independently (pointwise ordering), i.e.,
for all u,v P V, u ďM v ðñ ui ď vi @i P t1, 2, . . . , du. Note that this order is the partial
order ďM given in Example 2.3.

Conditional ordering (C-ordering): In C-ordering or conditional ordering we build
the ordered set of vectors by ordering of one or more components selected sequentially according
to different conditions. The ordering of vectors is conditioned upon the particular marginal set of
ranked components (Angulo, 2007).

An example of C-ordering is the lexicographical order ďL given in Example 2.4.

Partial ordering (P-ordering): The P-ordering or partial ordering is based on the
partition of the vectors into groups, such that the groups can be distinguished with respect to rank
or extremeness. It is important to point out that the word partial here is an abuse of terminology
because there are total orders that belong to this group. Additionally, in a general way, these
groups are not mutually exclusive, i.e., it is common for instance to have a P-ordering that is also
an R-ordering.

Reduced ordering (R-ordering): According to Goutsias et al. (1995) and Aptoula
& Lefèvre (2007), in an R-ordering or reduced ordering the vectors are ranked according to a
surjective mapping h from the value set V into a complete lattice L as follows:

@u,v P V, u ďh v ðñ hpuq ďL hpvq. (2.5)

Goutsias et al. (1995) has proposed the use of reduced orderings for the development
of efficient multivariate morphological operators. Precisely, combining (2.5) with lookup tables
(LUTs), as suggested by Velasco-Forero & Angulo (2014), we are able to use morphological
operators in grayscale to produce adequate multivariate morphological operators. Together with a
LUT, a reduced ordering given by (2.5) becomes a total ordering on the set V pIq “ tIppq : p P Du

of values of an image I. Hence, we can define the h-dilation δh
S and the h-erosion εh

S of an image
I by a structuring element S by (2.4). Moreover, we can define the h-opening γh

S and h-closing
ϕh

S operators of an image I by a structuring element S as

γh
SpIq “ δh

S

`

εh
SpIq

˘

and ϕh
SpIq “ εh

S

`

δh
SpIq

˘

. (2.6)

As an example, Figure 2.2 shows the dilation and the erosion of the image I in Figure
2.1 obtained through the lexicographical order given by Example 2.4. The structuring element S
is a square of size 9 ˆ 9. Observe that the dilated image δL

S pIq is clearer than the image I and the
eroded image εL

SpIq is darker than the image I.

Furthermore, according to Velasco-Forero & Angulo (2014), there are different
multivariate orderings implemented by h-mapping based reduced ordering. For instance, there
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a) Real image I with
size 481 ˆ 321 b) Dilated Image δL

S pIq c) Eroded Image εL
SpIq

Figure 2.2 – Illustrative example of images obtained by morphological operators. Figure a) shows
the color image I. Figure b) shows the dilated image using the h-lexicographical
order and Figure c) shows the eroded image using the h-lexicographical order.

are the supervised morphological approaches and the unsupervised morphological approaches.
In a supervised morphological approach, the algorithm is provided with labeled training data
and uses this information to learn how to rank the image values. An example are morphological
operators based on support vector machine (SVM). In an unsupervised morphological approach,
the algorithm does not use any labeled data and instead relies on the intrinsic properties of the
data itself to determine the ordering. An example is the morphological approach based on the
statistical projection depth function.

2.3.1 Supervised Morphological Approach Based on Support Vector

Machine

The supervised approach is obtained with an R-ordering where the mapping h is
defined using a supervised learning. The goal of supervised learning is to find a mapping from
input data to the corresponding output labels or values. The training data is labeled, meaning
that it includes both the input data and the corresponding output labels or values. The supervised
morphological approach involves training a model to recognize patterns in labeled training data,
which can be used to create mappings that order the input data.

There are several types of supervised approaches, such as linear regression, lo-
gistic regression, decision trees, support vector machine (SVM), and neural networks. For
instance, Velasco-Forero & Angulo (2011) used the support vector machine (SVM) to calculate
h-supervised ordering as follows.

A support vector machine (SVM) is a powerful machine-learning method with a
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variety of applications. SVMs are frequently used for classification and regression tasks. They
work by finding the best boundary or hyperplane that separates the different classes in the training
data. The best boundary is the one that maximizes the margin of separation, which is the distance
between the boundary and the closest data points from each class. The data points closest to the
boundary are called support vectors (Vapnik, 1998).

According to Cristianini & Shawe-Taylor (2000), the simplest problems for SVM
are linearly separable problems.

Definition 2.18 (Linearly separable set). Let T “ tpx1, y1q, px2, y2q, . . . , pxn, ynqu Ă Rd
ˆ

t1,´1u be a labeled training set, where yi defines class label of the i-th sample. If there are
w P Rd, b P R, and a positive number C such that yi

`

wtxi ` b
˘

ě C, for all i P t1, 2, . . . , nu,
where wtx denotes the inner product of w and x, then the training set T is called linearly
separable.

Let T be a linearly separable training set as in Definition 2.18. Our goal is to find a
hyperplane that separates the different classes in the training data. In other words, our goal is to
find a function f : Rd

Ñ t1,´1u such that fpxq “ sgnphpxqq takes in input data and produces
a prediction about the output label. The discrimination function h is learned from the labeled
training data T . In this context, hpxq “ wtx ` b.

It should be noted that the equation hpxq “ wtx ` b “ 0 separates Rd into two
regions that correspond to the labels of the two classes of yi. However, usually there are infinitely
hyperplanes that separate the training set T . Therefore, as noted by Vapnik (1998), the best
hyperplane wtx ` b “ 0 that separates the two classes is obtained when the maximum margin is
achieved. In this case, we assume that

wtxi ` b ě 1 @i P t1, . . . , nu such that yi “ 1 (2.7)

and
wtxj ` b ď ´1 @j P t1, . . . , nu such that yj “ ´1. (2.8)

Let H be the hyperplane that separates the two classes. The hyperplane equation is
given by wtx ` b “ 0. Given x0 P Rd, the distance between x0 and the hyperplane H, denoted
by dpx0,Hq, is given by

dpx0,Hq “
|wtx0 ` b|

}w}
. (2.9)

In fact, for any x P H, we have wtx “ ´b and therefore

dpx0,Hq “ }projwpx0 ´ xq} “

›

›

›

›

px0 ´ xqtw

wtw
w

›

›

›

›

“ |px0 ´ xq
tw|

}w}

}w}2 “
|wtx0 ` b|

}w}
.

Let d` be the smallest distance between the separating hyperplane H and the points
of the positive class. Similarly, let d´ be the smallest distance between the hyperplane H and the
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points of the negative class. We can define the geometric margin of a separating hyperplane to be
d` ` d´.

As in our context there are always support vectors xj and xk of the training set T
that satisfy the equality in (2.7) and in (2.8), respectively. Precisely, we have

dpxj,Hq “ d` “
|wtxj ` b|

}w}
“

1
}w}

and
dpxk,Hq “ d´ “

|wtxk ` b|

}w}
“

| ´ 1|

}w}
.

Therefore, the margin is d` ` d´ “
2

}w}
.

Thus, the desired hyperplane is obtained by finding w and b that solves the following
optimization problem

$

’

&

’

%

maximize
w,b

2
}w}

subject to yi

`

wtxi ` b
˘

ě 1, @i P t1, 2, . . . , nu.
(2.10)

Also, note that maximizing the objective function
2

}w}
is the same as minimizing

the function
}w}

2 . Furthermore, it is the same that minimizes
1
2}w}

2, which is more convenient
to solve as it is a quadratic convex function subject to linear constraints.

Therefore, problem (2.10) is equivalent to solving the following convex optimization
problem that is called the primal SVM problem:

$

&

%

minimize
w,b

1
2}w}

2

subject to yi

`

wtxi ` b
˘

ě 1, @i P t1, 2, . . . , nu.
(2.11)

To solve optimization problems with constraints like (2.11), mathematicians have
developed various methods. The first optimality conditions for such problems were established
by John (1948), followed by Kuhn & Tucker (1951). It was later discovered that the Kuhn-Tucker
conditions had already been established by W. Karush in 1939 in his master’s thesis, but this
thesis was never published, although essential parts were reproduced by Kuhn (1976). Thus, the
Kuhn-Tucker conditions came to be known as the Karush-Kuhn-Tucker (KKT) conditions.

The KKT conditions provide necessary conditions for the solution of the optimization
problem with inequality constraints. In the case of the SVM problem (2.11), we can apply the
KKT conditions to obtain the optimal values of the Lagrange multipliers. These optimal values
allow us to determine the optimal values of the decision variables, including the separating
hyperplane and the support vectors. By using the Lagrangian formulation and the KKT conditions,
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we can solve the SVM problem in a computationally efficient way, even in the nonlinear case
(Theodoridis & Koutroumbas, 2006).

The Lagrangian is obtained by

Lpw, b, λq “
1
2}w}

2
´

n
ÿ

i“1
λiyipw

txi ` bq `

n
ÿ

i“1
λi, (2.12)

where λi are called Lagrange multipliers. Additionally, the Lagrange multipliers are non-negative
due to the KKT conditions (Bazaraa et al., 2006; Fletcher, 1987; Bertsekas, 1995; Nash & Sofer,
1996).

Thus,
$

’

’

’

&

’

’

’

%

BL
Bw

“ w ´

n
ÿ

i“1
λiyixi “ 0 ðñ w “

n
ÿ

i“1
λiyixi,

BL
Bb

“ ´

n
ÿ

i“1
λiyi “ 0 ðñ

n
ÿ

i“1
λiyi “ 0.

(2.13)

Putting (2.13) into (2.12), we have

Lpλq “

n
ÿ

i“1
λi ´

1
2

n
ÿ

i“1

n
ÿ

j“1
λiλjyiyjx

t
ixj. (2.14)

It is possible to work with the dual problem because the optimization problem
satisfies the conditions for strong duality, which implies that the optimal solutions of the primal
and dual problems are equal. Additionally, solving the dual problem can lead to a simpler
optimization problem with a smaller number of variables than the primal problem (Luenberger,
1984; Theodoridis & Koutroumbas, 2006).

The dual problem for SVM is reduced to

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

maximize
λ

n
ÿ

i“1
λi ´

1
2

n
ÿ

i“1

n
ÿ

j“1
λiλjyiyjx

t
ixj

subject to
n

ÿ

i“1
λiyi “ 0,

λi ě 0, @i P t1, 2, . . . , nu.

(2.15)

Due to dual form (2.15) we can express the original linear model as

hpxq “ wtx ` b “

n
ÿ

i“1
λiyix

txi ` b, (2.16)

where λi are the Lagrangian coefficients. In other words, we can write (2.16) as a sum of
Lagrangian coefficients multiplied by the inner product of the training points and the input
vector.
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Note that the linear model function in (2.16) was derived for a linearly separable
training set T . However, in practice, it is possible that the training set is not linearly separable. In
such cases, we can modify the SVM formulation introducing slack variables ξi that allow the
constraint yipw

T xi ` bq ě 1 in (2.11) to be relaxed to yipw
T xi ` bq ě 1 ´ ξi. The objective

function can then be modified to penalize the number and magnitude of the slack variables. This
allows getting the following optimization problem

$

’

’

’

’

&

’

’

’

’

%

minimize
w,v,ξ

1
2}w}

2
` C

n
ÿ

i“1
ξi

subject to yipw
T xi ` bq ě 1 ´ ξi, @i P t1, 2, . . . , nu,

ξi ě 0, @i P t1, 2, . . . , nu,

(2.17)

where C ě 0 is a hyperparameter that balances the trade-off between the size of the mar-
gin and the number of misclassifications (Haykin, 2009). Increasing C results in a smaller
margin and fewer misclassifications, while decreasing C results in a larger margin but more
misclassifications.

As (2.17) is a convex programming problem like (2.11), the same approach used
previously can be employed to solve it. Thus, the Lagrangian is

Lpw, b, ξ, λ, µq “
1
2}w}

2
` C

n
ÿ

i“1
ξi ´

n
ÿ

i“1
λi

`

yipw
txi ` bq ´ 1 ` ξi

˘

´

n
ÿ

i“1
µiξi, (2.18)

with λi, µi ě 0, for all i P t1, 2, . . . , nu.

Then, we have
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

BL
Bw

“ w ´

n
ÿ

i“1
λiyixi “ 0 ðñ w “

n
ÿ

i“1
λiyixi,

BL
Bb

“ ´

n
ÿ

i“1
λiyi “ 0 ðñ

n
ÿ

i“1
λiyi “ 0,

BL
Bξi

“ C ´ λi ´ µi “ 0 ðñ µi “ C ´ λi, @i P t1, . . . , nu.

(2.19)

Putting (2.19) into (2.18), we have

Lpλq “
1
2

˜

n
ÿ

i“1
λiyixi

¸t ˜

n
ÿ

i“1
λiyixi

¸

` C
n

ÿ

i“1
ξi ´

n
ÿ

i“1
λiyi

˜

n
ÿ

i“1
λiyixi

¸t

xi

´

n
ÿ

i“1
λiyib `

n
ÿ

i“1
λi ´

n
ÿ

i“1
λiξi ´

n
ÿ

i“1
pC ´ λiq ξi

“
1
2

n
ÿ

i“1

n
ÿ

j“1
λiλjyiyjx

t
ixj ` C

n
ÿ

i“1
ξi ´

n
ÿ

i“1

n
ÿ

j“1
λiλjyiyjx

t
ixi

´

˜

n
ÿ

i“1
λiyi

¸

b `

n
ÿ

i“1
λi ´

n
ÿ

i“1
λiξi ´

n
ÿ

i“1
Cξi `

n
ÿ

i“1
λiξi

“

n
ÿ

i“1
λi ´

1
2

n
ÿ

i“1

n
ÿ

j“1
λiλjyiyjx

t
ixj.

(2.20)
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Notice that (2.20) is identical to (2.14) and it means that we can use a quadratic
programming solver to solve the dual problem form. The dual problem for linear SVM in
nonseparable cases is reduced to

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

maximize
λ

n
ÿ

i“1
λi ´

1
2

n
ÿ

i“1

n
ÿ

j“1
λiλjyiyjx

t
ixj

subject to
n

ÿ

i“1
λiyi “ 0,

0 ď λi ď C, @i P t1, 2, . . . , nu.

(2.21)

Therefore, the SVM classifier in both cases can be represented by (2.16). It is
important to note that the solution is performed with the inner products xtxi from the training set
T . This property allowed Vladimir Vapnik to extend the SVM formulation by creating nonlinear
classifiers in the original space through the use of nonlinear functions, which are known as kernel

functions (Vapnik, 1998, 1999). This results in the model hpxq “

n
ÿ

i“1
λiyiKpx,xiq ` b, where

K is a kernel function.

Common Kernel Functions

Gaussian RBF Kpx,yq “ exp
ˆ

´||x ´ y||2

k

˙

Sigmoidal Kpx,yq “ tanh pαxx,yy ` bq
Polynomial Kpx,yq “ pxx,yy ` bqn

Inverse multiquadric Kpx,yq “
1

a

||x ´ y||2 ` k2

Table 2.1 – Gaussian radial basis function (RBF) kernel with k P R, sigmoidal kernel with
α, b P R, polynomial kernel with n P N, b P R, and inverse multiquadric kernel with
k P R` (Müller et al., 2001).

Examples of common kernel functions are presented in Table 2.1.

Thus, we can use the Lagrangian dual formulation of the SVM using nonlinear
functions to develop the supervised hSV M order.

Precisely, let F “ tf1, f2, . . ., fN u Ă V be a foreground value set and let B “

tb1,b2, . . . ,bM u Ă V be a background value set such that B X F “ H. Our goal is to separate
the values in F from those in B by assigning class labels `1 and ´1, respectively. To accomplish
this, we define the labeled training set T as

T “

˜

N
ď

i“1
tpfi,`1qu

¸

Y

˜

M
ď

j“1
tpbj,´1qu

¸

Ă V ˆ t1,´1u. (2.22)
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In the same way that we obtained the equations (2.14) and (2.20), we have

Lpλ, µq “

N
ÿ

i“1
λi `

M
ÿ

j“1
µj ´

1
2

˜

N
ÿ

i“1
λi

`

N
ÿ

ℓ“1
λℓf t

i fℓ

˘

`

M
ÿ

j“1
µj

`

M
ÿ

k“1
µkbt

jbk

˘

´

N
ÿ

i“1
λi

`

M
ÿ

j“1
µjf t

i bj

˘

´

M
ÿ

j“1
µj

`

N
ÿ

i“1
λibt

jfi

˘

¸

“

N
ÿ

i“1
λi `

M
ÿ

j“1
µj ´

1
2

˜

N
ÿ

i“1

N
ÿ

ℓ“1
λiλℓf t

i fℓ `

M
ÿ

j“1

M
ÿ

k“1
µjµkbt

jbk ´ 2
N
ÿ

i“1

M
ÿ

j“1
λiµjf t

i bj

¸

.

Therefore, the dual problem is identical to problem (2.21) and is given by
$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

maximize
λ,µ

N
ÿ

i“1
λi `

M
ÿ

j“1
µj ´

1
2

N
ÿ

i“1

N
ÿ

ℓ“1
λiλℓKpf i,f ℓq ´

1
2

M
ÿ

j“1

M
ÿ

k“1
µjµkKpbj, bkq

`

N
ÿ

i“1

M
ÿ

j“1
λiµjKpf i, bjq

subject to
N
ÿ

i“1
λi ´

M
ÿ

j“1
µi “ 0,

0 ď λi, µj ď C, @i P t1, 2, . . . , nu @j P t1, 2, . . . ,mu,

(2.23)

whereC is a user-specified positive parameter that controls the tradeoff between the complexity of
the machine and the number of nonseparable values, and K is the kernel function K : VˆV Ñ R,
which is given by Kpx,yq “ x Φpxq, Φpyq y, where Φ : V Ñ F is a nonlinear mapping of V
into a potentially much higher dimensional feature space F (Müller et al., 2001).

Finally, omitting b because it is constant for all x, our h-ordering based on SVM
hSV M : V Ñ R is obtained by

hSV M pxq “
ÿ

fPF

λiKpx,fq ´
ÿ

bPB

µjKpx, bq, for all x P V, (2.24)

where λ1, . . . , λN and µ1, . . . , µM solve the quadratic optimization problem (2.23).

Figure 2.3 shows the image I from Figure 2.1, the dilated image obtained by h-
ordering (2.24) using the kernel Gaussian RBF, and the eroded image obtained by h-ordering
(2.24) using the kernel Gaussian RBF.

The structuring element S is a 9 ˆ 9 square. For dilation and erosion, we use for the
background set the colors near the edge of the image and for the foreground set the colors in
the center of the image. Precisely, we consider the central pixel of the image and four pixels in
the corners of the image, i.e., one pixel in the upper left, one pixel in the upper right, another
pixel in the lower left, and the last one pixel in the lower right. Then, segment the image
segmentation, using the central pixel as a seed for the foreground set and the other four pixels
near the edge as seeds for the background set. With the image segmentation performed, we
consider 20 color values for our training set, being 10 colors for the foreground set and 10 colors
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a) Real image I with
size 481 ˆ 321 b) Dilated Image δhSV M

S pIq c) Eroded Image εhSV M
S pIq

Figure 2.3 – Illustrative example of images obtained by h-ordering based on SVM. Figure a)
shows the color image I given in Figure 2.1. Figure b) shows the dilated image
using (2.24) and Figure c) shows the eroded image using (2.24).

Foreground set

Background set

Figure 2.4 – Color palette used in the SVM approach.

for the background set. Figure 2.4 shows the color palettes of the foreground and background
sets. Note that foreground colors are colors close to the center like green, black, and red colors.
Additionally, notice that the background colors are close to the corners of the edges like light
blue, gray, and white. Finally, notice that in the dilated image, we have obtained black socks
since our foreground set had black colors. In the case of the eroded image, the socks of the
woman turned white since our background set has colors close to the edge and consequently
close to white.

2.3.2 Unsupervised Morphological Approach Based on Statistical Pro-

jection Depth

An unsupervised morphological approach involves the utilization of morphological
operations on the raw data set, without any labeled data or prior information provided to
the algorithm regarding the extraction of features or classification of the data. In this way, a
set of unlabelled values is used to establish the mapping h : V Ñ L. The h-unsupervised
ordering can be obtained by using the more representative projection in a statistical dimension
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reduction technique. For instance, a linear approach such as principal component analysis (PCA)
(Jolliffe, 2010), local principal component analysis (Local-PCA) (Kambhatla & Leen, 1997), or
some nonlinear projections approach (Lézoray et al., 2009). For our computational comparison
proposals, we consider the unsupervised approach based on the statistical projection depth
function (Donoho & Gasko, 1992; Velasco-Forero & Angulo, 2012).

According to Zuo & Serfling (2000), the development of statistical depth functions
for multivariate data has been a focus in nonparametric data analysis and robust inference. The
objective of a depth function is to offer a nonparametric and robust measure of the centrality of a
point within a multivariate dataset. For a distribution P in Rd, a corresponding statistical depth
function is any function D px,Pq that provides a P-based center-outward ordering of points
x P Rd.

Formally, we have the following definition.

Definition 2.19 (Statistical depth function). Let F be the class of distributions on the Borel sets
of Rd and let Fx be the distribution of a given random vector x. A statistical depth function is a
bounded, nonnegative mapping D p¨; ¨q : Rd

ˆ F Ñ R satisfying the following properties:

1. DpAx ` b;FAx`bq “ Dpx;Fxq for all d ˆ d nonsingular matrix A and all x,b P Rd.
(affine invariance)

2. Dpθ;F q “ sup
xPRd

Dpx;F q for all F P F and θ P Rd. (maximality at center)

3. Dpx;F q ď Dpθ ` αpx ´ θq;F q for all F P F , θ P Rd, and α P r0, 1s. (monotonicity
relative to deepest point)

4. Dpx;F q Ñ 0 as ||x|| Ñ 8, for each F P F . (vanishing at infinity)

We can say that invariance to affine transformation means that the depth of a point
x P Rd should not depend on the underlying coordinate system or, in particular, on the scales of
the underlying measurements. The maximality at center means that for a distribution having a
uniquely defined “center”, the depth function should attain maximum value at this center. The
monotonicity relative to deepest point means that a point x P Rd moves away from the “deepest
point” along any fixed ray through the center, the depth at x should decrease monotonically
and the vanishing at infinity means that the depth of a point x should approach zero as ||x||

approaches infinity (Zuo & Serfling, 2000).

In the sequel, we will define the projection depth function.

Definition 2.20 (Projection depth function). Let X “ rx1, . . . ,xns P Rdˆn be a training sample.
The projection depth function h‹

P : Rd
Ñ R is defined by

h‹
P pxq “ sup

uPSd´1

|uT x ´ MEDpuT Xq|

MADpuT Xq
, @x P Rd, (2.25)
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a) Real image I with
size 481 ˆ 321 b) Dilated Image δP

S pIq c) Eroded Image εP
S pIq

Figure 2.5 – Illustrative example of images obtained by h-ordering based on the projection depth
function. Figure a) shows the color image I given in Figure 2.1. Figure b) shows
the dilated image using (2.27) and Figure c) shows the eroded image using (2.27).

where Sd´1
“ tx P Rd : ||x||2 “ 1u is the d-dimensional hypersphere, MED : Rn

Ñ R is
the median operator, and MAD : Rn

Ñ R is the median absolute deviation from the median
operator.

Remark 2.9. The median absolute deviation from the median is given by

MADptq “ MEDp|t ´ 1nMEDptq|q, (2.26)

where 1n P Rn denotes the vector of ones and the absolute value | ¨ | is computed in a component-
wise manner.

Actually, it is infeasible to compute h‹
P as it necessitates the examination of an

infinite number of random projections. Thus, we approximate the depth projection function
by replacing the supremum with the maximum on a finite set of elements in the hypersphere
Sd´1. Specifically, we estimate an approximate value of h‹

P by utilizing k random projections
uniformly distributed in Sd´1 (Velasco-Forero & Angulo, 2012).

Therefore, the function hP : Rd
Ñ R is given by

hP pxq “ max
uPU

|uT x ´ MEDpuT Xq|

MADpuT Xq
, @x P Rd, (2.27)

where U “ tu1,u2, . . . ,uku Ă Sd´1, where ui P Rd and for each i “ 1, 2, . . . , k, ui is a
random vector that is distributed uniformly on the surface of the d-dimensional hypersphere of
radius 1. In this case, hP is an approximation of the theoretical depth projection function h‹

P
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Finally, the projection depth morphological approach is defined by ranking the
vector-values according to the h-ordering hP : V Ă Rd

Ñ L Ă R given by (2.27) together with
a lookup table.

Figure 2.5 shows the image I from Figure 2.1, the dilated image, and the eroded
image obtained by h-ordering hP in (2.27). For both cases, we consider the parameter k “ 1000.
The choice of this parameter is regarding due to the stability in the value of h-ordering (2.27) for
certain given images (Velasco-Forero & Angulo, 2012).

In Figure 2.5, we perceive that the dilated image δP
S pIq and eroded image εP

S pIq

exhibit significant irregularity, as anticipated. This observation aligns with our expectations, as
expounded upon in Chapter 1 of this thesis, wherein it is noted that the projection depth order
has a propensity to generate anomalies.

2.3.3 Loewner Order and its Corresponding Morphological Approach

In addition to the marginal approach, this thesis also examines a second multivariate
morphological approach that is based on partial ordering. Specifically, the approach of color-
morphology using the Loewner order, as proposed by Burgeth & Kleefeld (2014), is considered.
The Loewner order has been demonstrated to be effective in the development of morphological
techniques that utilize multivariate data, as referenced in Burgeth et al. (2019).

The Loewner order is a useful tool for multivariate morphological approach and
image processing. It is a partial order defined on the set of symmetric matrices. The Loewner
partial ordering compares two symmetric matrices A and B by determining if there exists a
positive semidefinite matrix K such that K “ B ´ A. If that is the case, we have A ďW B. In
mathematical terms, we have the following definition

Definition 2.21 (Loewner order). Let A and B be symmetric matrices. The Loewner order is
defined by

A ďW B ðñ B ´ A is positive semidefinite. (2.28)

Remark 2.10. The Loewner order is not a total order. This can be demonstrated by considering

the symmetric matrices A “

˜

1 0
0 0

¸

and B “

˜

0 0
0 1

¸

. It can be observed that neither

A ďW B nor B ďW A holds true. To further illustrate this, let x “

˜

a

b

¸

P R2 be a vector. It

can be seen that xT
pB ´ Aqx “ b2

´ a2. Taking a “ 2 and b “ 1, we have xT
pB ´ Aqx ă 0.

Similarly, for a “ 1 and b “ 2, we have xT
pA ´ Bqx ă 0, thus further emphasizing that

Loewner order is not a total order.

We consider a symmetric matrix field F as a mapping F : V Ă Rd
Ñ Sympnq from

a domain V Ă Rd into the space Sympnq of real symmetric n ˆ n-matrices with inner product
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xA,By “ tracepABq and Frobenius-norm ||A|| “
a

xA,Ay.

We now discuss the conversion between a color image I and a matrix field F based
on Burgeth & Kleefeld (2014).

First, we convert the RGB color space CRGB to the HSL color space CHSL. After
that, we replace the saturation of HSL color space CHSL by the chroma c, which is computed
by c “ maxtr, g, bu ´ mintr, g, bu, and modify the luminance l in the HSL color space by
l̃ “ 2l ´ 1.

In total, we transform the RGB color space CRGB into a variant space of HSL color
space CHSL that is called m-HCL color space, denoted by Cm´HSL as we have seen in Section
2.3. The geometric representation of Cm´HSL is a cone with two tips, centered at the point
p0, 0, 0q, with its vertices at p0, 0, 1q and p0, 0,´1q and a circular base of radius one intersecting
the origin and parallel to the xy-plane. The geometric representation is depicted in Figure 2.6.

Color bicone

Figure 2.6 – Bicone for the m-HCL color space. Source: Burgeth & Kleefeld (2013).

Precisely, the coordinates of an arbitrary point x P Cm´HSL is x “ pc cosp2πhq,
c sinp2πhq, l̃q, which represents the coordinates of hue (h), chroma (c), and luminance (l̃).

Finally, we consider the following mapping Ψ : Cm´HSL Ñ Symp2q given by

Ψpc cosp2πhq, c sinp2πhq, l̃q “ A, (2.29)

where A “ pra, bs, rb, csq :“
˜

a b

b c

¸

, with a “
1

?
2

pl̃ ´ c sinp2πhqq, b “
1

?
2
c cosp2πhq, and

c “
1

?
2

pl̃ ` c sinp2πhqq such that

´
1

?
2

I ďW A ďW
1

?
2

I,
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where I denotes the identity matrix.

Finally, the isomorphism correspondence between colors and symmetric 2 ˆ 2
matrices makes possible the definition of the Loewner method for color morphology1.

It is important to note that in this thesis, we are employing the morphological
approach for colored images as proposed by authors Burgeth & Kleefeld (2013). As can be seen,
their selection of m-CHL could be altered by another color space, which represents one of the
potential avenues for future research as pursued by these authors.

a) Real image I with
size 481 ˆ 321 b) Dilated Image δW

S pIq c) Eroded Image εW
S pIq

Figure 2.7 – Illustrative example of morphological operators using the Loewner approach. Figure
a) shows the color image I given in figure 2.1. Figure b) shows the dilated image
δW

S and Figure c) shows the eroded image εW
S .

Some examples seen in Burgeth & Kleefeld (2014) are given below.

The color black p0, 0, 0q P CRGB is represented by the matrix ´
1

?
2

˜

1 0
0 1

¸

and the

color white p1, 1, 1q P CRGB is represented by the matrix
1

?
2

˜

1 0
0 1

¸

.

Furthermore, the colors gray, red, green, and blue given respectively by p0.5, 0.5, 0.5q,

p1, 0, 0q, p0, 1, 0q, p0, 0, 1q P CRGB are represented respectively by the null matrix

˜

0 0
0 0

¸

, and
¨

˚

˝

0 1
?

2
1

?
2

0

˛

‹

‚

,
1
4

˜

´
?

6 ´
?

2
´

?
2

?
6

¸

, and
1
4

˜ ?
6 ´

?
2

´
?

2 ´
?

6

¸

.

1 The program code of the Loewner morphological approach is located at https://www.math.
tu-cottbus.de/INSTITUT/lsnmwr/kleefeld/SourcePRL/.

https://www.math.tu-cottbus.de/INSTITUT/lsnmwr/kleefeld/SourcePRL/
https://www.math.tu-cottbus.de/INSTITUT/lsnmwr/kleefeld/SourcePRL/
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In Figure 2.7, we show the dilation and the erosion morphological operators based
on the Loewner approach. We used a 9 ˆ 9 square structuring element S. Observe that the dilated
image has a predominance of the white color over the black color and the eroded image has a
predominance of the black color over the white color.

2.4 The Challenges of False Colors and the Irregularity

Issue

As we discussed in Section 2.3, in mathematical morphology, the concept of order
relation is fundamental to the study of multivariate morphological operators. We know that when
we have two real-valued functions f and g and take the supremum f _ g or the infimum f ^ g,
the result can be different from the two operands although the result for a fixed and arbitrary
point x, we have that the supremum of pf _ gqpxq and pf ^ gqpxq is equal to either fpxq or gpxq.
For multidimensional cases, the situation is even worse. For example, if the functions f and g
represent color vector images, and their supremum at point x may be neither fpxq nor gpxq, then
a false color is generated (Serra, 2009).

To explain in more detail, we already know that the marginal order given by Example
2.3 is defined by

x ďM y ðñ x1 ďR y1, x2 ďR y2, . . . , and xm ďR ym, (2.30)

for vectors x “ px1, x2, . . . , xmq P V and y “ py1, . . . , ymq P V, where ďR denotes the usual
ordering in R. The supremum and infimum operations are computed component-wise using
marginal ordering. Precisely, given X Ď V, then

ł

X “ p
ł

X1, . . . ,
ł

Xmq and
ľ

X “ p
ľ

X1, . . . ,
ľ

Xmq. (2.31)

Despite its simplicity, the marginal ordering given by (2.30) often leads to false colors (Serra,
2009). For example, consider the RGB color space CRGB. The marginal order yields

ł

tp1, 0, 0q, p0, 0, 1qu “ p1, 0, 1q and
ľ

tp1, 0, 0q, p0, 0, 1qu “ p0, 0, 0q. (2.32)

In words, the supremum and the infimum of red and blue are magenta and black, respectively.
Therefore, using the marginal ordering, the supremum and infimum operations may result in a
color that does not belong to the set, resulting in the so-called false color.

For example, consider the image I shown in Figure 2.1, and let I1 : D Ñ V be a toy
image with size 9 ˆ 9 defined by

$

’

’

&

’

’

%

I1pi, jq “ p0, 0, 1q if pi, jq P Dztp2, 2q, p7, 7qu,

I1p2, 2q “ p1, 0, 0q,

I1p7, 7q “ p0, 1, 0q.
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a) Image I1 with
81 pixels p9 ˆ 9q

b) Dilated Image δM
S pI1q c) Eroded Image εM

S pI1q

d) Real image I with
size 481 ˆ 321 e) Dilated Image δM

S pIq f) Eroded Image εM
S pIq

Figure 2.8 – Illustrative example of false colors. Figure a) shows image I1, size 9 ˆ 9 (81 pixels),
with the colors blue, red and green. Figure b) shows the false color black on the
dilated image δM

S pI1q. Figure c) shows the false colors magenta and cyan on the
eroded image εM

S pI1q. Figure d) shows the color image I. Figure e) shows the dilated
image δM

S pIq, and Figure f) shows the eroded image εM
S pIq.

In Figure 2.8 we show the images I, I1, and their respective dilation and erosion with
the marginal order given in Example 2.3. For toy image I1 we calculate the dilation δM

S pI1q and
the erosion εM

S pI1q using a 3 ˆ 3 square as the structuring element pSq. For image I we calculate
the dilation δM

S pIq and the erosion εM
S pIq using a 9 ˆ 9 square as the structuring element S.

Note that the dilated image δM
S pI1q has the false color black, and the eroded image

εM
S pI1q has the false colors magenta and cyan. The dilated image δM

S pIq has near the right arm of
the woman a false color close to orange, and the eroded image εM

S pIq has several false colors
such as the boundary of her red shirt that are with a color close to brown.

Therefore, a challenge in multivariate mathematical morphology is the appearance
of false values or, more specifically, the “false colors”, as highlighted by Serra (2009). As stated
in our paper Valle et al. (2021), a morphological operator ψ : V Ñ V creates false values when
there are values in ψpIq that are not present in the original image I. To be more formal, let 2V be
the power set of V and let V : V Ñ 2V be the mapping given by equation
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V pIq “ tIppq : p P Du, @ I P V . (2.33)

A morphological operator ψ introduces false colors if the set difference V pψpIqqzV pIq is not
empty. Certain applications, such as the manipulation of satellite data or composite data in
geographical information systems, can be hampered by the presence of “abnormal false values".

Utilizing partial orders like the marginal or the Loewner orders, the dilation operator
and the erosion operator given by (2.4) often results in false colors. Note in Figure 2.7 that the
dilated image δW

S has a false color on the shirt of the woman. In the same way, in Figure 2.7, the
eroded image εW

S has a false color on the hair of the woman.

To circumvent the issue of false values, a total order like the lexicographical order
given by Example 2.4 and a reduced ordering with a lookup table can be used. With a total order,
the supremum is an element of the set, which is equivalent to the maximum operation. Similarly,
the infimum of a finite set is an element of the set, which is identical to the minimum operation.
As a result, when D is finite, the elementary morphological operators given by (2.4) will only
contain values of the input image I.

According to Chevallier & Angulo (2016), a disadvantage of using a total order is that
it might not be regular in a metric space. This means that the topology induced by a total order
might not be consistent with the topology of a metric space. In another words, if I : D Ñ CRGB

is a color image and J is a morphological image obtained by a morphological operator applied
on I using a total order, then the challenges of false color appearance will be avoided, but
unfortunately we will have the challenge to deal with small aliasing that might appear in the
image J. In this context, these aliasing are called irregularity challenges, or irregularity issue or
simply as irregularity.

Precisely, Chevallier & Angulo (2016) demonstrated the following theorem:

Theorem 2.1. Let pX, dq be a metric space endowed with a total order ď. Suppose there are
three points x, y, z P X and a positive real number R such that dpx, yq ą R, dpx, zq ą R,
dpy, zq ą R and that the complement BC

px,Rq, BC
py,Rq, BC

pz,Rq of each ball Bpx,Rq,
Bpy,Rq, Bpz,Rq is connected. Then, for all r ą 0, there exist three points a, b, c P X such that

$

’

’

&

’

’

%

a ď b ď c,

dpa, bq ěR,

dpa, cq ď r.

(2.34)

Particularly, let V be a metric space endowed with a total order and a metric d :
V ˆ V Ñ r0,`8q. Chevallier & Angulo (2016) proved that under mild conditions regarding the
connectivity of V, there exist u,v,w P V such that u ď v ď w, but the distance between u and
w is less than or equal to the distance between u and v. This suggests that despite u being closer
to w than to v, the inequalities u ď v ď w imply that u is farther from w than v. It should be
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a) Three-colored image I b) Image JL c) Image JM

Figure 2.9 – Figure a) shows image I consisting of three colors: pure black, black and pure blue.
Figure b) shows the dilated image JL using lexicographic order. Figure c) shows
the dilated image JM using marginal order.

noted that the morphological operators, as they are defined using extrema operators, do not take
the metric of V into account.

It is noticed in Chevallier & Angulo (2016) that it is a great challenge to define
the problem of irregularity between a color image I and its morphological image J with a
mathematical formalism and notation. However, the authors proposed an example to provide a
visual interpretation of the irregularity that is similar to Figure 2.9.

Figure 2.9a) displays a toy image I : D Ñ CRGB with three RGB colors, specifically
u “ p0, 0, 0q, v “ p0, 0, 1q, and w “ p0.004, 0, 0q. Note that u and w are visually black colors
and therefore indistinguishable by human optical perception. Here we call u a pure black color
and w simply a black color. Also, v is a pure blue color. The toy image I of size 32 ˆ 64 is
formed by two stripes of black including the pure black, black, and pure blue. The black stripe is
generated by replacing the pure black colors u by the black color w with a probability of 30%
and the blue stripe is generated by only the pure blue v. Figure 2.9b) shows the dilated image
JL “ δL

S pIq with a cross-shaped structuring element S and the total lexicographical order ďL

given in Example 2.4. Figure 2.9c) shows the dilated image JM “ δM
S pIq with a cross-shaped

structuring element S and the partial marginal order ďM given in Example 2.3. With the total

order ďL, we have u ďL v ďL w and using the Euclidean metric dpx, yq “

g

f

f

e

3
ÿ

i“1
pxi ´ yiq

2,

we obtain dpu,vq “ 1 and dpu,wq “ 0.004, which agree with our vision perception. In this
context, as u ďL v ďL w and dpu,wq ă dpu,vq, the image JL has irregularity because the
pure blue v advances over the pure black u, however, the pure blue v is covered by the black
color w. In contrast, the dilated image JM shown in Figure 2.9c) generated with the partial order
ďM does not exhibit any visual irregularity.

Even though we understand that the irregularity issue is caused by a discrepancy
between the topologies induced by the metric and the total ordering, there is no universally
accepted method for quantifying this discrepancy that express with our visual perception. A
quantitative measure would assist in selecting the appropriate ordering scheme for multivariate
mathematical morphology. In this sense, the following chapter resents an irregularity measure
for multivariate mathematical morphology.
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Chapter 3

MEASURING THE IRREGULARITY

This chapter suggests a quantitative measure for addressing the irregularity issue in
multivariate mathematical morphology. Specifically, we present the global irregularity index

introduced in Valle et al. (2021). This index provides insight into the irregular characteristics of
images generated through morphological operators under total or partial orders. To contextualize
our measure of irregularity, we briefly touch upon certain established concepts of image analysis,
highlighting their relevance without delving into intricate details.

Before we continue, it is important to recognize a few important ideas that are
commonly used when evaluating images. Measures such as fractal dimension and entropy offer
insights into the complexity and textural diversity of images. For instance, notable methodologies
include Minkowski’s volumetric descriptors, developed by Backes et al. (2009), as applied,
for example, in Florindo et al. (2013), alongside studies involving multifractal (Harte, 2001),
multiscale fractal dimension (Manoel et al., 2002), and fractal descriptors (Bruno et al., 2008).

In the realm of entropy, notable studies like those conducted by Haralick in the
1970s (Haralick et al., 1973) and Ojala et al. in the 2000s (Ojala et al., 2002) consistently stress
the importance of local patterns in recognizing textures. More recently, the distinctive role of
non-additive entropy as a local texture descriptor has been explored in Florindo et al. (2016).
Noteworthy efforts using non-additive entropy to enhance the performance of convolutional
neural networks for texture description can also be observed, as seen in Florindo & Metze (2021).
Additionally, non-additive entropies find application in facial recognition challenges (Liao et al.,
2006), and texture recognition (Florindo et al., 2016).

Established metrics like the the Peak signal-to-noise ratio (PSNR) and the Structural
Similarity Index (SSIM) are widely applied to assess image quality and likeness. For instance,
the SSIM metric scrutinizes the structural resemblance between a pair of images, encompassing
vital attributes such as luminance, contrast, and structure. Indeed, the SSIM was introduced by
Wang and Bovik within the framework of the Universal Quality Index (UQI) (Wang & Bovik,
2002). Subsequently, adjustments were made to the UQI formulation by the authors to prevent
division by zero, leading to the enhanced SSIM formulation as elucidated by Wang et al. (2004).

Although in this thesis, we do not delve into the specifics of the measures discussed
above, such as fractal dimension, entropy, PSNR, and SSIM, it is important to acknowledge their
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significance in the realm of image analysis and highlight the existence of studies involving these
concepts. However, in this particular thesis, in the following section, we will outline our approach
to quantify irregularity between two input images, I and J, obtained through morphological
operators, utilizing the Wasserstein metric.

The Wasserstein metric is also known as the Kantorovich-Rubinstein distance or the
Earth mover’s distance (EMD). The name Kantorovich-Rubinstein distance comes from the fact
that this distance was initially introduced by Kantorovich (1939), Kantorovich & Rubinstein
(1942), and Kantorovich (1948), and it is based on the idea of finding the optimal transport plan
between two probability distributions. The optimal transport plan minimizes the total cost of
transporting mass from one probability distribution to another. The name Earth mover’s distance
(EMD) comes from the minimum amount of effort that must be done to transform one pile of
earth into another pile of earth. Depending on the context, both names are still used as seen
in Rubner et al. (2000) and in Villani (2003). After the paper Vasershtein (1969) of Russian
mathematician Leonid Nisonovich Vaseršteı̆n, it also started to be called Wasserstein metric.
In the general case, the Wasserstein metric is used to compute distances between probability
distributions.

We would like to highlight that unless stated otherwise, V is considered to be a
metric space in this thesis. Additionally, our proposed measure of irregularity only considers the
metric space V. As a result, it can be defined for morphological operators obtained by either a
total or a partial order.

3.1 Irregularity Measure based on the Wasserstein Metric:

The Global Irregularity Index

A first attempt to obtain an irregularity measure between the input image I P V and
the output image J “ ψpIq, where ψ : V Ñ V is a morphological image operator like dilation,
erosion, opening, or closing, is to calculate the sum of the distances dpIpxq,Jpxqq between the
image values for each individual pixel x P D. In this context, we refer to this sum as a sum
of pixel-wise distances. In general, we can define a generalized sum of pixel-wise distances as
follows:

Definition 3.1 (Generalized sum of pixel-wise distances). The generalized sum of pixel-wise
distances of I and J is an operator Dp : V ˆ V Ñ r0,`8q given by

DppI,Jq “

˜

ÿ

xPD

dp
`

Ipxq,Jpxq
˘

¸
1
p

, p ě 1. (3.1)

Among the simplest measures that take into account both the positions of pixels and
the metric d is the generalized sum of pixel-wise distances. Nonetheless, it is not appropriate
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for measuring the irregularity. For instance, if Φ is a good irregularity measure then, for the
images in Figure 2.9, we must definitely obtain ΦpI,JM q ď ΦpI,JLq since our visual perception
clearly indicates that the image JL is much more irregular than the image JM . However, using
the generalized sum of pixel-wise distances with p “ 1 and the Euclidean metric, we have
D1pI,JLq “ 32.12, D1pI,JM q “ 66.04, which implies that D1pI,JLq ď D1pI,JM q. Conse-
quently, a measure of irregularity can not be accurately determined by using the generalized sum
of pixel-wise distances.

As it has been determined that Dp is not a viable measure for irregularity issue, it is
imperative to seek out other solutions. In this regard, we discuss the Wasserstein metric. First of
all, Villani (2009) defines the Wasserstein metric of order p, for p ě 1, between two probability
measures µ, ν in a Polish metric space pχ, dq by the formula

Wppµ, νq “

ˆ

inf
πPΠpµ,νq

ż

χˆχ

dpx, yq
pdπpx, yq

˙
1
p

. (3.2)

In other words, the Wasserstein metric Wppµ, νq of order p ě 1 is a way to measure the minimum
cost of transferring between two probability measures µ and ν. It is defined on a Polish metric
space pχ, dq, which is a complete separable metric space. Since χ is separable, the existence of
an optimal transfer plane is a direct implication of Prokhorov’s theorem (Prokhorov, 1956). In
addition, the infimum in (3.2) is calculated over all transference plans π between µ and ν. i.e., the
set Πpµ, νq of Borel probability measures on χˆ χ with respective marginal distributions equal
to µ and ν. When considering discrete probability measures µ and ν, the Wasserstein metric can
be formulated as a linear programming problem, also known as a transportation problem.

The theory of optimal transport (OT) has a long history and has consequences in
several different areas. Optimal transport was motivated by an engineering problem discussed in
approximately 1781 with a paper by Gaspard Monge (Monge, 1781). After the years, Tolstoi in
the 1920s, and Hitchcock, Kantorovich, and Koopmans in the 1940s established its significance to
logistics and economics. By 1949, the optimal transport theory was solved by numerical problems
using a linear programming framework. In the 1990s, optimal transport theory gained fame in
computer vision with Brenier, and in recent years, the theory was applied in various problems
in imaging sciences (such as color or texture processing), graphics (for shape manipulation),
and machine learning (for regression, classification, and generative modeling) (Ambrosio, 2003;
Peyré & Cuturi, 2019). Furthermore, according to Santambrogio (2015), the optimal transport
theory leads to connections with partial differential equations, fluid mechanics, functional
analysis, geometry, and probability theory. The impact of optimal transport on geometry was
highlighted by two Field medals, as we can see in Figalli (2021) and in Villani (2003, 2009,
2021).

According to Peyré & Cuturi (2019), the purpose of a transportation problem is to
minimize the cost associated with distributing items from n factories to m stores. According to
the authors, the transportation problem has several variations and ramifications giving rise to
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current research problems. To exemplify the main ideia of this problem, we discuss it below as
presented by Luenberger (1984).

There are n origins with the same commodity and m destinations. Each origin i
contains an amount ai and each destination j needs an amount bj . Assuming that total supply

equals total demand, i.e.,
n

ÿ

i“1
ai “

m
ÿ

j“1
bj , and that the unit cost of getting a commodity from

origin i to destination j is given by cij , we want to find the transportation between origins and
destinations that satisfies all requirements and minimizes the total transportation cost.

In mathematical notation, the problem is to find the set of values xij for all i P

t1, 2, . . . , nu and j P t1, 2, . . . ,mu that solves the following linear programming problem
$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

minimize
n

ÿ

i“1

m
ÿ

j“1
cijxij

subject to
m
ÿ

j“1
xij “ ai, for all i “ 1, . . . , n,

n
ÿ

i“1
xij “ bj, for all j “ 1, . . . ,m,

xij ě 0, for all i “ 1, . . . , n, and for all j “ 1, . . . ,m.

(3.3)

The transportation problem is always well defined and always has an optimal solution.
Furthermore, the values of xij can be considered real or integer, depending on the context of the
problem. Within the scope of this thesis, the aim of the transportation problem is to minimize the
cost of converting the input image I into the output image J, and the variable xij represents the
number of pixels with value vi in I that are transformed into pixels with value uj in J.

Strictly, the cost cij of transforming I into J is defined by the metric d of V. Precisely,
let V pIq “ tv1, . . . , vnu and V pJq “ tu1, . . . , umu be the sets of color values of I and J,
respectively. The cost to transform a value vi of I into a value uj of J is defined by

cij “ dp
pvi, ujq, @i “ 1, . . . , n, @j “ 1, . . . ,m. (3.4)

Furthermore, the conditions
m
ÿ

j“1
xij “ ai, @i P t1, . . . , nu and

n
ÿ

i“1
xij “ bj , @j P

t1, . . . ,mu of (3.3) means that for image I, the sum of the quantities transported for each color
is equal to its available capacity, and for image J, the sum of the quantities transported for each
color is equal to its demand. Thus, in our context, we have

m
ÿ

j“1
xij “ Card ptx : Ipxq “ vi,x P Duq , @i “ 1, . . . , n, (3.5)

and
n

ÿ

i“1
xij “ Card ptx : Jpxq “ uj,x P Duq , @j “ 1, . . . ,m. (3.6)

This condition leads to the following definition:
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Definition 3.2 (Wasserstein metric). The Wasserstein metric, denoted by Wp : V ˆ V Ñ r0,8q

is given by

WppI,Jq “

˜

n
ÿ

i“1

m
ÿ

j“1
cijxij

¸1{p

, p ě 1, (3.7)

where xij solves (3.3).

For an investigation into the suitability of the Wasserstein metric as an irregularity
measure, we use p “ 1, the Euclidean metric, and determine the values of W1pI,JLq and
W1pI,JM q, where I, JL, and JM are the images depicted in Figure 2.9. We compare the obtained
results in a way analogous we have done for calculating the generalized sum of pixel-wise
distances. In this case, the results are W1pI,JLq “ 4.18 and W1pI,JM q “ 65.93 implying
the inequality W1pI,JLq ď W1pI,JM q. Unfortunately, like the generalized sum of pixel-wise
distances Dp, the Wasserstein metric Wp does not provide a measure for the irregularity issue.

As seen in the above paragraph, Dp and Wp do not provide an irregularity measure.
Specifically, Dp computes the distances of individual pixel values between the images I and J,
while Wp is essentially the minimum cost required to transform image I into J. Nonetheless,
the information of Dp and Wp is useful to propose a new irregularity measure for multivariate
mathematical morphology, which we refer to as the global irregularity index.

In order to formally define the global irregularity index, note that the generalized
sum of pixel-wise distances Dp can also be interpreted as a measure of the cost of transforming
an image I into J. In fact, Dp given by (3.1) satisfies

DppI,Jq “

˜

n
ÿ

i“1

m
ÿ

j“1
cijyij

¸
1
p

, p ě 1, (3.8)

where
yij “ Card ptx : Ipxq “ vi and Jpxq “ uj,x P Duq , (3.9)

for all i P t1, . . . , nu and j P t1, . . . ,mu. Moreover, observe that yij ě 0 and the identities

m
ÿ

j“1
yij “ ai and

n
ÿ

i“1
yij “ bj, (3.10)

where ai “ Cardptx : Ipxq “ viuq and bj “ Cardptx : Jpxq “ ujuq, hold for all i “ 1, . . . , n
and j “ 1, . . . ,m.

Additionally, Dp and Wp have the same unit of measurement and as Wp is the
minimal cost, it follows that WppI,Jq ď DppI,Jq for any images I and J “ ψpIq.

Based on these observations, we put forth a method for measuring irregularity
by taking into account the relative difference between Dp and Wp. Specifically, we have the
following definition:
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Definition 3.3 (Global irregularity index). Let I P V be an image from a domain D to a range
V, and let J “ ψpIq be an image obtained by a morphological operator ψ. We define the global
irregularity index as a mapping Φg

p : V ˆ V Ñ r0, 1s given by

Φg
ppI,Jq “

$

’

&

’

%

0, if DppI,Jq “ 0,
DppI,Jq ´ WppI,Jq

DppI,Jq
, otherwise.

(3.11)

It is worth noting that the global irregularity index Φg
p is directly proportional to the

extent of the discrepancy between WppI,Jq and DppI,Jq. Likewise, we have

Φg
ppI,Jq “

$

’

&

’

%

0, if DppI,Jq “ 0,

1 ´
WppI,Jq

DppI,Jq
, otherwise.

(3.12)

A high Φg
ppI,Jq value indicates a high degree of irregularity between the images,

while a low Φg
ppI,Jq value indicates a low degree of irregularity in the image. Furthermore, the

values of Φg
ppI,Jq are between 0 and 1, i.e., 0 ď Φg

ppI,Jq ď 1, which means that Φg
p is bounded

and it is easy to note that Φg
ppI,Jq “ Φg

ppJ, Iq, which means that Φg
p is symmetric. Moreover,

Φg
ppI,Jq is dimensionless and the greater the irregularity of J “ ψpIq, the larger the value of

Φg
ppI,Jq. For instance, when p “ 1 and the Euclidean metric are chosen, the global irregularity

index of the dilated images JL and JM shown in Figure 2.9b) and 2.9c) are Φg
1pI,JLq “ 70.23%

and Φg
1pI,JM q “ 0.19%, respectively. As expected, Φg

1pI,JM q ď Φg
1pI,JLq.

Example 3.1. Consider the three-colored image I and the dilated image JL shown in Figure 2.9.
The operator’s and the optimal transport plans are presented in the subsequent matrices:

Y “

»

—

–

156 18 541
0 1010 14
0 0 309

fi

ffi

fl

and X “

»

—

–

156 4 550
0 1024 0
0 0 309

fi

ffi

fl

. (3.13)

Because u “ p0, 0, 0q, v “ p0, 0, 1q, and w “ p0.004, 0, 0q, we have

D1pI,JLq “ 18dpu,vq ` 541dpu,wq ` 14dpv,wq “ 34.12, (3.14)

W1pI,JLq “ 4dpu,vq ` 555dpu,wq “ 6.18, (3.15)

and
D1pI,JLq ´ W1pI,JLq “ 14

`

dpu,vq ` dpv,wq ´ dpu,wq
˘

“ 27.95, (3.16)

From (3.16), we conclude that the cost of the operator’s plan can be reduced by replacing 14
times the route u Ñ v Ñ w by u Ñ w or, equivalently, by avoiding the cycle pu,vq, pv,wq,
pw,uq. Moreover, note that the route u Ñ v Ñ w reflects the lexicographical inequalities
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u ďL v ďL w. Thus, the difference D1pI,JLq ´ W1pI,JLq is proportional to the number of
pixels with irregular values (14 in this example) as well as to the distance between the pixel
values (in this example, the amount dpu,vq ` dpv,wq ´ dpu,wq). The global irregularity index
is obtained by dividing the difference D1pI,JLq ´ W1pI,JLq by D1pI,JLq as seen in (3.11), that
is,

Φg
1pI,JLq “

D1pI,JLq ´ W1pI,JLq

D1pI,JLq
“

27.95
34.12 “ 0.819. (3.17)

Example 3.2. One extremely important point to emphasize is that our global irregularity index
Φg

ppI,Jq has some restrictions. The global irregularity index Φg
p does not assess, for instance,

isometries, such as rotations, translations, and reflections. It is also inapplicable to images in
which pixel values are merely rearranged, as demonstrated in Figure 3.1.

a) Two-colored image I b) Two-colored image J

Figure 3.1 – Figure a) shows image I with size 6 ˆ 5 consisting of two colors: black and orange.
Figure b) depicts the image J, acquired through a permutation of color values in I
at positions p2, 2q and p4, 5q.

Specifically, in Figure 3.1(a), we have a colored image I of size 6 ˆ 5, where
all color values are black except at Ip2, 2q, which is orange. In Figure 3.1(b), we present an
image J obtained by permuting color values at p2, 2q and p4, 5q, resulting in the color black
throughout J except at Jp4, 5q, which remains orange. In this scenario, the images I and J share
an identical color histogram, causing the Wasserstein metric WppI,Jq to be zero. Applying the
global irregularity index given by (3.12) yields a result of 1.

Example 3.3. The graphical representation in Figure 3.2 illustrates the results of applying the
dilation operator, denoted by JL “ δL

S pIq and JM “ δM
S pIq, to toy images similar in nature to

the example depicted in Figure 2.9. Remember that S denotes the structuring element which, in
this case, was also adopted as a cross shape. More specifically, we initially considered the image
I of size 64 ˆ 32 with two stripes of size 64 ˆ 16. The first stripe is formed by pure black color
u “ p0, 0, 0q and the second stripe is formed by pure blue color v “ p0, 0, 1q. Subsequently,
we randomly replace u by the black color w “ p0.004, 0, 0q with probability π P r0, 1s in the
first strip. It is worth noting that the example in Figure 2.9 was performed with probability
π “ 30%. In Figure 3.2, we show the dilated images JL of I when the image I was performed
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at 0%, 25%, 50%, 75%, and 100%. Additionally, as the values of w were randomly chosen, we
performed each simulation 500 times for each probability π P r0, 1s. Therefore, we show in the
top of the Figure 3.2 the percentage obtained from the average of the global irregularity index
Φg

1pI,JLq and Φg
1pI,JM q by the probability π. In accordance with the methodology outlined in

the example illustrated in Figure 2.9, p “ 1 and the Euclidean metric were utilized.

The data presented in Figure 3.2 illustrates that the irregularity index for the lexico-
graphical RGB ordering exhibits an upward trend until reaching a maximum value near π “ 30%.
Thereafter, a downward trend is observed. Furthermore, the irregularity indexes are consistent
with the visual irregularity observed in the sample images presented at the bottom of Figure 3.2.
Conversely, the marginal approach yields minimal irregularity indexes.

This toy example supports our hypothesis that the global irregularity index Φg
1pI,Jq

increases with the level of irregularity in the transformed image J “ ψpIq. Also, the global
irregularity index, when applied to images I and J involving a total ordering, is larger than the
global irregularity index involving a partial ordering.

3.2 Computational Analysis of Tiny Color Images

In this section, we present the computational results obtained when implementing the
proposed algorithm in Julia. All experiments were performed on a machine with the following
specifications:

• Operating System: Windows 10 Home Single Language (version 22H2)

• Processor: 11th Gen Intel(R) Core(TM) i7-1165G7, 4.70 GHz, 4 cores

• Memory RAM: 16 GB 3200 MHz DDR4

Our computational experiments are realized with tiny color images1. Specifically,
we calculate the global irregularity index Φg

1 of morphological operators applied to 100 color
images from the CIFAR-10 dataset. The CIFAR-10 dataset includes 60, 000 color images, each
with a size of 32 ˆ 32 pixels divided by ten classes (Krizhevsky, 2009).

The running time was calculated using Julia’s @time function and represents the
total CPU time spent by the algorithm to process the input. For small images of the CIFAR-10
dataset that are size of 32 ˆ 32, the average running time to calculate the global irregularity index
Φ was 18.66 seconds.

We observed behavior consistent with the theoretical complexity of the algorithm,
which according to Pitié (2020) is O

`

n3m3 logpnmq
˘

, where n and m are less than or equal to
1 The program code of the global irregularity index is located at https://github.com/mevalle/

Irregularity-Index.

https://github.com/mevalle/Irregularity-Index
https://github.com/mevalle/Irregularity-Index
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Figure 3.2 – Top: Global irregularity index calculated by the likelihood of substituting u “

p0, 0, 0q with w “ p0.005, 0, 0q. Bottom: Images that have undergone dilation using
values of π ranging from 0.0 to 1.0, incrementing by 0.25 each time, respectively.

32 ˆ 32. These results confirm the effectiveness of the proposed algorithm in terms of execution
time and use of computational resources, validating its applicability in practical scenarios.

We used the Euclidean metric as the metric of the RGB value set. We consider the
value of p “ 1 for the calculation of the Wasserstein metric and also the generalized sum of
pixel-wise distances. The use of p “ 1 in the Wasserstein metric emphasizes linear movement and
transport direct mass between the color distributions of the images I and J. A future possibility
is to discuss and interpret results obtained for different values of p and different metrics on the
RGB value set.

We have used dilation, erosion, opening, and closing with a 3 ˆ 3 square structuring
element S to calculate the quantitative measures. Definitely, we performed twenty-five dilations,
erosions, openings, and closings on different images from the CIFAR-10 dataset.
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Figure 3.3 – The global irregularity index Φg
1 that were computed for small color images using

dilation, erosion, opening, and closing operators.

We used the morphological approaches that were discussed in Chapter 2. Specifically,
we used two approaches based on partial orderings and three morphological approaches based
on total orderings. Regarding partial orderings, we considered the marginal order as seen in
Example 2.3 and an approach based on Loewner order as seen in Subsection 2.3.3. Because
these two approaches are not based on total orderings, we expect they circumvent the irregularity
issue. For the total orderings, we employed the lexicographic order in which the colors were
arranged consecutively based on the red, green, and blue components. The lexicographical order
was presented in Example 2.4. The last two approaches are the ones we discussed in Subsections
2.3.1 and 2.3.2 which are, respectively, the supervised approach based on SVM, with the radial
basis function kernel (RBF kernel), and the unsupervised projection depth approach.

Figure 3.3 shows the output generated by morphological operators and the associated
global irregularity index are presented. The images in the first column in Figure 3.3 are the
original images. The following columns show the results of morphological operators defined
using the marginal, Loewner, lexicographical RGB, supervised SVM-based, and projection depth
approaches, respectively. The global irregularity index is shown below the images resulting from
the morphological operators.

As expected, the marginal and the Loewner approaches yielded global irregularity
indexes smaller than the lexicographical, SVM-based, and projection depth approaches. For the
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cat in the first row, the dilation of the marginal and Loewner images are visually quite similar.
The same statement is true for the marginal and Loewner approach for the frog, truck and car
images for the erosion, opening and closing operators, respectively. We note that the global
irregularity indexes for both approaches are almost equal, with 0.93% for the marginal dilation
and 0.87% for the dilation based on the Loewner order. For erosion we have 0.93% for marginal
and 0.86% for Loewner. For the opening we have 2.79% for the marginal and 2.83% for the
Loewner. Finally, we have for the closing 2.61% for the marginal and 2.68% for the Loewner.
Our findings reveal a consistent trend of higher global irregularity values for opening and closing
operations compared to dilation and erosion. This trend aligns with theoretical expectations,
as opening and closing operations involve additional steps that lead to increased irregularity
through composition with dilation and erosion. Notably, the irregularity computed using the
marginal order is observed to be lower than the Loewner order in certain instances, although this
relationship is not universally consistent. Specifically, we observe exceptions in the images of
the cat and the frog, where the Loewner order yields lower irregularity values.

The dilated image produced by the supervised SVM-based approach was determined
to be the most irregular dilation with an irregularity percentage of 8.60%. This result is interesting
because it was more irregular even than the value obtained from the unsupervised projection
depth approach, in which the irregularity of the dilation of the cat is 5.38%. It is worth noting
here that the projection depth approach was the morphological approach in which the irregularity
values were significantly high. For this approach, the median was 45.22%. Additionally, note
that the car in the closing for the projection depth has an irregularity of 74.53% and a typical
value found in the projection depth approach is as the frog in the erosion with a value of 45.27%.
Actually, the closing of the car obtained by the projection depth approach was the highest
global irregularity index in this experiment. With regard to the other morphological approaches,
the median of the global irregularity indices were 2.56%, 2.81%, 6.00%, and 22.98%, for the
marginal, Loewner, lexicographical RGB, and SVM-based orders, respectively. The global
irregularity index of the truck image’s openings and the car image’s closings are representative
examples of what is produced by the marginal, Loewner, and lexicographical approaches.

The summary of this computational experiment can be found in the boxplot of Figure
3.4. As anticipated, the use of marginal and Loewner partial orderings resulted in lower global
irregularity indexes, while the use of lexicographical RGB, SVM-based, and projection depth
total orderings resulted in higher global irregularity indexes. Accordingly, the morphological
approaches can be ranked using the global irregularity index as follows in an increasing manner:
marginal, Loewner, lexicographical RGB, supervised SVM-based, and projection depth. We
confirmed the ranking of the morphological approaches statistically using the Wilcoxon signed-
rank test with a confidence level of 99% or, in simpler terms, we were able to determine that
the ranking of the morphological approaches is statistically significant with a high degree
of confidence. In summary, the use of total orderings in morphological operators resulted in
greater global irregularity indexes compared to those obtained with partial orderings. This
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Figure 3.4 – Presentation of the global irregularity index distribution of 100 small color images
for 5 morphological approaches.

conclusion supports the suitability of the global irregularity index outlined in (3.12) as a measure
of irregularity.

It should be highlighted that the irregularity issue can not be accurately measured by
either the generalized sum of pixel-wise distances or the Wasserstein metric. For instance, the
values of these metrics between the original and eroded frog image produced by the marginal
approach are 182.31 and 180.61, respectively, while the values between the original and the
eroded frog image produced by the projection depth approach are 135.44 and 74.13, respectively.
Despite the lower values of these metrics in the projection depth approach, it is clear that the
resulting image is more irregular than the one produced by the marginal approach. In contrast,
a greater degree of irregularity does not always correlate with a larger generalized sum of
pixel-wise distances or a larger Wasserstein metric value. For instance, the generalized sum of
pixel-wise distances and the Wasserstein metric between the original truck image and its opening
via the marginal approach are 31.05 and 30.18, respectively. The same measures between the
original truck image and its opening via the projection depth approach are 53.96 and 37.17.
Despite this, the projection depth approach produced a more irregular image of the truck than
the opening produced by the marginal approach.
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Chapter 4

CALCULATING THE IRREGULARITY

MEASURE

In Chapter 3 we presented the global irregularity index for measuring the irregularity
issue. In the mathematical formulation for the global irregularity index, we used the Wasserstein
metric, in which we need to solve the optimization problem given by (3.3).

We have seen that the global irregularity index is consistent with our visual perception
by means of the computational experiments detailed in Section 3.2. In other words, we have
verified by computational experiments the validity of the proposed theory for toy images such as
the one discussed in Example 3.3 and shown in Figure 3.2. Furthermore, we have discussed the
validity of the global irregularity index for small images from the CIFAR-10 dataset, such as
the one illustrated in Figure 3.3. It should be noted that, while the global irregularity index may
be mathematically formulated, its calculation presents a significant challenge in the context of
natural images. To be precise, the calculation of the global irregularity index necessitates the
solution of a linear programming problem with a total of nm variables, where n and m denote
the number of distinct pixel values in the images I and J, respectively. Consequently, calculating
the global irregularity index is a computationally intensive task that increases in complexity as
O

`

n3m3 logpnmq
˘

, as stated in Pitié (2020). In real-world situations, the dimension of the linear
programming problem outlined in (3.3) is too large to be computationally feasible, making it
impossible to calculate the global irregularity index in real-time.

Initially, Valle et al. (2021) proposed a way to calculate the Wasserstein metric
and the generalized sum of pixel-wise distances locally and aggregate the values into a single
quantitative index to circumvent the computational burden. We used windows Wi Ă D, for
i P t1, 2, . . . , ku, whereD is the domain of an image I, such thatWiXWj ‰ H and Y

k
i“1Wi “ D

to obtain a measure of the irregularity of an image. For each local window Wi, i “ 1, . . . , k,
we solved a local optimization problem and computed an irregularity index bounded to the
window Wi. The local irregularity index was calculated by means of a geometric mean of all the
irregularity indices restricted to Wi (Valle et al., 2021).

However, we realized that the geometric mean does not give a good measure for
large images because the product involved in computing the geometric mean converges to zero
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when we have many local windows Wi. We have given a solution for this problem and, in this
chapter, we discuss the results that we have achieved.

4.1 The Local Irregularity Measure for Natural Images

Consider images I,J P V and let P “ tW1,W2, . . . ,Wku be a partition of the image
domain D, that is, W1,W2, . . . ,Wk are non-overlapping local windows (Wi X Wj “ H for
all i ‰ j) such that Y

k
i“1Wi “ D. Additionally, denote WppI,J|Wℓq the Wasserstein metric

computed restricting the images I and J to the local window Wℓ. We define the local irregularity
measure or index as follows:

Definition 4.1 (Local irregularity index). Let I P V be an image from a domain D to a range
V, and let J “ ψpIq be an image obtained by a morphological operator ψ. We define the local
irregularity index by

Φl
ppI,Jq “ 1 ´

˜

k
ÿ

ℓ“1

`

WppI,J|Wℓq
˘p

¸1{p

DppI,Jq
, p ě 1. (4.1)

The local irregularity index provides a lower bound to the global irregularity index,
i.e., the inequality Φl

ppI,Jq ď Φg
ppI,Jq holds true for all I P V and J “ ψpIq.

The following intuitively explains this inequality. Considering a transport problem in
Brazil, suppose the country is divided into k regions, with k being a natural number. Each region
is a local window Wℓ. In each region, we solve the linear transport problem given by (3.3), which
in our context means that we obtain a Wasserstein metric restricted to each local window Wℓ. In
other words, we have for each region a transport cost and its respective optimal cost obtained by
the Wasserstein metric. If we consider the solution of the linear transport problem throughout
the Brazilian territory, we have the transport plan xij relative to the lowest transport cost cij that
encompasses all possible transport combinations, including those performed in the k regions.
This implies that for ℓ P t1, . . . , ku,

pWp pI,J|W1qq
p

` ¨ ¨ ¨ ` pWp pI,J|Wkqq
p

ě Wp pI,Jq
p , (4.2)

that is,
˜

k
ÿ

ℓ“1

`

WppI,J|Wℓq
˘p

¸1{p

ě Wp pI,Jq , (4.3)

and for DppI,Jq ą 0,

1 ´

˜

k
ÿ

ℓ“1

`

WppI,J|Wℓq
˘p

¸1{p

DppI,Jq
ď 1 ´

WppI,Jq

DppI,Jq
. (4.4)



Chapter 4. Calculating the Irregularity Measure 61

If DppI,Jq “ 0, then I and J are the same images and the local and global irregularity indices
are zero. Therefore, for both cases we have Φl

ppI,Jq ď Φg
ppI,Jq.

More precisely, we have the following theorem:

Theorem 4.1. For any image I P V and J “ ψpIq, we have Φl
ppI,Jq ď Φg

ppI,Jq.

Proof. First of all, denote respectively the number of pixel values of I and J restricted to the
local window Wℓ, for ℓ P t1, . . . , ku, i P t1, . . . , nu, and j P t1, . . . ,mu by

f ℓ
i “ Card

`

tx P Wℓ : Ipxq “ viu
˘

and gℓ
j “ Card

`

tx P Wℓ : Jpxq “ uju
˘

. (4.5)

Note that f ℓ
i “ 0 and gℓ

j “ 0 if the images I and J have no pixels with values vi and uj in the
windows Wℓ, respectively. Moreover, since tWℓ : ℓ “ 1, . . . , ku is a partition of the images
domain D, the identities

k
ÿ

ℓ“1
f ℓ

i “ fi and
k

ÿ

ℓ“1
gℓ

j “ gj, (4.6)

where fi “ Cardptx : Ipxq “ viuq and gj “ Cardptx : Jpxq “ ujuq, hold for all i “ 1, . . . , n
and j “ 1, . . . ,m. Although in practice we compute WppI,J|Wℓq using only the pixel values of
I and J in the local window Wℓ, the restricted Wasserstein metric satisfies

pWppI,J|Wℓqq
p

“

n
ÿ

i“1

m
ÿ

j“1
cijx

ℓ
ij, (4.7)

where xℓ
ij solves the linear programming problem
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minimize
n

ÿ

i“1

m
ÿ

j“1
cijx

ℓ
ij

subject to
m
ÿ

j“1
xℓ

ij “ f ℓ
i ,

n
ÿ

i“1
xℓ

ij “ gℓ
j, and xℓ

ij ě 0, @i, @j.

(4.8)

Now, define the non-negative variables

zij “

k
ÿ

ℓ“1
xℓ

ij, @i “ 1, . . . , n and @j “ 1, . . . ,m. (4.9)

From (4.6), we conclude that
m
ÿ

j“1
zij “

m
ÿ

j“1

k
ÿ

ℓ“1
xℓ

ij “

k
ÿ

ℓ“1
f ℓ

i “ fi and
n

ÿ

i“1
zij “

k
ÿ

ℓ“1
gℓ

j “ gj. (4.10)

Thus, the variables zij satisfies the constraints of the linear programming problem (3.3). Because
`

WppI,Jq
˘p is the minimum value of (3.3), from (4.7) we conclude that

`

WppI,Jq
˘p

ď

n
ÿ

i“1

m
ÿ

j“1
cijzij “

k
ÿ

ℓ“1

n
ÿ

i“1

m
ÿ

j“1
cijx

ℓ
ij “

k
ÿ

ℓ“1

`

WppI,J|Wℓq
˘p
, (4.11)

which results the desired inequality

Φg
ppI,Jq “ 1 ´

WppI,Jq

DppI,Jq
ě 1 ´

`
řk

ℓ“1 WppI,J|Wℓq
˘

1
p

DppI,Jq
“ Φl

ppI,Jq, (4.12)

for all I P V and J “ ψpIq. ■
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4.2 Computational Analysis of Natural Color Images

Similar to Section 3.2, let us conduct some computational experiments using natural
color images. However, instead of calculating the global irregularity measure Φg

1 for small
color images from the CIFAR-10 dataset, we compute the local irregularity measure Φl

1 for
morphological operators applied on one hundred color images from the Berkeley segmentation
dataset (BSDS)1.

First of all, we use the Berkeley segmentation dataset because the images are bigger
than the images on the CIFAR-10 dataset, with 481 ˆ 321 and 321 ˆ 481 pixels, and it is
not feasible to obtain the global irregularity index for such images. According to Martin et al.

(2001), they initially had the BSDS300 dataset, which contains 200 training images and 100
testing images. After that, they have updated the BSDS300 dataset by adding 200 new testing
images obtaining the BSDS500 dataset. The BSDS300 and BSDS500 datasets have found wide
acceptance as benchmarks for evaluating different segmentation algorithms. We can see that all
the testing images encompass a wide variety of geographic features, objects, people, plants, and
animals.

The local irregularity index has been computed using dilations, erosions, openings,
and closings by a 9ˆ9 square structuring element S. Precisely, we evaluated the local irregularity
index on 25 dilations, 25 erosions, 25 openings, and 25 closings. Additionally, we considered five
morphological approaches, namely, the marginal, Loewner, lexicographical RGB, supervised
SVM-based, and the projection depth approaches. Note that these are the same morphological
approaches we used in Chapter 3. Moreover, we used the Euclidean distance as the metric in the
RGB color space with p “ 1 and local windows of size 16 ˆ 16. The boxplot shown in Figure
4.1 summarizes the outcome of this computational experiment.

As seen in Figure 4.1, the methods utilizing partial orderings (marginal and Loewner)
resulted in the lowest local irregularity indexes. Conversely, the approaches based on total
orderings generated the highest irregularity indexes. Through the Wilcoxon signed-rank test
with a confidence level of 99%, we established that the local irregularity indexes were ranked
in ascending order like the global irregularity index by the marginal, Loewner, lexicographical
RGB, supervised SVM-based, and the projection depth approaches.

Examples of images produced by morphological operators along with their corre-
sponding local irregularity index can be found in Figures 4.2 to 4.5. Specifically, Figure 4.2
displays the original color image and the dilated images. The local irregularity index, computed
using windows of size 16ˆ16, can be found above the dilated images. It is interesting to note that
in all approaches, the white color overlaps with the black color in the dilation. Note that the black
bands on the heads of the people diminish in the dilated images. Furthermore, as we expected,
1 The program code of the local irregularity index is located at https://github.com/mevalle/

Irregularity-Index.

https://github.com/mevalle/Irregularity-Index
https://github.com/mevalle/Irregularity-Index
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Figure 4.1 – Presentation of the local irregularity index distribution of 100 color images for 5
morphological approaches.

the SVM-based and projection depth approaches resulted in the highest local irregularity indexes.
In contrast, the marginal and Loewner approaches generated the lowest local irregularity indexes.
It is worth mentioning that the value of 2.31% is an outlier, which corresponds to the smallest
local irregularity index produced by the projection depth approach on the one hundred natural
color images in this computational experiment. It is noteworthy that the outcomes were similar
to those determined in the global irregularity measure, and that for this displayed figure, we
have the local irregularity value of the SVM approach higher than the projection depth approach
with the value of 5.93%. This shows that the values can vary with the spectrum of the image.
However, statistically, it is apparent that the projection depth approach often yields higher values
than the other approaches.

Analogously, Figure 4.3 illustrates an original color image and the related eroded im-
ages. If we look at the results obtained in the marginal, Loewner and lexicographical approaches,
it has no significant differences from one image to another. This also shows in our calculation
of the local irregularity index, since local irregularity index is less than 1.00% in the three ap-
proaches. As observed, the SVM-based and projection depth approaches again yielded the most
significant local irregularity indexes. Additionally, in contrast to the outlier irregularity value
observed in the dilated image presented in Figure 4.2, the eroded image in Figure 4.3 is a typical
image produced by the projection depth approach on the one hundred natural images considered
in this experiment. Other typical images produced by the five morphological approaches are
also shown in Figures 4.4 and 4.5. These figures show an original image and the corresponding
openings and closings, respectively. Precisely, Figure 4.4 shows a fleet of boats on a sea, and it
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Original image Marginal: 0.70%

Loewner: 0.61% Lexicographical: 1.02%

SVM-based: 5.93% Projection Depth: 2.31%

Figure 4.2 – Dilated image and local irregularity index using 5 approaches.

can be seen that the local irregularity indices of the marginal and Loewner approaches remain
close. The local irregularity index in lexicographical approach is 4.31%, but it is still lower than
the indices produced by the SVM and projection depth based approaches. Figure 4.5 shows a
girl sitting with a basket and once again we have that the marginal and Loewner approaches have
the lowest local irregularity indices, with values of 0.76% and 0.98%, respectively. Finally, we
emphasize that the total order that comes closest to the indices obtained from the partial orders
was the lexicographic order with a local irregularity index of 1.78%.

To wrap up this section, we want to highlight the striking resemblance between
the boxplots in Figures 3.4 and 4.1. Both the global and local irregularity metrics effectively
capture the visual irregularity caused by morphological operators, with only a slight difference
in scale. Additionally, while the local irregularity measure provides a lower bound for the global
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Original image Marginal: 0.47%

Loewner: 0.77% Lexicographical: 0.95%

SVM-based: 5.34% Projection Depth: 18.11%

Figure 4.3 – Eroded image and local irregularity index using 5 approaches.

irregularity index, we recommend using it for assessing the irregularity issue of multivariate
morphological operators.

4.3 Computing the Wasserstein Metric with Entropic Regu-

larization

To calculate the local irregularity index, for each local window Wℓ, we compute the
Wasserstein metric WppI,J|Wℓq. Due to the computational cost for computing the Wasserstein
metric, it takes time to calculate the local irregularity index between two natural color images.
Thus, it is natural to discuss whether there are computational methods that enable a shorter time
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Original image Marginal: 1.29% Loewner: 1.75%

Lexicographical: 4.31% SVM-based: 8.41% Projection Depth: 12.61%

Figure 4.4 – Opened image and local irregularity index using 5 approaches.

interval in the calculation of the irregularity.

Entropic regularization is a technique that has been widely studied and utilized for
solving optimal transport problems, as it allows for stable and efficient solutions in terms of
computation time. Sinkhorn methods, for instance, are a class of algorithms based on entropic
regularization that have proven effective in solving this type of problem, due to their ability to
quickly converge to optimal solutions.

The study of entropic regularization in transportation problem and linear program-
ming began with Schrödinger (1931), continued with Wilson (1969), and Cominetti & Martín
(1994). However, it became more widely known in the field of machine learning with the paper by
Cuturi (2013). This paper showed the potential of Sinkhorn-Knopp algorithm or simply Sinkhorn
algorithm in achieving significant computational speed-up in these problems. The Sinkhorn
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Original image Marginal: 0.76% Loewner: 0.98%

Lexicographical: 1.78% SVM-based: 5.16% Projection Depth: 20.27%

Figure 4.5 – Closed image and local irregularity index using 5 approaches.

algorithm is a powerful method for solving entropic regularized transportation problems. It was
first proposed by Sinkhorn (1964) and further developed by Sinkhorn & Knopp (1967).

Despite being studied for several decades, there is still a lot of ongoing research in
entropic optimal transport, particularly in the areas of numerical methods, theoretical properties,
and a wide range of applications. Entropic regularization has been applied in many fields such as
probability theory, statistical physics, and various areas of engineering and pure mathematics.
The wide range of applications makes it a versatile and powerful tool for solving complex
optimization problems.

The general formulation of the optimal transport problem with the use of entropy is
described as follow.

Given two probability measures µ and ν defined on Polish metric spaces X and Y ,
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respectively, and a cost function c : X ˆ Y Ñ R, the entropic regularized transport problem
consists in finding the probability measures π in the set Πpµ, νq of Borel probability measures on
X ˆ Y that has marginals distributions µ and ν and minimizes the following objective funcion

inf
πPΠpµ,νq

ż

XˆY

cpx, yqdπpx, yq ` ϵHpπ|µ b νq, (4.13)

where ϵ is a positive regularization parameter and Hp¨|µb νq denotes the relative entropy with
respect to the product measure µ b ν (Peyré & Cuturi, 2019).

The entropy regularized method adds an entropic regularization penalty to the origi-
nal problem. With this regularization we have several advantages. One is that the solution of the
regularized problem converges to the solution of the transport problem at a lower computational
cost.

In the discrete case, the entropic regularized transport problem can also be formulated
by working with histograms or discrete probability distributions, in contrast to working with
probability measures defined on metric spaces. In this case, π is a matrix of size n ˆ m, i.e.,
π “ X “ pxijq P r0, 1s

nˆm, µ and ν are probability vectors of size n and m, respectively, and c
is a matrix of size nˆm. According to Peyré & Cuturi (2019), the discrete entropy of a coupling
matrix X is defined as

HpXq “ ´

n
ÿ

i“1

m
ÿ

j“1
xij plog xij ´ 1q . (4.14)

It should be pointed out that the function H in (4.14) is 1-strongly concave, as its
Hessian satisfies B

2HpXq “ ´diagp1{xijq and all elements in the matrix X are less than or
equal to 1. This indicates that the Hessian is negative definite, resulting in a 1-strongly concave
function. Therefore, by using entropic regularization in the transport problem considering ´H

as a regularizing function and ϵ ą 0 as the regularization term, we obtain an ϵ-strongly convex
objective function, guaranteeing the existence of a unique optimal solution. In other words, we
have the following convex optimization problem
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minimize
n

ÿ

i“1

m
ÿ

j“1
cijxij ` ϵ

n
ÿ

i“1

m
ÿ

j“1
xij plog xij ´ 1q

subject to
m
ÿ

j“1
xij “ ai{ND, for all i “ 1, . . . , n,

n
ÿ

i“1
xij “ bj{ND, for all j “ 1, . . . ,m,

xij ě 0, for all i “ 1, . . . , n, and for all j “ 1, . . . ,m,

(4.15)

with ND denoting the quantity of pixels in the operated images.

It is worth mentioning that in order to obtain a significant entropic regularization, the

variables xij must comply with the condition
n

ÿ

i“1

m
ÿ

j“1
xij “ p1{NDq

n
ÿ

i“1
ai “ p1{NDq

m
ÿ

j“1
bj “ 1.
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The Wasserstein metric is then approximated by

Wr
ppI,Jq “

˜

ND

n
ÿ

i“1

m
ÿ

j“1
cijxij

¸1{p

, p ě 1, (4.16)

where xij solves (4.15). It is worth mentioning that the approximation Wr
p is not taking into

account the regularization term. As both (3.3) and (4.15) have the same constraints, the inequality
WppI,Jq ď W r

p pI,Jq holds for all images I and J “ ψpIq. Therefore, the irregularity index
calculated by an entropic regularized method also produces a lower bound for the analytical
irregularity index.

As verified in Peyré & Cuturi (2019), the optimal solution for the regularized optimal
transport problem can be calculated using the Sinkhorn method, which is an iterative algorithm.
This method relies only on matrix-vector multiplication operations, which makes it very efficient
and suitable to run on graphics processing units (GPUs). This means that Sinkhorn’s algorithm
is able to obtain the optimal solution quickly, especially when dealing with large datasets, due to
the parallel processing capability of GPUs. The process of Sinkhorn’s algorithm comes from the
fact that the solution of (4.15) is unique and has the form

xij “ uiKijvj, @i “ t1, 2, . . . , nu and @j “ t1, 2, . . . ,mu, (4.17)

for two unknown scaling variable pu,vq P Rn
` ˆRm

` , where Kij is the Gibbs kernel for Sinkhorn
and is defined by Kij “ exp p´cij{ϵq.

In fact, the solution to the convex optimization problem (4.15) can be solved in a
similar manner as we did for the optimization problem (2.11) by taking the partial derivative of
the Lagrangian with respect to xij and setting it equal to zero. In this case, the result is

BL
Bxij

pX, α, λq “ cij ` ϵ log xij ´ αi ´ λj “ 0, (4.18)

where αi and λi are the Lagrange multipliers.

From (4.18), log xij “
αi

ϵ
´
cij

ϵ
`
λj

ϵ
, which in turn leads to

xij “ exp pαi{ϵq exp p´cij{ϵq exp pλj{ϵq , (4.19)

for all i “ t1, 2, . . . , nu and for all j “ t1, 2, . . . ,mu as desired.

It should be noted that we can express the factorization of the optimal solution shown
in Equation (4.17) as X “ diagpuqKdiagpvq, where diagpuq and diagpvq represents the n ˆ n

matrix with u on the diagonal and zero otherwise and the m ˆ m matrix with diagonal v and
zero otherwise, respectively. Therefore, we have

diagpuqKdiagpvq1m “ a and diagpvqKtdiagpuq1n “ b. (4.20)

From (4.20) we have that u d pKvq “ a and v d pKtuq “ b, where d denote the
Hadamard product, also known as the Schur product or element-wise product. A practical method



Chapter 4. Calculating the Irregularity Measure 70

0 5 10 15 20 25 30 35
Analytical Wasserstein metric

0

5

10

15

20

25

30

35
St

ab
ili

ze
d

Si
nk

ho
rn

m
et

ho
d

δM
S

δW
S

δL
S

δS
S

δP
S

εM
S

εW
S

εL
S

εS
S

εP
S

φM
S

φW
S

φL
S

φS
S

φP
S

γM
S

γW
S

γL
S

γS
S

γP
S

Figure 4.6 – Relation of local irregularity measure by the two methods.

for tackling these equations is through iterative solution. This process is known as Sinkhorn’s
algorithm, with updates

uk`1
“

a

Kvk
and vk`1

“
b

Ktuk`1 , (4.21)

using an arbitrary positive vector such as v0
“ 1m.

It should be emphasized that the division operator applied between two vectors in
(4.21) is commonly referred to as element-wise division, and this issue is widely known in the
numerical analysis field as the matrix scaling problem (Nemirovski & Rothblum, 1999).

Concluding, the Sinkhorn algorithm is very efficient for solving the problem (4.15).
It is important to note that the algorithm converges to the analytical solution when ϵ tends to zero.
Unfortunately, as the entropic term approaches zero, the convergence of the Sinkhorn method
decreases. For small values of ϵ, the regularized optimization problem defined in (4.15) can be
efficiently solved using stabilized versions of the Sinkhorn method, as outlined by Schmitzer
(2019). These stabilized versions are implemented in popular optimal transport libraries like
Python Optimal Transport2 (POT) and Julia’s Optimal Transport3.

The scatter plot in Figure 4.6 presents a comparison of local irregularity measure
utilizing both techniques discussed in this thesis, the analytical Wasserstein metric and the
stabilized Sinkhorn method with regularization, which aims to approximate the Wasserstein
2 https://optimaltransport.github.io/
3 https://github.com/JuliaOptimalTransport/OptimalTransport.jl

https://optimaltransport.github.io/
https://github.com/JuliaOptimalTransport/OptimalTransport.jl
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metric. The graph displays the irregularity index calculated using 16 ˆ 16 local windows, p “ 1,
and the Euclidean metric, on a selection of the Berkeley segmentation dataset (BSDS).

Along the same lines as the previous experiments, we considered dilations (δS),
erosions pεS), openings (γS), and closings (ϕS) by a 9 ˆ 9 square structuring element S. Ad-
ditionally, we considered the marginal, Loewner, lexicographical, SVM-based, and projection
depth approaches. The five morphological approaches were identified by the superindexes M ,
W , L, S, and P , respectively.

The scatter plot in Figure 4.6 displays the local irregularity index, with the horizontal
axis representing the analytical method and the vertical axis representing the stabilized Sinkhorn
method. In this experiment, the regularization term ϵ was set to 10´3.

The line y “ x is also illustrated in Figure 4.6. Points that are closer to this line
indicate a better approximation of the analytical solution by the stabilized Sinkhorn method. The
coefficient of determination of the 500 points is R2

“ 0.98, showing that the stabilized Sinkhorn
method produced accurate estimations of the analytical local irregularity index when using local
windows of size 16 ˆ 16.

In addition, the stabilized Sinkhorn method is computationally much more efficient
than the analytical Wasserstein metric when calculating the local irregularity index. For this rea-
son, we recommend using the Sinkhorn method or its variations to compute the local irregularity
index. It is worth noting that alternative methods such as sliced approximations and Nesterov
smoothing of the optimal transport problem can also be used to estimate the irregularity index
(Pitié et al., 2005; Nesterov, 2005).

4.4 Effect of Structuring Element and Window Size on the

Irregularity Measure

We know that given an image I, the image J “ ψpIq obtained via a morphological
operator depends on the size of the structuring element S. Consequently, we can analyze whether
the size of the structuring element has a relationship with the local irregularity index.

Furthermore, to calculate the local irregularity index, we use k local windows Wi

with i P t1, 2, ..., ku. The number of local windows is related to their sizes. In this way, we can
analyze whether the variation of the size of the local windows has a relationship with the local
irregularity index.

Figure 4.7 illustrates the median of the local irregularity index as it relates to the size
of the structuring element, computed using four different local window sizes. The area between
the first and third quartiles is also illustrated. To obtain the results, we applied 25 dilations,
erosions, openings, and closings using square structuring elements of sizes 3 ˆ 3, 5 ˆ 5, . . . , 25 ˆ

25 using the marginal, lexicographical RGB, SVM-based, and projection depth approaches.
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Figure 4.7 – Plot of the local irregularity measure based on the structuring element size. The
shaded area represents the first and third quartiles.

Then, we calculated the local irregularity index utilizing the stabilized Sinkhorn method with a
regularization term ϵ “ 10´3 and local windows of sizes 4 ˆ 4, 8 ˆ 8, 16 ˆ 16, and 32 ˆ 32.

The local irregularity index seen in Figure 4.7 decreases as the size of the structuring
element increases, regardless of the size of the local window used. Additionally, there is no
discernible correlation between the size of the local window and the structuring element. It can
be observed that the size of the local window does not need to be larger or smaller than the
structuring element.

Furthermore, it can be observed that the local irregularity index increases with the
size of the local windows. Despite the variations in the median of the local irregularity index,
the range between the first and third quartiles overlaps for local windows of size 16 ˆ 16 and
32 ˆ 32 for certain approaches. This suggests that the local irregularity index should approach
the global irregularity index as the size of the local windows increases. This is in accordance with
Theorem 4.1, where we proved that the local irregularity index Φl

p is less than or equal to the
global irregularity index Φg

p, that is, for all images I, J “ ψpIq P V , we have Φl
ppI,Jq ď Φg

ppI,Jq.
Ultimately, while there is a trade-off between computational cost and approximating the global
irregularity index, using fixed local windows can provide a reliable method for comparing the
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irregularity of different morphological operators or approaches.

4.5 Remarks of Execution Time

In this section, we briefly present the computational results obtained by implementing
the local irregularity index algorithm proposed in this chapter in Julia language. All experiments
were performed on a machine with the following specifications:

• Operating System: Windows 10 Home Single Language (version 22H2)

• Processor: 11th Gen Intel(R) Core(TM) i7-1165G7, 4.70 GHz, 4 cores

• Memory RAM: 16 GB 3200 MHz DDR4

Our computational experiments were performed with images of size 481 ˆ 321 or
321 ˆ 481 from the Berkeley dataset. The running time was calculated using Julia’s @time
function and represents the total CPU time spent by the algorithm to process the input.

To analyze the efficiency of the algorithm, we measured the average running time
on different input sizes applied in different images. In our context, the input sizes refer to the
considered local window size. In this scenario, we used local windows of sizes 4 ˆ 4, 8 ˆ 8,
16 ˆ 16, and 32 ˆ 32. The results are displayed in Table 4.1.

Method Size of Local Window Execution Time (seconds)
Analytical Wasserstein 4 ˆ 4 11.56
Analytical Wasserstein 8 ˆ 8 20.69
Analytical Wasserstein 16 ˆ 16 124.38
Analytical Wasserstein 32 ˆ 32 854.85

Stabilized Sinkhorn 4 ˆ 4 0.95
Stabilized Sinkhorn 8 ˆ 8 1.78
Stabilized Sinkhorn 16 ˆ 16 12.19
Stabilized Sinkhorn 32 ˆ 32 25.41

Table 4.1 – Runtime results for calculate the local irregularity index by analytical Wasserstein
metric and stabilized Sinkhorn method.

As discussed in Chapter 3, we have the complexity O
`

n3m3 logpnmq
˘

(Pitié, 2020),
which is in line with the theory and the results obtained. It is observed that, in the computational
experiments carried out, the problem starts to become intractable in polynomial time for local
windows larger than 64 ˆ 64.

Furthermore, we verified the computational efficiency of the stabilized Sinkhorn
method against the analytical Wasserstein metric. This validates the use of the stabilized Sinkhorn
method to calculate the irregularity measure in practical scenarios.
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Chapter 5

THE DIFFICULTY OF OBTAINING A TOTAL

ORDER THAT MINIMIZES IRREGULARITY

In Chapters 3 and 4 we discussed ways to calculate the irregularity between an
image I P V and an image J “ ψpIq. Furthermore, we performed computational experiments to
measure the irregularity between two images I and J “ ψpIq involving partial and total orders.

The motivation behind writing this chapter arises from the necessity to explore the
inherent difficulty in finding a total order ď that minimizes the irregularity between two images
I and J “ ψpIq. Although we have discussed the relationship between partial order and total
order concerning irregularity computation in previous chapters, the problem of finding the total
order that minimizes irregularity remains challenging and complex.

One of the fundamental reasons that make this problem complex is the vast number
of possible total orders. In fact, the number of viable total orders is on the order of n factorial,
where n represents the size of the element set in each image. Specifically, for an image with n
elements, the number of possible total orders is n!. With an explosion of possibilities, implying
an exponential task to find an order that minimizes the irregularity.

This complexity implies that as the number of elements in the image increases, the
number of computations required to find the total order that minimizes irregularity grows rapidly
and becomes impractical. To resolve this problem, it would be necessary to explore efficient
strategies and approximate methods to deal with the high computational cost. It is essential to
remember that this type of problem belongs to the category of NP-hard problems, which means
that there are no known algorithms that can solve them in polynomial time.

Another point to consider is that, while there exists a total order that minimizes
irregularity between the two images, there is no guarantee that this order is unique. In fact, there
may be multiple total orders that satisfy this condition. For example, for an image I, there could
exist two different orders, ď1 and ď2, such that the computation of irregularity between images
I and J1 and between I and J2 obtained using these respective orders results in the same value.
In this sense, there are motivations to discuss, in this chapter, the difficulty of obtaining a total
order that indeed minimizes irregularity.
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In particular, we start by discussing a total order based on the stochastic permutation
ordering given by Lézoray (2017); Lézoray (2021). His approach yields a permutation P on the
indices of the image I in order to form a Hamiltonian path that attempts to minimize the distance
between the image values of two consecutive points of this path. This approach is equivalent to
obtaining a solution to the traveling salesman problem (TSP). Because of this, we have developed
two other total orders based on the traveling salesman problem (TSP) approach and one approach
involving Kohonen’s self-organizing maps (SOM).

5.1 The Permutation Ordering

Considering a multivariate image I : D Ñ V, we denote by T “ rv1,v2, . . . ,vns

the list of the values of the image I. Lézoray (2017) proposed the stochastic permutation ordering
as a process that enables the creation of a total order, subject to certain probabilistic constraints
obtained by the permutation of the elements of T . In essence, the stochastic permutation ordering
algorithm starts from a random image pixel and builds a Hamiltonian path. A Hamiltonian path
is a path that visits each pixel of the image exactly once.

It is worth mentioning that graph theory presents convenient techniques to study
Hamiltonian paths (West, 2002; Bondy & Murty, 2008). In this way and in our context, we
consider the domain D of the image I as a graph G “ pV,Eq where vertices V “ tv1, . . . , vnu

correspond to pixels and E “ V ˆ V , with the edge eij “ pvi, vjq P E connecting the vertex
vi with the vertex vj . Thus, a multivariate image I can be represented as a graph that associates
vectors to vertices and is defined by the mapping I : G Ñ V Ă Rd, with d ą 1. To each vertex
vi P G is associated a vector vi “ Ipviq.

To create a Hamiltonian path, we follow what was proposed by Lézoray (2017) in
which he builds a stochastic Hamiltonian path. According to Lézoray (2017), we start with a
random pixel v1 P V , and construct an indexed list J “ tv1, v2, . . . , vnu. In turn, this list enables
us to create a permutation P “ rv1,v2, . . . ,vns of the elements of T .

In order to achieve this, we employ the stochastic permutation construction algorithm
proposed by Lézoray (2017):

It is important to note that a permutation P of the elements of T can be represented
as PT , where P is a permutation matrix of size n ˆ n. Let σ be a permutation of the index set
In “ t1, 2, . . . , nu. If σpiq “ j, then Pij “ 1 and Pij “ 0 otherwise. The induced permutation
is PT “ rvσ´1p1q,vσ´1p2q, . . . ,vσ´1pnqs where pσ´1

˝ σq is the identity.

Furthermore, Algorithm 1 aims to obtain a smooth permutation that takes into
account the spatial and spectral constraints of the image. The smoothness of a data set T “
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Algorithm 1: Stochastic Permutation Construction on a Graph
Input: set of vectors T “ rv1, ...,vns and graph G
Generate a random probability vector p “ rp1, p2, . . . , pns;
Randomly choose an index j P In “ t1, 2, . . . , nu;
Set σ´1

p1q “ j;
Set P “ tvσ´1p1qu and J “ tσ´1

p1qu;
for i “ 1 to n ´ 1 do

Let Npvσ´1piqq “ tk|pvσ´1piq, vkq P EuzJ ;
if |Npvσ´1piqq| “ 1 then

σ´1
pi ` 1q “ Npvσ´1piqq;

else
if |Npvσ´1piqq| ě 2 then

Find the first vj1 and the second vj2 nearest neighbors of vσ´1piq in Npvσ´1piqq;
else

if |Npvσ´1piqq| “ 0 then
Find the first vj1 and the second vj2 nearest neighbors of vσ´1piq in InzJ ;

end
end

qi “
1

1 ` exp
ˆ

}vσ´1piq ´ vj1} ´ }vσ´1piq ´ vj2}

α

˙

If pqi ă pσ´1piqq then σ´1
pi ` 1q “ j2 and σ´1

piq “ j1 otherwise
end
P “ P Y tvσ´1pi`1qu;
J “ J Y tσ´1

pi ` 1qu;
end
Output: ordered set P and associated index list J

rv1,v2, . . . ,vns can be determined by the Total Variation (TV) of its elements, given by

}T }T V “

n
ÿ

k“2
}vk ´ vk´1} ` }vn ´ v1}. (5.1)

Therefore, we seek to find a permutation P that minimizes (5.1). In conclusion, the
optimal permutation can be determined by the solution of

P‹
“ arg minP }PT }T V . (5.2)

This allows us to define an h-order that we called the unsupervised order based on
stochastic permutation ordering, which is derived from the h-SPO function defined below.

Definition 5.1 (h-SPO function). Let I : G “ pV,Eq Ñ V be an image with CardpV q “ n. Let
P “ rv1,v2, . . . ,vns be a path obtained by a stochastic permutation ordering on G. The h-SPO
function hSP O : P Ñ In is defined by

hSP O pviq “ i, @vi P P. (5.3)



Chapter 5. The Difficulty of Obtaining a Total Order that Minimizes Irregularity 77

It should be noted that minimizing (5.1) is equivalent to solving the traveling sales-
man problem (TSP). Hence, we can consider the h-SPO function as providing us with a Hamilto-
nian path that serves as a heuristic for solving the TSP.

The traveling salesman problem (TSP) is a well-known problem in computer science
that involves finding the shortest possible route that visits a given set of points and returns to the
starting point. The problem is called the traveling salesman problem because it can be viewed as
a problem faced by a salesman who needs to visit a set of cities in order to make sales. In other
words, the traveling salesman problem (TSP) is a technique for finding the shortest Hamiltonian
path in a graph.

Karl Menger was an Austrian mathematician who introduced the idea of using graph
theory to study the TSP (Menger, 1927). After, the TSP has been studied extensively since the
1950s, and many algorithms have been developed to solve it. The TSP is a classic example of
an NP-hard problem, which means informally that it is difficult to solve exactly and that the
time required to solve the problem increases exponentially as the number of points increases.
Consequently, there are many different techniques that can be used to solve the TSP, including
exact algorithms, approximation algorithms, and heuristics.

The brute force algorithm is a well-known TSP exact algorithm, which is presented
for didactic purposes because it is impracticable to use for a large number of points. It involves
checking all possible routes to find the shortest one. The approximation algorithms do not
necessarily find the optimal solution, but they can provide a solution that is close to optimal in
a reasonable amount of time. One example of an approximation algorithm is the Christofides
algorithm, which guarantees to find a solution that is at most 1.5 times the length of the optimal
tour (Christofides, 1976). The heuristics techniques use a set of rules or guidelines to quickly find
a solution that is likely to be good, without necessarily finding the optimal solution. Examples
of heuristics for the traveling salesman problem include the nearest insertion algorithm and the
farthest insertion algorithm (Applegate et al., 2011).

The TSP continues to be an active area of research, and new algorithms and ap-
proaches are constantly being developed to improve the performance and accuracy of solutions.
The problem remains a challenging area of study, and it continues to have many practical
applications in fields such as mathematics, computer science, and operation research.

In addition to the stochastic permutation ordering obtained through a greedy Hamil-
tonian path given by Lézoray (2017), there are other works on obtaining permutation orderings.
For example, the authors Veganzones et al. (2015) proposed an order of permutation from a
binary partition tree created in the image. Here, we present an order of permutation obtained by
a Hamiltonian path that is constructed by solving the traveling salesman problem (TSP) that is
called the h-TSP function.

Definition 5.2 (h-TSP function). Let I : G “ pV,Eq Ñ V be an image with CardpV q “ n. Let
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P “ rv1,v2, . . . ,vns be a path obtained by solving the traveling salesman problem (TSP) on G.
The h-TSP function hT SP : P Ñ In is defined by

hT SP pviq “ i, @vi P P. (5.4)

An important consideration is that the list P “ rv1, . . . ,vns obtained in Definitions
5.1 and 5.2 has a cyclic property. This means that regardless of the starting point in P , whether it
is v1 or vi, for any i P t2, 3, . . . , nu, the sum of the path remains the same. In other words, P
can be traversed in a cyclic manner, as it forms a closed loop, returning to the starting point after
visiting all the vertices once. This cyclic property is a crucial feature of P , as it enables the path
to be explored from any starting point, without affecting the final result.

Therefore, if P “ rv1, . . . ,vns with v1 ď v2 ď ¨ ¨ ¨ ď vn, is a Hamiltonian
path that solves the TSP problem, the path P

1

“ rvi,vi`1, . . . ,vn,v1,v2, . . . ,vi´1s, for some
i P t2, 3, . . . , nu, with vi ď

1

vi`1 ď
1

¨ ¨ ¨ ď
1

vn ď
1

v1 ď
1

¨ ¨ ¨ ď
1

vi´1, also provides a
Hamiltonian path that solves the TSP problem. However, it is observed that P and P

1

give us
two distinct total orders and therefore imply different irregularities.

For example, in Figure 5.1 we show a toy image with 10 ˆ 5 pixels with only 3
colors: pure black, pure blue, and gray corresponding in the RGB cube to the points a “ p0, 0, 0q,
b “ p0, 0, 1q, and c “ p0.27, 0.27, 0.27q. The blue colors are in the last two columns of the image
and the gray colors are in positions p3, 3q and p7, 3q. The SPO image is the dilation by a cross
structuring element equipped with stochastic permutation ordering. The two last images are the
dilation by a cross structuring element with the TSP approach. The difference between the two
images is that the TSP 1 image utilized a total order ď obtained through the computer-generated
Hamiltonian path construction for the TSP solution, while the TSP 2 image was obtained by a
total order ď

1

in which the Hamiltonian path used was the same as the previous one, but with
a shift, i.e., a translation to address the cyclic problem. Furthermore, the direction in which
we traverse the Hamiltonian path yields different orders. Specifically, the order obtained by
traversing from left to right is dual to the order obtained by traversing from right to left, as seen
in Definition 2.4. The global irregularities between the toy image and the SPO image, TSP 1
image, and TSP 2 image are 57.88%, 52.41%, and 9.12%, respectively.

Additionally, Figure 5.2 shows the color spectra of the path obtained using SPO,
TSP 1, and TSP 2, arranged from left to right based on the total order criteria via Definitions 5.1
and 5.2. Figure 5.3 shows the Hamiltonian path on the graph G of the toy image domain for both
the stochastic permutation ordering and the ordering based on the traveling salesman problem
(TSP). It is worth noting that the graph obtained by TSP 1 is identical to the graph obtained by
TSP 2. The question is only which direction we traverse the Hamiltonian path and at which point
we start on the path. For this smooth permutation, we consider a list that starts and ends in values
v1 and vn such that dpv1,vnq ě dpvi,vi`1q for every i “ 1, . . . , n ´ 1. Furthermore, we take
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Figure 5.1 – Illustrative example of the dilated images obtained by the SPO and TSP orderings
with a cross structuring element. In TSP 1, the Hamiltonian path of the optimal
TSP solution is used. In TSP 2, the same path of TSP 1 is used with a translation to
address the cyclic problem.

Color Spectrum obtained by the path P on G in Definition 5.1

Color Spectrum obtained by the path P on G in Definition 5.2

Color Spectrum obtained by the path P on G in Definition 5.2
with a shift for solve the cyclic problem

Figure 5.2 – Color spectra obtained of the TSO, TSP 1, and TSP 2 images.

SPO Hamiltonian Path TSP 1 Hamiltonian Path TSP 2 Hamiltonian Path

Figure 5.3 – The Hamiltonian paths constructed on graph G of the toy image.

the first element such that }v1} ď }vn}
1.

The dilated image obtained by the stochastic permutation ordering provided the
greatest irregularity. This is due to the stochastic process of the algorithm, which traverses the
graph G, it is capable of being at a color value vi, jumping to a color vk, and then returning to
another color that is close to or equal to vi. The Hamiltonian path of SPO in Figure 5.3 obtained
from the toy image, along with the color spectrum in Figure 5.2, exemplifies this situation.
For example, it can be observed that the graph is traversed by some pixel vi where Ipviq “ b,
1 The program code of TSP approach is located at https://github.com/samuelfsc/

TSP-and-SOM-morphological-approach.

https://github.com/samuelfsc/TSP-and-SOM-morphological-approach
https://github.com/samuelfsc/TSP-and-SOM-morphological-approach
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a) Image Ia b) JSP O
a : 52.51% c) JT SP

a : 54.63% d) JL
a : 8.08%

}P }T V “ 43.28 }P }T V “ 20.05 }P }T V “ 104.59

Figure 5.4 – Image Ia and their morphological openings by stochastic permutation ordering, TSP
ordering, and lexicographical ordering, respectively.

then it moves to some pixel vk such that Ipvkq “ a, and then returns to another some pixel vj

where Ipvjq “ b. Such jump occurs with black and gray colors, as can be noticed in Figure 5.2.
These jumps produce irregularity and therefore it is plausible that the total order obtained by the
stochastic permutation ordering provides us with high irregularity.

However, we know that the stochastic permutation ordering is a heuristic for solving
the TSP and therefore does not provide the optimal Hamiltonian path. In this case, we want to
verify if the permutation P that provides the shortest Hamiltonian path on the graph G actually
gives a lower irregularity. Unfortunately, it is impossible to compute the TSP exactly for the
natural images and even the tiny images of the CIFAR-10 dataset. Therefore, it is necessary
to use a heuristic approach to find an approximate solution to the problem. We employed two
heuristics to solve the TSP problem: the nearest neighbor algorithm and the farthest heuristic.
We chose these heuristics because they are both relatively simple to implement and provide
good approximate solutions for the TSP in a short amount of time (Adrabiński & Syslo, 1983;
Golden et al., 1980; Lin & Kernighan, 1973; Gutin et al., 2002). Subsequently, we utilized the
Hamiltonian path that yielded the best result, namely, we selected the shortest path.

The nearest neighbor algorithm is one of the initial algorithms used to solve the
traveling salesman problem approximately. In this problem, the salesman starts at a random
city and then visits successively the nearest city until all cities have been visited. The algorithm
quickly produces a short tour, but it is usually not optimal (Gutin et al., 2002). The farthest
insertion heuristic operates by first identifying two pixels, denoted as v1 and v2, from an image
such that the distance dpIpv1q, Ipv2qq is maximized. These two pixels are considered to be part
of the graph G and are connected. Subsequently, in a recursive manner, a new pixel, denoted as
v3, is selected from all pixels not already included in the path, such that its distance to any pixel
already included in the path is maximized. This new pixel is then inserted into the path in a way
that minimizes the increase in the overall path distance.

Figure 5.4 shows the image Ia with 1024 pixels from the CIFAR-10 dataset. We
investigate the permutation approaches to determine whether minimizing the Hamiltonian path
produces a total order that minimizes irregularity. For comparison purposes, we also present the
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a) Image color vector data
b) Hamiltonian path based on

the SPO approach

c) Hamiltonian path based on
the TSP approach

d) Hamiltonian path based on
the Lexicographical approach

Figure 5.5 – Distribution of the input data obtained by the Ia, and the respective Hamiltonian
paths based on the SPO, TSP, and lexicographic orderings.

result obtained by lexicographical order. The image obtained through the opening operator with
the use of the stochastic permutation order (SPO) has an irregularity ϕg

1pIa,JSP O
a q “ 52.51%

and a Hamiltonian path length of 43.28. The order obtained by solving the TSP implies an image
JT SP

a with an irregularity of ϕg
1pIa,JT SP

a q “ 54.63% and a Hamiltonian path length of 20.05.
The irregularity obtained by the image JL

a of the lexicographical order is ϕg
1pIa,JL

a q “ 8.08%
and the Hamiltonian path length is 104.59. Therefore, this example shows that obtaining the
shortest path of the Total Variation does not necessarily imply minimizing irregularity. Note
that the shortest path is that of the TSP order, however, it yielded the image with the greatest
irregularity. The length of the Hamiltonian path of the lexicographical order is greater than those
of the SPO and TSP orders, however, it is noticeable that the irregularity of the image obtained
by the lexicographical order is lower than the others.
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Figure 5.5 shows the Hamiltonian paths of each morphological approach used in the
example of Figure 5.4. Figure 5.5a) displays the 1024 values of the colored image in the RGB
cube, represented in blue scatter. Figure 5.5b) shows the Hamiltonian path based on the stochastic
permutation ordering. It can be observed that the Hamiltonian path obtained by SPO resembles
an optimal path. Figure 5.5c) shows the Hamiltonian path based on the TSP ordering. Finally,
note that every total order ď determines a permutation P on the elements of T “ rv1, . . . ,vns,
which provides a Hamiltonian path. In the case of the lexicographical ordering, the Hamiltonian
path is represented in Figure 5.5d). It can be seen that in this case, the path follows the priority
order of the red, green, and then blue components. Also, note that although the TSP ordering
path is smaller than the lexicographical ordering path, the irregularity between Ia and JT SP

a is
greater than the irregularity between Ia and JL

a .

Realizing the difficulty of obtaining a total order to minimize the irregularity, some
total orders with optimization techniques can be proposed. For instance, genetic algorithms
are a type of optimization technique that draws inspiration from natural evolution and can be
used to solve complex optimization problems such as the TSP (Fraser, 1957; Holland, 1975;
Brady, 1985). In a genetic algorithm, a population of potential solutions to a problem is evolved
over multiple generations by applying the principles of natural selection. At each generation,
the fitness of each individual in the population is evaluated using a fitness function. The fittest
individuals are selected to create the next generation, using various genetic operators such as
crossover and mutation. Crossover combines the genetic material of two individuals to create a
new individual with traits from both parents. Mutation introduces random changes to the genetic
material of an individual. Through the application of these genetic operators, the population is
gradually evolved towards better and better solutions to the problem. This process continues for
a predetermined number of generations, or until a satisfactory solution is found (Hassoun, 1995;
Koza, 1992).

For our purpose, each individual in the population is a permutation order P , and our
evaluation is based on the irregularity that this path provides. At the end of the generations, the
algorithm can provide an individual P 1 that minimizes the irregularity. However, this genetic
algorithm is computationally intensive, since it requires a large number of fitness evaluations
that are computed by the irregularity index. Additionally, the proper selection of the crossover
operation can be quite complicated by the large amount of the color values that are given in an
image.

In the same way that genetic algorithms (GA) came from a biological inspiration,
artificial neural networks (ANNs) also have their roots in biology. Like the human brain, an
artificial neural network is composed of layers of nodes, called neurons, that connect to each
other to process information (Rumelhart et al., 1988; Ritter et al., 1992). One important example
of neural networks is Kohonen’s self-organizing maps, also known as SOM, which can be used
to visualize and classify high-dimensional data (Kohonen, 1982). This approach is discussed in



Chapter 5. The Difficulty of Obtaining a Total Order that Minimizes Irregularity 83

the next section because nowadays the neural networks for multivariate data represent an active
research topic and this technique adapts the image value data to obtain a total order.

5.2 Self-Organizing Maps Approach

We present a morphological approach involving a type of artificial neural network
known as Kohonen’s self-organizing maps (SOM). An artificial neural network is a computational
model inspired by a central nervous system, such as the human brain. This model is capable
of performing pattern recognition and machine learning. It can be said that artificial neural
networks are usually presented as systems of interconnected neurons, which can compute input
data, simulating the behavior of biological neural networks. Neural networks have neurons and
synaptic weights between neurons that are used to acquire and store knowledge. The knowledge
is acquired by the network through a learning process. The procedure used to carry out the
learning process is called a learning algorithm. The algorithm modifies the synaptic weights of
the network in order to achieve a desired goal (Ritter et al., 1992).

Figure 5.6 shows a simplified artificial neural network composed of interconnected
neurons. The circles are neurons. Each neuron is characterized by its synaptic weights, bias, and
the activation function. The first layer in a network is called the input layer, while the last one
is called the output layer. All layers between the input layer and output layer are referred to as
hidden layers. Information moves from the input layer to the hidden layers. The hidden layers do
the processing and send the output to the next layer until the output layer.
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Figure 5.6 – Neural network diagram.

There are several architectures of artificial neural networks that are used to solve
different types of problems. One of the first architectures used was the feedforward neural
network with the use of the perceptron, originally proposed by Rosenblatt (1958), and later
enhanced and studied by Minsky & Papert (1969). After that, the use of other types of neural
networks such as recurrent neural networks, associative memory, and self-organizing networks
have been proposed (Ritter et al., 1992). For example, Kohonen (1982) proposed an unsupervised
learning neural network. The algorithm is known as Kohonen’s self-organizing map (SOM).
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There are several modern architectures of artificial neural networks that have emerged
since Kohonen’s self-organizing map. One of the prominent architectures is the Convolutional
Neural Network (CNN). CNNs are widely used for image recognition tasks due to their ability
to automatically learn hierarchical features from raw pixel data. Introduced by LeCun et al.

(1998), CNNs have revolutionized computer vision and have been instrumental in achieving
state-of-the-art performance in various image-related applications.

Another significant development in neural network architectures is the Recurrent
Neural Network (RNN). Unlike feedforward networks, RNNs have feedback connections that
enable them to process sequential data, making them suitable for tasks like natural language
processing, speech recognition, and time series analysis. One of the key breakthroughs in RNNs
was the Long Short-Term Memory (LSTM) architecture, proposed by Hochreiter & Schmidhuber
(1997). LSTMs address the vanishing gradient problem, allowing RNNs to retain and process
long-range dependencies more effectively.

In recent years, Generative Adversarial Networks (GANs) have gained tremendous
attention in the field of deep learning. Introduced by Goodfellow et al. (2014), GANs consist
of two neural networks: a generator and a discriminator. The generator generates data samples,
while the discriminator evaluates their authenticity. This adversarial setup enables GANs to
generate realistic data, making them invaluable in tasks like image synthesis, data augmentation,
and style transfer.

Additionally, Transformers have emerged as a groundbreaking architecture for nat-
ural language processing tasks. Proposed by Vaswani et al. (2017), Transformers have largely
replaced traditional RNNs in tasks like machine translation, language modeling, and text genera-
tion. Their attention mechanism allows them to process input sequences in parallel, resulting in
more efficient and scalable models for handling sequential data.

These are just a few examples of modern neural network architectures that have
significantly advanced the capabilities of artificial intelligence. The continuous evolution and
exploration of novel architectures continue to drive breakthroughs in various domains, making
neural networks an indispensable tool in the age of information technology.

Among the neural network architectures, the Kohonen’s self-organizing map (SOM)
algorithm stands out as a remarkable approach to unsupervised learning. Guided by a series
of distinct phases, SOM fosters competition, cooperation, and convergence among neurons to
efficiently map input data onto a topologically organized space, enabling powerful data analysis
and pattern recognition capabilities. In other words, first, we have a competition between the
neurons in response to a given stimulus, with a discriminant function used to determine the
winner. Moreover, we have a form of cooperation, in which the winning neuron stimulates the
activity of its neighbors, with the spatial proximity of these neurons predetermined. Finally, we
have the convergence phase which is the adjustment of the synaptic weights of the activated
neurons.
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The arrangement of neurons in a uni-dimensional or bi-dimensional network is
indicative of the intrinsic statistical characteristics contained in the input patterns. Each neuron
has a set of neighboring neurons, allowing the Kohonen network to perform a non-linear
transformation that maps input patterns of arbitrary dimensions onto a discrete uni-dimensional
or bi-dimensional map. This map forms through an adaptive process and is organized in a
topologically ordered manner (Kohonen, 1982, 1990).

Consider an image I : D Ñ V Ă Rd and T “ rv1,v2, . . . ,vns as the list of values
of the image I. In the Kohonen network algorithm, we denote the input value vector for each
instant t as

xiptq “ rxi1ptq, xi2ptq, . . . , xidptqs
t, for all t “ 0, 1, 2, . . . , tmax, (5.5)

where tmax is the maximum number of learning steps.

Consider W “ rw1,w2, . . . ,wms P Rdˆm be the list of synaptic weights, where
m ď CardtT u. The weight vector of the k-th neuron in the network at instant t is denoted by

wkptq “ rwk1ptq, wk2ptq, . . . , wkdptqs
t. (5.6)

Let wkp0q “ wk, for all k P t1, 2, . . . ,mu and update the vectors wkptq for each
natural number t as follows:

First, randomly choose a value vi in T and find the best-matching or winning neuron
for the input vector vi given by

j “ jpviq “ arg mink“1:m }vi ´ wk}. (5.7)

Then, we adjust the synaptic weight vectors by the equation

wkpt ` 1q “ wkptq ` ρptqΦk,jptqpvi ´ wkptqq, t “ 0, 1, 2, . . . , tmax, (5.8)

where ρ is a learning-rate parameter and Φk,j is a neighborhood function around the winning
neuron j (Kohonen, 1982; Ritter et al., 1992).

In (5.8), the learning-rate ρ is time varying. It should start at some initial value ρ0

and then decrease gradually with increasing time t. One possibility is to define ρ as

ρptq “ ρ0

ˆ

ρf

ρ0

˙

t

tmax , (5.9)

where ρf is the final value of the learning-rate, and tmax is the maximum number of learning
steps.

It is important to note that the neighborhood function Φk,j has to be a unimodal non-
negative function depending only on the distance between the winning neuron j and the excited
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neuron k, for all k “ 1, . . . ,m, where its highest value is at the point j “ k and approaching
zero for large distances between j and k. One of the appropriate choices we can use is given by
the Gaussian function

Φj,kptq “ exp
ˆ

´
|j ´ k|2

2σ2ptq

˙

, (5.10)

where the variance σ2 controls the width of the neighborhood. The variance is updated with
learning step t by means of the equation

σptq “ σ0

ˆ

σf

σ0

˙

t

tmax , (5.11)

where σ0 is the initial value that starts with a rather large value, σf is the final value, and tmax is
the maximum number of learning steps.

At the end of the update, we obtain a set of synaptic vectorsW “ tw1,w2, . . . ,wmu

that approximate the input vectors of the image list T “ rv1,v2, . . . ,vns. With the set W , we
can create a h-order hSOM of the set T . For each value vi in the list T , the nearest neuron wj

can be found using the metric d between vi and wj , and the input points can be sorted according
to the order of the nearest neurons wj . Thus, we obtain the following definition:

Definition 5.3 (Self-organizing map function). Let I : D Ñ V Ă Rd be a multivariate image, let
T “ rv1,v2, . . . ,vns P Rdˆn be the matrix values of the image I, and let W “ rw1, . . . ,wms P

Rdˆm be the matrix of synaptic weight vectors obtained after the training phase in t steps of the
SOM algorithm. The self-organizing map function hSOM : V pIq Ñ Im is defined by

hSOM pviq “ arg minj“1:m }vi ´ wj}. (5.12)

Finally, the self-organizing maps morphological approach is defined by ranking the
vector-values according to the h-ordering hSOM : V Ă Rd

Ñ Im Ă R given by (5.12) together
with a lookup table.

a) Image Ia b) JSOM
a : 17.07%

}P }T V “ 21.13

Figure 5.7 – Image Ia and the opening JSOM
a .

The application of the self-organizing map function from Definition 5.3 to image Ia

depicted in Figure 5.4, resulted the opened image JSOM
a showed in Figure 5.7 with an irregularity

value of 17.07%, which is smaller than that obtained by the JT SP
a and it is greater than the value
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a) Input distribution and initial weights b) Input distribution and convergence phase

Figure 5.8 – Distribution of the input data obtained by Ia, initial weights, and the condition of
the neurons at the end of the learning phase.

obtained by the JL
a . In the SOM algorithm, we initialized a network with 1000 neurons, equally

spaced along the diagonal of the cube CRGB with endpoints at p0, 0, 0q and p1, 1, 1q. The network
is trained with the three-dimensional input data obtained by the image Ia.

Figure 5.8 illustrates in blue the distribution of color data from image Ia and in
orange the initial (a) and final (b) synaptic weights. It starts with an input distribution of
T “ rv1,v2, . . . ,v1024s values used to train the feature map, and the initial values of the synaptic
weights chosen equally spaced along the diagonal of the cube. The other stage shows the
convergence phase of the SOM algorithm at the end of the last 105 iteration. The curve obtained
by ordering of neurons resembles a Peano curve (Kohonen, 1990). These figures show the
learning process of the SOM algorithm in which the set of neurons W is adapted in order to
fill the color space CRGB as densely as possible providing a reasonably good approximation to
the underlying topology of the three-dimensional input T . After the 100,000-th iteration, we
observe that the statistical distribution of the neurons in the map approaches that of the input
data. Like the results with the TSP algorithm, the total order obtained by the SOM algorithm
did not minimize the irregularity. Moreover, it is observed that the sum of the Total Variation
of the path obtained from the SOM approach is 21.13, which is very close to the value of 20.05
obtained by the TSP approach. These close values are consistent with the visual perception in
the images of Figure 5.5c) and 5.8b).

In conclusion, obtaining an order via permutation that has a smoothing path to the
spectral data of the image does not imply the minimization of the irregularity. In particular, we
finish this chapter with Section 5.3 showing the results of some computational experiments of
the TSP and SOM morphological approaches to show that in fact there is a difficulty in obtaining
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Original img. Minimum SOM Median SOM TSP Lex. RGB
D

ila
tio

n

p1.37%, 11.21q p1.97%, 11.26q p38.61%, 10.56q p1.37%, 36.55q

E
ro

si
on

p1.37%, 16.07q p1.83%, 15.90q p32.14%, 14.57q p1.36%, 50.97q

O
pe

ni
ng

p7.68%, 12.53q p10.30%, 12.59q p40.27%, 11.61q p7.07%, 40.70q

C
lo

si
ng

p6.99%, 13.12q p8.66%, 13.33q p38.27%, 12.52q p6.33%, 52.65q

Figure 5.9 – Global irregularity measure Φg
1 of the TSP and SOM approaches.

a total order that minimizes the irregularity.

5.3 Simulations of the TSP and SOM Morphological Ap-

proaches

For the computer simulation, we used the first 100 images from the CIFAR-10
dataset. For comparison purposes, we calculated the global irregularity index and sum of the
total variation distance of the Hamiltonian path between images obtained by the morphological
approaches based on TSP, SOM, and lexicographical approaches. The SOM morphological
approach obtains different results due to the stochastic nature of the SOM algorithm. Thus, for
the 100 images of the CIFAR-10 dataset, we applied the SOM morphological approach 51 times
for each image. An odd number of times were considered in order to ensure that the median of
the global irregularity index corresponds to an image for visual purposes. Figure 5.9 depicts the
result of these experiments in which we showed the image that provided the minimum and the
median global irregularity index, respectively. We present the results of the irregularity and the
sum of the Hamiltonian path in the form pΦg

1pI,Jq, }P }T V q. We used the same images in Figure
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3.3 for comparison with the other approaches which were used in this work.

In Figure 5.9, we show in the first line the dilated images of the SOM, TSP, and
lexicographical approach. The minimum global irregularity index of the 51 images generated by
the SOM algorithm is 1.37% coinciding with the global irregularity index of the lexicographical
order. The median of the global irregularity index is 1.97%. In the second line we show the
eroded images. The minimum value of the global irregularity index is 1.37% that is very close to
the global irregularity index of the lexicographical order. The median of the global irregularity
index is 1.83%. The results in the images obtained by opening are very similar to those obtained
by erosion. We have the values 7.68% and 10.30% to the minimum and the median global
irregularity values. In the first line we present the images obtained by the closing operator. The
minimum global irregularity index is 6.99% and the median is 8.66%. The global irregularity
values of the images obtained by the TSP order are the highest, corresponding to 38.61%,
32.14%, 40.27%, and 38.27%, for dilation, erosion, opening, and closing, respectively. It is
worth noting that while the TSP approach exhibits higher irregularity values compared to the
SOM and lexicographical approaches, it achieves the lowest possible sum of the Total Variation
of Hamiltonian paths. Conversely, the lexicographical images show lower irregularity values,
but their sum of Total Variation of Hamiltonian paths is higher than that of TSP and SOM
approaches.

a) Image I14
b) JSOM

14
p5.98%, 16.32q

c) JT SP
14

p50.90%, 15.23q

d) JL
14

p7.89%, 68.84q

e) Image I22
f) JSOM

22
p14.83%, 12.82q

g) JT SP
22

p41.00%, 11.93q

h) JL
22

p19.43%, 39.61q

Figure 5.10 – Images I14, I22, and their dilations by SOM, TSP, and lexicographical approaches.

It is natural to question whether the lexicographical order always provides a lower
irregularity. It turns out that the answer is negative. For instance, Figure 5.10 shows the images
I14 and I22 along with their dilations using the SOM, TSP, and lexicographical approaches. It is
worth noting that the images obtained by the TSP order had the shortest Hamiltonian path and
the highest irregularity. However, the irregularities of the images obtained by the morphological
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SOM approach are lower than those of the lexicographical images. Moreover, the length of
Hamiltonian paths of the images obtained by SOM is lower than the length of Hamiltonian paths
of the lexicographical order. Therefore, the irregularity depends on the total order used as well
as the color spectrum of the image, which implies the difficulty of obtaining a total order that
minimizes the irregularity.
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Conclusions

This chapter offers a brief examination of the problem statement and research
objective that guided this thesis, and presents the conclusions drawn from the research results
reported in Chapters 3, 4, and 5, including discussions and recommendations for future research.

When we apply morphological operators to multivariate images using a total order,
the images obtained by such operators can contain irregularities (Chevallier & Angulo, 2016).
Thus, our research objective is to propose an irregularity measure for multivariate mathematical
morphology. In particular, our irregularity measure must provide a percentage of how much an
output multivariate image J obtained by a morphological operator has irregularity based on its
input multivariate image I.

Therefore, in this thesis, we have introduced the global irregularity measure via
the Wasserstein metric and verified through computational experiments for tiny color images
that our measure provides an irregularity measure for multivariate mathematical morphology.
Additionally, by using a partition of the input image domain that is a family of sets Wℓ which we
called simply by windows, and considering the Wasserstein metric restricted to each window
Wℓ, we have introduced the local irregularity index that can be used, for example, to evaluate the
irregularity in natural color images. Our computational experiments with tiny color images have
shown that there is a correlation between the local and global irregularity indices.

Furthermore, we have verified that the local irregularity index is a lower bound of
the global irregularity measure. We have also observed in general that the irregularity index
of the marginal and Loewner approaches are smaller than the total order approaches, further
affirming our developed theory. Moreover, we have observed from computational experiments
that the entropic regularized method using the stabilized Sinkhorn algorithm is indeed much
more efficient in running time compared to the analytic solution of the Wasserstein metric, and
the stabilized Sinkhorn method is a very good approximation to the irregularity measure obtained
by the Wasserstein metric.

Additionally, we have investigated the relationship between the size of the structuring
element and the local irregularity measure in natural color images. The results indicate that the
local irregularity measure decreases with an increase in the size of the structuring element. In
addition, we also have investigated the correlation between the size of the local window Wℓ and
the local irregularity measure and we have found that an increase in the local window Wℓ leads
to an increase in the irregularity index.

Lastly, we have examined the challenge of obtaining a total order that minimizes the
irregularity issue. We discussed new multivariate morphological approaches based on stochas-
tic permutation ordering (SPO), the traveling salesman problem (TSP), and Kohonen’s self-



Conclusions 92

organizing maps (SOM). The approaches studied to demonstrate that the minimization of the
Hamiltonian path does not necessarily imply the minimization of irregularity.

The results of this research have provided a new understanding of the field of mathe-
matical morphology by introducing a new irregularity measure for multivariate mathematical
morphology. This measure of irregularity is obtained through the Wasserstein metric, which
requires the resolution of a linear programming problem. Furthermore, as outlined in Valle et al.

(2021, 2022), our research was the pioneering work to propose the use of the Wasserstein metric
to determine an irregularity measure in an output multivariate image obtained by a morphological
operator, based on its input multivariate image. This highlights that our research also provides
the perspective that the study of other areas of mathematics such as optimal transport, linear
programming, and optimization problems can help us solve some problems in mathematical
morphology, as these areas provide tools and techniques for dealing with resource allocation and
decision-making problems, which are similar to some issues faced in mathematical morphology.

Future studies could expand on the work presented here by investigating new methods
for multivariate morphological processing. This could include experimenting with the application
of neural networks to morphological image processing, and comparing results with those obtained
using the Wasserstein metric framework developed in this thesis. Another possibility would be
to investigate a morphological approach to multivariate images based on genetic algorithms. In
this situation, one can explore the potential of this optimization method to find a total order that
minimizes the irregularity. Another potential area for study would be to explore ways to create
an image J‹ with the same number of values as a multivariate morphological image J obtained
from an input image I, such that when the global irregularity measure Φg

p is applied, it holds
that Φg

ppI,J‹
q ď Φg

ppI,Jq. Finally, we could explore the possibility of a new local irregularity
measure Ψl

p for the irregularity issue by examining alternative ways of partitioning the input
image I into windows Wk, beyond the approach used in this study. One possibility could be
to use image segmentation methods to partition the domain of the input image I into different
color regions and examine the effects on the measure of irregularity and compare with the results
obtained in this thesis.
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