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RESUMO

Escoamentos bifásicos gás-líquido intermitentes são padrões comuns em geometrias horizontais

e atraem atenção e grande esforço de pesquisa devido à sua importância para aplicações indus-

triais e de engenharia. Um dos padrões de fluxo gás-líquido mais comuns e ao mesmo tempo

complexos é o fluxo em golfadas, que é tipicamente modelado com base em uma célula unitária

variando de uma bolha de gás alongada com um filme de líquido em padrão de fluxo segregado

e uma golfada de líquido aerada. Ambos os padrões compõem uma estrutura repetitiva com

notáveis características estocásticas de suas regiões alternadas. Nesta tese, uma abordagem de

modelagem é proposta para o escoamento em golfadas em tubulações horizontais com o ob-

jetivo geral de investigar a dinâmica do perfil de ondas de fração de vazio, de um ponto de

vista determinístico, e suas propriedades estatísticas, a partir de um modelo estocástico. Um

modelo de dois fluidos determinístico rigoroso e parcimonioso para os padrões estratificado e

disperso é proposto, além de um modelo estocástico simples, mas fisicamente inspirado, para o

escoamento intermitente em tubulações horizontais considerando a transição entre os padrões

segregado e disperso. Apesar das hipóteses fundamentalmente diferentes, mostra-se que uma

conexão pode ser proposta entre os tempos de transição aleatórios e o comportamento caótico

do modelo determinístico. A descrição da transição entre os dois padrões de fluxo na célula

unitária é abordada, tal que um modelo de transição é proposto, fundamentado no conceito de

bublance e os processos de conversão de energia correspondentes na região do comprimento de

mistura após o salto hidráulico.

Para a abordagem determinística, um modelo para prever o escoamento horizontal bifásico gás-

líquido slug como uma onda viajante é apresentado incluindo os efeitos de viscosidade e tensão

superficial para toda a célula unitária nas regiões dispersas e estratificadas. O modelo de dois

fluidos é desenvolvido para os padrões estratificado e disperso, incluindo todos os mecanismos

físicos relevantes identificados para a formação, crescimento e propagação da célula unitária,

levando a um modelo bem colocado e delimitado. Uma abordagem bottom-up é proposta,

baseada nas ordens de grandeza de cada termo do modelo. Em seguida, são desenvolvidos

sequencialmente os modelos que descrevem o fluxo dinâmico do sistema no espaço de fase

para ambos os padrões em uma e duas dimensões.

Para o modelo estocástico, um modelo de cadeia de Markov de dois estados é proposto para rep-

resentar a dinâmica estocástica do escoamento em golfadas desenvolvido em tubos horizontais.

Cada estado representa as regiões do pistão de líquido ou da bolha alongada e as probabilidades



de transição ditam se um dado estado tende a manter-se ou mudar-se. Também, a ordem da

cadeia de Markov é investigada. Estações de medição com dois sensores resistivos de fio duplo

são usadas para obter a série temporal da fração de vazios e uma representação de dois estados

correspondente. Mostra-se que o modelo de cadeia de Markov pode representar com sucesso

as estatísticas de segunda ordem dos dados, como a autocorrelação e a densidade espectral de

potência, dada uma escolha apropriada da ordem da cadeia. Subsequentemente, as estatísticas

de algumas características de golfadas são estimadas usando a abordagem proposta e sua in-

terpretação como variáveis aleatórias derivadas do processo estocástico de fração de vazios é

discutida.

Uma análise do padrão de golfadas como um sistema dinâmico no espaço de fases é posteri-

ormente realizada e comparada com os mesmos dados experimentais utilizados para a identi-

ficação do modelo estocástico proposto. A estimação da dimensão adequada do sistema não

linear é apresentada e discutida. A dimensão do sistema e o caos são quantificados e a recon-

strução do espaço de fase é discutida. Mostra-se que a variabilidade nos tempos de transição

entre o centro de duas órbitas na dinâmica caótica tridimensional do espaço de fase recon-

struído está diretamente relacionada aos tempos de transição estocásticos descritos pelo modelo

de cadeia de Markov de dois estados proposto. Por fim, os resultados numéricos dos modelos

analíticos uni e bidimensionais no espaço de fases são apresentados e os resultados são interpre-

tados em termos das séries temporais experimentais. As séries temporais de alguns parâmetros

de fluxo relevantes são obtidas baseadas em modelos e então usadas para discutir a física rele-

vante para os padrões de escoamento segregado e disperso, além dos fenômenos de transição.

Mostra-se que o limiar de transição proposto depende da direção da transição entre os padrões,

indicando assim o fenômeno da histerese. Para o modelo unidimensional, a solução do perfil

de onda da fração de vazio da célula unitária obtida representa um avanço em relação ao mod-

elo atualmente disponível. No entanto, a oscilação da fração de vazio não é possível devido

à topologia do sistema dinâmico unidmensional. Para o modelo bidimensional, obtém-se uma

solução periódica e destaca-se a importância da viscosidade turbulenta para a estabilização do

sistema. Um diagrama de bifurcação do modelo estratificado bidimensional também é inves-

tigado. Tal diagrama é construído com os pontos fixos e suas estabilidades correspondentes,

onde destacam-se as principais características do sistema dinâmico e as condições necessárias

para o perfil de onda oscilatório da fração de vazio. Posteriormente, o modelo bidimensional é

integrado utilizando os critérios de transição propostos. Os resultados obtidos remontam uma



célula unitária típica e mostraram que esta estratégia é muito promissora para outros esque-

mas numéricos. Este trabalho abre caminho para mais interpretações físicas e insights sobre a

dinâmica complexa do escoamento em golfadas.

Palavras–chave: Escoamento bifásico, Cadeias de Markov, Ondas viajantes, Sistemas dinâmi-

cos.



ABSTRACT

Intermittent flows are common patterns in horizontal geometries and attract attention and great

research effort due to its importance for industrial and engineering applications. One of the

most common and at same time complex gas-liquid flow pattern is the slug flow, which is

typically modelled based on a unit cell varying from an elongated gas bubble with a liquid

film in segregated flow pattern and an aerated liquid slug. Both patterns compose a whole

repeating structure with remarkable stochastic characteristics of its alternating regions. In this

thesis, a two-fold modelling approach is proposed for the slug flow in horizontal pipes with the

overall aim of investigating the void fraction wave profile dynamics, from a deterministic point

of view, and its statistical properties, from a stochastic model. A rigorous and parsimonious

deterministic two-fluid model for the stratified and dispersed patterns is proposed in addition to

a simple but physically insightful stochastic model for slug flow in horizontal pipes transition

times between the segregated and dispersed flow patterns. Despite of fundamentally different

assumptions, it is shown a connection between the random transition times and the chaotic

behaviour of the deterministic model. The description of the transition between the two flow

patterns in the slug is addressed, where a physically and data-driven based transition model is

proposed, based on the concept of bublance and the corresponding energy conversion processes

in the region of the mixing length after the hydraulic jump.

For the deterministic approach, a model for predicting the horizontal two-phase gas-liquid slug

flow as a travelling wave is presented including the viscosity and surface tension effects for the

entire unity cell on the dispersed and stratified regions. The two-fluid model is developed for the

stratified and dispersed patterns, including all the identified relevant physical mechanisms for

the unit cell formation, growth and propagation, leading to a well-posed and bounded model. A

bottom-up approach is proposed, based on the orders of magnitude of each model term. Then,

the models are sequentially developed to describe the dynamical system flow in phase space for

both patterns in one and two dimensions.

For the stochastic model, a two-state Markov chain model is proposed to represent the stochas-

tic dynamics of the developed slug flow in horizontal pipes as a simple but insightful description

of the phenomenon. Each state represents either the liquid slug or the elongated bubble regions

and the transition probabilities dictate a given discrete time measurement to stay at a given state

or change. Also, the order of the Markov chain is investigated. Measurement stations with two

double wire resistive sensors are used to obtain the void fraction time series and a corresponding



two-state representation. It is shown that the Markov chain model can successfully represent

second-order statistics of the measurement, such as the autocorrelation and power spectral den-

sity, given an appropriate choice of the chain order. Subsequently, statistics of some slug flow

features are estimated using the proposed approach and their interpretation as random variables

derived from the void fraction stochastic process is discussed.

An analysis of the slug flow pattern as a dynamical system on the phase space is subsequently

performed and compared to the same experimental data used to the identification of the pro-

posed stochastic model. The estimation of the suitable dimension of the non-linear system is

presented and discussed. The system dimension and chaos is quantified and the reconstruction

of the phase space is discussed. It is shown that the variability in the transition times between the

center of two orbits in the three-dimensional chaotic dynamics of the reconstructed phase space

is directly related to the stochastic transition times described by the proposed two-state Markov

chain model. Finally, the numerical results from the one and two-dimensional phase-space an-

alytical models are presented and the results are interpreted in terms of the experimental time

series. Model-based time series of some relevant flow parameters are obtained and then used to

discuss the relevant physics for segregated and dispersed flow patterns and transition phenom-

ena. It is shown that the proposed transition threshold depends on the direction of the transition

between the patterns, thus indicating the phenomenon of hysteresis. For the one-dimensional

model, the obtained slug unit void fraction wave profile solution represents an advance when

compared to the currently available model. However, the oscillation of the void fraction is not

possible due to the topology of the dynamical system. For the two-dimensional model, a pe-

riodic solution is obtained and the importance of the turbulent viscosity for the stabilization

of the system is highlighted. A bifurcation diagram of the two-dimensional stratified model is

also investigated. It is constructed with the fixed points and their corresponding stability and it

highlights the main features of the dynamical system and the necessary conditions for the void

fraction profile and oscillation. Subsequently, the two-dimensional model is integrated using

the proposed transition criteria. The obtained results follows very closely a typical unit cell and

and it shown that this strategy is very promising for further numerical schemes. The proposed

investigation paves the way for further physical interpretation and insights on the complex dy-

namics of the slug flow.

Keywords: Two-phase flow, Markov Chain, Travelling Wave, Dynamical System.
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1 INTRODUCTION

Multiphase flows are of common occurrence in numerous natural and industrial

processes. One of the most common is the gas-liquid flow, where the phases are distributed

in different geometric arrangements, which are called flow patterns. These patterns depend

on fluids properties (density, viscosity, surface tension) and flow conditions (flow rates, pipe

diameter and slope, etc) (Shoham, 2006; Ishii; Hibiki, 2011). In gas-liquid horizontal flows

the stratified, annular, bubbles and intermittent flows are the most common patterns, each one

with its own characteristics. The correct definition of the flow pattern and its characteristics is

of ultmost importance for industrial purposes, as the presence of an specific pattern may lead

to severe problems. In the case of the oil industry, flow assurance problems are related to the

occurrence of an specific flow pattern (Shippen; Bailey, 2012). Efforts have been made during

the last decades to propose models for the transition between such flow patterns (Taitel; Dukler,

1976; Barnea, 1987), as well as modelling the flow pattern itself leading to pressure drop and

void fraction calculation, for example (Shoham, 2006).

One of the most common and at same time complex gas-liquid flow pattern is the

slug flow, as depicted in the Fig. 1.1. The slug flow is typically modelled based on a unit cell

varying from an elongated air bubble with a liquid film in segregated flow pattern (considered

stratified flow) of length LF , to a liquid slug with/without dispersed gas bubble swarm that

detach from the bigger elongated air bubble due to the turbulent recirculation zone forming the

aerated liquid piston, of length LS . Both patterns compose a whole almost periodic structure

with length LU called a unit cell (Taitel; Barnea, 1990; Fabre; Liné, 1992; Fagundes Netto et al.,

1999). These structures are connected by a turbulent recirculating zone with length LM where

the flow pattern transition occurs (Wallis, 1969; Shoham, 2006). One remarkable interesting

aspect of the slug flow is its stochastic characteristic of alternating regions (Sarica et al., 2011;

Soedarmo et al., 2019).
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Figure 1.1 – Slug flow pattern unit cell with the separated, dispersed and recirculating zones.

The void fractions are represented by αS , αF and αU for the liquid slug, Taylor bub-

ble or film and unit cell regions, respectively. The liquid and gas average velocities at the liquid

slug region are vL and vB, respectively. At the elongated bubble region, the average velocities of

the liquid and gas are vF and vG, respectively. Finally, the elongated bubble translational veloc-

ity is denoted by VTB. It is commonly assumed that at the elongated bubble, the liquid and gas

velocities vary with the film thickness variation. This is not the case at the slug region, where

it is assumed that the flow can be considered homogeneous, making vL and vB approximately

equal (Taitel; Barnea, 1990; Shoham, 2006).

The elongated gas bubble with a liquid film in segregated flow pattern is called

Taylor bubble, being the bigger propagating bullet shape gas pocket, whose shape is due to the

geometric profile of the liquid height waveform. It can be divided in the nose, body, hydraulic

jump and tail regions as illustrated in Figure 1.2 (Taitel; Barnea, 1990; Fagundes Netto et al.,

1999):
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Figure 1.2 – Taylor bubble regions.

where, in Fig 1.2, D is the pipe diameter, h1 is the liquid film height and h2 is the liquid height

where the bubble tail starts, after the hydraulic jump.

1.1 Literature Review

The study of the horizontal slug flow pattern formation mechanisms has historically

been carried out with the investigation of the point at which the stratified flow pattern becomes

unstable using a linear stability model framework, leading to Kelvin Helmholtz instability the-

ory. It is adopted in flow pattern maps to delineate the boundary between the stratified and

slug flow patterns. The transition occurs as the gas accelerates over the wave crest, where the

pressure in the gas phase decreases due to the Bernoulli effect. If this effect is greater than

gravity force then the wave tends to grow, otherwise it will decay. In order to the flow in the

slug pattern to form, it is necessary that the interfacial waves around the stratified flow pattern

equilibrium solution, i.e., at the elongated gas bubble, grow until they touch the upper dorsal

line of the pipe, at which point there is a transition to the dispersed pattern forming the liquid

piston (Taitel; Dukler, 1976; Barnea, 1987; Shoham, 2006).

1.1.1 Non-Linear Waves

The classical linear Kelvin Helmholtz instability theory neglects viscosity and sur-

face tension effects, considering only small amplitudes disturbances around the stratified equi-

librium state. Therefore, despite being able to assess whether such disturbances will grow or

not, it cannot be used to evaluate higher amplitudes non-linear waves like the slug flow or roll
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waves. It theses cases, such effects cannot be neglected as the waves grow having bigger am-

plitudes with discontinuities and shock formation.

Non-linear roll waves were historically studied applying the traveling wave coordi-

nate transformation in the shallow water system of PDE’s for rectangular channels. Thus, the

obtained non-linear system of ODE’s fixed points, stability, system response and phase space

portrait were evaluated. It has been shown that including only the parietal stresses and without

considering the effective turbulent viscosity in the model, the system does not have a continu-

ous periodic solution, although it is possible to construct a periodic discontinuous solution by

joining the found non-periodic continuous solutions by parts. However, with the inclusion of

the effective turbulent viscosity effects, there are continuous periodic solutions around Hopf

and homoclinic bifurcations as stable limit cycles. It should be noted that no interfacial tension

effects were considered in these studies (Dressler, 1949; Needham; Merkin, 1984; Needham et

al., 2008).

Giddings (2017) and Giddings e Billingham (2019) adopted a similar framework for

studying the slug flow in rectangular channels neglecting the interfacial tension effects. In their

work, the waves crest do not touch the upper dorsal line of the channel, hence, the transition to

the dispersed pattern at the liquid piston is neglected. They reported the existence of periodic

solutions around Hopf and homoclinic bifurcations as stable limit cycles, however the parameter

search space was arbitrary. They solved the same model as a boundary valued problem and the

full field shallow water equations were discretized by a finite difference scheme, obtaining

similar results.

Vaidheeswaran et al. (2016) studied non-linear waves in the horizontal stratified

flow pattern at a rectangular channels. They solved numerically, by a finite difference scheme,

the fixed flux approximation of the two fluid model. The effects of the pressure difference

between the phases due to gravity where considered as well as the interfacial tension effects

by the long wave approximation and the effective turbulent viscosity. It was observed limit

cycles solutions as periodic stable waves due to viscous dissipation at wave fronts and a chaotic

response with the growth of the channel inclination, where the chaos was quantified by the

largest Lyapunov exponent. Bertodano et al. (2016) extended these studies to a circular pipe

geometry under similar premises obtaining similar qualitative results. It should be noted that

these studies pointed out the physical mechanism that should be considered in the model, in

order to have a well-posed and bounded model that describes the material/mass wave growth
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beyond the Kelvin–Helmholtz instability limit.

Robinson et al. (2008) studied non-linear material waves in the vertical dispersed

bubbles flow pattern, commonly observed in a glass of Guinness draught beer and other appli-

cations. They solved numerically, by a finite difference scheme, the fixed flux approximation of

the two fluid model. The effects of the interfacial pressure difference between the phases where

included along with the effective turbulent viscosity, drag, added mass and collision forces. It

should be noted that these studies pointed out the physical mechanism that should be consid-

ered in the model, in order to have a well-posed and bounded model that describes the correct

mass/material wave speed (Park et al., 1999; Robinson et al., 2008; Bertodano et al., 2013;

Bertodano et al., 2016).

1.1.2 Slug Capturing

The segregated and dispersed flow patterns alternating structures observed in the

slug flow pattern can be fully modeled from the fundamental principles of mass and linear

momentum conservation laws through the application of averaging operators, leading to the

one dimensional Two-Fluid model (Bergles et al., 1981; Ishii; Hibiki, 2011; Morel, 2015).

The resulting equations can be fully solved in different ways leading to two approaches: slug

tracking and slug capturing.

In the slug tracking model, the unit cell waveform and its statistics are imposed as

boundary conditions, such information is propagated in a nonlinear waveguide modeled by the

two-fluid model in a Lagrangian approach, where the Taylor bubble nose and tail are tracked

as they propagate. Despite modeling the unit cells propagation, this model does not explain the

physical mechanisms involved in the unit cells formation as they are imposed at the boundary.

Thus, the accuracy of the results is affected and limited by the model used to generate those

boundary conditions (Barnea; Taitel, 1993; Rosa et al., 2015).

The slug capturing model was proposed in order to address the aforementioned is-

sues by modelling the physical mechanisms that lead to the unit cell slug formation. However,

this model requires finer meshes and high order numerical schemes with shock capture capabili-

ties, which makes it computationally intensive. Issa e Kempf (2003) modelled the stratified flow

pattern at a circular pipeline, solving the full two-fluid model numerically using a first-order

fully implicit scheme in time, and a first-order finite volume upwind scheme in space, where it

was included the effects of the pressure difference between the phases due to the gravity, one
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of the conditions necessary to have a well-posed model that develops the Kelvin-Helmholtz in-

stability, as stated in the non-linear wave section 1.1.1. Bonizzi (2003), Bonizzi e Issa (2003)

and Bonizzi et al. (2009) extended the model including the gas entrainment into the liquid slug

body. Although satisfactory results were obtained, the results are affected by the closure rela-

tionships employed and several were tested. Carneiro (2006) included the interfacial tension

effects by the long wave approximation adopting the same numerical scheme but neglecting the

gas entrainment into the liquid slug body, obtaining satisfactory results.

1.1.3 Unit Cell Mechanistic Model

In order to obtain a model with reasonable accuracy and minimum complexity, that

is, a parsimonious model for practical applications, the slug flow pattern is classically addressed

using the unit cell model. It states a void fraction periodic travelling wave that is equivalent to a

square-pulse train between the equilibrium void fraction solutions αS and αF for the alternating

dispersed bubbles and segregated flow patterns, respectively, as illustrated in Figure 1.3. The

intermittency factor β is the pulse train duty cycle (time fraction in which it is in an active high

state or the stratified flow pattern), the unit cell length LU is the inverse of the fundamental

wavenumber κ, the Taylor bubble velocity VTB is the void fraction non-dispersive wave phase

velocity, which is equivalent to the kinematic wave velocity detailed in the Annex A, while the

frequency of passage of the unit cell fU is the inverse of the void fraction wave transit time

period (Wallis, 1969; Shoham, 2006; Vieira et al., 2021).

Figure 1.3 – Unit cell square pulse train model.

The flow pattern manifests itself as a void fraction waveform whose properties can

be decomposed into an average term ᾱ associated with oscillations around the average α′ (z, t),

that is



36

α (z, t) = ᾱ + α′ (z, t) . (1.1)

The average void fraction is given by

ᾱ = αU =
1

Lu

∫ Lu

0

α (z, t) dz =
1

Lu

(αFLF + αSLS) = αFβ + αS (1− β) , (1.2)

where αF and αS are the equilibrium void fraction solutions in the Taylor bubble and slug body

regions, respectively, as shown in Figure 1.3. Assuming a wave mode expansion, such wave

can be represented by the following ansatz (Vieira et al., 2021)

α′ (z, t) =
∞∑
n=1

Ane
j(κnz−ωnt), (1.3)

α′ (z, t) =
∞∑
n=1

Ane
jκn(z−cpt), (1.4)

where An is the complex Fourier Series coefficient, κn is the wavenumber, j is the imaginary

unit and cp is the wave phase velocity given by

cp =
ωn

κn

= VTB, (1.5)

An = (αF − αS) βsinc (nπβ) e
−jnπβ. (1.6)

Therefore, the void fraction wave in the unit cell model approach is given by

α (z, t) = αU +
∞∑
n=1

Ane
jκn(z−VTBt). (1.7)

The unit cell variables for the Taylor bubble and slug body parts can be calculated

using the classical models from the literature considering a constant stratified liquid film thick-

ness at the Taylor bubble part, allowing that the same procedure can be repeated for all fields

considered periodic, in this case, the velocities vk for each phase (Taitel; Dukler, 1976; Gomez

et al., 2000; Shoham, 2006).

The unit cell mechanistic model can be extended by including the variable liquid

film height profile at the Taylor bubble region. The traveling wave transformation is then

applied in the higher order terms of the mass and momentum conservation equations for the

stratified flow pattern only, neglecting the interfacial tension and effective turbulent viscosity
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effects, leading to a first order ODE. Similarly to the stated in the non-linear roll waves Section

1.1.1, non-linear dynamic systems with one-dimensional flows cannot have periodic solutions

(Strogatz; Dichter, 2016). However, one can build a periodic discontinuous solution by joining

the higher order found non-periodic continuous solutions by parts with closure experimental

relations for the aerated liquid piston (Dukler; Hubbard, 1975; Taitel; Barnea, 1990).

1.1.4 Taylor Bubble Velocity Estimator

The Taylor bubble velocity can be estimated based on the time delay ∆tTB from

measurements at two sensors at some known distance d as

VTB =
d

∆tTB

. (1.8)

Several techniques have been developed during the last decades to estimate ∆tTB

based on the cross-correlation of the measured signals, defined as R1,2(τ)

R1,2(τ) = E [α(z1, t)α(z1 + d, t+ τ)] , (1.9)

where τ is the time lag, z1 the first measurement station position and α(z1, t) and α(z1+d, t+τ)

are the void fractions measured at each measurement position, considering the second measured

station sample is a space-time delayed version of the propagating field measured at the first

station. The most trivial case is known as the basic cross-correlation (BCC) and it can be

estimated from the inverse Fourier transform approach as

R1,2(τ) = F−1 {S1,2(ω)} , (1.10)

where F−1 stands for the inverse Fourier transform and S1,2(ω) is the cross-power spectral

density (CPSD). The CPSD is estimated from finite length measurements using the segment

averaging method, also known as the Welch’s method (Shin; Hammond, 2008). It consists in

segmenting the full measurement in Nb separate time blocks, or segments, of same length Tb

and then calculating the CPSD for the ith segment. For each segment, a Hanning window is used

to reduce the effects of leakage and thus improving the resolution of closely spaced frequency

components. Typically, an overlapping from 25% to 50% between subsequent segments is also

applied, so that the information lost due to the shape of the windowing function can be recovered

for the estimation. In this work, 1/3 of overlap is used.
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This basic estimator can be greatly enhanced by generalised cross-correlation meth-

ods (GCC) (Hassab; Boucher, 1979). In this approach, a frequency domain pre-filtering is ap-

plied on the CPSD prior to the inverse Fourier transform aiming at enhancing the signals with

better signal-to-noise ratio (SNR) and to pre-whitening the signals are such that the peak of the

cross-correlation is sharpened (Gao et al., 2006). The generalised cross-correlation Rg
1,2(τ) in

this case is given as

Rg
1,2(τ) = F−1 {ΨgωS1,2(ω)} , (1.11)

where Ψg(ω) if the frequency weighing function.

Amongst the GCC methods, the smoothed coherence transform (SCOT) is very

appealing for estimating the velocity of the Taylor bubble because it combines a pre-withening,

which removes the dispersive effects of travelling waves, with a weighting by the coherence

function, which decreases the influence of frequency bands with low SNR. For the case of

travelling bubbles, or mass waves, the wave dispersion is mostly due to changes on the format

of the bubble along the pipe. The SCOT weighing is given by:

Ψg(ω) =
γ1,2(ω)

|S1,2(ω)|
, (1.12)

where γ1,2(ω) is the ordinary coherence function from the estimation of the CPSD (Shin; Ham-

mond, 2008). The latter gives a frequency dependent measure of the linear relation between both

sensors. It can be shown that γ1,2(ω) = 1 for linearly related noise free signals and γ1,2(ω) = 0

for uncorrelated signals. Values in between indicate that the signals are only partially linearly

related. Typically, this is due to noise contamination, the presence of extra sources affecting

one of the sensors and/or non-linearities. It can be shown that (Gao et al., 2006)

Rg
1,2(τ) = F−1 {Ψg(ω)S1,2(ω)} = hS(τ) ∗ δ(τ +∆tTB), (1.13)

where ∗ stands for the convolution operator, δ(τ +∆tTB) is the Dirac delta function and hS(τ)

is an impulse response function which depends on the noise content of the CPSD estimation.

For γ1,2(ω) = 1, i.e., a perfect linear relation between the two sensors, it can be shown that

Rg
1,2(τ) = δ(τ + ∆tTB), i.e., the cross-correlation function is sharpened to a single peak at

∆tTB, which significantly highlights the delay estimate.

Both BCC and SCOT GCC estimators have analytical expressions available for the

variance of the time delay estimate τ̂peak (Gao et al., 2006)
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σBCC
τ̂peak

=

(
π

T

1− γ2

γ2

∫ ω1

ω0
ω2 |S1,2(ω)|2 dω∫ ω1

ω0
ω2 |S1,2(ω)| dω

)1/2

, (1.14)

σSCOT
τ̂peak

=

(
3π

T

1− γ2

γ2

1

(ω0 +∆ω)3 − ω3
0

)1/2

, (1.15)

where T is the observation time on the CPSD estimate and γ is a constant value assuming the

CPSD coherence function γ1,2(ω) = γ in the frequency band ω0 ≤ ω < ω1 and zero elsewhere

and ∆ω = ω1 − ω0.

Finally, it is important to highlight that the random error σBCC
τ̂peak

or σSCOT
τ̂peak

is in-

significant compared to error due to the time resolution, the latter being only a function of the

measurement bandwidth. In practice, given the measurement sampling frequency, it means that

time resolution ∆t has to be much shorter than the time for the Taylor travels from one sensor

to the next, i.e., the time delay ∆tTB.

1.1.5 Markov Chain

Models for gas-liquid flows depend on several experimental data and closure laws.

It is not different for the slug flow in which the unit cell lengths, translational velocities, slug

frequencies and other parameters are experimentally adjusted. The measurement of such char-

acteristics is performed by several means. As described by Soto-Cortes et al. (2021), there

are visual (High-speed cameras and Doppler Velocimetry) and non-visual techniques such as

electric (capacitive and resistance) probes and gamma-ray induction. In the most common field

operations, visual access to the flow is not possible, thus, non-visual techniques are used to

measure a time-series of determined quantity and then post-processing techniques are applied.

In the case of time-traced measurements of void fraction, common for slug flows,

it is necessary to select a correct threshold to separate the elongated bubble and dispersed slug

regions. In most cases, this is based on a subjective selection. To avoid such subjectivity Soto-

Cortes et al. (2021) and Soedarmo et al. (2019) proposed objective methodologies based on

statistical analysis to select the threshold for slug and pseudo-slug flows, respectively. However,

the proposed approach does not investigate the multi-modality on the histogram around the

regions of Taylor bubble, as recently observed by Rodrigues et al. (2020), for instance.

Several authors use a Markov chain theory to characterise the dynamic behaviour

of different multiphase flow patterns, defined in terms of the transition probability distribution.

Zhong-Ke et al. (2013) used the network generation based on Markov transition probability to
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build complex weighted directed networks. The results indicated that the constructed network

can inherit the main characteristics of the time series. Moreover, the weighted clustering coef-

ficient proved to be an important threshold to characterise the dynamic behaviour in transitions

among different flow patterns. Mahvash e Ross (2008) proposed a continuous hidden Markov

Chain-based pattern identification approach in two-phase flow. Measurements were based on a

optical fiber probe to obtain a time series of whose amplitude is related to the instantaneous void

fraction. The proposed approach has a good potential in identifying two-phase flow patterns.

Recently, Ali et al. (2020) developed a data-driven methodology for classifying the dynamics

and construction of the cluster-based model through the Markov Chain theory based on X-ray

computed tomography of multiphase flows.

Despite its applications on several aspects of multiphase flows, the Markov chain

approach has been used under the framework of complex time series analysis. Although such

approaches give important contribution to the understanding of multiphase flows, a simpler but

insightful stochastic model can lead to significant and fundamental insights on the complex

physics of two-phase flow.

1.2 Objectives

The overall objective of this thesis is to investigate the void fraction wave profile in

the horizontal slug flow pattern and its statistical properties, using a parsimonious model that

captures the essential physical mechanisms that explain the unit cell formation, its evolution dy-

namics and the intermittent state transitioning between segregated and dispersed flow patterns,

compared to available experimental data. Specifically, this thesis aims at:

• proposing a simple and physically insightful stochastic model for slug flow in horizontal

pipes transition between the dispersed and segregated patterns;

• proposing a rigorous and parsimonious deterministic two-fluid model for the stratified

and dispersed flow patterns;

• proposing a transition criterion between the segregate and dispersed bubble patterns in

the slug flow;

• exploring the physical connections between the two models with seemingly unrelated

assumptions.
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1.3 Contributions

The results presented in this thesis add the following contributions:

• The two-fluid model is developed for the stratified and dispersed patterns, including all

the identified relevant physical mechanisms for the unit cell formation, growth and propa-

gation, leading to a well-posed and bounded model, as its building blocks for the stratified

and dispersed bubbles flow patterns are well-posed and bounded according to the liter-

ature. No work reviewed considered all the mechanisms adopted for the flow patterns

of interest all together for circular cross section pipelines with such rigour. In order to

obtain a parsimonious model, reasonable assumptions were adopted for the slug flow pat-

tern that allowed a great model simplification through the constant flow solution and the

travelling wave transformation, without compromising generality. The assumptions are:

incompressibility due to low phases velocities when compared to sound velocities, i.e.,

low Mach numbers and an approximately constant Taylor bubble propagation velocity,

hypothesis that are supported by a vast literature and experimental observations. This al-

lows converting a non-linear system of PDE’s into ODE’s by condensing the analysis of

the system dynamics in a phase space for the void fraction series, a simpler model, where

one is able to investigate the system dynamics in order to understand the slug flow pattern

influencing parameters and the transitions between the separate and dispersed alternating

flow patterns.

• In a bottom-up approach, based on the orders of magnitude of each model term, models

are sequentially developed that describe the dynamical system flow in the phase space for

both patterns in one, two and three dimensions.

• A physically based transition model is proposed, based on energy conversion processes

in the region of the mixing length after the hydraulic jump.

• The available raw experimental data are analyzed and compared with the model, where

all relevant parameters of the unit cell are identified, converting it to the traveling wave

coordinate system, through a correlation-based estimation approach of the Taylor bubble

velocity from two double wire measurement station, directly applied to the data with no

need of pre-processing and analytical expressions are available for the error estimate.
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• The system chaos was quantified and the phase space was reconstructed from the exper-

imental data where the minimum number of dimensions for the deterministic dynamics

of the slug flow was estimated as three, which has a physical interpretation, that the vari-

ability of the unit cell parameters derive from a three-dimensional chaotic dynamics and

that such dimensionality is only achieved with the inclusion of the terms of the interfacial

tensions.

• The system states where estimated by a simple data-driven non-parametric automatic

approach and a two-state Markov chain model was proposed to represent the stochastic

process model dynamics of developed slug flow in horizontal pipes aiming at a simple but

intuitive description of the phenomenon, successfully modeling the statistical behavior of

unit cell parameters. The Markov chain was related to the reconstructed phase space as a

model for the transition probabilities between the equilibrium void fractions solutions at

the center of the orbits separated by the transition surfaces.

1.4 Thesis Outline

This thesis is organised as follows:

• In Chapter 2, the slug flow hydraulic model is developed and presented for the stratified

and dispersed flow patterns.

• In Chapter 3, a physically based transition model is proposed, based on energy conversion

processes in the region of the mixing length after the hydraulic jump and the slug flow

transitions are modelled as a two-state Markov chain. Some relevant statistical moments

of the model are analytically derived.

• In Chapter 4, the results are presented and discussed. The available experimental data is

analyzed and compared with the proposed analytical model, where all relevant parame-

ters of the unit cell are identified, converting it to the traveling wave coordinate system.

The proposed stochastic model based on the two-state Markov chain model is identified.

The numerical results from the theoretical model are presented. A bottom up approach

is proposed by increasing the system dimension in the phase space from its first order

approximation.

• Finally, Chapter 5 gives some concluding remarks and suggestions for further work.
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2 HYDRAULIC MODEL

In this chapter, the hydraulic model is presented. First, the two-fluid model for the

stratified and dispersed flow patterns are developed and possible closure relationships are listed,

being presented as PDE’s systems in the conservative form. Subsequently, some simplifying

assumptions are adopted in order to make the slug flow pattern analysis more tractable, ending

on the constant flux solution. Then the equations are written in the traveling wave coordinate

system. Finally, the obtained non-linear autonomous dynamical systems that represent the slug

flow pattern is derived.

2.1 Two-fluid Model

In this section, the Two-fluid Model is reviewed and presented along with the suit-

able closure models. At the end, the resulting systems of PDE’s is then presented in the conser-

vative form.

As a result of the cross sectional area and time averaged mass and linear momen-

tum conservation laws for the phase k at a pipeline, one has the one-dimensional Two-fluid

Model (Bergles et al., 1981; Ishii; Hibiki, 2011; Morel, 2015)

∂

∂t
(αkρk) +

∂

∂z
(αkρkvk) = Γk, (2.1)

and

∂

∂t
(αkρkvk) +

∂

∂z

(
αkρkv

2
k + αkpk

)
=

∂

∂z

[
αk

(
τ kzz + T k

zz

)]
+ αkρkgz + pk

∂αk

∂z
+ M̂k, (2.2)

where αk, ρk, vk and pk are respectively the volume fraction, specific mass, in-situ velocity and

pressure, Γk is the mass source rate per unit volume, τ kzz and T k
zz are the viscous and turbulent

Reynolds stress tensors zz components and M̂k is the averaged momentum transfer through the

interface and the wetted pipe wall. The subscript k indicates the heavier and lighter phases, 1

and 2, respectively for the liquid and gas. The volume fractions are related as

α1 + α2 = 1. (2.3)
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In the following sections, the required closure models will be detailed for each flow

pattern. Nonetheless, there are few closure model for the zz component of the cross sectional

area averaged turbulent stress tensors for the two-phase flow case. To do so, the single phase

flow inspired approach is adopted for each phase. It uses the Boussinesq hypothesis and yields

an equivalent effective viscosity concept νeq
k of the phase k that encompasses the effects of the

velocity profile covariance shape factors Ceq
ν and eddy turbulent viscosities νT

k (Fullmer et al.,

2011; Drew; Passman, 2014; Bertodano et al., 2016), i.e.,

αk

(
τ kzz + T k

zz

)
= ρkαkν

eq
k

∂vk
∂z

, (2.4)

νeq
k = Ceq

ν

(
νk + νT

k

)
. (2.5)

It should be noted that the viscous and turbulent stresses transversal components are

analytically eliminated by the averaging process, therefore, not adopting them is not a simplifi-

cation.

2.1.1 Separated Phases Flow

In the separated phases flow case, as the interface is well defined, the total averaged

momentum source M̂k is given by the stresses and momentum flux through the interface and

wall boundaries (Bergles et al., 1981; Ishii; Hibiki, 2011)

M̂k = vikΓk +
(
pik − pk

) ∂αk

∂z
+ τ ik

Si

A
+ τwk

Sk

A
, (2.6)

where, regarding the phase k, pik and vik are, respectively, the interface pressure and velocity, τ ik

and τwk are the shear stresses at the interface and wall, Si and Sk are the interface and wetted wall

perimeters, respectively. Considering a flat gas-liquid interface, the pipe cross section geometry

is illustrated in Figure 2.1, where the flow geometric parameters are (Shoham, 2006)

h̃ = 2

(
h

D

)
− 1, (2.7)

Si = D
√
1− h̃2, (2.8)

S2 = D arccos
(
h̃
)
, (2.9)
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Figure 2.1 – Pipe cross section

S1 = S − S2, (2.10)

and h̃, Si, Sk and S are the dimensionless liquid height, interface, phase k and inner pipe wetted

perimeters, respectively. The void fraction α is given by

α =

(
S2 − h̃Si

S

)
=

1

π

[
arccos

(
h̃
)
− h̃
√

1− h̃2
]
. (2.11)

Despite the void fraction α and liquid height h having a two-way relationship, the

function above does not have an explicit inverse, making it difficult to change variables

∂α

∂h
= −Si

A
= − 4

πD

√
1− h̃2. (2.12)

The cross sectional area averaged pressure pk of each phase k can be written with

respect to a reference pressure added to a deviation due to the average hydrostatic gradient

and the surface tension jump from the interface to the geometric center of area. The reference

pressure is arbitrary, but it is convenient to choose the pressure of the gas phase at the interface

pi2, considering that the cross section hydrostatic variation in the gas phase is much smaller and

usually neglected. However, this choice leads to the fact that the pressure variation in the liquid

phase is not only due to the hydrostatics, but also to the pressure jump at the interface caused

by surface tension. Using the area average operator ⟨⟩k definition (Bergles et al., 1981; Ishii;

Hibiki, 2011)
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⟨⟩k =
1

Ak

∫
Ak

dAk =
1

αkA

∫
Ak

dAk, (2.13)

where Ak is the cross sectional area occupied by the phase k. Therefore, the averaged pressure

fields in the domain occupied by each phase k are given by (Bonizzi, 2003)

pk = ⟨p⟩k =
〈
pik + ρkgy (h− y)

〉
k
=
〈
pik
〉
k
+ ⟨ρkgy (h− y)⟩k . (2.14)

Hence

p1 = pi1 +
1

α1A

∫ h(z)

0

ρ1gy (h− y) b (y) dy, (2.15)

and

p2 = pi2 +
1

α2A

∫ D

h(z)

ρ2gy (h− y) b (y) dy, (2.16)

where the interface pressures pik and specific masses ρk are constants with respect to the vertical

direction y, only varying in the axial z direction, and b (y) is the cross sectional chord length.

Both sides of the equations are rearranged and derived with respect to the axial z direction using

the Leibniz rule

A
∂

∂z
(α1p1) = A

∂

∂z

(
α1p

i
1

)
+

∂

∂z

[∫ h(z)

0

ρ1gy (h− y) b (y) dy

]
, (2.17)

∂

∂z
(α1p1) =

∂

∂z

(
α1p

i
1

)
+ α1ρ1gy

∂h

∂z
, (2.18)

A
∂

∂z
(α2p2) = A

∂

∂z

(
α2p

i
2

)
+

∂

∂z

[∫ D

h(z)

ρ2gy (h− y) b (y) dy

]
, (2.19)

∂

∂z
(α2p2) =

∂

∂z

(
α2p

i
2

)
+ α2ρ2gy

∂h

∂z
. (2.20)

The difference between the pressure fields of each phase k at the interface can be

modeled using the concept of interfacial tension through the Young-Laplace Equation (Bergles

et al., 1981; Ishii; Hibiki, 2011; Panton, 2013), i.e.,
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pi1 − pi2 = −σ21γ̂
i, (2.21)

γ̂i (z) =
∂2h
∂z2[

1 +
(
∂h
∂z

)2] 3
2

, (2.22)

where σ21 is the fluids interfacial tension and γ̂i is the average interface curvature field that

can be calculated from the non-linear relationship between the liquid height field h and the

void fraction field α, Equation 2.11. The average curvature γ̂i can be approximated using

the long wave theory approximation, where for high wavelengths and small deviations from

the equilibrium liquid height h the average curvature can be approximated by (Barnea; Taitel,

1994):

γ̂i (z) ≈ ∂2h

∂z2
. (2.23)

However, the suitability of this approximation other than for stability analysis for

small deviations from equilibrium positions is questionable. In the case of the slug flow pattern

for example, where there are mass shocks and discontinuities in the void fraction fields, this

assumption is no longer valid. However, even complete, the flat gas-liquid interface model has

limitations, especially in the Taylor bubble nose region, where the curvature along the cross

section is clearly also present, nevertheless, in this case, this is outside the scope of this work.

The phase k wall and interface shear stresses τwk and τi are given (Wallis, 1969;

Shoham, 2006)

τwk = −1

2
fw
k ρkvk|vk|, (2.24)

τi = τ i2 = −τ i1 = −1

2
fiρ2 (v2 − v1) |(v2 − v1)|, (2.25)

where fw
k and fi are the phase k wall and interface Fanning friction factors, respectively. They

are calculated using classical models from literature through the hydraulic diameter concept

and the Colebrook–White equation, where the smooth interface friction factor is approximated

by the gas phase friction factor using the slip velocity based Reynolds number (Taitel; Dukler,

1976; Shoham, 2006). For stratified flows with high void fractions, the liquid film friction is

strongly affected by the gas-liquid interface friction, hence the classical model based on the
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Colebrook–White equation is not suitable (Shoham, 2006). Therefore, the liquid film friction

model should include the void fraction or the gas-liquid interface friction in its formulation, as

it was done in the following examples:

• Ouyang e Aziz (1996) model:

f1 =
1.6291

Re0.5161SL

[
αv2

(1− α) v1

]0.0926
, (2.26)

ReSL =
ρ1 (1− α) v1D

µ1

, (2.27)

• Spedding e Hand (1997) model:

f1 =
24

ReSL
, if ReL ⩽ 2100, (2.28)

f1 = 0.0262 [(1− α)ReSL]
−0.139 , if ReL > 2100, (2.29)

ReL =
ρ1v1D1

µ1

, (2.30)

• Nossen et al. (2000) model:

1√
f1

=
1√

fHaaland
1

+

(
1√
fHand
1

− 1√
fHaaland
1

)
tanh (2000Fr)

Si

S1

, (2.31)

1√
fHaaland
1

= 2

{
−1.8 log

[
6.9

Re
+
( ϵ

3.7

)1.11]}
, (2.32)

Re =
ρ1v1D

µ1

, (2.33)

Fr =
τi

(ρ1 − ρ2) gD cos θ
. (2.34)
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Modeling the interfacial friction factor is more challenging, due to the fact that the

gas-liquid interface is deformable with the eventual presence of waves that can amplify the

averaged momentum transfer rate through the interface when compared to the smooth interface.

Consequently, the wavy interface friction factor must take this effect into account because the

slug flow interface is not smooth. It can be modelled by (Andritsos; Hanratty, 1987; Shoham,

2006; Bonizzi et al., 2009)

fi = f2, if αv2 ⩽ j2t, (2.35)

fi = f2

{
1 + 15

√
h

D

[
αv2
j2t

− 1

]}
, if αv2 > j2t, (2.36)

j2t = 5

√
ρ20
ρ2

, (2.37)

where j2t is the critical gas superficial velocity that indicates the inception of wave growth, ρ20

and ρ2 the gas density at a reference atmospheric pressure and operational conditions, respec-

tively. Another possible closure relation is given by (Andreussi; Persen, 1987; Bonizzi et al.,

2009)

fi = f2, if F ⩽ 0.36, (2.38)

fi = f2

{
1 + 29.7 (F − 0.36)0.67

(
h

D

)0.2
}
, if F > 0.36, (2.39)

F =

√
ρ2

(ρ1 − ρ2)

(v2 − v1)√
αg cos θ A

Si

, (2.40)

where F is the dimensionless Froude number. This model seems more appropriated as it is

based on the inviscid Kelvin-Helmholtz instability and the slip velocity.

Considering the aforementioned assumptions for closure models, i.e., that there is

no mass transfer between the phases Γk = 0 and the gas phase pressure at the interface pi2 as the

reference pressure p, then the averaged mass and linear momentum conservation laws for each

phase are rewritten as

∂

∂t
(α1ρ1) +

∂

∂z
(α1ρ1v1) = 0, (2.41)
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∂

∂t
(α2ρ2) +

∂

∂z
(α2ρ2v2) = 0, (2.42)

∂

∂t
(α1ρ1v1) +

∂

∂z

(
α1ρ1v

2
1 + α1p

)
=− α1ρ1g sin θ − α1ρ1g cos θ

∂h

∂z

+ p
∂α1

∂z
+

∂

∂z

(
ρ1α1ν

eq
1

∂v1
∂z

)
+ α1

∂

∂z

(
σ21γ̂

i
)

+
1

2

Si

A
fiρ2 (v2 − v1) |(v2 − v1)| −

1

2

S1

A
fw
1 ρ1v1|v1|,

(2.43)

∂

∂t
(α2ρ2v2) +

∂

∂z

(
α2ρ2v

2
2 + α2p

)
=− α2ρ2g sin θ − α2ρ2g cos θ

∂h

∂z

+ p
∂α2

∂z
+

∂

∂z

(
ρ2α2ν

eq
2

∂v2
∂z

)
− 1

2

Si

A
fiρ2 (v2 − v1) |(v2 − v1)| −

1

2

S2

A
fw
2 ρ2v2|v2|.

(2.44)

Note that the two fluid model equations above form a system of PDE’s in the con-

servative form with a source term

∂Q⃗

∂t
+

∂F⃗

∂z
= S⃗S, (2.45)

where the Q⃗, F⃗ and S⃗S are the vectors of conserved variables, its fluxes and sources. They are

given by

Q⃗ =


q1

q2

q3

q4

 =


α1ρ1

α2ρ2

α1ρ1v1

α2ρ2v2

 , (2.46)

F⃗ =


f1

f2

f3

f4

 =


α1ρ1v1

α2ρ2v2

α1ρ1v
2
1 + α1p

α2ρ2v
2
2 + α2p

 , (2.47)
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S⃗S =


s1

s2

s3

s4

 =


0

0

s3

s4

 , (2.48)

where

s3 = −α1ρ1g sin θ − α1ρ1g cos θ
∂h

∂α1

∂α1

∂z
+ p

∂α1

∂z
+

∂

∂z

(
ρ1α1ν

eq
1

∂v1
∂z

)
+ α1

∂

∂z

(
σ21γ̂

i
)

+
1

2

Si

A
fiρ2 (v2 − v1) |(v2 − v1)| −

1

2

S1

A
fw
1 ρ1v1|v1|,

(2.49)

s4 = −α2ρ2g sin θ − α2ρ2g cos θ
∂h

∂α2

∂α2

∂z
+ p

∂α2

∂z
+

∂

∂z

(
ρ2α2ν

eq
2

∂v2
∂z

)
− 1

2

Si

A
fiρ2 (v2 − v1) |(v2 − v1)| −

1

2

S2

A
fw
2 ρ2v2|v2|.

(2.50)

2.1.2 Dispersed Phases Flow

In the dispersed phases flow case, the total averaged momentum source M̂k com-

bines the momentum flux through the interface and the flux induced by wall boundaries parietal

stresses (Ishii; Hibiki, 2011; Morel, 2015), i.e.,

M̂k = vikΓk +
(
pik − pk

) ∂αk

∂z
+ M̂ i

k + τwk
Sk

A
. (2.51)

The phases parietal stresses τwk act mainly in the liquid phase wetting the duct inner

wall perimeter S. However, it is affected by the whole mixture properties. Therefore

τw1 = τ̄w, (2.52)

τw2 = 0. (2.53)

The average parietal mixture shear stress τ̄w can be modelled by the two-phase

multiplier ϕ2
d, or the homogeneous model (Wallis, 1969; Shoham, 2006), as
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τ̄wS

A
= −ϕ2

d

2

D

f1
ρ1

ρmvm|ρmvm| = −ϕ2
d

2

D

f1
ρ1

(ρ1α1v1 + ρ2α2v2) |(ρ1α1v1 + ρ2α2v2)|, (2.54)

τ̄wS

A
= − 2

D
ρmfmJ |J | = − 2

D
ρmfm (α1v1 + α2v2) |(α1v1 + α2v2)|, (2.55)

where f1 and fm are the Fanning friction factors for the liquid phase and the mixture, respec-

tively, ρmvm is the total mass flow, J is the mixture velocity and D is the pipe internal diameter.

Another possible model using the two-phase multiplier concept is given by (Malnes, 1982;

Bonizzi; Issa, 2003; Bendlksen et al., 1991)

τ̄wS

A
= − 2

D
ρ1fdvm|vm|, (2.56)

fd = ϕdf
Hand
1 , (2.57)

ϕd =
1

1− α

[
1 + 15.3

α√
1− α

v∞
vm

]
, (2.58)

v∞ = 1.18

[
gσ (ρ1 − ρ2)

ρ21

]0.25
, (2.59)

where v∞ is the bubble rise velocity in an infinite medium and fHand
1 is the liquid phase Fanning

friction factor given by Equation 2.29.

From the linear momentum jump condition at the gas-liquid interface, the interfa-

cial momentum fluxes between phases are equal in magnitude but in opposite directions (Ishii;

Hibiki, 2011), thus

M̂ i
1 + M̂ i

2 = 0. (2.60)

Therefore, considering the aforementioned definition, that there is no mass transfer

between the phases Γk = 0 and p2 ≈ pi2, as the bubbles are small and the gas density is much

smaller than liquid density, it yields for both phases

M̂1 =
(
pi1 − p1

) ∂α1

∂z
− M̂2 + τ̄w

S

A
, (2.61)



53

M̂2 = M̂ i
2. (2.62)

As it was done previously, the gas phase pressure at the interface pi2 is considered as

the reference pressure p. Therefore, the pressure fields will be written from the reference pres-

sure added the hydrostatic deviations and interface jumps. Considering the bubbles as spheres

spaced in a regular lattice under potential flow, yields (Stuhmiller, 1977; Bertodano et al., 2016)

pi1 − p1 = −Cpρ1 (v2 − v1)
2 , (2.63)

where p1, pi1 and Cp are the averaged liquid pressure, the liquid pressure at the gas-liquid in-

terface and the pressure difference coefficient, respectively, and Cp = 1/4 for dilute spheres in

potential flow. It should be noted that in case of distorted bubbles regime, the pressure differ-

ence coefficient should be estimated from experimental data, with reported values of Cp = 1 as

reasonable in some applications (Bertodano et al., 2016). Therefore, the averaged momentum

transfer for the liquid phase M̂1 is given by

M̂1 = −Cpρ1 (v2 − v1)
2 ∂α1

∂z
− M̂2 + τ̄w

S

A
. (2.64)

Again, the difference between the pressure fields of each phase k at the interface

can be modeled using the concept of interfacial tension through the Young-Laplace Equation

(Bergles et al., 1981; Ishii; Hibiki, 2011; Panton, 2013)

pi1 − pi2 = −σ21γ̂
i, (2.65)

γ̂i (z) =
2

rb
, (2.66)

where σ21 is the fluids interfacial tension, γ̂i the average interface curvature field and rb the

bubble’s average radius. Hence, the pressure fields for both phases are related as

p1 = p2 − σ21
2

rb
+ Cpρ1 (v2 − v1)

2 . (2.67)

As the interfaces are not unique and distributed over the dispersed phase, the overall

averaged gas-liquid interfacial shear stresses τ ik manifest through the drag M̂D
k , added mass

M̂V
k and collision M̂C

k forces over the dispersed bubbles leading to an averaged interfacial
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momentum transfer for the gas phase M̂2 (Ishii; Hibiki, 2011; Morel, 2015; Bertodano et al.,

2016)

M̂2 = M̂ i
2 = M̂D

2 + M̂V
2 + M̂C

2 , (2.68)

M̂D
2 = −α2ρ1

(
3CD

8rb

)
(v2 − v1) |(v2 − v1)|, (2.69)

M̂V
2 = −α2ρ1CV

(
∂v2
∂t

+ v2
∂v2
∂z

− ∂v1
∂t

− v1
∂v1
∂z

)
, (2.70)

M̂C
2 = − ∂

∂z

[
CC

(1 + α1) (1− α1)
3

2α3
1

CV (ρ2 + CV ρ1) (v2 − v1)
2

]
, (2.71)

where rb, CD, CV , CC are the bubble’s average radius, drag, added mass and collision coeffi-

cients, respectively.

The bubble’s average radius will be given by the Kolmogorov-Hinze theory (Kol-

mogorov, 1949; Hinze, 1955). As they occur in the wake of the Taylor bubble, after the hy-

draulic jump under strong turbulence and recirculation, it is reasonable to consider the pattern

as finely dispersed under conditions near to the transition boundary, which is visible in the al-

ternate succession of liquid slugs and Taylor bubbles in the slug flow pattern (Barnea; Brauner,

1985).

The drag coefficient for the bubble swarm on the spherical or distorted turbulent

regime can be modelled by (Tomiyama et al., 1998)

CD =
CDT√
1− α

, (2.72)

CDT = max{ 24

Reb

(
1 + 0.15Re0.687b

)
,
8

3

Eo

Eo + 4
}, (2.73)

Reb =
ρ1vsdb
µ1

, (2.74)

Eo =
g (ρ1 − ρ2) d

2
b

σ21

, (2.75)
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where Reb and Eo are the bubbles Reynolds and Eötvös numbers. The added mass coefficient

is CV = 1/2 in the limit for an isolated sphere, being modified in order to consider the bubble

swarm effects as (Ishii; Hibiki, 2011)

CV =
1

2

(1− 2α)

(1− α)
. (2.76)

The spherical bubbles collision coefficient is given by (Bertodano et al., 2016)

CC =
1.8

1 +
(

τe
τb

) , (2.77)

where τe and τb are the bubble’s time constants of the bubble-induced eddies and inertia, re-

spectively. It should be noted that in case of large distorted bubbles regime, the added mass

coefficient CV and the bubbles collision coefficient CC should be estimated from experimen-

tal data, with reported values of CV = 2 and CC = 0.18 as reasonable in some applications

(Bertodano et al., 2016).

Considering the aforementioned definitions and closure models, that there is no

mass transfer between the phases Γk = 0 and the gas phase pressure at the interface pi2 as the

reference pressure p, the averaged mass and linear momentum conservation laws for each phase

are rewritten as

∂

∂t
(α1ρ1) +

∂

∂z
(α1ρ1v1) = 0, (2.78)

∂

∂t
(α2ρ2) +

∂

∂z
(α2ρ2v2) = 0, (2.79)

∂

∂t
(α1ρ1v1) +

∂

∂z

(
α1ρ1v

2
1 + α1p

)
=− α1ρ1g sin θ +

∂

∂z

(
ρ1α1ν

eq
1

∂v1
∂z

)
+ p

∂α1

∂z
− M̂2

+ τ̄w
S

A
− α1

∂

∂z

[
Cpρ1 (v2 − v1)

2 − σ21
2

rb

]
− Cpρ1 (v2 − v1)

2 ∂α1

∂z
,

(2.80)

∂

∂t
(α2ρ2v2)+

∂

∂z

(
α2ρ2v

2
2 + α2p

)
= −α2ρ2g sin θ+

∂

∂z

(
ρ2α2ν

eq
2

∂v2
∂z

)
+p

∂α2

∂z
+M̂2. (2.81)
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The two fluid model equations above form a system of PDE’s in the conservative

form with a source term as

∂Q⃗

∂t
+

∂F⃗

∂z
= S⃗D, (2.82)

where the Q⃗, F⃗ and S⃗D are the vectors of conserved variables, it’s fluxes and sources and are

given by

Q⃗ =


q1

q2

q3

q4

 =


ρ1α1

ρ2α2

α1ρ1v1

α2ρ2v2

 , (2.83)

F⃗ =


f1

f2

f3

f4

 =


α1ρ1v1

α2ρ2v2

α1ρ1v
2
1 + α1p

α2ρ2v
2
2 + α2p

 , (2.84)

S⃗D =


s1

s2

s3

s4

 =


0

0

s3

s4

 , (2.85)

where

s3 =− α1ρ1g sin θ +
∂

∂z

(
ρ1α1ν

eq
1

∂v1
∂z

)
+ p

∂α1

∂z
− M̂2 + τ̄w

S

A

− α1
∂

∂z

[
Cpρ1 (v2 − v1)

2 − σ21
2

rb

]
− Cpρ1 (v2 − v1)

2 ∂α1

∂z

, (2.86)

s4 = −α2ρ2g sin θ +
∂

∂z

(
ρ2α2ν

eq
2

∂v2
∂z

)
+ p

∂α2

∂z
+ M̂2. (2.87)

2.1.3 Composite Two Fluid Flow Model

Equations 2.45 and 2.82 form a composite system of PDE’s for the separate and

dispersed phases flow that can be combined in one model

∂Q⃗

∂t
+

∂F⃗

∂z
= IdS⃗S + (1− Id) S⃗D, (2.88)
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where the source term oscillates between S⃗S and S⃗D depending on the dynamically evaluated

flow pattern represented by the sigmoid function Id over a classification boundary that will be

defined in the Chapter 3, alternating from one flow pattern to another, as the unit cell model

suggests.

2.2 Simplified Model

In this section, the simplified model is presented. Some simplifying assumptions are

adopted in order to make the slug flow pattern analysis more tractable, ending on the constant

flux solution.

The slug flow pattern is characterized by slow kinematic mass waves given by quasi-

periodic oscillations of the void fraction and the phases velocities between the stratified and

dispersed bubble flow patterns. The flow can be modeled as incompressible given its low Mach

number. Under these premises, the incompressible averaged mass and momentum conservation

laws equations for each phase are written in its non conservative form as

∂αk

∂t
+

∂

∂z
(αkvk) = 0, (2.89)

ρk
∂vk
∂t

+ ρkvk
∂vk
∂z

= −∂p

∂z
− ρkg sin θ +

ρkν
eq
k

αk

∂

∂z

(
αk

∂vk
∂z

)
+

M̂k

αk

, (2.90)

where it was considered a constant equivalent kinematic viscosity, a hypothesis that proved to

be wrong, being discussed in the following chapters.

However, the pressure does not oscillate in this quasi-periodic aspect, slowly de-

creasing as the flow loses its energy. So, the modeling should eliminate the pressure variable in

order to tackle this quasi-periodic oscillations. This can be done by subtracting the incompress-

ible averaged momentum conservation law equations for each phase, which yields (Bertodano

et al., 2016)

ρ1
∂v1
∂t

+ ρ1v1
∂v1
∂z

− ρ2
∂v2
∂t

− ρ2v2
∂v2
∂z

=− (ρ1 − ρ2) g sin θ

+
ρ1ν

eq
1

α1

∂

∂z

(
α1

∂v1
∂z

)
− ρ2ν

eq
2

α2

∂

∂z

(
α2

∂v2
∂z

)
+

M̂1

α1

− M̂2

α2

.

(2.91)
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2.2.1 Separated Phases Model

In the separated phases case, considering the aforementioned definitions and closure

models discussed in Section 2.1.1, the subtracted momentum equation is given by

ρ1
∂v1
∂t

+ ρ1v1
∂v1
∂z

− ρ2
∂v2
∂t

− ρ2v2
∂v2
∂z

=− (ρ1 − ρ2) g sin θ − (ρ1 − ρ2) g cos θ
∂h

∂α2

∂α2

∂z

+ σ21
∂γ̂i

∂z

+
ρ1ν

eq
1

α1

∂

∂z

(
α1

∂v1
∂z

)
− ρ2ν

eq
2

α2

∂

∂z

(
α2

∂v2
∂z

)
+

1

α1α2

1

2

Si

A
fiρ2 (v2 − v1) |(v2 − v1)|

− 1

2

S1

A
fw
1

ρ1
α1

v1|v1|+
1

2

S2

A
fw
2

ρ2
α2

v2|v2|.

(2.92)

The equation can be rewritten

ρ1
Dv1
Dt

− ρ2
Dv2
Dt

=− (ρ1 − ρ2) g sin θ − (ρ1 − ρ2) g cos θ
∂h

∂α2

∂α2

∂z
+ σ21

∂γ̂i

∂z

+
ρ1ν

eq
1

α1

∂

∂z

(
α1

∂v1
∂z

)
− ρ2ν

eq
2

α2

∂

∂z

(
α2

∂v2
∂z

)
+

1

α1α2

1

2

Si

A
fiρ2 (v2 − v1) |(v2 − v1)|

− 1

2

S1

A
fw
1

ρ1
α1

v1|v1|+
1

2

S2

A
fw
2

ρ2
α2

v2|v2|.

(2.93)

where the total derivative operator is defined as

Dvk
Dt

=
∂vk
∂t

+ vk
∂vk
∂z

. (2.94)

2.2.2 Dispersed Phase Model

Similarly, in the dispersed phases case, the subtracted momentum equation is given

by
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ρ1
∂v1
∂t

+ ρ1v1
∂v1
∂z

− ρ2
∂v2
∂t

− ρ2v2
∂v2
∂z

=− (ρ1 − ρ2) g sin θ +
1

α1

τ̄w
S

A

+
ρ1ν

eq
1

α1

∂

∂z

(
α1

∂v1
∂z

)
− ρ2ν

eq
2

α2

∂

∂z

(
α2

∂v2
∂z

)
− ∂

∂z

[
Cpρ1 (v2 − v1)

2 − σ21
2

rb

]
− Cpρ1

α1

(v2 − v1)
2 ∂α1

∂z
− 1

α1α2

M̂2,

(2.95)

Assuming a constant bubble radius and using the total derivative operator defined

in Equation 2.94, the equation can be rewritten as

ρ1
Dv1
Dt

− ρ2
Dv2
Dt

=− (ρ1 − ρ2) g sin θ −
Cpρ1
α1

(v2 − v1)
2 ∂α1

∂z

− 2Cpρ1 (v2 − v1)

(
∂v2
∂z

− ∂v1
∂z

)
+

ρ1ν
eq
1

α1

∂

∂z

(
α1

∂v1
∂z

)
− ρ2ν

eq
2

α2

∂

∂z

(
α2

∂v2
∂z

)
+

1

α1

τ̄w
S

A
− 1

α1α2

M̂2.

(2.96)

The averaged interfacial momentum transfer for the gas phase M̂2 manifest through

the drag M̂D
2 , added mass M̂V

2 and collision M̂C
2 forces described in Equations 2.69 to 2.71,

that are rewritten as

M̂V
2 = −α2ρ1CV

(
Dv2
Dt

− Dv1
Dt

)
, (2.97)

M̂C
2 =CCCV (ρ2 + CV ρ1) (v2 − v1)

2

[
α2
2 (α

2
1 + 2α1 + 3)

2α4
1

]
∂α1

∂z

− CCCV (ρ2 + CV ρ1)
(1 + α1)α

3
2

α3
1

(v2 − v1)

(
∂v2
∂z

− ∂v1
∂z

)
,

(2.98)

Consequently,
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(
1 +

CV

α1

)
ρ1

Dv1
Dt

−
(
1 +

CV

ρα1

)
ρ2

Dv2
Dt

= − (ρ1 − ρ2) g sin θ

−
{
Cpρ1
α1

+ CCCV (ρ2 + CV ρ1)

[
α2 (α

2
1 + 2α1 + 3)

2α5
1

]}
(v2 − v1)

2 ∂α1

∂z

+

[
CCCV (ρ2 + CV ρ1)

(1 + α1)α
2
2

α4
1

− 2Cpρ1

]
(v2 − v1)

(
∂v2
∂z

− ∂v1
∂z

)
+

ρ1ν
eq
1

α1

∂

∂z

(
α1

∂v1
∂z

)
− ρ2ν

eq
2

α2

∂

∂z

(
α2

∂v2
∂z

)
+

1

α1

τ̄wS

A
+

ρ1
α1

(
3CD

8rb

)
(v2 − v1) |(v2 − v1)|,

(2.99)

where the densities ratio is defined by

ρ =
ρ2
ρ1

. (2.100)

2.2.3 Constant Flux Solution

The two incompressible averaged mass conservation law equations for both phases

are added in order to obtain a constant mixture volumetric flux solution (Bertodano et al., 2016):

∂

∂t
(

=1︷ ︸︸ ︷
α1 + α2) +

∂

∂z
(α1v1 + α2v2) =

∂J

∂z
= 0, (2.101)

where the average mixture volumetric flux J (t) is a constant in space for any incompressible

flow. This result is important because it allows the reduction of one degree of freedom since the

phases velocities vk are interrelated by the mixture volumetric flux J :

v2 =
J − α1v1

α2

. (2.102)

Therefore, it is only necessary to solve one averaged mass conservation law equa-

tion and the subtracted momentum equation can be described by one phase velocity becoming

a modified two-phase shallow water equation on circular pipes.

2.3 Travelling Wave

In this section, the travelling wave solution for the slug flow is addressed. It is

such that the two-phase flow variables fields described over the (z, t) plane are stationary in



61

time, if described in the transformed coordinate system over the (η, t′) plane (Dukler; Hubbard,

1975; Taitel; Barnea, 1990; Fagundes Netto et al., 1999; Needham; Merkin, 1984; Needham

et al., 2008; Giddings, 2017; Giddings; Billingham, 2019). Therefore, the following Galilean

transformation change of coordinates is used, in order to create a Lagrangian frame of reference

(Panton, 2013),

η = z − VTBt, (2.103)

t′ = t. (2.104)

In the matrix form, it yields

η
t′

 =

1 −VTB

0 1

z
t

 . (2.105)

The differential operators can be rewritten using the chain rule

∂

∂t
=

∂t′

∂t

∂

∂t′
+

∂η

∂t

∂

∂η
=

∂

∂t′
− VTB

∂

∂η
, (2.106)

∂

∂z
=

∂t′

∂z

∂

∂t′
+

∂η

∂z

∂

∂η
=

∂

∂η
, (2.107)

In this new coordinate frame (η, t′), the flow variables are going to be constant in

time varying only in the transformed space η. Therefore

∂

∂t
= −VTB

∂

∂η
, (2.108)

∂n

∂xn
=

∂n

∂ηn
, (2.109)

where n is the derivative operator order.

2.3.1 Mass Conservation Equations

Applying the travelling wave transformation to the incompressible averaged mass

conservation equations yields

−VTB
∂αk

∂η
+

∂

∂η
(αkvk) =

∂

∂η
[αk (vk − VTB)] = 0, (2.110)
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∂Mk

∂η
= 0, (2.111)

where the relative velocity uk and relative volumetric flux Mk are defined as

uk = vk − VTB, (2.112)

Mk = αkuk. (2.113)

Therefore, the solution of the mass conservation equations are analytical, configur-

ing an initial value problem where constant relative volumetric fluxes Mk are the solutions. This

result is important, since the velocity fields vk are defined by the void fraction field, closing the

problem kinematics

vk = VTB +
Mk

αk

. (2.114)

The constant mixture volumetric flux solution, discussed in Section 2.2.3, can be

rewritten as

α1 (v1 − VTB) + α2 (v2 − VTB) = J − VTB, (2.115)

M1 +M2 = J − VTB, (2.116)

which means that the velocity fields are a function of the void fraction α and are completely

defined by the following constants: mixture volumetric flux J , Taylor bubble velocity VTB and

the relative volumetric flux of the gas phase M2. It should be noted that, although estimated by

closure models, the constant relative volumetric flux of the gas phase M2 is an input parameter

that can be identified from experimental data.

2.3.1.1 Bubble Entrainment

The constant relative volumetric fluxes Mk of the phase k, obtained through the

constant mixture volumetric flux solution, take an additional and important meaning at the slug

mixing region on the Taylor bubble tail after the hydraulic jump, which is where the gas relative

volumetric flux M2 can be related to the shedding or pickup rate. Assuming that in order to

have a stable unit cell, the bubbles that detach from the Taylor bubble tail are assimilated by
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the next Taylor bubble represents a dynamic equilibrium where M2 ⩽ 0 represents the bubble

entrainment at the liquid slug (Dukler; Hubbard, 1975; Shoham, 2006).

Furthermore, the gas relative volumetric flux M2 and the Taylor bubble velocity VTB

are the remaining input parametric quantities to fully define the dynamical system alongside the

already known PV T and transport properties and the closure models. These quantities can be

estimated from correlations and classical models from the literature at any point of the unit cell,

as they are constants. It follows at the aerated liquid piston that

M2 = αS (vB − VTB) . (2.117)

The Taylor Bubble velocity VTB is given by (Bendiksen, 1984; Shoham, 2006)

VTB =
(
1.05 + 0.15 sin2 θ

)
J + (0.54 cos θ + 0.35 sin θ)

√
gD, if Fr < 3.5, (2.118)

VTB = 1.2J + 0.35 sin θ
√

gD, if Fr ⩾ 3.5, (2.119)

The gas in-situ velocity vB at the aerated liquid slug is estimated by the Drift Flux

model (Wallis, 1969; Shoham, 2006)

vB = 1.2J + 1.53

[
gσ21 (ρ1 − ρ2)

ρ21

]0.25
(1− αS)

0.5 sin θ, (2.120)

The void fraction αS at the aerated liquid slug can be modelled by the following

closure relationships:

• Gomez et al. (2000) model:

αS = 1− e−(7.85×10−3θ+2.48×10−6ReLS) (2.121)

ReLS =
ρ1JD

µ1

(2.122)

• Barnea e Brauner (1985) model:

αS = 0.058

[
2

√
0.4σ21

(ρ1 − ρ2) g

(ρ1
σ

)0.6( 2

D
fmJ

3

)0.4

− 0.725

]2
(2.123)
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• Zhang et al. (2003) model:

αS = 1−

[
1 +

Tsm

3.16
√

(ρ1 − ρ2) gσ21

]−1

(2.124)

Tsm =
1

Ce

[
1

2
ρmfmJ

2 +
D

4

ρ1 (1− αF ) (VTB − vF ) (J − vF )

LS

]
(2.125)

Ce =
2.5− |sin θ|

2
(2.126)

Despite having experimental data support, the model by Gomez et al. (2000) presents

a regression that does not depend on critical parameters for the description of the bubble for-

mation mechanism, such as surface tension, for example. The model by Barnea e Brauner

(1985) is grounded on physical processes but assumes as a hypothesis spherical bubbles over the

transition boundary with critical diameter, assumptions that are questionable regarding model

generalization. The mechanistic model by Zhang et al. (2003) is based on energy transfer mech-

anisms converting turbulent kinetic energy Tsm to bubble surface energy. However, it neglects

the coalescence mechanisms and the efficiency in the energy conversion process, aspects dealt

by the fit of the experimental data.

Another approach is to deal with the gas relative volumetric flux M2 as a whole

using the bubble entrainment models available in the literature instead of treat each variable:

• Nydal e Andreussi (1991) model:

M2 = 0.076
Si

D
(VTB − vF )− 0.15, (2.127)

• Chanson (1996) model:

M2 = (1− αF ) (VTB − vF ) ζ (Fr − 1)ε , (2.128)

Fr =
(VTB − vF )√
g (1− αF )

A
Si

, (2.129)

ζ = 0.018, ε = 1.245, if 2.5 < Fr < 7, (2.130)
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ζ = 0.014, ε = 1.4, if 7 ⩽ Fr < 30. (2.131)

The model by Nydal e Andreussi (1991) presents a correlation having experimental

data support on aerated slugs in a near horizontal pipe running on tap water and air. The model

by Chanson (1996) correlates the energy dissipation on a hydraulic jump with the entrainment

rate. Interestingly, both models have an entrainment onset depending on the relative velocity on

the Taylor bubble velocity.

2.3.1.2 Periodic Solution

The mass balance of the phase k can be done differently for the periodic solution

only, by integrating the mass flow rates at a fixed cross section over the slug unit transit time

(Taitel; Barnea, 1990; Shoham, 2006). Therefore,

jk =
1

tu

∫ tu

0

αkvkdt =
1

tu

(∫ ts

0

αkvkdt+

∫ ts+tf

ts

αkvkdt

)
, (2.132)

where tu, tf and ts are the slug unit, Taylor bubble and liquid slug transit times, respectively.

Using the travelling wave transformation, it yields

jk =
1

LU

∫ LS

0

αkvkdη +
1

LU

∫ LS+LF

LS

αkvkdη, (2.133)

where LU , LF and LS are the slug unit, Taylor bubble and liquid slug lengths, respectively.

From the constant mixture volumetric flux solution, it is rewritten as

αkvk = Mk + αkVTB. (2.134)

Substituting, it leads to

jk = Mk +
VTB

LU

(∫ LS

0

αkdη +

∫ LS+LF

LS

αkdη

)
. (2.135)

The equation can then be rewritten as

jk −Mk

VTB

= ᾱk =
1

LS + LF

(∫ LS

0

αkdη +

∫ LS+LF

LS

αkdη

)
, (2.136)

where ᾱk is the slug unit average phase k volumetric fraction that is completely defined by

the parametric inputs. Considering that the slug length LS can be estimated through a closure
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relationship, the mass balance given above can be used to calculate the length of the Taylor

bubble region LF from the integration of the void fraction wave solution profile for the dispersed

and segregated patterns separately. One can simplify the mass balance for two particular cases

involving the constant equilibrium solutions (Taitel; Barnea, 1990; Shoham, 2006):

• Constant liquid slug and Taylor bubble void fractions giving the pulse train solution:

jk −Mk

VTB

= αS
k

LS

LU

+ αF
k

LF

LU

= αS
k (1− β) + αF

k β, (2.137)

• Constant liquid slug void fraction:

jk −Mk

VTB

= αS
k

LS

LU

+
1

LU

∫ LS+LF

LS

αkdη. (2.138)

2.3.2 Momentum Conservation Equations

The appearance of the relative velocity in the mass equation solution suggests a

change of variables in the problem. To do so, first, the differential operators for the new vari-

ables must be rewritten considering the travelling wave reference frame, a constant Taylor bub-

ble velocity VTB and the mass equation solution as

∂nvk
∂ηn

=
∂nuk

∂ηn
, (2.139)

Dvk
Dt

=
∂vk
∂t

+ vk
∂vk
∂z

= −VTB
∂vk
∂η

+ vk
∂vk
∂η

= (vk − VTB)
∂vk
∂η

= uk
∂uk

∂η
=

∂

∂η

(
u2
k

2

)
,

(2.140)

vs = v2 − v1 = u2 − u1 = us, (2.141)

∂uk

∂η
=

∂

∂η

(
Mk

αk

)
= −Mk

α2
k

∂αk

∂η
, (2.142)

∂

∂η

(
u2
k

2

)
= −M2

k

α3
k

∂αk

∂η
, (2.143)

∂

∂η

(
αk

∂uk

∂η

)
= − ∂

∂η

(
Mk

αk

∂αk

∂η

)
=

Mk

α2
k

(
∂αk

∂η

)2

− Mk

αk

∂2αk

∂η2
. (2.144)
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In the separated phases flow case as discussed in Section 2.2.1, the subtracted mo-

mentum equation 2.93 is rewritten considering the aforementioned change of variables

ρ1
∂

∂η

(
u2
1

2

)
− ρ2

∂

∂η

(
u2
2

2

)
=−∆ρg sin θ −∆ρg cos θ

∂h

∂α2

∂α2

∂η
+ σ21

∂γ̂i

∂η

+
ρ1ν

eq
1

α1

∂

∂η

(
α1

∂u1

∂η

)
− ρ2ν

eq
2

α2

∂

∂η

(
α2

∂u2

∂η

)
− 1

α1α2

τiSi

A
+

1

α1

τw1 S1

A
− 1

α2

τw2 S2

A
,

(2.145)

(
M2

1

α3
1

+ ρ
M2

2

α3
2

)
∂α2

∂η
=− (1− ρ) g sin θ − 1

ρ1α1α2

τiSi

A
+

1

ρ1α1

τw1 S1

A
− 1

ρ1α2

τw2 S2

A

+ (1− ρ) g cos θ

(
A

Si

)
∂α2

∂η
+

σ21

ρ1

∂γ̂i

∂η

+ νeq
1

[
M1

α3
1

− ρν
M2

α3
2

](
∂α2

∂η

)2

+ νeq
1

[
M1

α2
1

+ ρν
M2

α2
2

]
∂2α2

∂η2
.

(2.146)

In the dispersed phases flow case as discussed in Section 2.2.2, the subtracted mo-

mentum equation 2.99 is also rewritten considering the aforementioned change of variables

(
1 +

CV

α1

)
ρ1

∂

∂η

(
u2
1

2

)
−
(
1 +

CV

ρα1

)
ρ2

∂

∂η

(
u2
2

2

)
= −∆ρg sin θ

+

{
Cpρ1
α1

+ CCCV (ρ2 + CV ρ1)

[
α2 (α

2
1 + 2α1 + 3)

2α5
1

]}
(u2 − u1)

2 ∂α2

∂z

+

[
CCCV (ρ2 + CV ρ1)

(1 + α1)α
2
2

α4
1

− 2Cpρ1

]
(u2 − u1)

(
∂u2

∂z
− ∂u1

∂z

)
+

ρ1ν
eq
1

α1

∂

∂η

(
α1

∂u1

∂η

)
− ρ2ν

eq
2

α2

∂

∂η

(
α2

∂u2

∂η

)
+

1

α1

τ̄wS

A
− 1

α1α2

M̂D
2 ,

(2.147)

[(
1 +

CV

α1

)
M2

1

α3
1

+

(
1 +

CV

ρα1

)
ρ
M2

2

α3
2

]
∂α2

∂η
= − (1− ρ) g sin θ +

1

ρ1α1

τ̄wS

A
− 1

ρ1α1α2

M̂D
2

+

{
Cp

α1

+ CCCV (ρ+ CV )

[
α2 (α

2
1 + 2α1 + 3)

2α5
1

]}(
M2

α2

− M1

α1

)2
∂α2

∂η

−
[
CCCV (ρ+ CV )

(1 + α1)α
2
2

α4
1

− 2Cp

](
M2

α2

− M1

α1

)(
M2

α2
2

+
M1

α2
1

)
∂α2

∂η

+ νeq
1

[
M1

α3
1

− ρν
M2

α3
2

](
∂α2

∂η

)2

+ νeq
1

[
M1

α2
1

+ ρν
M2

α2
2

]
∂2α2

∂η2
,

(2.148)
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where

∆ρ = ρ1 − ρ2, (2.149)

and

ν =
νeq
2

νeq
1

. (2.150)

In addition to the ratios of specific masses ρ and relative kinematic viscosities ν, the

following dimensionless numbers are defined

ξ =
η

D
, (2.151)

γ̂ = Dγ̂i, (2.152)

mk =
Mk√
gD

, (2.153)

Re =

√
gDD

νeq
1

, (2.154)

We =
ρ1gD

2

σ21

, (2.155)

where, considering a characteristic velocity
√
gD, the variables ξ, γ̂, mk, Re and We are the di-

mensionless travelling wave space, averaged interface curvature, relative flux Froude, Reynolds

and Weber numbers, respectively. The differential operators for the new dimensionless travel-

ling wave space variable must be rewritten

∂n

∂ηn
=

1

Dn

∂n

∂ξn
. (2.156)

For the separate phases flow case, the subtracted momentum equation 2.146 is

rewritten as
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(
m2

1

α3
1

+ ρ
m2

2

α3
2

)
∂α2

∂ξ
=− (1− ρ) sin θ − 1

ρ1gα1α2

τiSi

A
+

1

ρ1gα1

τw1 S1

A
− 1

ρ1gα2

τw2 S2

A

+ (1− ρ) cos θ

(
A

SiD

)
∂α2

∂ξ
+

1

We

∂γ̂

∂ξ

+
1

Re

[
m1

α3
1

− ρν
m2

α3
2

](
∂α2

∂ξ

)2

+
1

Re

[
m1

α2
1

+ ρν
m2

α2
2

]
∂2α2

∂ξ2
.

(2.157)

Moreover, for the dispersed phase flow case, the subtracted momentum equation

2.148 is also given as

[(
1 +

CV

α1

)
m2

1

α3
1

+

(
1 +

CV

ρα1

)
ρ
m2

2

α3
2

]
∂α2

∂ξ
= − (1− ρ) sin θ +

1

ρ1gα1

τ̄wS

A
− 1

ρ1gα1α2

M̂D
2

+

{
Cp

α1

+ CCCV (ρ+ CV )

[
α2 (α

2
1 + 2α1 + 3)

2α5
1

]}(
m2

α2

− m1

α1

)2
∂α2

∂ξ

−
[
CCCV (ρ+ CV )

(1 + α1)α
2
2

α4
1

− 2Cp

](
m2

α2

− m1

α1

)(
m2

α2
2

+
m1

α2
1

)
∂α2

∂ξ

+
1

Re

[
m1

α3
1

− ρν
m2

α3
2

](
∂α2

∂ξ

)2

+
1

Re

[
m1

α2
1

+ ρν
m2

α2
2

]
∂2α2

∂ξ2
.

(2.158)

The previous equations for the separated and dispersed phases flow can be united

in one model depending on the dynamically evaluated flow pattern represented by the sigmoid

function Id over a classification boundary, alternating from one flow pattern to another, as the

unit cell model suggests (Section 2.1.3), which leads to

FCA (α)
∂α

∂ξ
= FFB (α) + F∆P (α)

∂α

∂ξ
+ FV 1 (α)

(
∂α

∂ξ

)2

+ FV 2 (α)
∂2α

∂ξ2
+

(1− Id)

We

∂γ̂

∂ξ
,

(2.159)

where FCA, FFB, F∆P , FV 1 and FV 2 are the convective acceleration, force balance, pressure

difference between phases and viscosity dissipation terms, respectively

FCA (α) =

[(
1 + Id

CV

α1

)
m2

1

α3
1

+

(
1 + Id

CV

ρα1

)
ρ
m2

2

α3
2

]
, (2.160)

FFB (α) =− (1− ρ) sin θ − 1

ρ1gα1α2

[
(1− Id)

τiSi

A
+ IdM̂

D
2

]
+

1

ρ1gα1

[
(1− Id)

τw1 S1

A
+ Id

τ̄wS

A

]
− (1− Id)

ρ1gα2

τw2 S2

A
,

(2.161)
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F∆P (α) = (1− Id) (1− ρ) cos θ

(
A

SiD

)
+ Id

{
Cp

α1

+ CCCV (ρ+ CV )

[
α2 (α

2
1 + 2α1 + 3)

2α5
1

]}(
m2

α2

− m1

α1

)2

+ Id

[
CCCV (ρ+ CV )

(1 + α1)α
2
2

α4
1

− 2Cp

](
m1

α1

− m2

α2

)(
m2

α2
2

+
m1

α2
1

)
,

(2.162)

FV 1 (α) =
1

Re

(
m1

α3
1

− ρν
m2

α3
2

)
, (2.163)

FV 2 (α) =
1

Re

(
m1

α2
1

+ ρν
m2

α2
2

)
. (2.164)

As the void fraction wave has shocks with jumps in the slug flow pattern, it is not

possible to use the long wave approximation to model the interfacial tension effects (Barnea;

Taitel, 1994). Therefore, the mean curvature gradient is calculated using the chain rule

∂γ̂i

∂z
=

∂

∂z


∂2h
∂z2[

1 +
(
∂h
∂z

)2] 3
2

 =
∂3h
∂z3[

1 +
(
∂h
∂z

)2] 3
2

− 3
∂h

∂z

(
∂2h
∂z2

)2
[
1 +

(
∂h
∂z

)2] 5
2

. (2.165)

The combined averaged momentum equation can be written either as a function of

the void fraction α or the liquid height h which can be seen as a non-linear coordinate change,

especially in the case of dispersed phases flow but with direct physical sense for segregated

patterns only, being equivalent flow problem formulations. It is preferable to write the problem

as a function of the void fraction α as it is a more general quantity, which allows directly dealing

with the problem in the dispersed bubble pattern in the aerated piston section, for example.

However, it is necessary a change in the variables through the generalised high-order chain rule

through the Faà di Bruno’s formulas

∂3h

∂z3
=

∂3h

∂α3

(
∂α

∂z

)3

+ 3
∂2h

∂α2

∂α

∂z

∂2α

∂z2
+

∂h

∂α

∂3α

∂z3
, (2.166)

∂2h

∂z2
=

∂2h

∂α2

(
∂α

∂z

)2

+
∂h

∂α

∂2α

∂z2
. (2.167)

Therefore
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∂γ̂i

∂z
=

1[
1 +

(
∂h
∂α

∂α
∂z

)2] 3
2

[
∂3h

∂α3

(
∂α

∂z

)3

+ 3
∂2h

∂α2

∂α

∂z

∂2α

∂z2
+

∂h

∂α

∂3α

∂z3

]

−
3 ∂h
∂α

∂α
∂z[

1 +
(
∂h
∂α

∂α
∂z

)2] 5
2

[(
∂2h

∂α2

)2(
∂α

∂z

)4

+ 2
∂h

∂α

∂2h

∂α2

(
∂α

∂z

)2
∂2α

∂z2
+

(
∂h

∂α

)2(
∂2α

∂z2

)2
]
.

(2.168)

The high-order derivatives of the implicitly defined inverse function h(α) are calcu-

lated from the stratified flow pattern geometric relations discussed in Section 2.1.1 through the

Faà di Bruno’s formulas again as

∂h

∂α
= −A

Si

, (2.169)

∂2h

∂α2
=

2DA2h̃

S4
i

, (2.170)

∂3h

∂α3
= −16A4

πS7
i

(
1 + 3h̃2

)
. (2.171)

Substituting

∂γ̂i

∂z
=

1[
1 +

(
A
Si

∂α
∂z

)2] 3
2

−16A4
(
1 + 3h̃2

)
πS7

i

(
∂α

∂z

)3

+
6DA2h̃

S4
i

∂α

∂z

∂2α

∂z2
− A

Si

∂3α

∂z3



+
3A
Si

∂α
∂z[

1 +
(

A
Si

∂α
∂z

)2] 5
2

[
4D2A4h̃2

S8
i

(
∂α

∂z

)4

− 4DA3h̃

S5
i

(
∂α

∂z

)2
∂2α

∂z2
+

A2

S2
i

(
∂2α

∂z2

)2
]
.

(2.172)

Using the dimensionless numbers and differential operators as defined above, one

has the dimensionless mean curvature gradient
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1

We

∂γ̂

∂ξ
=

1
We[

1 +
(

A
SiD

∂α
∂ξ

)2] 3
2

−16A4
(
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(2.173)

The dimensionless mean curvature gradient can be rewritten:

(1− Id)

We

∂γ̂

∂ξ
=FSF1 (α,w)

(
∂α

∂ξ

)3

+ FSF2 (α,w)
∂α

∂ξ

∂2α

∂ξ2
+ FSF3 (α,w)

∂3α

∂ξ3

FSF4 (α,w)

(
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)5
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)3
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(
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∂ξ2

)2
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(2.174)

where the surface force terms FSFi are defined

FSF1 (α,w) = − 1

We

(1− Id)[
1 +

(
A

SiD
∂α
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)2] 3
2

16A4
(
1 + 3h̃2

)
SS7

i

(2.175)

FSF2 (α,w) =
1

We

(1− Id)[
1 +

(
A

SiD
∂α
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)2] 3
2

6A2h̃

S4
i
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FSF3 (α,w) = − 1

We

(1− Id)[
1 +

(
A

SiD
∂α
∂ξ

)2] 3
2

A

SiD
(2.177)

FSF4 (α,w) =
1

We

(1− Id)[
1 +
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A

SiD
∂α
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FSF5 (α,w) = − 1

We

(1− Id)[
1 +

(
A

SiD
∂α
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)2] 5
2
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S6
i D
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(2.179)

FSF6 (α,w) =
1

We

(1− Id)[
1 +

(
A

SiD
∂α
∂ξ

)2] 5
2

3

(
A

SiD

)3

(2.180)
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Therefore

FCA (α)
∂α
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= FFB (α) + F∆P (α)
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(2.181)

This model is the most complete within the scope of this work and will be analysed

and solved in the next sections.

2.3.3 Pressure Coupling

It is desirable to know the coupling between the void fraction and pressure waves.

In engineering applications, it is much simpler to measure pressures by non-intrusive methods

than the void fraction itself. The solution obtained so far gives an estimate of the void fraction

waves, which can be used to obtain the correspoding pressure waves. This is given the fact that

the constant flux solution completely defines the velocities from the void fraction and, therefore,

everything else as the parietal shear stresses, etc. The simplest way to do so is from the averaged

linear momentum mixture model. It is obtained when the averaged linear momentum equations

for both phases of the complete composite two fluid flow model are added (Ishii; Hibiki, 2011),

i.e.,

∂

∂t
(ρ1α1v1 + ρ2α2v2) +

∂

∂x

(
ρ1α1v

2
1 + ρ2α2v

2
2 + p

)
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S

A
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∂

∂z
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eq
1

∂v1
∂z

)
+

∂
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(
ρ2α2ν

eq
2

∂v2
∂z

)
.

(2.182)

Applying the travelling wave transformation, yields
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and

∂
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2
1 + ρ2α2v

2
2
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(2.184)

The equation is integrated in order to obtain the pressure field

p = p0 + pca + pν + p∆ + pf , (2.185)

where p0 is a integration constant that reflects the average pressure around which the pressure

dynamically oscillates, τw the average parietal shear stress, Id the dynamically evaluated clas-

sification function that indicates the flow pattern transition, pca, pν , p∆, pf are the pressure

oscillation components induced by the convective acceleration, viscous dissipation, pressures

differences between phases and the body forces and shear stresses contributions, respectively.

They are given by

pca = ρ1α1 (VTB − v1) v1 + ρ2α2 (VTB − v2) v2, (2.186)



75

pν = ρ1α1ν
eq
1

∂v1
∂η

+ ρ2α2ν
eq
2

∂v2
∂η

, (2.187)

p∆ = −
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Id
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pf =

∫ t

t0

(
ρmgz + τw

S

A

)
∂η, (2.189)

The combined parietal shear stresses are given by

τw
S

A
= (1− Id) τ

w
1

S1

A
+ (1− Id) τ

w
2

S2

A
+ Idτ̄w

S

A
. (2.190)

2.4 Phase Space

In this section, the equations for the slug flow void fraction model are cast in terms

of a phase space. Considering the complete model with the viscous and interfacial terms, it

yields

FSF3 (α,w)
∂3α

∂ξ3
= −FFB (α) + [FCA (α)− F∆P (α)]
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(2.191)

It can be written as an autonomous three-dimensional non-linear dynamical system

by the defining the following three states

∂α

∂ξ
= w, (2.192)

∂2α

∂ξ2
=

∂w

∂ξ
= u, (2.193)

∂3α

∂ξ3
=

∂

∂ξ

∂2α

∂ξ2
=

∂u

∂ξ
, (2.194)
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∂u

∂ξ
= f3 (α,w, u) = − FFB (α)

FSF3 (α,w)
+

[FCA (α)− F∆P (α)]
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w − FV 1 (α)
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(2.195)

Consequently, the equation can be written in a compact form as a three dimensional

model on the phase space

∂H⃗3

∂ξ
= F⃗3

(
H⃗3

)
, (2.196)

H⃗3 =


α

w

u

 , (2.197)

F⃗3

(
H⃗3

)
=


w

u

f3

(
H⃗3

)
 . (2.198)

Although more complete, this model only applies to the stratified flow pattern, since

the leading order term only exists when ID = 0.

2.4.1 Steady State Solution

The steady state solutions, or the fixed points, are given by the equilibrium force

balance

FFB (α) = 0. (2.199)

If Id = 0, it gives the classical equilibrium solutions for the stratified flow pattern

(Taitel; Dukler, 1976; Shoham, 2006)

FFB (α) = − (1− ρ) sin θ − 1

ρ1gα1α2

τiSi

A
+

1

ρ1gα1

τw1 S1

A
− 1

ρ1gα2

τw2 S2

A
= 0. (2.200)

Subsequently, simplifying assumption are made such that one and two dimensional

systems are proposed.
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2.4.2 One Dimensional Model

The one-dimensional model is cast by neglecting the surface tension and viscous

terms, which yields

∂α

∂ξ
=

FFB (α)

FCA (α)− F∆P (α)
. (2.201)

Note that it is a first-order system, thus it does not have oscillatory solutions for

topological reasons (Strogatz; Dichter, 2016). If only the stratified flow pattern is considered,

making Id = 0, then this model yields the the Taylor bubble profile with variable film height

(Taitel; Barnea, 1990), given by

∂α

∂ξ
=

− (1− ρ) sin θ − 1
ρ1gα1α2

τiSi

A
+ 1

ρ1gα1

τw1 S1

A
− 1

ρ1gα2

τw2 S2

A

m2
1

α3
1
+ ρ

m2
2

α3
2
− (1− ρ) cos θ

(
A

SiD

) . (2.202)

This equation has a singularity, which will cause jumps in the calculated void frac-

tion field in its vicinity. These jumps correspond to the Taylor bubble nose and the hydraulic

jump near the tail (Taitel; Barnea, 1990)

m2
1

α3
1

+ ρ
m2

2

α3
2

− (1− ρ) cos θ

(
A

SiD

)
= 0. (2.203)

This singularity can be approximated considering that ρ ≪ 1

Fr = − (v1 − VTB)√
α1g cos θ

(
A
Si

) = 1, (2.204)

where Fr is the stratified flow pattern Froude number (Bonizzi, 2003). Therefore, the jumps

occur when there is a transition between subcritical to supercritical flow. Bearing in mind that

patterns transitions occur close to these jumps, then the transition boundary is near to the void

fraction values that characterizes lead to this singularity.

2.4.3 Two Dimensional Model

The two dimensional model is obtained by neglecting the surface tension term,

which yields

FV 2 (α)
∂2α

∂ξ2
+ FV 1 (α)

(
∂α

∂ξ

)2

+ [F∆P (α)− FCA (α)]
∂α

∂ξ
+ FFB (α) = 0 (2.205)
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It can be written as a autonomous two dimensional non-linear dynamical system as

∂α

∂ξ
= w, (2.206)

∂w

∂ξ
= −FV 1 (α)

FV 2 (α)
w2 − F∆P (α)− FCA (α)

FV 2 (α)
w − FFB (α)

FV 2 (α)
. (2.207)

The equation can be cast in a more compact form as

∂H⃗2

∂ξ
= F⃗2

(
H⃗2

)
, (2.208)

where

H⃗2 =

α
w

 , (2.209)

and

F⃗2

(
H⃗2

)
,=

 w

−FV 1(α)
FV 2(α)

w2 − F∆P (α)−FCA(α)
FV 2(α)

w − FFB(α)
FV 2(α)

 . (2.210)

The slug flow pattern manifests itself as a high amplitude quasi periodic oscillation

of the void fraction and other related variables. In the context of a two dimensional autonomous

dynamic system, this behaviour can be understood as a limit cycle (Strogatz; Dichter, 2016;

Giddings, 2017), as it is a isolated periodic trajectory on a two-dimensional non-linear dynamic

system.

Given the oscillatory behavior of the slug flow pattern, which alternates between

the dispersed bubble and stratified flow patterns as the unit cell model suggests, then two fixed

points at least are expected, one in each flow pattern. Moreover, these fixed points must be

unstable, otherwise the system would be drawn to the equilibrium solutions and stop oscillating,

added to the fact that the slug initiation mechanism from the stratified solution is a Kelvin

Helmholtz instability, indicating an unstable fixed point at the segregated flow pattern (Barnea,

1987; Barnea; Taitel, 1994; Shoham, 2006).
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2.5 Concluding Remarks

The two-fluid model was developed for the stratified and dispersed flow patterns,

including all the identified relevant physical mechanisms for the unit cell formation, growth and

propagation, leading to a well-posed and bounded model, as its building blocks for the strati-

fied and dispersed bubbles flow patterns are well-posed and bounded according to the literature,

when all aforementioned mechanisms are taken into account. No work reviewed considered

all the mechanisms adopted for the flow patterns of interest all together for circular cross sec-

tion pipelines with such rigour. However, in order to obtain a parsimonious model, reasonable

assumptions were adopted for the slug flow pattern that allowed a great model simplification

through the constant flux solution and the travelling wave transformation, without compromis-

ing generality.

The assumptions are: (i) incompressibility due to low phases velocities when com-

pared to sound velocities, i.e., low Mach numbers; and (ii) an approximately constant Taylor

bubble propagation velocity, hypotheses that are supported by a vast literature and experimental

observations. These allowed converting a non-linear system of PDE’s into ODE’s that will be

used subsequently, in chapter 4 to condensate the analysis of the system dynamics in a phase

space for the void fraction series. From this simpler model, it is possible to investigate the

system dynamics in order to understand the slug flow pattern influencing parameters and the

transitions between the separate and dispersed alternating flow patterns. Also, in chapter 4 a

bottom-up approach is proposed, based on the orders of magnitude of each model term. The

models were sequentially developed describing the dynamical system flow in phase space for

both patterns in one, two and three dimensions.
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3 TRANSITION MODEL

The composite two fluid flow model combines the source terms for the separated

and dispersed phases flow through the dynamically evaluated flow pattern represented by the

sigmoid function Id over a classification boundary. It alternates from one flow pattern to another,

as the unit cell model suggests for the slug flow. The adequate description of this transition is

fundamental for the slug flow model.

In this chapter, the description of the function Id is addressed. A physically and

data-driven based transition model is presented, based on energy conversion processes in the

region of the mixing length after the hydraulic jump. First, the transition domain bounds are

discussed, allowing to have an estimate of the region where the transition occurs and its param-

eters. Subsequently, the existence and stability of the dispersed bubble flow pattern is evaluated,

giving the first proposed transition criterion based on the bublance concept (Mazzitelli; Lohse,

2009; Lance; Bataille, 1991), a dimensionless number defined such as for values lower than

unity, the flow is dominated by turbulence (dispersed) and if greater than unity, the flow is dom-

inated by buoyancy (segregated), representing the interaction between bubbles and turbulent

phenomena. Afterwards, the energy conversion mechanisms is mapped and discussed, giving

the second proposed transition criterion based on the maximum dissipated mean flow energy.

The proposed transition criteria is discussed together with a data-driven identified one in or-

der to craft a two-state Markov Chain model, describing the stochastic nature of the uni cell.

Finally, an estimate of the turbulent equivalent kinematic viscosity is discussed.

3.1 Transition Bounds

In this section, the void fraction transition bounds are addressed and discussed. In

an overview, one can already set void fraction transition limits αT where the dispersed pattern

is not possible, starting with the theoretical sphere packing limit in a unit volume, therefore, the

dispersed phase flow pattern is only possible when αT < 0.52 (Barnea, 1987; Shoham, 2006).

Through the available experimental observations, it is also reasonable to establish

that the transition to the dispersed flow pattern occurs after the hydraulic jump, as suggested by

the unit cell model represented in Figures 1.1 and 1.2 (Taitel; Barnea, 1990; Fagundes Netto

et al., 1999; Shoham, 2006). Therefore αT < αHJ , where αHJ is calculated by the critical
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stratified Froude number as

Fr (αHJ) = − (v1 − VTB)√
(1− αHJ) g cos θ

(
A
Si

) = 1. (3.1)

Additionaly, it is also reasonable to state that the transition has already occurred in

the vicinity of lower root for the dispersed pattern αD. It implies that αT > αD, where

FFB (αD) = − (1− ρ) sin θ − 1

ρ1g (1− αD)αD

M̂D
2 − 1

ρ1g (1− αD)

τ̄wS

A
= 0. (3.2)

These relations give the flow pattern transition function Id its domain bounds, being

summarised as

αD < αT < min (αHJ , 0.52) . (3.3)

3.2 Dispersed Flow Pattern Transition Mechanisms

The existence or not of the dispersed pattern must be debated, which generally

translates into the dynamic balance between the processes of coalescence or breakup of the

dispersed bubbles. The coalescence processes are usually described through a force balance

in the transverse direction regarding the main flow, where there is coalescence if the resulting

force leads to bubble accumulation along the pipe dorsal line (Taitel; Dukler, 1976; Barnea;

Brauner, 1985; Barnea, 1987; Shoham, 2006). The breakup processes are due to turbulence,

being described through mechanisms of mechanical energy transfer from the mean flow to the

fields fluctuations given by turbulent kinetic energy and to the dispersed bubbles, assuming that

a fraction of the dissipated total energy is converted into surface potential energy in the bubbles

(Zhang et al., 2003; Brown; Dellar, 2007).

3.2.1 Bubble Breakup

Bubble deformation and breakup processes are due to the net energy transfer over

the gas-liquid interface, taking into account the kinetic energy of the mean and turbulent flow,

the bubble’s surface potential energy and the work of interfacial tension forces over the interface

(Vela-Martín; Avila, 2021). A bubble submerged in a two-phase turbulent flow is subjected to

turbulent stresses that deform it, depending on the strain level, the surface potential energy can
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reach the activation threshold, when its breakage finally occurs. Bubble breakage occurs when

the forces induced by turbulent fluctuations, that act to break the bubble, overcome the surface

tension forces, that act to hold the bubble together or restore its initial underformed geometry

(Andersson; Andersson, 2006).

Therefore, a criterion for bubble breakage can be produced by comparing the forces

induced by turbulence and the surface tension using dimensional analysis. However, the bub-

ble does not interact with all turbulent structures, if the eddies are larger than the bubble, a

translation movement will be produced instead of deformation, which will only occur from

the interaction with turbulent structures of equal or smaller sizes than the bubble. The turbulent

stress τ tκ induced by the dynamic pressure fluctuation due to the mean squared turbulent velocity

fluctuation v̄′2κ on the wavenumber κ is estimated by (Kolmogorov, 1949; Hinze, 1955)

τ tκ ∝ 1

2
ρ1v̄′

2
κ. (3.4)

The surface tension stress τ sκ on the wavenumber κ is estimated by

τ sκ ∝ 4
σ21

dmax

. (3.5)

The ratio of both forces is proportional to the critical Weber number Wec, i.e.,

τ tκ
τ sκ

∝ ρ1v̄′
2
κdmax

σ21

= Wec. (3.6)

The mean squared turbulent velocity fluctuation v̄′2κ on the wavenumber κ in the

inertial sub-range of the turbulent energy cascade is given by (Pope et al., 2000)

v̄′2κ = 2
( ϵ
κ

) 2
3
, (3.7)

where ϵ is the dissipated turbulent specific energy rate, assuming the incompressible single-

phase turbulent model is representative for the turbulent structures until the limit of bubble for-

mation. Therefore, considering the bubble wavenumber κ = 1/dmax and substituting, the max-

imum stable diameter is what balances both stresses and can be summarized as (Kolmogorov,

1949; Hinze, 1955)

dmax = We
3
5
c

(
σ21

ρ1

) 3
5

ϵ−
2
5 , (3.8)
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where the maximum stable diameter dmax is assumed to be the representative bubble diameter

db from now on.

The total dissipated turbulent specific energy rate ϵ for the steady state two-phase

dispersed flow pattern in pipes is given by (Barnea et al., 1982; Shoham, 2006)

ϵ =
∂p

∂z

J

ρm
= −τw

S

A

J

ρm
=

2

D
fmJ

3. (3.9)

The major limitation in adopting this approach for the liquid piston modelling at

the slug flow pattern is that the dissipated turbulent kinetic energy in the liquid piston is under-

estimated by neglecting the net specific power change at the hydraulic jump, especially in the

mixing length region Lm, as the flow is not steady neither developed.

The experimentally characterized critical Weber number Wec for the steady state

two-phase dispersed bubbles flow pattern in pipes can be modelled by:

• Calderbank (1958) model:

Wec =
(
0.725 + 4.15

√
α
) 5

3 , (3.10)

• Andreussi et al. (1999) model:

Wec = 1.05
(
1 + 51.7α1.5

)
. (3.11)

The maximum bubble diameter ds where the bubbles are spherical, non-deformable

and behave like solid spheres with low rates of collision and coalescence is given by (Barnea et

al., 1982; Clift et al., 2005; Shoham, 2006)

ds =

√
0.4σ21

(ρ1 − ρ2)g
. (3.12)

If the maximum stable diameter dmax is smaller than the maximum non-deformable

spherical bubble diameter threshold, called Broadkey diameter ds, the coalescence phenomenon

is not possible, as it occurs when the bubble lose their spherical shape being distorted, ascending

in a oscillating trajectory and dragging the neighboring bubbles into its wake (Barnea et al.,

1982; Barnea, 1987; Clift et al., 2005; Shoham, 2006).
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3.2.2 Bubble Coalescence

The main forces acting at the bubble in the transverse direction regarding the main

flow are the buoyancy, drag and turbulent forces FB, FD and FT respectively, given by (Taitel;

Dukler, 1976; Barnea, 1987; Brennen, 2005; Shoham, 2006)

FB = g cos θ (ρ1 − ρ2)

(
πd3b
6

)
, (3.13)

FD = −1

2
CDρ1 (v2t − v1t) |(v2t − v1t)|

(
πd2b
4

)
, (3.14)

FT =
1

2
ρ1v

′2
(
πd2b
4

)
, (3.15)

where v′ is the averaged radial velocity fluctuations that can be estimated by the turbulent fric-

tion velocity. Considering a steady state developed flow, its root mean square value is estimated

by (Pope et al., 2000; Shoham, 2006)

v′ ≈ v̄′2
0.5

= v∗ =

(
τw1
ρ1

) 1
2

= v1

(
f1
2

) 1
2

. (3.16)

Only the liquid phase was considered because it is the one that contributes the most,

since it has the largest share of the turbulent kinetic energy. The coalescence process will occur

if the resulting force leads to bubble migration and accumulation at the pipe top dorsal line,

what can be represented by a conservative limiting force equilibrium, where the net force is

zero, hence there is no bubble movement or drag force neither (Barnea, 1987; Shoham, 2006)

FB = FT . (3.17)

The force equilibrium can be written in terms of the limiting segregation bubble

diameter dce

dce =
3

8

ρ1
(ρ1 − ρ2)

f1v
2
1

g cos θ
. (3.18)

Therefore, if the estimated bubble diameter is bigger than the calculated threshold,

i.e, db > dce, the dispersed flow pattern should transition to the separated one due to bubble

coalescence. This criterion is already included in the Barnea (1987) model, however, it is used

together with the spherical and non-deformable Broadkey bubble diameter ds, which does not
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apply in the case of the slug flow. So, the interest lies in the case when distorted bubbles

coalesce due to the resulting force. At first glance, the problem with this model is that it is

too conservative, as the forces balance assumes zero net forces without movement, which is

not observed in practice. Alternatively, one can estimate the segregation gas velocity vsb in a

transversely stagnant liquid as one has only axial movement due to the mean flow (Brennen,

2005)

FB = FD, (3.19)

vsb =

[
4

3

g cos θ (ρ1 − ρ2)

ρ1CD

db

] 1
2

. (3.20)

Then, the coalescence process will take place if the averaged radial turbulent ve-

locity fluctuations is less than the segregation gas velocity vsb by a O(0) factor K (Brennen,

2005)

(vsb
v′

)2
= K2 =

8

3

g cos θ (ρ1 − ρ2)

ρ1f1v21CD

dct =
1

CD

dct
dce

, (3.21)

dct = K2CDdce. (3.22)

Therefore, if the estimated bubble diameter is bigger than the calculated threshold,

i.e, db > dct, the dispersed flow pattern should transition to the separated one due to bubble

coalescence. The O(0) factor K can be estimated experimentally, meaning how bigger the

turbulent diffusive process needs to be in order to overcome the phase segregation process.

3.2.3 Proposed Bubble Transition Criterion

The same process can be described for the bubbles swarm as opposed to an individ-

ual bubble. This is done by using the averaged specific momentum transfer rate that must be in

equilibrium, obtained from the subtracted momentum equation for the dispersed phases case in

the pipe cross section direction, perpendicular to the pipe axis mean flow direction, similarly to

what was done in the section 2.2.2, Equation 2.95 (Ishii; Hibiki, 2011), i.e.,

M̂2 = −α (1− α) (ρ1 − ρ2) g cos θ. (3.23)
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The averaged specific momentum transfer rate in a transversely stagnant liquid with

only transverse axial movement due to the mean flow is given by

M̂2 = M̂D
2 = −αρ1

(
3CD

4db

)
v2sw, (3.24)

where M̂D
2 is the drag averaged specific momentum transfer rate, given by (Ishii; Hibiki, 2011;

Morel, 2015). The bubble swarm ascending velocity vsw in a stagnant medium is calculated and

expressed in function of vsb from Equation 3.20, yielding

ρ1

(
3CD

4db

)
v2sw = (1− α) (ρ1 − ρ2) g cos θ, (3.25)

v2sw = (1− α)
4

3

g cos θ (ρ1 − ρ2)

ρ1CD

db = (1− α) v2sb. (3.26)

Then, the coalescence process will take place if the averaged turbulent kinetic en-

ergy due to the turbulent velocity fluctuations is less than the kinetic energy due to the seg-

regation bubble swarm velocity vsw by a O(0) factor B. The parameter B is the bublance

(Mazzitelli; Lohse, 2009; Lance; Bataille, 1991), it is defined such as for values lower than

unity, the flow is dominated by turbulence (dispersed) and if greater than unity, the flow is dom-

inated by buoyancy (segregated). This criterion was developed and adopted because it is more

universal, as it is based on the swarm rather than an individual bubble and is physically linked to

the buoyancy and turbulence competing mechanisms. This criterion is physically translated into

the bubble swarm buoyancy ascension process, that will only be interrupted if superimposed by

the Brownian motion induced by the turbulence that tends to diffuse the bubble swarm. This

overlap can be seen energetically by comparing the kinetic energies of the described antago-

nistic movements, or statistically, since the kinetic energy of the fluctuations is equivalent to

the covariance of the velocity fluctuations. Therefore, the bublance B is defined as (Mazzitelli;

Lohse, 2009; Lance; Bataille, 1991)

B =
1

2
α
v2sw
v′2

. (3.27)

The averaged specific turbulent kinetic energy eRe
k is estimated from the trace of the

Reynolds stress tensor that relates with the averaged turbulent velocity fluctuations v′ (Pope et

al., 2000; Zhang et al., 2003; Shoham, 2006), hence the Bublance B is redefined as
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v′2 ≈ 2

3
eRe
k , (3.28)

B =
3

4
α
v2sw
eRe
k

. (3.29)

From the bubble swarm ascending velocity vsw defined in Equation 3.26, the Bublance

B is redifined

B =
α (1− α)

CD

g cos θ (ρ1 − ρ2)

ρ1eRe
k

db. (3.30)

The limiting segregation bubble diameter dce defined in the Equation 3.18 at Section

3.2.2 is rewritten in terms of the averaged specific turbulent kinetic energy

dce =
1

2

ρ1
(ρ1 − ρ2)

eRe
k

g cos θ
. (3.31)

Substituting, it is obtained a definition that resembles the Barnea e Brauner (1985)

bubble diameter comparison criterion

B =
1

2
α
(1− α)

CD

db
dce

. (3.32)

From the maximum stable diameter defined in the Equation 3.8 at Section 3.2.1, the

Bublance can be rewritten

B = α (1− α)
(ρ1 − ρ2)

ρ1

1

CD

We
3
5
c

[
g cos θ

(
σ21

ρ1

) 3
5 ϵ−

2
5

eRe
k

]
. (3.33)

what indicates that the Bublance is directly connected with the average turbulent kinetic energy.

3.3 Mechanical Energy Transfer Mechanisms

Attention should be paid to the mean flow total dissipated energy rate discussed in

Section 3.2.1 used in the estimation of bubble diameters expressed by Equation 3.9. They are

based on relations for developed steady-state flow, a subject that will be addressed in the next

sections, as the slug flow is not steady neither developed.
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3.3.1 Averaged Energy Equation

The three-dimensional averaged total specific energy conservation equation for each

phase k is given by (Ishii; Hibiki, 2011; Morel, 2015; Drew; Passman, 2014)

∂

∂t
(αkρkek)+∇·(αkρkv⃗khk) = ∇·[αk (τk + Tk) v⃗k]+αkρkg⃗·v⃗k−∇·(αkq⃗k)−Ei

k−Qw
k , (3.34)

where ek, v⃗k, hk, τk, Tk, q⃗k, Ei
k and Qw

k are the averaged total specific energy, mean velocity

vector, specific enthalpy, deviatoric viscous and turbulent stress tensors, specific energy vector

diffusion fluxes and energy fluxes through the interface and pipe inner wall, respectively. The

pipe mean flow occurs in the pipe axis direction z. Hence, the mean velocity vector v⃗k has zero

mean velocities components at the pipe cross section perpendicular to the pipe axis, thus

v⃗k ≈ 0⃗i+ 0⃗j + vkk⃗. (3.35)

However, zero average velocities do not imply that fluctuations will be neglected,

since such fluctuations are considered in the two-phase Reynolds turbulent stress tensor defini-

tion from the spatiotemporal averaging operator, where the two-phase Reynolds turbulent stress

tensor is the velocity field spatiotemporal covariance (Ishii; Hibiki, 2011; Morel, 2015; Drew;

Passman, 2014). Therefore, the assumption presented at Equation 3.35 implies that the veloc-

ities fluctuations components around the mean are taken in to account by the turbulent stress

tensor and kinetic energy diffusion flux. Subsequently, the convective operator can be rewritten

∂

∂t
(αkρkek) +∇ · (αkρkv⃗khk) =

∂

∂t
(αkρkek) +

∂

∂z
(αkρkvkhk) . (3.36)

The net power source term S∆ν
k that encompasses the energy diffusion and dissipa-

tion along the pipe cross section perpendicular to the pipe axis is defined as

S∆ν
k = ∇ · [αk (τk + Tk) v⃗k]−

∂

∂z

[
αk

(
τ kzz + T k

zz

)
vk
]
−∇ · (αkq⃗k) +

∂

∂z
(αkqk) , (3.37)

where, this term takes into account the power flow due to the work of shear stresses and moment

diffusion from the longitudinal direction transferred to the transverse direction of the flow. As

the average velocities field in the flow transverse directions are null, all the power flow rep-

resented by S∆ν
k is integrally transferred to the velocity fluctuations. Without this change in

variables, the energy equation would not have a dissipative term.
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From this definition, the averaged total specific energy conservation equation is

rewritten for the one-dimensional problem

∂

∂t
(αkρkek) +

∂

∂z
(αkρkvkhk) =

∂

∂z

[
αk

(
τ kzz + T k

zz

)
vk
]

+ αkρkgzvk −
∂

∂z
(αkqk)− Ei

k −Qw
k + S∆ν

k .

(3.38)

The averaged total specific energy ek has its mean flow kinetic, internal and turbu-

lent fluctuations kinetic energy components, uk and eRe
k , respectively. The averaged axial energy

flux qk has its thermal and turbulent kinetic energy components, qTk and qRe
k , respectively. The

averaged energy fluxes through the interface Ei
k is composed by the total energy eik carried by

the mass flux between the phases Γk, the work of the interface stresses vikM
i
k and the heat flux

qik through the interface (Ishii; Hibiki, 2011; Morel, 2015; Drew; Passman, 2014)

ek = uk +
v2k
2

+ eRe
k , (3.39)

hk = ek +
p

ρk
, (3.40)

qk = qTk + qRe
k , (3.41)

Ei
k = Γke

i
k −M i

kv
i
k + qik. (3.42)

As the scope of this work is a incompressible isothermal adiabatic flow, the aver-

aged total energy conservation equation for each phase k is due exclusively to it’s mechanical

components, hence, the averaged internal energy uk is a constant whose derivative is zero and

the thermal heat fluxes qTk and Qw
k are zero and going to be neglected. Therefore, the equation

is rewritten from the updated definitions as

∂

∂t

(
αkρk

v2k
2

+ αkρke
Re
k

)
+

∂

∂z

(
αkρkvk

v2k
2

+ αkρkvke
Re
k + αkvkp

)
=

∂

∂z

[
αk

(
τ kzz + T k

zz

)
vk
]

+ αkρkgzvk

− ∂

∂z

(
αkq

Re
k

)
− Ei

k + S∆ν
k ,

(3.43)
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Ei
k = −M i

kv
i
k. (3.44)

The averaged mechanical energy equation is obtained by multiplying the averaged

linear momentum equation by the phase velocity vk. After some algebraic manipulations it

yields (Ishii; Hibiki, 2011; Morel, 2015; Drew; Passman, 2014)

∂

∂t

(
αkρk

v2k
2

)
+

∂

∂z

(
αkρkvk

v2k
2

)
+ vk

∂

∂z
(αkpk) =

∂

∂z

[
αk

(
τ kzz + T k

zz

)]
vk + αkρkgzvk

+M i
kvk + τwk

Sk

A
vk,

(3.45)

where it was considered that both phases are at the same pressure p. Subtracting the averaged

mechanical energy equation from the total energy equation, one has the averaged turbulent

fluctuations kinetic energy equation (Ishii; Hibiki, 2011; Morel, 2015; Drew; Passman, 2014)

∂

∂t

(
αkρke

Re
k

)
+

∂

∂z

(
αkρkvke

Re
k + αkq

Re
k

)
=
[
αk

(
τ kzz + T k

zz − p
)] ∂vk

∂z
− τwk

Sk

A
vk

− Ei
k −M i

kvk + S∆ν
k .

(3.46)

The averaged turbulent fluctuations kinetic energy equation has the convective and

diffusive transport terms with a net energy source due to the stresses and viscous dissipation.

Applying the travelling wave transformation, it yields

∂

∂η

[
ρkMke

Re
k + αkq

Re
k

]
=
[
αk

(
τ kzz + T k

zz − p
)] ∂vk

∂η
− τwk

Sk

A
vk −Ei

k −M i
kvk + S∆ν

k . (3.47)

3.3.2 Averaged Mixture Energy Equation and Interface Net Power Exchange

The averaged turbulent fluctuations kinetic energy equation for each phase k are

added in order to achieve the total mixture turbulent energy equation as

∂

∂η

[
ρ1M1e

Re
1 + ρ2M2e

Re
2 + α1q

Re
1 + α2q

Re
2

]
=
[
α1

(
τ 1zz + T 1

zz − p
)] ∂v1

∂η

+
[
α2

(
τ 2zz + T 2

zz − p
)] ∂v2

∂η

−
(
τw1

S1

A
v1 + τw2

S2

A
v2

)
−
(
Ei

1 + Ei
2

)
−M i

2 (v2 − v1) +
(
S∆ν
1 + S∆ν

2

)
.

(3.48)
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From the energy jump condition, the net energy flux at interface is due to the work

done by the surface tension that is going to change the surface potential energy and be dissi-

pated, eventually. Therefore, one defines the net interface power exchange Es as (Ishii; Hibiki,

2011; Morel, 2015; Drew; Passman, 2014)

Es = Ei
1 + Ei

2 = σ ⟨∇s (v⃗i)⟩i , (3.49)

where ⟨⟩i, ∇s and v⃗i are the composite space-time average operator, the surface divergent and

the interface velocity, respectively. The total mixture net power source term S∆ν that encom-

passes the energy diffusion and dissipation along the pipe cross section perpendicular to the

pipe axis is defined as

S∆ν = S∆ν
1 + S∆ν

2 . (3.50)

Therefore, the averaged total mixture turbulent energy equation is rewritten as:

Et + Es = Smf + S∆ν , (3.51)

Et =
∂

∂η

[
ρ1M1e

Re
1 + ρ2M2e

Re
2 + α1q

Re
1 + α2q

Re
2

]
, (3.52)

Smf =
[
α1

(
τ 1zz + T 1

zz − p
)] ∂v1

∂η
+
[
α2

(
τ 2zz + T 2

zz − p
)] ∂v2

∂η

−
(
τw1

S1

A
v1 + τw2

S2

A
v2

)
−M i

2 (v2 − v1) ,

(3.53)

where Et and Smf are the mixture turbulent energy and the net energy source dissipated at the

mean flow and injected as turbulent and surface energy Es, respectively. The result expressed

in Equation 3.53, reveals the energy sources that will be converted into turbulent and surface

specific energy. However, in addition to the expected work of viscous and turbulent tensors

and the parietal forces, there is a term M i
2 (v2 − v1) related to the work of interfacial forces.

Therefore, it is expected that there is a component of turbulent specific energy specifically

linked to the work of interfacial forces.

The net energy source has a viscous, parietal stress and slip components. Hence,

one can define

Et = ηteffSmf , (3.54)
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Es = ηseffSmf , (3.55)

S∆ν = η∆ν
effSmf , (3.56)

ηteff + ηseff + η∆ν
eff = 1, (3.57)

where ηteff , ηseff and η∆ν
eff are the fraction of the mean flow dissipated energy transferred as

turbulent kinetic energy, surface work used in bubble creation and dissipated, respectively.

Similar results are obtained from the averaged total specific energy equations, in-

stead of the averaged turbulent fluctuations kinetic energy equations, as previously presented:

∂

∂η

(
ρkMk

v2k
2

+ ρkMke
Re
k + αkq

Re
k + αkvkp

)
=

∂

∂η

[
αk

(
τ kzz + T k

zz

)
vk
]
+αkρkgzvk−Ei

k+S∆ν
k .

(3.58)

Adding the averaged total specific energy equations yields

∂

∂η

(
ρ1M1

v21
2

+ ρ2M2
v22
2

)
+ Et + J

∂p

∂η
=

∂

∂η

[
α1

(
τ 1zz + T 1

zz

)
v1
]
+

∂

∂η

[
α2

(
τ 2zz + T 2

zz

)
v2
]

+ ρmvmgz − Es + S∆ν .

(3.59)

From the definitions stated at Equations 3.49, 3.50 and 3.52, one has

Et + Es = Smf + S∆ν =− ∂

∂η

(
ρ1M1

v21
2

+ ρ2M2
v22
2

)
− J

∂p

∂η
+ ρmvmgz

+
∂

∂η

[
α1

(
τ 1zz + T 1

zz

)
v1
]
+

∂

∂η

[
α2

(
τ 2zz + T 2

zz

)
v2
]
+ S∆ν ,

(3.60)

where the source term is written differently from that of Equation 3.53, but it can be shown that

they are equivalent, leading to

Smf =− ∂

∂η

(
ρ1M1

v21
2

+ ρ2M2
v22
2

)
− J

∂p

∂η
+ ρmvmgz

+
∂

∂η

[
α1

(
τ 1zz + T 1

zz

)
v1
]
+

∂

∂η

[
α2

(
τ 2zz + T 2

zz

)
v2
]
.

(3.61)
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3.3.3 Mean Flow Specific Power source

Using the Boussinesq hypothesis that leads to an equivalent effective viscosity con-

cept, the net specific energy rate source dissipated at the mean flow and injected as turbulent

and surface energy defined in the Equation 3.61 is given by

Smf =− ∂

∂η

(
ρ1M1

v21
2

+ ρ2M2
v22
2

)
− J

∂p

∂η
+ ρmvmgz

+
∂

∂η

[
ρ1α1ν

eq
1

∂

∂η

(
v21
2

)]
+

∂

∂η

[
ρ2α2ν

eq
2

∂

∂η

(
v22
2

)]
.

(3.62)

As the mixture model is adopted, both phases are considered at the same pressure.

Thus, the pressure differences between phases will be neglected. It follows from Section 2.3.3

that:

p = p0 + pca + pν + pf , (3.63)

pca = −ρ1M1v1 − ρ2M2v2, (3.64)

pν = ρ1α1ν
eq
1

∂v1
∂η

+ ρ2α2ν
eq
2

∂v2
∂η

, (3.65)

pf =

∫ t

t0

(
ρmgz + τw

S

A

)
∂η. (3.66)

Therefore

Smf =ρmgz (vm − J)− τw
S

A
J

− ρ1M1
∂

∂η

[
(v1 − J)2

2

]
− ρ2M2

∂

∂η

[
(v2 − J)2

2

]

+
∂

∂η

{
ρ1α1ν

eq
1

∂

∂η

[
(v1 − J)2

2

]}
+

∂

∂η

{
ρ2α2ν

eq
2

∂

∂η

[
(v2 − J)2

2

]}
.

(3.67)

The major limitation of the dissipated specific energy rate models presented in Sec-

tion 3.2.1 when adopted for the slug flow pattern is that the dissipated turbulent kinetic specific

energy rate in the liquid piston is underestimated by neglecting the net specific power injection

at the hydraulic jump, especially in the mixing length region Lm. The presented formulation is
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for a developed steady state flow, where the net power source is given by simplifying Equation

3.67 to

Smf = ρmgz (vm − J)− τw
S

A
J ≈ −τw

S

A
J. (3.68)

3.3.4 Surface Energy

The total and specific surface potential energies are given by (Zhang et al., 2003;

Andersson; Andersson, 2006; Brown; Dellar, 2007; Vela-Martín; Avila, 2021)

Hi = σ21Ai, (3.69)

hi = σ21
Ai

V
= σ21ai, (3.70)

where Hi, hi, Ai, V and ai are the total and specific surface potential energies, interfacial area,

element unit volume and density of interfacial area, respectively. The interfacial area ai is a

transported quantity (Ishii; Hibiki, 2011; Morel, 2015)

∂ai
∂t

+
∂

∂z
(viai) = si, (3.71)

where vi and si are the interface velocity and source of interfacial area density, respectively.

The total surface specific potential energy hi is a quantity transported alongside the interface.

Hence, multiplying the interfacial area transport equation by a constant surface tension σ21 and

assuming that the interface velocity can be approximated by the gas phase velocity

∂hi

∂t
+

∂

∂z
(v2hi) = Es. (3.72)

Applying the travelling wave transformation yields

∂

∂η
[(v2 − VTB)hi] =

∂

∂η

[
M2

α
hi

]
= Es. (3.73)

The total surface specific energy hi is calculated combining the dispersed (DB) and

separated (SS) flow patterns (Zhang et al., 2003; Andersson; Andersson, 2006; Brown; Dellar,

2007)

hDB
i = σ

6α

db
, (3.74)
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hSS
i = σ

Si

A
. (3.75)

Therefore

hi = Idh
DB
i + (1− Id)h

SS
i = Idσ

6α

db
+ (1− Id)σ

Si

A
. (3.76)

Substituting in Equation 3.73 yields

∂

∂η

{
σM2

α

[
Id
6α

db
+ (1− Id)

Si

A

]}
= Es = ηseffSmf . (3.77)

Hoque e Aoki (2005) studied the energy dissipation due to bubble entrainment re-

porting that around ηseff ≈ 25% of the hydraulic jump total energy loss is dissipated as surface

work. However, it is reported that only ηseff ≈ 1 − 2% in the plunging jet case. Both interpre-

tations are reasonable as a mechanism for bubble entrainment for the slug flow (Hoque; Aoki,

2005; Brown; Dellar, 2007).

The aforementioned energy balances are global, since after the application of the

averaging operators, all spatial information in the pipe section was lost. However, bubbles

interact energetically with flow structures with similar or shorter wavelengths, so that a large

fraction of the dissipated energy is not available for bubble formation. Therefore, only a fraction

of the turbulent part of the flow kinetic energy is available for bubble creation, depending on the

wavelengths match between the structures (Zhang et al., 2003; Andersson; Andersson, 2006;

Brown; Dellar, 2007; Vela-Martín; Avila, 2021).

3.3.5 Turbulent Kinetic Energy

The averaged axial turbulent kinetic energy flux qRe
k is a diffusion process that can

be modelled by

qRe
k = −ζk

∂eRe
k

∂z
= −ζk

∂eRe
k

∂η
. (3.78)

where ζk is a unknown diffusivity to be identified or later defined. Due to the difference between

the specific masses, the turbulent kinetic energy of the gas phase is much lower than that of the

liquid phase, hence, it will be neglected (ρ2eRe
2 ≪ ρ1e

Re
1 ). Therefore, the averaged turbulent

mixture kinetic specific energy Equations 3.52 and 3.54 is rewritten as
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∂eRe
1

∂η
− ρ1M1

α1ζ1
eRe
1 = −

ηteff
α1ζ1

∫
Smf∂η (3.79)

which is a first order differential equation. It is known that at the hydraulic jump the source term

is impulsive, giving a sudden energy injection in the system, and the model response represents

a turbulence decay during a turbulent recirculating zone with mixing length LM , as illustrated in

Figure 1.1, that can be estimated from available closure models and compared to the impulsive

response of a first order differential equation as (Dukler; Hubbard, 1975).

ρ1M1

α1ζ1
≈ 1

Lm

(3.80)

Lm = 0.3
(vF − J)2

2gz
(3.81)

where vF is the liquid film velocity right before the hydraulic jump.

3.3.6 Transition Criterion

Considering the aforementioned dynamics and energy transmission mechanisms,

the transition from the stratified to the dispersed pattern will occur close to the point at the unit

cell where the mean flow power injection is maximum, as a fraction of the total injected energy

its going to be converted in surface work producing bubbles. The opposite transition can be

associated with the minimal mean flow power injection resulting in bubble coalescence. Addi-

tionally, the final criterion should be confined at the domain bounds as stated in the Section 3.1

and it is combined with the a O(0) critical bubblance threshold Bc by comparing the estimated

bubble diameter db with the critical diameter dce, as stated in the Section 3.2.3. Therefore, the

proposed transition criterion is given by

αD < αT < min (αHJ , 0.52) , (3.82)

Bc =
1

2
α
(1− α)

CD

db
dce

(3.83)

∂Smf

∂η
= 0. (3.84)

Due to the difference between the specific masses, the gas phase contribution is

much lower than that of the liquid phase, so it can be neglected (ρ2 ≪ ρ1). In order to estimate
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only the power injection, the viscosity effects will also be neglected, as it dissipates energy.

Therefore, from the Equation 3.67 for the horizontal case

Smf ≈ fw
1 ρ1

v21
2

S1

A
J − ρ1M1v1

∂v1
∂η

+ Jρ1M1
∂v1
∂η

. (3.85)

The mean flow specific power injection derivative is rewritten in terms of the relative

velocity defined in Equation 2.112 at Section 2.3.1 as

∂Smf

∂η
≈ρ1J

2A
S1v

2
1

∂fw
1

∂α

∂α

∂η
+

ρ1J

2A
fw
1 v

2
1

∂S1
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(3.86)

It follows the relative velocities derivatives definitions in addition to the ones de-

fined in Section 2.3.2
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The liquid wet perimeter derivatives are calculated from the geometric definitions

at Section 2.1.1 given by:

∂S1

∂h̃
=

D√
1− h̃2

=
D2

Si

, (3.89)

and
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Substituting, it yields
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Finally, considering the dimensionless traveling wave coordinate expressed in Equa-

tion 2.151 in Section 2.3.2, then
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(3.92)

The roots of this function form a surface in three-dimensional phase space that

configures the transitional boundary between the stratified and dispersed flow patterns
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(3.93)

3.4 Two-state Markov Chain Model

As discussed in previous sections, the slug flow is typically modelled as a unit cell

varying from a Taylor bubble region in the segregated flow pattern and a liquid slug region in

the dispersed bubble flow pattern. In this section, we propose that the complex dynamics of

such alternating structures can be approximated by a stochastic process.

Assuming the void fraction measurements are made at a constant sampling rate ∆

and the regularly sampled void fraction, i.e. αn = α(t = n∆), a very simple model for this

process can be cast in the form of a two-state Markov chain (Norris, 1997; Soize, 2017), which

follows closely the representation given by Fabre et al. (1989) for the time evolution of the flow

structure. Each state represents either the Taylor bubble or the liquid slug, then the Markov

chain (MC) is characterised by the probabilities of the sequence maintain or changing its state

at the n-th sample given the previous samples, i.e. P (Xn = xn | Xn−1 = xn−1) for a first order
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Markov chain, where xn = 1 for the Taylor bubble and xn = 0 for the liquid slug. This model

is schematically represented in Figure 3.1.

Figure 3.1 – Two-state Markov chain model diagram for liquid slug (Xn = 0) and Taylor bubble
(Xn = 1). State transition probability from liquid slug to Taylor bubble tlg and
from Taylor bubble to liquid slug tgl.

3.4.1 State Classification

The void fraction time series classification in a discrete sequence of two states is a

separate problem and several approaches to solve it can be adopted, being a classic classifica-

tion problem, where one can adopt tools for tabular data disregarding sequential properties or

specific tools for time series data (Géron, 2017).

As suggested by the unit cell model depicted in the Figure 1.3, it is expected that

the void fraction time series data are naturally separated into two groups, one with higher void

fractions and another with the lower ones, separated according to a given threshold. Therefore,

intuitively, it is not necessary to consider the sequential aspect of the data, which allows us to

pose the problem as an unsupervised clustering problem for a one-dimensional tabular data,

where the raw measured void fraction αn is the only available data feature.

The more straightforward approach is to use the K-means algorithm, as it separates

the samples in groups of equal variance (Géron, 2017). However, one can adopt the even

simpler Otsu method, largely used in image processing, as it is equivalent to the K-means

algorithm for one-dimensional problems (Otsu, 1979; Liu; Yu, 2009). The main advantage of

this method is that it allows classifying the void fraction time series in a simple, unsupervised

and non-parametric way, automatically estimating the aforementioned threshold directly from

data, without any other input or intervention. One could use more advanced techniques for time

series, considering the sequential aspects of the data or even with a greater number of classes,
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separating, for example, the Taylor bubble nose and tail regions. However, this is outside the

scope of this work.

The classification threshold identified from the data should be closely related to the

transition criteria developed in the Sections 3.2.3 and 3.3.6, therefore one should compare them

by discussing how physically representative they are.

3.4.2 State Transition Conditional Probabilities

The state transition conditional probability from liquid slug to Taylor bubble is de-

fined as tlg

tlg = P (Xn = 1|Xn−1 = 0) , (3.94)

while the state transition conditional probability from Taylor bubble to liquid slug is defined as

tgl

tgl = P (Xn = 0|Xn−1 = 1) , (3.95)

where 0 ≤ tlg,gl ≤ 1.

The discrete probability density function at the n-th sample πn can be given from

the marginal probabilities for each state, given as:

P (Xn = 0) = P (Xn = 0 | Xn−1 = 0)P (Xn−1 = 0)

+ P (Xn = 0 | Xn−1 = 1)P (Xn−1 = 1) ,
(3.96)

P (Xn = 1) = P (Xn = 1 | Xn−1 = 0)P (Xn−1 = 0)

+ P (Xn = 1 | Xn−1 = 1)P (Xn−1 = 1) ,
(3.97)

Rearranging in matrix form, yields:

πn = πn−1P, (3.98)

where the joint discrete probabilities state transition matrix is given in terms of the conditional

state transition probabilities as

P =

P (Xn = 0 | Xn−1 = 0) P (Xn = 1 | Xn−1 = 0)

P (Xn = 0 | Xn−1 = 1) P (Xn = 1 | Xn−1 = 1)

 =

1− tα tα

tβ 1− tβ

 . (3.99)
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The chain is stationary when πn = πn−1 which yields an eigenproblem πn = πnP

with eigenvalue λ1 = 1 and corresponding eigenvector ϕ1:

ϕ1 =

 tgl
tlg+tgl

tlg
tlg+tgl

 . (3.100)

Consequently, its steady-state distribution is:

π =

π0

π1

 = ϕ1 =

 tgl
tlg+tgl

tlg
tlg+tgl

 . (3.101)

By increasing the MC model order, the state of m previous samples other than the

immediately previous one are also taken into account at the state transition conditional prob-

abilities of the sequence, i.e., P (Xn = xn | Xn−1 = xn−1, Xn−1 = xn−2, . . . Xn−m = xn−m)

(Katz, 1981). This introduces a finite memory to the chain related to its order, hence, instead

of a transition matrix, now one has a transition tensor of order m. Although it can, in princi-

ple, improve the Markov Chain model, it also significantly increases the number of parameters

for estimation, with the increasing number of possible transition probabilities. It might require

significantly longer measurements times which limits its practical uses and imposes a parsimo-

nious approach for the order selection of the model. Ideally, a first order model should succeed

in adequately representing a certain phenomenon even with longer time dependency (Rafteryt,

1985).

3.4.3 Statistical Moments of the First Order MC Model

Some relevant statistical moments can be analytically derived for the proposed

steady-state two-state first order MC model. The mean value of the series is given by:

E (Xn) =
1∑

n=0

xnπn =
tlg

tlg + tgl
, (3.102)

where E(·) stands for the mathematical expectation. Note that this statistical moment is identical

to the intermittency factor, i.e., β:

E (Xn) = β, (3.103)

The variance V ar (Xn) is given by:
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Var (Xn) = E
(
X2

n

)
− E (Xn)

2 =
1∑

n=0

x2
nπn −

1∑
n=0

(xnπn)
2 =

tlgtgl
(tlg + tgl)2

. (3.104)

The autocovariance is defined as:

Cov (Xn, Xn+τ ) = E {[Xn − E (Xn)] [Xn+τ − E (Xn+τ )]} , (3.105)

which yields

Cov (Xn, Xn+τ ) = E (XnXn+τ )− E (Xn)
2 = E (XnXn+τ )−

(
tlg

tlg + tgl

)2

. (3.106)

The term E (XnXn+τ ) is the autocorrelation and can be evaluated as

E (XnXn+τ ) =
1∑

n=0

xnxn+τP (Xn+τ = xn+τ ∩Xn = xn) , (3.107)

from which

P (Xn+τ = xn+τ ∩Xn = xn) = P (Xn+τ = xn+τ | Xn = xn)P (Xn = xn) , (3.108)

Bearing in mind that the only non-null terms of the sum are given when Xn = 1,

thus

E (XnXn+τ ) = P (Xn = 1 | Xn+τ = 1)P (Xn = 1) (3.109)

Recalling that P (Xn = 1) = E (Xn), then recursively from the chain using Eq. 3.98,

term P (Xn = 1 | Xn+τ = 1) = Pτ
2,2, which is second row and second column term of the ma-

trix Pτ . Finally, it yields:

Cov (Xn, Xn+τ ) = ab|τ |, (3.110)

where a = tlgtgl (tlg + tgl)
−2 and b = (1− tlg − tgl), and normalised by the variance gives

Cov (Xn, Xn+τ ) /Var (Xn) = b|τ |.

Moreover, the power spectral density (PSD) can be obtained from the Fourier trans-

form of Eq. 3.110 as



103

F (ω) =
1

2π

+∞∑
τ=−∞

ab|τ |e−jω∆τ =
a

2π

+∞∑
τ=−∞

b|τ |e−jω∆τ =
a

2π

[
1 + 2

+∞∑
τ=1

bτ cos(ω∆τ)

]
.

(3.111)

By definition, |b| < 1 thus the infinite series converges to

F (ω) =
a

2π

[
1− b2

1− 2b cos(∆ω) + b2

]
=

a

2π

[
1− b2

1 + b2 − 2b cos(2πω/ωs)

]
. (3.112)

Note that this is a periodic function in −ωs/2 < ω < ωs/2, where ∆ω = 2πω/ωs,

ωs is the sampling frequency in rad/s. This periodicity is expected due to the discrete nature

of the MC sequence. Finding the similar analytical expressions of the proposed higher order

two-state Markov Chain is beyond the scope of this work.

3.5 Turbulent Viscosity

The cross sectional area averaged turbulent stress tensors for the two-phase flow

case is usually neglected in some applications, especially in one dimensional models. But, this

generates the need to include artificial dissipation in the numerical methods to allow the solution

with shocks and discontinuities (Munkejord, 2006; Nguyen, 2016), like the ones observed in

the slug flow pattern. Therefore, although there is no obvious closure model, this term must

remain in the model for further adjustments posing a system identification problem, where it

should be noted that due to the flow pattern transition, it is probable that a set of parameters has

to be estimated for each flow pattern.

The incompressible space-time averaged two-phase turbulent Reynolds stress tensor

is defined from the autocovariance of the velocity field v⃗k whose trace is the averaged turbulent

specific kinetic energy eRe
k and is rewritten using the Boussinesq hypothesis as (Ishii; Hibiki,

2011; Drew; Passman, 2014; Morel, 2015)

T 1 = ρ1ν
T
1

(
∇v⃗1 +∇v⃗T1

)
, (3.113)

where the gas phase was neglected due to its lower specific mass that leads to a low contribution

to the averaged turbulent kinetic energy.

Information about the three-dimensional fields were lost when applying the averag-

ing operators in the pipeline cross-sectional area, like the velocity profile. As turbulence is an
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intrinsically three-dimensional phenomenon (Pope et al., 2000), it cannot be directly modeled

by a one dimensional approach. Consequently, the equivalent dissipation phenomenon applied

to the context of one-dimensional flow is adopted (Bertodano et al., 2016). As this application

uses the one-dimensional two-fluid model, the spatio-temporal averaging operator is applied

along the pipe cross-section. Hence, such an average operator should be applied to the equiva-

lent turbulent viscosity also (Ishii; Hibiki, 2011).

As the velocity profile information was lost after the averaging, it is not possible to

adopt the classical zero equation model using the Prandtl mixture length approach in order to

model the effective turbulent viscosity with a simple algebraic equation (Pope et al., 2000).

According to the two time constant k − ϵ model for two-phase flows (Launder;

Spalding, 1973; Kataoka; Serizawa, 1989; Bertodano et al., 1994; Bertodano et al., 1994;

Bertodano et al., 2016), the averaged effective kinematic viscosity νT
k is broken down into

components related to shear induced turbulence due to the wall shear stress νTW
k , shear induced

turbulence due to interface shear stress νTI
k and bubble-induced turbulence νTB

k , which despite

being called this way, is also induced by shear due to the bubbles vortex shedding caused by the

relative velocity between the phases (Sato; Sekoguchi, 1975; Zhang et al., 2006), i.e.

νT
k = νTW

k + νTI
k + νTB

k . (3.114)

The shear induced turbulence due to the wall shear stress νTW
k component is given

by the standard k − ϵ model (Launder; Spalding, 1973) as

νTW
k = Cµ

eRe
1

2

ϵ
, (3.115)

and

Cµ = 0.09, (3.116)

where ϵ is the averaged turbulence kinetic energy dissipation rate. The bubble induced turbu-

lence component νTB
k is given by (Sato; Sekoguchi, 1975)

νTB
k = Cµbα

db
2
|v2 − v1| , (3.117)

and:

Cµb = 1.2. (3.118)
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There is no general closure model for the shear induced turbulence at the interface

caused by the slip velocity and waves. Then, the turbulent mixing layer model, that is the

most analogous classical analytical problem, will be taken as a basis for estimating the effective

viscosity (Fullmer et al., 2011; Bertodano et al., 2016). The turbulent viscosity of the self-

similar mixing layer is analytically given by (Pope et al., 2000)

νTI
k = 0.392Sδ |v2 − v1| , (3.119)

where S is the spreading rate and δ is the mixing layer thickness. Fullmer et al. (2011) esti-

mated the aforementioned coefficients through CFD in order to reproduce the simulated energy

dissipation for the Kelvin-Helmholtz waves in an one-dimensional model, in comparison with

experimental data from a squared and circular channels closed in both ends with water and

kerosene or gasoline in a stratified flow pattern without mean flow, giving the following results

for the shear induced turbulence due to interface shear stress νTI
k component (Fullmer et al.,

2011; Bertodano et al., 2016)

νTI
k = Cµi |v2 − v1| , (3.120)

and

Cµi = 0.0015D. (3.121)

Therefore, the effective averaged kinematic turbulent viscosity for the slug flow can

be summarized as

νT
k = Cµ

eRe
1

2

ϵ
+ IdCµbα

db
2
|v2 − v1|+ (1− Id)Cµi |v2 − v1| . (3.122)

In addition, as the averaged mean flow power injection and the averaged turbulent

kinetic energy eRe
1 estimation were dealt in the previous sections with closure pending, so an

one equation model approach with a closure relation for the dissipated energy seems to be the

best option (Morel, 2015; Bertodano et al., 2016). Therefore, disregarding any spacial shape

factor arising from the spatio-temporal averaging operator, the averaged energy dissipation rate

is estimated by (Pope et al., 2000)

ϵ =
eRe
k

3
2

lm
, (3.123)
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where lm is a typical mixing length scale for pipe flow, given as a function of the liquid hydraulic

diameter DH (Schlichting; Gersten, 1979; Salvo, 2014)

lm = 0.07DH . (3.124)

Therefore, Equation 3.122 is rewritten as

νT
k = Cµlm

√
eRe
k + IdCµbα

db
2
|v2 − v1|+ (1− Id)Cµi |v2 − v1| . (3.125)

For the estimation of the averaged turbulent effective kinematic viscosity, it is nec-

essary to define the averaged turbulent kinetic energy. This definition will be presented in the

next section.

3.5.1 One-dimensional One Equation Model

Turbulence is a complex phenomenon, where even for steady state single-phase

flows, there are open issues to be researched currently (Pope et al., 2000). In the case of two-

phase flows, the interactions between the phases at the interfaces that can take a great diversity of

spatio-temporal topologies make the problem even more complex (Ishii; Hibiki, 2011; Morel,

2015). There are few and restricted closure relationships to model the two-phase turbulent

phenomena, where it is common to use the available models for single-phase flows adapted and

adjusted experimentally, especially for the dispersed flow patterns where the abstraction of the

homogeneous model is consistent (Shoham, 2006).

The slug flow is even more challenging. That is because, in addition to be a

two-phase flow, it combines the dispersed and segregated patterns in an alternating and tran-

sient sense. Hence, the Reynolds stress tensor is presumably not stationary, homogeneous nor

isotropic. In this context, in the absence of better closure models and experimental confirmation

suited for the one dimensional pipe flow applications, it is proposed based on the fundamental

principles and the information available at the literature that the specific turbulent kinetic energy

can be estimated combining a stationary homogeneous component ēRe
k with a non-stationary and

non homogeneous undefined component e′Re
k

eRe
k = ēRe

k + e′
Re
k . (3.126)
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The stationary homogeneous component of the specific turbulent kinetic energy is

estimated from the trace of a isotropic Reynolds stress tensor (Pope et al., 2000; Zhang et al.,

2003; Shoham, 2006)

eRe
k ≈ 3

2
v̄′2k, (3.127)

where v′k is the averaged radial velocity fluctuations that can be estimated by the turbulent

friction velocity. Its root mean square value is given by

v′k ≈ v̄′2k
0.5

= v∗k =

(
τwk
ρk

) 1
2

= vk

(
fk
2

) 1
2

. (3.128)

Therefore

eRe
k ≈ 3

2

τwk
ρk

=
3

4
fkv

2
k. (3.129)

The stationary homogeneous component of the averaged turbulent kinetic energy

eRe
k defined in the Equation 3.129 could be used for estimating the averaged effective kinematic

viscosity νT
k defined in the Equation 3.125. However, such estimate would be undersized at the

liquid piston region given the sudden mean flow dissipated energy injection at hydraulic jump,

as discussed in Section 3.3.5.

In order to consider the non-stationary and non-homogeneous component of the av-

eraged turbulent kinetic energy, the averaged total specific energy balance performed in Section

3.3 will be adapted and rewritten. Recall, that it is the one-dimensional approach inspired by

the classical three-dimensional equation model, following its footsteps and premises.

Due to the difference between the specific masses (ρ2 ≪ ρ1), the mean flow power

injection and turbulent kinetic energy of the gas phase is much lower than that of the liquid

phase, thus, it will be neglected . Subsequently, the averaged turbulent mixture kinetic specific

energy Equations 3.51, 3.52, 3.77 and 3.67 are rewritten as

∂

∂η

[
ρ1M1e

Re
1 + α1q

Re
1

]
=− ∂

∂η

{
σM2

α

[
Id
6α

db
+ (1− Id)

Si

A

]}
− ρ1M1

∂

∂η

[
(v1 − J)2

2

]
+

∂

∂η

{
ρ1α1ν

T
1

∂

∂η

[
(v1 − J)2

2

]}
− τw

S

A
J + S∆ν

(3.130)
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The averaged axial turbulent kinetic energy flux qRe
k is a diffusion process that can

be modelled by

qRe
1 = −ρ1ν

T
1

∂eRe
1

∂z
= −ρ1ν

T
1

∂eRe
1

∂η
(3.131)

where the diffusivity is the averaged turbulent effective kinematic viscosity (Launder; Spalding,

1973; Kataoka; Serizawa, 1989; Bertodano et al., 2016). Substituting, it yields

M1
∂eRe

1

∂η
− ∂

∂η

(
α1ν

T
1
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1

∂η

)
=− ∂
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Si
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]
+

∂
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T
1

∂
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(v1 − J)2

2

]}

− τw
ρ1

S

A
J +

S∆ν

ρ1

(3.132)

The total mixture net power source term S∆ν that encompasses the energy diffusion

and dissipation along the pipe cross section perpendicular to the pipe axis, defined in Equation

3.50, can be approximated as (Pope et al., 2000; Morel, 2015)

−S∆ν

ρ1
= ϵ =

eRe
k

3
2

lm
, (3.133)

using the averaged turbulence kinetic energy dissipation rate ϵ and the one equation model

hypothesis. Consequently, it yields

M1
∂eRe

1

∂η
− ∂

∂η

(
α1ν

T
1

∂eRe
1

∂η

)
=− ∂
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σM2

ρ1α
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Id
6α
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+ (1− Id)

Si

A
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−M1
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(v1 − J)2

2

]
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α1ν

T
1

∂

∂η
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(v1 − J)2

2

]}

− τw
ρ1

S

A
J − eRe

k

3
2

lm
.

(3.134)

This equation is very similar to the classical three-dimensional one equation model

that has been adapted to the one-dimensional case in the travelling wave reference frame. This

equation can then be integrated to obtain the evolution of the averaged turbulent kinetic energy.
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3.6 Concluding Remarks

The description of the dynamically evaluated flow pattern represented by the sig-

moid function Id over a classification boundary is addressed where a physically and data-driven

based transition model for the flow pattern classification boundary is presented, based on energy

conversion processes in the region of the mixing length after the hydraulic jump.

The transition domain bounds were discussed, allowing to have an estimate of the

region where the transition occurs and its parameters. Subsequently, the existence and stability

of the dispersed bubble flow pattern were evaluated, giving the first proposed transition cri-

terion based on the bublance concept. Afterwards, the energy conversion mechanisms were

mapped and discussed, giving the second proposed transition criterion based on the maximum

dissipated mean flow energy. The proposed transition criteria are discussed together with a

data-driven identified one in order to craft a two-state Markov Chain model in order to model

the stochastic nature of the unit cell. Finally, a discussion on the estimation of the turbulent

equivalent kinematic viscosity was presented.
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4 RESULTS AND DISCUSSION

In this chapter, the model analysis results are presented. First, the experimental

data, obtained from the literature, are briefly presented and then the main features of the unit

cell model are identified, i.e., the void fraction at the liquid slug αS , the void fraction at the

elongated bubble αF , the intermittent factor β, the passing frequency of the unit cell fU and the

Taylor bubble velocity VTB.

The proposed stochastic model based on the two-state Markov chain model is iden-

tified. The Otsu’s method (Otsu, 1979) is used for selecting both states from the time series.

A first order Markov chain model is firstly investigated as a candidate model. But it fails in

capturing the longer than the unit cell terms of the stochastic process. Then, a higher-order

Markov chain model is estimated and, following the principle of parsimonious and physically

interpretable model selection, a criteria for determining the order of the chain is proposed. Then,

the unit cell parameters are estimated as random variables.

Subsequently, the experimental data is investigated from a non-linear dynamic sys-

tem point of view. The void fraction time series is converted to the traveling wave reference

frame and the phase space reconstruction is discussed in terms of the Taylor bubble and slug

body regions, as determined by the Otsu’s method. From this interpretation, the two-state

Markov chain stochastic process model, can additionally be interpreted as modelling the tran-

sition probabilities between the equilibrium void fractions solutions at the center of the orbits.

Thus, the apparent randomness from the stochastic model is an indication of a chaotic behavior.

Finally, the last section presents the numerical results from the theoretical model. A

bottom up approach is proposed by increasing the dimension of the system from its first order

approximation up to the order identified from the experimental data.

4.1 Experimental Data

The experimental data used came from the work of Rodrigues et al. (2020). The data

acquisition campaign was performed at the Multiphase Flow Research Center of the Federal

University of Technology of Paraná (Brazil) and it is described in detail by Rodrigues et al.

(2020). The experimental apparatus consists of three pipelines: single-phase water, air and a

two-phase one. A mixer is used in the entry region of the two-phase pipeline to ensure that slug
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formation occurs downstream. The two-phase flow pipeline is a 37.9 m (1469 D) long with

25.8 mm i.d. (D), and it is instrumented with five measurement stations, each one composed

of two double wire resistive sensors allowing the Taylor bubble velocity VTB measurement and

pressure sensors (Dos Santos et al., 2019). The measured pressure time series have a lower

sampling frequency suited only for update the PVT properties, estimate the averaged pressure

gradient and calculate superficial velocities. However, the void fraction time series have a 800

Hz sampling rate which is used throughout this work. The exact position of each station along

the test section is presented in Fig. 4.1, relating to the pipe internal diameter. Each resistive

sensor output is proportional to the instantaneous liquid height, so related to void fraction α.

Figure 4.1 – Resistive and pressure sensors locations along the two phase-flow line (Rodrigues
et al., 2020).

The experimental results presented here were obtained by using the measurements

made in the third station (S3), which is located 795 diameters downstream the mixing zone,

which was arbitrarily chosen as a representative measurement of the flow in the pipe. The test

matrix consists of eleven experimental conditions, as summarised in Table 4.1.

Table 4.1 – Experimental points: Liquid j1 and gas j2 superficial velocities, mixture velocity J ,
non-slip void fraction λ, average void fraction αU and pressure gradient dP/dL.

# j1[m/s] j2[m/s] J [m/s] λ[−] αu[−] dP/dL[Pa/m]
1 0.70 0.31 1.01 0.30 0.18 358.94
2 0.50 0.52 1.02 0.51 0.32 255.01
3 0.30 0.71 1.01 0.70 0.43 145.74
4 1.00 0.54 1.54 0.35 0.22 749.65
5 0.50 1.04 1.54 0.67 0.46 375.78
6 1.50 0.56 2.06 0.27 0.17 1436.21
7 0.75 0.79 1.54 0.51 0.34 573.04
8 1.00 1.09 2.09 0.52 0.35 987.37
9 1.30 0.77 2.07 0.37 0.24 1271.67

10 0.70 1.39 2.09 0.66 0.46 689.75
11 0.50 1.57 2.07 0.76 0.52 472.08

All tests were performed on the slug flow pattern, as predicted by the flow pattern

map shown in Figure 4.2. Compressed air and tap water whose properties are summarised in
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Table 4.2 were the working fluids. Figure 4.3 presents the measured void fraction waves at the

test matrix center, i.e., the experimental point #7.

Table 4.2 – PVT properties.

ρ1[kg/m
3] 955.5

ρ2[kg/m
3] 1.28

µ1[Pas] 0.963× 10−3

µ2[Pas] 4.5× 10−5

σ21[N/m] 77× 10−3

Figure 4.2 – Flow pattern map by (Barnea, 1987) and the experimental points described in Table
4.1 as red crosses.

Figure 4.3 – Void fraction waves at the test matrix center - experimental point #7

All post-processing performed on the Rodrigues et al. (2020) raw data are shown in

the following sections, being the object on the scope of this work.
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4.1.1 Unit Cell Characterization

The void fraction time series was processed estimating its probability density func-

tions through kernel methods, where the modes were interpreted as the equilibrium void frac-

tions solutions in the Taylor bubble and slug body regions αF and αS respectively. Additionally,

the Otsu’s method (Otsu, 1979) was used to automatically estimate a threshold that separate the

modes of the probability density functions in two groups, in order to build a binary classifier

where the void fraction time series where divided into Taylor bubble and slug body classes,

leading to a two state square-pulse train as shown in Figure 1.3. Then, this new time series can

be interpreted as a two state Markov chain process whose transition matrix and properties were

estimated. At last, the void fraction wave phase velocity VTB was estimated through a correla-

tion in the frequency domain giving good results in comparison to the literature. However, due

to the stochastic nature of the phenomena, its estimate has inherent biases and uncertainties that

should be taken into account.

4.1.1.1 Estimation of Taylor bubble velocity

Figure 4.4 shows a typical result from BCC and GCC with SCOT approaches (see

section 1.1.4) applied to a pair of resistive sensors. Note that the SCOT estimator yields a

distinct peak at the time delay, as expected from Eq. 1.13. Also, the maximum values of the

correlation are slightly off-set from each other. The difference is about twice the time resolution

∆t.

Figure 4.4 – Basic (black dashed line) and generalised (blue full line) cross-correlation with
SCOT approaches for a typical experimental point.
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Figure 4.5 shows the elongated gas bubble velocity at all of the measurement sta-

tions obtained with BCC and SCOT and the corresponding error bars for ±3στ̂peak . Results

are compared to the correlation proposed by Bendiksen (1984) and the suggested correction

proposed by Rodrigues et al. (2020). CPSD are estimated using Hann windowing and 33%

overlap.

(a) CPSD with 5 segments.

(b) CPSD with 20 segments.

Figure 4.5 – Gas bubble velocity obtained with BCC (red) and GCC (blue) with ±3στ̂peak ,
Bendiksen (1984) (gray) and Rodrigues et al. (2020) (dashed black).

A large difference is observed within the predicted and estimated Taylor bubble ve-
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locities, Figure 4.5. It is reasonable to observe such variability since the unit lengths are not

always the same, as the bubble velocity depends on several flow parameters and its hydrody-

namics, as already observed by several authors (Bendiksen, 1984). However, literature models

correctly predict an average value for such velocity. Another point is that literature models for

predicting pressure drop and void fraction, e.g., depend on the correct prediction of the elon-

gated bubble velocity (Sarica et al., 2011). Amongst the GCC methods, the smoothed coherence

transform (SCOT) was chosen for estimating the gas bubble velocity because it combines a pre-

withening, which removes the dispersive effects of travelling waves, with a weighting by the

coherence function, which decreases the influence of frequency bands with low SNR (Gao et

al., 2006). The estimator features are consistent with the unit cell model since the wave disper-

sion is mostly due to changes on the format of the bubble along the pipe, for the travelling waves

case as Taylor bubbles. However, in the case of developed slug flow with a stable unit cell, it

is experimentally observed a low variability in the Taylor bubble velocity. Thus, it configures

a simple delay problem and thus with a linear phase and corresponding linear wave dispersion

curve (Wallis, 1969; Shoham, 2006).

It should be noted that as such correlation-based methods rely on the average CPSD,

thus, the number of segments can affect the estimation because it is an averaging process. The

estimated velocity is an average quantity over the time series and it will be more dominated by

the frequency bands of greater energy and high coherence. Thus, in this context, the velocity

of the most energetic structures will dominate on the results. In the unit cell approach, these

regions are directly associated with the jumps and shocks at the nose and tail of the Taylor

bubble, as it can be seen in Figure 4.29 and further discussed in Section 4.3.

4.1.1.2 Identification of the liquid slugs and Taylor bubbles

For the identification of the void fraction at the liquid slug αS and the void fraction

at the elongated bubble αF , it is important to establish a threshold for classifying a sample of the

measured time series as either belonging to the elongated bubble or to the liquid slug. Typically,

this threshold is dependent on the experimental point thus a completely data-driven approach is

proposed.

Figure 4.6 shows some statistical features of all experimental points from the test

matrix (Rodrigues et al., 2020). The normalised histogram of the time series gives a measure of

the distribution of the void fraction values. A kernel density estimator (KDE) is used to estimate
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a continuous function for the PDF using a Gaussian kernel, which reveals some interesting

features of the distribution for each experimental point. It can be clearly noticed that two regions

of lower and higher void fraction are present, as expected, representing the liquid slug and

the elongated gas bubble, respectively. For all of the experimental points, the KDE estimator

revealed more than one local maximum, thus a multi modal distribution. This feature affects

the mean and median values. It can be seen that they are not consistent predictors of a threshold

to properly classify each step of the time series as either liquid slug or elongated gas bubble.

The Otsu’s approach (Otsu, 1979) is used to find the best threshold for every exper-

imental point. It is a non-parametric and unsupervised method of automatic threshold selection.

It is typically used in computer vision and image processing but it can be directly applied to un-

supervised decision problems in pattern recognition. It is based on finding the optimal thresh-

old that minimises the intra-class variance between two classes and can be straightforwardly

extended to multiple thresholds for several patterns. Given that any point of the time series is

classified as either belonging to a liquid slug or to an elongated bubble, the average intermittent

factor β can be directly calculated from the transition times in the time series.

Figure 4.6 – Statistical features of the void fraction time series for all experimental points at
a single measurement station. The histogram (grey bars), the KDE (full line),
the modes (lower triangle), the median value (full vertical line), the mean value
(dashed vertical line), the Otsu threshold (dash-dotted vertical line) and local mean
(full circle).
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Finally, in the unit cell approach framework, the obtained results that completely

characterise the needed parameters in order to reconstruct the unit cell pulse train, i.e., the void

fraction at the liquid slug αS , the void fraction at the elongated bubble αF , the intermittent factor

β, the passing frequency of the unit cell fU and the Taylor bubble velocity VTB, are summarized

in Table 4.3. The fU is given by the frequency at which the maximum amplitude of the Power

Spectral Density (PSD) of the time series occurs. This estimation is not straightforward and

will be discussed in details in the next section.

Table 4.3 – Experimental results

Experimental points αS[−] αF [−] β[−] fu[Hz] VTB[m/s]
1 0.021 0.448 0.384 1.40 1.11
2 0.043 0.593 0.751 1.10 2.35
3 0.047 0.624 0.824 0.58 2.35
4 0.013 0.521 0.609 3.20 1.11
5 0.009 0.552 0.785 0.96 1.11
6 0.009 0.461 0.471 4.80 1.76
7 0.024 0.600 0.761 1.85 1.76
8 0.010 0.390 0.412 2.00 2.35
9 0.017 0.539 0.623 3.80 1.76

10 0.03 0.531 0.631 1.47 2.35
11 0.017 0.454 0.507 0.62 2.35

4.2 Two-state Markov chain model

In this section, the proposed two-state Markov chain model is investigated. First,

the definition of each state from the time series is proposed, then the first order statistics of

the estimated Markov chain model is discussed. Finally, the need of the higher order model is

physically discussed and addressed.

4.2.1 State classification from the time series

For estimation of the two-state Markov chain model, the obtained threshold from

the Otsu’s method, as shown in Figure 4.6 is directly applied in the time series, following

the two-state model presented in Figure 3.1. Consequently, any measurement higher then the

Otsu’s threshold is classified as state 1, liquid piston, otherwise it is a state 0, gas bubble. The

upper plot of Figure 4.7 shows a typical example of a resulting time series formed from this

classification approach, in which each state is then represented by the corresponding values of

αS and αF , Table 4.3, thus it can be directly compared to the measurement. Clearly, the original
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measure time series oscillates around the average value of the state, but the transitions are well

represented. Notice that, the use of more states may lead to a better description of the slug flow

regions representing other regions of the unit cell, such as the turbulent recirculating zone and

the elongated bubble nose. For instance, it could potentially improve the description of the slug

flow dynamics by a stochastic process. However, it has the drawback of increasing the Markov

chain complexity.

4.2.2 Statistics of the first order Markov chain model

In this section, the estimation of the first order Markov chain model and some sta-

tistical moments for each experimental point are investigated. The time series of each experi-

mental point is used to estimate the state transition matrix, Eq. 3.99. A Maximum Likelihood

Estimator (MLE) is used (Billingsley, 1961; Teodorescu, 2009). Figure 4.7 shows a typical

void fraction measurement, experimental point #1, and the two-state time series generated by

the Otsu’s threshold. Notice that for lower void fraction values, at the liquid slugs, there is very

non-uniform region, with rapidly decreasing α values. This is due to the complexity of the liq-

uid slugs at the slug flow. The figure also shows a sample of the two-state Markov chain model

synthetically generated from the identified model, i.e., a sample of the stochastic process. Note

that it maintains a time structure similar to that of the Otsu’s classification on experimental time

series but, from a visual inspection, it does not seem similar to the experimental data. Similarly,

the periodic model is also not representative of the experimental time series. The differences

and similarities are further investigated in terms of some statistical moments of interest.
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Figure 4.7 – Top curve shows a typical void fraction experimental measurement (black full line)
and time series from Otsu threshold (red dashed line) identified. Centre figure
shows a random sample time series synthetically generated from the identified
Markov chain model. Bottom figure shows a periodic time series with the iden-
tified unit cell parameters.

Figure 4.8 shows the autocorrelation estimated for all the experimental points us-

ing the original measurement, Otsu’s threshold, a sample realisation of the first order Markov

chain, the analytical first order MC model, Eq. 3.110, and the periodic model. It can be seen

that the autocovariance from the Otsu’s threshold presents a very good agreement with the orig-

inal measurements, which indicates that very little information is lost by the thresholding in a

second-order sense. It indicates that the proposed approach captures the second-order statistical

features of the original time series. The Markov chain model presents a good agreement only

for a short lag, i.e., only short term variations of the time series are well represented by this

model. The oscillations on the autocorrelation for higher lags matches those of the periodic

model, which indicate the level of periodicity on the signals. Note that for every experimental

point, different levels of oscillations are present. In contrast, the Markov chain analytical model

does not present these oscillations, i.e., it does not capture periodic fluctuations of longer peri-

ods. This effect is emphasised on the analysis of the PSD. However, before that, some aspects
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of the PSD estimation are highlighted.

Figure 4.8 – Normalised autocorrelation from each original measurement point (black full line),
time series from Otsu threshold (black dashed line), a MC sample (red dash-dotted
line), the MC analytical model (green dashed line) and the periodic model (blue
dotted line).

Figure 4.9 presents the PSD of a typical measurement point, estimated by using a

Welch’s segment and average approach (Shin; Hammond, 2008) for different number of blocks

Nb. It can be seen that increasing Nb on the Welch segment and average approach has the effect

of smoothing the PSD amplitude, as expected. This is shown for Nb = 5, Nb = 10, Nb = 15

and Nb = 20. The latter is chosen as a limit case so that a number of slugs can travel along

the bench and thus be captured by the measurement. The estimate is based on the Bendiksen

(1984) model for the Taylor bubble velocity. This is also to meet an underlying assumption of

the segment and average approach that each segment has to be statistically independent from

each other. Care must be taken with regard to this estimator, since it is typically used to eliminate

measurement noise. In this case, the void fraction measurement is itself a stochastic process, as

highlighted by Markov-chain model. Thus, several frequencies present in the signal are most

likely related to the physics of the flow itself rather than to the measurement noise. As we

are typically interested in the main frequency component, i.e., the frequency band with higher

power density, smoothing out the adjacent ripples can help to better define a single frequency

peak on the PSD. This is typically associated with the main passing frequency of the Taylor
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bubbles. However, increasing the number of blocks beyond Nb = 20 tends to smooth out the

main frequency peak as well. This is because the total time at each block is shorter and only the

physics in this time scale is well captured by the PSD estimate.

Figure 4.9 – Power spectral density of a single measurement point for different number Nb of
blocks on the Welch’s segment and average.

Figure 4.10 presents the PSD estimate for all the experimental points, estimated

with Nb = 20. It can be noticed a very good agreement between the results from the original

measurements and the Otsu threshold while the MC model presents a good agreement only for

higher frequencies. This is expected from the inspection on the autocorrelation results. Shorter

correlation lags τ on the autocorrelation are represented by higher frequencies on the PSD.

Similarly, longer correlation lags are associated to lower frequencies on the PSD. These results

also show that reducing the signal to a two-state representation does not causes a great loss

on its spectral content. However, the first order MC model clearly does not capture the main

peak, which typically represents the frequency of passage of the unit cell, fU . The estimation

of this parameter is discussed in detail in the following section. In other words, the first order

MC model does not capture the fundamental component of periodic content of the signal. This

effect is highlighted by the amplitude value of the coefficients of the Fourier series from the

periodic representation of the slug flow given by Equation 1.6, as presented by Vieira et al.

(2021) and reviewed in Section 1.1.3.

The Fourier series presents a discrete spectrum due to its periodic nature. The am-

plitude of the coefficients are normalised such that they can be compared to a PSD. The fun-
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damental component of the periodic representation matches that of the PSD peak because this

is set as the fundamental period of the Fourier series. Notice that the higher frequency content

decays following a different amplitude decay when compared to the Markov Chain model and

the experimental results, both with a significant reduction on the power density compared to

the periodic case. This result suggests that the actual stochastic process representing the slug

flow is somewhere between these two representations. Following the principle of a parsimo-

nious and physically interpretable model, ideally the stochastic process representing the slug

flow has to be as simple as possible. However, the first order MC model clearly fails to capture

the long term behaviour indicating the need of increasing its order. In the next section the ap-

propriate choice of the order of the MC model is investigated aiming at the simplest stochastic

representation for the features of interest.

Figure 4.10 – Power spectral density from each original measurement point (black full line),
time series from Otsu threshold (red full line), a first order MC sample (blue
dotted line), the first order MC analytical model (green full line) and the periodic
case (yellow dots).

4.2.3 Higher order Markov Chain model

In this section, the estimation of the higher order Markov chain model is investi-

gated. The estimation of the order of the chain is discussed in terms of two classical information
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criteria, which are not conclusive. Subsequently, a criterion for the chain order estimation based

on the zero-crossing of the autocorrelation function is proposed and it is shown to be consistent

for all experimental points. Similar to the first order chain, the transition probabilities are also

estimated using MLE approach.

The Akaike Information Criterion (AIC) (Akaike, 1974), originally proposed as

a means of selecting competing models, can be used to determine the order m of the Markov

Chain (Tong, 1975) that best suits the data by minimises the function (Rafteryt, 1985) AIC(m) =

−2LL + 2m, where LL =
∑

i nti log ti is the log-likelihood function of the transition proba-

bilities and nti is the number of transitions occurring in a sequence and ti is the corresponding

transition probability. Similarly, the Bayesian Information Criterion (BIC) also establishes a

metric for model selection (Schwarz, 1978) and has been proposed as a consistent estimator

(Katz, 1981), unlike the AIC. The selected order m is such that it minimises (Rafteryt, 1985)

BIC(m) = 2LL +m logNT , where NT is the sample size.

Figure 4.11 and 4.12 presents the AIC and BIC as a function of the Markov Chain

order ranging from order m = 1 to m = 20, respectively. It can be notice the both AIC and BIC

criteria fail to give a clear consistent minima for all of the experimental points, which indicates

that both information criteria might not be suited for this particular problem.

Figure 4.11 – Akaike information as function of the MC order for each experimental point.
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Figure 4.12 – Bayesian information as function of the MC order for each experimental point.

The main objective of order identification is to include the long term effects of

the chain and, consequently, to represent the behaviour of the passage of the unit cell. From

the previous section, it was discussed that this is closely related to the zero-crossing of the

autocorrelation function shown in Figure 4.8. Consequently, it can be argued that the order of

the Markov Chain must be such that it can capture the lags at the first autocorrelation zero-

crossing. Following this rational, the order of the chain is chosen that it is twice the number of

lags until the first zero-crossing, summarised in Table 4.4.

Table 4.4 – Estimated Markov chain order for every experimental point.

Experimental point #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11
Markov chain order 20 46 68 16 36 8 22 18 12 28 38

Figure 4.13 shows the autocorrelation function of the experimental and the one ob-

tained from a random sample of higher order Markov Chain. Notice, that this order selection

criterion provides an excellent approximation of the oscillations of the autocorrelation func-

tions. In addition, Figure 4.14 presents the PSD estimate from each measured data and from

a random sample of higher order Markov Chain. Clearly, both the main low frequency peak

of each PSD and the high frequency are well represented. Further increasing the order of the

Markov would further improve the representation of the lower frequencies at the void fraction
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measurements. However, following the principle of parsimonious and physically interpretable

model selection, there is no evident gain in increasing the model complexity. Finally, Fig-

ure 4.15 presents, on the left, the time series for 3 seconds of the void fraction measurements

and the corresponding time series from the Otsu thresholding and, on the right, the synthetically

generated time series from the higher order Markov Chain model. It illustrates the suitability of

the proposed order selection criterion.

Figure 4.13 – Normalised autocorrelation from each original measurement point (full line) and
higher order MC sample (dashed line).

In the following subsections, the characteristics and physical interpretation of the

slug flow represented by the proposed two-state MC model is further investigated.

4.2.4 Model validation

In this section, slug flow features are calculated for validation and discussion of the

proposed approach. The intermittent factor, β, and the unit cell frequency, fu, are calculated

from the two-state time series generated from the experimental measurements, classified by

the Otsu’s threshold, and from the higher order Markov chain random sample, generated from

the corresponding estimated transition matrix. The transition between two consecutive states is

used to calculate the time tXn=0 at Xn = 0, the liquid slug, and the time tXn=1 at state Xn = 1,
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Figure 4.14 – Power spectral density from each original measurement point (full line) and from
the higher order MC sample (dashed line).

the gas bubble. Assuming the the same velocity for the unit cell, the intermittent factor is then

estimated by β = tXn=1/(tXn=0 + tXn=1). In addition, the frequency of passage of the unit cell

can be estimated by fu = 1/(tXn=0 + tXn=1). Note that this approach estimates both β and fu

for each unit cell, thus providing a probability distribution for both variables as a consequence

of the stochastic assumption about the nature of the void fraction, α.

Figure 4.16 presents the histogram of the intermittent factor with 100 bins obtained

from the measured time series and classified by the Otsu’s threshold (Experimental - MC) and

also from synthesised time series generated by a random sample of the Markov Chain (Sample

- MC). Notice that for most experimental points, a good agreement between the estimates from

experimental and model samples is found. This indicates the proposed two-state Markov chain

model is representing well the statistics of the slug flow. The histogram of the experimental data

can present a single dominant mode in the middle of the domain. In this cases, the mean values

have a very good agreement. On the other hand, when the distribution presents some spikes of

more than a single dominant mode outside the regions close to 0 and 1, the mean values present

a greater divergence. But, in general, a very good representation is obtained for all cases.

Figure 4.17 presents the histogram of fu with 100 bins obtained from the measured
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(a) Experimental (Full line) and Otsu’s threshold gener-
ated time series (Dashed Line).

(b) Synthetic Generated time series.

Figure 4.15 – Void Fraction Time Series for each experimental point: (a) Experimental (Full
line) and Otsu’s threshold generated time series (Dashed Line); (b) Synthetically
generated void fraction for each experimental point with higher order Markov
Chain model.
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Figure 4.16 – Histogram of the intermittent factor from the experimental data (grey) and from
the Markov Chain model (blue). Vertical lines show the mean value for the exper-
imental data (red full vertical line, the Markov Chain model (cyan dashed vertical
line) and the slug fraction (black dotted vertical line) based on the local mean of
the Otsu threshold.

time series and classified by the Otsu’s threshold (Experimental - MC) and also from synthesised

time series generated by a random sample of the Markov Chain (Sample - MC). Similar to the

previous case, the histograms in both cases present a very good agreement. The mean value

for each case is also shown in the figure. In addition, the frequency of the peak value from

the corresponding experimental PSDs, as shown in Figure 4.10 and 4.14, correspond to the

dominant peak of histogram.

Some experimental points present histograms well distributed around a prominent

peak, e.g. #1, #2, #3, #4 and #7, while others present a flatter distribution, such as #5, #6, #8,

#9, #10 and #11. In addition, the fu distribution is clearly not unimodal for all of the cases.

The peak frequency value of the PSD typically matches the peak of the fu distribution, i.e., the

most frequent case, rather than the mean value, as given for both the experimental and sampled

two-state time series.
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Figure 4.17 – Histogram of the unit cell frequency estimated from the experimental data (grey)
em from the Markov Chain sample (blue). Vertical lines show the median value
of the experimental data (red full vertical line), the Markov Chain sample (cyan
dashed vertical line) and the maximum PSD value.

For comparison purposes, the fu given by the PSD is compared with literature mod-

els proposed by Zabaras (2000) and by Vieira et al. (2020). In Figure 4.18 fu is plotted against

the Froude number of the slug Frslug as a function of the non-slip void fraction λ for different

values of the Froude number of the mixture Frm. It can be seen that they are in good agree-

ment showing the same trend. The latter model is applied assuming the development length

L/D = 60, which is typically assumed for single-phase flow. It can be seen that the proposed

approach performs well when compared to both models.



130

Figure 4.18 – Slug Froude number Frslug as function of the Mixture Froude number Frm and
the non-slip void fracton λ. Estimation by the experimental data from the PSD
peak (red circle). Also, Zabaras (Zabaras, 2000) (magenta lower surface) and
Vieira et al. (Vieira et al., 2020) (green upper surface).

4.3 Phase Space Reconstruction

In this section, the phase space reconstruction is investigated. The experimental

void fraction time series were converted to the traveling wave reference frame as shown in

Section 2.3 and the corresponding times series are presented in Figure 4.19. The Taylor bubble

velocity adopted for the reference frame transformation was estimated based on the measured

data using a frequency domain Generalised Cross-Correlation approach (GCC). The estimated

velocities are summarized in Table 4.3, for all the points of the test matrix.
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Figure 4.19 – Experimental void fraction (solid line) and states Id (dashed line) time series on
the traveling wave reference frame for all experimental points, from #1 (top) to
#11 (bottom).

In order to estimate the phase space and its properties, the observed variable time

delay embedding, i.e., the time delayed coordinate system, was estimated from a measured func-

tion of the dynamic system states. This process is based on Takens’ theorem (Kantz; Schreiber,

2004; Strogatz; Dichter, 2016) which states that the observed variable time series stacked with

delayed versions of itself reconstructs a phase space that is the result of a geometric trans-

formation called diffeomorphism of the canonical phase space. The phase space topological

properties are invariant to this transformation, therefore it is possible to estimate them from this

transformed phase space. Takens’ theorem states that any positive delay is sufficient to sustain

such properties. Despite having practical implications in implementations, the minimum num-

ber of dimensions needed for this embedding is 2d+ 1 where d is the number of dimensions of

the canonical phases space. Finally, it is important to highlight some aspects of the measured

function of the observed variable. Although we have an estimate of one of the system states, the

void fraction, this estimate is not accurate in the liquid piston due to the intrinsic features of the

sensor (Dos Santos et al., 2019). However this does not impact the reconstruction of the phase

space as it is enough that the measured function for this region is smooth, which is the case.

In order to assemble a time series embedding, the methods of auto-correlation and

mutual information were investigated (Kennel et al., 1992; Kantz; Schreiber, 2004), as shown

in Figure 4.20. The time delay is chosen such that the observations become statistically inde-

pendent in a linear sense for auto-correlation and, in a non-linear and more general sense, for

mutual information. However, the mutual information estimator did not prove to be suitable
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because it did not present a clear local minimum for most samples. Therefore, the zero-crossing

of the auto-correlation was used as an estimate of the time delay.

Figure 4.20 – Auto-correlation (blue) and mutual information (orange) of the experimental void
fraction time series on the traveling wave reference frame normalized by the unit
cell length Lu (unitary lag is the average period).

With the optimal time delays estimated, the false nearest neighbors method (Kennel

et al., 1992; Kantz; Schreiber, 2004) was used to estimate the appropriate time delay embed-

ding dimension for describing the system dynamics. In this method, it is assumed that points

that are neighbors in the canonical phase space will also be neighbors in diffeomorphic trans-

formations of this space and also in low-dimensional projections of these spaces. However,

low-dimensional projections can generate false neighbors, i.e., points that are neighbors in a

lower order projection and are not in higher order one. Therefore, the adequate number of

dimensions is such that it minimizes the false nearest neighbors fraction. Heuristically, this

dimension is the one that leads to a fraction of false nearest between 0.1 and 0.2. It can be

noticed from Figure 4.21 that this is around 7 dimensions. Consequently, according to Takens’

Theorem, the slug flow pattern is a three-dimensional system. This estimated number of dimen-

sions has great implications for the theoretical modeling because it shows that it is necessary to

include the low magnitude effects of interfacial tensions.

A low three-dimensional projected view of the 7 dimensional embedding is shown

in Figure 4.22. Bearing in mind that the void fraction time series resembles a pulse train oscil-

lating between high and low void fraction values with a certain regularity, notice that when the

three delayed versions of these time series are plotted with a delay such that it enforces statis-

tical independence of these delayed observations, it is expected that the phase space resembles
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Figure 4.21 – Fraction of the false nearest neighbors as a function system dimension.

the edges and vertices of a hexahedron. Consequently, these vertices represent the combina-

tions of high or low void fraction states of the delayed series. Also, the edges are the system

trajectories connecting these possible states. The low dimensional projected view of the 7 di-

mensional embedding displays something very similar to this description. However, it fails to

represent a visualization of the orbits centering around the equilibrium solutions, as expected

from the modes of the probability density distributions of the void fraction time series, shown

in Figure 4.6. This visualization and corresponding interpretation will be highlighted with the

results from the next methods.

Figure 4.22 – First three delayed components of the experimental void fraction time series em-
bedding for every experimental point of the test matrix using the delays of the
autocorrelation zero crossing.
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Given the estimated time series embedding, i.e., the time delayed coordinate sys-

tem from Figure 4.22, the maximum averaged Lyapunov exponents are calculated (Rosenstein

et al., 1993; Kantz; Schreiber, 2004; Strogatz; Dichter, 2016) and presented in Figure 4.23 as

a function of the normalized lag size in the travelling wave reference frame. In this method,

pairs of neighboring points are sought in a neighborhood and the trajectories of these points are

followed over time in the phase space by measuring the temporal evolution of theirs distance.

In a stable or dissipative system, these distances tend to decrease over time, while in a chaotic

system they tend to increase. The Lyapunov exponent measures the logarithmic evolution of

these distances, being negative for a dissipative system or positive for a chaotic system. Numer-

ically, the logarithmic distances for a series of pairs are estimated and an average is calculated.

Hence, for a sequence of samples, the averaging operator is dominated by the highest expo-

nent and subject to the sampling problems and biases typical of any averaging operator. All of

the maximum averaged Lyapunov exponents shown in Figure 4.23 have a similar format and

negative values, which does not indicate a chaotic response at first sight, showing oscillations

with a regular periodicity before saturating, therefore, exhibiting dissipative behavior. This is

caused by limitations on the method averaging process, worsened by the experimental signal

noise and intermittent transient behavior. In the canonical state space, the distances might not

grow everywhere or even decrease locally. As the estimated exponent is an average of these

local rates, localized instabilities as the system singularities typically require a larger dataset in

order to be properly estimated, because they are undersampled, as suggest by Kantz e Schreiber

(2004). It can be noticed that the ripples are around the unitary normalized lag, i.e., they are

of the same scale of the unit cell length Lu, thus can be associated with the periodicity of the

interfacial waves in the Taylor bubble regions.

In order to build the canonical phase space, as one has a direct estimate of the

system state, the experimental void fraction time series derivatives up to the third order were

calculated using the Savitzky–Golay filter (Savitzky; Golay, 1964). It is a noise tolerant method

commonly applied in experimental data. The void fraction derivatives time series consist of a

succession of peaks trains due to the jumps at the mass shocks in the Taylor bubbles tails, as

shown in Figures 4.24, 4.25 and 4.26.

The void fraction derivatives time series are then rearranged in its three-dimensional

phase spaces and theirs corresponding fluxes, shown in Figures 4.27 and 4.28. Notice that the

identification of the model as proposed in Chapter 2 at Eq. 2.196 is a function that maps both
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Figure 4.23 – Lyapunov exponents as a function of the lag size of the experimental void fraction
time series embedding on the traveling wave reference frame normalized by the
unit cell length Lu (unitary lag is the average period) for every experimental point
of the test matrix.

Figure 4.24 – First order experimental void fraction time series derivatives on the traveling wave
reference frame.

displayed manifolds.

It can be noticed that all samples are geometrically similar. Thus, for simplicity,

from now on, the focus will be on sample #7 which is the center of the test matrix, as it can be

seen on the Figure 4.2. From Figure 4.29, the time series can be interpreted as a pulse train series

due to the short-time and broadband energy surges present in the spectrogram and happening at

a fundamental frequency rate, also highlighted at the PSD. The transitions between a high and

a low void fraction can be clearly seen in the presented histogram. Another interesting aspect

to be highlighted is that small amplitude waves can be observed on top of the pulses. These can



136

Figure 4.25 – Second order experimental void fraction time series derivatives on the traveling
wave reference frame.

Figure 4.26 – Third order experimental void fraction time series derivatives on the traveling
wave reference frame.

be associated with interfacial waves, already discussed with the maximum averaged Lyapunov

exponents.

The experimental void fraction time series derivatives up to the second order were

calculated using the Savitzky–Golay filter and then rearranged in its phase spaces as shown

in Figures 4.30. It can be clearly observed that the system oscillates around two equilibrium

solutions. One is in a high and the other is in a low void fraction divided into Taylor bubble and

slug body regions. The presenting jumps are configured as transition surfaces that geometrically

resemble wings in Figures 4.30. The interfacial waves are visible in the oscillations around the

high void fraction solution that geometrically resembles a cyclone.
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Figure 4.27 – Test matrix phase spaces.

Figure 4.28 – Test matrix phase spaces fluxes.

Therefore, the center of each orbits, as shown in Figure 4.30, can be interpreted

as the corresponding equilibrium void fractions solutions in the Taylor bubble and slug body

regions αF and αS . Both points are, respectively, related to the modes of the probability density

functions, presented in Figure 4.6. Additionally, it can be argued that the Otsu’s method statisti-

cally estimates the vertical plane that optimally separate the center of the orbits that configures

the modes of the probability density functions. From this interpretation, the two-state Markov

chain stochastic process model, can additionally be interpreted as modelling the transition prob-

abilities between the equilibrium void fractions solutions at the center of the orbits.
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Figure 4.29 – Wave scope of sample 7: upper left - PSD, upper right - Spectrogram, lower left
- Histogram, lower right - Void fraction time series.

Figure 4.30 – Phase space of sample 7 and the corresponding time series.

The Poincare sections (Kantz; Schreiber, 2004; Strogatz; Dichter, 2016) of the es-

timated phase space are shown in Figure 4.31. The phase space in sectioned into the trivial

planes u = 0, w = 0, α = 0.28, given by the Otsu’s classification treshold, and an arbitrary

plane given by the 45º inclined plane intersecting both transition surfaces. The different colors

indicate the direction in which the trajectory crosses these surfaces. The Poincaré sections show

the structures of the oscillations due to the interfacial waves resembling geometrically a cyclone

in the planes u = 0 and w = 0 at the high void fraction zone (α > 0.28), where the cyclone

radius indicates the amplitude of these waves, in addition to indicating that the transition sur-

faces have almost straight linear sections as can be seen in planes u = 0 and in the arbitrary

plane. However, the most interesting result occurs in plane α = 0.28, where the transition

surfaces are sectioned at the Otsu threshold and the intersection points dispersion at the jumps

is an indication of a chaotic behavior. This result contradicts the estimation obtained from the
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Figure 4.31 – Phase space and Poincare’s sections of sample 7.

maximum averaged Lyapunov exponents, at first sight. However, they confirm the variability

in the intermittency factors and unit cell frequency observed and modeled by the Markov chain

that suggest a chaotic behavior. The full explanation for the discrepancy observed in the maxi-

mum averaged Lyapunov exponent estimation is still an open question, but it is mentioned in the

literature that cases where the instability is very localized in the phase space, so that the chaos

driven events are much less frequent (jumps that form the mass shocks), so the samples used in

the averaging operator to estimate the maximum averaged Lyapunov exponent are dominated

by the dissipative or non-chaotic part (interfacial waves inside the unit cell), biasing the result

towards the more frequent dissipative solution, or a negative exponent (Rosenstein et al., 1993;

Kantz; Schreiber, 2004; Strogatz; Dichter, 2016).

4.4 Theoretical Model

In this section, the numerical results from the one and two-dimensional phase-space

analytical models are presented and the results are interpreted in terms of the experimentally

observed time series. For this analysis, the dimensionless numbers are estimated from the

experimental data without turbulence effects, briefly presented and discussed in Section 4.1 and

investigated in Section 4.3, summarized in Table 4.5.

Table 4.5 – Dimensionless Numbers

ρ 1.3× 10−3

ν 3.4
1
Re

8.7× 10−3

1
We

1.2× 10−2
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It is possible to note on Table 4.5 that the laminar viscous terms are order O(−3),

which is lower than the interfacial functions terms. So, an approximation that considers only the

laminar viscous effects but disregards interfacial tensions or the turbulence phenomena would

not make practical sense. However, the three-dimensional model considering the effects of

surface tension only applies to the stratified pattern, which does not allow addressing the tran-

sition between the patterns observed in the unit cell. Therefore, the analysis displayed in this

section will focus on the one-dimensional and two-dimensional phase-space models. For such

analyses, the classical closure relationships in the literature discussed in Chapter 2 are adopted,

summarized in Table 4.6

Table 4.6 – Closure relationships previously adopted

Variable Description Model
VTB Taylor bubble velocity Bendiksen (1984)
αS Liquid slug void fraction Gomez et al. (2000)
vB Liquid slug gas in situ velocity Gomez et al. (2000)
f2 Taylor bubble gas friction factor Taitel e Dukler (1976)
f1 Taylor bubble liquid friction factor Taitel e Dukler (1976)
fi Taylor bubble interfacial friction factor Taitel e Dukler (1976)
fm Liquid slug mixture friction factor Bendlksen et al. (1991)
Wec Bubble critical Weber number Andreussi et al. (1999)
CD Bubble drag coefficient Tomiyama et al. (1998)
M̂D

2 Bubble drag averaged momentum transfer Ishii e Hibiki (2011)
CV Bubble added mass coefficient Ishii e Hibiki (2011)
M̂V

2 Bubble added mass averaged momentum transfer Ishii e Hibiki (2011)
CC Bubble collisions forces coefficient Bertodano et al. (2016)

4.4.1 Experimental Data Overview

The objective of this section is to interpret the obtained raw experimental data us-

ing the developed model. A connection with the proposed two-state Markov chain model is

discussed based on the transition boundary between the segregated and dispersed bubble flow

patterns at the unit cell.

From Section 4.2, recall that the Otsu threshold is proposed for the states classi-

fication used in the Markov chain estimation. As discussed, it seeks to separate the unit cell

regions by establishing a threshold over the jump section of the void fraction waveform pro-

file. Figure 4.32 shows the given Otsu threshold for every experimental point of the test matrix,

in addition to the classified Taylor bubble αf and liquid slug αS averaged void fractions. A

clear separation between the two regions is observed, as expected. Moreover, the singularities
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from the one dimensional model at the dispersed bubble and stratified flow patterns, presented

in Section 2.4.2, for each experimental point is shown. Remarkably, the statistically obtained

threshold are very close to the singularities for every experimental point. This singularities

promote the jumps in the dynamical system and are more deeply discussed in the following

section.

Figure 4.32 – Otsu classification threshold (orange), the Taylor bubble αf (blue) and liquid slug
αS (purple) averaged void fractions and one dimensional model singularities at
the dispersed bubble (red) and stratified (green) patterns for each experimental
point.

For the sake of simplicity, the analysis is focused on the experimental point #7, a

typical experimental point at the center of the test matrix, as it can be seen on Figure 4.2. In

addition, a typical unit cell was selected from this specific experimental time series. The unit

cell was select as being the one with the set of parameters closest to the median of the unit cell

parameters estimated for all experimental data and represented in the histograms of the Markov

chain, at Figures 4.16 and 4.17. It is presented in Figure 4.44 and further explored in the

following section. Figure 4.33 presents the data points from the median unit cell series plotted

on the flow pattern map, along with the constant mixture velocity flow curve, which defines the

problem kinematics, as discussed in Section 2.3.1. Furthermore, the dynamical system fixed

points are plotted along its singularities for each flow pattern. The fixed points delimit the

extremes of the intervals for each region of the unit cell, as the trajectory of the dynamic system

oscillates between them. The singularities points represent the jumps between flow patterns and

are expected to be close to the Otsu threshold, as shown in Figure 4.32. Finally, the curve with

the unity bublance, from Equation 3.33 at Section 3.2.3, is also presented, in this case calculated

using the homogeneous model, which implies that the slip in the liquid piston was neglected.
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Figure 4.33 – The typical median unit cell data points plotted on the Barnea (1987) flow pattern
map along with the constant mixture velocity line, homogeneous bublance clas-
sification threshold, fixed points and singularities of the one dimensional model.

It can be observed that all median unit cell samples lay on top of the constant mix-

ture flow curve, as expected. The data samples are mainly at two well defined clusters, corre-

sponding to the the high and low void fractions of the Taylor bubble and liquid piston regions.

These clusters are well separated by the singularities, by the Otsu threshold and also by the

point where the unity bublance curve crosses the constant mixture flow line. Of course, the

transition that each of these points promotes occurs at different pairs of superficial velocities,

as expected. However, the result given by the unitary bublance curve is important because it

is a criterion that allows the classification of intermittent flow in dispersed (liquid piston) and

separated (elongated bubble) regions even when the operational coordinates are all contained in

the slug region of the Barnea (1987) flow pattern map, being, therefore, a transient classification

criterion.

In order to briefly evaluate the developed model, while discussing the relevant

physics for segregated and dispersed flow patterns and transition phenomena, the void fraction

experimental time series are used to construct the model-based time series of some relevant flow

parameters. First, some fundamental flow variables are investigated. Figure 4.34 presents the

reconstructed time series obtained from the hydrodynamic model of the dimensionless liquid

height h̃ from Equation 2.11 and the dimensionless curvature γ̂ from Equation 2.22 and 2.152,

in addition to the phase velocities series obtained through the constant mixture flow solution,

from Equation 2.114 at Section 2.3.1, the pressure wave profile and the parietal shear stress τw,

from the pressure coupling model at Section 2.3.3.



143

Figure 4.34 – The void fraction time series as function of ξ and the corresponding two-state
classification (upper) from the experimental point #7. The reconstructed flow
variables dimensionless liquid height h, dimensionless curvature γ̂, constant mix-
ture flow solution based phase velocities series and the parietal shear stresses τw
along with the mixture pressure p.

The dimensionless curvature γ̂ behavior on Figure 4.34 besides the transition thresh-

olds is noteworthy, suggesting that it might be a good candidate for a unit cell classification

feature. The gas velocity series converge asymptotically to the Taylor bubble velocity in the

corresponding region, and the liquid velocity converges asymptotically to the mixture flow ve-

locity in the liquid piston region, as expected. Finally, the parietal shear stress is much higher

in the liquid piston region, as expected and the pressure wave profile series is in qualitative

agreement with the literature (Dukler; Hubbard, 1975). It presents three distinct almost linear

pressure derivative zones: the Taylor bubble, the liquid piston and a short mixture zone.

Figure 4.35 presents the reconstructed pressure wave profile and its components,

discussed at section 2.3.3, pca, pν , p∆, pf , i.e., the pressure oscillation components induced by

the convective acceleration, viscous dissipation, pressures differences between phases and the

body forces and shear stresses contributions, respectively. It can be noticed that the pressure

wave profile is totally dominated by the components of convective acceleration and forces,

gravity and parietal shear stress, as expected (Dukler; Hubbard, 1975).
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Figure 4.35 – The void fraction time series as function of ξ and the corresponding two-state
classification (upper) from the experimental point #7. The reconstructed pres-
sure wave profile (bottom - pmodel) and its components (pca, pν , p∆, pf , i.e., the
pressure oscillation components induced by the convective acceleration, viscous
dissipation, pressures differences between phases and the body forces and shear
stresses contributions, respectively.).

Figure 4.36 presents the reconstructed stationary homogeneous component of the

turbulent flow variables as discussed in Section 3.5. The equivalent averaged turbulent kine-

matic viscosity νT
k is calculated from Equation 3.125, using the stationary homogeneous com-

ponent of the averaged turbulent kinetic energy ēRe
k , which is estimated from the turbulent fric-

tion velocity, expressed in the Equation 3.129, a function depending on the parietal shear stress

τw. The steady-state solution of the proposed one dimensional one equation turbulent model is

also evaluated and compared with the friction velocity approach, as expressed by the Equation

3.134 at Section 3.5.1, which simplifies to

ēRe
k =

(
−lm

τw
ρ1

S

A
J

) 2
3

. (4.1)
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Figure 4.36 – Reconstructed stationary homogeneous turbulent flow variables from the exper-
imental point 7, where α is the void fraction time series as function of ξ and
the corresponding two-state classification (upper), τw is the parietal shear stress,
ēRe
k is the homogeneous turbulent kinetic energy and νT

k is the averaged effective
kinematic viscosity.

Higher equivalent kinematic viscosities are observed on Figure 4.36 for the pro-

posed model steady state solution νT
s , which will be the preferred option from now on, as more

dissipation is desired to stabilize the system near the jumps. Similar results were reported by

Fullmer et al. (2011) regarding the stratified flow pattern, with equivalent kinematic viscosities

between 1 m2/s and 4 × 10−5 m2/s at the Taylor bubble region, which indicates consistency of

the adopted hypotheses in the model development. Peaks in equivalent kinematic viscosity are

observed near the transitions, which indicates that they can be induced by the transition itself

between the alternating unit cell flow patterns, where the causality should be investigated.

The equivalent kinematic viscosities components are shown in Figure 4.37, where

νT
s , νTW , νTI and νTB are the averaged effective kinematic viscosities obtained from the pro-

posed model steady state solution, the shear induced components due to the wall and interface

shear stresses and the bubble-induced component, respectively, as indicated in Section 3.5. The

aforementioned peaks observed in the equivalent kinematic viscosities are due to the bubble in-

duced component at the transition from the stratified pattern to the dispersed bubble pattern. As

stated by Vaidheeswaran et al. (2016), such viscosity peaks are important to stabilize the flow

in the jump regions, which leaves us questioning if the transition to the dispersed bubbles flow

pattern is the system stabilization mechanism, otherwise there would not be an abrupt increase

in equivalent kinematic viscosity by an order of magnitude.
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Figure 4.37 – Reconstructed stationary homogeneous turbulent equivalent kinematic viscosities
from the experimental point #7, where α is the void fraction time series as func-
tion of ξ and the corresponding two-state classification (upper), νT

s , νTW , νTI and
νTB are the averaged effective kinematic viscosities obtained from the proposed
model steady state solution, the shear induced components due to the wall and
interface shear stresses and the bubble-induced component, respectively.

The specific power source components of the proposed one dimensional one equa-

tion turbulent model are calculated and shown in Figure 4.38, as expressed by the Equation

3.134 at Section 3.5.1. As expected, it can be noticed that the specific power source is domi-

nated by the parietal shear stress and convective acceleration components, S̄mf and Sacc
mf respec-

tively, while the viscosity dissipation and surface energy components are negligible, Sν
mf and

Sσ
mf respectively. Therefore, the simplifications made for the power based transition criterion

evaluation are suitable, as peaks are observed in the specific power source next to the jumps,

confirming the hypothesis that the transitions are close to its maximum.

The estimated bublance B is also shown, as defined in Equation 3.32 at Section

3.2.3. However, in this case, the complete model considering the phases slip velocities and

the in situ void fraction is used rather than the homogeneous one, as shown in Figure 4.33. It

is observed that the jumps in the bublance coincide with the jumps in the void fraction wave

profile, which indicates that the unit bublance could be the threshold for classification between

flows dominated by turbulence (DB) or coalescence (SS). Finally, the net specific power source

derivative is compared with the bublance along the states estimated by the Otsu method in

Figure 4.39.
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Figure 4.38 – Reconstructed specific power source components of the proposed one dimen-
sional one equation turbulent model from the experimental point #7, where α
is the void fraction time series as function of ξ and the corresponding two-state
classification (upper), S̄mf , Sacc

mf , Sν
mf and Sσ

mf are the specific power sources
parietal shear stress, convective acceleration, viscosity dissipation and surface
energy components, respectively. Finally, the net specific power source Smf and
bublance B (bottom).

Figure 4.39 – Reconstructed transition criteria over flow variables from the experimental point
#7. Void fraction and two-state classification (top), first derivative of the specific
dissipated power (centre) and bublance (bottom).

In general, the transitions mapped by the Otsu threshold are very close to the unity

bublance and the zero crossing in the specific power derivative. It should be noted that, as

the void fraction signals that were used to reconstruct the time series are experimental and

noisy, the derivatives of the series reconstructed from the model are also noisy, which makes

the identification of the zero crossing less obvious, even with the adoption of noise-resistant

derivation methods such as the Savitzky-Golay filter. These results show that the proposed



148

transition criteria is suitable to represent the transition between the different regions of the unit

cell and can be implemented as a switching criterion for the source terms of the two-fluid model.

It suggests that the bublance and the net specific power source are entangled con-

cepts, as it can be seen adopting the one equation approach, expressed in the Equation 3.123,

for the dissipated turbulent energy rate and substituting in the bublance concept, expressed in

Equation 3.33. It leads to

B = α (1− α)
(ρ1 − ρ2)

ρ1

1

CD

We
3
5
c

[
g cos θ

(
σ21

ρ1

) 3
5 l
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5
m

eRe
8
5

]
, (4.2)

which means the bublance is actually a function of the averaged turbulent kinetic energy, whose

source is the net specific power source. Consequently, from now on, only the bublance concept

will be adopted for the transition modeling due to its causal relation with the net specific power

source.

Therefore, the dynamically evaluated flow pattern, alternating from one flow pattern

to another, as the unit cell model suggests, represented by the sigmoid function Id over the unity

bublance classification boundary is defined as

Id = H (B − 1) , (4.3)

where H is the Heaviside function.

As the bublance is directly affected by the parietal shear stresses, that vary accord-

ing to the observed flow patterns, one must evaluate its sensitivity to the segregated and dis-

persed bubble flow patterns, where they present different magnitudes, as can be observed at

Figure 4.34. Furthermore, Figure 4.40 displays the bublance estimated from the closure re-

lationships for the segregated BSS and dispersed BDB flow patterns. It can be seen that the

intersection between the bublance curves, the two-state classification series Id and the unity

bublance threshold occurs at different points depending on the flow pattern. This indicates the

phenomenon of hysteresis, since the transition threshold depends on the direction of the transi-

tion between the patterns, which is explained by the different magnitudes of the parietal shear

stresses experienced by the flow depending on the current pattern.
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Figure 4.40 – Reconstructed transition criteria over flow variables from the experimental point
#7. Void fraction (top), bublance on the stratified flow pattern BSS (centre) and
bublance on the dispersed bubbles flow pattern BDB (bottom). All compared with
the two-state classification series Id and the unity bublance threshold.

Finally, it should be highlighted that all series of variables of interest presented in

this section were reconstructed based on the experimental void fractions. They were obtained

using the developed models. However, a similar approach can been done with numerically

simulated data, indicating that the proposed model and corresponding numerical results can

be used for the reconstruction of series of interest, such as the pressure series. The numerical

integration of the models to obtain the waveform profile of the void fractions through the model

is discussed in the next sections.

4.4.2 One-dimensional Model

The one-dimensional theoretical model on the phase space for the stratified and

dispersed bubbles flow patterns, presented in Section 2.4.2, is investigated at the experimental

condition #7 of the test matrix, as shown at Figure 4.2 and Table 4.1. Figures 4.41 and 4.42

present the numerical results of the kinematics, obtained from Equation 2.114 at Section 2.3.1,

the force balance term FFB, from Equation 2.161 whose roots are the dynamical system fixed

points, the convective acceleration and pressure difference term FCA−∆P , from Equations 2.160

and 2.162 whose roots are the dynamical system singularities and the one dimensional flows

expressed at Equation 2.201.
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Figure 4.41 – One dimensional model for the stratified flow pattern: upper plot - kinematics,
center plots - the force balance term FFB and the convective acceleration and
pressure difference term FCA−∆P , lower plot - one dimensional flow.

Figure 4.42 – One dimensional model for the dispersed bubble flow pattern: upper plot - kine-
matics, center plots - the force balance term FFB and the convective acceleration
and pressure difference term FCA−∆P , lower plot - one dimensional flow.

The constant mixture flow solution allied with the traveling wave transformation,

Equation 2.114 at Section 2.3.1, allows reconstructing the velocities series from the void frac-

tions as shown at the upper plot in the Figures 4.41 and 4.42. It can be highlighted that the

fixed points of the dispersed bubbles pattern shown on Figure 4.42 are far from the point where

the slip velocity is zero, contradicting the widely used homogeneous model hypothesis for the

bubbly liquid piston (Wallis, 1969; Shoham, 2006).

The one dimensional flow, as shown at the lower plots in the Figures 4.41 and

4.42, is the O(0) approximation of the system dynamics and has fixed points at both high
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and low void fractions, the force balance term FFB roots from the Equation 2.161. Note that

they correspond to the solutions between which the system oscillates in the higher dimensional

models, as displayed in the Figure 4.33 at Section 4.4.1, but this oscillations cannot occur in an

one dimensional model for topological reasons (Strogatz; Dichter, 2016). The most remarkable

features are the singularities for the stratified and dispersed bubbles flow patterns, the convective

acceleration and pressure difference term FCA−∆P roots from the Equations 2.160 and 2.162,

both close to the Otsu’s threshold, as displayed in the Figure 4.33 at Section 4.4.1. These

singularities promote the jumps in the system dynamics switching between the stratified and

dispersed bubbles flow patterns. Recall that this switch can be modelled as a stochastic process.

The presence of these singularities is in line with the localized instabilities in the phase space

reported in the literature that explain the bias of the Lyapunov exponent estimator, as discussed

in Section 4.3. Such singularities can be associated with an empty space found in the phase

space between the transition surfaces that repel any trajectory near them, as shown in Figure

4.30.

Both numerically obtained system responses from the one dimensional flows ex-

pressed by Equation 2.201 and shown at the lower plots in the Figures 4.41 and 4.42 are pre-

sented in Figure 4.43, where the stratified and dispersed bubbles flow patterns are subsequently

combined around the singularity, in order to form the complete unit cell void fraction profile.

The initial conditions are set at the higher fixed point vicinity for the stratified flow pattern re-

sponse and lower fixed point vicinity for the dispersed bubble flow pattern response. The system

response is integrated by the implicit multi-step variable-order BDF method implemented in the

Scipy library (Virtanen et al., 2020) because the problem is stiff experimenting different times

scales due to the jumps at the mass shocks because of the hydraulic jump near the flow pattern

transition.

Note that the slug unit void fraction wave profile solution plotted in Figure 4.43

represents an advance when compared to the Taitel e Barnea (1990) model. It manages to

model more accurately the physics of the problem, including the region of the aerated piston in

the dispersed bubble pattern, where the region with the highest void fraction at the piston can be

observed. This region can be associated with the greater presence of bubbles in the recirculation

mixing zone after the hydraulic jump.
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Figure 4.43 – Slug unit profile obtained by integrating the one dimensional model for the strat-
ified and dispersed bubble flow patterns combined.

4.4.2.1 Taylor Bubble Experimental Profile

In this section, a typical unit cell was selected from the time series at the experimen-

tal condition #7 of the test matrix, as shown at Figure 4.2 and Table 4.1. The unit cell was select

as being the one with the set of parameters closest to the median of the histograms successfully

estimated and sampled by the Markov chain, as shown in Figures 4.16 and 4.17. This unit cell

is presented in Figure 4.44 along with its first and second order derivatives, calculated using the

Savitzky–Golay filter.

Figure 4.44 – Typical median unit cell at the experimental condition #7 of the test matrix void
fraction wave profile (top), first (middle) and second (bottom) order derivatives.

Unfortunately, as stated earlier, there are greater uncertainties on the measurement
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in the liquid piston region. Thus, only information from the Taylor bubble region will be eval-

uated. Using the Taylor bubble velocity estimated by the GCC SCOT, as shown in Figure 4.5

and Table 4.3, all the closure relationships reviewed in Chapter 2 were tested and compared

to the experimental data. It is important to highlight that hundreds of combinations of closure

relationships are possible. The results for the more suitable closure models listed in Table 4.7

are presented in Figure 4.45 along with the experimental data.

Figure 4.45 – Typical experimental slug unit cell void fraction wave profile along with the nu-
merical result obtained with selected closure models listed in Table 4.7.

The best model for the liquid phase friction was the Nossen et al. (2000), as shown

in Equations 2.31 to 2.34. This is an expected result because in addition to being the most

modern closure model, it considers the effects of interface friction on liquid phase friction, that

is, as the slip at the interface affects the velocity profile of the liquid phase. For interfacial

friction, the Andreussi e Persen (1987), given by Equations 2.38 to 2.40, was the best. It was

also expected because such a model considers the slip between phases and is based on the

Kelvin-Helmholtz instability mechanisms. The best model for relative volumetric flow of the

gas phase M2 was the one by Barnea e Brauner (1985), expressed in Equation 2.123, to estimate

the void fraction in the liquid piston together with the Gomez et al. (2000) Drift Flux model for

the in situ velocity of the gas phase considering that the experimentally estimated Taylor bubble

velocity was used. Another expected result, since this model is mechanistic and is based on the

transition mechanisms of the dispersed bubble pattern. Additionally, from Figure 4.45, it can

be seen that the void fraction wave profile at the Taylor bubble region is well represented and

the numerical model captures the overall profile except by the short wavelength oscillations. It
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presents an apparently increasing wavelength, which can be associated with interfacial waves

at the stratified region. Investigating this behaviour is outside the scope of this thesis.

Unfortunately, due to the high uncertainty of the measurement in the liquid piston

region, a similar procedure cannot be done for the closure relationships of the dispersed bubble

pattern because the measurements at low void fraction are not reliable (Dos Santos et al., 2019).

Therefore, the chosen closure models for the dispersed bubbles flow pattern are arbitrary, relying

on the author qualitative perception of the void fraction wave profile at the liquid piston.

From now on, the following adjusted closure relationships are adopted, as shown in

Table 4.7

Table 4.7 – Adjusted closure relationships

Variable Description Model
VTB Taylor bubble velocity Experimental from Table 4.3
αS Liquid slug void fraction Barnea e Brauner (1985)
vB Liquid slug gas in situ velocity Gomez et al. (2000)
f2 Taylor bubble gas friction factor Taitel e Dukler (1976)
f1 Taylor bubble liquid friction factor Nossen et al. (2000)
fi Taylor bubble interfacial friction factor Andreussi e Persen (1987)
fm Liquid slug mixture friction factor Bendlksen et al. (1991)
Wec Bubble critical Weber number Calderbank (1958)
CD Bubble drag coefficient Tomiyama et al. (1998)
M̂D

2 Bubble drag averaged momentum transfer Ishii e Hibiki (2011)
CV Bubble added mass coefficient Ishii e Hibiki (2011)
M̂V

2 Bubble added mass averaged momentum transfer Ishii e Hibiki (2011)
CC Bubble collisions forces coefficient Bertodano et al. (2016)

4.4.3 Two-dimensional Model

In this section, the numerical results for the two-dimensional model from the Sec-

tion 2.4.3 on the phase space are presented, at the experimental condition #7 of the test matrix,

as shown at Figure 4.2 and Table 4.1.

Considering that the slug initiation mechanism from the stratified equilibrium solu-

tion is the Kelvin Helmholtz instability, indicating an unstable fixed point at the segregated flow

pattern, where perturbations are amplified until high amplitude nonlinear waves are obtained

(Barnea, 1987; Barnea; Taitel, 1994; Shoham, 2006), one will first analyze the void fraction

wave profile only in the stratified flow pattern looking for limit cycles solutions that are similar

to the experimental data, which implies that there will be no transition to the dispersed bubble

flow pattern, hence, the wave crest will not touch the pipe upper dorsal line.
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Following the results from the previous section, the closure relationships chosen

as the most suitable for the segregated pattern listed at Table 4.7 are adopted for the two-

dimensional model, which was then integrated by the implicit multi-step variable-order BDF

method for stiff problems only for the stratified pattern, thus, without the transition modeling,

where the only remaining parameter is the equivalent kinematic viscosity that will be addressed

by a sensitivity analysis. Figure 4.46 presents the obtained results, along with the two di-

mensional stratified flow model (light blue), its trajectory (magenta) with its fixed points and

nullclines (dark blue) (Strogatz; Dichter, 2016).

Figure 4.46 – Numerical result from the two dimensional model at the stratified flow pattern
(magenta), its nullclines (dark blue), two dimensional flow (light blue) and the
hydraulic jump (red dashed line).

It is possible to note that the nullclines are very similar to the one dimensional flow,

as expected, since they are an O(0) approximation of the problem solution. However, for high

values of w, the viscosity effects are apparent by changing the nullcline slope, which qualita-

tively impacts the void fraction amplitude at the jump on the mass shock near the hydraulic

jump, with bigger and slower jumps as the averaged equivalent turbulent kinematic viscosity

increases. The Taylor bubble void fraction wave profile is dominated by the system trajectory

that is tangent to the nullcline. The higher and lower void fractions fixed points furthest from

the one dimensional model singularity, i.e., the hydraulic jump, are saddle points, attracting tra-

jectories vertically and expelling them horizontally. The periodic solution in this case is a limit

cycle on the two dimensional phase space laying between those two saddle fixed points and

around a unstable node fixed point with a unitary index, as the index theory suggests (Strogatz;

Dichter, 2016). Considering that the limit cycle orbit is near the lower saddle point, returning

to it periodically, this trajectory is a homoclinic orbit (Strogatz; Dichter, 2016). The numerical
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results are presented as a function of ξ in Figure 4.47 and compared with the experimental data

from the median unit cell. It can be seen that it presents a very good agreement, specially at

the first numerically integrated cycle. However, the steady state Taylor bubble length are longer

than the observed experimentally, which means that further adjustments are needed.

Figure 4.47 – Slug unit void fraction wave profile for the two dimensional model on the phase
space.

It should be noted that the turbulent viscosity was assumed to be a constant and

chosen from a sensitivity analysis to obtain such results, with equivalent kinematic viscosities

greater than 20×10−5 m2/s producing limit cycles, values at least 5 times bigger than the results

reported by Fullmer et al. (2011) for nonlinear waves modelling on the stratified flow pattern

at rectangular channels with higher viscosity operational fluids, which indicates that more dis-

sipation is needed in order to have limit cycles and the estimation of the equivalent kinematic

viscosities should be more precisely addressed. If the turbulent viscosity is too small, the system

response explodes beyond its domain support α ∈ [0, 1] becoming unstable. This is a similar

result as the one from Vaidheeswaran et al. (2016), which highlights the importance of turbu-

lent viscosity for the stabilization of the system, especially close to shocks and discontinuities.

Moreover, notice that as no transition is imposed, the entire series is in the stratified pattern. It

can be seen that at the region where the liquid piston would be present, there is a very short

region of low void fraction. This is most likely happening due to the fact that the transition and

higher averaged equivalent turbulent kinematic viscosity are necessary to stabilize the system

in this region, giving longer liquid pistons.
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4.4.3.1 Bifurcation Diagrams

In this section, a bifurcation diagram of the two-dimensional stratified model from

the Section 2.4.3 on the phase space is investigated, at the experimental condition #7 of the

test matrix, as shown at Figure 4.2 and Table 4.1. The fixed points and their respective stabili-

ties were calculated through the nonlinear system Jacobian eigenvalues considering the closure

models highlighted on Table 4.7, the results are presented in Figure 4.48 as a function of the

VTB and M2, the main nonlinear dynamical system parametric variables, alongside with the av-

eraged equivalent turbulent kinematic viscosity considered here as a constant at 20×10−5 m2/s,

as discussed in the previous section. The Taylor bubble velocity VTB values from the Bendiksen

(1984) model and the experimentally characterized from the GCC SCOT estimate are also high-

lighted alongside with the relative gas volumetric flow M2 from the Barnea e Brauner (1985)

model.

Figure 4.48 – Bifurcation diagram of the two-dimensional stratified model.

As the unit cell model suggests, the bifurcation diagram presented in Figure 4.48

shows a higher and lower void fractions unstable saddle fixed points surface branches (yellow

squares), furthest from the one dimensional model singularity, i.e., the hydraulic jump αHJ ≈
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0.2, whose values are relatively close to average void fractions of the Taylor bubbles αF and

liquid pistons αS shown at Table 4.3. As the system oscillates almost periodically between these

two higher and lower void fractions states as described and modelled by the Markov Chain, both

were expected to be unstable, as it is shown in the bifurcation diagram, otherwise the system

would eventually converge to one stable solution.

Additionally, it can be seen at the bifurcation diagram presented in Figure 4.48 that

there is a branch of singularities (magenta crosses) at lower void fractions, where this branch

collides with the lower void fractions unstable saddle branch (yellow squares). This is specially

interesting because this collision occurs around a line of near zero relative gas volumetric flow

M2 having a unstable saddle fixed point only for negative values, which can be physically

interpreted as the majority of the gas phase is displaced in the form of a Taylor bubble, its

relative gas volumetric flow M2 is near zero, however, this value must be negative, representing

the bubbles swarm that detaches from the Taylor bubble at the mixing recirculating zone after

the hydraulic jump, having, consequently, a negative relative gas volumetric flow M2, which is

consistent with the fact that the Barnea e Brauner (1985) model was chosen by the sensitivity

analysis, because it gives the nearest zero negative relative gas volumetric flow M2.

Moreover, it can be noticed at the bifurcation diagram presented in Figure 4.48 that

there is a third branch of intermediary void fractions fixed points, which consists mostly of

stable (blue dots) and unstable (red dots) nodes. As stated previously, this branch is mandatory

and extremely important in order to have a closed orbit around it oscillating between the higher

and lower branches, as stated by the Index Theory, a closed orbit is only possible if it involves

fixed points whose combined indices are unitary in R2 (Strogatz; Dichter, 2016). As apparently

such orbits do not involve the upper e lower fixed points branches, it only involves the nodes

fixed points of this third branch, which, in order to have unit indices, it needs to be nodes,

centers or spirals, that is the case. For higher values of Taylor bubble velocities VTB, this branch

of stable nodes fixed points (blue dots) eventually collides with the higher branch of unstable

saddle fixed points (yellow squares), producing a saddle-node bifurcation, being the first region

on the nonlinear dynamical system parametric variables space as a candidate for a closed orbit

around this bifurcation (Strogatz; Dichter, 2016; Giddings, 2017; Giddings; Billingham, 2019;

Needham; Merkin, 1984; Needham et al., 2008). For lower values of VTB, this third branch

undergoes a series of interesting transformations that are going to be detailed at the zoomed

bifurcation diagrams presented in Figures 4.49 and 4.50, however the most important fact here
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is that there is a lower Taylor bubble velocity VTB limit at the bifurcation diagram presented in

Figure 4.48, where there are not any higher nor lower void fractions unstable saddle fixed points

anymore (yellow squares), with the appearance of a branch of singularities (magenta crosses) at

lower void fractions. Therefore, the aforementioned saddle-node bifurcation, near zero negative

relative gas volumetric flow M2 line and this lower Taylor bubble velocity VTB limit is going to

be the references adopted in the following zoomed bifurcation diagrams, in order to detail the

interesting transformations observed at the third branch of intermediary void fractions nodes

fixed points, bearing in mind that the highlighted reference values of the Taylor bubble velocity

VTB and the relative gas volumetric flow M2 obtained from the chosen closure models from the

Table 4.7 are surrounded by these boundaries.

Figure 4.49 – Bifurcation diagram of the two-dimensional stratified model. Detailed view.

It can be seen at the third branch of intermediary void fractions fixed points from

the zoomed bifurcation diagram presented in Figures 4.49 and 4.50, that it transitions from

stable nodes (blue dots) to stable spirals (blue triangles), and, subsequently, turns into unstable

spirals (red triangles) and then unstable nodes (red dots) as the Taylor bubble velocity VTB

decreases, thus, there is a line between stables and unstable spirals, i.e., between the blue and
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red triangles, with pure imaginary eigenvalues, hence, passing through a Hopf bifurcation, being

the second region on the nonlinear dynamical system parametric variables space as a candidate

for a closed orbit around this bifurcation (Strogatz; Dichter, 2016; Giddings, 2017; Giddings;

Billingham, 2019; Needham; Merkin, 1984; Needham et al., 2008). As VTB decreases even

more, there is another saddle-node bifurcation with the collision of these unstable nodes (red

dots) with the unstable saddle fixed points (yellow squares), similarly, the same occurs when

the relative gas volumetric flow M2 decreases, configuring another saddle-node bifurcation,

colliding with the lower void fraction saddle nodes branch (yellow squares), being the third and

fourth regions on the nonlinear dynamical system parametric variables space as a candidate for

a closed orbit around these bifurcations (Strogatz; Dichter, 2016; Giddings, 2017; Giddings;

Billingham, 2019; Needham; Merkin, 1984; Needham et al., 2008). It has to be pointed out

that the highlighted reference values of the Taylor bubble velocity VTB and the relative gas

volumetric flow M2 obtained from the chosen closure models from the Table 4.7 are surrounded

by these boundaries, again. Therefore, these boundaries delimit the nonlinear dynamical system

parametric variables space where the parameter of closed orbit configuring a periodic solution

can be.

Figure 4.50 – Bifurcation diagram of the two-dimensional stratified model. Second detailed
view.
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Mathematically, the bifurcations indicate regions in the the nonlinear dynamical

system parametric variables space where there are eigenvalues with a zero component. It in-

dicates that the nonlinear dynamical system response can be linearly represented by a lower

dimensional reduced-order manifold in the vicinity of this region, exactly the case of a closed

orbit that can be represented by a parametric lower order one dimensional curve (Strogatz;

Dichter, 2016) in the two dimensional phase space.

A closer inspection at Figure 4.46, with the numerical results of the two dimen-

sional phase space for the stratified pattern, reveals that there is a section of the phase space

whose flow is practically vertically attracting the solutions towards the lower void fraction sad-

dle fixed point, like a bottleneck. From this point, the system trajectory rises vertically, meeting

the vicinity of the lower void fraction saddle fixed point, which then expels the trajectory hor-

izontally. Thus, the system trajectory meets a stable manifold, in this case a homoclinic orbit

as previously discussed, therefore, being a homoclinic bifurcation, when the stable lower order

manifold around the intermediary third branch unstable node from the Hopf bifurcation meets

the saddle node, a global bifurcation case (Strogatz; Dichter, 2016; Giddings, 2017; Giddings;

Billingham, 2019; Needham; Merkin, 1984; Needham et al., 2008).

4.4.3.2 Two Dimensional Model with Transition Criteria

In this section, the numerical results for the two-dimensional model from the Sec-

tion 2.4.3 on the phase space are presented for the segregated and dispersed bubbles flow pat-

terns, at the experimental condition #7 of the test matrix, as shown at Figure 4.2 and Table

4.1. The closure relationships previously chosen as the most suitable and listed at Table 4.7 are

adopted for the two-dimensional model, which was then integrated by the implicit multi-step

variable-order BDF method for stiff problems, however, the transition modeling and the equiva-

lent kinematic viscosity are now considered as discussed in Section 4.4.1. Figure 4.51 presents

the obtained results, along with the two dimensional flow model with the transition modeling

and the equivalent kinematic viscosity (light blue), its integrated trajectory (magenta) with its

fixed points and nullclines (dark blue) (Strogatz; Dichter, 2016). The transition mechanisms

considers the hysteresis as discussed in Section 4.4.1, whose unity bublance thresholds are rep-

resented in Figure 4.51 for the SS-DB transition (orange dashed vertical line) and the DB-SS

transition (green dashed vertical line), thus, the model switches between both flow patterns

successfully.
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Figure 4.51 – Numerical results from the two dimensional model with the transition modeling
and the equivalent kinematic viscosity (magenta), its nullclines (dark blue), two
dimensional flow (light blue), hydraulic jump (red dashed line), SS-DB transi-
tion (orange dashed vertical line) and the DB-SS transition (green dashed vertical
line).

The numerical results are presented as a function of ξ in Figure 4.52 and compared

with the experimental data from the median unit cell. It can be seen that they are in very

good agreement, specially at the first numerically integrated cycle. However, the steady state

Taylor bubble length is now shorter than the observed experimentally, which means that further

adjustments in the closure relations and parameters are needed.

Figure 4.52 – Slug unit void fraction wave profile for the two dimensional model on the phase
space.

It can be observed that, in addition to the results for the stratified flow pattern ex-

pressed in the Figure 4.46, the transition results represented at Figure 4.52 shows a non flat void

fraction wave profile at the liquid piston, resembling the mixing zone. However, the liquid slug
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length is small when compared with the experimental data, which indicates that further adjust-

ments in the closure relations and parameters are needed alongside with more dissipation, what

can be achieved solving completely the averaged turbulent energy equation, instead of using

only its steady state solution, as it was done here.

4.5 Concluding remarks

In this chapter, the available experimental data is analyzed and compared with the

model, where all relevant parameters of the unit cell are identified, converting it to the traveling

wave coordinate system, through a correlation-based estimation approach of the Taylor bubble

velocity from two double wire measurement station, directly applied to the data with no need

of pre-processing and analytical expressions are available for the error estimate.

The system chaos was quantified and the phase space was reconstructed from the

experimental data where the minimum number of dimensions for the deterministic dynamics

of the slug flow was estimated as three, which has a physical interpretation, that the variability

of the unit cell parameters derive from a three-dimensional chaotic dynamics and that such

dimensionality is only achieved with the inclusion of the terms of the interfacial tensions.

A two-state Markov chain model was proposed and validated for modelling the

transition times between states. The system states were estimated from the experimental data

by a simple data-driven non-parametric automatic approach. The Markov chain was related to

the reconstructed phase space as a model for the transition probabilities between the equilibrium

void fractions solutions at the center of the orbits separated by the transition surfaces.

The description of the transition between the two flow patterns in the slug is ad-

dressed, where a physically and data-driven based transition model is proposed, based on the

concept of bublance and the corresponding energy conversion processes in the region of the mix-

ing length after the hydraulic jump. The numerical results from the one and two-dimensional

phase-space analytical models are presented and the results are interpreted in terms of the exper-

imental time series. Model-based time series of some relevant flow parameters are obtained and

then used to discuss the relevant physics for segregated and dispersed flow patterns and transi-

tion phenomena. It is shown that the proposed transition threshold depends on the direction of

the transition between the patterns, thus indicating the phenomenon of hysteresis.

Based on the one-dimensional model, slug unit void fraction wave profile solution

is obtained representing an advance when compared to the currently available model. However,
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the oscillation of the void fraction is only possible for the two-dimensional system, due to the

topology of the dynamical system. Thus, a periodic solution is obtained and the importance of

the turbulent viscosity for the stabilization of the system is highlighted.

A bifurcation diagram of the two-dimensional stratified model is also investigated.

It is constructed with the fixed points and their corresponding stability and it highlights the main

features of the dynamical system and the necessary conditions for the void fraction profile and

oscillation. Subsequently, the two-dimensional model is integrated using the proposed transition

criteria. The obtained results follows very closely a typical unit cell and and it shown that this

strategy is very promising for further numerical schemes.



165

5 CONCLUSIONS

In this thesis, a two-fold modelling approach was proposed for the slug flow in

horizontal pipes with the overall aim of investigating the void fraction wave profile and its sta-

tistical properties. The proposed approach was towards a parsimonious model that captures the

essential physical mechanisms and explains the unit cell formation, its evolution dynamics and

the intermittent state transitioning between segregated and dispersed flow patterns, compared to

available experimental data.

First, a rigorous and parsimonious deterministic two-fluid model for the stratified

and dispersed flow patterns was proposed. Additionally, a simple but physically insightful

stochastic model was proposed for the random transition between the dispersed and segregated

patterns at the slug flow in horizontal pipes. A physically based transition model is proposed,

based on energy conversion processes in the region of the mixing length after the hydraulic

jump. Then, the physical connections between the two models, with seemingly unrelated as-

sumptions, were explored at the light of the transition criteria and of the system’s chaotic dy-

namics.

In the deterministic approach, the two-fluid model is developed for the stratified

and dispersed patterns, including all the identified relevant physical mechanisms for the unit cell

formation, growth and propagation, leading to a well-posed and bounded model. This is the first

work considering all the mechanisms adopted for the flow patterns of interest at circular cross

section pipelines and with such rigour. A parsimonious model was proposed adopting suitable

assumption, which allowed a significant simplification through the constant flow solution and

the travelling wave transformation, with no loss of generality. The assumptions are:

• low Mach numbers; and

• approximately constant Taylor bubble propagation velocity VTB.

The former, follows from the incompressibility due to low phases velocities when

compared to sound velocities. The latter is supported by a vast literature and experimental

observations. These assumptions allows converting a non-linear system of PDE’s into ODE’s by

condensing the analysis of the system dynamics in a phase space for the void fraction series, i.e.,

a simpler model. Thus, this allows to investigate the system dynamics in order to understand the
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slug flow pattern influencing parameters and the transitions between the separate and dispersed

alternating flow patterns. Moreover, a bottom-up approach is proposed, based on the orders

of magnitude of each model term. The models were sequentially developed describing the

dynamical system flow in phase space for both patterns in one, two and three dimensions.

The statistical properties of the two-phase flow were also investigated. A two-state

Markov chain model was proposed to represent the stochastic dynamics of developed slug flow

in horizontal pipes aiming at a simple but intuitive description of the phenomenon. As sug-

gested by the unit cell model, it is shown that the void fraction time series data are naturally

separated into two groups, one with higher void fractions and another with the lower ones,

separated according to a given threshold. For the flow conditions used in this paper, the void

fraction presented marginal PDF with multimodal features, thus no obvious split in two groups.

Thus, the Otsu method is proposed as an unsupervised and non-parametric approach for finding

this threshold based on the experimental time series. Increasing the order of the model signif-

icantly improves the accuracy of the results and a criteria based on first zero-crossing of the

autocorrelation is proposed for parsimonious and representative model.

The PSD estimation process from the time series data was also discussed using the

Welch’s segment and average approach. The suitable choice of the averaging parameters was

discussed in terms of the physical interpretation of the void fraction series.

The experimental void fraction time series were converted to the traveling wave

reference frame and the phase space reconstruction using the experimental data is discussed.

A interpretation of the estimated dynamical system is proposed in terms of equilibrium void

fractions at both segregated pattern and dispersed bubble pattern, and in terms of the jumps

between these two points.

The transition domain bounds were discussed, allowing to have an estimate of the

region where the transition occurs and its parameters. Subsequently, the existence and stability

of the dispersed bubble flow pattern were evaluated, giving the first proposed transition criterion

based on the bublance concept. Afterwards, the energy conversion mechanisms were mapped

and discussed, giving the second proposed transition criterion based on the maximum dissipated

mean flow energy. The proposed transition criteria are discussed together with a data-driven

identified one in order to craft a two-state Markov Chain model in order to model the stochastic

nature of the uni cell. Furthermore, a discussion on the estimation of the turbulent equivalent

kinematic viscosity was presented.
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Finally, the numerical results from the one and two-dimensional phase-space ana-

lytical models are presented and the results are interpreted in terms of the experimental time

series. Model-based time series of some relevant flow parameters are obtained and then used to

discuss the relevant physics for segregated and dispersed flow patterns and transition phenom-

ena. It is shown that the proposed transition threshold depends on the direction of the transition

between the patterns, thus indicating the phenomenon of hysteresis. A bifurcation diagram of

the two-dimensional stratified model is also investigated. It is constructed with the fixed points

and their corresponding stability and it highlights the main features of the dynamical system.

Subsequently, the two-dimensional model is integrated using the proposed transition criteria.

The obtained results follows very closely a typical unit cell and and it shown that this strategy

is very promising for further numerical schemes.

5.1 Summary of the main findings

• The void fraction time series was processed estimating its probability density functions

through kernel methods, where the modes were interpreted as the equilibrium void frac-

tions solutions in the Taylor bubble and slug body regions αF and αS .

• It is shown that a generalized correlation-based approach is suitable for estimating the

void fraction wave phase velocity VTB. With this approach, no pre-processing in the data

is required and analytical expressions for error estimates are readily available.

• It is shown that the proposed two-state Markov chain model can adequately model the

probability of transition times between the two flow patterns in the slow flow. It is shown

that the proposed first order Markov Chain model can successfully describe the shorter

time scales of the void fraction time series. Increasing the order of the model significantly

improves the accuracy of the results and a criteria based on first zero-crossing of the

autocorrelation is proposed for parsimonious and representative model. It is shown that

this two-state representation is a reduced order representation that is suitable to describe

second-order statistics of the two-phase flow.

• The proposed stochastic model leads to the representation of the intermittency factor and

unit cell frequency as random variables, with given probability distribution. It is shown

that the peak frequency value of the void fraction PSD typically matches the most promi-

nent peak of the probability distribution, i.e., its most frequent case, rather than its mean
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value. It is also shown that the distribution of the frequency of passage of the unit cell is

clearly not unimodal for some experimental points. It is further shown that the proposed

Markov Chain model can provide a good estimate of some slug flow features, such as the

intermittency factor and the unit cell frequency.

• It is shown that the several frequency peaks typically present in the estimated PSD can

be closely related to the stochastic nature of the void fraction dynamics rather than mea-

surement noise. In addition, a correlation-based time delay estimation is proposed for the

estimation of the velocity of the Taylor bubble.

• The system chaos was quantified and the phase space was reconstructed from the exper-

imental data where the minimum number of dimensions for the deterministic dynamics

of the slug flow was estimated as three, which has a physical interpretation, that the vari-

ability of the unit cell parameters derive from a three-dimensional chaotic dynamics and

that such dimensionality is only achieved with the inclusion of the terms of the interfacial

tensions.

• Based on the reconstructed phase space of the dynamical system, estimated from the ex-

perimental data, it is shown that the systems orbits around high and low void fraction

values, corresponds to the equilibrium void fraction solutions in the Taylor bubble and

slug body regions. The transition between these regions is governed by the chaotic dy-

namics, which is directly related to the random transition times, modelled by the Markov

chain model.

• From the analytical model, it is shown that the fixed points delimit the extremes of the

intervals for each region of the unit cell, as the trajectory of the dynamic system oscillates

between them. The singularities points represent the jumps between flow patterns and are

expected to be close to the Otsu threshold.

• The description of the function Id is addressed where a physically and data-driven based

transition model is presented, based on energy conversion processes in the region of the

mixing length after the hydraulic jump.

• It is shown that the steady-state transition criterion cannot be used to assess the transient

transition between the patterns.
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5.2 Suggestions for further work

Based on the discussions and findings of this thesis, the following recommendations

are proposed for further work:

• to consider a variable averaged kinematic equivalent viscosity in the model instead of a

constant one;

• to consider a variable bubble diameter in the model instead of a constant one;

• to solve entirely the average turbulent kinetic energy equation alongside the momentum

equations;

• to include additional closure relations in the investigation of the system dynamics;

• to design an experiment that allows to measure the bubble diameter distributions and the

average turbulent kinetic energy in the liquid piston at the mixing length, in order to

investigate experimentally the dissipation mechanisms in relation to bubble formation;

• to design an experiment that allows to measure the pressure wave signature, synchronized

with void fraction measurements, in order to investigate experimentally the coupling be-

tween the pressure and void fraction wave profiles;

• investigate the generalization of the two-state Markov chain directly from the model

rather than the experimental data.
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ANNEX A – KINEMATIC OR CONTINUITY WAVE

The purpose of this Section is to relate the Taylor bubble velocity VTB to the kine-

matic wave velocity Vw, showing that they are equivalent in the context of this thesis. In ad-

dition, the Taylor bubble velocity VTB is related with the discontinuity propagation speed that

configure the mass shocks at the hydraulic jump in the mixing region after the Taylor bubble

tail.

The propagation speed of the kinematic or continuity wave can be obtained from

the averaged mass conservation law for incompressible fluids (Ishii; Hibiki, 2011)

∂αk

∂t
+

∂

∂z
(αkvk) = 0. (A.1)

Considering the volumetric flux jk = αkvk and substituting

∂αk

∂t
+

∂jk
∂z

= 0. (A.2)

Applying the chain rule and standardizing for the gas phase, we have the kinematic

wave equation for the void fraction α

∂α

∂t
+

∂j2
∂α

∂α

∂z
= 0, (A.3)

∂αk

∂t
+ Vw

∂αk

∂z
= 0, (A.4)

where Vw = ∂j2/∂α is the kinematic or continuity wave velocity (Wallis, 1969). Considering

the velocity field obtained through the constant mixture flow solution, from Equation 2.114 at

Section 2.3.1

Vw =
∂j2
∂α

=
∂

∂α
(αv2) =

∂

∂α

[
α

(
VTB +

M2

α

)]
= VTB. (A.5)

Therefore, the Taylor bubble velocity VTB and the kinematic wave velocity Vw are

equivalent.

The slug flow pattern presents a quasi-periodic succession of coexisting alternating

patterns (stratified and dispersed bubbles in the horizontal case) called the unit cell model and

a discontinuity in these transitions that need to be addressed (Shoham, 2006). These discon-

tinuities can be interpreted as shock waves that are formed when two or more characteristic
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parametric curves meet along the z domain. As each characteristic transports a certain constant

value of the void fraction α, when they meet, it would be as if at the meeting point the field

had all the values carried simultaneously, thus configuring a jump or a discontinuity. Since the

derivatives are not defined in the moving discontinuity at zs(t), the problem must be addressed

in its weak conservative form. It will be treated as a Cauchy initial value problem but with a

jump from constant levels over a moving domain interval Ωs(t) = [zL(t), zR(t)] that contains

the discontinuity at zs(t), which is commonly called the Riemann problem (LeVeque, 2013;

Whitham, 2011)

∫
Ωs(t)

[
∂α

∂t
+

∂

∂z
(αv2)

]
dz = 0, (A.6)

∫
Ωs(t)

∂α

∂t
dz = −

[(
αRv

R
2

)
−
(
αLv

L
2

)]
. (A.7)

Applying the Leibniz rule on the LHS

d

dt

∫ zR(t)

zL(t)

αdz + αL
d

dt
[zL(t)]− αR

d

dt
[zR(t)] = −

(
αRv

R
2 − αLv

L
2

)
. (A.8)

Let’s assume the moving domain interval Ωs(t) has the arbitrary length ζ around

zs(t)

Ωs(t) = [zL(t), zR(t)] = [zs(t)− ζ, zs(t) + ζ]. (A.9)

Substituting the moving domain interval and considering a constant arbitrary length

ζ and that the void fraction profile α does not change over the moving discontinuity reassem-

bling a Heaviside distribution

d

dt

∫ zs(t)+ζ

zs(t)−ζ

αdz + αL
d

dt
[zs(t)− ζ]− αR

d

dt
[zs(t) + ζ] = −

(
αRv

R
2 − αLv

L
2

)
, (A.10)

d

dt
[zs(t)] =

(
αRv

R
2 − αLv

L
2

)
(αR − αL)

= VTB, (A.11)

where VTB is the unit cell or the discontinuity translation velocity describing the Rankine-

Hugoniot jump condition for the kinematic void fraction wave equation (LeVeque, 2013; Whitham,

2011) .
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