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Resumo
Seja pM,A, µq um espaço de probabilidade e f : M ÑM um homeomorfismo que preserva
uma medida de probabilidade ergódica µ. Dada F uma foliação f -invariante contínua de
dimensão 1 em M com folhas de classe C1, mostramos que se f preserva um F -sistema de
comprimentos de arcos contínuo tlxuxPM , então podemos classificar as medidas condicionais
de µ ao longo de F em três possibilidades: elas são ou atômicas para quase toda folha, ou
são equivalentes à medida λx que é induzida pelo F -sistema de comprimento de arco, ou o
seu suporte é um conjunto de Cantor da folha, para quase toda folha.

Além disso, mostramos que se f : M ÑM é um C1-difeomorfismo transitivo parcialmente
hiperbólico com direção central topologicamente neutra que preserva uma medida ergódica,
então a desintegração dessa medida é atômica ou equivalente a medida induzida pelo
sistema de comprimentos de arco ao longo de cada folha central.

Palavras-chave: Medidas condicionais, medidas ergódicas, dinâmica hiperbólica, conjunto
de Cantor, centro topologicamente neutro.



Abstract
Let pM,A, µq be a probability space and let f : M Ñ M be a homeomorphism that
preserves an ergodic probability measure µ. Given a continuous f -invariant foliation F of
dimension 1 in M with C1 leaves, we show that if f preserves a continuous F -arc length
system tlxuxPM , then the conditional measures of µ along F can be classified into three
possibilities: they are either atomic for almost every leaf, or equivalent to the measure λx
induced by the F -arc length system, or their support is a Cantor set on almost every leaf.

Furthermore, we prove that if f : M Ñ M is a C1 transitive, partially hyperbolic
diffeomorphism with a topologically neutral central direction that preserves an ergodic
measure, then the disintegration of this measure is either atomic or equivalent to the
measure induced by the arc lengths along each central leaf.

Keywords: Conditional measures, ergodic measures, hyperbolic dynamics, Cantor set,
topologically neutral center.
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1
Introduction

A general notion of a dynamical system is given by a pair pM, fq, where M is
an ambient manifold and f : M ÑM maps are continuous or discrete time that relates
the current state of the system to its past and future states. The theory of dynamical
systems aims to identify patterns and understand the asymptotic behavior of orbits in
such systems.

A useful approach to understand the temporal evolution of dynamical systems
in spaces with invariant measures is to study their statistical and geometrical properties.
This is precisely the objective of ergodic theory, which considers an ambient manifold
M equipped with a probability measure µ, a σ-algebra A, and a map f : M Ñ M that
preserves the measure; that is, for every A P A, we have µpAq “ µpf´1

pAqq. Ergodic theory
seeks to identify properties that are valid for almost all trajectories of the system with
respect to the measure µ. We say that a system is ergodic if the f -invariant subsets only
belong to sets with measure zero or one; that is, if for every measurable set B ĂM such
that f´1

pBq “ B, we have µpBq “ 0 or µpBq “ 1.

Even though ergodicity implies unpredictability from a measure standpoint,
there are several degrees of unpredictability that make up the ergodic hierarchy. The
ergodic hierarchy differentiates systems based on how quickly they mix sets over time.
Among the many fine ergodic properties, the Bernoulli property is the most robust form of
unpredictability in terms of measure. This means that we can find a symbolic representation
of the system that is equivalent to a shift, and we can find a finite partition of the system
where the symbolic representation generated by this partition is measurably equivalent to
a standard Bernoulli shift. In regards to orbit information, this indicates that, using this
finite partition, it is impossible to determine the partition element of the initial point even
if all past and future orbit information is available. This level of unpredictability is known
as "chaos in terms of measure". Linear toral automorphisms without eigenvalues of norm
one are natural examples of Bernoulli automorphisms, as shown in [33].
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Measure disintegration

Measure disintegration techniques have been a crucial tool in ergodic theory.
We can disintegrate a probability measure µ over the partition induced by any countable
generated sub-σ-algebra E Ă B for a topological space X with its Borel σ-algebra B and a
probability measure µ on X. This disintegration involves finding a collection of probability
measures tµxuxPX , such that µxprxsq “ 1 for the element rxs of the partition induced by
E containing x. The function x ÞÑ µx is measurable with respect to the Borel σ-algebra.
Moreover, for any B P B, µpBq “

ż

µxpBq dµpxq. We refer to this collection of probability
measures as the disintegration of µ along E .

If we have a one-dimensional continuous foliation F and any (small) foliation
box U , we can disintegrate the restriction of µ to the foliation box into conditional
probabilities along the local leaves F |Upxq using the disintegration tµUx : x P Uu. This
disintegration is called the disintegration of µ along F |U .

We say that a probability measure µ has Lebesgue disintegration along F if,
for µ-almost every x, any representative of the conditional probability measure tµxuxPM
is equivalent to Riemannian volume on Fpxq in terms of their zero sets. On the other
hand, µ has atomic disintegration if tµxuxPM is an atomic class for µ-almost every x. Some
results obtained with this tool include, for example, the proof that the stable and unstable
foliations of globally hyperbolic (or Anosov) systems are absolutely continuous, despite not
being C1 in general, given by Anosov and Sinai [2, 3] in the 1960s. This result crucial in
Anosov’s celebrated proof that the geodesic flow for any compact manifold with negative
curvature is ergodic.

In certain recent investigations, some properties of measure disintegration have
been obtained for some systems, such as for partially hyperbolic diffeomorphisms, that
is, diffeomorphism f such that the tangent bundle TM admits Df -invariant splitting
Es
‘ Ec

‘ Eu such that Df |Es is a uniformly contracting, Df |Eu is uniformly expanding,
and Df |Ec is dominated by both: vectors in Ec are neither as contracted as vector in
Es, nor as expanded as vectors in Eu. When the center direction is integrable we have a
foliation tangent to Ec, called center foliation.

Some authors had have carateristics for the disintegration along of center
foliation, for example, in the work of D. Ruelle and A. Wilkinson they proved in [31]
that certain partially hyperbolic dynamics with negative fiberwise Lyapunov exponent
have atomic disintegration of the preserved measure along the fibers. Later, A. Homburg
proved in [21] that some of the examples considered in [31] have disintegration consisting
of only one Dirac measure. A. Avila, M. Viana, and A. Wilkinson proved in [4] that
C1-volume preserving perturbations of the time-1 map of geodesic flows on negatively
curved surfaces have either atomic or absolutely continuous disintegration of the volume
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measure along the center foliation. Moreover, in the latter case, the perturbation must
be the time-1 map of an Anosov flow. Within the class of diffeomorphisms derived from
Anosov diffeomorphisms, G. Ponce, A. Tahzibi, and R. Varão exhibited an open class
of volume preserving diffeomorphisms in [28] that have atomic disintegration along the
center foliation. Recently, A. Tahzibi and J. Zhang answered a question from [27] and
proved in [32] that non-hyperbolic measures of diffeomorphisms derived from Anosov
diffeomorphisms on T3 may also have atomic disintegration along the center foliation.

Note that all of the results mentioned above have as hypotheses some kind of
hyperbolicity. In this work, one of our main goals is to better understand the disintegration
of an invariant measure along an invariant foliation for the dynamics without requiring
hyperbolicity or partial hyperbolicity for f , but assuming that the invariant foliation has
some type of rigidity metric with respect to f . In other words, we aim to investigate
what the possible characterizations are of the conditional measures obtained when we
disintegrate µ over a foliation F , assuming that the behavior of f along F is far from
being hyperbolic

Setting and statement of results.

Our work will take place in a probability space pM,A, µq, whereM is a compact
Riemannian manifold with at least two dimensions, µ is a non-atomic Borel measure,
and A is the completion of the Borel σ-algebra B of M with respect to the measure µ.
Essentially, this means that the space pM,A, µq is equivalent to the probability space
pr0, 1s,Ar0,1s,Lebr0,1sq, where Lebr0,1s is the standard Lebesgue measure on r0, 1s and Ar0,1s

is the σ-algebra of Lebesgue measurable sets of r0, 1s.

The following is the main result of this work.

Theorem A. [25] Let f : M ÑM be a homeomorphism over a compact smooth manifold
and F be a f-invariant one dimensional continuous foliation of M by C1-submanifolds
and tlxuxPM a F-arc length system. If f is ergodic with respect to an f -invariant measure
µ then one of the following holds:

a) the disintegration of µ along F is atomic.

b) for almost every x PM , the conditional measure on Fpxq is equivalent to the measure
λx defined on simple arcs of Fpxq by:

λxpγpr0, 1sqq “ lxpγq, where γ is a simple arc.

c) for almost every x PM , the conditional measure on Fpxq is supported in a Cantor
subset of Fpxq.
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The existence of invariant systems of metrics was obtained in [11] for the
context of transitive partially hyperbolic diffeomorphisms with topological neutral center,
meaning that f and f´1 have Lyapunov stable center direction (see [19, section 7.3.1]), i.e,
given any ε ą 0 there exists δ ą 0 for which, given any C1 path γ tangent to the center
direction, one has

lenghtpγq ă δ ñ lenghtpfnpγqq ă ε, @n P Z.

According to [30, Corollary 7.6], the diffeomorphisms in question have a continuously
integrable center direction, which gives rise to a foliation F c of M .

This theorem has a useful application in the case of partially hyperbolic
diffeomorphisms with a one-dimensional topologically neutral center direction. Bonatti
and Zhang proved in [11, Theorem A] the existence of a F c-arc length system for such
diffeomorphisms, where F c denotes the center foliation.

We are able to show a dichotomy for this class of diffeomorphisms, where the
case of conditional measures supported on a Cantor set is not necessary.

Theorem B. [20] Let f : M ÑM be a transitive C1 partially hyperbolic diffeomorphism
on a closed manifold M . Assume that f has one-dimensional topologically neutral center.
If f is ergodic with respect to a f -invariant total support measure µ then either:

a) the disintegration of µ along of center foliation, F c, is atomic.

b) for almost every x P M , the conditional measure on F c
pxq is equivalent to the

measure λx defined on simple arcs of F c
pxq by:

λxpγpr0, 1sqq “ lxpγq, where γ is a simple arc.

An important application of this theorem is [26] where the author proved
in Theorem A that if f is a C1`α, α ě 1, partially hyperbolic diffeomorphism with an
orientable one-dimensional center bundle, whose orientation is preserved by f , and f

preserves a smooth ergodic measure µ while being topologically neutral along the center
direction, then the conditional measures of the disintegration of µ along the center foliation
F c are atomic or the center foliation, F c, is leafwise absolutely continuous and f is
Bernoulli.
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2
Preliminaries

In this chapter, we aim to briefly introduce some relevant concepts that are
essential to understanding our results. Our primary objective is to make this text as
self-contained as possible by providing references that will facilitate comprehension. While
we will state most of the results, we will omit their proofs, which can be found in the
provided references.

2.1 Measure-Theoretical Properties of Partitions
A partition P of a measurable space pX,A, µq is a collection of a measurables

subsets of X, P called atoms of P , satisfying

• P XQ “ H for every pair of distinct atoms P,Q P P ;

•
ď

PPP
P “ X.

Given a sub-σ-algebra E Ă B generated by a countable family of subsets in B,
tEnunPN, associated to E we define the equivalence relation „E as for x, y P M we write
x „E y if χEpxq “ χEpyq for every E P E , where χE is the characteristic function. The
equivalence classes under „E are measurable and can be represented as intersections of
sets Fn of the form Fn P En, XzEn. In other words, for every x P X, the equivalence class
of x is given by

rxs :“
č

EPE: xPE
E “

č

tFn : Fn P tEn, X r Enu and x P Fnu

Consequently, rxs is a Borel set for every x P X and trxs : x P Xu is a partition of X.

We will call the partition rxs : x P X associated with the countably generated
σ-algebra a countably generated partition.
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Definition 2.1. Given a sub-σ-algebra E Ă B generated by a countable family tEnunPN. A
family of measures tµxuxPX is called a system of conditional measures or a disintegration
of µ associated to E, if

1. Given ϕ P C0
pXq, then x ÞÑ

ż

ϕdµx is E-measurable;

2. µxprxsq “ 1, µ-almost every x;

3. if B Ă X is measurable, then

µpBq “

ż

yPB

µypBqd µpyq.

For simplicity, we also say that tµxuxPX is a disintegration with respect to the
partition P “ trxs : x P Xu. The existence of disintegration with respect to such partitions
is garantee by the following result, which we prove here for the sake of the reader.

Theorem 2.2. [15] Let X be a metric compact space, B the Borelian σ-algebra and E Ă B
a sub-σ-algebra generated by a countable family of Borelian subset, then there exists a
system of conditional measures with respect to E.

Proof. Since X is a compact metric space, we can choose a countable, dense, and Q-linear
subset V “ tf0, f1, ...u Ă CpXq such that f0 “ 1. Let g0 “ f0 “ 1 and for every i ě 1 we
define gi as the conditional expectation of f on E , this is,

gi “ Epfi|Eq P L1
pX,B, µq

where
Epfi|Eqpyq “

1
µprysq

ż

rys

fi dµ, almost every y P X.

Actually here gi denotes a representative of the equivalence class of integrable functions.
Let X0 Ă X be a full measure subset such that for every α, β P Q and every fi, fj P V the
following conditions are satisfied,

1. Epαfi ` βfj|Eqpxq “ αEpfi|Eqpxq ` βEpfj|Eqpxq, for every x P X0,

2. min fi ď Epfi|Eqpxq ď max fi, for every x P X0.

Thus, for every x P X0 we can consider the functional Hx : CpXq Ñ R defined by

Hxpfiq “ gipxq, for i “ 0, 1, . . .

Notice that from Item 2 above, it follows that }Hx} ď 1 for almost every x P X. Hence by
the Riesz Representation Theorem, for every y P X0 there exists a probability measure µy
on X such that

Hypfq “

ż

fpxq dµypxq.

For y P X rX0 we define µy to be some fixed measure to ensure measurability.
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Claim 1. The function y ÞÑ µy is E-measurable and EpχA|Eq “ µypAq for almost every
y P X.

Proof. Let C Ă B be the family of subsets A P B such that the function y ÞÑ µypAq is
E-measurable and EpχA|Eqpyq “ µypAq for almost every y P X. We want to show that
C “ B. To do this, we use the Monotone Class Theorem, which states that a family of
monotone classes that contains a algebra that generates the Borel σ-algebra B is equal to
the σ-algebra B. We show that C is a family of monotone classes and contains an algebra
that generates B.

Consider C0 Ă B the collection of set A such that χA is pointwise limit of a
uniformly bounded sequence of continuous functions. Notice that for any open subset
B, the indicator function χB is the pointwise limit of a sequence of continuous functions
0 ď hn ď 1. Therefore, the collection C0 is not empty. First, let us show that C0 is an
algebra:

• Clearly X,H P C0.

• Let A P C0, then there exists a sequence of continuous functions 0 ď hn ď 1, such
that hn converges pointwise to χA, consider hn “ 1´ hn we have that hn converges
pointwise to χXrA, thus X r A P C0.

• Given A,B P C0, then there exist uniformly bounded sequences of continuous
functions hn and gn such that hnpxq Ñ χApxq and gnpxq Ñ χBpxq, then phn ¨gnqpxq Ñ
pχA ¨ χBqpxq “ χAXBpxq, consequently AXB P C0.

Now, we will show that the algebra C0 is contained in C. Indeed, letA P C0 and 0 ď hn ď 1 be
a sequence of continuous functions such that hn Ñ χA, thus by the Dominate Convergence
Theorem we have

lim
nÑ8

ż

hn dµy “

ż

χA dµy “ µypAq.

This implies that the function y ÞÑ µypAq is the pointwise limit of the sequence of functions
hn : y ÞÑ

ż

hn dµy, we already know that Ephn|Eq “
ż

hn dµy almost every y P X. Since
Ephn|Eq is E-measurable for every n P N, follows that y ÞÑ µy is E-measurable and
EpχA|Eqpyq “ µypAq, then we have that C0 Ă C.

On the other hand, notice that it contains the closed subsets, given any closed
A Ă X, consider for n P N

hnpxq “ expp´n ¨ distpx,Aqq,

notice that hn Ñ χA, then we have A P C0. Thus C0 generates the Borel σ-algebra B.

Finally, let us see that C is a family of monotone classes. Let A1 Ă A2 Ă ¨ ¨ ¨ be a
countable collection of increasing sets belonging to C and A “ YAi. We have that χAn Ñ χA
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in L1. Then for almost all y P X, µypAq “ limµypAnq. Thus, the function y ÞÑ µypAq is
the pointwise limit of the sequence of measurable functions, y ÞÑ µypAnq “ EpχAn |Eqpyq.
By continuity of conditional expectation, we have that EpχAn |Eq Ñ EpχA|Eq. Therefore,
µypAq “ EpχA|Eq, hence A “ YAi P C. Analogously, we show that if B1 Ą B2 Ą ¨ ¨ ¨ is a
sequence of decreasing sets belonging to C, then B “ XBi belongs to C.

Thus, we have shown that C is a family of monotone classes containing an
algebra C0, which generates the σ-algebra B. Then, by the Monotone Class Theorem, we
have that C “ B, as we wanted to show.

Claim 2. For all f P L1 and almost every point y P X

Epf |Eqpyq “
ż

f dµy (2.1)

Proof. We know that (2.1) holds for f “ χA by the previous Claim. Since we can
approximate any function f P L1 by simple functions, and both sides of the equality (2.1)
are linear and continuous under monotone increasing sequences, we conclude the proof of
Claim 2.

Claim 3. For almost every y P X, µyprysq “ 1.

Proof. Let tEnu generate E , for each n P N and for every y P X, by definition of rys we
have rys Ă En or rys X En “ H, then by Claim 2 we have that for almost every point
y P X

µypEnq “ EpχEn |Eqpyq “
1

µprysq

ż

rys

χEn dµ “ χEnpyq, (2.2)

Now, for each n P N consider Fn P tEn, X r Enu, we have that

rys “
č

yPFn

Fn,

using Fn in equation (2.2), it follows that µypFnq “ 1, for every n P N such that y P Fn,
thus µyprysq “ 1.

Therefore, we consider the family of mesures tµyuyPX , and it is a system of
contitional measure for µ.

It is natural to wonder whether we may have two distinct disintegrations for
the measure µ with respect to E . The following result shows that, in terms of measure,
the system is indeed unique.

Proposition 2.3. [15] If tµyu and tνyu are systems of contitional measures for µ then
µy “ νy µ-almost every x P X.
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Proof. Assume that there exists a subset Q Ă X with µpQq ą 0 such that µy ‰ νy for all
y P Q. Consider a dense countable set of functions tϕku Ă C0

pXq. Define the sets

Ak “

"

x P Q :
ż

rxs

ϕk dµx ‰

ż

rxs

ϕk dνx

*

Since µp
ď

Akq “ µpQq ą 0, there exists k0 such that µpAk0q ą 0. Consider the set
Q0 Ă Ak0 given by

Q0 “

"

x P Ak0 :
ż

rxs

ϕk0 dµx ą

ż

rxs

ϕk0 dνx

*

Without loss of generality, assume that µpQ0q ą 0. Then
ż

ϕk0 ¨ χQ0 dµ “

ż

pϕk0 ¨ χQ0 dµxq dµpxq “

ż

Q0

pϕk0 dµxq dµpxq

ą

ż

Q0

pϕk0 dνxq dνpxq “

ż

ϕk0 ¨ χQ0 dµ.

This is a contradiction, which implies that the assumption that µy ‰ νy for all y P Q is
false.

2.2 Basics on Foliations
In this section we recall some geometric and measurable properties of foliations

and disintegration of measure on a foliated box.

LetM be a smooth manifold of dimensionm. A Cr-foliation, r ě 0, of dimension
0 ă n ă m by C1-manifolds is defined as a maximal atlas F of class Cr on M with the
following properties:

1. if pU,ϕq P F then ϕpUq “ U1 ˆ U2 Ă Rn
ˆ Rm´n, where U1, U2 are open disks;

2. If pU,ϕq, pV, φq P F such that U X V ‰ H, then the function ψ ˝ ϕ´1 : ϕpU X V q Ñ
ψpU X V q satisfies:

ψ ˝ ϕ´1
px, yq “ ph1px, yq, h2pyqq.

Let F be a Cr foliation of dimension 0 ă n ă m of a manifold M of dimension
n. Given pU,ϕq P F with

ϕpUq “ U1 ˆ U2 Ă Rn
ˆ Rm´n,

the subsets ϕ´1
pU1 ˆ tcuq, for some c P U2 are called the plaques of F .

We will say that M is foliated by F and the chart pU,ϕq P F is called the
foliated box.
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Figure 1 – Foliation

By the definition, we have that f “ ϕ |U1ˆtcu: U1ˆtcu Ñ U is an Cr embedding.
Therefore the plaques are connected submanifolds of class Cr, r ě 0, and dimension n. In
addition, given two plaques α and β in U either α X β “ H or α “ β. We will use the
notation F |Upxq to denote the plaque in U that contains x.

From now on, F will denote a continuous and f -invariant one dimensional
foliation for the manifold M .

Proposition 2.4. Let pM,A, µq be a probability space, where M is a manifold and A is
the completation of the Borel σ-algebra B. If F is a one-dimensional continuous foliation
of M and given a finite open cover U of M by local charts of F then, for every U P U the
family of plaques tF |UpxquxPU is a countably generated measurable partition for U .

Proof. Given F a one-dimensional continuous foliation F and a local chart ϕ : U Ñ

p0, 1q ˆBn´1
1 p0q, we define the countable collection of subsets t rEq,ku by:

rEq,k “ p0, 1q ˆBpq, 1{kq Ă Rˆ Rn´1, q P Bn´1
1 p0q XQn´1, k P N.

Note that every rEq,k is a Borelian subset of Rn and since ϕ is an homeomorphism
we have that Eq,k “ ϕ´1

p rEq,kq is a Borelian subset in U . Let E Ă B be the sub-σ-algebra
generated by the family of Borelian sets tEq,ku. Notice that for every y P M the atom,
rys is the connected component of Fpyq X U that contains y, this is, F |Upyq. Therefore
tF |UpxquxPU is a countably generated partition for U .

By the proposition above, for each U P U , there exists a family of measures
tµUx uxPU that is the disintegration of the measure µp¨|Uq in U .
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In this case we also call tµUy uyPU , the system of conditional measures of µ or
the disintegration of µ along F restricted to U .

A significant observation to make here is that the conditional measures for
distinct foliation boxes match on their intersection. That is, if U1 and U2 are foliation
boxes such that U1 X U2 ‰ H, then for almost every x P U1 X U2, we have µU1

x “ µU2
x up

to a constant factor. In other words, the conditional measures µUx are compatible across
different foliation boxes, which reflects the coherence of the foliation structure.

Proposition 2.5. [4]. If U1 and U2 are domains of two local charts ϕ1 and ϕ2 of F , then
for almost every x the conditional measures µU1

x and µU2
x coincide up to a constant on

U1 X U2.

Proof. For the sake of the reader, we will recall the proof given in [4]. Let Σ be a cross-
section of U1, this is, Σ is a submanifold of dimension m´ n intersecting every local leaf
at exactly one point. Let µU1 be the measure on Σ obtained by projecting µp¨|U1q along
the local leaves. Consider any C “ U1 X U2 Ă U1 and let µC be the image of µp¨|Cq under
the projection along the local leaves. The Radon-Nikodym derivative

dµC
dµU1

at µC-almost every point.

Then for any measurable set E Ă C,

µpEq “

ż

Σ
µU1
x pEq dµU1pxq “ µpEq “

ż

Σ
µU1
x pEq

dµC
dµU1

dµCpxq

By essential uniqueness, this proves that the disintegration of µp¨|Cq along the local leaves
is given by

µCx “
dµU1

dµC
pyqpµU1

x |Cq for µ-almost every x P C

where y P F |U1pxq X Σ. Doing the same for C “ U1 X U2 Ă U2, we have that

dµU1

dµC
pyqpµU1

x |Cq “
dµU2

dµC
pyqpµU2

x |Cq for µ-almost every point x P C.

As observed in [4], Proposition 2.5 allows us to define a family of classes of
measures tΩx : x PMu, such that

• ωxpM r Fpxqq “ 0 for every x PM and every representative ωx P Ωx,

• the function x ÞÑ Ωx is constant on the leaves of F ,
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• for a foliated box U we have that the conditional measures µUx along the plaques
F |Upxq coincide almost everywhere with the normalized restrictions of the Ωx to
the plaques in U , this is, for almost every point x P U we have

µUx “ ωxp¨|F |Upxqq,

where ωx denotes a representant of Ωx.

2.3 Lebesgue differentiation theorem
In this section, we will recall an important result of measure theory known as

the Lebesgue differentiation theorem. The theorem applies to classes of metric measure
spaces pX, d, µq that meet certain conditions.

Definition 2.6. Given a metric space pX, dq, a measure ν on X is said to be a doubling
measure if there exists a constant R ą 0 such that for any x P X and any r ą 0 we have

νpBpx, 2rqq ď R ¨ νpBpx, rqq.

We say that pX, d, µq is a doubling metric measure space if µ is a doubling
measure for the metric space pX, dq.

The following theorem is a Lebesgue differentiation theorem for general doubling
metric measure spaces.

Theorem 2.7. [18, Lebesgue differentiation Theorem] Let pX, d, µq be a doubling metric
measure space, and f : X Ñ R a localy integrable function. Then, almost every point
x P X is a Lebesgue density point of f , that is,

lim
rÑ0

1
µpBrx, rsq

ż

Brx,rs

|fpyq ´ fpxq| dµpyq “ 0,

where Brx, rs denote the closed ball in X with center x and radius r. In particular,

lim
rÑ0

1
µpBrx, rsq

ż

Brx,rs

fpyq dµpyq “ fpxq,

for almost every x P X.

Note that for every x P suppµ we have µpBrx, rsq ą 0 for every r ą 0, therefore
the two expressions given in the theorem make sense almost everywhere.

To present the following result, let us recall the definition of a regular measure.
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Definition 2.8. Let X be a topological space, and let A be a σ-algebra on X. Let µ be
a measure on pX,Aq. We say that µ is a regular measure if, for every measurable subset
A Ă X, we have:

µpAq “ suptµpF q : F Ă A, F compact and measurable, u

and
µpAq “ inftµpGq : G Ą A, G open and measurable.u

Using Theorem 2.7, we can find a characterization for the Radon-Nikodym
derivative associated to two measures, one of them being a doubling measure.

Theorem 2.9. [18, Lebesgue–Radon–Nikodym theorem] Let pX, d, µq be a doubling metric
measure space and ν be a locally finite Borel-regular measure on X. If ν ăă µ then for
almost every x P X the Radon-Nikodym derivate of ν with respect µ, dν

dµ
pxq, is given by

the limit
dν

dµ
pxq “ lim

rÑ0

νpBrx, rsq

µpBrx, rsq
(2.3)

Proof. Consider the locally integrable function f : X Ñ R, given by

fpxq “
dν

dµ
pxq, for almost every x P X.

Since µ is a doubling measure in pX, dq by the Lebesgue differentiation Theorem, we have
that

fpxq “ lim
rÑ0

1
µpBrx, rsq

ż

Brx,rs

fpyq dµpyq

“ lim
rÑ0

1
µpBrx, rsq

ż

Brx,rs

dν

dµ
pyq dµpyq

“ lim
rÑ0

νpBrx, rsq

µpBrx, rsq
.
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3
Metric System

In this chapter, we introduce the definition of an F-arc length system for a
continuous and f -invariant one-dimensional foliation F . This definition was motivated by
the notion of center metric given by Bonatti and Zhang in [11].

3.1 Invariant arc-lengths systems
From now on, F will denote a continuous and f -invariant one-dimensional

foliation for the manifold M .

Definition 3.1. Given a foliation F of M and x PM , we say that a C1-curve γ : r0, 1s Ñ
Fpxq is a simple arc if γptq ‰ γpsq for all t ‰ s with pt, sq R tp0, 1q, p1, 0qu.

By convention, by degenerate arc we mean a point. Given two simple arcs γ
and σ, we write γ „ σ to indicate that σ is a reparametrization of γ. Clearly, this defines
an equivalence relation on the space of simple arcs. Abusing the notation, the simple arcs
γ, is any representative of the class rγs.

Definition 3.2. We say that a sequence of simple arcs γn converges to γ (in the C0-
topology) if γn converges pointwise to γ.

Definition 3.3. We call tlxu an F-arc length system, if for each x PM , lx is a real valued
function defined on the simple arcs on Fpxq and satisfies the following properties:

1. lx is strictly positive on the non-degenerate arcs, and vanish on degenerate arcs,

2. let γ : r0, 1s Ñ Fpxq be a simple arc and a P p0, 1q, then

lxpγr0, asq ` lxpγra, 1sq “ lxpγr0, 1sq;

3. let γ : r0, 1s Ñ Fpxq a simple arc, then

lxpγr0, 1sq “ lfpxqpfpγr0, 1sqq;
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4. given a sequence of simple arcs γn : r0, 1s Ñ Fpxnq converging to a simple arc
γ : r0, 1s Ñ Fpxq, then

lxnpγnq Ñ lxpγq, as nÑ `8.

Below we present some examples of systems with invariant foliations that admit
F -arc length systems.

Example 3.4. Assume d ě 2 and let L : Rd
Ñ Rd be a linear transformation given by a

matrix with integer entries, such that 1 is an eigenvalue of L. Let v be an eigenvector of L
associated with the eigenvalue 1. Consider the subspace E “ R ¨ v. Since L is linear, it
induces a linear map fL : Td Ñ Td, where Td is the d-dimensional torus, and E induces a
one-dimensional foliation F on Td that is fL-invariant. It follows that fL preserves the arc
length along the leaves of F , and therefore the standard arc-lengths on the leaves form an
F -arc length system.

Question 3.1. Is there an ergodic measure µ preserved by fL whose conditional measures
are supported on a Cantor subset of the leaves?

Example 3.5. Let ϕ : RˆM ÑM be any C1 flow. The foliation F given by the orbits
of ϕ is a ϕt-invariant C1-foliation of M for any fixed t P R. There is a natural F -arc length
system in this case given by:

lxpγq :“ l, with ϕpl, γp0qq “ γp1q.

Assume that almost every x P M is not a periodic point of ϕ. Given any ϕt-ergodic
invariant measure µ, it follows from [22, Example 7.4] that the disintegration of µ along
F is either Lebesgue or atomic.

Example 3.6. Some skew-products also provide interesting examples. For instance,
consider the function f : Td ˆ S1

Ñ Td ˆ S1, given by

fpx, yq “ pgpxq, Rαpyqq,

where g : Td Ñ Td is any homeomorphism and Rα : S1
Ñ S1 is a rotation of angle α.

In this example, the foliation F is defined as the set of leaves of the form
txu ˆ S1, where x is an element of Td. These leaves are invariant under f , meaning that if
px, yq is on a leaf Fpx0, y0q, then fpx, yq is on the leaf Fpfpx0, y0qq. Moreover, if for every
x P Tˆ S1 we take lx to be the usual arc length measure on the circle S1, but defined on
the leaf txu ˆ S1, then we get a collection of arc length measures tlxu that forms an F -arc
length system. This means that the lengths of curves along the leaves of F are well-defined
and can be measured consistently using these arc length measures.
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In this example it is easy to determine the measurable properties of F in the
sense that, given a Borel g-invariant measure ν, the measure ν ˆ λS1 is f -invariant, and a
direct application of the Fubini Theorem shows that the disintegration of µ along F has
the Lebesgue measures λS1 as its conditional measures.

Center metric for transitive partially hyperbolic diffeormorphism with topological
neutral center

One of the main motivations of this work was to understand the measurable
properties of the center foliation preserved by partially hyperbolic diffeomorphisms with
topological neutral center. Our results imply that the disintegration of any f -invariant
ergodic probability measure of such maps falls into one of two possible cases. When the
conditional measures have full support, the occurrence of an invariance principle is proven
by the author in [26]. Furthermore, if the measure is smooth, full support of the conditional
measures implies the Bernoulli property for f .

In order to present the following example, which was provided by recent results
of Bonatti-Zhang [11], first we are going to give some important definitions of properties
for dynamical systems.

Definition 3.7. A C1 diffeomorphism f : M ÑM , on a compact Riemannian manifold
M , is said to be partially hyperbolic if there is a nontrivial splitting

TM “ Es
‘ Ec

‘ Eu

such that
DfpxqEτ

pxq “ Eτ
pfpxqq, τ P ts, c, uu

and a Riemannian metric for which there are continuous positive functions µ, µ̂, ν, ν̂, γ, γ̂
with

νppq, ν̂ppq ă 1, and µppq ă νppq ă γppq ă γ̂ppq´1
ă ν̂ppq´1

ă µ̂ppq´1,

such that for any vector v P TpM ,

µppq||v|| ă ||Dfppq ¨ v|| ă νppq||v||, if v P Es
ppq

γppq||v|| ă ||Dfppq ¨ v|| ă γ̂ppq´1
||v||, if v P Ec

ppq

ν̂ppq´1
||v|| ă ||Dfppq ¨ v|| ă µ̂ppq´1

||v||, if v P Eu
ppq.

If a partially hyperbolic diffeomorphism f has invariant foliations F cs and F cu

that are tangent to Ec
‘ Es and Ec

‘ Eu respectively, then we say that f is dynamically
coherent. In such cases, the intersection of F cs and F cu forms the center foliation.

While the strong stable and strong unstable bundles of partially hyperbolic
diffeomorphisms are always integrable, and they are integrated into unique f -invariant
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foliations known as strong foliations, the center bundle presents a more complex situation.
Even in the one-dimensional center case, center foliations may not exist, as proved by
examples in [10] and [29].

Definition 3.8. We say that f has topological neutral center if, for any ε ą 0, there exists
δ ą 0 for which: given any C1 curve γ : r0, 1s Ñ M with γ1ptq P Ec

pγptqq, 0 ď t ď 1, if
lengthpγq ă δ then lengthpfnpγqq ă ε, for all n P Z.

In [11] the authors study partially hyperbolic diffeomorphisms that are transitive
and have a one-dimensional topologically neutral center, resulting in dynamically coherent
systems. They proved the existence of a continuous metric along the center foliation that
remains invariant under the dynamical systems.

Theorem 3.9. [11, Theorem A] Let f : M Ñ M be a transitive C1 partially hyperbolic
diffeomorphism with one-dimensional topologically neutral center direction. Then f admits
a center metric system which is invariant under f .

Outline of proof. We will construct metrics t`Lu along the center leaves in a residual subset
N of M . Then, we will show that the metric we construct is f -invariant, continuous, and
invariant under the holonomies of the strong stable and strong unstable foliations. Thus,
we can extend this metric system to the entire manifold M .

Before describing the set N , we will define and present the main properties of
the limit center maps, which will be crucial in constructing this system of metrics.

Let L1 and L2 be two center leaves of f . We say that a map F : L1 Ñ L2 is
a limit center map if there exists a sequence tniu Ă Z with |ni| Ñ 8 such that tfniu

pointwise converges to F . We denote by L pL1, L2q (resp. L pLq) the set of all limit center
maps from L1 to L2 (resp. from L to L).

Some important properties of the set of limit center maps are:

1. Uniformly topologically neutrality: For any ε ą 0 small, there exist δ ą 0 and η ą 0
such that for any F P L pL1, L2q, and any two points x, y P L1, we have

• If dc1px, yq ă δ, then dc2pF pxq, F pyqq ă ε, where dci denotes the distance on
center leaf Li. In particular F : pL1, dc1q Ñ pL2, dc2q is continuous;

• If for x, y P L1 we have ε0{4 ą dc1px, yq ą ε, then dc2pF pxq, F pyqq ą η, where
ε0 ą 0 is a lower bound for the length of center leaves.

2. For each F P L pL1, L2q, F is a surjective local homeomorphism.

3. If F : L1 Ñ L2 and G : L2 Ñ L3 are a limit center maps, then the composition G ˝F
is a limit center map from L1 to L3.
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4. Let F P L pLq, and suppose that F has a fixed point x P L:

• if F is orientation preserving, then F “ IdL;

• if F is orientation reversing, then F is an involution on L, this is, F 2
“ IdL.

5. If F P L pLq, then F is a homeomorphism.

6. For any x P M , if there exists a sequence tniu Ă N such that fni ÝÑ y P M , we
can use the transitivity and continuity of the center foliation, together with the
topologically neutral property along the one-dimensional center bundle, to construct
a limit center map F : Lx Ñ Ly that satisfies F pxq “ y.

On the other hand, consider the set

N “ tx PM : αpxq “ ωpxq “Mu, (3.1)

where,
ωpxq “ ty PM : Dnk kÑ8

ÝÑ 8 such that fnkpxq
kÑ8
ÝÑ yu,

is the ω-limit of x; and

αpxq “ ty PM : Dnk kÑ8
ÝÑ ´8 such that fnkpxq

kÑ8
ÝÑ yu,

is the α-limit of x.

Note that N is f -invariant and since f is transitive, N is a residual subset of
M . Assuming that L is a center leaf and LXN ‰ H, it follows from item (6) above that
L is a subset of N . This means that N contains all the center leaves, so the set N is
saturated by the center leaves.

Additionally, for any center leaf L containing a point in N , we have that
L `

pLq is a group. Indeed, we already have IdL P L `
pLq and for any F,G P L `

pLq,
G ˝ F P L `

pLq.

In order to show that L `
pLq is a group, it is necessary to demonstrate that for

any F P L `
pLq, there exists a G P L `

pLq such that F ˝G “ G ˝ F “ IdL. Consider an
F P L `

pLq such that F pxq “ y for some y P L. Since L Ă N , there exists a G P L `
pLq

such that Gpyq “ x. Then, the limit center map G ˝ F has a fixed point. Using the item
(4), we have G ˝ F “ IdL. By the item (5), both F and G are homeomorphisms on L.

Furthermore, using the properties of the limit center map, we can conclude
that for any center leaf L containing a point in N , the action on L given by the group
L `

pLq is both free and transitive. By the H:older theorem (see [24]), the group L `
pLq is

isomorphic to the group of translations (respectively, rotations) on R (respectively, S1).

Since every orientation-reversing limit center map from L to L is an involution
(see [11, Proposition 4.7]), we can conclude that L pLq forms a group. Moreover, L pLq is
either equivalent to L `

pLq or can be generated by the union of L `
pLq and ´IdL.
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Remark 3.10. The properties mentioned above play a crucial role in proving Theorem
3.9 since the group formed by combining translations and ´IdR (resp. rotations and ´IdS1)
maintains the Euclidean metric on R (resp. R{Z) unaltered. Any metric on R (resp. R{Z)
that is invariant under the set of translations (resp. rotations) can be obtained by scaling
the Euclidean metric by a constant factor.

Definition of the family of center metrics t`LuLĂN center leaf

The item (6) above establishes that for any x, y PM , if y belongs to ωpxq, then
there exists a limit center map from Lx to Ly. This enables us to establish connections
between the limit center maps on distinct center leaves, and we can prove that for any two
center leaves L1, L2 such that L1 and L2 have non-empty intersection with N , we have:

• Each limit center map F : L1 Ñ L2 is a homeomorphism.

• For any limit center maps F,G P L pL1, L2q, there exist F1 P L pL1q and F2 P L pL2q

so that
G “ F ˝ F1 “ F2 ˝ F.

Let ` be an L pLq-invariant metric on a center leaf L Ă N . Consider a metric F˚p`q in L1,
given by

F˚p`qpF pσra,bsqq “ `pσra,bsq, for every center map σ : ra, bs Ñ L.

Since F : LÑ L1 is a homeomorphism, F˚p`q is well defined.

Furthermore, the second point above establishes that the metric F˚p`q on L1

remains unaffected by the choice of F and is L pL1q-invariant. That is, given a leaf center
LXN ‰ H and a L pLq-invariant metric `L on L, for any center leaf L1 XN ‰ H and
any two limit center maps F1, F2 P L pL,L1q, we have

pF1q˚p`Lq “ pF2q˚p`Lq.

Moreover, note that fpLq Ď N , which implies that for any F P L pL, fpLqq, the composition
f´1

˝ F P L pLq, and hence F˚p`Lq “ f˚p`Lq.

Thus, we can ensure the existence of a family of metrics t`LuLĂN center leaf in
the center leaves that are contained within N , such that

• For any two center leaves L1, L2 contained in N and any F P L pL1, L2q, we have

F˚p`L1q “ `L2 ;

• For any leaf L Ă N , we have
f˚p`Lq “ `fpLq,
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• If tr`LuLĂN center leaf is another family of metric satisfying the two properties above,
then there exist λ ą 0 such that

r`L “ λ ¨ `L.

Therefore, in order to prove Theorem 3.9, it is necessary to establish that the family of
metrics t`LuLĂN center leaf can be extended smoothly as a center metric on all of M . The
main tool for proving this is to check that the family t`LuLĂN center leaf is invariant under
the holonomies of the strong stable and strong unstable foliations.

Holonomy of the strong stable foliation

First, we show that given a center leaf L and points x, y P L with y P ωpxq,
every strong stable leaf intersects L in at most one point. Indeed, by item (6), there exists
a limit center map F : LÑ L such that F pxq “ y. Assume that there are z1, z2 P L such
that z1 ‰ z2 and z1 P F ss

pz2q. Since F is a limit center map, there exists a sequence
ni ÝÑ 8 such that fni converges to F . This implies that F pz1q “ F pz2q, contradicting the
fact that F is a homeomorphism. This observation is important for defining the holonomy
between two leaves.

Now, let L1, L2 Ă N be two center leaves in the same center-stable leaf Lcs.
By Proposition 2.8 in [11], since f is a C1 partially hyperbolic diffeomorphism with
topologically neutral center, the center stable foliation has the completeness property.
Thus, L2 is contained in the union of the strong stable leaves through L1 which coincides
with Lcs and vice versa. According to the above observation, each strong stable leaf cuts
L1 in at most one point, and the same for L2. Thus,

• The map Hss : L1 Ñ L2 induced by the holonomy of the strong stable foliation is a
homeomorphism from L1 to L2, because each strong stable leaf in Lcs intersects L1

and L2 in exactly one point, creating a unique correspondence between the two sets.

Figure 2 – Holonomy of the strong stable foliation
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• LetHss : L1 Ñ L2 be the holonomy of the strong stable foliation and t`LuLĂN center leaf

be a family of metrics in the center leaves in N . Then

`L2 “ pH
ss
q˚p`L1q.

Finally, it was proved in [11, Proposition 4.18], that the family of metrics in
the center leaves in N , t`LuLĂN center leaf can be extended in a unique way, by continuity,
to all the center leaves, defining a center metric on M .

As the proof of Theorem 3.9 strongly relies on the fact that the central direction
is one-dimensional, a natural question arises:

Question 3.2. What happens for partially hyperbolic systems with a 2-dimensional center
foliation and a topologically neutral center? Are there invariant metrics?

The previous theorem is a very important part of the proof of the following
result, which is a classification of partially hyperbolic diffeomorphisms on a closed 3-
manifold with topological neutral center.

Theorem 3.11. [11, Theorem C] Let f : M ÑM be a C1-partially hyperbolic diffeomor-
phism and M a closed manifold of dimension 3. Assume that f has a one-dimensional
topologically neutral center and f is transitive. Then, up to finite lifts and iterates, f is
C0-conjugate to one of the following:

1. Skew products over a linear Anosov on T2 with rotations of the circle.

2. The time 1-map of a transitive topological Anosov flow.

3.2 Invariant F -metric systems
Let F be a one-dimensional continuous foliation forM and tlxuxPM be an F -arc

length system as defined in the previous section. For every x PM in this section we are
going to define a metric dx in the leaf Fpxq. The metric system tdxuxPM is important
throughout this work because based on it we define the measure within the plaque of the
foliation F .

Since we will show that the metric system is additive, first we define what it
means for a point to be between two points within a leaf Fpxq for all x PM .

Definition 3.12. Let F be an f-invariant one-dimensional foliation of M . For any
x PM , given y, z, w P Fpxq we say that y is between z and w, if there exists a simple arc
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γ : r0, 1s Ñ Fpxq such that γp0q “ z, γp1q “ w, γptq “ y for some t P p0, 1q, and γ has
the least length of the simple arcs at Fpxq connecting the points y and z, this is,

lxpγq “ mintlxpαq : α : r0, 1s Ñ Fpxq such that α is a simple arc,
with αp0q “ z and αp1q “ wu.

Next, we show that for each x PM , one can define an additive metric dx in Fpxq.
Furthermore, we show that the metric system tdxuxPM is an f -invariant metric system
along the foliation F , that is, given any x PM , the equality dfpxqpfpzq, fpwqq “ dxpz, wq

holds for every z, w P Fpxq.

Lemma 3.13. Consider the F-arc length system, tlxuxPM . For every x PM the function
dx in Fpxq, given by

dxpy, zq :“ mintlxpγq : γ : r0, 1s Ñ Fpxq is simple arc,
with γp0q “ y and γp1q “ zu,

has the following properties:

1. dx is an additive metric, that is, given y, z, w P Fpxq such that y is between z and
w, then

dxpz, wq “ dxpz, yq ` dxpy, wq;

2. dx is invariant by f , that is,

dfpxqpfpzq, fpyqq “ dxpz, yq.

Proof. First we show that for x PM , dx is a metric on Fpxq, let y, z P Fpxq:

• dxpy, zq ě 0: from the definition it is clear that dxpy, zq ě 0 and dxpy, zq “ 0 if, and
only if, x “ y.

• dxpx, yq “ dxpy, xq:

dxpy, zq “ mintlxpγq : γ : r0, 1s Ñ Fpxq is simple with γp0q “ y, γp1q “ zu

“ mintlxpγq : γ : r0, 1s Ñ Fpxq is simple with γp0q “ z, γp1q “ yu

“ dxpz, yq.

• dxpz, wq ď dxpz, yq ` dxpy, wq: we will actually show item (1), that is, the metric is
additive.
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1. Since for every x PM we have that Fpxq is a one-dimensional manifold, then Fpxq
is homeomorphic either to R or S1, which is why we divide the proof into two parts.

First we assume that Fpxq is homeomorphic to R. Given z, w, y P Fpxq such that
y is between z and w, there exists a single simple arc (modulo parameterization),
α : r0, 1s Ñ Fpxq and t0 P p0, 1q such that αp0q “ z, αp1q “ w and αpt0q “ y. Then
α|r0,t0s

and α|rt0,1s are the only simple connected paths (modulo reparametritation)
from z to y, and from y to w, respectively. Thus, by Definition 3.3 we have that

dxpz, wq :“ mintlxpγq : γ : r0, 1s Ñ Fpxq, γp0q “ z and γp1q “ wu

“ lxpαq “ lxpα|r0,t0s
q ` lxpα|rt0,1sq

“ dxpz, yq ` dxpy, wq.

Now, suppose that Fpxq is homeomorphic to S1. Then, modulo reparamentrization,
there are only two paths α1, α2 : r0, 1s Ñ Fpxq that connect the points z and w.
Assume, without loss of generality, that lxpα1q ă lxpα2q. This implies that

dxpz, wq “ mintlxpγq : γ : r0, 1s Ñ Fpxq, γp0q “ z and γp1q “ wu “ lxpα1q

and there exists t0 P p0, 1q such that α1pt0q “ y.

Figure 3 – Simple arcs α1 and α2

We will show that dxpz, yq “ lxpα1|r0,as
q, and with an analogous proof we also obtain

that dxpy, wq “ lxpα1|ra,0sq. Indeed, suppose there is an other path α3 : r0, 1s Ñ Fpxq
for which α3p0q “ z, α3p1q “ y and dxpz, yq “ lxpα3q. Since there are only two
paths connecting points z and y (unless reparameterized), we have that α3 is the
concatenation of α2 with ´α1|r´1,´as, where ´α1 denotes the curve ´α1 : r´1, 0s Ñ
Fpxq, ´α1ptq :“ α1p´tq. Thus,

lxpα1|r0,as
q ą dxpz, yq “ lxpα3q ě lxpα2q ě lxpα1q,

which is a contradiction. Therefore, lxpα1|r0,as
q “ dxpz, yq and, analogously, lxpα1|ra,1sq “

dxpy, wq. By the second item of Definition 3.3, we have

dxpz, wq “ lxpα1q “ lxpα1|r0,as
q ` lxpα1|ra,1sq “ dxpz, yq ` dxpy, wq,

concluding that dx is an additive metric, as we wanted to show.
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2. By the definition of dx and the F -arc length system tlxu, we have that

dfpxqpfpzq, fpyqq “ mintlfpxqpγq : γ : r0, 1s Ñ Fpfpxqq with γp0q “ fpyq, γp1q “ fpzqu

“ mintlxpγq : γ : r0, 1s Ñ Fpxq with γp0q “ y, γp1q “ zu

“ dxpz, yq.

Definition 3.14. We call tdxuxPM the F-metric system if tdxuxPM is the family of metric
associated to the F-arc length system tlxuxPM , given in Lemma 3.13.

Remark 3.15. It is important to note that, in general, from the definition of dx we cannot
guarantee the convergence dxnpxn, ynq Ñ dxpx, yq for two sequences xn Ñ x and yn Ñ y

with yn P Fpxnq, y P Fpxq. This problem motivates the definition of the property we call
plaque-continuous.

Definition 3.16. Consider F a one-dimensional continuous foliation of M . We say that
a function F :

ď

xPM

Fpxq ˆ Fpxq Ñ r0,8q is plaque-continuous if given any p PM , there

exists a foliated box p P U , such that for any sequences xn Ñ x, yn Ñ y with yn P F |Upxnq,
x P U and y P F |Upxq, we have

lim
nÑ8

F pxn, ynq “ F px, yq.

Any such foliated box U will be called a continuity-domain of F .

Definition 3.17. We say that a family of metrics tdx : x PMu is plaque-continuous, if
the function F :

ď

xPM

Fpxq ˆ Fpxq Ñ r0,8q defined by

F px, yq :“ dxpx, yq,

is plaque continuous. In this case, if U is a continuity-domain of F , we will also say that
U is a continuity-domain of tdxu.

In the following proposition we will show that the metric system tdxu is plaque-
continuous, which guarantees that the problem mencioned in Remark (3.15) does not
occur restricted to plaques.

Proposition 3.18. The F-metric system tdxuxPM , from Definition 3.14 is plaque-continuous.

Proof. Let pϕ,Uq be a local chart of F , where ϕ : U Ñ p0, 1q ˆ Bp0, rq Ă Rn for some
r ą 0. We know that the plaques of F in U are given by ϕ´1

pp0, 1q ˆ tzuq, z P Bp0, rq. For
any p P U , consider φ : V Ă U Ñ p0, 1q ˆBp0, sq Ă Rn another local chart centered in p
such that

x P V ñ lxpF |Upxqq ą 3 ¨ lxpF |V pxqq.
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This can be done by the continuity of lx in Fpxq.

Consider x P V, y P F |V pxq “ φ´1
pp0, 1q, z1q and sequences xn P V, yn P

F |V pxnq “ φ´1
pp0, 1q, znq with xn Ñ x and yn Ñ y. For each n P N we define the simple

curve γnptq :“ φ´1
pp1´ tqφpxnq ` tφpynq, znq. Note that this curve minimizes the lx-length

connecting xn and yn, that is, dxnpxn, ynq “ lxnpγnq.

By the convergence of the sequences xn and yn, we have that γn Ñ γ, where γ
is the simple curve given by γptq “ φ´1

pp1´ tqφpxq ` tφpyq, z1q, and by the choice of the
local chart V , we have

dxnpxn, ynq “ lxnpγnq and dxpx, yq “ lxpγq.

Therefore, using the continuity of tlxu we conclude that lim
nÑ8

dxnpxn, ynq “ lim
nÑ8

lxnpγnq “

lxpγq “ dxpx, yq, this is, tdxu is plaque-continuous.

Proposition 3.19. Let U be a finite open cover of M by local charts of F . There exists
r ą 0 such that for all x PM , there is U P U with

Bdxpx, rq Ă U.

Proof. For each x P M , take any Ux P U with x P Ux. Since Ux X Fpxq is an open set in
Fpxq, there exists rx ą 0 for which Bdxpx, rxq Ă Ux X Fpxq. By plaque continuity of tdxu,
there exists a neighborhood x P Vx Ă Ux for which

y P Vx ñ Bdypy, rxq Ă Ux.

Since M is compact, we may cover M with a finite number of neighborhoods Vxi
, 1 ď i ď l.

Take r “ mintrxi
: 1 ď i ď lu.

Now using the fact that tdxu is plaque continuous, we are able to show that
the union of open balls Bdxpx, rq Ă Fpxq, for r ą 0 small enough and x varying along a
transversal to F , is an open set in M .

Lemma 3.20. Given any local open transversal T to F , for any r ą 0 small enough, the
set

S :“
ď

xPT

Bdxpx, rq

is open.

Proof. Let r ą 0 be the number as in Proposition 3.19. Given r ą 0 and r ă r small
enough, if x PM , there exists a local chart pU,ϕq P U .

Consider x P T , we can assume that T is a local transversal associated to
the local chart pU,ϕq, then by the plaque continuity of tdxu, for r ą 0 small enough, we



Chapter 3. Metric System 34

have that Bdypy, rq Ă U for every y P T . In particular U r T has two open connected
components, U1 and U2, with U1 X U2 “ T .

Since U is a local chart for a one-dimensional foliation, we may consider an
orientation on the F |U -plaques. Now we assume that S is not open. Then, there exists y P S
and a sequence yk R S, with yk Ñ y. Consider x P T such that y P Bdxpx, rq Ă Fpxq X U .
Denote by Φ “ tϕtu the flow on the F |U -plaques induced by the orientation fixed before
and such that

dppϕtppq, pq “ |t|,

whenever ϕtppq is defined. Let t0 P R such that x “ ϕt0pyq. As y P Bdxpx, rq and Bdxpx, rq

is an open set in F |Upxq, there exists δ ą 0 for which

ϕtpyq P Bdxpx, rq Ă S, t P rt0 ´ δ, t0 ` δs.

Now, by the plaque continuity and the fact that yk Ñ y, we have

ϕt0´δpykq Ñ ϕt0´δpyq, ϕt0`δpykq Ñ ϕt0`δpyq.

Observe that ϕt0´δpyq and ϕt0`δpyq belong to different connected components, thus, for k
large enought the same happens for ϕt0´δpykq and ϕt0`δpykq.

Since γk :“ tϕtpykq : t P rt0 ´ δ, t0 ` δsu is an arc with points in both the
interior and the exterior of the connected component U1, it must intersect its boundary,
namely T . Then there exists t1 P rt0 ´ δ, t0 ` δs such that ϕt1pykq P T . By the choices of t0
and δ we have that yk P S for large k, yielding a contradition.

That is, S is open, as we wanted to show.

Lemma 3.21. Let r ą 0 be a real number given in Proposition 3.19. For every 0 ă t ď r{2
and any Borel subset B ĂM , the set defined by

ΦtpBq :“ tx PM : dxpx,Bq ă tu, (3.2)

is a measurable set.

Proof. Let U be a finite cover of M by local charts which are continuity-domains of tdxu.
Consider r the number given by Proposition 3.19. In particular the family tUr{2 : U P Uu,
defined by

Ur{2 “ tx P U : dxpx, BUq ě r{2u,

is still a cover of M . Let B ĂM be a Borel subset. Observe that

ΦtpB X Ur{2q Ă U, U P U , t ă r{2.

We will prove that, for U P U , the subset ΦtpB X Ur{2q is measurable and, since U is a
finite cover of M , we conclude that ΦtpBq is measurable.
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Let ϕU : U Ñ Bn´1
1 p0q ˆ p0, 1q be a local chart of F . Since the foliation is of

dimension one inside U , we can consider the orientation in the plaques F |Upxq, which is
induced by the orientation in the line segments of the form txu ˆ p0, 1q Ă Rn´1

ˆ R. This
orientation induces, at each plaque, an order relation, which we will denote by ă (the
plaque being implicit in the context).

Again, as in the proof of Proposition 3.19, we consider the flow along the
plaques. Explicitly, for s P r´t, ts, with 0 ă t ă r{2 fixed, we define φUs : Ur{2 Ñ U by:

• for s ą 0, φUs pxq is the only point of the plaque F |Upxq such that dxpx, φUs pxqq “ s

and x ă φUs pxq;

• for s ă 0, φUs pxq is the unique point of the plaque F |Upxq such that dxpx, φUs pxqq “ ´s
and φUs pxq ă x.

Due to the fact that cover U was chosen as being a finite collection of local
charts which are a continuity-domain of tdxu, we have that, for every |s| ă t, the function
φUs is continuous and, consequently, by the definition of φUs , it is a homeomorphism. Thus
φUs pB X Ur{2q is a measurable subset of M for every s P r´t, ts.

Now, for each 1 ď i ď n, take

ΦU
t pBq :“

ď

qPQ
qăt

φUq pB X Ur{2q, 0 ď t ă r{2.

Notice that ΦU
t pBq is a measurable set, since each set in the countable union is measurable

as we have proved before. Consequently,

ΦtpBq “
ď

UPU
ΦU
t pBq,

is a measurable set, as we wanted to show.

In the following definition we will use the identification S1
“ r0, 1s{ „ where

0 „ 1, thus the point 0 stands for the equivalence class of 0 in S1.

Definition 3.22. Let F be a one-dimensional foliation of M . Given an F-arc length
system, tlxuxPM , for x PM we have a well defined homeomorphism

hx : Fpxq Ñ F,

where F “ R or F “ S1, hxpxq “ 0, and such that, for any simple arc γ : r0, 1s Ñ Fpxq
we have

lxpγr0, 1sq “ λphxpγr0, 1sqq,

where λ denotes the Lebesgue measure on F . In particular λphxpγr0, 1sqq is the size of the
interval hxpγr0, 1sq. We now define the measure λx on Fpxq given by:

λx “ ph
´1
x q˚λ.
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Note that, if γr0, 1s is a simple arc in Fpxq, then

λxpγr0, 1sq “ λphxpγr0, 1sqq “ lxpγr0, 1sq.

Consequently, the measure λx is a doubling measure.

3.3 Properties of non-atomic disintegrations
For the proof of the main theorem, it is necessary to understand the topological

structure of supµUx , where tµUx uxPM is a disintegration of µ on a local chart U , as well as
the properties of the measure µp¨|Uq with respect to this disintegration. To this end, we
consider the specific context of our case.

Let F be a one-dimensional continuous foliation of M that is invariant under
f . We consider U to be a finite cover of M by local charts U of F such that U is also
contained within a local chart of F , and each U P U is a continuity domain of the F -metric
system tdxuxPM .

For each fixed U P U , we consider tµxuxPU to be the disintegration of µp¨|Uq
along the plaques of F in the local chart U . We say that the disintegration of µ along F
is atomic if for any local chart U , for almost every y P U there exists apyq in the plaque
F |Upyq with µUy papyqq ą 0. If we assume that the disintegration is not atomic, then for
each U P U there exists a null measure subset AU such that µUx is not atomic for every
x R AU .

We also fix the following notation: For r ą 0, we denote the constant obtained
in Proposition 3.19, and for any subset X ĂM , we denote by BX the Borel sigma algebra
of X given by the topology induced by that of M . It is important to observe that, by
definition, for any U P U , the set AU is F |U -saturated in U .

Lemma 3.23. If the disintegration of µ along F is not atomic, then for each 0 ă r ă r,
U P U and x P U r AU , the map

y ÞÑ µUx pBdxpy, rqq,

is continuous when restricted to the subset Vx Ă F |Upxq given by

Vx “ ty P F |Upxq : Bdxpy, rq Ă F |Upxqu.

Proof. Let U P U be a fixed local chart and take x P U . It should be noted that the
set Vx Ă Fpxq containing x is connected and open subset in F |Upxq. By definition of
continuity, we want to show that

lim
nÑ8

µUx pBdxpyn, rqq “ µUx pBdxpy, rqq,
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for any sequence yn Ñ y, and yn, y P Vx.

Let y belong to Vx and denote by BBdxpy, rq the boundary of the set Bdxpy, rq

inside the plaque F |Upxq. Since µUx is not atomic and F is a one-dimensional foliation, for
0 ă r ă r, we have that

µUx pBBdxpy, rqq “ 0 and µUx pBBdxpyn, rqq “ 0, @n P N.

Now, consider the set Bn given by Bn :“ Bdxpyn, rq∆Bdxpy, rq, where Y∆Z denotes the
symmetric difference of the sets Y and Z. From standard measure theory, we have that:

lim sup
nÑ8

µUx pBnq ď µUx

ˆ

lim sup
nÑ8

Bn

˙

.

Thus, since we are assuming that the disintegration is not atomic, this implies that the
conditional measure of boundaries of balls is zero. Then we have

lim sup
nÑ8

µUx pBnq ď µUx

˜

8
č

m“1

ď

něm

Bn

¸

ď µUx pBBdxpy, rqq “ 0.

Therefore

lim
nÑ8

µUx pBdxpy, rqrBdxpyn, rqq ď lim
nÑ8

µUx pBdxpyn, rqrBdxpy, rqq “ 0.

Consequently,
lim
nÑ8

µUx pBdxpyn, rqq “ µUx pBdxpy, rqq,

as we wanted to show.

Proposition 3.24. Let pU,ϕq P U be a fixed local chart and 0 ă r ă r. For every open
subset V Ă U such that

x P V ñ Bdxpx, rq Ă U,

the map given by
x ÞÑ µUx pBdxpx, rqq,

is BV rAU
-measurable when it is considered restricted to V r AU , and consequently, it is

also BUrAU
-measurable as V Ă U .

Proof. Let pU,ϕq P U be a fixed local chart. If x, y P U belong to the same F -plaque in U ,
then µUx “ µUy . By the definition of the family of measures µUx , we already know that for
all Borel subset B Ă U the function

x P V ÞÑ µUx pBq,
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is Borel measurable.

Since we are considering pU,ϕq as a local chart, we have that ϕ |V is an
homeomorphism, and we can assume that it is of the form ϕ “ ϕ |V : V Ñ p0, 1qˆBn´1

1 p0q,
where Bn´1

1 p0q Ă Rn´1 is an open ball in Rn´1.

Setting gr : V Ñ r0,8q to be

grpxq “ µUx pBdxpx, rqq,

we have
gr ˝ ϕ

´1
px1, x2q “ µUϕ´1px1,x2qpBdϕ´1px1,x2q

pϕ´1
px1, x2q, rqq.

In the first part of the proof, we will show that the function gr˝ϕ´1 : p0, 1qˆBn´1
1 p0q Ñ r0, 1s

is continuous in the variable x1 and Borel measurable in the variable x2.

Since the second coordinate being fixed tx2u, we are evaluation the function
on a single plaque. Note, that the function gr ˝ ϕ

´1
p¨, x2q corresponds to the function

y ÞÑ µUx2pBdx2
py, rqq. Then from Lemma 3.23, restricted to V zAU we have the continuity

of gr ˝ ϕ´1 the first coordinate, where the conditional measure is non-atomic.

Now, fix the first coordinate x1 P p0, 1q, and consider the transversal T “

tx1u ˆB
n´1
1 p0q Ă p0, 1q ˆBn´1

1 p0q. By Lemma 3.20, we have that the set

S :“
ď

xPϕ´1pT q

Bdxpx, rq,

is an open subset of M . Thus, the definition of measure disintegration implies that
y ÞÑ µUy pSq is a Borel measurable function on V , which proves that gr ˝ ϕ´1

px1, ¨q is a
BT -measurable function. In particular, its restriction to T X ϕpV r AUq “ T r ϕpAUq is a
BTrϕpAU q-measurable map. But observe that by the definition of the set S, for x P T we
have that

µUx pSq “ µUx pBdxpx, rqq.

Therefore, for fixed x1, the map x2 P Grπ2pϕpAUqq ÞÑ µUϕ´1px1,x2qpBdϕ´1px1,x2q
pϕ´1

px1, x2q, rqq

is BGrπ2pϕpAU qq-measurable, where π2 : p0, 1q ˆG ÞÑ G is the projection onto the second
coordinate.

Consequently, gr ˝ϕ´1 restricted to pp0, 1qˆGqrϕpAUq is a jointly measurable
function with respect to the product sigma-algebra Bp0,1q ˆ BGrπ2pϕpAU qq (see for example
[1, Lemma 4.51]). As ϕ is a homeomorphism, we conclude that gr is BV rAU

-measurable,
as we wanted to show.

In the following Lemma, we prove that the subset of M consisting of all points
x P M for which there is a ball in Fpxq with null µUx measure, is a relatively Borel set.
This set will be essential for the proof of the main theorem.
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Lemma 3.25. For each U P U , the set

ZU “
ď

xPUrAU

F |Upxqr supp µUx ,

is BUrAU
-measurable set.

Proof. First let us give a better formulation for the definition of ZU . Observe that

ZU “ tx P U r AU : µUx pIq “ 0 for some open ball x P I Ă Fpxqu.

Consider an enumeration tq1, q2, . . .u of the QX r0, 1s, and let U be the given finite family
of local charts covering M associated to foliation F . For each U P U and i P N, consider
also the function φUi : Ui r AU Ñ R given by

φUi pxq “ µUx pBdxpx, qiqq,

where Ui “ tx P U : Bdxpx, qiq Ă Uu.

Observe that we may cover Ui with a countable number of local charts V j
i Ă Ui,

j P N and, by Proposition 3.24, we know that φUi |V
j
i is a BV j

i rAU
-measurable function for

every j. In particular φUi is BUirAU
-measurable for every i. Now for every i P N define

ZU
i :“ pφUi q´1

pt0uq ĂM.

By the definition of φUi , we have that ZU
i is a BUirAU

-measurable subset,(in particular, a
BUrAU

-measurable subset) and µpZU
i q “ 0. Note that, by definition of the set ZU , we can

describe ZU as an enumerable union of the sets ZU
i , that is,

ZU “

8
ď

i“1
ZU
i . (3.3)

Therefore ZU is a BUrAU
-measurable subset, as we wanted to show. Moreover, since

µpZU
i q “ 0 for any i P N, we have that µpZUq “ 0.

Note that, for every x P U r AU , we have

ZU X F |Upxq “ F |Upxqr suppµUx ,

and by definition the support of the measure µUx is a closed set, which implies that the set
ZU X F |Upxq is open in F |Upxq. On the other hand, consider the null measure subset P
given by

P “ tx : DU, V P U , x P U X V, µUx p¨|U X V q  µVx p¨|U X V qu,

that is, P is the set of points x for which there exists two local charts U and V in U , both
containing x, where the respective conditional measures at the plaque of x, µUx and µVx ,
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are not equivalent on the intersection F |Upxq X F |V pxq. In particular this set has zero
measure by Proposition 2.5. Set

ĂM :“M r

˜

ď

UPU
pZU YAUq Y P

¸

,

and note that µpĂMq “ 1. Now we define the full measure f -invariant subset given by

M0 :“
č

nPZ
fnpĂMq. (3.4)

To guarantee that the conditional measures are defined in all the leaves Fpxq, we
define the measure µx in the following way: for each x PM0, we denote by µx the measure
on Fpxq given by the conditional measure µUx , where U P U is such that x P Bpx, rq Ă U .
We then normalize µUx so that it assigns weight exactly one to Bdxpx, rq. In other words,
for a measurable set F Ă Fpxq, we have

µxpF q “ µUx pF |Bdxpx, rqq. (3.5)

This guarantees that µx is defined in all leaves Fpxq and has the desired properties.

Given any y P Bdxpx, rq XM0, the measures µy and µx are proportional to each
other at the intersection Bdxpx, rqXBdypy, rq. In fact, let U and V be different local charts
associated with F such that x P Bpx, rq Ă U and y P Bpy, rq Ă V .

Since x, y P M0, by choosing M0 and Proposition 2.5, we have that the con-
ditional measures µUx and µVy coincide up to a constant on U X V . In particular, these
measures coincide up to a constant on Bdxpx, rq XBdypy, rq. This means that there exists
a constant β ą 0 for which µy “ β ¨ µx restricted to Bdxpx, rq XBdypy, rq.

We can see the form of this constant by evaluating both sides of equality
µy “ β ¨ µx at the set Bdxpx, rq XBdxpy, rq, which yields

β ¨ µxpBdxpx, rq XBdxpy, rqq “ µypBdxpx, rq XBdxpy, rqq

ñ β “
µypBdxpx, rq XBdxpy, rqq

µxpBdxpx, rq XBdxpy, rqq
.

We also call the family of measure tµxu the disintegration of µ along F . Since
the family of measures tµxu is described in terms of the conditional measures µUx , for
U P U , we obtain the following results that guarantee the continuity and measurability of
the functions y ÞÑ µypBdxpy, rqq and r ÞÑ µypBdxpy, rqq, respectively.

Corollary 3.26. For each 0 ă r ă r, x PM0

y P Bdxpx, rq XM0 ÞÑ µypBdxpy, rqq,

is continuous.
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Proof. For a certain fixed 0 ă r ă r, take any x PM0. Let y P Bdxpx, rq XM0 and U P U
with Bdxpy, rq Ă U , take yn P Bdxpx, rqXM0 with yn ÝÑ y as n ÝÑ 8 and Bdxpyn, rq Ă U .

By definition,

µy “ µUy p¨|Bdxpy, rqq, µyn “ µUyn
p¨|Bdxpyn, rqq.

Therefore, for n P N such that Bdxpy, rq Ă Bdxpyn, rq and Bdxpyn, rq Ă Bdxpy, rq,

µynpBdxpyn, rqq “
µUyn
pBdxpyn, rqq

µUyn
pBdxpyn, rqq

“
µUy pBdxpyn, rqq

µUy pBdxpyn, rqq
. (3.6)

By Lemma 3.23 we have µUy pBdxpyn, rqq ÝÑ µUy pBdxpy, rqq and µUy pBdxpyn, rqq ÝÑ µUy pBdxpy, rqq

as n ÝÑ 8. Therefore µynpBdxpyn, rqq ÝÑ µypBdxpy, rqq, as we wanted to show.

Corollary 3.27. For each x PM0, the map

r P r0, rs ÞÑ µxpBdxpx, rqq,

is continuous. Furthermore, the map

px, rq PM0 ˆ r0, rs ÞÑ µxpBdxpx, rqq, (3.7)

is jointly measurable.

Proof. First, let us prove that for any x PM0 the function r P r0, rs ÞÑ µxpBdxpx, rqq is a
continuous. Let 0 “ r ă r and rn P r0, rs Œ r (if r “ r the argument is analogous). Hence,
µxpBdxpx, rnqq “ µxpBdxpx, rqq ` µxpBdxpx, rnqrBdxpx, rqq. As µx is non-atomic we have

lim
nÑ8

µxpBdxpx, rnqrBdxpx, rqq “ 0.

Then,
µxpBdxpx, rnqq Ñ µxpBdxpx, rqq,

showing the first part of the statement.

Let us show the second statement. For each x P M0, let x P Vx a local chart
with

y P Vx ñ Bdypy, rq Ă Ux, for some Ux P U .

As M is compact, we may cover M with a finite number of such local charts, say
V1, V2, . . . , Vl, and call U1, U2, . . . , Ul the associated local charts in U . For any j, con-
sider

y P Vj ÞÑ µypBdypy, rqq.

Observe that

µypBdypy, rqq “
µ
Uj
y pBdypy, rqq

µ
Uj
y pBdypy, rqq

.
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Therefore, by Proposition 3.24, y P Vj XM0 ÞÑ µypBdypy, rqq is a BUjrAUj
-measurable map.

As j is arbitrary, y PM0 ÞÑ µypBdxpy, rqq is a BUXM0-measurable map.

Thus, the map given by (3.7) is jointly measurable, as it is continuous in the
first coordinate and BM0-measurable in the second.

For the rest of this section, we will show that the disintegration tµxux PM is
a family of f -invariant measures on F .

By the definition of f -metric system tdxu, we have that this family of metrics
is F -invariant, which implies

fpBdxpx, rqq “ Bdfpxq
pfpxq, rq, for r ď r. (3.8)

We also know that the conditional measures are also invariant. Thus, it makes sense to
talk about the invariance of tµxu, which is the Lemma that we will show next.

Lemma 3.28. The system of measure disintegration tµxuxPM0 is f-invariant in the fol-
lowing sense, for every 0 ă ε ď r

f˚µxpBdfpxq
pfpxq, εqq “ µfpxqpBdfpxq

pfpxq, εqq.

In other words, f˚µx “ µfpxq on Bfpxqpfpxq, rq.

Proof. Given x PM0, there exists two local charts U, V P U such that x P Bdxpx, rq Ă U

and fpxq P Bdfpxq
pfpxq, rq Ă V . From (ii) in Lemma 3.13 we obtain

fpBdxpx, εqq “ Bdfpxq
pfpxq, εq Ă Bdfpxq

pfpxq, rq Ă V.

From the properties of measure disintegration, we know that f˚µUx are measures equivalent
to tµVx u at the intersection fpUq X V , thus we have

f˚µpBdfpxq
pfpxq, εqq “ µxpf

´1
pBdfpxq

pfpxq, εqqq “
µUx pf

´1pBdfpxq
pfpxq, εqqq

µUx pf
´1pBdfpxq

pfpxq, rqqq

“
f˚µ

U
x pBdfpxq

pfpxq, εqq

f˚µUx pBdfpxq
pfpxq, rqq

“
αµVfpxqpBdfpxq

pfpxq, εqq

αµVfpxqpBdfpxq
pfpxq, rqq

“ µfpxqpBdfpxq
pfpxq, εqq.
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4
Classification of conditional measures

Taking into account the properties of the metric system tdxu, in the last section
of this chapter we consider an atlas of local charts associated with the foliation F , denoted
by U . We prove the properties of the disintegration of the measure µ in U , where U P U is
a local chart. Specifically, we show how the measure µ decomposes along the leaves of F
within each chart U P U .

4.1 Proof Theorem A
Let pM,A, µq be a probability space and F be a continuous one-dimensional

foliation of M . Note that if the conditional measures tµxu are atomic we have nothing to
do. Then, from now on the results that will be shown are assuming that the disintegration
of µ along the foliation F is not atomic.

LetM0 the full measure subset given by (3.4) and consider tµxuxPM0 the system
of conditional measures along F , and let d “ tdxuxPM be the F -metric system induced by
the F -arc length system tlxuxPM as in Definition 3.14.

Definition 4.1. We define the distortion of the conditional measures µx with respect to
the measures λx induced by the F-metric system by

∆pxq “

$

’

&

’

%

lim sup
εÑ0

µxpBdxpx, εqq

2ε if x PM0,

0 if x RM0.

Recall that Bdxpx, εq is the ball inside Fpxq with respect to the metric dx,
centered at the point x and with radius ε, in particular µxpBdxpx, εqq ą 0 for all x P suppµx
(where the support here is inside Fpxq). Thus, it makes sense to evaluate the quantity
above.

Observe that, the Corollary 3.26 we have that the function ∆ is measurable,
but it is not immediately true that ∆pxq ă 8 for µ-almost every x. Also note that from
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Lemma 3.28 and the f -invariance of the F -metric system we have

f˚µx “ µfpxq and fpBdxpx, εqq “ Bdfpxq
pfpxq, εq,

and
dfpxqpfpxq, fpyqq “ dxpx, yq,

Therefore, we conclude that ∆pxq is f -invariant. By ergodicity of f , it follows
that ∆pxq is constant almost everywhere. Let us call that constant by ∆, this is, there
exists a Borel f -invariant full measure set xM ĂM0 such that

∆pxq “ ∆ for every x P xM. (4.1)

Note that ∆ can be finite or ∆ “ 8. Since the proofs are different, in the
following sections, we will divide the proof for these two cases. In the sequel, we will prove
some technical Lemmas for the case ∆ “ 8 and the technical Lemmas for the case ∆ ă 8.

4.1.1 Technical Lemmas for the case ∆ “ 8

Lemma 4.2. If ∆ “ 8, there exists a sequence εk Ñ 0, as k Ñ `8, and a full measure
subset R8 Ă xM such that

1. R8 is f -invariant;

2. for all x P R8 we have
µxpBdxpx, εkqq

2εk
ě k. (4.2)

Proof. Let k P N˚ arbitrary. Since ∆pxq “ ∆ for every x P xM , define

εkpxq :“

$

’

&

’

%

sup
"

ε ď r : µxpBdxpx, εqq

2ε ě k

*

, if x P xM

0, if x PM r xM.

Claim: The function εkpxq is measurable for all k P N.

Proof. Define the function w : M0 ˆ r0, rs Ñ r0,8q given by:

wpx, εq “
µxpBdxpx, εqq

2ε .

By Corollary 3.27, for any x P M0, the function wpx, ¨q : p0, rq Ñ r0,8q is
continuous, and from Proposition 3.24, for any fixed 0 ă ε ă r, the function wp¨, εq : M0 Ñ

r0,8q is a measurable.

Given any k P N and β ą 0, by the definitions of εk and the function w, we
have that x P ε´1

k pp0, βqq implies
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sup
"

ε ď r : µxpBdxpx, εqq

2ε ě k

*

P p0, βq.

This is equivalent to

µxpBdxpx, rqq

2r ă k for every β ď r ď r

ðñwpx, rq P r0, kq for every β ď r ď r

ðñ x P
č

βďrď1
wp¨, rq´1

pr0, kqq

Then, by the continuity of wpx, ¨q and the density of Q at pβ, rq, it follows that
č

βďrď1
wp¨, rq´1

pr0, kqq “
č

βďrď1,rPQ
wp¨, rq´1

pr0, kqq.

So we have just shown that

ε´1
k pp0, βqq “

č

βďrď1,rPQ
wp¨, rq´1

pr0, kqq.

Therefore, ε´1
k pp0, βqq is measurable, as it is a countable intersection of measurable subsets

of M0, and by definition ε´1
k pt0uq “M rM0 also a measurable subset. Consequently εk is

a measurable function for every k.

Note that εkpxq is f -invariant. In fact, by Lemma 3.28 and the f -invariance of
tdxu, we obtain

µfpxqpBdfpxq
pfpxq, εqq “ f˚µxpBdfpxq

pfpxq, εqq

“µxpf
´1
pBdfpxq

pfpxq, εqqq

“µxpBdxpx, εqq.

this implies

εkpfpxqq “ suptε ď 1 :
µfpxqpBdfpxq

pfpxq, εqq

2ε ě ku

“ suptε ď 1 : µxpBdxpx, εqq

2ε ě ku

“εkpxq.

Thus, for any k P N˚, the function εk is f -invariant and by ergodicity, εk is
constant almost everywhere. Let R8k be a full measure set such that εkpxq is constant
equal to εk for every x P R8k .

Now, let us see that the sequence tεku satisfies εk Ñ 0 as k Ñ 8. Since r0, rs is
a compact set of R, we can take the sequence tεku Ă r0, rs to be convergent.
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Suppose that there exists ε ą 0 such that εk Ñ ε. Then by continuity of
x Ñ µxpBdxpx, rqq (see Corollary 3.27), we have that µxpBdxpx, εkqq Ñ µxpBdxpx, εqq as
k Ñ 8, then

µxpBdxpx, εqq

2ε “ lim
kÑ8

µxpBdxpx, εkqq

2εk
ě lim

kÑ8
k,

which is a contradiction. Therefore, we conclude that εk Ñ 0 as k Ñ 8.

Take rR8 :“
`8
č

k“1
R8k . Since each R8k has full measure, rR8 has full measure and

clearly satisfies what we want for the sequence tεkuk. Finally, take R8 “
č

iPZ
f ip rR8q. The

set R8 is f -invariant, has full measure and satisfies (1) and (2).

We now set, for each U P U , x P U r pZU YAUq,

Π8x,U :“
"

y P F |Upxqr ZU : 1
2εk

¨
µUy pBdxpy, εkqq

µUy pBdxpy, rqq
ě k,@k with Bdxpy, εkq Ă U

*

,

and
Π8U :“

ď

xPUrpZUYAU q

Π8x,U .

Observe that if x P R8 then x P Π8x,U , therefore R8 X U Ă Π8U . In particular,
U r Π8U Ă U rR8. Since µpR8q “ 1, Π8U is measurable.

Lemma 4.3. Let U P U be a local chart. For every x P R8 X U , consider δ “ δpxq ą 0
for which

Bdxrx, 2 ¨ δ ` rs Ă U.

The set Π8x,U XBdxrx, δs is a closed subset on the plaque F |Upxq.

Proof. Let yn Ñ y, yn P Π8x,UXBdxrx, δs, y P F |Upxq. In particular, Bdxpyn, rq Ă Bdxpx, δ`

rq Ă U , and taking the limit over n, we also have Bdxpy, rq Ă Bdxpx, δ`rq Ă U . Furthermore,
it is clear that y P Bdxrx, δs since this is a closed set. By Lemma 3.23, for each k P N the
map

y P Bdxrx, δs Ă Fεk
pxq ÞÑ µUy pBdxpy, εkqq,

is continuous and the same holds for

y P Bdxrx, δs Ă Frpxq ÞÑ µUy pBdxpy, rqq.

Thus,

lim
nÑ8

µUyn
pBdxpyn, εkqq

µUyn
pBdxpyn, rqq

“
µUy pBdxpy, εkqq

µUy pBdxpy, rqq
, k ě 1.

Which implies that for all k ě 1 we have

µUy pBdxpy, εkqq

2εk ¨ µUy pBdxpy, rqq
“ lim

nÑ8

µUyn
pBdxpyn, εkqq

2εk ¨ µUyn
pBdxpyn, rqq

ě k,
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that is, y P Π8x,U , as we wanted.

For A Ă U we define the F |U -saturate of A on U given by

F |UpAq “
ď

xPA

F |Upxq

Now, we consider the following set

D8U :“ F |UpΠ8U qr pF |UqpZUq.

Figure 4 – Set D8U

In other words, D8U is the union of the plaques F |Upxq for x P Π8U that do not
have intervals of µUx -null measure.

Lemma 4.4. The set D8U defined above is a measurable subset.

Proof. Consider the natural projection associated to the foliation F given by

π : U Ñ U{F

x ÞÑ πpxq :“ F |Upxq.

As U is an open subset of a manifold, in particular, it is a Polish space thus, U{F with the
quotient topology is also a Polish space. By Lemma 3.3, we know that ZU “ χUXpUrAUq

for some Borel subset χU Ă U and U r AU is F |U -saturated, then

πpZUq “ πpχUq X πpU r AUq,

where πpχUq is a Souslin set1 by [8, Corollary 1.10.9]. Therefore

F |pZUq “ π´1
pπpχUq X πpU r AUqq “ π´1

pπpχUqq X pU r AUq,

1 A subset of a Polish space Y is called a Souslin set, or an analytical set, if it is the image of a Polish
space X by a continuous map from X to Y .
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is a measurable set.

Since R8 X U Ă F |UpΠ8U q and µpR8q “ 1 we have that F |UpΠ8U q is a measur-
able subset of U , this implies that D8U “ F |UpΠ8U qr F |UpZUq is a measurable set, as we
wanted.

Now we define the set

D8 :“
ď

nPZ,UPU
fn

´

ď

D8U

¯

.

Since D8U is measurable, by ergodicity of f and the f -invariance of D8, must satisfy either
µpD8q “ 0 or µpD8q “ 1.

4.1.2 Technical Lemmas for the case ∆ ă 8

Lemma 4.5. If ∆ ă 8, there exists a sequence εk Ñ 0, as k Ñ `8, and a full measure
subset R Ă xM such that

1. R is f -invariant;

2. for every x P R, then
ˇ

ˇ

ˇ

ˇ

µxpBdxpx, εkqq

2εk
´∆

ˇ

ˇ

ˇ

ˇ

ď
1
k
. (4.3)

Proof. The proof is very similar to the proof of Lemma 4.2. Let k P N˚ arbitrary. Since
∆pxq “ ∆ for every x P xM define

εkpxq :“

$

’

&

’

%

sup
"

ε ď r :
ˇ

ˇ

ˇ

ˇ

µxpBdxpx, εqq

2ε ´∆
ˇ

ˇ

ˇ

ˇ

ď
1
k

*

if x P xM

0 if x PM r xM

.

Observe that for x P xM such εkpxq exists, in fact, since

∆ “ lim sup
εÑ0

µxpBdxpx, εqq

2ε for x P xM,

we can take a sequence εl Ñ 0 such that the given ratio approaches ∆.

Claim: The function εkpxq is measurable for all k P N.

Proof. Define the function w : M0 ˆ r0, rs Ñ r0,8q given by

wpx, εq “
µxpBdxpx, εqq

2ε .
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As observed in the proof of Lemma 4.2, for fixed x P M0, the function r ÞÑ wpx, rq is
continuous and for any 0 ă r ď r, the function x ÞÑ wpx, rq is measurable. Given any
k P N, k ą 0 and β ą 0, let us show that ε´1

k pp0, βqq is a measurable set. Note that:

x P ε´1
k pp0, βqq ðñ εkpxq P p0, βq

ðñ sup
"

ε ď r :
ˇ

ˇ

ˇ

ˇ

µxpBdxpx, εqq

2ε ´∆
ˇ

ˇ

ˇ

ˇ

ď
1
k

*

P p0, βq

ðñ

ˇ

ˇ

ˇ

ˇ

µxpBdxpx, εqq

2ε ´∆
ˇ

ˇ

ˇ

ˇ

ą
1
k
, for every ε ą β

ðñ
µxpBdxpx, εqq

2ε ´∆ ą
1
k

or µxpBdxpx, εqq

2ε ´∆ ă ´
1
k
, for ε ą β

Thus, we conclude that

ε´1
k pp0, βqq “tx : εkpxq P p0, βqu

“
č

βďrď1
wp¨, rq´1

ˆ„

∆`
1
k
,8

˙˙

Y wp¨, rq´1
ˆ„

0,∆´
1
k

˙˙

.

Now, the continuity of wpx, ¨q and the density of Q on rβ, rs, implies that

ε´1
k pp0, βqq “

č

βďrďr,rPQ
wp¨, rq´1

ˆ„

∆`
1
k
,8

˙˙

Y wp¨, rq´1
ˆ„

0,∆´
1
k

˙˙

.

Therefore, ε´1
k pp0, βqq is measurable, as it is a countable intersection of measurable subsets

of M0 and by definition ε´1
k pt0uq “M rM0 also a measurable subset, and consequently

εk is a measurable function for every k.

With a similar argument used in Lemma 4.5, we show that εkpxq is f -invariant,
by ergodicity we may take the full measure set Rk where εkpxq is constant equal to εk.
The sequence εk Ñ 0 as k Ñ 8.

Consider R̃ :“
`8
č

k“1
Rk. Since each Rk has full measure, R̃ has full measure and

clearly satisfies what we want for the sequence tεkuk. The set R “
č

iPZ
f ip rRq is f -invariant,

has full measure and satisfies (1) and (2), as we wanted.

Similar to the definitions made in Section 4.1.1, we set

ΠU :“
ď

xPUrpZUYAU q

Πx,U ,

where

Πx,U :“
"

y P F |Upxqr ZU :
ˇ

ˇ

ˇ

ˇ

1
2εk

¨
µUy pBdxpy, εkqq

µUy pBdxpy, rqq
´∆

ˇ

ˇ

ˇ

ˇ

ď
1
k
, @k with Bdxpy, rq Ă U

*

.
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Lemma 4.6. For every x P R X U , consider δpxq ą 0 for which

Bdxrx, 2 ¨ δ ` rs Ă U.

The set Πx,U XBdxrx, δs is a closed subset on the plaque F |Upxq.

Proof. Identical to the proof of Lemma 4.3.

Similar to the definitions made in Section 4.1.1, we consider the set

DU :“ F |UpΠUqr pF |UqpZUq.

Lemma 4.7. The set DU definided above is a measurable subset.

Proof. The proof uses the same arguments as those in Lemma 4.4.

Now, we define the f -invariant subset

D :“
ď

nPZ,UPU
fn

´

ď

DU

¯

.

As DU is measurable for all U P U , D is measurable, and again by ergodicity, we have
µpDq “ 0 or µpDq “ 1.

After proving the auxiliary lemmas for ∆8 (resp. ∆) and obtaining the sets D
(resp. D8) we divide the next part of the proof into four cases.

• Case 1: ∆ ă 8 and µpDq “ 0: In this case, we will prove that almost every leaf has
the conditional measure µx supported on a Cantor set.

• Case 2: ∆ “ 8 and µpD8q “ 0: As in the Case 1, we will prove that almost every
leaf has the conditional measure µx supported on a Cantor set.

• Case 3: ∆ “ 8 and µpD8q “ 1: we will show that this case does not occur.

• Case 4: ∆ ă 8 and µpDq “ 1: In this case, we will prove that for almost every leaf
Fpxq, the conditional measure µx is equivalent to the measure λx.

4.1.3 Case 1: ∆ ă 8 and µpDq “ 0.

As was said above, in this case, we will show that for every local chart U P U and almost
every x P U , the support of the conditional measures µUx is a Cantor set on the plaque
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F |Upxq. Note that by the definition of D, µpDq “ 0 implies that µpF |UpZUqq “ 1, which
means that there are many leaves of F containing intervals of null measure.

As fixed in Section 2.2, consider tΩxuxPM the disintegration of µ along F . By
definition for this family of mesures, we can consider G a full measure F -saturated set of
points where any representative ωx of the class Ωx is allways invariant under f , this is

f j˚Ωx “ Ωfjpxq, @j P Z.

Let U P U be a local chart, we also know from the definition of tΩxuxPM and tµUx u that
measures µUx and ωx coincide almost every point x PM . Since we are assuming that the
disintegration is not atomic, we can define the full-measure set in U given by

GU :“ tx P U : µUx “ ωxp¨|F |Upxqqu X tx : µUx is non-atomicu.

Now, we consider n̂ P N such that 1{n̂ ă r. Note that n̂ does not depend on
the local chart U . For n P N, n ě n̂, consider the following set

ΦU
1{npZUq :“ tx P U : dxpx,ZUq ă 1{nu.

We assert that ΦU
1{npZUq is measurable. In fact, by Lemma 3.25, the set ZU Ă U is

BUrAU
-measurable set, which implies that there exists a Borelian subset χU such that

ZU “ χU X pU r AUq. Since AU is F -saturated in U , we have

ΦU
1{npZUq “ tx PM : dxpx, χUq ă 1{nu X pU r AUq.

By Lemma 3.21, as χU is a Borel subset of U we have that tx PM : dxpx, χUq ă 1{nu is
measurable, therefore ΦU

1{npZUq is measurable, as we wanted to show.

Now, for n P N such that n ě n̂ we consider the set

En “
ď

j,U

GU
X f jpΦU

1{npZUq X GU
q. (4.4)

Since ΦU
1{npZUq is measurable, we have that En is an f -invariant measurable subset of M ,

thus by the ergodicity of f , the set En either has full or null measure.

Lemma 4.8. µpEnq “ 1 for every n P N and n ě n̂.

Proof. If we assume that there exists N0 P N with N0 ě n̂ such that µpEN0q “ 0. In
fact, µpEN0q “ 0 implies that µpEUN0q “ 0 for any local chart U P U , and moreover, since
EUN Ă EUN0 , we have µpEUN q “ 0 for any N ě N0.

By definition of EUN0 , we know that

GU
X G X ϕ1{NpZUq Ă EUN0 for N ě N0,
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as µpGU
X Gq “ µpUq, it should be noted that

µpΦU
1{NpZUqq “ µpGU

X G X Φ1{NpZUqq ď µpEUn q “ 0, @N ě N0.

From definition of system of conditional measures, we notice that

µpΦU
1{NpZUqq “

ż

yPΦU
1{N pZU q

µUy pF |Upyq X ΦU
1{NpZUqq dµpyq “ 0,

and
F |Upyq X ΦU

1{NpZUq “ ΦU
1{NpZU X F |Upyqq.

In particular, for almost every x P U we have

µUx pΦU
1{NpZU X F |Upxqqq “ 0. (4.5)

As ΦU
1{NpZU X F |Upxqqq is an open subset of F |Upxq, for every y P ΦU

1{NpZU X F |Upxqqq
there exists r ą 0 such that Bdxpy, rq Ă ΦU

1{NpZU X F |Upxqqq then by (4.5) we have

µUx pBdxpy, rqq “ 0.

Terefore, for almost every x P U we find that

ΦU
1{NpZU X F |Upxqq Ă ZU X F |Upxq.

But clearly the other continence holds, thus ZU X F |Upxq “ ΦU
1{NpZU X F |Upxqqq and

this implies ZU X F |Upxqq “ F |Upxq. As this happens for almost every x P U we fall in
contradiction with the fact that µpZU X Uq “ 0. Therefore µpEnq “ 1 for every n P N and
n ě n̂.

Since µpEnq “ 1 for every n P N and n ě n̂. We will prove that for every set
U P U , the measure µUx is supported on a Cantor set.

First, we prove that the intersection of set ZU X F |Upxq is dense in F |Upxq
for almost all x P U . In fact, for U P U we consider the subset EUn Ă U , given by

EUn “ GU
X

˜

ď

jPZ
GU
X f jpΦU

1{npZUq X GU
q

¸

.

Since µpEnq “ 1 the set EUn has full measure in U for every n ě n̂.

For z P EU “
č

něn̂

EUn , as n ě n̂ and 1{n̂ ď r, we have that z P F |Upxq for some

x P U and Bdxpz, 1{nq Ă U . For n ě n̂, let j P Z with

f´jpzq P ΦU
1{npZUq X GU ,

and since f´jpzq P ΦU
1{npZUq there exists a point p P Fpf´jpzqq X ZU such that

df´jpxqpp, f
´j
pzqq ă 1{n.
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Then, by the f -invariance of the F -metric system tdxu, we have dxpf jppq, zq ă 1{n, which
implies f jppq P U . If µUp pBdxpp, δqq “ 0, for some δ ą 0 small, since µUp „ ωf´jpzq (because
f´jpzq P GU) and z P G, it follows that ωzpf´jpIpqq “ ωfjpzqpIpq “ 0 and z P Gu. Thus
µUz pf

´j
pIpqq “ 0, therefore, f jppq P ZU and z P Φ1{npZUq. Consequently z P ZU , for almost

every z P EU .

If ZU ‰ F |Upzq, then we would be able to find an open arc in the complement
of ZU (in particular in the complement of ZU), which must have positive µUx measure.
Then, for almost every z P EU , this contradicts the fact that µUz pEUq “ 1. That is, the set
ZU X F |Upzq is dense in F |Upzq, for almost every z P EU .

Lemma 4.9. Cx :“ F |Upxqr ZU is a Cantor set in F |Upxq, for every x P EU .

Proof. To prove that Cx is a Cantor set, we will show that it is nowhere dense and perfect.
Note that, by the definition of ZU , we have that Cx is closed subset in F |Upxq (see Lemma
3.25), and given that Cx :“ F |Upxqr ZU and ZU X F |Upxq is a dense set in F |Upxq, it
follows that Cx is nowhere dense.

Given x P EU , let us see that Cx has no isolated points. Suppose by contradiction
that there is an isolated point in Cx, say y P Cx. Then, there exists r ą 0 such that
Bpy, rq Ă U and Bdxpy, rq X Cx “ tyu. As y P Cx it follows that 0 ă µUx pBdxpy, rqq. Then,
by the basic properties of probability measures, we have that

0 ă µUx pBdxpy, rqq “ µUx pBdxpy, rqr Cxq ` µUx ptyuq “ µUx ptyuq,

therefore µUx ptyuq ą 0, which contradicts the assumption that x P EU Ă U r AU . This
means that µUx is not atomic, which implies that tyu cannot have positive measure with
respect to µUx .

Thus, we have shown that Cx is a set that is never dense and perfect. Therefore,
we have that Cx is a Cantor set, as we wanted to show.

Thus, for almost every x PM and any local chart U , the conditional measures
µUx is supported in the Cantor set Cx. We remark that for the Lemma 4.9, we did not use
the fact that ∆ “ 8, so the same argument will work when ∆ ă 8.

4.1.4 Case 2: ∆ “ 8 and µpD8
q “ 0.

In this scenario, we follow a similar approach to the previous case. Specifically, we show,
as in Case 1, that for almost every x P U , the measure µx is supported in a Cantor set.

Note that µpD8q “ 0 implies that for every local chart U P U , µpD8U q “ 0. Since
D8U “ F |UpΠ8U q r pF |UqpZUq and µpF |UpΠ8U qq “ µpUq, we have that µpF |UpZUqq “ 0.
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Consequently, almost every plaque F |Upxq does not contain intervals of null measure with
respect to µUx .

Again, as in the Case 1, for every n ě n̂, we define the set En given in (4.4). If
µpEnq “ 1 for every n P N, then there exists a subset of U , namely EU with µpEUq “ µpUq,
such that z P EU implies ZU XF |Upzq is dense is F |Upzq. Hence, as showed by the Lemma
4.9, it follows that the support of µUx is a Cantor subset of the plaque F |Upxq for almost
every x P U .

Otherwise, if µpEN0q “ 0 for some N0 P N, then as in Case 1, we conclude that
ZU XF |Upxqq “ F |Upxq, contradicting the fact that µpZU XUq “ 0. Thus, this case does
not occur.

4.1.5 Case 3: ∆ “ 8 and µpD8
q “ 1.

Let us prove that this case cannot occur. Suppose that µpD8q “ 1. Take U P U such that
µpD8XUq ą 0 and for r ą 0 given in Proposition 3.19 the set tx P U : Bdxpx, rq Ă Uu ‰ H.
Since µpF |UpΠ8U qq “ µpUq and by definition of the system of conditional measures, for
almost every point y P U , we have µUy pΠ8U X F |Upyqq “ 1. In particular, for almost every
y P D8 X U , we have that

µUy pΠ8U X F |Upyqq “ 1. (4.6)

Since tx P U : Bdxpx, rq Ă Uu ‰ H we can to consider y P D8 and x P F |Upyq such that
Bdxpx, rq Ă U . Also, from Lemma 4.3, we have that Π8x,U XBdxrx, δs is a closed subset in
F |Upxq for some δ ą 0 small (δ ă r). Next, using the properties of the sets D8U and Π8x,U
we are going to prove that

Bdxrx, δs Ă Π8x,U for x P F |Upyq X Π8U .

Suppose, by contradiction that there exists z P Bdxrx, δsr Π8x,U XBdxrx, δs. Since Π8x,U X
Bdxrx, δs is closed in F |Upyq, there is δ2 ą 0 such that

Bdxpz, δ2q Ă Bdxrx, δsr Π8x,U XBdxrx, δs.

Then, by (4.6), we have µUx pBdxpz, δ2qq “ 0. This means that z P ZU , note that F |Upzq “
F |Upyq, then F |Upyq Ă F |UpZUq. Consequently, F |UpZUq XD

8
U ‰ H, which contradicts

the definition of D8U . Therefore,

Π8x,U XBdxrx, δs “ Bdxrx, δs,

as we wanted to show.
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On the other hand, consider 0 ă r0 ă δ small enough such that Bdxpx, r`2¨r0q Ă

U . Let k P N be large enough such that εk ă r0. By Lemma 3.13, we have that tdxu is an
additive metric system. This implies that we can take tr0{εku disjoint balls of radius εk
inside Bdxpx, r0q, say with center a1, a2, . . . , atr0{εku P Π8x,U . Then, we have

tr0{εku
ÿ

i“1
µUx pBdxpai, εkqq ď µUx pBdxpx, r0qq

ñ

tr0{εku
ÿ

i“1

µUx pBdxpai, εkqq

µUx pBdxpx, rqq
ď
µUx pBdxpx, r0qq

µUx pBdxpx, rqq
.

Thus, we can write
tr0{εku
ÿ

i“1

µUx pBdxpai, rqq

µUx pBdxpx, rqq
¨
µUx pBdxpai, εkqq

µUx pBdxpai, rqq
ď
µUx pBdxpx, r0qq

µUx pBdxpx, rqq
. (4.7)

By Lemma 3.23, we have that the function w P Bdxrx, r0s Ă Fr ÞÑ µUx pBdxpw, rqq

is continuous. Therefore, this function is bounded from below, which means that there
exists an η ą 0 such that

µUx pBdxpw, rqq

µUx pBdxpx, rqq
ě η, for every w P Bdxrx, r0s.

On the other hand, for each i “ 1, ..., tr0{εku, we have that ai P Bdxrx, δs. As Bdxrx, δs Ă

Π8x,U , by the definition of the set Π8x,U , it follows that

µUx pBdxpai, εkqq

µUx pBdxpai, rqq
ě 2εk ¨ k for all i “ 1, . . . , tr0{εku.

Therefore,
tr0{εku
ÿ

i“1

µUx pBdxpai, rqq

µUx pBdxpx, rqq
¨
µUx pBdxpai, εkqq

µUx pBdxpai, rqq

ě η ¨

tr0{εku
ÿ

i“1

µUx pBdxpai, εkqq

µUx pBdxpai, rqq

ě η ¨ p2εk ¨ kq ¨
Z

r0

εk

^

So, from (4.7) we have

η ¨ p2εk ¨ kq ¨
Z

r0

εk

^

ď
µUx pBdxpx, r0qq

µUx pBdxpx, rqq
.

Taking k Ñ 8, the left side goes to infinity from where we conclude that

µxppBdxpx, r0qq “
µUx pBdxpx, r0qq

µUx pBdxpx, rqq
“ 8,

which is a contradiction. Thus, this case does not occur.
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4.1.6 Case 4: ∆ ă 8 and µpDq “ 1.

Given any local chart U P U , if µpDq “ 1 and ∆ ă 8, we will show that for almost every
x P U the conditional measure µUx in the plaque F |Upxq is equivalent to the measure λx
given in Definition 3.22.

First, we show that for almost every x P M , the coditional measure µx is
absolutely continuous with respect to the measure λx.

Lemma 4.10. The constant ∆ ‰ 0 and

µx ! λx,

for µ-almost every x PM .

Proof. Let y P D. Then, for some n0 P Z and U P U we have fn0pyq P DU . Call x “ fn0pyq.
As x P F |UpΠUqrF |UpZUq, we have µUx pF |UpΠUqXF |Upxqq “ 1. Therefore, we conclude
(by the same argument used in Case 3 - Section 4.1.5) that

Πx,U XBdxrx, δs “ Bdxrx, δs,

for some small δ. Consequently, ΠU XF |Upxq Ą Frpxq, where Frpxq is an connected subset
in the plaque F |Upxq defined by

Frpxq “ ty P F |Upxq : dxpy, BF |Upxqq ě ru. (4.8)

Furthermore, we have Fr Ă Πx,U .

On the other hand, the definition of set ΠU implies that for any k P N˚, U P U
and x P ΠU , the following inequality holds:

ˇ

ˇ

ˇ

ˇ

µUx pBdxpx, εkqq

2εk ¨ µUx pBdxpx, rqq
´∆

ˇ

ˇ

ˇ

ˇ

ď
1
k
. (4.9)

Given a constant r ą 0 such that Bdxpx, rq Ă Frpxq. Take k0 P N such that
k´1

0 ă r. Since tdxu is a F -metric system, for any k ą k0 we need at most spkq “ tr{εku`1
points, say a1, a2, ..., aspkq P Bdxpx, rq, to cover the ball Bdxpx, rq with balls of radius εk.

Again by continuity (see Lemma 3.23), there exists β ą 0 such that

αi :“ µUx pBdxpai, rqq

µUx pBdxpx, rqq
ď β for all i “ 1, . . . , spkq.

Since a1, a2, ..., aspkq P Bdxpx, rq Ă Πx,U , we also have

µUx pBdxpx, εkqq

µUx pBdxpx, rqq
ď

2εk
k
` 2εk ¨∆.
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Therefore,

µUx pBdxpx, rqq

µUx pBdxpx, rqq
ď

spkq
ÿ

i“1

µUx pBdxpai, εkqq

µUx pBdxpx, rqq
“

spkq
ÿ

i“1
αi ¨

µUx pBdxpai, εkqq

µUx pBdxpai, rqq

ďβ ¨

spkq
ÿ

i“1

µUx pBdxpai, εkqq

µUx pBdxpai, rqq

ďβ

spkq
ÿ

i“1

2εk
k
`∆2εk

“β ¨ spkq
2εk
k
` β ¨ spkq2εk ¨∆.

Since lim spkqεk Ñ r as k Ñ 8, we have that

lim
kÑ8

β ¨ spkq
εk
k
“ 0

Therefore, taking the limit when k Ñ 8, we have that

µUx pBdxpx, rqq

µUx pBdxpx, rqq
ď 2∆ ¨ β ¨ r.

This means that
µxpBdxpx, rqq

νxpBdxpx, rq
ď ∆ ¨ β.

Therefore, µx ! λx when restricted to Fr and ∆ ą 0. As r ą 0 can be taken to
be arbitrarily small, it follows that µx ! λx, as we wanted to show.

Next, we are able to conclude that µUx is equivalent to the measure λx.

Lemma 4.11. For µ almost every x PM

µUx „ λx.

Proof. By Lemma 4.10, we know that µUx ! λx. Since λx is a doubling measure, as stated
in Theorem 2.9, for λx-almost every point y P Frpxq defined in 4.8, we have that the
Radon-Nikodym derivative dµUx {dλx exists and is given by

dµUx
dλx

pyq “ lim
rÑ0

µUx pBdxpy, rqq

λxpBdxpy, rqq
.

In particular, by taking the limit along the subsequence εk, k Ñ 8, we conclude that

dµUx
dλx

pyq “ lim
kÑ8

µUx pBdxpy, εkqq

λxpBdxpy, εkqq
, λx ´ a.e y P Frpxq,

which implies
dµUx
dλx

pyq “ βpyq ¨∆, λx ´ a.e y P Frpxq,
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where βpyq “ µUx pBdxpy, rqq. Since β is a continuous function when restricted to the plaque
F |Upxq, given any compact I Ă Frpxq we have

β1∆ ď
dµx
dλx

pyq ď β2∆, λx a.e y P I.

Then,
β1∆ ¨ λx ď µx, λx a.e y P I.

This implies that the set E Ă F |Upxq if such that µUx pEq “ 0, then for any compact subset
I Ă ty P F |Upxq : dxpy, BF |Upxqq ě ru, we have λxpE X Iq “ 0.

Since Fpxq can be expressed as a countable union of increasing compact subsets,
we can conclude that λxpE X y P F |Upxq : dxpy, BF |Upxqq ě rq “ 0. Furthermore, since
r can be arbitrarily small, we can conclude that λxpEq “ 0. Thus, we have shown that
λx ! µUx as desired.
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5
Proof of Theorem B

5.1 Proof Theorem B
First, we recall the Hölder theorem for actions on one-dimensional manifolds.

The action given by a group G acting on a manifold M is a free action if each non-trivial
element in G has no fixed points.

Theorem 5.1 (Hölder Theorem). [24] Let G be a group of orientation preserving homeo-
morphisms acting freely on R (resp.S1). Then G is isomorphic to a subgroup of translations
on R (resp. of the rotations in S1).

As in the proof of the Theorem 3.9 in [11], consider the set N “ tx P M :
αpxq “ ωpxq “Mu, since f is transitive, N is full measure residual subset.

Definition 5.2. We say that a map F : F c
pxq Ñ F c

pxq is a limit center map if there
exists a sequence tniu Ă Z with |ni| Ñ 8 such that tfniu pointwise converges to F .

For each x P N we consider

L pF c
pxqq :“ tF : F c

pxq Ñ F c
pxq : F is a limit center mapu and

L `
pF c

pxqq :“ tF P L pF c
pxqq : F preserves the orientation of F c

pxqu.

Remark 5.3. (see [11, Proposition 4.7] For every x P N , we have:

• If F c
pxq is not compact, then there is a homeomorphism ψx : F c

pxq Ñ R, such that

L `
pF c

pxqq “ tψ´1
x ˝ Tt ˝ ψx, t P Ru,

where Tt is the translation Tt : RÑ R, s ÞÑ s` t.
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• If F c
pxq is compact, then there is a homeomorphism ψx : F c

pxq Ñ S1, such that

L `
pF c

pxqq “ tψ´1
x ˝Rt ˝ ψx, t P S

1
“ R{Zu,

where Rt is the rotation Rt : S1
Ñ S1, s ÞÑ s` tpmodZq.

• L `
pF c

pxqq is a group whose action on F c
pxq is transitive.

• L pF c
pxqq either coincides with L `

pF c
pxqq or is the group generated by L `

pF c
pxqq

and ´Id|F c
pxq.

• If F : F c
pxq Ñ F c

pxq is a limit center map having a fixed point x P F c
pxq, if F is

orientation preserving, then F is the identity map of F c
pxq. This is, the action on

F c
pxq given by the group L `

pF c
pxqq is free.

Lemma 5.4. For µ-almost every x P M , for µx-almost every y P Fpxq, there is a limit
center map F P L `

pF c
pxqq such that F pxq “ y and F˚µx “ αµx.

Proof. We have that the map x ÞÑ µx is measurable, restricted to a full measure subset
of M (see for example 3.27). Using Lusin’s theorem takes tKiu an increasing sequence of
compact sets for which the map x ÞÑ µx is continuous when restricted to each Ki. As µ
is ergodic, for µ-almost every point x P Ki, the orbit of x is dense in a full measurable
subset of Ki. Let Pi “ N XKi.

Let x P Pi and y P F c
pxq X Pi. From [11, Proposition 4.7], we know that there

exists F P L `
pF c

pxqq such that F pxq “ y. Since F is a limit center map, there exists a
sequence nk Ă Z with |nk| Ñ 8 so that the sequence fnk |Fcpxq point wise converges to F .

By the continuity of x ÞÑ µx on the set Pi and since y P Pi, we have that

F˚µx “ lim
kÑ8

fnk
˚ µx “ lim

kÑ8
µfnk pxq “ µF pxq “ µy

By taking the limit set of Ki, we conclude that for µ-almost every point x P P (where
P “ limPi) and y P F c

pxq X P , there exists F P L `
pF c

pxqq such that F pxq “ y and
F˚µx “ µy, and by definition of µx, we have F˚µx “ αµx.

Lemma 5.5. For each x P P , the set given by

Gx :“ tF P L `
pF c

pxqq : F˚µx “ αµx for some α ą 0u,

is a closed subgroup of L `
pF c

pxqq.

Proof. Using Lemma 5.4, we can conclude that Gx is nonempty. Additionally, we can prove
that Gx is a subgroup of L `

pF c
pxqq by showing that for any F,G P Gx, F ˝G´1

P Gx.

To prove that Gx is a subgroup of L `
pF c

pxqq, we only need to show that
pF ˝ G´1

q˚µx “ αµx for some α P R. Since F and G are both elements of Gx, we know
that there exist α1, α2 P R such that G˚µx “ α1µx and F˚µx “ α2µx.
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Let A be any measurable subset of F c
pxq, we have

pG´1
q˚µxpAq “µxppG

´1
q
´1
pAqq “ µxpGpAqq

“
1
α1
G˚µxpGpAqq “

1
α1
µxpG

´1
pGpAqqq

“
1
α1
µxpAq.

This implies that G´1
P Gx. Then

pF ˝G´1
q˚µxpAq “ µxppF ˝G

´1
q
´1
pAqq “ µxpGpF

´1
pAqq

“ pG´1
q˚µxpF

´1
pAqq “ α1µxpF

´1
pAqq

“ α1F˚µxpAq “ α1α2µxpAq

“ αµxpAq.

Therefore, F ˝G´1
P Gx, and we have shown that Gx is a subgroup of L `

pF c
pxqq.

Consider a sequence tFnunPN Ă Gx that converges to F P L `
pF c

pxqq. We aim
to show that F P Gx, which means F ˚ µx “ αµx for some α P R.

For any bounded subset A Ă F c
pxq, we have FnpAq Ñ F pAq in the Hausdorff

metric. Suppose that µxpBF pAqq “ 0, we have that µxpFnpAqq converges to µxpF pAqq. To
see this, consider Bn “ F pAnq∆F pAq, which is the symmetric difference between the sets
Bn “ F pAnq and F pAq.

lim sup
nÑ8

µxpBnq ď µxplim sup
nÑ8

Bnq

“ µx

˜

8
č

m“1

ď

něm

Bn

¸

ď µxpBF pAqq “ 0.

Thus,
lim
nÑ0

µxpF pAnqr F pAqq “ lim
nÑ8

µxpF pAqr F pAnqq “ 0.

This implies that
lim
nÑ8

µxpFnpAqq “ µxpF pAqq.

Therefore, for every measurable bounded subsetA Ă F c
pxq such that F˚µxpBAq “

0, we have pFnq˚µxpAq Ñ F˚µxpAq. This implies that pFnq˚µx Ñ F˚µx. We also have
pFnq˚µx “ αnµx, where αn “ µxpAq{µxpFnpAqq for any measurable subset A Ă F c

pxq such
that µxpF pAqq ‰ 0 and n P N large enough.

Since F is a homemomorphism, we can take A Ă F c
pXq such that µxpAq ą 0

and µxpF pAqq ą 0. Furthermore, since µx is not atomic, µxpBpF pAqqq “ 0, where BpF pAqq
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denotes the boundary of F pAq. It follows that αn Ñ α “ µxpAq{µxpF pAqq, and hence
F˚µx “ αµx. Therefore, F P Gx, as we wanted to show.

Proof of Theorem B. Let x P P and consider the action on F c
pxq given by the group

L `
pF c

pxqq. This action is free and transitive for every x. Applying the Hölder Theorem
5.1, we conclude that L `

pF c
pxqq is isomorphic to the group of translations (resp. rotations)

on R (resp. S1) if F c
pxq is homeomorphic to R (resp. S1). We denote by Tx the group of

translations (resp. rotations) on R (resp. S1).

By Lemma 5.5, we have that Gx is a closed subgroup of L `
pF c

pxqq. Therefore,
Gx must be either the whole group Tx, of translations (rotations) of F c

pxq, or the discrete
group generated by a single element.

First, suppose Gx is isomorphic to a discrete subgroup of Tx. In this scenario, µx
would imply the existence of only a countable number of points in F c

pxq with full measure,
since each atom of µx must be mapped to an atom by a fixed translation. Additionally, the
support cannot be a Cantor set because the atoms must be equidistant from each other.

Now, suppose that Gx is isomorphic to the group of translations in R (resp.
rotations in S1), which implies that the support of µx is full. This, in turn, implies that
µx is equivalent to the measure λx generated by the metric length system. This completes
the proof of the theorem.
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6
Discussions

In this section, we will make some remarks on the one-dimensional hypothesis
and then state some directions for further investigation.

If the dimension of the foliation F is greater than one, the arguments used in
the proof of the main theorem cannot be applied. This is due to the inability to utilize the
structure of a manifold of dimension one. For example, the proof of Lemma 3.13 heavily
depends on the fact that the leaves of the foliation F are homeomorphic to either S1 or R.
Another significant result that utilizes the fact that the foliation is one-dimensional, is
Proposition 3.18, where, we prove that the metric system is plaque continuous, which is a
critical result for the proof of Theorem A. This raises the natural question:

Question 6.1. If the foliation F has dimension ě 2 with an f -invariant metric system,
can we have a classification for the conditional measure, in the same sense as Theorem A?

One of the challenges in this scenario is the presence of multiple directions.
When dealing with a foliation F of dimension greater than one, it becomes impossible to
establish a ordering inside of the each leaf.

On the other hand, in [11] the authors provided a classification for C1 partially
hyperbolic diffeomorphisms on a closed 3-manifold M , which a topologically neutral center
of one-dimension and transitive. This classification mentioned above raised an important
question:

Question 6.2. Is it possible to classify functions in T3 based on their topological or
metric properties while preserving 1-dimensional foliations with a F-arc length system, as
stipulated by Theorem C presented by Bonatti-Zhang in [11]?

Another natural question arises regarding the existence of the F-arc length
system for a partially hyperbolic diffeomorphism with a central direction of dimension
greater than 1.
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Question 6.3. If the center foliation F c for a partially hyperbolic diffeomorphism has
dimension ě 2, is there an F-metric system?

The literature identifies a crucial property called quasi-isometric in the center,
which falls under the class of partially hyperbolic diffeomorphisms with a central direction
of dimension 1. This property holds significant value and is extensively studied in the field.

Definition 6.1. The partially hyperbolic and dynamically coherent diffeomorphism f is
quasi-isometric in the center if there exist K0 ě 1 and c0 ą such that for every x, y PM
satisfying F c

pxq “ F c
pyq and every n P Z,

K´1
0 dcpx, yq ´ c0 ď dcpfnpxq, fnpyqq ď K0dcpx, yq ` c0,

where dc is the distance along the leaves of F c induces by the Riemannian metric.

For example, if the center leaves are compact and arranged in a fiber bundle,
this property holds. However, there is a significant subset of systems known as discretized
Anosov flows [6, 23], which have non-compact one-dimensional center leaves that are
quasi-isometric in the center. In these systems, each center leaf is individually fixed such
that fpxq P F c

pxq for all x PM . Perturbations of the time-one map of Anosov flows fall
into this category.

Definition 6.2. Let f : M Ñ M be a partially hyperbolic diffeomorphism with a one-
dimensional central direction. We say that f is a discretized Anosov flow if there exist

1. an orientation foliation F c such that for every x P M , the leaf F c
pxq P F c is C1,

tangent to Ec and satisfies fpF c
pxqq “ F c

pxq, and

2. a continuous map τ : M Ñ R, such that

fpxq “ ϕτpxqpxq

for every x PM , where ϕt : M ÑM denotes a unit speed flow whose orbits are the leaves
of F c.

Discretized Anosov flows have received extensive attention in the literature,
albeit sometimes under different names. For instance, the first instances of robustly
transitive diffeomorphisms isotopic to the identity were obtained in [9], which were
constructed to be arbitrarily close to the time 1 map on any Anosov flow. These examples
are categorized as discretized Anosov flows.

Recent work in [5] demonstrated that discretized Anosov flows account for every
dynamically coherent homotopic to the identity partially hyperbolic diffeomorphism of
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many 3-manifolds. Additionally, [17] (and [16]) showed that in most 3-manifolds, discretized
Anosov flows are accessible and ergodic when they preserve a volume form.

Other notable dynamical results related to discretized Anosov flows, include the
rigid results found by [4], the measurements of maximal entropy by [12], the centralizers
rigidity for partially hyperbolic diffeomorphisms examined by [14] and [7], and the invariant
principle demonstrated in [13].

Question 6.4. If f is a discretized Anosov flow, can we construct an F c-arc length system
that is measurable, at least?

Question 6.5. In general, do systems with quasi-isometric centers admit a measurable
F c-metric system?
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