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Resumo
Projetar e treinar uma rede neural profunda requer alguma competência do usuário e
geralmente consome um certo tempo. A área de AutoML visa automatizar este processo
e começou a ganhar atenção nos últimos anos. Especificamente, a subárea de Neural
Architecture Search (NAS) tenta resolver o problema de projetar e fazer a busca de
uma rede neural dado um problema específico. Neste contexto, o framework de NAS
denominado Once-for-All (OFA) abordou o problema de busca de arquiteturas eficientes
para diferentes dispositivos com diversas restrições de recursos, desacoplando as etapas de
treinamento e de busca. Isso significa que o custoso processo de treinamento de uma rede
neural é feito apenas uma vez, sendo então possível realizar múltiplas buscas por sub-redes
extraídas desta única super-rede, visando o atendimento de objetivos específicos. Neste
trabalho uma nova estratégia de busca chamada OFA2 é proposta, deixando a etapa de
busca mais eficiente ao conceber explicitamente a busca como um problema de otimização
multiobjetivo. Uma fronteira de Pareto é então povoada com arquiteturas neurais eficientes
e já treinadas, exibindo diferentes compromissos entre os objetivos conflitantes. Isso pode
ser alcançado usando um algoritmo evolutivo multiobjetivo durante a etapa de busca,
como NSGA-II, SMS-EMOA ou SPEA2. Em outras palavras, a rede neural é treinada
uma vez, a busca por sub-redes considerando diferentes restrições de hardware também
é feita uma única vez, e então o usuário pode escolher uma rede neural adequada de
acordo com cada cenário de implantação. A combinação do OFA com um algoritmo de
otimização multiobjetivo explícito abre a possibilidade de tomada de decisão a posteriori
em NAS, dado que um conjunto de sub-redes eficientes e já treinadas que aproximam a
fronteira de Pareto são todas fornecidas de uma vez depois do estágio de busca. Além disso,
também propomos uma seleção multiobjetivo denominada OFA3, uma extensão da busca
multiobjetivo OFA2 que encontra automaticamente o número de participantes e os próprios
modelos para formar ensembles eficientes. Este método de seleção leva a ensembles com
melhor desempenho quando comparado a arquiteturas únicas. O código-fonte e o algoritmo
de busca final podem ser encontrados em <https://github.com/ito-rafael/once-for-all-2>.

Palavras-chaves: Busca de arquitetura neural; Once-for-All; Otimização multi-objetivo;
Tomada de decisão a posteriori.
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Abstract
Designing and training a deep neural network requires some user expertise and is often
time-consuming. The field of AutoML aims to automate this process and started gaining
some attention in recent years. Specifically, the neural architecture search (NAS) subfield
attempts to solve the problem of designing and searching a neural network given a specific
problem. In this context, the Once-for-All (OFA) NAS framework addressed the problem
of searching efficient architectures for different devices with various resource constraints
by decoupling the training and the searching stages. This means that the costly process of
training a neural network is done only once, and then it is possible to perform multiple
searches for subnetworks extracted from this single super-network, focused on specific
purposes. In this work a new search strategy called OFA2 is proposed, making the search
stage more efficient by explicitly conceiving the search as a multi-objective optimization
problem. A Pareto frontier is then populated with efficient, and already trained, neural
architectures exhibiting distinct trade-offs among the conflicting objectives. This could
be achieved by using an evolutionary algorithm during the search stage, such as NSGA-
II, SMS-EMOA or SPEA2. In other words, the neural network is trained once, the
searching for subnetworks considering different hardware constraints is also done one
single time, and then the user can choose a suitable neural network according to each
deployment scenario. The combination of OFA and an explicit algorithm for multi-objective
optimization opens the possibility of a posteriori decision-making in NAS, given that a set
of efficient and already trained subnetworks that approximate the Pareto frontier are all
provided at once after the search stage. Furthermore, we also propose a multi-objective
selection called OFA3, an extension of the OFA2 multi-objective search which automatically
finds the number of participants and the models themselves to form efficient ensembles.
This selection method leads to ensembles with improved performance when compared
to single architectures. The source code and the final search algorithm are released at
<https://github.com/ito-rafael/once-for-all-2>.

Keywords: Neural Architecture Search; Once-for-All; Multi-objective Optimization; A
posteriori decision-making.
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1 Introduction

Artificial intelligence is far away from being a recent research area. However,
this field gained a lot of popularity since 2012 with the introduction of the AlexNet
neural network (Krizhevsky et al., 2012) during the ILSVRC-2012 ImageNet (Deng et
al., 2009) competition. Since then, several other neural networks won this competition,
year after year always pushing the overall scores higher. ZFNet (Zeiler & Fergus, 2014)
in 2013, GoogLeNet (Szegedy et al., 2015) and VGG (Simonyan & Zisserman, 2015) in
2014, ResNet (He et al., 2016) in 2015, ResNeXt (Xie et al., 2017) in 2016, and finally
SENet (Hu et al., 2018) in 2017, the last year of the ILSVRC (ImageNet Large Scale
Visual Recognition Challenge) competition. However, there is one important task inside
the machine learning (ML) pipeline related to the modeling stage that is common to all
of these neural networks cited previously, which can be very time-consuming: the design
of these neural architectures were all hand-crafted by a research team. In this context, a
recent research area called Neural Architecture Search (NAS) arose aiming to automate
the process of designing a neural architecture, while improving the efficiency of the network
search.

In this research field of NAS there is one framework called Once-for-All (OFA)
(Cai et al., 2020) that decouples the training and the searching stages. This means that
a large neural network is trained only once using a specific algorithm called progressive-
shrinking, and then multiple searches can be done in the search space of subnetworks in
order to find efficient architectures for different hardware constraints. This is a remarkable
achievement, because now the search stage is very fast, given that any sampled subnetwork
is already trained.

The work presented here extends the search stage of the Once-for-All network
to make it even more efficient, by explicitly formulating and solving the NAS as a multi-
objective optimization problem. This was accomplished with the help of an evolutionary
multi-objective optimization algorithm (EMOA), exemplified by NSGA-II, SMS-EMOA
and SPEA2. Although multi-objective solutions are more costly than single-objective ones
due to the necessity of populating the Pareto frontier, here we are incrementing solely the
cost of the search stage of the OFA framework, which is much faster than the training stage.
Therefore, solving the search stage as a multi-objective optimization problem promotes a
positive cost-benefit relation, opening the possibility of a posteriori decision-making based
on the proposal of multiple efficient subnetworks exhibiting distinct trade-offs between
two (or more) conflicting objectives (e.g. accuracy versus latency).
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We list the main contributions of this work as follows:

• We propose a multi-objective perspective for the search stage of the Once-for-All
framework and solve this multi-objective optimization problem by finding in a single
search procedure multiple efficient architectures for different hardware constraints
(e.g.: latency or FLOPS). Figure 1.1 summarizes the difference between the Once-
for-All framework and our proposed method.

• We provide a series of experiments related to committee machines, and we empirically
show that choosing efficient (also known as non-dominated) architectures to form an
ensemble beats the performance of ensembles composed of random architectures.

• We propose a genetic algorithm that automatically selects different neural networks
to form an ensemble. The ensembles found by the algorithm leads to more efficient
final models (in terms of accuracy and latency) than the solutions obtained at the
end of the search stage of the OFA framework.

Figure 1.1 – Comparison between the search stage of OFA and OFA2.

The next chapters are organized as follows: Chapter 2 summarizes the two
main research areas related to this work, being Neural Architecture Search (NAS) and
Multi-Objective Optimization (MOO), also mentioning related works involving both fields.
Then, Chapter 3 will depict the main contributions of this work: after a brief explanation of
the Once-for-All framework, details related to the multi-objective optimization formulation
of the search stage will be given, and the key concepts relevant to the experiments with
ensembles are discussed. All experiments and their respective results are reported in
Chapter 4. Finally, Chapter 5 summarizes the overall contributions of this work.
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2 Literature Review

This chapter summarizes the main concepts adopted in this work and some of
their related works. Section 2.1 explains the idea behind the Neural Architecture Search
(NAS) and its core components. Section 2.2 explains the fundamental concepts related
to Multi-Objective Optimization (MOO), taking the content of Deb (2014) as the main
reference.

2.1 Neural Architecture Search
Neural Architecture Search (NAS) is one of the three main subfields of the

automated machine learning (AutoML) research area (Hutter et al., 2019). Besides NAS,
there is another subfield of AutoML known as Hyperparameter Optimization (HPO). When
a neural network is being trained, there are several hyperparameters that should be chosen
and tuned to get the best results with the data provided. Examples of hyperparameters
when training a neural network are learning rate, number of layers, number of neurons per
layer and number of epochs to be trained. The last subfield of AutoML is Meta-Learning,
which tries to reuse previous knowledge when training a neural architecture instead of doing
it from scratch every time. Transfer learning, few-shot learning and zero-shot learning
are examples of meta-learning. Figure 2.1 shows a non-exhaustive list of other research
groups around the globe working with NAS.

Figure 2.1 – Research groups working with NAS (period of search: 2020~2022).
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We can associate each main subfield of AutoML with the problem it tries to
solve by thinking about the whole pipeline of designing and training a neural network.
While the goal of NAS techniques is to search the best architecture or set of architectures
for a given problem, the HPO algorithms try to find the best hyperparameters values, and
the meta-learning aims to incorporate prior knowledge for more efficient training. Figure
2.2 shows the mentioned main subfields of the AutoML research area.

Figure 2.2 – Subfields of the automated machine learning (AutoML) research area.

The intersection areas in Figure 2.2 do not have any label associated because
they do not have a specific title. It just means that more than one strategy is being used
simultaneously to solve a particular problem. For example, consider the situation where a
researcher is trying to solve a problem by using a ResNet (He et al., 2016) architecture with
the weights of all layers frozen, except the last one, in order to perform transfer learning.
Simultaneously, this researcher uses the Hyperband (Li et al., 2018) algorithm to tune the
hyperparameters of the training, therefore using techniques from both meta-learning and
HPO. Take another example where a researcher is using both a NAS framework to search
the neural architecture and another hyperparameter optimization algorithm, which in this
case would correspond to the intersection area between the HPO (in blue) and the NAS
(in yellow) areas of Figure 2.2. From now on, the main focus will be on the NAS subfield.

There are usually three associated steps when implementing NAS, which are
the definition of the search space, the search strategy, and the evaluation of the networks
found (Elsken et al., 2019). Figure 2.3 illustrates these steps, to be properly presented in
what follows.

Figure 2.3 – Overview of the NAS framework. Adapted from Elsken et al. (2019).
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2.1.1 Search Space
The search space defines the architectures that will be considered during the

search. There are basically two types of search spaces available in NAS: the cell-based and
the one-shot (Wistuba et al., 2019). In the cell-based formulation, the search is usually
for a normal and a reduction cell that will be stacked later to form the final architecture.
On the other hand, in the one-shot formulation, a super-network is trained to provide
numerous internal subnetworks with shared weights.

Cell-based formulation

In the cell-based formulation, the solution for the NAS problem typically consists in
finding two types of cells that will later be stacked in a specific manner to form the final
architecture. The cell is represented by a DAG, in which nodes usually represent the
operations and edges represent the flow of information. The two types of cells searched
are the normal cell, that seeks to extract advanced features while keeping the spatial
resolution untouched, and the reduction cell, with the main role of reducing the spatial
resolution. Figure 2.4 shows an example of a cell represented as a directed acyclic graph
(DAG). In this example the nodes are the operations and the edges simply show the flow of
information (Ying et al., 2019). Figure 2.5 shows an example of how normal and reduction
cells can be stacked to build the final architecture. Note that while the normal cell is
stacked N times, the reduction cell is placed only once.

Zoph & Le (2017) adopted reinforcement learning as the searching strategy,
Real et al. (2017) resorted to evolutionary algorithms and Xie et al. (2022) used a hybrid
gradient-based approach, all three working with the cell-based search space.

Figure 2.4 – Cell in the form of a DAG. Adapted
from Ying et al. (2019).

Figure 2.5 – Final architecture.



CHAPTER 2. LITERATURE REVIEW 21

One-shot formulation

The one-shot formulation, also known as macro-level or global search, heavily relies on
weight sharing among the architectures searched. In this kind of search space, training
the weights for a particular neural network has an impact for other architectures as well.
No particular examples will be provided here, since there are many techniques, each with
its own particularities. Furthermore, the Once-for-All framework used in this work can be
considered as a one-shot architecture, and it will be explained in details in Chapter 3.

Please check Bender et al. (2018), Brock et al. (2022) and Cai et al. (2019) for
a review of NAS using the one-shot formulation.

2.1.2 Search Strategies
The search strategy defines how the search space will be explored, taking into

account the exploration-exploitation dilemma. Several strategies can be used, such as
random search (Li & Talwalkar, 2020), Bayesian optimization (White et al., 2021), encoder
and decoder (Luo et al., 2018), and virtually any other strategy that may guide the search
throughout the search space. Next, we will describe the most common ones, namely
reinforcement learning, evolutionary algorithms and gradient-based approaches.

Reinforcement Learning

The first known successful attempt to actually fully train a neural network in an automated
fashion was done in 2016, and it used reinforcement learning as the searching strategy
(Zoph & Le, 2017). Figure 2.6 shows a general diagram of a reinforcement learning
framework (Sutton & Barto, 2018).

Figure 2.6 – General framework of a Reinforcement Learning algorithm. Adapted from
Sutton & Barto (2018).

The controller was implemented as a recurrent neural network (RNN) and
its role was to generate architectures. The reward was the performance of the sampled
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architecture in the validation set, and the training aimed to maximize the expected
accuracy in this data set. The final model achieved state-of-the-art (SOTA) results on
the CIFAR-10 dataset (Krizhevsky, 2009), but the amount of GPUs (graphics processing
units) needed to train this controller was huge, reported as 800 in the original paper.

Another similar and important work from the same authors introduced the
NASNet search space (Zoph et al., 2018). The bottleneck of the technique, nevertheless,
was the same: computational resources to perform the training of the controller. Recent
works managed to overcome this burden, such as the TuNAS framework (Bender et al.,
2020) introduced in 2020 that needs only a couple of hours in a single TPU (tensor
processing unit) to search the architectures.

Evolutionary Algorithms

The second strategy to solve the NAS problem in deep learning used evolutionary algo-
rithms, with the first work published in 2017 (Real et al., 2017). Figure 2.7 shows the
general framework of an evolutionary algorithm.

Figure 2.7 – General framework of an Evolutionary Algorithm. Adapted from Wistuba et
al. (2019).

Evolutionary algorithms (EAs) are often adopted when looking at the formula-
tion of NAS problems with a multi-objective optimization perspective. Section 2.2 will
cover the topic of multi-objective optimization and explain the core components present
in a general evolutionary algorithm, as the ones displayed in the diagram of Figure 2.7.

A common approach to solve a NAS problem with EAs is to search for a
directed acyclic graph (DAG), also called a cell in the context of NAS. Usually, the nodes
of this DAG represent the feature maps and the edges represent the operations done to
the feature maps (convolutions, skip connection, and so on), although this is not a strict
rule. This DAG is then encoded into a sequence of strings that is actually used by the
algorithm. Figure 2.8 shows an example of encoding used to represent a DAG (Lu et al.,
2020).
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Figure 2.8 – Encoding of a cell. Adapted from Lu et al. (2020).

There are other works that use EAs to solve NAS, e.g. the AmoebaNet (Real
et al., 2019).

Gradient-based search

Another acclaimed search strategy that popularized in recent years is based on gradient
descent algorithms. This is very convenient because it allows the search of a neural
architecture to be done by the same backpropagation method used to train the weights of
the neural network (Rumelhart et al., 1986).

This class of search strategy usually defines architecture parameters 𝛼 as well,
besides the common weights 𝑤 of the neural network. An example of training procedure
consists in freezing the architecture parameters 𝛼 while training the networks weights
𝑤 on the training dataset, and then freezing the network weights 𝑤 while training the
architecture parameters 𝛼 on the validation dataset. This procedure is repeated alternately.
Figure 2.9 illustrates the framework of this strategy.

Figure 2.9 – Gradient-based search applied to NAS. Adapted from Green et al. (2019).
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A popular algorithm using gradient descent to search the architecture is the
DARTS framework (Liu et al., 2018). The key idea is to find a way on how to transform
the combinatorial choice of discrete operations into a differentiable function, in order to
make the search space continuous and suitable to be trained with the backpropagation
procedure. This was achieved by applying a softmax with respect to the architecture
parameters 𝛼, therefore considering all operations jointly, instead of a single operation at
a time. Due to the softmax function characteristics, the architecture parameters 𝛼 can
now be interpreted as a probability. Then, a simple progressive pruning take the least
probable 𝛼 and deletes it, meaning that the operation associated to that parameter is now
discarded. This is repeated until a single 𝛼 parameter, and therefore a single operation,
lasts. Figure 2.10 shows an overview of the DARTS framework (Zhu et al., 2021).

Figure 2.10 – Overview of the DARTS framework. Adapted from Zhu et al. (2021).

Several works adopted this idea and proposed extensions to the DARTS frame-
work. P-DARTS (Chen et al., 2019), PC-DARTS (Xu et al., 2020), RAPDARTS (Green
et al., 2019), DARTS+ (Liang et al., 2019) and I-DARTS (Jiang et al., 2019) are some of
these extensions.

2.1.3 Evaluation
The performance estimation strategy is used to evaluate the architectures

proposed by the search strategy. Early methods used to fully and independently train all
networks searched during the optimization. This led to huge amount of resources. Later,
strategies based on performance estimation were developed to speed up the evaluation of
the architectures. Early stopping, using a proxy model, extrapolating the learning curve
and network morphisms are just a few examples of attempts to estimate the network
performance and guide the search more efficiently (Elsken et al., 2019).



CHAPTER 2. LITERATURE REVIEW 25

2.2 Multi-objective Optimization
Multi-objective optimization (MOO) is an area concerned with solving prob-

lems when more than one objective function is being considered and need to be solved
simultaneously. Ideally, these objectives are modeled as conflicting with each other in
multi-objective optimization problems (MOOP).

A naive attempt to solve this class of problems is by scalarizing the multiple
objectives into a single objective, and then solving the problem considering only this
single goal. This is often treated as the classical approach for solving MOOP. There are,
however, more suitable approaches that try to solve MOOP as it is. That is, techniques
that consider the objective functions independently, without the need to create a single
joint objective. Evolutionary algorithms are a good example of this type of optimizer and
are often adopted to solve MOOP problems. In this respect, one of the challenges in MOO
is to search not for a unique solution, but instead multiple efficient solutions characterized
by distinct trade-offs of the objectives (known as Pareto-optimal solutions), each of them
weighting the objective functions differently.

Let us consider the decision-making involved in buying an automobile car.
Assume for this example that the cost and the comfort are chosen as the objective
functions. The goal is to minimize the cost spent on the car, while maximizing its comfort.
Note that the nature between these two objectives are inherently conflicting with each
other: while a cheap car, although not providing you with the best comfort, can save
you some money, the most comfortable automobiles on the market will certainly cost
a fortune. So there is no single solution for this problem, but instead a set of efficient
solutions with distinct trade-offs of the objective functions. Figure 2.11 illustrates a set
of solutions exhibiting distinct trade-offs of the conflicting objective functions. Point 1
of the curve represents the solution that benefits more the cost, while Point 2 benefits
more the comfort. Points A, B and C represent solutions characterized by distinct relative
importance of the objective functions (cost and comfort).

Figure 2.11 – Solutions with different trade-offs of the objectives. Adapted from Deb
(2014).
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2.2.1 Approaches to Multi-Objective Optimization
The optimization problems are typically associated with one of the next three

classes:

• Single-objective optimization: only one single objective function is considered.

• Multi-objective optimization: two, three or four objective functions are considered.

• Many-objective optimization: more than four objective functions are considered.

The focus of this work is in multi-objective optimization considering two
objective functions. In what follows, two different approaches for solving multi-objective
optimization problem are compared.

A posteriori decision-making approach

The first approach discussed here is considered to be the ideal multi-objective optimization
procedure. In this approach the first step after defining the problem is to search multiple
efficient solutions exhibiting distinct trade-offs of all objective functions. Then, with a
diverse set of optimal solutions in hand, the user have the power to choose a specific
solution. The key point here is that, in this approach, the set of solutions are found first,
and then the user choice comes a posteriori. Figure 2.12 shows a diagram with the steps
of an ideal optimizer for multi-objective optimization problems.

Figure 2.12 – Schematic of an ideal multi-objective optimization procedure. Adapted from
Deb (2014).

A priori decision-making approach

The second approach is also known as the preference-based multi-objective optimization
procedure. In this approach, the user choice enters straight after a proper definition of the
problem and the specification of the multiple objective functions. In this stage, the user
must define a degree of preference for one or more objectives, and then the optimization
procedure can proceed. The difference is that now the optimization procedure should
return a single solution satisfying the user input, if it exists. In this method it is said that
the user choice comes a priori with respect to search stage. Figure 2.13 shows a diagram
with the steps of a preference-based optimizer for MOOP.
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Figure 2.13 – Schematic of a preference-based multi-objective optimization procedure.
Adapted from Deb (2014).

2.2.2 Decision Space and Objective Space
When dealing with single-objective optimization, the decision variable space is

the only dimensional space involved in the problem, with the dimension of this space being
equal to the number of decision variables. However, when multi-objective optimization is
taken into consideration, the objective functions related to the problem also constitute a
multidimensional space. The dimension of this space, called the objective space, is equal to
the number of objective functions being considered in the optimization. Furthermore, for
each candidate solution in the decision space there exists a respective point in the objective
space. This mapping occurs from the decision space, containing all possible solutions
to the problem, to the objective space, that evaluates these solutions on each of the
objective functions. This mapping also implicitly occurs for single-objective optimization.
But in this case, instead of involving spaces of two or more dimensions, it happens from
the decision space to a single value, for example a real number. Figure 2.14 shows an
example of the mapping between a three-dimensional decision space and a two-dimensional
objective space.

Figure 2.14 – An illustrative representation of the decision and the objective spaces.
Adapted from Deb (2014).
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2.2.3 Dominance
The concept of dominance is of high relevance when solving a multi-objective

optimization problem, since it allows the evaluation on how good a candidate solution is,
which can help to guide the search towards promising directions. It arises from the idea
that given any two solutions, it would be convenient to be able to compare them somehow.
The definition of dominance involves the objective space and can be stated as:

Definition 1 A solution x1 is said to dominate another solution x2 if both conditions are
satisfied:

I. The solution x1 is no worse than solution x2 in all objectives.

II. The solution x1 is strictly better than solution x2 in at least one objective.

If either of these conditions is violated, the solution x1 does not dominate the
solution x2. When solution x1 dominates solution x2, all the next statements are equivalent:
x2 is dominated by x1; x1 is non-dominated by x2; x1 is non-inferior to x2. To illustrate this
concept, Figure 2.15 brings an objective space with f1 and f2 as the objective functions.
The problem consists in maximizing f1 while minimizing f2, and brings five solutions
numerated from 1 to 5.

Figure 2.15 – MOOP with two objective functions displaying five candidate solutions.
Adapted from Deb (2014).

According to Definition 1, a comparison between any two solutions can be done
aiming at determining which solution is better when considering both objectives. For
example, by comparing candidate solutions 2 and 4, it is possible to state that solution 4
dominates solution 2, since solution 4 is better than solution 2 in both f1 and f2 objectives.
On the other hand, the same relationship can not be associated with solutions 3 and 5 (or
equivalently with solutions 1 and 4). While solution 3 is better than solution 5 considering
the objective function f2, the opposite is true when considering the objective function f1.
In this case, neither of the solutions dominates the other.
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2.2.4 Pareto frontier
Considering the concept of dominance presented in Definition 1, the non-

dominated set is defined as follows:

Definition 2 Let P be a given set of candidate solutions. The non-dominated set of
candidate solutions P’ is a subset of P composed solely of non-dominated solutions, more
specifically, the subset of candidate solutions that are not dominated by any other element
of the set P.

In other words, given a finite set of candidate solutions, we can perform all
possible pairwise comparisons to determine the non-dominated set of solutions. Therefore,
for each candidate solution that does not belong to the non-dominated set, there is at
least one from the non-dominated set that dominates that specific candidate solution, in
the sense of not being worse in any objective and being better in at least one objective.
Moreover, the comparison of two solutions belonging to the non-dominated set is not
that assertive, because each of them is better than the other with respect to at least one
objective function.

Still relying on Definition 2, when the set P comprises the entire search space,
then the set of non-dominated solutions P’ is called the Pareto-optimal set. The region of
the objective space in which the Pareto-optimal set of solutions is located is called the
Pareto front or Pareto frontier. Figure 2.16 highlights the Pareto front in the objective
space considering all combinations of optimization problems for two objective functions.

Figure 2.16 – Examples of Pareto-optimal solutions, given the set of all candidate solutions
(gray area). Adapted from Deb (2014).
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It is clear now that the ideal final answer for an MOOP is to find the Pareto-
optimal set of solutions. However, this may not be an easy task to accomplish depending
on the problem, as one might guess. The last key concept relevant to fully understand the
algorithm used in this work is driven by the idea of grouping and classifying solutions in
different levels of non-dominated fronts. This is almost like an extension of the previous
concept of dominance. But instead of comparing two individual solutions, the solutions
are now grouped in non-dominated fronts of different levels, with lower levels containing
better solutions than higher levels.

To make it more clear, let us bring back the five solutions used in the example
of Figure 2.15. By the aforementioned pairwise comparison involving all the candidate
solutions, it can be stated that solutions 3 and 5 form the first non-dominated set, called
the level 1 non-dominated front. Now, excluding the solutions of the level 1 front, the
same dominance comparison can be done again. This ends up with solutions 1 and 4 being
the non-dominating set among the remaining solutions. This set containing the solutions
1 and 4 is said to be the level 2 front of non-dominated solutions. Finally, the solution 2 is
categorized in the set of the non-dominated solutions of level 3. Figure 2.17 illustrates
all three levels of non-dominated fronts considering the same solutions provided by the
example in Figure 2.15.

Figure 2.17 – Solutions grouped in different levels of non-dominated fronts. Adapted from
Deb (2014).

Since evolutionary algorithms are often adopted to solve MOOP and given
that they are founded on an iterative population-based search, having a way to group and
compare different non-dominated fronts can be useful to guide the search towards finding
better solutions. This sorting benefits the algorithm by bringing candidate solutions closer
to the Pareto front, and it is indeed explored in several evolutionary methods.
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3 Methodology

Our work is an extension of the Once-for-All framework that aims to improve
the search stage by selecting diverse architectures with better performance, all at once.
Since the training stage represents the step that demands most of the computational
resources, we decided to take advantage of the fact that the OFA super-network was already
trained and has its weights publicly available, and we focused on improving the search
stage. More specifically, we formulated the search stage as a multi-objective optimization
problem and solved it making the search more robust and leading to more efficient final
architectures. Section 3.1 provides details related to the training procedure of the OFA
super-network and Section 3.2 explains the multi-objective optimization problem proposed
in this work. Lately, we use the set of solutions obtained from the search stage to form
ensembles and compare them under different scenarios. Information related to ensembles
are given in Section 3.3.

3.1 Training Stage
The Once-for-All (OFA) network (Cai et al., 2020) is a convolutional neural

network (CNN) with the same architecture space of MobileNetV3 (Howard et al., 2019)
trained as a one-shot NAS framework in which the training and the search stages are
decoupled. That is, the network is trained only once, and then the search for a subnetwork
inside this super-network is done without the need for additional training. Figure 3.1
illustrates this behavior.

Figure 3.1 – Once-for-All framework.

Being able to train the neural network only once and then perform multiple
searches is a huge advantage over the usual machine learning workflow, which requires
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training one neural network for each deployment scenario. The OFA network can save
computational resources when multiple hardware architectures are considered, exploiting
the fact that the cost of searching for an architecture in the Once-for-All network is much
cheaper than training a neural network from scratch. Figure 3.2 shows a comparison when
searching four architectures with different hardware constraints between the OFA network
(no need for retraining) and a MobileNetV3 (one training for each architecture searched)
(Howard et al., 2019).

Figure 3.2 – MobileNetV3 and OFA training stage comparison. Figure from Cai et al.
(2020).

Next we describe the architecture space and the procedures for the training
stage of the OFA framework.

3.1.1 Progressive shrinking
The OFA network training is achieved by the progressive shrinking algorithm

(Cai et al., 2020). The progressive shrinking (PS) scheme can be viewed as a generalized
network pruning technique, but applied to more dimensions. The pruning technique
usually shrinks the width of a neural network, decreasing the number of channels in a
given layer, for example. Figure 3.3 shows a usual pruning procedure.

Figure 3.3 – Network pruning. Adapted from Cai et al. (2020).
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The progressive shrinking scheme is similar to the pruning procedure, but
instead of shrinking the model in only one dimension, it aims to shrink the model in four
dimensions. Figure 3.4 shows the PS scheme. Next, we describe each of the dimensions
shrinked by the PS algorithm, being: resolution, kernel size, depth and width.

Figure 3.4 – Progressive shrinking. Adapted from Cai et al. (2020).

The training procedure starts by training the largest network possible and then
progressively fine-tuning the network to nest smaller subnetworks inside larger subnetworks,
shrinking one dimension at a time following the order shown in Figure 3.5. Starting training
the neural network at its full capacity prevents the smaller subnetworks from interfering
with the larger subnetworks.

Figure 3.5 – Dimensions shrinked by the progressive shrinking process.

Elastic Resolution

Throughout the training, arbitrary image sizes are used as input for the convolutional
neural network. This is denoted as elastic resolution. The input image size ranges from
128 up to 224 pixels with a stride of 4. Therefore, 25 different input resolutions are allowed
(128, 132, . . . , 224). Figure 3.6 illustrates the elastic resolution.

Figure 3.6 – Progressive Shrinking: Elastic Resolution.

Elastic Kernel Size

The elastic kernel size is related to the convolutional operations of the neural network. It
is achieved by placing a 3×3 kernel inside a 5×5 kernel, which in turn is placed inside a
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7×7 kernel. However, simply reusing the exact same elements might lead to performance
degradation for some subnetworks, because the centered sub-kernels (3×3 and 5×5) are
shared and can play multiple and different roles inside a kernel convolution. So instead
of keeping them the same, a kernel transformation is done in order to obtain the smaller
kernel sizes. That is, after training the Once-for-All network in its full size (with 7×7
kernel sizes), the 5×5 kernel can be obtained by taking the inner 5×5 elements inside the
7×7 kernel and multiplying them by a transformation matrix. The same is done with
the inner 3×3 elements of the 5×5 kernel in order to obtain the 3×3 kernel. Figure 3.7
illustrates the elastic kernel size with the kernel transformation matrices.

Figure 3.7 – Progressive Shrinking: Elastic Kernel Size.

Within each layer, these kernel transformation matrices are shared among
different channels. For different layers, different matrices are used instead. The overhead
for storing these kernel transformation parameters are of only 25 × 25 + 9 × 9 = 706
extra parameters in each layer, which can be considered as negligible.

Elastic Depth

In order to sample a subnetwork with fewer layers than the full OFA network, the last
layers are simply skipped one by one. First, the last layer is skipped and the remaining
network is fine-tuned. Then, the last two layers are skipped and the remaining network is
fine-tuned, and so on. This means that the weights of the first layers are shared between
large and small architectures, while the weights of the last layers are used only by large
networks. The elastic depth procedure occurs per unit and is shown in Figure 3.8. Each
unit is allowed to have a depth of 2, 3 or 4 layers.

Figure 3.8 – Progressive Shrinking: Elastic Depth.
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Elastic Width

The elastic width allows each unit to choose different channel expansion ratios. After
training the OFA network with the maximum width, the progressive shrinking scheme sorts
the channels according to their importance, and then skip the least important channels
one at a time. The importance of each channel was calculated using the L1 norm of the
channel’s weights, with larger L1 norm meaning more importance. This way, when a
smaller subnetwork is sampled, it starts with the most important channels. Figure 3.9
shows this procedure. Each unit is allowed to choose a channel expansion ratio of 3, 4 or 6.

Figure 3.9 – Progressive Shrinking: Elastic Width.

Training details

The OFA network at its full capacity was trained using the SGD optimizer with Nesterov
momentum 0.9 and weight decay 3𝑒−5. The initial learning rate is 2.6, with cosine schedule
for learning weight decay. The network was then trained for 180 epochs with batch size
2048 on 32 GPUs, taking around 1,200 GPU hours on V100 GPUs (Cai et al., 2020). The
dataset used for both the training and searching stages is the ImageNet (Deng et al., 2009),
a standard dataset in the computer vision area that consists of 1,281,167 images in the
training set and 50,000 images in the validation set, organized in 1,000 categories.

In summary, each component of the progressive shrinking can be chosen ac-
cording to what is shown in Table 3.1.

Table 3.1 – Number of available choices for each dimension of Progressive Shrinking

PS property choices number of choices
elastic resolution input resolution {224, 220, . . . , 128} 25

elastic kernel kernel size {3, 5, 7} 3
elastic depth layers {2, 3, 4} 3
elastic width channels {3, 4, 6} 3
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3.2 Search Stage
The Once-for-All network is one single convolutional neural network, but with

plenty of subnetworks with different sizes nested inside of it. The architecture is composed
of five units. Each unit can have a depth chosen from {2, 3, 4} layers, a width expansion
ratio chosen from {3, 4, 6} and a kernel size chosen from {3, 5, 7}. This gives a search
space of ((3 × 3)2 + (3 × 3)3 + (3 × 3)4)5 ≈ 2 × 1019 different neural network architectures.
Since all these subnetworks share the same weights, only 7.7 M parameters need to be
stored. During the training, the input image size ranges from 128 to 224 with a stride of 4.

The original framework performs an evolutionary search on the trained OFA
network to find an architecture with the meeting requirements based on restrictions
imposed by the user. This means that the resource constraints must be defined a priori to
the search process and that the output of the framework is a single architecture.

On the other hand, in our work, we propose the search process in a multi-
objective perspective (Burke & Kendall, 2014), where the goal is to minimize two conflicting
objective functions, more specifically the top-1 error and a hardware constraint (latency
or FLOPS). We tested three multi-objective optimization (MOO) algorithms in our
experiments, all being evolutionary and population-based: the NSGA-II (Deb et al., 2002),
which uses the concepts of non-dominated sorting and crowding distance to solve the
problem, the SMS-EMOA (Beume et al., 2007) which uses the hypervolume metric to
perform the evolution, besides the non-dominated sorting concept as well, and the SPEA2
(Zitzler et al., 2001) characterized by using a fine-grained fitness assignment strategy based
on a dominance index and a density index. Figure 3.10 illustrates this multi-objective
search, which we call as OFA2 search.

Figure 3.10 – OFA2 search overview: the search and deployment stages are decoupled and
the decision-making is now a posteriori, after the optimization process.

The whole problem was modeled using a multi-objective optimization framework
called pymoo (Blank & Deb, 2020), which uses the NumPy (Harris et al., 2020) library as
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its backend. For the evaluation of the neural network architectures, an NVIDIA GeForce
GTX Titan X GPU with 12 GB of memory was used, with the code being implemented
using the PyTorch framework (Paszke et al., 2019).

3.2.1 Genotype
The first step to solve the search stage as an MOO problem is to define the

genotype encoding (also known as chromosome representation) that will be used by the
evolutionary multi-objective algorithm (EMOA) to codify an individual of the population.
Each individual represents a subnetwork and the population is a set of subnetworks
considered at each iteration of the algorithm. For the genotype, we simply flatten the
hyperparameters used to represent an architecture from Table 3.1 in a one dimensional
array. Since the final architecture is formed by 5 units in sequence and each unit may
have up to 4 layers, we have a total of 20 genes to represent the convolutional kernel size
(ks) and 20 genes to represent the width (w). We also have 5 genes related to the depth
(d) of each unit showing the number of layers considered, and one last gene informing
the resolution (r) of the image that will be cropped from the dataset and used as the
input of the neural network. This gives us a total of 46 variables for the encoding of each
individual that represents a full neural network. Figure 3.11 illustrates this representation
of an individual.

Figure 3.11 – Genotype encoding used to represent an individual of the population.

Given the encoding of an individual, in order to build the full architecture
associated with that individual, the first step is to separate each variable according to
the hyperparameter it represents, following the scheme depicted in Figure 3.11. Figure
3.12 illustrates a numerical example of an individual and Figure 3.13 shows the respective
division of its values according to the hyperparameters associated. After that, we can
group these hyperparameters per unit. If the depth of the unit being considered is equal
to 4, i.e. the unit has 4 layers, then all 4 values of the kernel size and all 4 values of the
width are valid and will be used to build the model. If the depth of the unit is equal to
3 layers, then we simply discard the last entry of both the kernel size and width. If the
depth is equal to 2, then we discard the last 2 entries of both kernel size and width. Figure
3.14 illustrates this procedure. Finally, with all hyperparameters of the 5 units, we can
build the full architecture, as shown in Figure 3.15.
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Figure 3.12 – Numerical example of an individual.

Figure 3.13 – Splitting the encoding according to each hyperparameter.

Figure 3.14 – Discarding entries when depth ∈ {2,3}.

Figure 3.15 – Final architecture representation.
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3.2.2 Objective Functions
The objective functions we want to optimize is the top-1 accuracy (maximize)

and another conflicting objective, represented by a resource constraint, such as latency
or FLOPS (minimize). For this, we use the accuracy and latency predictors provided by
the OFA framework. That is, given the encoding of an architecture we use the accuracy
predictor (the same regardless the hardware) to estimate the model accuracy, and we use
the specific latency lookup table, for each hardware, to get the predicted latency.

Accuracy Predictor

The accuracy predictor is a simple feedforward neural network with three layers and
400 hidden units in each layer. The input of the accuracy predictor is a neural network
encoded into a one-hot vector based on its kernel size and expand ratio. This accuracy
predictor can speed up the evolutionary search during the searching stage, since getting
the output of a three layer network is computationally much cheaper than really evaluating
the architecture in all images of the validation set of the ImageNet dataset.

Efficiency Predictor

A latency predictor was also built to speed up the network search. However, instead
of using a neural network to predict the latency, a latency lookup table is used (Cai et
al., 2019). A FLOPS counter function can be used if we want the FLOPS as one of the
objective functions related to resource constraints. There are a few hardware options
available to choose the latency lookup table, such as the Google Pixel 2 mobile phone, the
NVIDIA GTX 1080 Ti GPU, CPU or even FLOPS. We chose the Samsung Galaxy Note
10 for our experiments, considering the latency as the metric to be optimized alongside
the accuracy.

3.2.3 Operators
In this section, we define the four operators that will take place on the individ-

uals during the iterations of evolutionary algorithms: sampling, mutation, crossover and
selection. The first three operators are the same for the three multi-objective optimization
algorithms used to find the final architectures of the OFA search stage (namely NSGA-II,
SMS-EMOA and SPEA2, discussed in the next section).

Sampling

The sampling operator is related to the initialization of the algorithm, that is, it defines
the initial population of individuals at iteration zero. In our case we simply used the
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random sampling, meaning that values for the depth, width and kernel size were randomly
chosen among their respective valid choices (d ∈ {2, 3, 4}, w ∈ {3, 4, 6}, ks ∈ {3, 5, 7}).

Mutation

The mutation operator is responsible for implementing a local search, randomly perturbing
selected individuals, and thus promoting diversity among the solutions, which might
prevent the algorithm from getting stuck in a local minimum. In our experiments we
defined that each gene of the chromosome has a probability of 10% of replacing its value
into one of the valid choices (including the same value), which is the same probability
used by the evolutionary search proposed on the OFA framework. Figure 3.16 illustrates
the random mutation operator.

Figure 3.16 – Random mutation operator.

Crossover

The crossover operator, also known as recombination, takes two solutions as parents and
combine them to generate a child solution. Here we chose the uniform crossover, which
means that the value of each gene of the child solution is randomly taken from one of
the parent solutions with equal probability. Figure 3.17 illustrates the uniform crossover
(recombination) operator.

Figure 3.17 – Uniform crossover (recombination) operator.
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Selection

Finally, the selection operator defines a criterion for choosing the individuals of the current
population that will be used to generate the offspring, that is, the next generation of
individuals. It usually incorporates the fitness function, taking the multiple objectives as
guiding information, and in our case this operator is implicitly defined according to which
of the three MOO algorithms is used during the evolutionary search.

3.2.4 Evolutionary Multi-Objective Algorithms (EMOA)
We are going to briefly describe the three EMOA considered here as candidates

for the search engine. Evidently, any other EMOA could have been chosen instead.

NSGA-II

The first MOO algorithm considered is the Non-dominated Sorting Genetic Algorithm II
(NSGA-II) (Deb et al., 2002). In this algorithm the selection operator chooses first the
individuals based on their level of non-dominated front. When the sum of the individuals
already selected with the amount of individuals of the current front being considered
surpass the population size previously defined, then the individuals of this current front
are selected based on their crowding distance (Manhattan distance in the objective space).
The selection based on the rank of the front always favors the non-dominated solutions
with respect to the objective functions, while the crowding distance selection aims to
spread the solutions toward regions less explored. In our experiments, we defined the
population size to be 100 and ran the algorithm for 10,000 generations.
Some works already proposed the NSGA-II algorithm in the context of NAS. NSGA-Net
(Lu, Whalen, et al., 2020), NSGANetV1 (Lu et al., 2021) and NSGANetV2 (Lu, Deb,
et al., 2020) are some examples. However, they all have a different search space when
compared to the one from this work, which uses the already trained OFA supernetwork
as the basis for the searching stage. The NAG (Guo et al., 2021) shares the same search
space of the OFA network, but their goal is to produce an architecture generator capable
of sampling efficient networks given a specific budget. Furthermore, none of these works
considered the scenario of decoupling the search and the deployment stages, proposed in
this work.

SMS-EMOA

The second MOO algorithm considered is the SMS-EMOA (Beume et al., 2007). This
algorithm guides the search aiming to maximize the hypervolume measure (Guerreiro et
al., 2021), also known as s-metric, which is commonly applied to compare the performance
of different evolutionary multi-objective optimization algorithms (EMOA). This algorithm
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combines both the concepts of non-dominated sorting and the hypervolume measure as
the selection operator. Similarly to the previous scenario, we used a population size of 100
and ran this algorithm for 10,000 generations.

SPEA2

Finally, the last EMOA considered is the SPEA2 (Zitzler et al., 2001), which is an improved
version of the SPEA (Strength Pareto Evolutionary Algorithm) algorithm (Zitzler & Thiele,
1999). Here, the favoring of non-dominated solutions and their scattering along the Pareto
frontier follow criteria also based on non-dominance and on the density of solutions in
the objective space. Again we use the same hyperparameters: 100 individuals and 10,000
generations.

3.3 Ensemble formulation
The search stage is performed considering three different search strategies for

comparison and validation purposes, as it will be explained in details in Chapter 4. Thus,
after the search stage we end up with three final populations of neural networks, one
for each search method. We then designed a series of experiments grouping different
individuals from these populations to form ensembles (Hansen & Salamon, 1990). The
idea is to find a set of neural networks whose individuals complement each other (Perrone
& Cooper, 1995), reducing the variance of the error at the output, thus leading to better
machine learning models (Geman et al., 1992).

3.3.1 Populations
There are three scenarios considered for the experiments, regarding the group

of neural architectures in which the components of the ensemble will be taken from:
the population from the random search, the population from the OFA search and the
population from the multi-objective optimization framework OFA2. Our hypothesis is that
selecting efficient architectures to form the ensemble can perform better than ensembles
with random or dominated individuals.

Random components

This group of architectures represents 100 neural networks sampled from the OFA search
space without any search procedure. We randomly choose the value of each gene (depth, ker-
nel size, expansion ratio) among its valid options. The procedure to get these architectures
is the same of the one to define the initial population in the MOO algorithms.
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OFA components

The second group of architectures is the one obtained from the evolutionary algorithm of
the original OFA framework. Since this search is guided by a specific hardware constraint,
we need to perform a full search for each requested architecture, resulting in 9 runs of the
search algorithm for the 9 architectures in this group. The restrictions used as input of
the searches are the latencies from 15 ms up to 55 ms, increasing 5 ms at each step.

OFA2 components

The last set of architectures considered in the ensemble experiments are the architectures
obtained from a Once-for-All multi-objective search performed over the supernetwork of
the OFA framework. This is the motivation for the designation of OFA2, because the
search stage is also an OFA stage implemented by an EMOA, which aims to optimize
both accuracy and latency. Since the evolutionary algorithm is population-based, all
architectures are found at once at the end of the search procedure, being an approximation
of the Pareto frontier. Each of them represents distinct trade-offs of the conflicting
objectives. For the experiments with ensembles, we considered only the NSGA-II for the
OFA2 search.

3.3.2 Voting schemes
In order to evaluate the performance of the ensemble, we use two voting schemes:

the hard voting and the soft voting, which are explained as follows.

Hard voting

In the first voting strategy, called “hard voting”, the output of the ensemble is decided
according to the most-voted top-1 class among the participants of the ensemble. If there is
a draw in votes between one or more classes, we then check the occurrences of these classes
on the second most likely output of each model (top-2 output) and decided by the most
frequent. If there is still a draw in votes, then we keep checking the top-3 up to the top-5
output. After that, if the draw still persists, we choose the top-1 output provided by the
largest subnetwork (according to the premise that larger models have more flexibility and
might be more reliable than smaller models). In this scheme, the output of each neural
network has the same importance, regardless how certain the model is about its output.
Figure 3.18 illustrates the hard voting mechanism.

Soft voting

The other voting scheme also takes into account the probability assigned to each class on
the output. For this, we take the last layer of each neural network and append a softmax
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Figure 3.18 – Ensemble output with hard majority voting.

layer straight after it. To decide the output of the ensemble, we sum the probabilities
for each class among all participants of the ensemble, and take the output with highest
accumulated value. This helps to alleviate the problem of the hard voting scheme, which is
the fact that a vote from a model with a low confidence in its output has the same weight
of a vote from a model with a high confidence. This voting scheme, called “soft voting”,
provides a way to weight the vote of each architecture according to the confidence of the
model in its output class, which can be beneficial in some cases. Figure 3.19 illustrates
the soft voting mechanism.

Figure 3.19 – Ensemble output with soft majority voting.
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3.3.3 Latency
Concerning the latency of the ensemble, we consider two different approaches:

the summed latency and the maximum latency, which are explained as follows.

Summed latency

In the first approach, the latency of the ensemble is defined to be the sum of the individual
latencies of all architectures participating in the ensemble. This strategy is based on
the worst-case premise that we have a single hardware with limited amount of memory
to implement the ensemble, and therefore we need to load each model one at a time
to evaluate its performance. Figure 3.20 illustrates the summed latency scenario for
ensembles.

Figure 3.20 – Scenario considering the summed latency.

Maximum latency

In the second approach, the latency of the ensemble is equal to the model’s latency that
has the highest value among the networks which are members of the ensemble. This
strategy is based on the premise that parallelization is viable, and therefore all models can
be evaluated simultaneously. This, of course, requires a limited amount of models in the
ensemble, due to memory scaling. As a consequence, we test ensembles with the number
of components varying from 2 up to 8 (totalizing 7 different ensemble sizes) due to this
imposed limitation. Figure 3.21 illustrates the maximum latency scenario for ensembles.
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Figure 3.21 – Scenario considering the maximum latency.

3.3.4 OFA3: Genetic algorithm to select the components of the ensemble
The last set of experiments are still related to ensembles, but instead of randomly

or deterministically sampling neural networks from a population to form the ensemble, we
propose to solve the problem of automatically determining how many and which available
non-dominated subnetworks are going to compose the ensemble, by implementing another
multi-objective search which we called OFA3.

Algorithm

Following a similar approach to the OFA2 search, we decided to work with the NSGA-II,
SMS-EMOA and SPEA2 algorithms here. Clearly, other MOO algorithms could also be
used at this step. The idea of using an evolutionary algorithm to obtain ensembles is
not innovative (Liu et al., 2000). However, most of the approaches use the evolutionary
process just to create diversity among the individuals of the ensemble and does not propose
the ensemble formation problem as a multi-objective problem itself (Brown et al., 2005)
(Brown, 2004).

Dataset

The dataset used for the OFA3 search is the same as for the OFA and OFA2, being
the ImageNet dataset. However, since the validation set of the ImageNet containing
50,000 images will be used to evaluate the ensembles and compare them against the single
architectures, a new subset of images was necessary to perform the OFA3 search. For this,
we simply took the first 50 images of each one of the 1,000 classes of the training set of
the ImageNet and group them to form the 50,000 images that will be used to guide the
search for the ensembles.
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Objective functions

The objective functions optimized are the same as before, accuracy and latency, considering
both the sum and maximum latency approaches, but just the soft voting scheme to decide
the output of the ensemble. Since the OFA project provides a FLOPS counter for the
architectures, it is also possible to optimize the accuracy and FLOPS jointly.

Encoding

The set of candidate individuals to form the ensemble is the population obtained from
the OFA2 search, totalizing 100 efficient neural networks with different trade-offs between
accuracy and latency. The encoding used is simply an array with 100 binary genes, one for
each neural network from the pool of 100 candidate architectures to form the ensemble,
meaning that if a specific gene has a value 0, then the neural network represented by that
gene will not compose the ensemble, and if the gene has a value 1, then the neural network
at that index compose the ensemble. Figure 3.22 illustrates three examples of encodings
and their respective sets of neural networks composing the ensembles. The encoding in
blue has a single gene with the value 1 in its first position, meaning that only the first
neural network of the population will compose that ensemble. The encoding in green has
three consecutive genes with the value 1 in the middle of the array, meaning that the three
neural networks represented by these genes will take part in the ensemble. The encoding
in red has all genes at value 0, except the last one, meaning that only the last neural
network of the population composes this ensemble. The algorithm ran for a total of 2,000
generations and the results are discussed in the next section.

Figure 3.22 – Encoding for the multi-objective search responsible for automatically defining
how many and which non-dominated subnetworks will compose the ensemble.
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4 Experiments and Obtained Results

The experiments presented in this section are divided in two parts. In the first
part, the focus is on the search stage of the OFA framework and how to improve it in order
to get more efficient architectures in terms of both accuracy and latency. Then, in the
second part, the experiments are related to the formation of ensembles, aiming at finding
a good strategy to select specific neural networks to be part of the ensemble, providing a
better accuracy and latency, on the best scenarios, or improving the accuracy at the cost
of increasing the latency.

4.1 Search strategies
We consider three search strategies to explore the OFA search space. The

first one consists of taking a population of random neural networks, the second one is
the original evolutionary search of the OFA framework, and finally, the last strategy
consists of our proposed multi-objective optimization OFA2 search method. Next, we will
describe each of those strategies and show their performance, followed by some comparative
analysis.

4.1.1 Random search
For the random strategy, the first step is to sample random architectures from

the OFA search space and calculate the accuracy prediction for each of them. Then, in
order to compare the accuracy predictor with the real performance of the neural network,
we take each of these architectures and evaluate them on the ImageNet validation set.
After plotting the predicted and evaluated accuracies for each of these neural networks,
we found out that the predicted accuracies have an offset over the evaluated accuracies,
although the overall format of the points’ distribution are similar. This offset can be
explained due to an overfitting caused on the accuracy predictor, since it was trained
in a subset of 10k images of the same training set used to train the OFA super-network
weights. In fact, to verify that this gap can be approximated to a constant, we simply
took the predicted accuracies and subtracted an offset of 4.5% in the top-1 metric. Figure
4.1 shows the predicted accuracy in light blue, the predicted accuracy with the offset of
4.5% subtracted in dark blue, and the real evaluated accuracy in orange, for the random
population. This offset characteristic will also appear with the original OFA search and in
our search method OFA2, as will be shown later. Fortunately, our evolutionary approaches
are not sensitive to this detected offset, given that the evolutionary paradigm is founded
on the relative fitness of individuals.
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Figure 4.1 – Predicted and evaluated accuracies of the random subnetworks.

4.1.2 OFA search
For the OFA population, we used the original evolutionary strategy of OFA

framework (Cai et al., 2020). The operators used by this strategy is random mutation with
0.1 probability for each hyperparameter, and a uniform crossover. The population size
is 100 individuals and the search process runs for 500 generations. Figure 4.2 shows the
performance of the architectures found by the algorithm. The dots in light blue represents
the accuracy prediction of each architecture, the dots in orange are the real accuracies
evaluated and the dots in dark blue are the predicted values subtracted by the offset of
5.0%. It is important to note that one search procedure was done for each architecture
found. That is, we had to perform an architecture search for the target latency of 15 ms,
then repeat the process for the target latency of 20 ms, and so on and so forth, up until
the target latency of 55 ms. This leads to 9 runs of the OFA search algorithm in total,
resulting in 9 architectures represented by the dots in the figure.
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Figure 4.2 – Predicted and evaluated accuracies of architectures produced by each run
(latency constraint varies along the runs) of the original OFA search.

4.1.3 OFA2 search
For this proposed search method, we solved the multi-objective optimization

problem formulated for the search stage of the Once-for-All framework using three alter-
native EMOA: NSGA-II, SMS-EMOA and SPEA2. Figures 4.3, 4.4 and 4.5 show the
progression of the populations along the iterations for the NSGA-II, SMS-EMOA and
SPEA2 algorithms, respectively. We can see that the individuals of the initial population
(red) are spread across the objective space, which is comprehensible, since these individuals
are randomly sampled from the OFA search space. Even though they are far from being
efficient in terms of both accuracy and latency compared to the non-dominated final
solutions, over the generations they progressively approximate the Pareto front, as we can
see for the individuals after 10 (green), 100 (orange) and 10,000 generations (blue). This
indicates that even though the neural networks of the OFA search space have their weights
already trained, a search is indeed advantageous to retrieve efficient architectures. We ran
this search method for three different random seeds. However, the results presented here
are all related to one specific random seed, out of the three.
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Figure 4.3 – Progression of the solutions for the NSGA-II algorithm.

Figure 4.4 – Progression of the solutions for the SMS-EMOA algorithm.

Figure 4.5 – Progression of the solutions for the SPEA2 algorithm.
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Aiming at comparing these two evolutionary algorithms, Figure 4.6 shows the
final architectures found by each of them after 10,000 generations. We can see that the final
population approximates the typical Pareto front for MOO problems with two conflicting
objective functions. Moreover, we can see that while the SMS-EMOA finds slightly better
architectures with lower latency, the NSGA-II and SPEA2 find better architectures at
the end of the latency axis. Apart from the region with higher latency, the predicted
accuracies found by the three algorithms are very similar.

Figure 4.6 – Comparison between NSGA-II, SMS-EMOA and SPEA2 final populations.

In Figure 4.7 we plot the progression of the hypervolume measure (s-metric)
of the NSGA-II, SMS-EMOA and the SPEA2 along 10,000 generations. This metric
is commonly used to compare the performance of different evolutionary multi-objective
optimization algorithms (EMOA) and requires a reference point on the objective space to
be calculated, which is taken as the point (100, 25).

In an attempt to avoid a kind of underfitting and a kind of overfitting, we
have NSGA-II as the algorithm with intermediary value for the hypervolume measure
along generations and particularly at the end of 10,000 generations of the evolutionary
search. Therefore, we have decided to use the population found by this algorithm for
the following experiments with the ensembles. Figure 4.8 shows the accuracies of the
architectures obtained from the OFA2 search. The dots in light blue are the accuracies
using the accuracy predictor, the dots in dark blue are the predicted accuracies minus the
offset of 5.5%, and the dots in orange are the real evaluated accuracies.
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Figure 4.7 – Comparison between NSGA-II, SMS-EMOA and SPEA2 hypervolumes along
generations.

Figure 4.8 – Predicted and evaluated accuracies of architectures from OFA2 search.
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4.1.4 Comparative Analysis
Now that we have the final architectures of each search method, we can plot

them together in a single graph. Figure 4.9 shows the comparison between the 100
individuals of the final population searched with the NSGA-II for the OFA2 search, the 100
individuals randomly sampled from the OFA search space and the 9 individuals obtained
with 9 runs of the original evolutionary algorithm of the OFA framework for 9 different
latency constraint (15 ms to 55 ms, with a step of 5 ms). We can see that the random
sampled architectures perform reasonably well, with predicted accuracies all above 76%
top-1, meaning that after the training procedure of the OFA framework, there is no need
for retraining or fine-tuning the architectures. However, when we compare the results of
the random search against those obtained from OFA and OFA2 search methods, it is clear
that an additional search procedure is required to obtain more efficient architectures.

Figure 4.9 – Comparison of the search methods using the accuracy predictor.

The performance predictors are useful to speed up the search process. However,
if the predictions are not accurate, the resulting architectures of the search process will
not present the same performance during inference. In order to check the reliability of the
accuracy predictor, we took each of the architectures shown in Figure 4.9 and measured
their real accuracy under the validation set of the ImageNet. The results are shown in
Figure 4.10. We can see that, although the top-1% accuracies are not exactly the same,
the shape of the curves are similar, which means that the accuracy predictor works well
disregarding a constant offset. Luckily, the domination concept used by the algorithms
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tested are not dependent on the absolute values of the objective functions, relying instead
on relative values, which means that as long the shape of the curves on the objective space
is the same, we should not have any problem with these types of EMOA.

Figure 4.10 – Comparison of the search methods for the real evaluated accuracy.

Table 4.1 – Comparison of ImageNet results between OFA and OFA2 hardware-aware NAS
search methods.

ImageNet Top-1% under latency constraints Search cost
method 10 ms 15 ms 20 ms 25 ms 30 ms 35 ms 40 ms 45 ms 50 ms 55 ms GPU hour

OFA N/A 74.05 75.75 76.99 77.52 77.95 78.62 78.62 79.00 79.00 0.83
OFA2 69.83 73.79 75.76 76.89 77.46 78.23 78.64 78.88 79.02 79.02 0.01

Table 4.1 presents the results for the OFA and OFA2 searches. We can see that
for most of the latency constraints, OFA2 performs better than OFA. The computational
costs of all methods are negligible when compared with the cost of training the Once-for-All
super-network (1,200 GPU hours), but notice that the cost of OFA2 is even more reduced,
when compared with the cost of OFA. This expressive reduction is motivated by the fact
that OFA2 performs a single (Once-for-All) search and OFA requires an independent search
per candidate solution.
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4.2 Comparison of distinct ensemble compositions

4.2.1 Random components
The first group of architectures considered in our experiments with ensembles

are those formed by the population of random architectures. We sample 43 random
different combinations of these architectures to make up the committees. We start with
ensembles containing 2 architectures, then we sample 43 random different combinations
for ensembles with size 3, so on and so forth, up to 43 ensembles composed of 8 neural
networks. This is done once for the hard voting scheme and once for the soft voting
scheme, both considering the sum and maximum of latencies in the ensemble. Figures
4.11 and 4.12 illustrate the non-dominated ensembles with different numbers of neural
networks for the summed latency approach, considering the hard and soft voting schemes,
respectively, and Figures 4.13 and 4.14 illustrates the non-dominated ensembles for the
maximum latency approach, considering the hard and soft voting schemes, respectively.
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Figure 4.11 – Non-dominated random
ensembles (latency sum,
hard voting).

Figure 4.12 – Non-dominated random
ensembles (latency sum,
soft voting).
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Figure 4.13 – Non-dominated random
ensembles (latency max,
hard voting).

Figure 4.14 – Non-dominated random
ensembles (latency max,
soft voting).
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4.2.2 OFA components
The experiments with the ensembles formed by the architectures found by the

OFA search are similar to the ones done with the random ensembles, with the difference that
the OFA population has 9 neural networks, instead of the 100 candidates of the random
population. We first sample 43 different ensemble combinations with 2 architectures
considering both the hard and soft voting schemes and for the sum and maximum latencies
approach. Then we sample 43 different ensembles with 3 neural networks, and keep doing
it up to ensembles formed by 8 neural networks. Figures 4.15 and 4.16 illustrate the
non-dominated ensembles with different numbers of architectures for the summed latency
approach, considering the hard and soft voting schemes, respectively. Figures 4.17 and 4.18
illustrate the non-dominated ensembles for the maximum latency approach, considering
the hard and soft voting schemes, respectively.
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Figure 4.15 – Non-dominated OFA
ensembles (latency sum,
hard voting).

Figure 4.16 – Non-dominated OFA en-
sembles (latency sum, soft
voting).
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Figure 4.17 – Non-dominated OFA
ensembles (latency max,
hard voting).

Figure 4.18 – Non-dominated OFA en-
sembles (latency max, soft
voting).
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4.2.3 OFA2 components
Finally, the last group of individuals considered in the ensemble experiments are

those of the last population obtained from the OFA2 search, using the NSGA-II algorithm.
We then follow similar approaches done with the random and OFA population, in order to
compare the results later.

Random selection of OFA2 components

For the further comparison of the OFA2 ensembles with the random ensembles, we simply
follow the same selection strategy of the random approach. That is, we take 43 different
combinations of architectures for each of the ensembles with 2 up to 8 models in its
composition out of the 100 models available. Figures 4.19 and 4.20 illustrate the non-
dominated ensembles for the summed latency approach, and Figures 4.21 and 4.22 illustrate
the non-dominated ensembles for the maximum latency approach, considering the hard
and soft voting schemes, respectively.

OFA-like selection of OFA2 components

For the comparison with the OFA ensembles, we use a subset of the OFA2 population with
latencies similar to the ones produced by the architectures found by the OFA search. The
first step is to sort the neural networks of the OFA2 population by latency, which means
that the model with index 0 is the model with the lowest latency (most left model in
Figure 4.10) and the model with index 99 is the one with the highest latency (most right
model in Figure 4.10). Next, we choose the architectures immediately before the latency
constraints of 15 ms, then 20 ms, up to 55 ms, which are the same latency constraints used
to find the 9 architectures of the OFA population. Then, we follow the same procedure
adopted to build the OFA ensembles. That is, we sample 43 different combinations of 2
neural networks among the total of 9 available, then we repeat for ensembles with 3 neural
networks, and so on up to ensembles with a total of 8 neural networks. Figures 4.23 and
4.24 illustrate the non-dominated ensembles considering the summed latency approach,
for the hard and soft voting schemes, respectively. Figures 4.25 and 4.26 illustrate the
non-dominated ensembles for the maximum latency approach, considering the hard and
soft voting schemes, respectively.

Before comparing the performance of the ensembles regarding the search
method that led to the population of neural networks used to select the components of
the ensembles, there are some insights we can take from the previous figures. From the
ensembles with random selection, we can see that both for the hard and soft voting schemes,
and both summed and maximum latency approach, when the number of components on
the ensemble increases, the performance decreases, as shown in Figures 4.11 to 4.14. This
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Figure 4.19 – Non-dominated OFA2 en-
sembles (random, latency
sum, hard voting).

Figure 4.20 – Non-dominated OFA2 en-
sembles (random, latency
sum, soft voting).
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Figure 4.21 – Non-dominated OFA2 en-
sembles (random, latency
max, hard voting).

Figure 4.22 – Non-dominated OFA2 en-
sembles (random, latency
max, soft voting).

might sound counterintuitive at first, but it is already known that selecting a large number
of components to form the ensemble may actually hurt the overall performance (Zhou et
al., 2002). For the ensembles with the OFA population, we can see that the ensembles
with 3 and 4 components are the ones with final better accuracy for both summed and
maximum latency, and for low latencies requirements, the ensembles with 2 components
are the winner, as illustrated in Figures 4.15 to 4.18. Again we can see that as the number
of components present on the ensemble increases, the performance tends to degrade. This
characteristic also happens with the OFA2 with OFA-like components, but it is not so
evident for the OFA2 with random components, though, as illustrated in Figures 4.19 to
4.26, even though the best ensembles are still the ones with fewer components, from 3 to 6
in the case of OFA-like OFA2 architectures.
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Figure 4.23 – Non-dominated OFA2 en-
sembles (OFA-like, latency
sum, hard voting).

Figure 4.24 – Non-dominated OFA2 en-
sembles (OFA-like, latency
sum, soft voting).
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Figure 4.25 – Non-dominated OFA2 en-
sembles (OFA-like, latency
max, hard voting).

Figure 4.26 – Non-dominated OFA2 en-
sembles (OFA-like, latency
max, soft voting).

4.2.4 Comparative Analysis
In what follows, we compare the ensembles regarding the search technique that

guided to the population of neural networks candidates to be part of the committees. The
comparisons are done with both hard and soft voting schemes and considering the summed
and maximum latency approaches.

OFA2 x Random

The first analysis compares the ensembles from OFA2 and random populations. Table 4.2
shows the comparison for the summed latency approach and Table 4.3 shows the comparison
for the maximum latency approach. The dominated ensembles are represented in light
colors, while the non-dominated ensembles are represented in dark colors and connected
through a dashed line. It is possible to affirm that the ensembles formed with OFA2 neural
networks, that is, the ensembles whose components are non-dominated neural networks,
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consistently outperform the ensembles using the random search strategy, regardless the
number of individuals on the ensemble, which was already expected (Kuncheva & Whitaker,
2003) (Kuncheva et al., 2003).

Table 4.2 – Ensembles with individuals from random and OFA2 searches, considering the
sum of the latencies of all individuals on the ensemble.

Latency (sum)
Hard voting Soft voting
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Table 4.2: Ensembles with individuals from random and OFA2 searches, considering the
sum of the latencies of all individuals on the ensemble (Continued).
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Table 4.3 – Ensembles with individuals from random and OFA2 searches, considering the
maximum latency of the individuals on the ensemble.

Latency (max)
Hard voting Soft voting
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Table 4.3: Ensembles with individuals from random and OFA2 searches, considering the
maximum latency of the individuals on the ensemble (Continued).

5
in

di
vi

du
al

s
6

in
di

vi
du

al
s

7
in

di
vi

du
al

s
8

in
di

vi
du

al
s



CHAPTER 4. EXPERIMENTS AND OBTAINED RESULTS 65

OFA2 x OFA

The second round of comparisons are between the OFA and OFA2 searches. Table 4.4 shows
the comparisons for the summed latency approach and Table 4.5 shows the comparison
for the maximum latency approach. From the figures of both these tables we can see that
for the hard voting scheme, the OFA2 ensembles performs better that the OFA ensembles
in almost every case. For the soft voting strategy, the OFA2 ensembles perform better in
same regions and the OFA ensembles perform better in others.

Table 4.4 – Ensembles with individuals from OFA and OFA2 searches, considering the
sum of the latencies of all individuals on the ensemble.

Latency (sum)
Hard voting Soft voting
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Table 4.4: Ensembles with individuals from OFA and OFA2 searches, considering the sum
of the latencies of all individuals on the ensemble (Continued).
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Table 4.5 – Ensembles with individuals from OFA and OFA2 searches, considering the
maximum latency of the individuals on the ensemble.

Latency (max)
Hard voting Soft voting
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Table 4.5: Ensembles with individuals from OFA and OFA2 searches, considering the
maximum latency of the individuals on the ensemble (Continued).
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4.2.5 Selecting the components of the ensemble by evolutionary multi-objective
approaches

For the next experiments, instead of choosing the individuals of the ensemble a
priori, we formulate and solve the problem of choosing the participants of the ensemble as a
multi-objective optimization problem. The population size is defined to be 100 individuals,
where each individual represents an ensemble composed of one or more neural networks
obtained from the OFA2 search method. More details of the genetic algorithm used was
described in section 3.3.4. We conceived experiments considering both the summed and
maximum latency for the ensembles.
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Summed latency

In this first part we define the latency of the ensemble to be equal to the sum of
the latencies of all neural networks participating on the ensemble. The initial population
consists of individuals with all genes with value 1, meaning that all individuals of the
first population are ensembles with all neural networks available participating. The only
restriction used during the optimization is that an individual must have at least two genes
with value one, meaning that no single architectures are allowed. The single black point
on the extreme right of Figure 4.27a illustrates the initial population. We have just a
single point because all ensembles represented by this first population are equal, having
therefore the same accuracy and latency. In the same figure, we can see the populations
for generations 16, 32 and 64, represented by the different cloud of points, as indicated.
These generations were chosen as power of two to illustrate the non-linear characteristic
of the evolution. At generation 16, only ensembles with 50 or more components are
present. At generation 32, most of the ensembles have between 10 and 49 components,
and at generation 64, we start seeing ensembles with 2, 3 and 4 neural networks. We then
plot the individuals at generations 70 and 128 in Figures 4.27b and 4.27c, respectively.
Note that the latency scale has been changed to fit the populations more accurately. At
generation 70, the majority of the ensembles have between 2 and 4 neural networks, and
at generation 128, almost all the population are composed of 2 individuals. Finally, Figure
4.27d illustrates the final population.

Figure 4.28 compares the final population of the evolutionary process against
the single architectures obtained by the OFA2 search, used as the foundation of the
ensembles. We can see that the obtained ensembles form a typical Pareto-front for multi-
objective optimization problems with two conflicting objectives. Most of these ensembles
are, however, dominated by the single architectures, except for ensembles with more than
80 ms of total latency, where the accuracy of the ensembles surpass the accuracy of the
single architectures. This dominance of single architectures can be explained due to the
difference of scale between the objective functions. Take for example the two smallest
neural networks candidates on participating of the ensembles. The first one presents a
latency of 9.9 ms and accuracy of 69.84%, while the second one presents a latency of 10.0
ms and accuracy of 70.02%. When summing the latencies of these two architectures, we
have a total latency of 20.0 ms. If we take the architecture with the highest latency under
20 ms, we have a single neural network with 75.94% of accuracy and 19.7 ms of latency. It
is unlikely that and ensemble of two architectures with around 70% of accuracy surpass
the 76% of the single architecture with equivalent latency, even more considering that
these two neural networks of around 70% of accuracy are probably similar to each other on
the decision space. We argue that the sum of latencies penalize too much the ensembles,
so that it seems to be better the use of single architectures instead.
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(a) Progression of the initial populations. (b) Population at generation 70.

(c) Population at generation 128. (d) Final population at generation 1,000.

Figure 4.27 – Progression of the NSGA-II populations of individuals reprensenting ensem-
bles for the summed latencies approach. a) Generations 0, 16, 32 and 64. b)
Generation 70. c) Generation 128. d) Last population at generation 1,000

Figure 4.28 – Comparison between ensembles and single architectures (summed latency).
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Maximum latency

To alleviate the problem of difference in scale between latency and accuracy presented
during the summed latency approach, we propose the same experiment but taking the
maximum latency of the neural networks participating on the ensemble to be the latency of
the ensemble itself. Notice that this hypothesis is motivated by the possibility of executing
all the components of the ensemble simultaneously, in parallel. The lowest black point in
Figure 4.29a illustrates the initial population, again with all genes equal to 1, meaning that
all neural network candidates are composing the ensembles. Then, in the same figure we
see two clouds of points illustrating the populations at generations 32 and 512, as indicated.
At generation 32 we still have only ensembles with more than 50 components, while at
generation 512 the ensembles present less than 50 neural networks. Figures 4.29b and
4.29c illustrates the population at generations 700 and 1,024, respectively. At generation
700 we start seeing ensembles with different number of components and at generation 1,024
some architectures within the range of 15 ms were already found. Figure 4.29d shows the
last population of ensembles, after 2,000 generations. On the contrary to what was done
with the summed latency approach, here we do not restrict the optimization to ensembles
with 2 components or more. In fact, we can see that in the final population there are
some individuals that are single architectures (in blue), meaning that other ensembles
with more neural networks with lower latency perform actually worse than that specific
single neural network.

Figure 4.30 compares the ensembles found by the evolutionary algorithm against
the OFA2 single architectures used as the foundation to form the ensembles. Here we
can clearly see advantages of the ensembles over the single architectures, with the former
dominating the latter for almost all latencies. The only exception happens at the beginning
of the curve, where the accuracies and latencies of ensembles and single architectures are
similar. In fact, some of the ensembles found by the evolutionary algorithm in this region
are actually single architectures. This can be explained since the pool of neural networks
to form the ensembles increases proportionally with the latency of the ensembles. For
example, for the ensemble with the highest latency, all neural networks are available to
join the ensemble, while at the ensemble with lowest latency, there is no ensemble at all,
with only one neural network being available to form the “ensemble”. It is interesting
to note that the evolutionary algorithm tends to reduce the number of neural networks
of the ensembles along generations, even though the first generation started with all
neural networks being part of the ensembles. This indicates that ensembles with fewer
components may perform better than ensembles with all neural networks (Bonab & Can,
2019).
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(a) Progression of the initial populations. (b) Population at generation 700.

(c) Population at generation 1,024. (d) Final population at generation 2,000.

Figure 4.29 – Progression of the NSGA-II populations of individuals reprensenting ensem-
bles for the maximum of latencies approach. a) Generations 1, 32 and 512.
b) Generation 700. c) Generation 1024. d) Last population at generation
2,000.

Figure 4.30 – Comparison between ensembles and single architectures (max latency).
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Table 4.6 show the results for the OFA, OFA2 and the genetic ensembles
(represented by the abbreviation G.E.). We can see that for most of the latency constraints,
the genetic ensembles considering the maximum latency performs better than OFA and
OFA2. On the other hand, for the highest latencies, the OFA and OFA2 perform better
than the ensembles. This could be explained by the fact that the evolutionary algorithm
populates mid and lower latencies regions with more individuals than higher latencies, which
could be alleviated by performing a local search in this region. Again, the computational
costs of all methods are negligible when compared with the cost of training the Once-for-All
super-network (1,200 GPU hours).

Table 4.6 – Comparison of ImageNet results between different hardware-aware NAS search
methods.

ImageNet Top-1% under latency constraints Search cost
method 10 ms 15 ms 20 ms 25 ms 30 ms 35 ms 40 ms 45 ms 50 ms GPU hour

OFA N/A 74.05 75.75 76.99 77.52 77.95 78.62 78.62 79.00 0.83
OFA2 69.83 73.79 75.76 76.89 77.46 78.23 78.64 78.88 79.02 0.01

ensemble (sum) N/A N/A 70.03 73.59 75.21 76.22 76.68 76.34 77.76 0.98
ensemble (max) 70.03 74.97 76.18 77.20 77.70 78.31 78.73 78.75 78.75 1.83
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5 Concluding Remarks

The starting principle of this work was provided by OFA (Cai et al., 2020),
which has promoted the decoupling of training and search stages in NAS, thus making
the search stage of negligible cost, when compared to the Once-for-All training of the
super-network. In fact, any subnetwork that is sampled from the search space is already
trained, thus making of low cost even a more elaborate search procedure. Therefore, there
is room for the multi-objective search, which was accomplished with the proposed method
OFA2. This proposal not only finds better architectures in terms of top-1 accuracy and
latency, but also returns a set of solutions instead of a single one, each of them being
optimal considering a specific trade-off among the objective functions.

We then provide a series of experiments related to ensembles comparing the
different search techniques that originated the neural network candidates. We show that
ensembles with OFA2 searched architectures consistently outperform the architectures
from random search, and also outperform the ensembles from architectures found by the
original OFA search for most of the cases, while being computationally much cheaper,
since all networks from OFA2 are searched at once in a single run.

Furthermore, besides the multi-objective search OFA2, we also propose a multi-
objective selection called OFA3. The OFA3 proposal involves a cascade of three Once-for-All
mechanisms during the NAS: a single training step (provided by OFA), a single search
step to populate an approximation of the Pareto frontier (provided by OFA2), and a single
selection step over the output of OFA2 to compose the ensemble of efficient learning models.
This is a remarkable achievement due to two main reasons:

I. The whole computational cost for the search stage remains of a reduced amount
when compared to the Once-for-All training of the super-network, even performing
a cascade of two consecutive multi-objective searches;

II. The multi-objective selection of efficient components (taken from the output of OFA2)
for the ensemble, which is the main contribution of OFA3, is motivated by three
main factors:

a) The guaranteed presence of distinct trade-offs among the candidate components
provided by OFA2, given that they populate an approximation of the Pareto
frontier;

b) The assurance that they are independent models and can operate fully in
parallel;

c) The possibility of automatically choosing just a subset of the efficient models
produced by OFA2 as components of the best ensemble. Those are the main
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motivation to support the gain in performance when compared with, for instance,
a single model of the same size of the whole ensemble, which would not be
implementable by resorting to independent fully parallelizable subnetworks.

This framework discovers architectures with improved top-1 accuracy and
latency. All the source code has been made available, and we show in the experiments
that OFA3 compares favorably with the architectures found by the original OFA and
OFA2, in the sense of achieving higher accuracy for the same latency threshold, supposing
that the components of the ensemble are run in parallel, given that they are independent
models. Additionally, the evolutionary algorithm adopted by OFA3 is able to determine
the appropriate number of components of the ensemble, being a subset of the efficient
models provided by OFA2, while keeping constraints (such as latency) within specific
bounds along the Pareto frontier.

5.1 Future Works
There are some directions in order to improve the work presented here even

further. The most obvious next step is to fine-tune the architectures found by the OFA2
search, with the goal of improving the neural networks performance. Generating latency
predictors for different hardware, and then applying the multi-objective optimization to
these hardwares other than the Samsung Galaxy Note 10 also seems a natural next step.
In this work we used mainly the predicted latency as the second objective function of the
multi-objective optimization alongside with the predicted accuracy. Working with FLOPS
instead of latency is also an interesting idea. Finally, being able to train an Once-for-All
super-network for other application domains other than computer vision, such as time
series or natural language processing, sounds also promising.
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