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RESUMO 

SILVA NETO, Gilson Moura, Seismic Data Assimilation in Reservoir Models: Improving 

Production Forecast in Complex Applications, Campinas, Faculdade de Engenharia 

Mecânica, Universidade Estadual de Campinas, 2021. 259 p. Tese (Doutorado). 

Apesar de ser considerada uma ferramenta essencial para projetos de produção de 

petróleo, a simulação numérica de reservatórios está sujeita a incertezas relacionadas à carência 

de informações sobre as propriedades do sistema em estudo e limitações típicas de modelos, 

que neste caso são críticas pelas atuais restrições de capacidade computacional. Os dados de 

vazão e pressão oriundos dos poços são usados para mitigar tais incertezas, mas eles são 

escassos espacialmente. Neste contexto, dados de sísmica com lapso de tempo tornam-se 

importantes no processo de calibração dos modelos, por proverem informações dinâmicas ricas 

espacialmente, sendo complementares aos dados de produção. Contudo, a assimilação de dados 

sísmicos para melhorar a capacidade preditiva de modelos de fluxo em reservatórios apresenta 

alguns desafios, dentre os quais podemos destacar dois. Primeiramente, a modelagem sísmica 

necessária para assimilação de dados comumente apresenta imperfeições capazes de afetar a 

comparação com os dados observados, levando a atualizações inconsistentes dos parâmetros. 

Além disso, os grandes conjuntos de dados provenientes das aquisições sísmicas elevam os 

requisitos computacionais, especialmente em casos com reservatórios de grandes dimensões.  

Portanto, o objetivo deste trabalho é propor metodologias para assimilar dados 

sísmicos em cenários complexos, onde tais dificuldades estão presentes. O trabalho está 

estruturado em quatro estudos científicos. O primeiro estudo aborda uma metodologia para 

assimilar dados dinâmicos de poços e de sísmica com lapso de tempo na presença de erros de 

modelagem espacialmente correlacionados. O segundo estudo apresenta um método de 

assimilação baseado em conjuntos com análise local para grandes quantidades de dados 

sísmicos. No terceiro, é proposto um modelo de fluido para a simulação de dados sísmicos com 

variações composicionais, reduzindo os erros de modelagem em casos em que tais mudanças 

podem ocorrer no meio poroso. Estes dois últimos estudos viabilizam a aplicação final, no 

quarto estudo, em que é avaliada a assimilação de dados sísmicos num caso sintético com 

desafios semelhantes aos campos do pré-sal brasileiro. 

Foi possível mitigar os efeitos dos erros de modelagem correlacionados 

espacialmente através de uma abordagem de condicionamento fraco dos modelos aos dados, 

através do acréscimo de parâmetros relacionados ao erro no processo de assimilação. Além 



 

 

disso, o suavizador por conjunto iterativo proposto com análise local reduziu as limitações 

decorrentes da assimilação de grandes conjuntos de dados oriundos da sísmica. O modelo 

composicional de fluidos para a modelagem petroelástica também contribuiu para a redução de 

erros de modelagem na assimilação de dados sísmicos, ao melhorar a descrição dos processos 

físicos relacionados a produção de fluidos voláteis com injeção miscível de gás no meio poroso. 

Finalmente, o método eficiente de assimilação de dados proposto, juntamente com o modelo de 

fluidos, se mostrou uma solução viável para um processo de assimilação de dados sísmicos em 

reservatórios que apresentam desafios semelhantes aos de campos de petróleo do pré-sal 

brasileiro. 

Palavras-Chave: simulação de reservatórios; calibração de modelos; assimilação 

de dados baseada em conjuntos; métodos baseados em filtros de Kalman; suavizador por 

conjunto; análise local; erros de modelo; sísmica 4D; ajuste de histórico com sísmica; modelo 

de fluidos; modelo petroelástico. 

  



 

 

ABSTRACT 

Reservoir flow simulation is an essential tool for upstream projects. Nevertheless, 

uncertainties related to the lack of information regarding the reservoir properties and model 

limitations, critical due to the current computational capabilities, influence its results. The 

assimilation of fluid rates and pressure data from the wells can mitigate these uncertainties, but 

they are scarce in space. Therefore, time-lapse seismic data become essential because it can 

provide dynamical information distributed in space, complementing the production data. 

However, time-lapse seismic data assimilation has some significant challenges, among which 

we can highlight two. First, the forward models are imperfect, and their errors can lead to 

unphysical parameter updates. Furthermore, the large data sets provided by seismic increases 

the computational costs, particularly in applications related to big reservoirs. 

From this perspective, this work aims to propose methodologies to assimilate 

seismic data in cases where these difficulties are relevant. The work comprises four scientific 

studies. The first study proposes a methodology to assimilate time-lapse seismic data handling 

significant spatially-correlated errors related to the forward model and the observed data. The 

second study presents an ensemble-based data assimilation method with local analysis capable 

of dealing with big seismic data sets. In the third study, we propose a fluid model to simulate 

seismic data, reducing model errors when there are significant compositional changes in the 

porous media. These last two studies allowed for the last application, where we evaluate the 

seismic data assimilation in a synthetic case with similar challenges to a Brazilian pre-salt case. 

The weak-constraint methodology enabled the mitigation of the spatially correlated 

model error effects by including error-related parameters in the data assimilation workflow. 

Moreover, the proposed iterative ensemble smoother with local analysis reduced the limitations 

related to the assimilation of time-lapse seismic big data sets. The compositional fluid model 

for petroelastic models contributed to the model error reduction by providing a physically 

consistent representation of the volatile fluid production with miscible gas injection. Finally, 

the efficient iterative ensemble smoother and the fluid modeling methodology were viable 

solutions to assimilate time-lapse seismic data from reservoirs with similar challenges to a 

Brazilian pre-salt field. 

Keywords: reservoir simulation; model calibration; ensemble data assimilation; 

Kalman-filter-based methods; iterative ensemble smoothers; local analysis; model error; time-

lapse seismic; 4D seismic; seismic history matching; fluid model; petroelastic model.  
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1 INTRODUCTION 

Reservoir simulation is an essential tool for decision-making in upstream projects. 

This type of simulation commonly aims to estimate future oil, gas, and water production. 

Nevertheless, uncertainties related to the lack of information used to build the flow models 

always influence these estimates. A straightforward approach to mitigate the influence of the 

uncertainties and improve the production forecasts is to assimilate data to improve the 

characterization of reservoir model parameters. The current goal is not to find a single model 

as the best match to the data. It is vital to represent the remaining uncertainties, considering all 

the information available, especially when these models are used in mid to long term decisions. 

In reservoir engineering, it is common to refer to the data assimilation into reservoir 

flow models as history matching. The standard data used in this process is the well production 

data, including pressure, oil, gas, and water rates. Nevertheless, this information source is 

generally insufficient to mitigate the effects of the uncertainties in the forecasts. One of the 

limitations of this type of information is that it is scarce in space, although it is rich in time. 

Note that reservoir history matching is an ill-posed inverse problem. 

Reservoir geoscientists and engineers have been applying seismic data as an 

essential source of information to build reservoir models. 3D seismic data commonly plays a 

crucial role in standard geological modeling workflows. Furthermore, it is possible to 

incorporate this type of data into the simulation models using data assimilation processes.  

Another relevant source of information is time-lapse seismic (TLS) data, also called 

4D seismic data. The initial applications of multiple time-lapsed 3D seismic acquisitions to 

obtain dynamic information regarding the porous media flow were qualitative. Nevertheless, 

recent studies apply TLS data quantitatively to calibrate model parameters. This data 

assimilation process is drawing increasing attention because it can provide dynamic information 

rich in space. Therefore, one can consider it complementary to the usual well data. 

The ensemble-based methods have become a popular option to incorporate both 

well and time-lapse seismic data into reservoir models. Two characteristics of this type of 

method make for this choice. Firstly, these methods can handle complex nonlinear models with 

a vast number of parameters that reach magnitudes from 105 to 106 in reservoir applications. 

Moreover, they provide an ensemble of conditioned models representing a straightforward way 

to perform uncertainty quantification after the data assimilation. These are Bayesian methods, 
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which aim to sample the parameters’ posterior distribution, considering the prior information 

and the data to be assimilated. One represents the former by the prior ensemble of models. 

The problem of assimilating time-lapse seismic data using ensemble-based methods 

has particular challenges. First, TLS data inclusion in the assimilation process significantly 

increases the data sets, leading to higher computational requirements. Secondly, correlated 

errors can significantly affect the comparison of the observed TLS data with the simulated 

response. These errors are hard to define in practical applications, and some of their causes are 

missing or overly simplified physics, resolution issues, neglected uncertainties, among others. 

Note that conventional ensemble-based data assimilation workflows neglect model errors, 

which may cause exaggerated uncertainty reduction and unphysical changes of the parameters. 

Some of these difficulties are more severe in situations like Brazilian pre-salt 

reservoirs, where one deals with complex geological models with a large number of parameters, 

big data sets, and volatile fluid containing significant amounts of carbon dioxide. The reservoir 

sizes influence the dimension of the data assimilation problem in terms of the number of 

parameters. Besides, the application of permanent seismic monitoring and the models’ 

dimensions tend to increase the computational requirements due to the number of seismic data 

points to assimilate. Finally, the physics complexity, including seismic wave propagation and 

volatile fluid flow with miscible gas injection, increases the chance of significant model errors. 

This thesis focuses on TLS data assimilation using ensemble-based methods 

dealing with the two mentioned challenges, correlated errors related to the forward model, and 

assimilation of big data sets into big models. It comprises seven chapters, the introduction, four 

chapters with scientific studies, the conclusion, and future researches. Moreover, it includes 

two appendixes, one with an additional study and one with the published manuscripts’ license 

agreements. 

The first scientific study presents a methodology to assimilate production and TLS 

data in a complete history-matching problem, considering the influence of spatially correlated 

model errors. In this study’s applications, these errors arise from pressure sensitivity mismatch 

and unmodeled seismic resolution losses. The second study presents an iterative ensemble 

smoother (IES) with local analysis to assimilate TLS data, which can handle big data sets and 

big models. The third study improves the fluid representation in the seismic forward model, 

using the same equation of state (EOS) as the flow simulation. In this way, it is possible to 

reduce model errors when the fluids’ compositions change in the porous media. The last work 

is an application of production and seismic data assimilation using a data set and model with 
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similar features of a Brazilian pre-salt reservoir. In this case study, the new fluid model and the 

new data assimilation method play a crucial role in reducing a complex model’s uncertainties 

using well and TLS data. 

The studies mentioned above relates to the general TLS data assimilation workflow 

depicted in Figure 1.1. The first step in this workflow is the reservoir flow simulation, using an 

ensemble of reservoir models. This simulation provides the TLS fluid model inputs in step two, 

which computes the fluid properties, such as density and bulk modulus. The petroelastic model 

in the third step provides the simulated TLS data. Compared to the observed data, the simulated 

production and TLS data are the IES inputs, enabling the update of the model and error 

parameters. The workflow considered error modeling for the TLS seismic, although one could 

also consider it for the well data simulation or neglect model error in all simulations if they are 

not relevant. 

This thesis’ first study relates to the third step of Figure 1.1, which includes error-

related parameters in the data assimilation workflow to handle significant spatially-correlated 

errors. The second work refers to the fourth step, as it proposes an iterative ensemble smoother 

with local analysis for time-lapse seismic data assimilation. The third study connects to the 

second step, proposing a compositional fluid model to pertain to the petroelastic model. The 

fourth work uses this general workflow to assimilate TLS data in a case with Brazilian pre-salt 

characteristics, using the last two methods. In this last application, it was not necessary to 

include error-related parameters since quasi-ideal TLS data was available. 

 

Figure 1.1: General time-lapse seismic data assimilation workflow. 

This thesis also includes a study regarding 3D data assimilation considering 

forward-model-related errors as Appendix A. Although not directly pertaining to the workflow 

in Figure 1.1, this study could be necessary for some applications as an initial model 

improvement to assure that they represent the 3D seismic data before they compute time-lapse 

seismic simulations. 
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1.1 Motivation 

The motivation for this work comes from some established premises. First, 

reservoir flow models are vital for the decision process in upstream projects, but uncertainties 

always influence the forecast quality. Secondly, there is a lack of data to mitigate the impact of 

these uncertainties through data assimilation, which makes for the importance of using time-

lapse seismic data quantitatively to calibrate the reservoir parameters. This type of data is rich 

in space and is complementary to the information from the wells. 

Nevertheless, it is possible to identify two aspects of TLS data assimilation that 

complicate the applications or jeopardize the results. The first aspect is that the increase of the 

computational requirements due to big data sets may limit some applications using 

straightforward ensemble-based methods. The second is that correlated model-related errors in 

the comparison of simulated and observed data, if neglected, may impair the data assimilation 

results. Therefore, it is crucial to propose methodologies that handle these complex situations, 

present in many fields worldwide, especially in Brazilian pre-salt. 

1.2 Objective 

The main objective of this work is to propose methodologies to assimilate TLS data 

in reservoir models in realistic complex cases, considering forward model imperfections and 

the assimilation of big data sets. The final goal is to apply the methodologies in a case that 

mimics some complexities of a pre-salt reservoir, including compositional fluid changes by the 

miscible gas injection. As with any general data assimilation workflow, the ultimate objective 

is to develop methodologies to improve oil production forecasts using TLS data, even in 

complex applications. 

1.3 Work description 

This work comprises four scientific studies and one additional study as an appendix. 

This subsection summarizes each of them, highlighting their main contributions and their 

relations with the thesis goals.  We present the studies’ complete texts in the following chapters 

of this document and Appendix A. Appendix B contains the license agreements of the published 

material. 
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1.3.1 Assimilating time-lapse seismic data in the presence of significant spatially correlated 

model errors (published work) 

SILVA NETO, G. M.; DAVOLIO, A.; SCHIOZER, D. J. Assimilating time-lapse 

seismic data in the presence of significant spatially correlated model errors. Journal of 

Petroleum Science and Engineering, p. 109127, Jun. 2021. 

https://doi.org/10.1016/j.petrol.2021.109127. 

This study aims to improve the production forecast using time-lapse seismic data 

containing distortions related to correlated errors when comparing the observed and simulated 

data. In practical applications, model imperfections may cause correlated errors, which are 

neglected in straightforward data assimilation workflows. For instance, unmodeled processes 

such as resolution loss, scale differences, seismic wave propagation, and seismic inversion 

algorithms may significantly affect the data. Furthermore, the petroelastic model can also have 

relevant imperfections.  

We apply a weak-constraint formulation to the TLS data assimilation process to 

mitigate the impact of these errors. In this type of formulation, we include error-related 

variables as parameters in the calibration process. In this study, we also include well production 

data to update the reservoir parameters, and we test the methodology using the UNISIM-I-H 

benchmark. 

This research focuses on the third step of Figure 1.1, as it mitigates the influence of 

TLS model-related errors by including error-related parameters in the data assimilation 

workflow. Furthermore, it relates to the main objective to use TLS data to improve reservoir 

characterization and production forecast, even when we have imperfect forward models. 

This work improved the reservoir characterization and production forecast using 

relatively low-resolution TLS data and models with pressure sensitivity mismatch, mimicking 

practical challenges. In a synthetic 2D application, the proposed methodology reduced the bias 

and porosity mismatch, using a petroelastic model with a pressure sensitivity deviation, a 

common problem in real applications. Furthermore, in a synthetic realistic field application, the 

ensemble updated using the same methodology could provide better forecasts than when one 

assimilates the TLS data neglecting the model errors. Furthermore, the data assimilation 

methodology with TLS data improved the forecasts compared to the test where only well data 

was available. 
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1.3.2 Subspace Ensemble Randomized Maximum Likelihood with local analysis for time-

lapse seismic data assimilation (published work) 

SILVA NETO, G. M.; SOARES, R. V.; EVENSEN, G.; DAVOLIO, A.; SCHIOZER, 

D. J. Subspace Ensemble Randomized Maximum Likelihood with Local Analysis for Time-

Lapse-Seismic-Data Assimilation. SPE Journal, p. 1–21, 1 Feb. 2021. 

https://doi.org/10.2118/205029-PA. 

In the initial applications of TLS data assimilation and the 3D case study in 

Appendix A, we dealt with some difficulties related to the massive amounts of data that the 

seismic includes in the workflows. Furthermore, in this thesis’s final application, we analyze 

the TLS data assimilation in a synthetic case representing similar challenges to a Brazilian pre-

salt reservoir. Therefore, there are higher computational costs due to the models’ size and the 

data sets, both in the forward model simulation and the data assimilation algorithm. This context 

motivated this second study to develop an ensemble-based method that handles big models and 

big data sets in TLS assimilation. Therefore, it relates to the fourth step of Figure 1.1 and the 

goal to use TLS big data sets to improve the reservoir models. 

The study proposes a local-analysis scheme using an efficient implementation of 

the Subspace Ensemble Randomized Maximum Likelihood (SEnRML) method. In this 

implementation, the computations scale linearly with the dimension of the data set. 

Furthermore, our results with the local analysis scheme show that it could provide similar 

results to the Ensemble Smoother with Multiple Data Assimilations, a popular choice for 

reservoir history matching. We tested both distance-based and correlation-based local analysis. 

The latter has the advantages of applying to nonlocal data and parameters and not requiring 

tuning localization lengths. We used a simple 2D model and the simulation models of the 

UNISIM-I-H benchmark in our tests. 

1.3.3 Improving fluid modeling representation for seismic data assimilation in compositional 

reservoir simulation (published work) 

SILVA NETO, G. M.; RIOS, V. de S.; DAVOLIO, A.; SCHIOZER, D. J. Improving 

fluid modeling representation for seismic data assimilation in compositional reservoir 

simulation. Journal of Petroleum Science and Engineering, vol. 194, p. 107446, Nov. 2020. 

https://doi.org/10.1016/j.petrol.2020.107446. 

In a time-lapse seismic data assimilation workflow, it is necessary to provide fluid 

models with two distinct objectives. The first one is to describe the pressure, volume, and 
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temperature behavior for the fluid flow in the porous media, the first step of Figure 1.1. The 

second one is to describe the density and bulk modulus for the petroelastic simulation in the 

workflow’s second step. The first objective is well established for typical applications, 

including situations where the phases’ compositions change in the reservoir (PEDERSEN; 

CHRISTENSEN; SHAIKH, 2015). Moreover, there are well-known correlations suitable for 

petroelastic models for black-oils (BATZLE; WANG, 1992). Nevertheless, this thesis considers 

the time-lapse seismic data assimilation in a reservoir model with volatile fluid with varying 

composition. Therefore, this work proposes a methodology to model the fluid to represent the 

flow in the porous media and the acoustic impedance variations, which we use as seismic data. 

We propose to use a cubic equation of state calibrated using pressure, volume, and temperature 

(PVT) data to characterize the fluid for both the flow and the petroelastic models. Our model 

considers volatile hydrocarbons with a significant amount of CO2, typical characteristics in 

Brazilian pre-salt reservoirs. Moreover, it enables a physically consistent simulation of the 

seismic signal of miscible gas injection and the water-alternating-gas (WAG) process. 

From the TLS data assimilation perspective, this study proposes a new way of 

representing the fluid elastic properties variations, referring to the second step of Figure 1.1. In 

this regard, it tends to reduce model errors related to the classical fluid correlations commonly 

applied in petroelastic models. Our results indicate that an overly simplified fluid model could 

influence the data assimilation results by changing the reservoir’s simulated acoustic impedance 

variations. Furthermore, we show that it is possible to improve the fluid model, for both flow 

and seismic simulation, by incorporating the experimental speed of sound data without 

impairing the PVT match. Up to the present, this is not a common practice in the industry. 

1.3.4 Assimilating well and time-lapse seismic data in a challenging pre-salt-like case using 

an iterative ensemble smoother for big data sets (to be submitted) 

SILVA NETO, G.M., RIOS, V.S., MASCHIO, C., DAVOLIO, A. and SCHIOZER, 

D.J. 2021. Assimilating well and time-lapse seismic data in a challenging pre-salt-like case 

using an iterative ensemble smoother for big data sets. 

This synthetic case study aims to assimilate time-lapse seismic data considering 

some of the challenges of Brazilian pre-salt reservoirs. We consider the effects of volatile fluids 

with significant amounts of CO2 and miscible gas injection. We also consider the simultaneous 

assimilation of multiple seismic monitors, which add to the data sets’ size. Therefore, the fluid 

modeling methodology developed in the third study and the data assimilation method proposed 

in study four play a crucial role in this application. 
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This work integrates previous methods developed in this thesis in a realistic 

problem, testing their interaction in the workflow presented in Figure 1.1. It is important to note 

that our data set did not evidence significant model-related correlated errors that would motivate 

the application of a weak-constraint formulation (section 1.3.1). Moreover, the application does 

not include a giant reservoir model, due to time and infrastructure restrictions to run the flow 

simulations. We used sector 1 of the benchmark case called UNISIM-III, built with data and 

information from pre-salt reservoirs.  

Our results show that the data assimilation workflow, including the fluid 

representation using an EOS and the SEnRML with local analysis, is a viable solution to 

assimilate well and TLS data in a challenging pre-salt-like case. Moreover, the TLS data 

provided important information to improve the production forecast in this application. 

Furthermore, this work adds to the discussion of the application of ensemble-based methods in 

highly nonlinear problems due to heterogeneous reservoirs with complex physics. 

1.3.5 3D seismic data assimilation to reduce uncertainties in reservoir simulation considering 

model errors (published work) – Appendix A 

SILVA NETO, G. M.; DAVOLIO, A.; SCHIOZER, D. J. 3D seismic data 

assimilation to reduce uncertainties in reservoir simulation considering model errors. Journal 

of Petroleum Science and Engineering, vol. 189, p. 106967, 1 Jun. 2020. 

https://doi.org/10.1016/j.petrol.2020.106967. 

This work proposes a methodology to assimilate 3D seismic data considering model 

errors due to missing physics. Although other phenomena may also affect the observed data, in 

this study, the unmodeled loss of resolution related to the seismic wave propagation causes the 

distortion that influences the data assimilation results. We focus on two approaches to handle 

the limitations of our forward model. First, we update the covariance matrix of total observation 

errors following an iterative approach. Furthermore, we introduce an analytical function that 

acts as a proxy to the systematic errors in comparing the observed and the simulated data. By 

applying the proposed methodology, we improved the volume characterization and the 

production forecast using 3D seismic data with a relatively low resolution. We used the 

benchmark UNISIM-I-H in our tests. 

This study focuses on 3D seismic data, commonly an information source during the 

geological modeling process. Thereby, it is not directly related to the workflow in Figure 1.1, 

and we include it as an appendix in this thesis for two reasons. Firstly, it is important to 
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condition the model to the 3D data before assimilating TLS data when the former is not part of 

the geological modeling workflow since 3D and time-lapse seismic data play different roles in 

the parameter calibration. While the former indicates general geological features and is closely 

related to the 3D volume, the latter represents the porous media’s regional dynamical features. 

Secondly, a similar methodology proposed to 3D seismic data assimilation can help TLS data 

assimilation in some applications. 
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2 ASSIMILATING TIME-LAPSE SEISMIC DATA IN THE 

PRESENCE OF SIGNIFICANT SPATIALLY CORRELATED 

MODEL ERRORS 

Authors: 

Gilson M. Silva Neto 

Alessandra Davolio 

Denis J. Schiozer 

 

2.1 Abstract  

Time-lapse seismic data is becoming a common information source in reservoir 

model calibration workflows to improve production forecasts. The standard process compares 

a forward model’s results with the observed data to update the model’s parameters from the 

existing deviations. 

Ensemble-based methods are popular choices for this process. However, the so-

called forward model is always a simplification of the real phenomena. These simplifications 

may significatively influence the relation between simulated and observed data and possibly 

yield inconsistent updates of the parameters and uncertainty underestimation. In the 

conventional approach for this problem, the so-called strong-constraint formulation neglects 

the model’s limitations, causing unphysical updates of the parameters to reduce the distance 

between simulated and observed data. 

In this work, we propose a methodology to apply a weak-constraint formulation to 

the time-lapse seismic data assimilation to mitigate the above problem. We consider the forward 

model error with an additive term and update it during the data assimilation workflow. By 

adopting this approach, we reduce the impact of the model errors in the calibrated parameters. 

Also, the proposed methodology handles model bias as a type of general model error. The 

inclusion of the additive term weakens the updates of the model due to the time-lapse seismic 

data. 

We show that this procedure significantly benefits the data assimilation results 

when there are substantial spatially correlated model errors, and it has a minor impact when 
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applied to a low-error case. We apply the proposed method to assimilate time-lapse seismic 

data using the Ensemble Smoother with Multiple Data Assimilations in a simple 2D case and 

in a realistic benchmark synthetic case based on a real offshore reservoir. In the former case, 

we consider model error related to the pressure sensitivity in the petroelastic model. In the latter, 

we consider a realistic synthetic time-lapse seismic and the correlated errors result from seismic 

modeling and inversion. Moreover, in the latter, we also assimilate well data.  

The results indicate that our methodology improved the reservoir characterization 

and the production forecast using relatively low-resolution time-lapse seismic data. 

 

Abbreviations: 

ESMDA – Ensemble Smoother with Multiple Data Assimilations 

NQDS – Normalized Quadratic Deviation with Sign 

PEM – Petroelastic Model 

TLS – Time-Lapse Seismic 

VOIP – Volume of Oil in Place 

 

Keywords: 

Model calibration; ensemble data assimilation; iterative ensemble smoothers; history matching; 

model errors; ESMDA 

 

2.2 Introduction 

The application of time-lapse seismic (TLS) data to calibrate reservoir models using 

ensemble-based methods is becoming more frequent in petroleum literature. Some publications 

already report real field applications (EMERICK, Alexandre A., 2016; EMERICK, Alexandre 

A.; REYNOLDS, 2013b; FAHIMUDDIN; AANONSEN; SKJERVHEIM, 2010a; 

SKJERVHEIM, Jan-Arild et al., 2007). More recently, Fossum and Lorentzen (2019) 

demonstrated the capability of iterative ensemble smoothers to assimilate large amounts of 

seismic and production data using different noise handling and localization approaches. 

Furthermore, Wojnar et al. (2020) proposed an ensemble-based time-lapse seismic data 

assimilation workflow and applied it to a mature undersaturated oil field. 



38 

 

In typical TLS data assimilation applications, the forward model includes a 

reservoir flow model and a petroelastic model (PEM), as in some examples from the literature 

(EMERICK, Alexandre A., 2016; SKJERVHEIM, Jan-arild; EVENSEN, 2011; TAHA et al., 

2019). Both models have parameters that one cannot obtain exactly. Furthermore, both models 

simplify reality, and unmodelled or overly simplified processes may influence the data. Some 

examples of these processes are scale differences, seismic wave propagation effects, and 

inversion algorithms (SILVA NETO, Gilson M.; DAVOLIO; SCHIOZER, 2020). Another 

source of model errors is an inconsistent prior ensemble, lacking critical flow-related elements, 

such as fractures (MA; JAFARPOUR; QIN, 2019). Therefore, model errors of different sources 

may significantly affect the TLS data assimilation. It is essential to mention that some 

applications compare seismic data in the amplitude domain by including simplified seismic 

modeling in the forward model (FAHIMUDDIN; AANONSEN; SKJERVHEIM, 2010b; 

LEEUWENBURGH; BROUWER; TRANI, 2011), another approximated model of the actual 

process. Furthermore, some studies represent the TLS signal using binary images 

(CHASSAGNE et al., 2016; DAVOLIO; SCHIOZER, 2018; OBIDEGWU; CHASSAGNE; 

MACBETH, 2017), whose integration with iterative ensemble smoothers is not straightforward. 

The history-matching workflows, using ensemble-based methods, usually neglect 

the model-related error (DONG; GU; OLIVER, 2006; EMERICK, Alexandre A., 2016; 

FAHIMUDDIN; AANONSEN; SKJERVHEIM, 2010b; LORENTZEN et al., 2019; 

SKJERVHEIM, Jan-Arild et al., 2007; YIN; FENG; MACBETH, 2019). This approach may 

lead to unreliable results from TLS data assimilation because the ultimate goal is to use the data 

to improve the production forecast. Differences between the observed and simulated data may 

originate from the model imperfections, and they may cause unphysical model updates 

(EVENSEN, Geir, 2019; OLIVER, D.S.; ALFONZO, 2018a). Moreover, the parameters’ 

unphysical changes may significantly impact the well rate forecasts and the decision process 

based on the reservoir models.  

Accounting for model errors in ensemble-based data assimilation workflows is a 

relatively recent subject in petroleum-related literature. Oliver and Alfonzo (2018a) proposed a 

methodology to consider the model error in data assimilation in an iterative approach. One of 

the critical steps in their methodology was to update the covariance matrix of the total 

observation error using the last data assimilation residuals. Alfonzo and Oliver (2020) applied 

this iterative methodology to time-lapse seismic data assimilation in a field-scale problem. 

Although their methodology reduced the impact of biased observations, they did not include 
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bias treatment directly in the data assimilation. Silva Neto et al. (2020) applied a similar 

iterative approach to 3D seismic data assimilation using another realistic synthetic case. In 

addition to updating the error covariance matrix, they changed the forward model to reduce 

bias. Lu and Chen (2020) applied a related approach to the assimilation of well data from the 

Norne field and discussed how to consider model error in the production forecast. They 

assumed that the model error has zero mean but mentioned the future investigation of cases 

where this assumption does not hold. 

Another known technique to reduce spurious updates of parameters in the presence 

of significant model errors is to inflate the covariance matrix of measurement errors (LIMA; 

EMERICK; ORTIZ, 2020; SUN; VINK; GAO, 2017; VINK; GAO; CHEN, 2015). When the 

distortions related to model imperfections or data issues occur at specific regions, it is possible 

to use confidence maps to discard part of the data in the assimilation workflow (DOS SANTOS 

et al., 2018; EMERICK, Alexandre A.; REYNOLDS, 2013b). Nevertheless, model errors tend 

to have distinctive characteristics, with a high degree of spatial or temporal correlations, and 

these approaches may be insufficient to mitigate its effects (DOHERTY; WELTER, 2010). In 

more recent work, Akter et al. (2021) addressed parameter estimation in the presence of model 

uncertainty, using ensemble Kalman filter and perturbing the model inputs and outputs with 

Gaussian noise whose amplitude was a tuning parameter.  

Rammay et al. (2019) handled model error in a history matching workflow by 

parametrizing an error model using principal component analysis and including these 

parameters as part of the data assimilation problem. Their results show that the data assimilation 

workflow considering model errors reduced the parameter bias and improved the model’s 

reliability. Nevertheless, to define the prior statistics of the model error, their methodology 

requires high-fidelity models, which have negligible model errors. Other authors relied on a 

high-fidelity model to improve the calibration of the parameters in the presence of model errors 

caused by coarse grid forward models (STEPHEN, K. D., 2007) and simplified streamline 

reservoir simulation (STEPHEN, Karl D.; SHAMS; MACBETH, 2009). The necessity of 

models with minor model errors limits the applicability to situations where the sources of model 

errors are known, and one can alleviate them. 

Recently, Rammay et al. (2021) proposed a modified form of the Ensemble 

Smoother with Multiple Data Assimilations (ESMDA) (EMERICK, Alexandre A.; 

REYNOLDS, 2013a) algorithm to handle model errors. They split the differences between the 

observed and simulated data into two parts. One was related to the parameter updates, and the 
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other originated from model errors. They proposed an approximated split parameter, updated 

during the data assimilation, to set the two portions, and assumed that this split parameter was 

directly proportional to the residuals’ mean. The results indicate that this approach reduced 

parameter bias and uncertainty underestimation due to imperfect models. However, they only 

tested the method using toy problems and a simple 2D reservoir model without TLS  data. 

Luo et al. (2021) proposed the consideration of model errors in ensemble-based 

seismic data assimilation, treating them as a data-driven functional approximation problem 

(LUO, 2019). This problem was solved using a machine learning method integrated with an 

iterative ensemble smoother. The main advantages of their approach are that it considers the 

relations between model errors and other variables and does not need to assume the model error 

statistics. Although their results seem promising, additional investigation defining the residual 

model in different cases is still required. Their approach is related to the current work because 

both cases calibrate the model error term during the data assimilation. Nevertheless, we do not 

address the machine learning method integration to the TLS data assimilation in this study. 

Evensen (2019) presented the theoretical foundation to consider model errors using 

iterative ensemble smoothers. He adopted a weak-constraint formulation, where one introduces 

a model error parameter and calibrates it during the data assimilation. He mentioned that one 

of the most challenging steps of the methodology is to define the prior statistics of the error 

parameter. Nevertheless, this task is similar to defining any uncertain parameter in the model, 

and this difficulty should not hinder accounting for this type of error. Later, Evensen (2020) 

applied this idea to production data history matching. We follow his formulation and propose a 

practical methodology to apply it to TLS data assimilation in this work. 

In this work, we propose a methodology to alleviate model error impacts on TLS 

data assimilation results. We present a practical procedure to apply a weak-constraint 

formulation on ESMDA to assimilate TLS data. This formulation differs from the classical 

strong-constraint problem because, in the weak-constraint formulation, one assumes that the 

model is imperfect by augmenting the parameter matrices to include error variables in the 

problem, attenuating the changes in the original parameters. This approach mitigates unphysical 

parameter updates due to inconsistencies in the relation between the simulated and observed 

data caused by model errors. The current methodology also handles model bias, which we 

consider part of the model error. We apply our methodology to two synthetic cases: a simple 

2D example and a realistic production and TLS data assimilation case. The latter comprises the 
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benchmark UNISIM-I-H (MASCHIO, C. et al., 2013), which resembles a real offshore 

reservoir in the Campos Basin, Brazil. 

The specific objectives of this study are: 

• Show the possible impacts of correlated model-related errors in TLS data assimilation. 

• Propose a practical methodology to mitigate the effects of this type of error. 

• Show that our methodology does not impair the data assimilation in a low-error 

situation. 

• Show that it is possible to improve the production forecasts using TLS data even with 

imperfect forward models. 

2.3 Ensemble Smoother with Multiple Data Assimilations 

We apply the ESMDA method (EMERICK, Alexandre A.; REYNOLDS, 2013a) 

to update the grid and scalar reservoir parameters using production and time-lapse seismic data. 

Like other iterative ensemble smoothers, the choice of ESMDA enables us to update a large 

number of parameters, considering both the prior geological information and the acquired 

production and TLS data simultaneously. Furthermore, the data assimilation workflow provides 

an ensemble of calibrated models, which helps a posterior uncertainty analysis. Since we 

include seismic as an information source, we used the ESMDA algorithm implementation for 

a large number of measurements from Emerick (2016). In this section, we briefly explain the 

method, highlighting the main features related to our methodology. 

We assume that there is a forward model 𝒈 used to simulate the data 𝒅𝑠𝑖𝑚 ∈ ℜ𝑚×1 

with a vector of parameters 𝒙 ∈ ℜ𝑛×1 containing reservoir properties. The model parameters 

are uncertain, and one can represent the prior uncertainties through an ensemble of 𝑁 

realizations of the parameter vector, obtaining the matrix 𝑿𝑓 = (𝒙1
𝑓, 𝒙2

𝑓, 𝒙3
𝑓, … , 𝒙𝑁

𝑓 ) ∈ ℜ𝑛×𝑁. If 

we simulate 𝒈 using each column of 𝑿𝑓, we obtain the simulated data matrix (𝑫𝑠𝑖𝑚)
𝑓
∈ ℜ𝑚×𝑁. 

Assuming that the model is imperfect, the observed data relates to the model results 

as 

𝒅𝒐𝒃𝒔 − 𝜺𝑑 = 𝒈(𝒙𝒕𝒓𝒖𝒆) − 𝜺𝑔, (2.1) 

where 𝒅𝑜𝑏𝑠 ∈ ℜ𝑚×1 is the observed data, 𝜺𝒅 ∈ ℜ
𝑚×1 is the measurement noise, 𝒙𝑡𝑟𝑢𝑒 is the so-

called vector of the “true” parameters, and 𝜺𝒈 ∈ ℜ
𝑚×1 is the model error (model-related error). 

The original ESMDA formulation that we present in this section neglects the term 𝜺𝒈. Later, 
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we circumvent this problem for TLS data assimilation introducing the additive model-error 

parameter in our methodology. 

ESMDA is a Bayesian method that aims at sampling the posterior distribution of 

the parameters, considering the data and the prior information. One can interpret it as a 

minimum ensemble solution of the cost function  

𝒥(𝒙𝑗) = (𝒙𝑗 − 𝒙𝑗
𝑓)
𝑇
𝑪𝑥𝑥
−1(𝒙𝑗 − 𝒙𝑗

𝑓) + (𝒈(𝒙𝑗) − 𝒅𝑗)
𝑇
𝑪𝑑𝑑
−1(𝒈(𝒙𝑗) − 𝒅𝑗), 

(2.2) 

where 𝑪𝑥𝑥 ∈ ℜ
𝑛×𝑛 is the parameter covariance matrix, 𝒅𝑗 is a vector of perturbed observed 

data, whose mean is 𝒅𝑜𝑏𝑠 and covariance matrix is 𝑪𝑑𝑑 ∈ ℜ
𝑚×𝑚 (EVENSEN, Geir, 2018). The 

first term on the right side of equation (2.2) relates to the distance from the prior estimate, while 

the second term relates to the data mismatch, evidencing the Bayesian formulation. 

In the ESMDA algorithm, one updates the parameters at each 𝑖 iteration, or multiple 

assimilations, using the analysis equation 

𝑿𝑖+1 = 𝑿𝑖 + 𝝆 ∘ 𝑲𝑖 (𝑫𝑖 − (𝑫𝑠𝑖𝑚)
𝑖
), (2.3) 

where 𝝆 is the localization matrix and 𝑲𝑖 is the Kalman gain defined as  

𝑲𝑖 = 𝑪𝑥𝑦
𝑖 (𝑪𝑦𝑦

𝑖 + 𝛼𝑖𝑪𝑑𝑑)
−1
. (2.4) 

Note that, in the first update, we use the results from the prior ensemble on the right 

side of equation (2.3). In equation (2.3), 𝑫𝑖 is a matrix of perturbed observed data, whose 

columns are samples of the distribution 𝑑𝑗
𝑖~𝒩(𝒅𝑜𝑏𝑠, 𝛼𝑖𝑪𝑑𝑑). 

We obtain the covariance matrices 𝑪𝑥𝑦
𝑖  and 𝑪𝑦𝑦

𝑖  from the ensemble estimates. First, 

we define the matrix of ensemble anomalies 

𝑨𝑖 = 𝑿𝑖
1

√𝑁 − 1
(𝑰𝑁 −

1

𝑁
𝟏𝑁𝟏𝑁

𝑇 ) = 𝑿𝑖𝚷𝑁, (2.5) 

where 𝟏𝑁 is a column vector with size 𝑁 whose elements are one and 𝑰𝑁 is the identity matrix 

with size 𝑁 × 𝑁. We also define the matrix of predicted ensemble anomalies 

𝒀𝑖 = (𝑫𝑠𝑖𝑚)
𝑖
𝚷𝑁. 

(2.6) 

Then, it is possible to estimate the covariance matrices 

𝑪𝑥𝑦
𝑖 = 𝑨𝑖(𝒀𝑖)

𝑇
, (2.7) 
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and 

𝑪𝑦𝑦
𝑖 = 𝒀𝑖(𝒀𝑖)

𝑇
, (2.8) 

The inflation factor 𝛼𝑖 is predefined based on the number of iterations, 𝑁𝑚𝑑𝑎, and 

following the condition 

∑
1

𝛼𝑖

𝑁𝑚𝑑𝑎

𝑖=1

= 1. (2.9) 

Here, we apply distance-based Kalman gain localization to alleviate the impact of 

spurious correlations due to the limited ensemble size. Moreover, we performed all data 

assimilations using constant inflation factors and 𝑁𝑚𝑑𝑎 = 10, which is a conservatively high 

value to assure stable results. 

2.4 Methodology to mitigate the effect of model error 

The general methodology to mitigate the effect of spatially correlated model-related 

errors in seismic data assimilation comprises five steps, as represented in Figure 2.1. We start 

by performing conventional data assimilation, where we neglect the influence of model-related 

errors. We then analyze the residuals from this data assimilation to perform a qualitative 

diagnosis and define the model-error parameter, 𝒒. In the next step, we repeat the data 

assimilation, including 𝒒 as an uncertain parameter to calibrate, adopting a weak-constraint 

formulation. Next, we consider the possibility of improving the data assimilation through an 

iterative update of the covariance matrix of total observation errors, following the workflow 

from Oliver and Alfonzo (2018a). In step five, we verify the final ensemble, validate the results, 

and perform the production forecast under uncertainty. 

 

Figure 2.1: Methodology for mitigating model error impacts. 
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We acknowledge that different sources of model-related errors can influence well 

data assimilation (EVENSEN, G., 2020; LU; CHEN, 2020). Nevertheless, our methodology 

focuses on treating the correlated model-related errors in TLS data assimilation.  

In the following subsections, we provide more details of each step shown in Figure 

2.1. 

2.4.1 Initial data assimilation 

In the first step of Figure 2.1, we perform a standard data assimilation process using 

an iterative ensemble smoother. We opted to apply ESMDA in our tests, as described in the 

section 2.3, but one could choose different ensemble-based methods (CHEN, Yan; OLIVER, 

2013; EVENSEN, Geir et al., 2019; LUO et al., 2015). 

Our forward model, 𝒈, comprises the reservoir flow simulator and a petroelastic 

model. The former provides the production rates, along with pressure, saturation, and fluid 

properties that are the PEM inputs for computing the acoustic impedance variations. The 

parameters, which form the vector 𝒙, are reservoir properties, such as porosity, permeability, 

fault transmissibilities, relative permeability curves, pore compressibility, and well indexes. 

The prior distribution of these parameters follows the geological knowledge and an ensemble 

of flow models represents it. One generates each sample of the grid parameters using 

geostatistical simulation and assigns values to scalar parameters randomly. Note that the grid 

parameters are updated directly in the reservoir simulation scale, and only one three-

dimensional grid exists during the history-matching process. Nevertheless, the null cell 

positions are different in each realization, following the porosity and permeability values. The 

data to assimilate, 𝒅𝑜𝑏𝑠, originate from the wells and time-lapse seismic. The differences 

between the observed and simulated data cause changes in the parameter vector, as defined in 

equation (2.3). 

2.4.2 Definition of the model-error parameter 

In the initial data assimilation, Figure 2.1 step 1, we solved the strong-constraint 

problem, in which the forward model is assumed perfect and all deviations between simulated 

and observed data cause parameter changes. Nevertheless, if this premise is not valid, 

inconsistent parameter updates will occur. Moreover, the final residuals will exhibit higher 

magnitudes and correlations, revealing the model-error effects (OLIVER, D.S.; ALFONZO, 

2018a). Therefore, in this subsection, we use the residual from the initial data assimilation to 

define the error-related parameter 𝒒. It is worth mentioning that we consider that the model 
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errors only impair the TLS simulation. Therefore, 𝒒 will not affect the production data 

assimilation, or equivalently, it will be zero for all the well data points. 

To assume an imperfect forward model, one can define an error model with 

uncertain parameters, which will change during the data assimilation workflow (EVENSEN, 

Geir, 2019). As with any parameter, it is necessary to define the error parameters’ prior 

distributions and how these parameters will affect the forward model outputs. For simplicity, 

we define 𝒒 as an additive term in the simulated acoustic impedance variations 

(𝒅𝑗
𝑠𝑖𝑚)

𝑇𝐿𝑆
= 𝑔(𝒙𝑗)𝑇𝐿𝑆 + 𝒒𝑗 , 

(2.10) 

where the imperfect model computes the acoustic impedance variation 𝑔(𝒙𝑗)𝑇𝐿𝑆. Therefore, 𝒒 

will relate directly to the neglected model error 𝜺𝒈 in equation (2.1) and to the residuals. 

Consequently, we will use the behavior of the residuals to define this parameter’s prior 

distribution. 

After the initial data assimilation, we define the vector of updated parameters 

(𝒙𝑗
𝑎)

(0)
, which are the columns of the matrix (𝑿𝑎)(0). The TLS residuals from the initial data 

assimilation are 

𝒑𝑗
(0) = (𝒅𝑜𝑏𝑠)𝑇𝐿𝑆 − 𝑔 ((𝒙𝑗

𝑎)
(0)
)
𝑇𝐿𝑆
. (2.11) 

We focus on the magnitude of the mean of the residuals with significant spatial 

correlations, which is an indicator of disparity between the forward model and the data 

(OLIVER, D.S.; ALFONZO, 2018a). First, we compute the ensemble mean of the residuals 

𝒑̅(0) =
1

𝑁
∑𝒑𝑗

(0)

𝑁

𝑗=1

, (2.12) 

which represents part of the observed data that the ensemble of models could not match, on 

average. In other words, a high magnitude 𝒑̅(0) indicates a significant bias in the parameters, 

model imperfection, or observation bias.  

Rammay et al. (2019) mentioned that it is essential to limit the degrees of freedom 

to avoid overfitting when defining an error model. We limit the degrees of freedom by focusing 

on the long-range correlated residuals in this work. Here we refer as long-range to the 

impedance variations occurring in a portion of the reservoir more extensive than the fluid 

substitution signal, such as the waterflood acoustic impedance increase around injectors. The 
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exact criterium to define the long-range will vary in each case due to the fluid substitution signal 

sizes, the presence of other variations in the reservoir, and grid size. 

We filter the vector 𝒑̅(0) to remove the spatially uncorrelated fluctuations, 

variations related to the fluid fronts in the reservoir, or other signals with small areal influence. 

We define the filtered version of the residuals mean as 𝒑̿(0). We apply a 2D moving average 

filter in the residuals images because our data set comprises a sequence of time-lapse seismic 

maps, one for each seismic horizon. Nevertheless, other low-pass image filters could be applied. 

We chose the moving average window that is long enough to attenuate all the signals with small 

areal influence to the point that they are imperceptible in the maps. The moving average window 

size is a tuning parameter in the methodology, and we discuss its influence in the results section. 

After filtering the ensemble mean of the residuals, we define it as our prior estimate 

of the mean value of the additive error parameter, 𝒒̅𝑓 = 𝒑̿(0). This definition implies that the 

higher the model imperfection, the higher the mean residuals will be, which relates to the 

criterium that Rammay et al. (2021) used to select part of the initial residuals due to model 

imperfection. Moreover, one should note that 𝒒̅𝑓 is only the prior estimate of the error-related 

parameter’s mean, and this variable will be calibrated in the next data assimilation (step 3 of 

Figure 2.1). 

We assume that the additive error parameter pertains to a Gaussian distribution with 

the prior mean 𝒒̅𝑓. Consequently, it is still necessary to define the prior standard deviation and 

a variogram model. Here, we assume that the first guess of the standard deviation is proportional 

to the prior mean. This choice causes uncertainty in 𝒒𝑓 to be higher where the average residuals 

are also higher in magnitude. Finally, we estimate the initial variogram model of 𝒒𝑓 using a 

match of the experimental variogram of 𝒒̅𝑓. 

We acknowledge that the definition of the prior distribution of 𝒒 is arbitrary, and 

other definitions can work better in different cases. Nevertheless, these choices have some 

favorable characteristics that improved the data assimilation quality in our tests and should 

benefit future practical applications. Firstly, 𝒒 will assume high absolute values only in regions 

where the absolute value of the filtered mean residuals is also high. Therefore, our methodology 

will not significantly influence cases where the model imperfections and observation bias are 

minor. Secondly, by setting the variogram of 𝒒𝑓 with roughly the same format of the 

experimental variogram from 𝒑̿(0), we limit the degrees of freedom of the additive error 

parameter to prevent it from compensating for fluid-front-related signals. This process will 



47 

 

avoid overfitting. In this case, overfitting through 𝒒 would cause weak updates of the reservoir 

parameters and poor model calibration. 

After defining a prior distribution for the error-related parameters from the initial 

data assimilation residuals, we repeat the data assimilation, including 𝒒. Note that the new data 

assimilation will be necessary only if the prior 𝒒 distribution assumes high absolute values. We 

describe this process in the following subsection. 

2.4.3 Data assimilation including 𝒒 as an uncertain parameter 

We acknowledge that it is crucial to improve the models as much as possible before 

adopting other techniques to overcome model imperfections in data assimilation. During the 

model improvement, one should consider reviewing the parameter’s prior probability 

distributions, including other uncertain parameters, and adding unmodelled processes affecting 

the observed data. In this subsection, we assume that one performed all the feasible model 

improvements before performing new data assimilation, including 𝒒. 

Figure 2.2 shows the workflow for repeating the data assimilation, including the 

error-related parameter 𝒒 as an uncertain variable to calibrate. The forward model 𝒈 is the same 

as the initial data assimilation, comprising the reservoir flow simulator and the PEM, but we 

include the additive term 𝒒 that accounts for model imperfections in the seismic data simulation 

(Figure 2.2 step 2). Since 𝒒 is also an uncertain parameter, ESMDA will update the augmented 

parameter matrix 𝒁𝑇 = (𝑿𝑇, 𝑸𝑇), where 𝑸 is a matrix whose columns are the realizations of 

the additive error parameter 𝒒𝑗. Therefore, the ESMDA update equation becomes 

𝒁𝑖+1 = 𝒁𝑖 + 𝝆 ∘ 𝑪𝑧𝑦
𝑖 (𝑪𝑦𝑦

𝑖 + 𝛼𝑖𝑪𝑑𝑑)
−1
(𝑫𝑖 − (𝑫𝑠𝑖𝑚)

𝑖
), (2.13) 

where the covariance that relates the parameters to the data are ensemble estimates, 

𝑪𝑧𝑦
𝑖 = 𝒁𝑖𝚷𝑁(𝒀

𝑖)
𝑇
. (2.14) 

Apart from equations (2.13) and (2.14), this data assimilation follows the same 

procedure described in sections 2.3 and 2.4.1. This method follows the theoretical foundation 

provided by Evensen (2019). 
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Figure 2.2: Data assimilation workflow with a weak-constraint formulation. 

 

2.4.4 Update of the covariance matrix of observation errors  

After performing the data assimilation, including 𝒒 to compensate for bias and 

model errors with long-range correlations, it is also possible to update the covariance matrix of 

observation errors (Figure 2.1, step 4). The objective of this step is to account for remaining 

correlated errors that 𝒒 was unable to compensate for due to the limited degrees of freedom, if 

necessary. We consider this step case-dependent because the error parameter’s inclusion may 

be enough to compensate for the significant correlated error effects. Moreover, this step follows 

the general methodology to calibrate imperfect models from Oliver and Alfonzo (2018a). 

The residuals from the last data assimilation are 

𝒑𝑗
(𝑘)

= 𝒅𝑜𝑏𝑠 − 𝑔 ((𝒙𝑗
𝑎)

(𝑘)
) − (𝒒𝑗

𝑎)
(𝑘)
, (2.15) 

where 𝑘 is the data assimilation number with the error parameter. According to Oliver and 

Alfonzo (2018a), it is possible to estimate the covariance matrix of total observation errors from 

𝑪𝐷
(𝑘+1)

≈
1

𝑁
𝒑𝑗
(𝑘)
(𝒑𝑗

(𝑘)
)
𝑇

. (2.16) 

Nevertheless, in most practical applications, this estimate will not be full rank 

because of 𝑁 ≪ 𝑚. Therefore, we adopted an analytical model for the covariance matrix that 

we estimate by fitting an experimental variogram of the residuals. An exponential model 

provided a good match in our experiments, and other studies described a similar procedure (LU; 

CHEN, 2020; SILVA NETO, Gilson M.; DAVOLIO; SCHIOZER, 2020). Furthermore, we 

used the average of the diagonal elements from the matrix of the right side equation (2.16) as a 

representative value for the diagonal elements of the updated covariance matrix. Alfonzo and 

Oliver (2020) also assumed a stationarity condition when assimilating TLS data. This condition 
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may simplify the algorithm for generating the perturbed observation data, and it avoids issues 

related to close to zero variance values in points of the grid where there are minor changes in 

the saturation and pressure in the ensemble of models. 

After estimating 𝑪𝐷
𝑘+1, we may repeat the data assimilation, replacing 𝑪𝑑𝑑 for the 

updated covariance matrix of the total observation error. Note that 𝑪𝑑𝑑 is commonly a diagonal 

matrix whose diagonal elements are the variance of the measurement noise or an inflated value 

(ALFONZO; OLIVER, 2020; SILVA NETO, Gilson M.; DAVOLIO; SCHIOZER, 2020; 

SUN; VINK; GAO, 2017). As this is an iterative procedure, one may repeat this process until 

the changes in the data assimilation results are negligible. 

2.4.5 Final model verification and production forecast 

In the last step of Figure 2.1, we perform a final verification of the models, checking 

their consistency based on data match, parameter updates, prior available information, and 

technical knowledge about the case. In this step, we recommend checking the magnitude of 𝒒𝑗
𝑎 

and comparing it to the observed data to understand which data aspects the models were unable 

to match. These results facilitate an interdisciplinary analysis, where the reservoir engineer may 

provide feedback to the geologists and geophysicists regarding the reservoir model capability 

to match the time-lapse seismic data. Furthermore, the ensemble average of 𝒒𝑗
𝑎 provides 

information about how the error parameter changed the model’s output to provide an 

appropriate match to the observed data. 

After validation, one will be able to use the calibrated ensemble of reservoir models 

to perform production forecasts. 

2.5 NQDS metric 

In this work, we use the Normalized Quadratic Deviation with Sign (NQDS) to 

assess the well data misfit (AVANSI; MASCHIO; SCHIOZER, 2016). The NQDS is a 

quadratic norm, which includes a sign that identifies if a model is mostly overestimating or 

underestimating the data. We define NQDS as 

(𝑁𝑄𝐷𝑆𝑗)𝑙 =
𝟏𝑚𝑙
𝑇 [(𝒅𝑗

𝑠𝑖𝑚)
𝑙
− (𝒅𝑜𝑏𝑠)𝑙]

|𝟏𝑚𝑙
𝑇 [(𝒅𝑗

𝑠𝑖𝑚)
𝑙
− (𝒅𝑜𝑏𝑠)𝑙]|

×
[(𝒅𝑗

𝑠𝑖𝑚)
𝑙
− (𝒅𝑜𝑏𝑠)𝑙]

𝑇
[(𝒅𝑗

𝑠𝑖𝑚)
𝑙
− (𝒅𝑜𝑏𝑠)𝑙]

[(𝒅𝑜𝑏𝑠)𝑙 × 𝜏𝑙 + 𝜑𝑙]𝑇[(𝒅𝑜𝑏𝑠)𝑙 × 𝜏𝑙 + 𝜑𝑙]
, 

(2.17) 
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where 𝒅𝑗
𝑠𝑖𝑚 is the simulated data by model 𝑗 in the ensemble, 𝒅𝑜𝑏𝑠 is the observed data, the 

subscript 𝑙 indexes a data type, such as the water rate of a particular well, 𝑚𝑙 is the number of 

data points of this type, 𝜏 is a tolerance value, and 𝜑 is a constant. The tolerance relates to the 

accuracy of the measurements and pertains to the interval 𝜏 ∈ [0,1], while the constant is a 

small positive number that avoids division by zero. These scalars are user-defined, and we used 

tolerances of 10% for water rate and 5% for bottom hole pressure. The constants were 10 for 

water rate and 0.01 for bottom hole pressure. These are typical values for the benchmark case 

that we worked with (AVANSI; MASCHIO; SCHIOZER, 2016; FORMENTIN et al., 2019). 

It is worth mentioning that this work only applied the NQDS metric to evaluate well 

data history matching. However, it is also possible to apply it to quantify TLS data match in 

maps, as demonstrated in (ALMEIDA; DAVOLIO; SCHIOZER, 2020; DANAEI et al., 2020). 

2.6 Applications 

We tested our methodology using two examples: a simple 2D case and a realistic 

field-scale application. In the first test, the low computational requirements enable us to test 

different configurations of the methodology to assess the sensitivity to some of its parameters. 

Also, the field-scale case mimics practical application challenges. 

2.6.1 2D case 

The 2D test case is a toy problem mimicking some reservoir application challenges. 

We built a simplistic 2D reservoir model with 40 × 40 cells, where we included four producers 

and four injectors in a staggered line drive pattern depicted in Figure 2.3. The wells operate 

with a fixed bottom-hole pressure. We generated a random Gaussian porosity field that 

represented our synthetic truth, which is unknown during the data assimilation. The logarithm 

of permeability for the synthetic truth was a linear function of porosity, with an added Gaussian 

perturbation. We provide additional information about this case in Table 2.1. We simulated this 

simplistic reservoir model using MATLAB Reservoir Simulation Toolbox (LIE, 2019). 

We ran the synthetic truth for two years of production with waterflooding and 

computed the normalized impedance variation using a linear proxy defined by 

Δ𝐼𝑃𝑁𝑂𝑅𝑀 = 𝑎𝑠
(𝑆𝑤 − 𝑆𝑤𝑖)

max(𝑆𝑤 − 𝑆𝑤𝑖)
+ 𝑎𝑝

(𝑝 − 𝑝𝑖)

max(|𝑝 − 𝑝𝑖|)
, (2.18) 
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where 𝑎𝑠 is the saturation sensitivity and 𝑎𝑝 is the pressure sensitivity (DANAEI et al., 2020). 

We used 𝑎𝑠 = 0.85 and 𝑎𝑝 = 0.15 in the synthetic truth. The observed data comprised this 

normalized impedance variation with added Gaussian noise with zero mean, standard deviation 

of 0.06, and an exponential five-cell horizontal correlation (Figure 2.3 a). We did not include 

production data in this example. 

 

Figure 2.3: 2D case – synthetic acoustic impedance difference observed data (a) and one example of prior 

simulated data with model error (b). 

 
Table 2.1: Additional information about the 2D example. 

Characteristic Value 

Cell size 50 × 50 × 50 𝑚 

Average porosity 0.15 

Average permeability 132 𝑚𝐷 

Fluid mobility ratio (water/oil) 5 

Fluid densities Water: 1000 𝑘𝑔/𝑚³ 
Oil: 700 𝑘𝑔/𝑚³ 

Initial pressure 200 𝑏𝑎𝑟 

 

The forward model comprised a reservoir flow simulation model and a PEM, as 

shown in Figure 2.2. In this example, we used 100 reservoir models built from limited 

information about the synthetic truth because only the properties at the well locations were 

known. We used a simple Gaussian simulation to generate samples of the properties at the rest 

of the grid. We used an exponential variogram with a six-cell correlation length and a maximum 

standard deviation of 0.05 for the porosity. The log-permeability and porosity relation followed 

the same pattern of the synthetic truth. The uncertain parameters to calibrate were the porosity 

and the horizontal permeability at each cell. Figure 2.4 (a) displays the initial mean porosity 

distribution. 
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Figure 2.4: 2D case – mean porosity maps: (a) prior distribution, (b) posterior distribution with a 

“correct” forward model, (c) posterior distribution neglecting the model error, and (d) posterior 

distribution including 𝒒 parameter to compensate for the model errors. 

The PEM of the forward model was identical to the synthetic truth, equation (2.18), 

in the quasi-ideal case, where there are no significant model errors. Aiming at mimicking a 

model error effect, we changed the pressure sensitivity term of equation (2.18) to 𝑎𝑝 = 0.3. 

Figure 2.3 b shows the normalized acoustic impedance difference from one simulation model 

with the model error before the data assimilation. Although this pressure sensitivity mismatch 

was artificial in this example, this is a common challenge in real field applications, as discussed 

in (MALEKI; DAVOLIO; SCHIOZER, 2019). 

2.6.2 Field-scale case 

In our field-scale example, we used the benchmark case UNISIM-I-H (MASCHIO, 

C. et al., 2013). The authors built this case using information from a real offshore reservoir in 

the Namorado Field, Campos Basin, Brazil. Avansi and Schiozer (2015) described the synthetic 

truth for this benchmark. The observed data that we refer to here as “measured” comes from 

this fine-scale reference model. Although we do not use information about the “true” parameters 

during the data assimilation, this realistic benchmark allows us to compare the final results with 

the reference for validation purposes. However, we do not compare the estimated grid 

parameters directly with the synthetic truth due to scale differences. 

The simulation models of the UNISIM-I-H benchmark were built using partial 

information from the synthetic truth at the location of the 14 producers and 11 water injectors. 
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The wells’ boundary conditions are the total liquid rate for the producers and water rate for the 

injectors during the history. During the forecast, these boundary conditions change to fixed 

bottom-hole pressure.  

The uncertain grid attributes to calibrate are the net-to-gross ratio, the directional 

permeabilities, and the porosity. Moreover, there are uncertain scalar parameters, such as the 

water-oil contact at the east of the reservoir, the rock compressibility, the water relative 

permeability exponent and terminal value, and well productivity and injectivity. In this 

benchmark case, one describes these uncertain properties using an ensemble of 500 reservoir 

models whose grid parameters were generated using geostatistical simulation (MASCHIO, C. 

et al., 2013). We simulated the reservoir models using IMEX version 2017 (CMG, 

COMPUTER MODELLING GROUP LTD., 2017). 

We provide additional information about this case in Table 2.2. One can find more 

details about the case in the following references (AVANSI; SCHIOZER, 2015; MASCHIO, 

C. et al., 2013). Furthermore, other studies in the literature applied this benchmark in data 

assimilation tests using ensemble-based methods (DANAEI et al., 2020; EMERICK, Alexandre 

A., 2019, 2018; SILVA NETO, Gilson M.; DAVOLIO; SCHIOZER, 2020; SOARES; 

MASCHIO; SCHIOZER, 2019). 

 

Table 2.2: Additional information about the field-scale example. 

Characteristic Value 

Cell size 100 × 100 × 8 𝑚 

Average porosity 0.14 

Average horizontal permeability 26 𝑚𝐷 

Average vertical permeability 5 𝑚𝐷 

Fluid mobility ratio (water/oil) From 0.9 to 3.0 (uncertain) 

Fluid densities Water: 1010 𝑘𝑔/𝑚³ 
Oil: 866 𝑘𝑔/𝑚³ 

Initial pressure 321 𝑏𝑎𝑟 

 

In this example, our observed data includes oil rate, water cut, gas-oil ratio, and 

bottom-hole pressures for the producers; water rate and bottom-hole pressure for the injectors. 

All observed data contains random noise. The end of the historical period in this study is 2618 

days after the start of the production. At this time, we computed two synthetic time-lapse 

seismic data sets. The first, called PEM data, originated from the petroelastic model applied to 

the reference model and upscaled to the simulation grid. The second, called INV data, includes 
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seismic modeling and inversion after the PEM to account for the resolution loss and interference 

between different reservoir layers. The seismic modeling comprises a vertical 1D convolution 

with a wavelet. Besides, we applied the coloured inversion algorithm (LANCASTER; 

WHITCOMBE, 2000) to obtain relative acoustic impedance data. One may find more 

information about this process in the studies (DAVOLIO; SCHIOZER, 2019; DE SOUZA, 

2018). Both seismic data sets were upscaled to the reservoir simulation grid, and we work with 

four acoustic impedance variation maps, seismic horizons, as our observed data. 

We compare the two seismic data sets in Figure 2.5. There are significant 

differences between the PEM and the INV data sets. Nevertheless, our forward simulation 

model only considers the petroelastic model after the reservoir flow simulation to estimate the 

seismic response, a common practice in data assimilation. Therefore, when we apply the INV 

data set, our model becomes significantly imperfect due to missing physics. The difference 

between the PEM and the INV data sets represents the model error considered in this example. 

However, we do not use the knowledge about the PEM data when we assimilate the INV data. 

 

Figure 2.5: Field-scale application – comparison between the two data sets, the quasi-ideal data, PEM 

data, is on the left, and the realistic data, INV data, is on the right. 

In this field-scale example, the synthetic data generation and the forward simulation 

models use the same petroelastic model. The PEM applies the known Gassmann equation 

(GASSMANN, 1951) to compute the saturated rock properties and relations close to the Hertz-

Mindlin model (MAVKO; MUKERJI; DVORKIN, 2009) to describe the dry rock. The Batzle-

Wang correlations (BATZLE; WANG, 1992) represent the fluid properties. Furthermore, we 

consider two minerals, shale and quartz, and we estimate the equivalent mineral properties 

using the mean of the Hashin-Shtrikman bounds (HASHIN; SHTRIKMAN, 1963; apud 

AVSETH; MUKERJI; MAVKO, 2005). 
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One may perform seismic data assimilation at different levels, such as seismic 

amplitude, impedance, or pressure and saturation (GOSSELIN et al., 2003). Here, we compare 

time-lapse acoustic impedance changes, which is a popular choice because it avoids the seismic 

modeling in the forward simulation and dispenses the inversion to pressure and saturation. 

2.7 Results and discussion 

2.7.1 2D case 

In the 2D case, we admitted a significant model error in the pressure sensitivity term 

of the PEM, 𝑎𝑝 in equation (2.18). In other words, the forward model has a more pronounced 

pressure sensitivity than the reference model used to generate the synthetic data. We assimilated 

the synthetic seismic data of Figure 2.3 (a) twice using the imperfect forward model and a 

“correct” model. 

2.7.1.1 Influence of the spatially correlated model errors in the TLS data assimilation 

We start our analysis by verifying the possible effects of the model’s disparity in 

data assimilation using the standard data assimilation method. The red histogram Figure 2.6 

shows the effect of the model error in the porosity distribution if one ignores it by applying a 

strong-constraint classical formulation. The figure depicts a histogram of the relation between 

the calibrated mean porosity, influenced by model errors, divided by the mean porosity in a 

quasi-ideal case. There is a noticeable tendency to overestimate the porosity due to the model’s 

discrepancy in the former test, causing a porosity relation greater than one. 

In this case, it is easy to provide a physical interpretation of the shift in Figure 2.6 

since we know the cause of the model error. The model predicts a higher pressure-related 

impedance variation that is not present in the data. One way to compensate for this difference 

is to increase the porosity, reducing the flow simulation’s pressure variations. However, since 

the discrepancy arises from a petroelastic model error, the data assimilation process causes 

unphysical parameter changes. One could argue that it would be straightforward to consider 

uncertainty in the pressure-related parameter of the PEM, which could also be heterogeneous 

in the reservoir. However, we did not adopt this procedure to admit the cases where it is complex 

to identify the cause of the error or where there are multiple causes. 



56 

 

 

Figure 2.6: 2D case – normalized mean porosity histograms. 

We can also analyze the model error effect in the maps (b) and (c) of Figure 2.4, 

which have the same tendency to increase the porosity in a particular path in the west, north, 

and northeast regions of the model, when compared to the prior (a). Nevertheless, it is 

noticeable that the high porosity region is more pronounced in the reddish areas in the (c) map 

due to the correlated error effect. Furthermore, the low porosity sections, in blue, are attenuated 

in the (c) map when compared to (b). 

The differences depicted in Figure 2.4 and Figure 2.6 increased the overall porosity 

deviation by 7.3% compared to the data assimilation with the “correct” model. We estimate this 

incremental deviation through 

Δ𝛿 =
𝛿

𝛿𝑖𝑑𝑒𝑎𝑙
− 1, (2.19) 

where Δ𝛿 is the deviation increase, 𝛿 is the absolute average deviation, and 𝛿𝑖𝑑𝑒𝑎𝑙 is the absolute 

average deviation of the quasi-ideal case. We computed these porosity deviations from the 

“true” porosity field on a model-by-model basis. 

2.7.1.2 Mitigation of the model error effects 

After analyzing the model error impacts in the initial data assimilation, we applied 

our methodology to compensate for it. We started by computing the residuals’ ensemble 

average from the last data assimilation with the imperfect PEM, as shown in Figure 2.7 (a). 

Since we want to limit the degrees of freedom in the 𝒒 parameter, we apply a moving average 

to filter these residuals, as shown in Figure 2.7 (b). We used a five-cell length in this moving 
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average. After that, we define the map in Figure 2.7 (b) as the 𝒒 mean and standard deviation, 

following the intuition that the uncertainty in 𝒒 should be higher where the mean residuals are 

also higher. The variogram model of 𝒒 is also defined using a experimental variogram match 

from the data in Figure 2.7 (b). In this case, we used a Gaussian model,  

𝜉

𝜎2
= 1 − exp (−

ℎ2

𝐿2𝑎
), (2.20) 

with 𝐿 = 18 cells and 𝑎 = 0.35, where we measure the distance ℎ in number of model cells, 𝜉 

is the semivariogram, and 𝜎2 is the variance. We generated a prior ensemble of 𝒒 with 100 

realizations and applied it in new data assimilation, including the additive term as an uncertain 

parameter. 

 

Figure 2.7: 2D case – definition of the prior 𝒒 distribution from the residuals of the initial data 

assimilation: (a) ensemble mean of the residuals and (b) filtered mean residuals. 

The blue histogram in Figure 2.6 shows the comparison between the new data 

assimilation, including 𝒒 as a parameter, and the quasi-ideal case. The error-related term 

addition corrected the porosity overestimation tendency by centralizing the porosity relation 

around one. Comparing maps (b) and (d) in Figure 2.4, we identify only minor differences, 

confirming the improvement from the map (c), where we neglected model error. Furthermore, 

the deviation in the porosity distribution from the synthetic truth in the case where we added 

the 𝒒 parameter increased by 0.1%, which is significantly lower than the 7.3% increment when 

we neglected the model error.  

These results indicate that it was beneficial to add the 𝒒 term in the forward model 

and include it in the data assimilation. However, it is essential to verify if our methodology 

would jeopardize the data assimilation if we apply it to a case where the spatially correlated 

model errors are minor. 
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2.7.1.3 Methodology test in a case without significant spatially correlated model error 

We repeated the procedure described in the last subsection when the forward PEM 

is identical to the synthetic truth. We call this situation a quasi-ideal case because we minimized 

the known pressure-related model error, but other error sources in the data may exist. Our 

objective was to verify if the addition of 𝒒 would impair the data assimilation. 

The first difference when we applied our methodology to the quasi-ideal case 

occurred in the definition of the prior 𝒒 distribution, as depicted in Figure 2.8. Comparing 

Figure 2.8 (b) and Figure 2.7 (b), we notice that the magnitude of 𝒒 is greatly reduced when the 

model errors are negligible, which makes for the reduced impact of the methodology. The 

insignificant change due to 𝒒 is desirable, as there are no significant model error causes. 

 

Figure 2.8: 2D case – definition of the prior 𝒒 distribution from the residuals of the data assimilation 

without model error: (a) ensemble mean of the residuals and (b) filtered mean residuals. 

We checked the impact of the methodology in this quasi-ideal case in Figure 2.9. 

The mean porosity maps (a) and (b) are similar, which indicates that our methodology did not 

play a significant role in this case. It is possible to confirm this observation by checking the 

porosity deviation from the synthetic truth on a model-by-model basis. The inclusion of the 

model-error parameter increased the porosity deviation by only 3.7%, which we consider minor 

compared to the risk of neglecting the model error (7.3% deviation increase). One of the causes 

of the former increment is the reduction of the impact of the data, which occurs in the weak-

constraint formulation. 
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Figure 2.9: 2D case – mean porosity maps: (a) posterior distribution with a “correct” forward model and 

(b) posterior distribution with a “correct” forward model and added 𝒒. 

 

2.7.1.4 Varying the parameters of the 𝒒 prior distribution 

When we applied our methodology in the 2D case, some prior 𝒒 distribution 

parameters were arbitrary: the moving average window’s length and the relation between the 

standard deviation and the mean prior values. Therefore, we repeated the data assimilation with 

different combinations of these properties, verifying the impact on the results. Here we focus 

on the incremental deviation in the porosity mean, comparing it with the quasi-ideal case. 

First, we varied the moving average window length from zero, no moving average, 

to nine cells, as shown in Figure 2.10 (a). If the moving average window is too small, it is 

possible that the 𝒒 parameter has enough degrees of freedom to compensate for part of the data 

deviations caused by the reservoir parameters, weakening their updates. On the other hand, if 

the moving average window is too large, 𝒒 will not be able to compensate for the spatial 

variations of the model error effect on the impedance variations. Therefore, we opted to use a 

moving average window ranging from three to seven cells (five cells in the previous tests). It is 

worth mentioning that the vertical axis in Figure 2.10 quantifies the deviation change compared 

to the quasi-ideal case. Therefore, a small negative value indicates that applying the proposed 

methodology was slightly better than the quasi-ideal case. However, we consider that this minor 

improvement is due to the problem’s statistical nature, and the proposed methodology does not 

aim to provide a better parameter estimation than a model-error-free case. 

We also varied the ratio between the standard deviation and the mean of the prior 

𝒒 distribution in Figure 2.10 (b). A low standard deviation causes 𝒒 to exhibit low variation 

from the estimated mean distribution and not to change significantly during the data 

assimilation. A higher prior 𝒒 standard deviation increases the overall variability, leading to 

more significant 𝒒 updates and lowering the reservoir parameter updates. In this test, all the 
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data assimilations with added 𝒒 improved the data assimilation results, but applying the 

standard deviation equal to the mean led to slightly better results. 

This sensitivity test does not aim to find a general rule for the influence of the 

moving average window and the standard deviation magnitude because one cannot generalize 

Figure 2.10 results to other more complex cases. However, it is crucial to note that all the cases 

with added 𝒒 led to improved data assimilation results regarding the estimated porosity quality. 

This result indicates that it is vital to consider the model error in the data assimilation process, 

even if it is not feasible to optimize the error parameter’s prior distribution.  

 

Figure 2.10: 2D case – the influence of moving average window (a) and standard deviation and mean ratio 

(b). 

 

2.7.2 Field-scale case 

2.7.2.1 Influence of the spatially correlated model errors in the initial TLS data assimilation 

We start the field-scale test analysis verifying the effect of the model-related errors 

in the production data assimilation quality, shown in Figure 2.11. The results are presented in 

terms of NQDS, as described in section 2.5. Only water cut and bottom-hole pressure are 

present in the figure because these are the challenging data to match in the current benchmark 

case. We compare the prior distribution, in grey, with the well data assimilation, in blue, and 

the well and TLS data assimilation, neglecting the model-related errors in red. The ± 5 NQDS 

horizontal lines in the figure represent a standard quality threshold. Looking at the water 

production data, we see a good match for most models, with close to zero deviations after the 
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well data assimilation with or without seismic. Furthermore, the TLS data seems to improve 

the history matching of PROD010. One plausible explanation for this improvement is the fact 

that the TLS data includes information regarding the waterfronts around the producer, which 

may shift the solution towards a better well data match when there is a biased prior ensemble. 

We did not identify evidence of the model error effect in the water rate deviations during the 

history data period. 

Figure 2.11 (b) presents the bottom hole pressure (BHP) deviations. Comparing the 

prior, the well data assimilation, and the well and TLS data assimilation ignoring the model 

error, it is possible to notice a systematic tendency to obtain a positive deviation in the latter. 

Although relatively small in magnitude, this tendency indicates that the pressure is 

systematically higher than the data, possibly indicating higher average pressure in the porous 

medium.  

 

Figure 2.11: Field-scale case – history matching NQDS: water rate (a) and well bottom hole pressure (b). 

The pressure behavior relates to the overestimated pore volume that we evidence in 

the Volume of Oil in Place (VOIP) cumulative distribution curves in Figure 2.12. It is clear that 

the seismic data, assimilated ignoring model errors, led to a significantly increased volume that 

impacted the wells’ bottom hole pressure, in Figure 2.11 (b). This VOIP increase due to TLS 
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data has a physical interpretation. On average, the forward model simulated acoustic impedance 

variations with higher absolute values than the observed data because the former does not 

include seismic resolution loss and inter-layer interference. Therefore, the data assimilation 

process tends to increase the volume to decrease simulated data values. 

In Figure 2.12, the assimilation of well data alone in this particular case tends to 

reduce the reservoir volume. Since this is a synthetic case, it was possible to include the 

synthetic truth volume as a reference in the figure. 

 

Figure 2.12: Field-scale case – Volume of Oil in Place (VOIP) cumulative distribution curves. 

Figure 2.13 displays PROD010 water cut and bottom-hole pressure curves as an 

example of history matching quality. We chose this well because it is the worst one in terms of 

the water cut match, and the prior ensemble shows relatively high deviations in the bottom-

hole-pressure match for this producer. Corroborating the data in Figure 2.11, the well data 

assimilation alone greatly improved the PROD010 data match in terms of water production and 

pressure for most of the 500 models. The TLS data incorporation improved the water-cut match 

from the case with only production data. However, higher pressure values at the end of the 

history period in (e) are noticeable, resulting from the exaggerated volume increase without 

model-error treatment. 
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Figure 2.13: Field-scale case – PROD010 data match. The figure presents water-cut (a, b, and c) and 

bottom-hole pressure (d, e, and f). It compares the prior ensemble with the data assimilation results using 

only well data (a and d), using well and TLS data without 𝒒 (b and e), and with 𝒒 (c and f). 

Figure 2.14 enables the analysis of how the data assimilation changed the porosity 

distribution in the reservoir simulation models. It only shows one reservoir layer, but it is 

enough to analyze the tests’ main features. The well data assimilation mean porosity map (e) is 

similar to the prior (a), which is a consequence of the lack of spatial information from this data 

source. The minor standard deviation decrease in (f) compared to (b) corroborates the previous 

interpretation. There are noticeable differences in the two random samples, (g) compared to (c) 

and (h) compared to (d), but the updated models maintain the porosity trends from the initial 

models. 

When we compare the models calibrated with well and seismic data, neglecting 

model errors, with the Prior and Well ensembles, we notice significant differences in Figure 

2.17. Firstly, the TLS data caused a major standard deviation reduction (j) compared to (b), 

resulting from the large amount of data distributed in space. Secondly, the neglected model 

error led to a porosity increase throughout the reservoir (i, k, and l). 
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Figure 2.14: Field-scale case – layer 8 porosity maps. The figure displays the mean porosity (a, e, i, and 

m), standard deviation (b, f, j, and n), sample 5 (c, g, k, and o), and 247 (d, h, l, and p) out of 500 models. It 

compares the prior ensemble (a, b, c, and d), the ensemble calibrated with well data (e, f, g, and h), the 

ensemble incorporating well and TLS data without 𝒒 (i, j, k, and l), and with 𝒒 (m, n, o, and p). 

Figure 2.15 provides the same information as Figure 2.14, but for the permeability. 

We applied a logarithmic transformation to this variable due to its log-normal distribution. In 

this field example, the horizontal permeability is partially correlated to the porosity. Similarly 

to the porosity analysis, the well data assimilation did not cause significant permeability 

changes (e, g, and h) compared to the prior ensemble (a, c, and d). It is possible to notice a 

standard deviation reduction in (f) compared to (b), as expected in any data assimilation, but it 

was minor. Again, the inclusion of TLS data neglecting model errors caused a major 

permeability increase (j, k, and l) and standard deviation reduction (j). 
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Figure 2.15: Field-scale case – layer 8 logarithm base 10 of the horizontal permeability maps. The figure 

displays the mean logarithm of the permeability (a, e, i, and m), standard deviation (b, f, j, and n), sample 

5 (c, g, k, and o), and 247 (d, h, l, and p) out of 500 models. It compares the prior ensemble (a, b, c, and d), 

the ensemble calibrated with well data (e, f, g, and h), the ensemble incorporating well and TLS data 

without 𝒒 (i, j, k, and l), and with 𝒒 (m, n, o, and p). 

The assimilation of TLS data ignoring the model errors also impairs the well rate 

forecasts, as shown in figures 2.16, 2.17, and 2.18. Figure 2.16 (a) compares the cumulative oil 

production forecasts after the assimilation of well data and this data together with TLS 

neglecting the model-related errors. One may notice that the added TLS data led to models that 

overestimate the oil production due to the exaggerated reservoir volume (Figure 2.12). This 

behavior is not compatible with the synthetic truth, whose response is also shown in Figure 2.16 

(a).  

We continue the analysis of the oil production forecast on a well-by-well basis in 

Figure 2.17. We compute the normalized average deviations using 

δ𝑙 =
∑ |𝑑𝑙

𝑠𝑖𝑚 − 𝑑𝑙
𝑜𝑏𝑠|𝑚𝑙

𝑖

∑ 𝑑𝑙
𝑜𝑏𝑠𝑚𝑙

𝑖

, (2.21) 
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where 𝑚𝑙 is the number of points of this type. Note that the assimilation of TLS and well data 

neglecting model errors led to normalized average deviations worse than when we calibrated 

the models only with well data. We observed the same behavior in the water rate forecast in 

Figure 2.18. These results indicate that, in our example, the inclusion of time-lapse seismic data 

with an imperfect forward model led to a worse ensemble of models than one would obtain 

using only the well data. 

 

Figure 2.16: Field-scale case – cumulative oil production, comparing the models after assimilating well 

data with the models after assimilating TLS and well data, neglecting model errors (a), and considering it 

through the added 𝒒 parameter (b). 
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Figure 2.17: Field-scale case: normalized average deviation in the oil rate forecast (well-by-well 

comparison). 

 

Figure 2.18: Field-scale case – normalized average deviation in the water rate forecast (well-by-well 

comparison). 

It is worth mentioning that in order to validate the updated models in a field 

application, one should check the data mismatch, the parameter changes, and the production 

forecast. In the current analysis, the two calibrated ensembles, well only and including TLS 

data neglecting model errors, provided acceptable data mismatch since most of the models led 

to lower mismatch than the ± 5 NQDS threshold for all the wells and data types (Figure 2.11). 

However, the exaggerated VOIP increase in Figure 2.12, porosity increase in Figure 2.14 (j, k, 
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and l), and permeability increase in Figure 2.15 (j, k, and l) evidence the unplausible parameter 

changes due to model imperfection. Since this example is a benchmark case, investigated in 

previous data assimilation studies (BERTOLINI; MASCHIO; SCHIOZER, 2015; 

CAVALCANTE et al., 2017; EMERICK, Alexandre A., 2019, 2018; MASCHIO, Célio; 

SCHIOZER, 2018, 2019, 2016; OLIVEIRA; SCHIOZER; MASCHIO, 2017; SOARES; 

MASCHIO; SCHIOZER, 2019), it is possible to validate the models by comparing the 

production forecast with the reference results. In the current application, this analysis 

demonstrated that the TLS data assimilation neglecting model errors jeopardized the forecast 

compared to the case with only well data. In a practical application, where the forecast data is 

not available, it is possible to perform a similar test by reserving the last data points from the 

history to check the models. 

2.7.2.2 Mitigation of the model error effects 

To mitigate the model error effects that jeopardized the TLS data assimilation in 

the previous section, we started by computing the residuals using equation (2.11). We then 

computed the ensemble mean of these residuals, as shown in Figure 2.19 (a), (c), (e), and (g), 

respectively, for maps 1 to 4. These mean residuals include acoustic impedance differences 

related to the reservoir waterfronts present in the observed and simulated data, affecting 

relatively small areas. Moreover, significant long-range correlated variations indicate a 

discrepancy between the forward model and the observed data or strong bias in the parameters’ 

prior distribution. 

We define the prior distribution for 𝒒 focusing on these long-range correlated 

differences. We start by filtering the mean residuals, defining the moving average window 

length to remove the fluid front-related variations. In this case, an eight-cell long window was 

enough. We show the filtered residuals in Figure 2.19 (b), (d), (f), and (h) for the four TLS 

maps. We then define these maps as the 𝒒 prior mean and standard deviation. Moreover, we 

use the experimental variogram computed using the filtered maps, which was a Gaussian model 

with a range of roughly 14 cells and 𝑎 = 0.45. 

When compared to the analysis of the 2D case, it is possible to say that we started 

with conservative values for the prior 𝒒 distribution. First, the moving average window is 

relatively large, limiting the degrees of freedom of 𝒒. Moreover, by setting its prior standard 

deviation to the same value as the mean, we also impose a limit on how much 𝒒 can compensate 
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for the current residuals. In the 2D case, we tested standard deviations up to four times the 

estimated mean and obtained improved calibration in all tests. 

 

Figure 2.19: Field-scale case – mean acoustic impedance residuals of the initial data assimilation and 

filtered mean residuals using an eight-cell window moving average, we show horizon 1 (a and b), 2 (c and 

d), 3 (e and f), and 4 (g and h), respectively. 

After estimating 𝒒 prior distribution, we repeated the data assimilation process, 

including the additive error in the forward PEM and calibrating it during the workflow, as 

shown in Figure 2.2. This new data assimilation with added 𝒒 led to well history matching 

results similar to the previous cases, as Figure 2.11 depicts. In terms of water rate match (Figure 

2.11 (a)), the results were roughly the same as incorporating TLS data without accounting for 

model errors. Nevertheless, we noticed a slight improvement of the NQDS metric for the BHP, 

indicating that the inclusion of 𝒒 corrected pressure tendency. 

The pressure corrections that we identified in the BHP data are related to the VOIP 

adjustment, as shown in Figure 2.12. The addition of 𝒒 in the data assimilation improved the 

reservoir characterization in terms of pore volume distribution. Our calibrated models exhibited 

volumes consistent with the prior distribution and the reference value after calibrating with TLS 

data, accounting for spatially correlated model errors. 

Looking at a particular well behavior, PROD010 exhibited a good water-cut match 

in Figure 2.13 (c), comparable to the case without 𝒒 (b) and better than the assimilation of 

production data alone (a). Furthermore, the model error treatment corrected the positive 

pressure deviation at the end of the history, as one can notice in Figure 2.13 (f) compared to (e). 

This improvement is a consequence of the volume correction. 

We can check the model error treatment effect on the porosity and permeability 

distributions in Figure 2.14 and Figure 2.15, respectively. The model error treatment corrected 
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the tendency to overestimate porosity and permeability (m, o, and p compared to i, k, and l). As 

expected, the weak-constraint formulation attenuated the standard deviation reduction (n 

compared to j). However, the uncertainty reduction is still significantly more pronounced in (n) 

than in the Well case (f), which one expects due to the spatially distributed information from 

TLS. 

Figure 2.14 and Figure 2.15 also enable analyzing how the TLS data assimilation, 

mitigating the model error effects, updated the reservoir properties. The seismic spatially 

distributed information caused a significant change in the parameter distributions (m, o, and p) 

compared to the prior ensemble (a, c, and d). For instance, the prior ensemble assumes 

intermediate porosity and permeability mean values in the southwest. However, the seismic 

information led to low porosity and permeability values in this region. Nevertheless, comparing 

the two calibrated samples (o and p) to the prior models (c and d), the parameter distributions 

seem plausible. In other words, one could admit that the four models, the two prior and the two 

updated, are possible realizations of the same reservoir. 

It is essential to check if the incorporation of TLS data with our methodology helped 

improve the production forecast compared to when only well data calibrated the models. We 

first analyze the forecast in terms of cumulative oil production in Figure 2.16 (b). The TLS data 

assimilation with added 𝒒 reduced the oil production overestimation observed in the models 

calibrated only with production data. This improvement, although significant, was not enough 

to eliminate the oil production overestimation tendency in this example. 

The time-lapse seismic data improved the oil rate forecast on a well-by-well basis 

when we added 𝒒, as depicted in Figure 2.17. The deviations in oil rates were smaller than when 

only well data were available, indicating that the TLS data improved reservoir characterization. 

In this particular case, the TLS did not significantly improve the water rate forecast compared 

to the case where only well data is present, as shown in Figure 2.18. However, both calibrated 

ensembles are significantly better than the prior ensemble in forecasting water production. 

It is crucial to notice that all results of figures 2.16, 2.17, and 2.18 indicate that the 

addition of 𝒒 significantly improved the well forecasts compared to the case when we ignored 

the model errors, which is the classical approach. Furthermore, one can notice that the mean 𝒒 

is not zero, indicating that this application includes model bias. However, our methodology 

does not distinguish between model errors and bias, compensating for both effects. This 

behavior is typical of other weak-constraint approaches (EVENSEN, Geir, 2019). 
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2.7.2.3 Analyzing the effect of 𝒒 in the observed data 

Since 𝒒 is an additive term in our forward model, we can interpret it as a 

modification to either the model or the data. Therefore, it is possible to compare the final 

distribution of the 𝒒 parameter with the observed data to understand what kind of signal we are 

compensating for. Furthermore, we can use the final value of 𝒒 to reinterpret the data with the 

geophysicists by using the geological models’ information to identify uncertain aspects of the 

seismic attribute. We highlight that we did not change our observed data, as we assimilated the 

actual INV data in all the previous tests. Nevertheless, by formulating the problem as a weak 

constraint, we incorporate in 𝒒 the data aspects that we cannot explain using our flow models 

and our forward petroelastic model. 

In the first column of Figure 2.20 (a, d, g, and j), we show our observed data from 

the seismic inversion. If we reinterpret this data using the mean value of the calibrated 𝒒 to 

remove the characteristics that the forward model could not explain, we obtain the maps in the 

second column of Figure 2.20 (b, e, h, and k). We do this mathematically by subtracting the 

mean of 𝒒 from the data. Note that this “modified” data resembles the quasi-ideal case, which 

is the PEM data that we show in the third column of Figure 2.20 (c, f, i, and l). The most 

significant change is the bluish acoustic impedance difference in the areas that do not exhibit 

impedance variations related to water replacing oil. One can identify these fluid-related signals 

as the more intense bluish impedance increase, surpassing 250
𝑚

𝑠

𝑔

𝑐𝑚3, or by their position 

around the injectors. The forward seismic modeling and the seismic inversion distorted the data 

and led to values close to zero, or negative, in regions without water saturation increase in the 

INV data. The addition of 𝒒 compensated for this tendency. Therefore, one could say that 𝒒 

mimicks the unmodeled effects of seismic resolution loss and inversion in this example. 

It is worth mentioning that, in a practical case, the quasi-ideal case would not be 

available, and one would be able to analyze the two first columns of Figure 2.20. Nevertheless, 

the observed data analysis with the 𝒒 modification would contribute to multidisciplinary work 

with engineers, geologists, and geophysicists to improve the models and the observed data. In 

this process, it may be possible to improve the model by including missing physics and new 

uncertain parameters and enhance the data through reinterpretation and reprocessing. 
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Figure 2.20: Field-scale case – analysis of the effect of 𝒒 in the observed acoustic impedance variation. The 

four horizons of the INV data are in (a), (d), (g), and (j). The four horizons of the INV data “modified” by 

the mean of 𝒒 after the calibration are in (b), (e), (h), and (k). The quasi-ideal PEM data are in (c), (f), (i), 

and (l). 

 

2.7.2.4 Update of the covariance matrix of observation errors 

After the addition of the error-related parameter to compensate for the data 

characteristics that the models cannot explain, it is possible to follow an iterative approach to 

update the covariance matrix of total observation errors, as proposed by Oliver and Alfonzo 

(2018a). We included this process in the workflow of Figure 2.1, and its objective is to 

compensate for other correlated errors that the parameter 𝒒 could not absorb, due to the limited 

degrees of freedom. 
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In this work, we update the covariance matrix of observation errors, 𝑪𝑑𝑑, using the 

residuals of the data assimilation with the added 𝒒 parameter. We estimate the variance of 𝑪𝐷
𝑘+1 

from the residual magnitude, and we use an experimental variogram of these residuals to 

generate the updated covariance matrix. In our tests, we started the data assimilation with an 

uncorrelated covariance matrix with a constant standard deviation of 30
𝑚

𝑠
×

𝑔

𝑐𝑚3. This value 

balances TLS and well data objective functions, which form the second term on the right side 

of equation (2.2). After two iterations of the covariance update, we obtained a standard 

deviation of roughly 49 
𝑚

𝑠
×

𝑔

𝑐𝑚3 and an exponential variogram model with a four-cell 

correlation length, roughly 400 𝑚. Nevertheless, this update did not significantly impact the 

calibrated models’ behavior, as one can verify in the dashed curves of figures 2.17 and 2.18. 

We noticed a minor increase in the oil rate metric in Figure 2.17 and a slight improvement in 

the water rate metric in Figure 2.18. 

We can mention two reasons for the small influence of the covariance update in our 

example. The initial variance of observations that we chose to balance the objective functions 

was relatively close to the updated value. Furthermore, the addition of the 𝒒 parameter seemed 

to compensate for the correlated errors due to model limitation. 

2.7.2.5 Application in a quasi-ideal situation 

Aside from the field application using the inverted data, it is essential to check if 

our methodology would jeopardize the data assimilation in a quasi-ideal case, where it would 

not be fundamental to compensate for model-related errors. Here, we perform this test using 

the data directly from the reference petroelastic model (PEM maps) without seismic modeling 

and inversion (see Figure 2.5 (a)). It is worth mentioning that this data assimilation is not ideal 

because we still have scale differences and the reference model has some features that are not 

included in the simulation models, which have a coarser grid. Therefore, we refer to this case 

as a quasi-ideal situation. 

Following the workflow of Figure 2.1, we performed regular data assimilation 

without including the 𝒒 parameter. Thereafter, we computed the residuals from the data 

assimilation and filtered it, using an eight-cell moving average, to estimate the prior distribution 

of 𝒒. Figure 2.21 depicts the original and filtered residual maps. Comparing them with the maps 

of Figure 2.19, we note that the mean residuals are closer to zero in this quasi-ideal application. 

This difference corroborates the idea that the missing physics originated most of the previous 

correlated errors using the INV data. 
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Figure 2.21: Field-scale quasi-ideal case – mean acoustic impedance residuals of the initial data 

assimilation and filtered mean residuals using an eight-cell window moving average, we show horizon 1 (a 

and b), 2 (c and d), 3 (e and f), and 4 (g and h), respectively. 

After estimating the prior distribution of 𝒒, we performed new data assimilation, 

adding this parameter to the petroelastic model’s output, as shown in Figure 2.2. One would 

expect that the changes from this error-related parameter’s inclusion would not significantly 

impact the results. First, we checked the VOIP distribution in Figure 2.22. Note that the 

inclusion of 𝒒 caused a minor shift in the volumes, which are still close to the reference value. 

Although not significant, this change is consistent with the idea that the weak-constraint 

formulation tends to weaken the seismic data's influence. Furthermore, 𝒒 may also be 

compensating for scale-related differences because the PEM data runs through an upscaling 

process before comparing it with the simulated responses. 

 

Figure 2.22: Field-scale quasi-ideal case – Volume of Oil in Place (VOIP) cumulative distribution curves. 
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We compared the calibrated model’s production forecasts with and without the 𝒒 

parameter in the data assimilation. Looking at the oil production forecasts comparisons in 

Figure 2.23, we notice that the error parameter’s inclusion caused a slight improvement of the 

oil rate deviations compared to the reference on a well-by-well basis. We observed the same 

tendency in the water rate forecast deviations in Figure 2.24. These results indicate that the 

addition of 𝒒 compensated the minor effects related to the scale differences. Nevertheless, its 

influence is marginal when there is no significant correlated error source. 

 

Figure 2.23: Field-scale quasi-ideal case: normalized average deviation in the oil rate forecast (well-by-

well comparison). 
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Figure 2.24: Field-scale quasi-ideal case: normalized average deviation in the water rate forecast (well-by-

well comparison). 

It is interesting to note that, after applying our methodology, the realistic INV data 

led to similar model calibration as the quasi-ideal PEM data. We can demonstrate that by 

comparing the production forecast metrics in figures 2.17 and 2.23, for the oil rates, and figures 

2.18 and 2.24 for the water rates. These similar forecasts indicate that, apart from the distortions 

compensated by 𝒒, the seismic modeling and inversion processes did not cause major 

information loss that would impair the data assimilation in this example. 

2.8 Summary and conclusions 

In this work, we proposed a practical methodology to account for model-related 

errors in time-lapse seismic data assimilation. We augmented the parameter vector to include 

an additive error parameter in the calibration process. Therefore, we adopted a weak-constraint 

formulation, which mitigates the effects of model error and bias, avoiding unphysical updates 

of the reservoir parameters. We tested the methodology in two synthetic cases, a simple 2D 

case and a realistic field-scale 3D case, which presents the typical challenges of a real reservoir. 

In short, the main contribution is a new methodology to compensate for model error and bias 

in time-lapse seismic data assimilation that does not require a high-fidelity low-error model. 

The specific conclusions of this work are: 

• Model errors with long-range correlations can jeopardize the data assimilation results, 

causing unphysical parameter changes. 
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• We managed to improve the quality of TLS data assimilation in the presence of this type 

of error using a weak-constraint formulation. 

• After applying our methodology, the TLS data improved the production forecasts, even 

under the influence of model-related errors. This forecast improvement had nearly the 

same quality as the quasi-ideal case, where the model errors are minor. 

• Our methodology can also handle model bias as a specific type of model error. 

• It is not straightforward to optimize the definition of the prior distribution of the error-

related parameter in the weak-constraint formulation. Nevertheless, it is essential to 

consider it in data assimilation when there are significant correlated model-related 

errors. Our results show that the impact of neglecting this type of error is greater than 

the effect of applying our methodology to a case where it is insignificant. 

• We provided a practical way to estimate the prior distribution of the error parameter 

using the residuals from a calibrated ensemble that is not optimal but improved the 

model updates in our tests. 

• As with any weak-constraint formulation, the proposed methodology reduces the 

magnitude of the reservoir parameter’s updates due to the data. In our approach, this 

reduction intensifies as the model limitations increases. 

• Comparing the observed data with the additive error parameter enables a 

multidisciplinary analysis of the data and the models. In this analysis, the additive error 

parameter relates to part of the data that the models could not represent. Therefore, it 

may be possible to improve the geological models or to reinterpret the time-lapse 

seismic data. 

2.9 Nomenclature 

Variables 

𝟏 Column vector whose elements are 1 

𝑎 Semivariogram Gaussian model parameter 

𝑎𝑝 Impedance variation pressure sensitivity 

𝑎𝑠 Impedance variation saturation sensitivity 

𝑨 Matrix of ensemble anomalies 

𝑪𝑑𝑑 Covariance matrix of measurement noise 

𝑪𝐷  Covariance matrix of total observation errors 

𝑪𝑥𝑥 Covariance matrix of the parameters 

𝑪𝑥𝑦 Covariance matrix between the parameters and the simulated response 

𝑪𝑦𝑦 Covariance matrix of the simulated response 
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𝑪𝑧𝑦 Covariance matrix between the augmented parameters and the simulated response 

𝒅 Data vector 

𝑫 Data matrix 

𝒈 Forward model 

ℎ Distance 

𝑰 Identity matrix 

𝒥 Cost function 

𝑲 Kalman gain matrix 

𝐿 Semivariogram length 

𝑚 Number of data points (measurements) 

𝑛 Number of parameters 

𝑁 Ensemble size 

𝑁𝑚𝑑𝑎 Number of data assimilations in an ESMDA run 

𝑁𝑄𝐷𝑆 Normalized quadratic norm with sign 

𝑝 Pressure 

𝒑 Residuals between observed and simulated response 

𝒑̅ Ensemble mean of the residuals 

𝒑̿ Filtered mean residuals 

𝒒 Additive model-error parameter vector 

𝒒̅ Ensemble mean of the additive model-error parameter vector 

𝑸 Additive model-error parameter matrix 

𝑆 Fluid saturation 

𝒙 Parameter vector 

𝒙𝑡𝑟𝑢𝑒 “True” parameter vector 

𝑿 Parameter matrix 

𝒀 Matrix of predicted ensemble anomalies 

𝒁 Augmented parameter matrix 

𝛼 Inflation factor 

𝛿 Average absolute deviation 

𝛿𝑖𝑑𝑒𝑎𝑙 Average absolute deviation of the quasi-ideal test 

𝜺𝒅 Measurement noise 

𝜺𝒈 Model error 

Δ𝐼𝑃𝑁𝑂𝑅𝑀 Normalized acoustic impedance variation 

Δ𝛿 Deviation increase 

𝜉 Semivariogram 

𝚷 Operation that removes the mean and scales the matrix 

𝝆 Localization matrix 

𝜎 Standard deviation 

𝜏 Observed data error tolerance 

𝜑 Observed data error constant 

 

Subscripts 

𝑖 Initial value 

𝑗 Element in the ensemble 

𝑙 Data type 

𝑁 Size equal to the ensemble size 
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𝑇𝐿𝑆 Time-lapse seismic data 

𝑤 water 

𝑤𝑖 Initial (connate) water 

 

Superscripts 

𝑎 Updated estimate 

𝑓 Prior or background estimate 

𝑖 ESMDA iteration 

(𝑘) Iteration of the covariance matrix update methodology 

𝑜𝑏𝑠 Observed, related to the measurements 

𝑠𝑖𝑚 Simulated 

𝑇 Matrix transpose 
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3.1 Abstract  

Time-lapse seismic data assimilation has been drawing the reservoir engineering 

community's attention over the past few years. One of the advantages of including this kind of 

data to improve the reservoir flow models is that it provides complementary information 

compared to the wells' production data. Ensemble-based methods are some of the standard tools 

used to calibrate reservoir models using time-lapse seismic data. One of the drawbacks of 

assimilating time-lapse seismic data involves the large data sets, mainly for big reservoir 

models. This situation leads to high-dimensional problems that demand significant 

computational resources to process and store the matrices when using conventional and 

straightforward methods. Another known issue associated with the ensemble-based methods is 

the limited ensemble sizes, which cause spurious correlations between the data and the 

parameters and limit the degrees of freedom. In this work, we propose a data assimilation 

scheme using an efficient implementation of the Subspace Ensemble Randomized Maximum 

Likelihood method with local analysis. This method reduces the computational requirements 

for assimilating big data sets because the number of operations scales linearly with the number 

of observed data points. Furthermore, by implementing it with local analysis, we reduce the 

memory requirements at each update step and mitigate the effects of the limited ensemble sizes. 

We test two local analysis approaches, one distance-based, and another correlation-based. We 

apply these implementations to two synthetic time-lapse seismic data assimilation cases, one 



81 

 

2D example, and one field-scale application that mimics some of the real field challenges. We 

compare the results to reference solutions and to the known Ensemble Smoother with Multiple 

Data Assimilations using Kalman gain distance-based localization. The results show that our 

method can efficiently assimilate time-lapse seismic data, leading to updated models that are 

comparable to other straightforward methods. The correlation-based local analysis approach 

provided results similar to the distance-based approach, with the advantage that the former can 

be applied to data and parameters that do not have specific spatial positions. 

 

Abbreviations: 

EnRML – Ensemble Randomized Maximum Likelihood  

ESMDA – Ensemble Smoother with Multiple data Assimilations 

IES – Iterative Ensemble Smoother 

PEM – Petro-elastic Model 

SEnRML – Subspace Ensemble Randomized Maximum Likelihood 

 

Keywords:  

EnRML, Iterative Ensemble Smoother, Seismic History Matching, Local analysis, Adaptive 

localization 

3.2 Introduction 

Time-lapse seismic data provide dynamic information about the spatial distribution 

of the reservoir properties. One may consider it complementary to the well production data 

because the latter is sparsely spaced but more frequent in time than the former (STEPHEN, Karl 

D.; MACBETH, 2008). Therefore, there are efforts in place to use this type of data 

quantitatively to calibrate reservoir models (EMERICK, Alexandre A., 2016; LORENTZEN et 

al., 2019; STEPHEN, Karl D. et al., 2006; TOLSTUKHIN; LYNGNES; SUDAN, 2012; 

ULLMANN DE BRITO; CALETTI; MORAES, 2011). Nevertheless, the seismic data 

contributes to augmenting the data assimilation process's complexity, particularly by 

significantly increasing the size of the data set. This aspect becomes especially challenging for 

giant oil field applications due to the number of data points and parameters. Therefore, it is 

crucial to develop efficient methods to assimilate the available data in this context. 
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Gu and Oliver (2007) proposed an iterative method for sequential data assimilation 

called Ensemble Randomized Maximum Likelihood (EnRML) Filter. Later, Chen and Oliver 

(2012) presented EnRML as an iterative ensemble smoother (IES), which circumvented the 

need to restart reservoir simulation runs. Chen and Oliver (2013) improved the method by using 

the idea of the Levenberg-Marquardt method and including a step length parameter. Later, 

Raanes et al. (2019) revised EnRML as an iterative ensemble smoother, simplifying the method 

both conceptually and computationally, and Evensen et al. (2019) proposed an efficient 

implementation of the EnRML IES. After the modifications, the authors referred to the method 

as the Subspace EnRML (SEnRML). The computational cost of the SEnRML algorithm scales 

only linearly with the number of parameters and the data, making it suitable for the assimilation 

of big data sets into big reservoir models. Nevertheless, the authors only tested the global update 

implementation of the method, where they used the entire data set to update all model variables 

into a single step. 

The application of the subspace inversion with a low-rank representation of the 

covariance matrix of observation error, as in SEnRML, reduces the observed data size's impact 

on the data assimilation. Evensen (2004) explained this idea and Skjervheim et al. (2007) 

presented this approach for time-lapse data assimilation. The projection of the covariance 

matrix of the observation errors into the subspace generated by the ensemble anomalies enables 

limiting the matrix's dimension to less than the ensemble size. Furthermore, the projection of 

the data into this subspace reduces its size to the same dimension. 

Many researchers addressed the challenge of assimilating time-lapse seismic big 

data sets by employing different strategies. Liu and Grana (2020) reduced the data dimension 

by applying a deep representation learning method called deep convolutional autoencoder. Yin 

et al. (2019) proposed a method to reduce the number of data points using the correlation 

between time-lapse seismic data and the wells' cumulative volume data when multiple monitors 

are available. Both studies employed Ensemble Smoother with Multiple Data Assimilations 

(EMERICK, Alexandre A.; REYNOLDS, 2013a) as the data assimilation method. Soares et al. 

(2019) significantly reduced the number of assimilated data points using a dictionary learning 

technique. Luo et al. (2017) proposed a history-matching framework in which they perform 

data reduction using a wavelet-based method. Later, Luo et al. (2018) and Lorentzen et al. 

(2019) applied this idea to the Brugge field benchmark and to the Norne field, respectively. 

Other authors achieved data reduction by representing the time-lapse seismic data in terms of 

the position and distances of fluid fronts (ABADPOUR; BERGEY; PIASECKI, 2013; 
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LEEUWENBURGH; ARTS, 2014; TRANI; ARTS; LEEUWENBURGH, 2013; ZHANG, 

Yanhui; LEEUWENBURGH, 2017). 

In a practical application of ensemble-based methods in reservoir history matching, 

the reservoir flow simulation's computational costs limit the ensemble size. Usually, the number 

of models in the ensemble ranges from 100 to 500 models, while the number of parameters 

and observed data points may reach the magnitude of 105 to 107. Consequently, we face two 

significant issues related to small ensemble sizes (EMERICK, Alexandre; REYNOLDS, 2011). 

The covariance matrices' ensemble estimates tend to produce a non-zero correlation between 

the data and the parameters, even for physically uncorrelated regions. Moreover, the degrees of 

freedom available to update the parameters is also limited. Hence, two conventional approaches 

to circumvent these issues involve applying localization or local analysis. 

Kalman Gain localization (ZHANG, Yanfen; OLIVER, 2011) has become a 

popular procedure in reservoir history matching with ensemble-based methods (EMERICK, 

Alexandre A.; REYNOLDS, 2013b; LACERDA; EMERICK; PIRES, 2019; RANAZZI; 

SAMPAIO, 2019; SOARES; MASCHIO; SCHIOZER, 2018). Nevertheless, its application in 

a global update approach, in which one uses all parameters and data points at a single update 

step, requires constructing the large dimension Kalman Gain matrix. This implementation may 

lead to slower convergence when compared to local analysis (CHEN, Yan; OLIVER, 2017). In 

the efficient implementation of SEnRML (EVENSEN, Geir et al., 2019), one does not form the 

Kalman Gain matrix, which would directly relate the parameter changes and the innovations. 

An alternative approach to circumvent the issues related to the limited ensemble size is to 

perform local analysis. Although less addressed than the Kalman Gain localization in reservoir 

history-matching problems, some studies reported the use of local analysis (FAHIMUDDIN; 

AANONSEN; SKJERVHEIM, 2010a; SKJERVHEIM, Jan-arild; EVENSEN, 2011; ZHAO; 

REYNOLDS; LI, 2008). 

Sakov and Bertino (2011) compared the covariance localization and the local 

analysis for the Ensemble Kalman Filter (EnKF, EVENSEN, Geir, 1994). They showed that 

both methods could produce comparable results. Chen and Oliver (2017) reported similar 

findings when comparing local analysis schemes to Kalman gain localization for reservoir 

history-matching problems. All the methods can provide equally good history-matching results 

if the localization lengths are adequately tuned. However, finding these lengths in a practical 

problem is not a trivial task. For instance, Emerick and Reynolds (2011) suggested defining 

them as the prior ensemble correlation lengths, summed to the sensitivity range of the data. 



84 

 

One alternative to the data selection and tapering of the influences based on the 

distance from the parameters is to compute the localization or local analysis from the correlation 

between them. This approach does not require tuning the localization lengths and it applies to 

nonlocal data and parameters. For instance, Bishop and Hodyss (2007) proposed attenuating 

the spurious correlations in ensemble-based data assimilation by raising them to a power. 

Evensen (2009), in chapter 15, provides a brief review of pioneer studies addressing adaptive 

localization, including Bishop and Hodyss’ (2007) work. Later, Luo et al. (2018) proposed an 

automatic method to compute a threshold and select the data for the analysis based on the 

absolute value of the estimated correlation. Luo et al. (2019) applied this method to assimilate 

the real production data from the Norne Field. Also, Luo and Bhakta (2020) improved the 

previous method's computational efficiency and proposed a technique to compute smooth 

tapering coefficients. 

In this work, we propose two local analysis schemes for the SEnRML method. The 

first is a distance-based approach that selects and weights the data that influences each 

parameter from the physical distance between them. The second is an automatic method that 

uses the correlation between the data and the parameters to compute the influences. We test the 

method with two synthetic examples, one 2D case, and one field-scale example. In both tests, 

we compare SEnRML with local analysis to the widely known Ensemble Smoother With 

Multiple Data Assimilations (ESMDA) with distance-based Kalman gain localization 

(EMERICK, Alexandre A.; REYNOLDS, 2013a). 

The specific objectives of the present work are: 

• Propose the local analysis schemes for SEnRML, both distance-based and automatic. 

• Test the subspace efficient implementation of the method in time-lapse data assimilation 

using a realistic case. 

• Compare the distance-based and the automatic schemes for data selection and tapering 

in a local analysis scheme for time-lapse seismic data assimilation. 

3.3 Subspace EnRML 

The Subspace EnRML (SEnRML) formulation applied in this work follows the 

revision made by Raanes et al. (2019) and the efficient implementation for big data sets and big 

models described by Evensen et al. (2019). Here, we assume there is a forward model (𝒈) that 

provides the simulated data 𝒅𝑠𝑖𝑚 ∈ ℜ𝑚×1, given the parameters 𝒙 ∈ ℜ𝑛×1 
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𝒅𝑠𝑖𝑚 = 𝒈(𝒙). (3.1) 

Also, this model can determine these data precisely if we use the “true” value 

parameters, 𝒙𝑡𝑟𝑢𝑒. We also have the measurements 𝒅𝑜𝑏𝑠 ∈ ℜ𝑚×1 regarding the “true” output 

of the forward model and the measurement errors 𝜺 ∈ ℜ𝑚×1, which are Gaussian and have zero 

mean, defined as 

𝒅𝑜𝑏𝑠 = 𝒈(𝒙𝑡𝑟𝑢𝑒) + 𝜺. (3.2) 

In this context, the data assimilation problem consists of calibrating the model’s 

parameters vector using prior knowledge and the observed data. We may represent our prior 

knowledge regarding the models’ parameters with an ensemble of 𝑁 realizations, 𝑿𝑓 =

(𝒙1
𝑓
, 𝒙2

𝑓
, … , 𝒙𝑁

𝑓).  

Evensen (2003) expressed the updates of the models’ parameters as a linear 

combination of the ensemble perturbations, which also occurs in the case of a change in 

variables proposed by Hunt et al. (2007). Raanes et al. (2019) and Evensen et al. (2019) applied 

an equivalent change of variables that simplified the EnRML method, both conceptually and 

computationally. Using this definition, the updates of the parameters are a linear combination 

of the ensemble anomalies (𝑨), 

𝑿𝑎 = 𝑿𝑓 + 𝑨𝑾 = 𝑿𝑓 (𝑰𝑁 +
1

√𝑁 − 1
𝑾), (3.3) 

where the matrix 𝑾 ∈ ℜ𝑁×𝑁 defines the linear combination of 𝑨 that represents the models’ 

updates. One can demonstrate the right side of equation 3.3, by using the 𝑾 matrix property, 

that the sum of the elements in each column is equal to zero (EVENSEN, Geir et al., 2019). 

Therefore, by applying this change of variables, the data assimilation problem changes to 

searching the matrix 𝑾, which has a lower dimension than searching 𝑿𝑎 ∈ ℜ𝑛×𝑁 directly. We 

obtain 𝑨 by normalizing and subtracting the mean from the matrix with the prior parameters, 

𝑨 = 𝑿𝑓
1

√𝑁 − 1
(𝑰𝑁 −

1

𝑁
𝟏𝑁𝟏𝑁

𝑇) = 𝑿𝑓𝚷𝑁, (3.4) 

where 𝟏𝑁 ∈ ℜ
𝑁×1 is a vector whose elements are equal to 1, 𝑰𝑁 ∈ ℜ

𝑁×𝑁 is the identity matrix, 

and 𝚷𝑁 is a projector that transforms 𝑿𝑓 into the ensemble anomalies. 

Similarly to the parameters, we represent the observed data by an ensemble of 

perturbed measurements 𝑫 ∈ ℜ𝑚×𝑁, formed by sampling the distribution 𝒅𝑗~𝒩(𝒅𝑜𝑏𝑠, 𝑪𝑑𝑑), 

where 𝑪𝑑𝑑 ∈ ℜ
𝑚×𝑚 is a predefined covariance matrix of the measurement errors. 
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Finally, the problem consists of finding the matrix 𝑾 that minimizes the cost 

function, 

𝓙(𝒘𝑗) =
1

2
𝒘𝑗
𝑇𝒘𝑗 +

1

2
[𝒈(𝒙𝑓 + 𝑨𝒘𝑗) − 𝒅𝑗]

𝑇
𝑪𝑑𝑑
−1[𝒈(𝒙𝑓 + 𝑨𝒘𝑗) − 𝒅𝑗], 

(3.5) 

where the first term on the right relates to the parameters’ updates compared to the prior 

estimates, whereas the second term pertains to the data mismatch. It is possible to obtain the set 

of vectors 𝒘𝑗 that minimizes equation 3.5 by employing the Gauss-Newton scheme. The 

iterative procedure for updating 𝑾 (EVENSEN, Geir et al., 2019) is 

𝑾𝑖+1 = 𝑾𝑖 − 𝛾 [𝑾𝑖 − (𝑺𝑖)
𝑇
(𝑺𝑖(𝑺𝑖)

𝑇
+ 𝑪𝑑𝑑)

−1

𝑯𝑖], (3.6) 

where 𝛾 is the step-length parameter, 𝑺𝑖 is called the matrix of predicted and deconditioned 

ensemble anomalies 

𝑺𝑖 = 𝒀𝑖(𝑰𝑁 +𝑾
𝑖𝚷𝑁)

−1
, (3.7) 

and 𝒀𝑖 is the matrix of predicted ensemble anomalies, 

𝒀𝑖 = (𝑫𝑠𝑖𝑚)
𝑖
𝚷𝑁. 

(3.8) 

Note that (𝑫𝑠𝑖𝑚)
𝑖
= 𝒈(𝑿𝑖) consists of the simulated data obtained after running 

the reservoir simulator with the vectors of parameters in the updated 𝑿 matrix at iteration 𝑖, 𝑿𝑖. 

𝑯𝑖 represents the innovations 

𝑯𝑖 = 𝑺𝑖𝑾𝑖 +𝑫 − (𝑫𝑠𝑖𝑚)
𝑖
. (3.9) 

Before implementing the method, it is necessary to define a procedure to compute 

the inverse of (𝑺𝑖(𝑺𝑖)
𝑇
+ 𝑪𝑑𝑑). Evensen et al. (2019) obtained this inverse by first computing 

the truncated and economic singular value decomposition (TSVD) of 𝑺𝑖, 

𝑺𝑖 = 𝑼𝑖𝚺𝑖(𝑽𝑖)
𝑇
, (3.10) 

keeping a maximum of 𝑁 − 1 significant singular values. To avoid scaling issues, it is essential 

to rescale the 𝑺𝑖 using a diagonal matrix whose elements are the inverse of the data's standard 

deviation before computing the TSVD. To keep the equation consistent, it is also necessary to 

apply the rescaling procedure to the innovations and the 𝑪𝑑𝑑 matrix. After, we use the 

approximation 
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𝑺𝑖(𝑺𝑖)
𝑇
+ 𝑪𝑑𝑑 ≈ 𝑺𝑖(𝑺𝑖)

𝑇
+ 𝑺𝑖(𝑺𝑖)

+
𝑬𝑬𝑇 (𝑺𝑖(𝑺𝑖)

+
)
𝑇

, (3.11) 

where the superscript + denotes the Moore-Penrose pseudoinverse. In equation 3.11, we first 

approximated the matrix 𝑪𝑑𝑑 ≈ 𝑬𝑬𝑇 , and then projected this matrix onto the subspace defined 

by 𝑺 (EVENSEN, Geir et al., 2019). We obtain the vectors that form 𝑬 ∈ ℜ𝑚×𝑁𝐸 by sampling 

the distribution 𝒩(0, 𝑪𝑑𝑑) and dividing the results by √𝑁𝐸 − 1. We can use a number of 

samples to form 𝑬 that is equal to the ensemble size, 𝑁𝐸 = 𝑁, or we can increase this number 

to reduce sampling errors. Here, we used 𝑁𝐸 = 10𝑁, but we also tested a smaller size in the 

computational cost section, obtaining similar results. After substituting (3.10) in (3.11), we find 

𝑺𝑖(𝑺𝑖)
𝑇
+ 𝑪𝑑𝑑 ≈ 𝑼𝑖𝚺𝑖 (𝑰𝑁 + (𝚺

𝑖)
+
(𝑼𝑖)

𝑇
𝑬𝑬𝑇𝑼𝑖 ((𝚺𝑖)

+
)
𝑇
) (𝚺𝑖)

𝑇
(𝑼𝑖)

𝑇
. (3.12) 

Hereafter we apply the eigenvalue decomposition 

𝒁𝑖𝚲𝑖(𝒁𝑖)
𝑇
= (𝚺𝑖)

+
(𝑼𝑖)

𝑇
𝑬𝑬𝑇𝑼𝑖 ((𝚺𝑖)

+
)
𝑇

, (3.13) 

that we can compute efficiently from the SVD of (𝚺𝑖)
+
(𝑼𝑖)

𝑇
𝑬. Finally, we can obtain the 

inverse of (𝑺𝑖(𝑺𝑖)
𝑇
+ 𝑪𝑑𝑑) from 

(𝑺𝑖(𝑺𝑖)
𝑇
+ 𝑪𝑑𝑑)

−1

≈ (𝑼𝑖(𝚺𝑖)
+
𝒁𝑖) (𝑰𝑁Λ + 𝚲

𝑖)
−1
(𝑼𝑖(𝚺𝑖)

+
𝒁𝑖)

𝑇

. (3.14) 

Both 𝑰𝑁Λ and 𝚲 are diagonal matrices whose dimension is 𝑁Λ × 𝑁Λ, where 𝑁Λ ≤

𝑁 − 1. We show the sizes of the matrices in equations 3.6 and 3.14 in Table 3.1. From the 

dimensions, one can quickly note that these equations scale linearly with 𝑚. 

Table 3.1: Dimensions of the variables in SEnRML. 

Matrix 𝑾𝑖 𝑺𝑖 𝑼𝑖 𝚺𝑖 𝒁𝑖 𝚲𝑖 𝑯𝑖 

Dimension 𝑁 × 𝑁 𝑚 ×𝑁 𝑚 ×𝑁Λ 𝑁Λ × 𝑁Λ 𝑁Λ × 𝑁Λ 𝑁Λ × 𝑁Λ 𝑚 ×𝑁 

 

One should note that the application of equation 3.14 into equation 3.6 implicates 

the product of the innovations by (𝑼𝑖)
𝑇

, which reduces its dimension to 𝑁Λ × 𝑁. This result 

has a beneficial effect on decreasing the number of operations. Nevertheless, it may also cause 

information loss. Here, we try to mitigate the latter's impacts by reducing the data used for each 

analysis step through the local analysis scheme, addressed in the following section. 
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3.4 Local analysis schemes 

We separate the local analysis procedure into three parts, the parameter segregation 

into local groups, the data selection and tapering of their influence, and the calibration of the 

parameters, see Figure 3.1. We propose two ways of selecting the data and computing the 

tapering vectors, one distance-based and one correlation-based. We address the latter as 

automatic because after defining the formulation, there is no need to tune any parameter, as one 

needs to tune the localization lengths for regions of the reservoir in the distance-based scheme. 

We address each step depicted in Figure 3.1 in the next subsections. 

 

Figure 3.1: Local analysis scheme general workflow. 

 

3.4.1 Segregation of parameters 

At this step, we need to segregate the parameters into local groups to perform the 

calibration in independent stages during the third step of Figure 3.1. Chen and Oliver (2017) 

state that the idea behind this segregation is to update all the related parameters with the same 

data using a single analysis equation. When one starts grouping variables contained by different 

cells, the definition of the groups of parameters becomes a tradeoff between the computational 

cost and precision of the data selection. 

In 3D models, a common approach to segregation is to group all the parameters 

located in the grid's vertical columns of cells (CHEN, Yan; OLIVER, 2017). We acknowledge 

that, in some cases, there may be differences between the correlated data related to parameters 

located in different reservoir layers. Nevertheless, in this work, we decided to group sets of 

columns of cells for two reasons. First, the distance-based localization methods used for 

comparison purposes commonly consider the horizontal distance to define the data selection 

(CHEN, Yan; OLIVER, 2017; EMERICK, Alexandre; REYNOLDS, 2011; EMERICK, 

Alexandre A., 2016). Secondly, by grouping the parameters into cell columns, we reduce the 

number of analysis steps and the computational costs compared to segregating the cells 

vertically. 
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3.4.2 Distance-based data selection and influence tapering 

In our implementation of the SEnRML method with local analysis, it is necessary 

to select the data and compute one tapering vector, 𝝆𝑘 ∈ ℜ
𝑚×1, for each group of parameters. 

Therefore, we defined the following procedure to compute them from the physical distance 

between the local groups and the data: 

1. Select a local group of parameters to update. 

2. Include all the data whose position is inside the group without tapering. 

3. Select all data within a distance from the group of parameters. 

4. Determine a tapering vector to reduce the impact of the data located outside the group. 

We apply the widely known Gaspari and Cohn (1999) function to compute the 

tapering values to reduce the selected data's influence outside the group of parameters. One can 

determine the maximum distance of the selected data from a minimum tapering value. It is also 

necessary to define the critical lengths for the Gaspari and Cohn’s function, which is not 

straightforward for time-lapse seismic data assimilation (EMERICK, Alexandre A., 2016). 

3.4.3 Automatic data selection and influence tapering 

We also proposed an automatic correlation-based local analysis scheme in this 

work, in addition to the distance-based data selection. In this case, we select the data and 

compute the correlation-based tapering using an adaptation of the method by Luo and Bhakta 

(2020). We start by estimating the standard deviation of the spurious correlations, 𝜎𝜖, due to 

the limited ensemble size using the asymptotic approximation 

𝜎𝜖 ≈ 1 √𝑁⁄ . (3.15) 

After defining the standard deviation, the correlation threshold is 

𝜃 = 𝜎𝜖√2 ln(𝑛 𝑛𝑝⁄ ), (3.16) 

where 𝑛 𝑛𝑝⁄  is the number of parameters of each type, e.g., porosity, directional permeabilities, 

and it is the same for all parameter types. It is important to note that the threshold varies with 

the inverse of the ensemble size's square root because a larger 𝑁 reduces the sampling errors in 

the covariance estimation, its drawback being the higher computational costs. For a detailed 

explanation on the threshold estimation, refer to (LUO; BHAKTA, 2020; LUO; BHAKTA; 

NÆVDAL, 2018). 
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After obtaining the correlation thresholds, we can compute the tapering vectors for 

each local analysis group. We start by obtaining the correlation matrix between the prior 

realizations of parameters and the simulated data 

𝑹𝑘 = corr (𝑿𝑘
𝑓
, (𝑫𝑠𝑖𝑚)

𝑓
), (3.17) 

where 𝑹𝑘 ∈ ℜ
#𝑿𝑘×𝑚, and #𝑿𝑘 are the number of parameters in the local analysis group. Luo 

and Bhakta (2020) proposed a tapering rule following the intuition that higher correlation 

coefficients should lead to higher tapering values. Based on this principle, they proposed an 

arbitrary pseudo-distance dummy variable 

(𝑧𝑘)𝑙,𝑐 = (1 − |(𝑟𝑘)𝑙,𝑐|) (1 − 𝜃)⁄ , (3.18) 

where the elements (𝑧𝑘)𝑙,𝑐 are related to (𝑟𝑘)𝑙,𝑐, which are the elements of the matrix 𝑹𝑘. Note 

that the index 𝑙 = 1,2, … , #𝑿𝑘 indexes the parameters in the group, and the index 𝑐 = 1,2,… ,𝑚 

refers to the data. The results based on equation 3.18 were satisfactory on Luo and Bhakta’s 

(2020) applications using ensemble sizes of 100 and 103 models, and our 2D application with 

100 models. Nevertheless, equation 3.18 has some undesired characteristics. Firstly, the 

pseudo-distance does not go to zero if 𝜃 tends to zero. One would expect this behavior because 

a large ensemble would not require data influence tapering. Secondly, it does not guarantee that 

the tapering goes to zero as the correlation goes to zero, or it is much lower than the threshold. 

Thirdly, even if the correlation is double the threshold, it does not necessarily result in tapering 

values close to 1. This tendency would be desirable because it means that the correlation is 

above the sampling error level, and the data is correlated to the parameter. Furthermore, in our 

tests with increasing ensemble sizes, which reduce the threshold, equation 3.18 led to somewhat 

homogeneous tapering coefficients. This influence tapering format caused the data assimilation 

to underestimate the final ensemble variance. 

Therefore, we changed this equation to  

(𝑧𝑘)𝑙,𝑐 = max(1.67 − 0.67 |(𝑟𝑘)𝑙,𝑐| 𝜃⁄ , 0), (3.19) 

whose results are roughly equal to equation 3.18 when 𝜃 ≈ 0.4, which is the condition that the 

original tapering rule led to favorable results. Note that equation 3.19 is also arbitrary, and we 

do not claim that this formulation is optimal in any sense. However, it has some desired features. 

First, it causes tapering close to zero if the correlation is much lower than the threshold and 

tapering equals zero if 𝜃 tends to zero. Secondly, it causes the tapering to go to one if the 

correlation is at least 2.5 times higher than the threshold. This value came from the match of 
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equation 3.18 with 𝜃 ≈ 0.4. Finally, these characteristics do not change if we change the 

number of models in the ensemble. Consequently, we can apply it to different ensemble sizes 

for the same case, resulting in similar responses, differently from the original pseudo-distance 

dummy variable defined in equation 3.18. We provide details later in the Results section. 

In our implementation, we need one vector 𝒛̅𝑘 ∈ ℜ
1×𝑚 to represent the tapering for 

each local analysis group. We obtain it using a statistic of the distribution of (𝑧𝑘)𝑙,𝑐, for 𝑙 =

1, 2,… , #𝑿𝑘. The proper statistic depends on the definition of local analysis groups, and we do 

not provide an optimal choice for a general case. Here, we used a percentile of the (𝑧𝑘)𝑙,𝑐 

distribution among the parameters within the local groups. We tuned this percentile to cause a 

clear separation between the data closely related to the group, tapering close to 1, and the data 

that should not be related to it, tapering close to 0. Looking at the extremes, the option of taking 

the maximum values of (𝑧𝑘)𝑙,𝑐 means that only the data correlated to all parameters in the group 

will significantly influence the calibration. On the other hand, taking the minimum values of 

(𝑧𝑘)𝑙,𝑐 means that any data that relates to any parameters in each group will be relevant. 

Although this definition relies on knowledge about the case, it is possible to define this rule 

before starting the data assimilation process. Furthermore, if it is possible to work with local 

groups comprising a few parameters, or only parameters related to the same subset of the data, 

the definition of the vectors 𝒛̅𝑘 should be trivial. We provide more details about the selection 

of 𝒛̅𝑘 in the results section of the field-scale case. 

After obtaining the pseudo-distances, we apply the Gaspari and Cohn (1999) 

function to compute the tapering vectors for each group, 𝝆𝑘 ∈ ℜ
𝑚×1, using the elements in 𝒛̅𝑘

𝑇 

as the argument of the function. Finally, we select all data whose tapering values are above a 

predefined minimum value, which is usually a small positive number, e.g., 10−2. In this 

approach, the correlations estimated from the prior ensemble define the data that will influence 

each parameter group. 

3.4.4 Calibration of parameters 

Apart from using a different subset of the data points to calibrate each local group, 

we apply the tapering vector to change the data weights, based on the distance or the correlation. 

We opted to apply the tapering of ensemble anomalies and innovations, similarly to Chen and 

Oliver's (2017) tapering of observation. To do that, we change the 𝑺𝑘
𝑖  matrix to 

𝑺𝑘
𝑖 = (𝝆𝑘

1/2
𝟏𝑁
𝑇 ) ∘ 𝑺𝑘

𝑖 , (3.20) 
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where 𝑺𝑘
𝑖  comes from equation 3.7 and the index 𝑘 relates to the local group. Furthermore, we 

change the innovations to  

𝑯̂𝑘
𝑖 = 𝑺𝑘

𝑖𝑾𝑘
𝑖 + (𝝆𝑘

1/2
𝟏𝑁
𝑇 ) ∘ [𝑫𝑘 − (𝑫

𝑠𝑖𝑚)
𝑘

𝑖
]. (3.21) 

Sakov and Bertino (2011) showed that tapering of ensemble anomalies and 

innovations with the square root of the tapering elements would have an equivalent effect as 

changing the observations' variance with the tapering elements' inverse if the observation errors 

were not correlated. Nevertheless, this condition does not hold in our tests. We opted to apply 

the tapering to the anomalies and innovations for two reasons. Firstly, it may be considered a 

more general approach than changing the observations' variance if the errors are correlated, as 

Sakov and Bertino (2011) commented. Secondly, we avoided forming the 𝑪𝑑𝑑 matrix to apply 

the tapering. 

The SEnRML implementation with the local analysis scheme described in this 

section simplifies the computation of each step, in the sense that it uses only a subset of the data 

and parameters. Nevertheless, it is necessary to repeat the operations for each local group. 

Therefore, the procedure reduces the memory consumption during the computations, but it 

tends to increase the number of operations. The increase is more dramatic if one segregates the 

parameters into more local groups. Nevertheless, the local analysis steps are independent, and 

one can readily parallelize them. 

3.5 Applications 

We tested SEnRML with local analysis in two time-lapse seismic data assimilation 

examples. Firstly, we use a simple 2D case that allows us to have a large ensemble solution. 

Hence, it does not require localization and may serve as a reference solution to other small 

ensemble tests. Secondly, we apply SEnRML in a field-scale example that mimics some of the 

real field challenges. We describe each example in the following two subsections. 

3.5.1 2D case 

The 2D example consists of a 40 × 40 grid with four producer wells and four 

injectors. We built a synthetic truth from which we generate the observed data. Figure 3.2a 

depicts the reference model's porosity field and the well location, while Figure 3.2b illustrates 

the relationship between the porosity and permeability. In addition, we present the general 

characteristic of the example in Table 3.2. This low-fidelity model does not include a real 
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reservoir's general complexities, but it mimics a time-lapse seismic data assimilation problem 

with fast forward simulation. We list the following simplifications of our 2D model: the 

relationship between the porosity and permeability is arbitrary and close to log-linear; there are 

no residual fluid saturations; we maintain the material balance through water injection; our data 

assimilation time is arbitrary; our data is normalized. 

 

Figure 3.2: 2D example – synthetic truth. The porosity field is in (a), and the permeability-porosity 

relationship is in (b). 

 
Table 3.2: Characteristics of the 2D case. 

Characteristic Value 

Grid size 40 × 40 × 1 cells 

Cell size 50 × 50 × 50 𝑚 

Average porosity 0.15 

Average permeability 132 𝑚𝐷 

Fluid mobility ratio (water/oil) 5 

Fluid densities Water: 1000 𝑘𝑔/𝑚³ 
Oil: 700 𝑘𝑔/𝑚³ 

Initial pressure 200 𝑏𝑎𝑟 

Number of active TLS data points 1600 

Reservoir simulator MATLAB Reservoir Simulation Toolbox (LIE, 2019) 

 

In this 2D case, the waterflooding process causes changes in the pressure and 

saturation in 2 years. We generated a normalized impedance variation map by applying a simple 

petroelastic proxy model 

Δ𝐼𝑃𝑁𝑂𝑅𝑀 = 𝑎𝑠 × (𝑆𝑤 − 𝑆𝑤𝑖) max(𝑆𝑤 − 𝑆𝑤𝑖)⁄

+ (𝑎𝑠 − 1) × (𝑝 − 𝑝𝑖) max(|𝑝 − 𝑝𝑖|)⁄ , 
(3.22) 

which is related to the work of (DANAEI et al., 2020). We note that Δ𝐼𝑃𝑁𝑂𝑅𝑀 ∈ [−1,1] and 

𝑎𝑠 = 0.85 means that 85% of the impedance variations are due to saturation changes, and 15% 

are related to pressure changes. Figure 3.3a depicts the noise-free observed data. We added a 
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gaussian noise with zero mean, standard deviation of 0.06, and an exponential correlation with 

a length of 5 cells, as shown in Figure 3.3b. We represented this uncertainty in the observed 

data by 5000 realizations of the map. 

 

Figure 3.3: 2D case – observed data. The noise-free data is in (a), and the perturbed observed data is in 

(b). 

Based on partial data about the synthetic truth model, we created a large initial 

ensemble of 5000 simulation models. At the location of each well, we sampled the porosity 

from a low variance distribution (𝜎𝜙𝑤𝑒𝑙𝑙𝑠 ≈ 10−4), whose mean was the actual value shown in 

Figure 3.2a. Using this available information, we generated the models by applying a simple 

Gaussian Simulation. We used an exponential correlation model with a range of six cells, in 

which the maximum standard deviation was roughly 0.05. Figure 3.4a and b show the prior 

porosity mean and standard deviation maps, respectively. 

 

Figure 3.4: 2D case – maps of the prior mean (a) and standard deviation (b) of the porosity field. 

 

3.5.2 Field-scale case 

We used the simulation models from the UNISIM-I-H benchmark case 

(MASCHIO, C. et al., 2013) as our field-scale example. Our motivation for testing the 

SEnRML method with local analysis in this problem is to face some of the real field application 
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challenges. The models have 14 producer wells, 4 vertical and 11 horizontal, and 11 horizontal 

injectors. Figure 3.5 shows 2D maps of the mean porosity field of layers 1, 3, 9, and 12, 

including the well placement at each layer. In this example, we calibrate the reservoir porosity, 

permeabilities at each direction, and net-to-gross ratio, each with 38,466 active points. 

Therefore, the total number of parameters is almost 200,000, whose prior uncertainty we 

represent by an ensemble consisting of 500 models. We present other characteristics of this 

example in Table 3.3. For more details about the simulation models, we refer to (MASCHIO, 

C. et al., 2013). 

 

Figure 3.5: Field-scale case – prior mean porosity distribution of the reservoir layers 1 (a), 3 (b), 9 (c), and 

12 (d), with the wells' placement. The figure only shows the completions in each layer. Not all wells are 

displayed. 

 
Table 3.3: Characteristics of the field-scale case. 

Characteristic Value 

Grid size 81 × 58 × 20 cells 

Cell size 100 × 100 × 8 𝑚 

Average porosity 0.14 

Average horizontal 

permeability 
26 𝑚𝐷 

Average vertical 

permeability 
5 𝑚𝐷 

Fluid mobility ratio 

(water/oil) 
From 0.9 to 3.0 (uncertain) 

Fluid densities 
Water: 1010 𝑘𝑔/𝑚³ 

Oil: 866 𝑘𝑔/𝑚³ 
Initial pressure 321 𝑏𝑎𝑟 

Number of active TLS data 

points 
9324 

Reservoir simulator 
IMEX version 2017 (CMG, COMPUTER MODELLING 

GROUP LTD., 2017) 
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We generated acoustic impedance variation maps after 2618 days of production 

using a reference model that is not part of our simulation ensemble. To compare the final 

parameter distribution of the different methods to the synthetic truth, we used a reference model 

on the same scale as the simulation models. Furthermore, we used a petroelastic model (PEM), 

based on Gassmann’s equation (GASSMANN, 1951), with dry-rock properties resembling the 

Hertz-Mindlin model (MAVKO; MUKERJI; DVORKIN, 2009). We estimated the fluids' 

properties using the Batzle-Wang correlations (BATZLE; WANG, 1992) and Wood’s 

equations (MAVKO; MUKERJI; DVORKIN, 2009). Our rock model includes shale and quartz 

minerals, whose proportions were estimated using the net-to-gross ratio. The average of the 

Hashin-Shtrikman bounds (HASHIN; SHTRIKMAN, 1963; apud AVSETH; MUKERJI; 

MAVKO, 2005) provided the properties of the mineral mixture. For more details regarding this 

PEM, we recommend (DANAEI et al., 2020). 

To consider the vertical seismic resolution, we upscaled the impedance variation 

data in four horizons, each comprising 2 to 4 layers of the model. Figure 3.6 depicts these 

horizons from the top to the bottom of the reservoir in (a) to (d), respectively. We perturbed the 

data with an arbitrary Gaussian noise with zero mean, standard deviation of 15
𝑔

𝑐𝑚3 ×
𝑚

𝑠
, 

horizontal correlation length of 700𝑚, and no vertical correlation. 

 

Figure 3.6: Field-scale case – maps of the observed data with added Gaussian noise. The data comprises 

four impedance variation horizons, which figures (a) to (d) depict from the top to the bottom of the 

reservoir. 
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3.5.3 Level of time-lapse seismic matching 

There are different levels at which one may perform seismic history matching, e.g., 

seismic amplitude domain, elastic domain, and pressure and saturation changes (GOSSELIN et 

al., 2003). We opted to work in the elastic domain by comparing acoustic impedance variations 

in our applications, combining pressure and saturation effects through a PEM. This domain is 

a popular option because it avoids seismic modeling in the forward simulations and circumvents 

the complicated seismic inversion to pressure and saturation fields (GOSSELIN et al., 2003). 

Fahimuddin et al. (2010b) reported that the assimilation of time-lapse seismic data, using an 

ensemble-based method in the acoustic impedance domain, provided better results than the 

amplitude domain process. However, it is also possible to incorporate TLS data by comparing 

saturation changes, with the advantage of not requiring a PEM in the forward simulation 

(KETINENI et al., 2020). 

3.6 Results and discussion 

We divide the results into two parts; the 2D case and the field-scale case, as shown 

by the two following subsections. 

3.6.1 2D case 

For the 2D case, we first discuss the large ensemble solution, followed by the small 

ensemble results, with local analysis. Then, we address the influences of the localization length, 

the local group size, and the automatic tapering formulation in the data assimilation results. 

3.6.1.1 Large ensemble solution 

Using a large ensemble, we can avoid the local analysis or the localization scheme, 

since the ensemble is large enough to deal with the known issues of low degrees of freedom 

and spurious correlations in the calibration process. We refer to this solution in this text as the 

quasi-ideal solution. 

Figure 3.7 presents the evolution of the relative data deviation (a) and the relative 

deviation of the parameters (b) throughout the iterations of SEnRML with global analysis. We 

calculate these deviations for each ensemble member using equation 3.23, where 𝜻 refers to the 

simulated variable, 𝝃 refers to the reference value for the same variable, 𝜼 is a normalization 

factor, and 𝑁𝑒𝑙 is the number of points. For instance, for the data deviation, 𝑁𝑒𝑙 = 𝑚, 𝜻 = 𝒅𝑠𝑖𝑚, 

𝝃 = 𝒅obs, and 𝜼 = 𝒅𝑠𝑡𝑑, which is a vector with the standard deviation of the measurement 

errors. For the deviation of the parameters, 𝑁𝑒𝑙 = 𝑛, 𝜻 = 𝒙𝑎 or 𝜻 = 𝒙𝑓, depending on the 
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iteration or prior ensemble, 𝝃 = 𝒙𝑡𝑟𝑢𝑒 related to the synthetic truth, and 𝜼𝑛 = 𝑥𝑡𝑟𝑢𝑒̅̅ ̅̅ ̅̅ ̅, which is 

the mean value of this type of parameter in the grid for the synthetic truth. We chose this latter 

normalization factor to avoid division by numbers close to zero in some regions. 

𝛿 =
1

𝑁𝑒𝑙
∑|𝜁𝑛 − 𝜉𝑛| 𝜂𝑛⁄

𝑁𝑒𝑙

𝑛=1

 (3.23) 

From the results of Figure 3.7, we can see that SEnRML, with global analysis, 

provided similar results to ESMDA for this problem. One would expect this similarity because 

the two methods solve just about the same problem using a large ensemble. Furthermore, it is 

possible to estimate that the calibration process converged after 4 to 5 iterations because the 

updates in both the data deviation and the parameter changes are negligible after this point. 

 

Figure 3.7: 2D large ensemble evolution of the data (a) and parameter (b) deviations throughout the 10 

iterations using SEnRML with global analysis, compared to ESMDA with distance-based Kalman gain 

localization. The data deviation measures the distance between the simulated response and the 

measurements, while the parameter deviation indicates the difference between the calibrated models and 

the synthetic truth. 

One can compare the porosity mean maps of the prior ensemble and the large 

ensemble’s final solution  (Figure 3.8a and b, respectively) as well as the standard deviation 

maps (Figure 3.8f and g, respectively). We show only the SEnRML solution because the 

differences to the ESMDA solution are nearly unnoticeable. As expected, the large ensemble 

mean porosity map is more heterogeneous than the prior distribution, following the main 

tendencies of the synthetic truth (Figure 3.2). The calibration process reduces the ensemble’s 

variability, notedly between the injectors and the producers, as these regions contain the 

parameters that are more correlated to the impedance variations caused by the water injection 

in the reservoir. 
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Figure 3.8: 2D case maps. The mean maps are at the top, and the standard deviation maps are at the 

bottom. The figure presents the prior (a and f), large ensemble (b and g), ESMDA with Kalman gain 

localization (c and h), SEnRML with distance-based local analysis (d and i), and SEnRML with automatic 

local analysis (e and j) results. 

In the next sections, we analyze the results obtained using smaller ensembles. We 

use the large ensemble results as a reference for the final distribution of the parameters, and 

assume that SEnRML and ESMDA adequately sampled the posterior parameter distribution 

using the large ensemble. It is worth mentioning that, even though the sampling-related errors 

still influence the large ensemble solutions, we neglect this influence when compared to the 

errors in the small ensemble tests. 

3.6.1.2 Small ensemble solution (100 models) 

After the run in a quasi-ideal condition in terms of sampling issues, we tested both 

algorithms using a smaller ensemble of 100 models. We were expecting worse results for both 

methods due to the sampling problems and the information loss caused by the subspace 

projection in SEnRML. Therefore, we apply local analysis with smooth data influence tapering 

in SEnRML, and Kalman gain localization in ESMDA to try to mitigate the limited-ensemble-

related problems. Also, we apply the widely known Gaspari-Cohn function (GASPARI; 

COHN, 1999) in both methods.  

Table 3.4 shows the distribution of the parameters obtained by each method 

compared to the quasi-ideal solution. We computed the relative deviations using equation 3.23, 

using the large ensemble test values as both reference and the normalization factor. We see that 

the three methods, SEnRML, with distance-based and automatic local analysis, and ESMDA, 

led to relatively close results. When comparing them with the quasi-ideal test, the deviations 

were lower than 10% in both the mean and the standard deviation. SEnRML, with automatic 
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local analysis, provided slightly better results, with a 7.6% deviation in the mean and 6.9% in 

the standard deviation. 

Table 3.4: Relative deviations of the parameter distributions in the 2D case with an ensemble of 100 

models. 

Method: SEnRML distance-based SEnRML automatic ESMDA 

Mean 0.082 0.076 0.099 

Standard deviation 0.088 0.069 0.094 

 

One can confirm the results in Table 3.4 visually from the maps in Figure 3.8. 

Figure 3.8 b, c, d, and e illustrate that the porosity mean maps are alike. One exception is the 

low porosity region in the northeast section of the reservoir. This section varies in all the cases 

with the small ensemble, and it is smaller than the quasi-ideal solution. Another noticeable 

difference in the mean maps is the high porosity region close to the northeast corner in (c) and 

(d), which does not appear in the other maps. The ESMDA results in Figure 3.8 c also exhibit 

a low porosity region in the south that is more pronounced than in the other maps. However, 

these differences are minor. 

Comparing the standard deviation maps in Figure 3.8 g, h, i, and j, we also note that 

the solutions are similar, except for some secondary aspects. First, the standard deviation maps 

obtained using 100 models in the ensemble are noisier. Also, the calibration using all three 

methods underestimated the ensemble variability in some regions between injectors and 

producers. We believe that the sampling noise in the correlation between parameters and data 

caused both issues. The local analysis scheme and the Kalman gain localization do not entirely 

negate that. The latter effect seems to be more severe in the distance-based methods, but the 

automatic scheme alleviated it. 

Figure 3.9 presents the evolution of the relative deviation of the data (a) and the 

parameters (b) throughout the iterations of the SEnRML method with distance-based local 

analysis. We compare the results to ESMDA with the distance-based Kalman gain localization. 

It is possible to notice that the approximate convergence of the method occurs around iteration 

five and that the final deviations are close to ESMDA. The SEnRML method, with distance-

based local analysis, led to slightly lower data deviation, with a lower spread. 
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Figure 3.9: 2D small ensemble evolution of the data (a) and parameter (b) deviations throughout the 10 

iterations using SEnRML with distance-based local analysis, compared to ESMDA with distance-based 

Kalman gain localization. 

The same results for the automatic local analysis scheme appear in Figure 3.10. The 

variations of the data deviation and the parameter are minor after iteration 5. Furthermore, the 

final relative deviations are slightly lower than ESMDA. 

 

Figure 3.10: 2D small ensemble evolution of the data (a) and parameter (b) deviations throughout the 10 

iterations using SEnRML with automatic local analysis, compared to ESMDA with distance-based 

Kalman gain localization. 

 

3.6.1.3 Influence of the localization lengths 

In all previous comparisons, one needed to define the localization length for the 

distance-based schemes. We chose the distances that nearly minimized the relative deviation of 

the mean and the standard deviation of the parameters when compared to the quasi-ideal case. 

To simplify this investigation, we only considered isotropic distances. We ran some data 

assimilations and varied the lengths to obtain these distances, as Figure 3.11 depicts. We notice 

that the best distance for SEnRML, with distance-based local analysis, and ESMDA, with 

distance-based localization, was of around 8 cells. Previous studies reported differences when 

comparing tapering of the ensemble anomalies and tapering of the Kalman gain matrix (CHEN, 

Yan; OLIVER, 2017). In this small 2D case, this difference was minor. However, focusing on 

the standard deviation curves in Figure 3.11, one can notice that SEnRML, with tapering of the 
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ensemble anomalies, reached a better representation of the ensemble variability with about 7-

cells range. At the same time, ESMDA, with Kalman gain localization, provided improved 

results with 8 cells. 

 

Figure 3.11: 2D small ensemble – relative deviation of the parameter distributions for different 

localization lengths. 

 

3.6.1.4 Influence of the local group sizes 

The results in Figure 3.11 are slightly different from the values in Table 3.4 because 

we used groups containing 3 × 3 cells in the tests of Table 3.4 and only one cell at a time in 

Figure 3.11. The choice of the groups’ size in the local analysis scheme is a tradeoff between 

accuracy and computational costs. It is worth mentioning that, since the group analyses are 

independent, one can alleviate the impact of the computational cost by parallelizing the process. 

Nevertheless, if we increase the size of each analysis step from the parameters in a cell for a 

group containing 3 × 3 cells, we reduce the number of individual analysis computations by 

almost one order of magnitude. Therefore, we checked how larger local groups changed the 

relative deviation in the parameter distribution and presented these results in Figure 3.12. As 

expected, there is an overall increasing trend in the relative deviation as the group size grows. 

However, this increase in the deviations seems to be relatively small for groups that are 

significantly smaller than the localization length. Hence, we opted to use groups consisting of 

3 × 3 cells in the other tests of this work. 
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Figure 3.12: 2D small ensemble – relative deviation of the parameter distributions for different group 

sizes. 

We generated the results of Figure 3.12 using distance-based tapering with 10 cells 

for the localization length with 1 × 1 cell groups. Moreover, since we compute distances from 

the group borders, we maintained the amount of data selected for each update nearly constant 

by adjusting the localization lengths for different group configurations. 

3.6.1.5 Automatic data selection and tapering formulation 

There are three aspects of the automatic data selection and influence tapering 

formulation that we needed to define for our applications. First, it was necessary to define how 

to obtain a representative tapering vector for the local groups. In the 2D case, we used the mean 

of the pseudo-distance variables for each group, which led to consistent results compared to the 

other distance-based methods. Moreover, it is necessary to define how one computes the 

correlation threshold and the pseudo-distance variable. 

Luo and Bhakta (2020) proposed two methods for defining the correlation 

threshold. The first one consisted of estimating the sampling correlation noise by shuffling the 

ensemble and computing the correlation between parameters and data. The second method 

allows for reducing the computational costs by applying an asymptotic approximation to the 

standard deviation of the correlation noise, equation 3.15, resulting in one threshold for the data 

assimilation case. We compare these two approaches in Figure 3.13, where one can note that 

the simplified procedure provided a correlation threshold close to the mean of the thresholds 

from the shuffling method. Furthermore, comparing the data assimilation results for both 
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approaches, we did not find any significant difference. Therefore, we opted to use the simplified 

method in our tests, avoiding the computation of the correlation between the parameters and 

the data using the shuffled ensemble. 

 

Figure 3.13: 2D small ensemble – a comparison of the methods for the correlation threshold. 

Luo and Bhakta (2020) suggested computing the pseudo-distance variable using 

equation 3.18. Using this formulation with a threshold of around 0.4, we obtained an evident 

selection of the data that would influence each group. The method assigned low tapering values 

in the magnitude of 10−2 to the data that would not influence a particular group, whereas it 

assigned tapering close to 1 to the data that would. 

Nevertheless, if we repeat the test with a larger ensemble, and consequently a lower 

𝜃, as in the case with, 𝜃 = 0.2, this data segregation is not as evident as before. We show the 

behavior of the tapering function for two different threshold values in Figure 3.14. We limited 

the interval to 0.5 ≤
|𝑟|

𝜃
≤ 2.5 because most of our estimated correlations lied inside this range 

in all tests. We see that the tapering using equation 3.18 is in the interval of 0.1 < 𝜌 < 0.6, 

which means that all the data would be selected with a similar weight. This result tends to limit 

the automatic tapering capability to mitigate the influence of the spurious correlations in the 

data assimilation, and it also attenuates the updates based on data that is closely related to the 

parameters. 
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Figure 3.14: Automatic tapering as a function of the ensemble correlation and the threshold. 

To investigate the influence of the tapering range at the data assimilation result in 

the 2D case, we used the definition of equation 3.18 and an ensemble of 400 models, which 

resulted in 𝜃 ≈ 0.19. Table 3.5 compares the final distribution of parameters using SEnRML 

with local analysis to the quasi-ideal solution. Differently from Table 3.4, the original 

formulation from Luo and Bhakta led to a more significant deviation than the distance-based 

scheme, notedly for the standard deviation. Although not shown in the table, the standard 

deviation values were biased towards lower values when compared to the quasi-ideal solution. 

Table 3.5: Relative deviations of the parameter distributions in the 2D case with an ensemble of 400 

models. 

Method: SEnRML  

distance-based 

SEnRML 

(Luo and Bhakta 2020) 

SEnRML  

New 

Mean 0.044 0.051 0.044 

Standard deviation 0.036 0.049 0.037 

 

To improve the data assimilation results using different ensemble sizes, we propose 

a new function to compute the pseudo-distance (equation 3.19). We obtained this function by 

fitting it to equation 3.18 with a threshold of 0.4, close to the 2D case with 100 models. 

Although the modified formulation given in (3.19) avoided a tendency to underestimate the 

final ensemble variance in our tests, we do not claim that it is optimal in any sense. This 

optimization can be addressed in future studies. 
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One could argue that the tendency to underestimate the ensemble variability in this 

test is negligible because the difference in the values in Table 3.5 are low. Nevertheless, this 

impact will be more relevant in big reservoir models with more data because there will be more 

data points with a negligible correlation to a particular group's parameters. The field-scale case 

results, which we address in the following section, will evidence this fact. 

3.6.2 Field-scale case 

In the field-scale case tests, we considered four implementations of SEnRML: the 

global update; the automatic local analysis scheme with the original formulation from Luo and 

Bhakta (2020); the distance-based scheme; and the new formulation of the automatic local 

analysis scheme. We compare the results to ESMDA, with Kalman gain localization, using ten 

iterations and constant inflation factors. For the distance-based schemes, we chose localization 

lengths of 1000 𝑚 for SEnRML and ESMDA. These choices are not optimal in any sense. In 

the automatic data selection and tapering method, the threshold is 𝜃 ≈ 0.2 and the local analysis 

groups consisted of vertical columns of 3 × 3 reservoir cells, including all the layers. 

The field test's main limitation is that we do not have a quasi-ideal solution to 

compare the local analysis methods in detail. Therefore, to compare ESMDA and the different 

SEnRML method implementations, we used the relative deviations and the parameter updates. 

We computed all these metrics using equation 3.23. The data and parameter deviations are 

equivalent to the analysis of the 2D case. When computing the deviations for the well rates, we 

used the observed data from the synthetic truth as the reference, and the arithmetic mean of the 

simulated and observed rates, summed to a small number, as the normalization factor. This 

procedure avoided amplifying the deviations due to the division by small numbers. 

In general, the methods provided similar results for the relative deviations with 

some minor differences, as we note in Figure 3.15. SEnRML with a global update, included for 

comparison, shows slightly worse results for the deviations of the data (a), the parameter (b), 

and the production rates (c and d). The two distance-based schemes provided the lowest results 

for the data deviation, whereas the automatic scheme led to slightly better results in terms of 

parameter deviation.  
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Figure 3.15: Field-scale case – comparison of the methods in terms of the relative deviation of the data (a), 

the parameters (b), the oil rate forecast (c), the water rate forecast (d), and the parameter updates (e). 

Reducing the rates-related metrics indicates that the time-lapse seismic data 

improves the production forecast, as expected, even though we did not assimilate production 

data. Nevertheless, it is not straightforward to compare the minor differences between the 

methods using these criteria because there are nonlinear interactions between the parameters 

and possible error combination effects. Furthermore, it is crucial to include production data in 

the calibration of the parameters in a complete field study and consider the well history 

matching as a model quality assessment criterium. We did not include production data in this 

study because we wanted to focus on our method's capability in handling seismic data. A 

complete field application with our method will be the focus of a future study. 

We also compare the methods in terms of the parameter updates in Figure 3.15e. 

As expected, SEnRML with global update causes more changes in the model parameters 

because it considers all the data, regardless of the distance or the correlation level. Comparing 

the two distance-based methods, one can note that SEnRML, with tapering of the ensemble 

anomalies, modifies the models more than ESMDA with Kalman gain localization. 

By changing the pseudo-distance variable's formulation in the automatic tapering 

procedure, we intended to improve the data segregation based on their correlation with the 

group parameters. The lower parameter updates in the new formulation in Figure 3.15e, when 

compared to Luo and Bhakta (2020), indicates that this change was significant. The updates 

using the new formulation were also close to ESMDA. One could argue that the Luo and Bhakta 

(2020) case updates are close to the distance-based method. Nevertheless, this similar level 

occurs because it considers all the data to update each parameter using a tapering higher than 

0.1, but it also attenuates the updates due to the highly correlated data with tapering values of 
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around only 0.55 (see Figure 3.14). Also, this tapering combination tended to underestimate the 

ensemble variance, as we discuss later in this section. 

Apart from comparing the final results, it is essential to verify the convergence 

speed of the methods. We use two metrics to analyze this: the relative data deviation and the 

parameter updates. These two variables are related to the objective function (equation 3.5). 

There was no noticeable difference between the two local analysis schemes in our tests 

regarding the number of iterations to achieve convergence. Both SEnRML implementations, 

with distance-based local analysis and automatic local analysis, seem to converge after about 

six iterations in this field example, in the sense that only minor incremental changes happen 

afterward (Figure 3.16). No significant differences were noted between the two formulations of 

the automatic schemes. 

 

Figure 3.16: Field-scale case – the evolution of the data deviation (a) and the parameter updates (b) 

throughout the iterations using SEnRML. 

Another important aspect regarding the time-lapse seismic data assimilation in this 

field-scale test is the spatial distribution of the reservoir properties and the ensemble variability 

after the calibration process. Here, we analyze these aspects using the mean porosity and the 

porosity standard deviation maps shown in Figure 3.17. As expected, all the data assimilation 

methods enhance the heterogeneity, since the prior ensemble mean map Figure 3.17a is 

smoother than all others. There are minor changes among the methods’ results, but they seem 

to capture the same main aspects of the mean porosity distribution. For instance, all methods 

increased the porosity in the center of the reservoir and diminished it in the northwest area. 

Furthermore, we identified a tendency to obtain more extreme values for the reservoir properties 

at particular regions of the model using SEnRML, as seen in the high porosity region on the 

east of the model in Figure 3.17 i and k, when compared to c. 
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Figure 3.17: Field-scale case – maps of the porosity mean and standard deviation of the first layer. The 

figure presents the prior (a and b), ESMDA (c and d), EnRML with global analysis (e and f), automatic 

local analysis with the Luo et al. (2020) formulation (g and h), distance-based local analysis (i and j), and 

automatic local analysis with the new formulation (k and l). 

The main differences among the tests occur in the standard deviation maps of Figure 

3.17. SEnRML, with the original  Luo and Bhakta (2020) formulation (Figure 3.17h), led to 

significantly lower standard deviations than the other methods with localization or local 

analysis (Figure 3.17d, j, and l). Compared to the global analysis (Figure 3.17f), the local 

analysis with the original formulation from Luo and Bhakta (2020) reduced the tendency to 

underestimate the ensemble variability. This, however, proved to be insufficient, particularly in 

the south of the reservoir, if we compare it to the other methods. The main reason for this 

behavior is that it uses all the data to update all the parameters with weights higher than 0.1 in 

our tests (Figure 3.14 for 𝜃 ≈ 0.2). 

The new formulation for the automatic scheme improved the final ensemble 

variability when compared to the Luo and Bhakta (2020) formulation (Figure 3.17l), in the 

sense that it is more comparable to the distance-based schemes, particularly ESMDA (Figure 

3.17d). The main difference between the new automatic formulation and ESMDA is the lower 

standard deviations in the southern border. It seems that the automatic scheme with our group 

configuration tended to include more data in the analysis for the border of the reservoir. 
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However, it is not clear if this inclusion is favorable to the data assimilation since a large 

ensemble solution is not available. 

The standard deviation maps of the two distance-based schemes resembled in the 

south, but SEnRML led to lower variability in the northwest and east (Figure 3.17d and j). This 

result confirms the tendency previously depicted in Figure 3.15e. The tapering in SEnRML 

with local analysis seems to assign higher weights to the data for each group update when 

compared to ESMDA with Kalman gain localization. 

The standard deviation maps of Figure 3.17 depict the general behavior of the 

uncertainty reduction and the final ensemble variability among the methods that we tested. 

Nevertheless, to provide a notion of the ensemble variability of all grid parameters throughout 

the reservoir layers, we also computed the average variance reduction compared to the prior 

ensemble. ESMDA with Kalman gain localization provided the highest final average variance, 

with 48% of the former. SEnRML, with the new automatic formulation for the local analysis, 

generated an ensemble whose variance, on average, is 39% of the former. Our distance-based 

local analysis with a 10-cell range resulted in 31% of the former variance. This result seems 

drastic in terms of variability reduction, indicating that our data tapering scheme may require 

shorter localization lengths. We also tested the distance-based local analysis scheme with an 8-

cell range, and the variance was 36% of the former on average. Furthermore, the tendency to 

generate calibrated values close to each parameter's physical limits in some reservoir regions 

influences this result. Finally, the original formulation from Luo and Bhakta (2020) for the 

automatic local analysis and the global analysis resulted in 20% and 6% of the prior ensemble 

variance, respectively. 

Despite secondary differences in the maps of Figure 3.17 and the final variance 

values, we consider that ESMDA with Kalman gain localization and SEnRML, with distance-

based and automatic local analysis, produced comparable ensembles of reservoir models. The 

field-scale application results indicate that the methods can lead to equivalent calibration 

qualities if the localization or local analysis parameters are adequately set. Nevertheless, we did 

not optimize the localization lengths in any sense in our tests because this is out of the scope of 

this study. 

3.6.2.1 Selecting data and combining the tapering coefficients for each group 

In the field-scale tests, we opted to update all the cells in a column of the reservoir 

using the same data with the same tapering vectors. In the distance-based methods, this fact 
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means that we only use the horizontal distance between the data and the cells or the group to 

select the data and compute the tapering. In the automatic local analysis scheme, it means that 

we use a single tapering vector for the data and ensemble anomalies. Therefore, we need to 

define a procedure to combine each group's pseudo-distances into a single vector. 

In the 2D case, we used the mean value of the pseudo-distance among the group's 

parameters. Nevertheless, in the 3D case, this procedure would lead to low tapering values for 

all the data’s influence because the correlation varies in the vertical direction. One could opt to 

segregate the parameters vertically to simplify the combination, but this procedure increases 

the analysis step’s computational costs. An intermediate approach could be to group only 

similar reservoir formations vertically, but this was not tested in our examples. Furthermore, a 

group configuration with vertical segregation would differ from the familiar distance-based 

format used for comparison.  

Therefore, we maintained the group distributed in vertical columns of cells and 

opted to combine the pseudo-distances by taking the 5th percentile among the group's 

parameters. We used this number because each horizon of our seismic data corresponds to about 

two simulation model layers. Since our model has 20 layers, we may assume that each horizon 

is closely related to 10% of the reservoir, but it also influences the other layers. The 5th 

percentile is related to the median of the correlations in the two layers. Therefore, the idea is to 

select all data points that influence the group, at least in the layers that correspond to the vertical 

data position. 

We compare the two automatic formulations tapering values for one group and the 

top horizon data in Figure 3.18. The Luo and Bhakta (2020) formulation (a and c) led to tapering 

greater than 0.1 and lower than 0.6, which confirms the results in Figure 3.14. The new 

formulation (b and d) improved the selection of the data related to the group by assigning 

tapering close or equal to one to the more correlated data and in the magnitude of 10−2 to less-

correlated points. 
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Figure 3.18: Field-scale case – map of the tapering for the 258th group, applied to the first horizon of the 

data. We compare the Luo and Bhakta (2020) formulation (a and c) to the new formulation (b and d). The 

result taking the 5th percentile is on the top (a and b), and the 10th percentile is on the bottom. 

Changing the percentiles for combining the pseudo-distances has a similar effect to 

reducing the localization length (Figure 3.18). Unfortunately, this variation means that there is 

still a parameter related to the automatic scheme tuned to a particular case. Nevertheless, one 

could select it without running the iterations of the data assimilation by selecting the percentile 

that would associate tapering values as high as 1.0 to the correlated data and parameters. In 

future studies, we plan to avoid this tuning by proposing an efficient way to group parameters 

considering the correlation with the data. 

3.7 Additional analysis: computational requirements with increasing data set size 

We compared the SEnRML algorithm, implemented with two local analysis 

methods to ESMDA, with Kalman gain localization for seismic data assimilation in this work. 

We showed that the SEnRML algorithm with local analysis is promising for integrating big 

data sets because the analysis equations only scale linearly with the data set size. Nevertheless, 

our tests comprised relatively small models with data sets whose sizes were roughly 103 and 

104 data points in the 2D and the field scale tests, respectively. These tests helped validate the 

SEnRML method with local analysis in seismic data assimilation by comparing it to ESMDA 

with our available computational resources. 

We will investigate the assimilation of a bigger data set, comprising TLS and 

production data, using the SEnRML method with local analysis in a future study. Nevertheless, 

we included a simple test to show our method's benefits in applications with an increasing data 

set. In this test, we performed a model update in a single iteration using ESMDA with Kalman 
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gain localization and SEnRML, with distance-based local analysis, using a 10-cell range in both 

methods. Aiming at testing these algorithms with different data set sizes, we repeated our data, 

perturbing it with random Gaussian noise, as if we acquired redundant seismic data at the same 

time. This test is not a usual TLS data assimilation problem, but it mimics the difficulties in 

handling big data sets. 

We used the ESMDA algorithm for a large number of measurements reported by 

Emerick (2016). We updated the parameters using 5000 rows of the Kalman gain at a time, to 

reduce the memory requirements at this stage of the analysis scheme. By using this 

configuration, we guarantee that the peak memory demand occurs at the initial computations 

that do not depend on the definition of the number of rows. For more details about this ESMDA 

implementation, refer to Appendix B of (EMERICK, Alexandre A., 2016). 

We start our analysis with the memory requirement, which was critical in our tests. 

Figure 3.19 depicts the memory demand of SEnRML and ESMDA with increasing data set size. 

As expected, the ESMDA requirement increased as the square of the data set size grew, 

enabling it to be tested with up to 105 data points, with our available resources. On the other 

hand, the growth of the SEnRML requirements was linear to the data size, enabling data 

assimilation of more than 3 × 105 with the same machine, demanding less than 35 𝐺𝐵. We 

also tested a faster configuration of our scheme by setting local groups of 5 × 5 columns of 

reservoir cells and reducing the 𝐸 matrix number of columns to 4𝑁. In this case, we were able 

to perform the analysis step with 6 × 105 data points and required less than 35 𝐺𝐵. This is a 

tradeoff between accuracy and computational cost because it increases the sampling error in the 

𝑪𝑑𝑑 representation and it divides the reservoir into coarser local groups. However, this tradeoff 

did not significantly impair the data or parameter relative deviation using our original field-

scale test, without data repetition, as shown in Figure 3.20. 

 

Figure 3.19: Required memory test with increased data set size. 
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Figure 3.20: Field-scale case – comparison of the relative data deviation (a) and relative parameter 

deviation (b) of SEnRML with distance-based localization and the faster implementation of this method. 

Figure 3.21 shows our CPU time test with the increasing amount of data. In this 

case, our initial configuration of SEnRML, with distance-based local analysis, was slower than 

ESMDA with Kalman gain localization. The main reason for this is that it is necessary to build 

matrices with a subset of the data and perform the SVD using them for each local group. 

Nevertheless, this computation time is not critical because the local analyses are independent, 

and one could fully parallelize them if needed. Furthermore, in our tests, the total CPU time of 

all local updates in serial computation was just a fraction of the time needed to run the forward 

reservoir simulations. Nevertheless, our method allows for performing a tradeoff between 

computation costs and accuracy by selecting fewer local groups and reducing the size of the 𝐸 

matrix. By using this faster configuration, we obtained significantly lower CPU time, 

outperforming ESMDA, even for relatively small data sets. 

 

Figure 3.21: CPU time test with increased data set size. 

Although it is not evident in Figure 3.21, the ESMDA CPU time tends to increase 

with the square of the data size. To show this, we registered the CPU time to initiate the row 



115 

 

updates in Figure 3.22. This time starts short but can increase quickly with the data size if it 

reaches more than 105 data points. 

 

Figure 3.22: CPU time test of the first part of the ESMDA algorithm. 

3.8 Summary and conclusions 

In this work, we propose a way to use local analysis with the Subspace Ensemble 

Randomized Maximum Likelihood (SEnRML) method to improve time-lapse seismic data 

assimilation. The local analysis can mitigate the influence of spurious correlations and increase 

the degrees of freedom. We apply the method in two synthetic cases involving the assimilation 

of time-lapse seismic data.  

The specific conclusions of the current work are: 

• We successfully assimilated time-lapse seismic data using an efficient implementation 

of the Subspace Ensemble Randomized Maximum Likelihood method with local 

analysis. 

• Although our test comprised relatively small reservoir models, we showed that this 

method is promising for reservoir models with big data sets because the memory 

requirement and CPU time increases linearly with the data size. These results occur 

because the equations scale linearly with the size of the data set. This characteristic is a 

significant improvement from previous methods, in which the computational costs scale 

with the square of the data set size, hindering applications with big data sets. 

• The data mismatch and the parameter mismatch results, using both the distance-based 

and the correlation-based local analysis implementations, were comparable to ESMDA 

with Kalman gain localization. These results indicate that it is possible to obtain a 

satisfactory data match using our implementations of SEnRML with local analysis. This 

fact corroborates that the data reduction obtained by projecting it onto the subspace 
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created by the deconditioned ensemble anomalies did not cause a significant 

information loss that would jeopardize the quality of data assimilation. 

• The automatic local analysis scheme implemented with SEnRML can lead to similar 

results as the distance-based methods for time-lapse seismic data assimilation. 

• We proposed a different formulation for the automatic local analysis scheme that 

improved the final ensemble’s variability results. 

• In the automatic tapering case, it was necessary to choose the tapering vector for each 

group using a percentile of the pseudo-distance distribution among the group 

parameters. The choice of this percentile may be case-dependent. However, one can 

define it without running the full data assimilation process using different values. 

Future studies intend to test the SEnRML method with local analysis in more 

complex cases, including bigger data sets and production data. Furthermore, it would be 

interesting to investigate more flexible ways to define the local groups and improve the 

formulation of the pseudo-distance variable in different situations. 

3.9 Nomenclature 

Variables 

𝟏 Vector whose elements are equal to one 

𝑎𝑠 Saturation anomalies weight 

𝒅 Data vector 

𝒈 Forward model 

𝑝 Pressure 

𝑚 Number of datapoints 

𝑛 Number of parameters 

𝑛𝑝 
Number of different types of parameters, e.g., net-to-gross, permeabilities at 

each direction, porosity 

𝑟 Correlation coefficient 

𝒘 Vector of coefficients of parameters updates 

𝒙 Vector of parameters 

𝑧 Element of pseudo-distance dummy variable 

𝒛̅ Vector of pseudo-distance dummy variable 

𝑨 Matrix of ensemble anomalies 

𝑪𝑑𝑑 Covariance matrix of measurement errors 

𝑫 Matrix of data realizations 

𝑬 Matrix of measurement perturbations 

𝑯 Matrix of innovations 

𝑯̂ Tapered matrix of innovations 

𝑰 Identity matrix 

𝓙 Cost function 

𝑁 Ensemble size 
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𝑁𝐸 Number of columns of 𝑬 

𝑁𝑒𝑙 Number of points 

𝑹 
Correlation matrix between the prior realization of parameters and simulated 

data 

𝑺 Matrix of predicted and deconditioned ensemble anomalies 

𝑺 Tapered matrix of predicted and deconditioned ensemble anomalies 

𝑆𝑤 Water saturation 

𝑼 Matrix of the left singular vectors of 𝑺 

𝑽 Matrix of the right singular vectors of 𝑺 

𝑾 Matrix of coefficients of parameters updates 

𝑿 Matrix of the ensemble of parameters 

𝒀 Matrix of predicted ensemble anomalies 

𝒁 
Matrix of eigenvectors of the modified low-rank representation of the covariance 

matrix of measurement errors 

𝜹 Relative deviation 

𝛾 Step-length parameter 

𝜺 Measurement errors 

𝜻 Simulated value 

𝜼 Normalization factor 

𝜃 Correlation threshold 

𝝃 Reference value 

𝝆 Tapering vector 

𝜎𝜖 Standard deviation of the spurious correlations 

Δ𝐼𝑃𝑁𝑂𝑅𝑀 Normalized acoustic impedance variation (dimensionless) 

𝚲 
Matrix of eigenvalues of the modified low-rank representation of the covariance 

matrix of measurement errors 

𝚷 Projector that subtracts the mean and normalizes parameters or data matrices 

𝚺 Matrix of the singular values of 𝑺 

 

Subscripts 

𝑐 Datapoint 

𝑖 Initial value 

𝑗 Ensemble-member 

𝑘 Local analysis group 

𝑙 Parameter elements in the local analysis group 

𝑛 Points in a vector of data or parameters 

𝑁 Indicates that the size is equal to the ensemble size 

𝑁Λ Indicates that the size is equal to the number of remaining eigenvalues 

 

Superscripts 

𝑎 Updated, also known as posterior or analysis result 

𝑓 Prior, also known as background 

𝑖 Iterations 

𝑜𝑏𝑠 Observed data 
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𝑠𝑖𝑚 Simulated data 

𝑡𝑟𝑢𝑒 “True” value of the parameters 
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4.1 Abstract 

There is a growing interest in applying quantitative methods to adjust reservoir flow 

models using time-lapse seismic data. The most common approach relies on a petroelastic 

model to convert the flow simulator outputs into acoustic impedance. The comparison of this 

simulated data with the observed time-lapse seismic anomalies enables the computation of 

changes in the reservoir models' parameters, reducing the uncertainty, and improving the 

reservoir characterization. Among other properties, the petroelastic model requires fluid models 

capable of forecasting the speed of sound. This fact becomes more challenging when the oil is 

volatile and contains a significant amount of CO2, which is the case in some reservoirs in the 

Brazilian pre-salt region. In this situation, some classical models fail to predict the speed of 

sound in the oil phase within reasonable accuracy. Other models require testing for specific 

fluids or are not conveniently build to the integration with actual compositional reservoir 

simulators. Therefore, we propose the application of a calibrated cubic equation of state to 

represent the fluid behavior for both reservoir flow and petroelastic simulations. For this 

purpose, we describe a methodology in which the fluid model is progressively adjusted using 

reservoir engineering and speed of sound experimental data, depending on the available 

information. We applied this methodology using the well-known Peng-Robinson equation, but 

similar results could be obtained with other models of this class. We show that the match to the 

conventional pressure-volume-temperature data, a common practice in reservoir engineering, 
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can be enough to generate fluid models capable of forecasting the speed of sound. Furthermore, 

the speed of sound experimental data can improve fluid characterization without jeopardizing 

the previous fitted experiments. We tested our methodology with experimental data of a fluid 

of one reservoir in the Brazilian pre-salt region. Moreover, we compared the results obtained in 

the equation of state with other published correlations and simplified models. Synthetic 

reservoir models with different production strategies were applied in these comparisons. 

 

Abbreviations: 

AAD – average absolute deviation 

AADS – average absolute deviation with sign 

EOS – equation of state 

GOR – gas-oil ratio 

MMP – minimum miscibility pressure 

PEM – petroelastic model 

PR – Peng-Robinson 

PVT – pressure-volume-temperature 

SRK – Soave-Redlich-Kwong 

 

Keywords: 

Speed of sound; cubic equation of state; hydrocarbon fluid; petroelastic model 
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4.2 Introduction 

4.2.1 Motivation 

The reservoir flow models are a vital tool for the decision-making process in oil 

production projects. Different kinds of data are used to calibrate these models and reduce the 

uncertainties in the production forecasts (OLIVER, D. S.; REYNOLDS; LIU, 2008). 

There is a growing interest in applying time-lapse seismic quantitatively to adjust 

the reservoir models (DA NÓBREGA; DE MORAES; EMERICK, 2018; EMERICK, 

Alexandre A., 2016; LE RAVALEC et al., 2012; LYGREN et al., 2003; MACBETH; 

FLORICICH; SOLDO, 2006; STEPHEN, Karl D. et al., 2006; YIN; FENG; MACBETH, 

2019). In usual data assimilation workflows, the simulated and observed seismic data are 

compared in the same domain, and the deviations are used to correct the models' parameters. 

For this purpose, it is common to apply a petroelastic model to convert the pressure and 

saturation fields to seismic attributes, such as acoustic impedance (FAHIMUDDIN; 

AANONSEN; SKJERVHEIM, 2010b; GOSSELIN et al., 2003; SAGITOV; STEPHEN, 2013). 

On the other hand, the seismic signal is inverted to the same domain, enabling a direct 

comparison.  

In addition to the mineral's distribution and rock properties, the information about 

the fluid properties, namely the density and the speed of sound or bulk modulus, is necessary 

to build a petroelastic model capable of predicting the impedance changes caused by the fluid 

movements inside the porous media (AVSETH; MUKERJI; MAVKO, 2005; MAVKO; 

MUKERJI; DVORKIN, 2009). Different correlations for the speed of sound in the oil phase 

were proposed for application in these models. Batzle and Wang (1992) proposed several 

correlations for the elastic properties of fluids, which are widely applied in time-lapse seismic 

analysis. Nevertheless, they were not developed for volatile oils with significant amounts of 

dissolved CO2. Furthermore, Han et al. (2012, 2013) presented an empirical correlation for the 

speed of sound in hydrocarbon liquids with high CO2 content. However, their correlation was 

not conveniently built to integrate with compositional reservoir simulators, and they require 

testing for application with specific oils. 

Projects in some of the main reservoirs in the Brazilian pre-salt area often produce 

oils with large amounts of dissolved CO2 and natural gas (DE SANT´ANNA PIZARRO; 

BRANCO, 2012; PETROBRAS, 2015). The classical models, such as the Batzle-Wang 

correlation, are not suited for this kind of fluid (ALTUNDAS, Bilgin et al., 2017; TAHANI, 
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2012). Furthermore, in this situation, the use of compositional reservoir simulation is usually 

required. In such formulation, cubic equations of state are traditionally applied to represent the 

fluid behavior. 

Since the famous van der Walls equation (1873), other authors proposed different 

cubic equations, mainly intending to improve liquid-phase molar volume predictions. Redlich 

and Kwong (1949) presented the first cubic equation with a global use and was considered by 

many authors the first modern equation of state, also known as RK. Soave (1972) proposed a 

modification on the original RK equation to improve the accuracy of pure-component vapor 

pressures, this new equation is usually referred to as Soave-Redlich-Kwong, or SRK equation. 

Peng and Robinson (1976) proposed their equation of state intending to correct the liquid-phase 

densities predicted using SRK, which are, in general, low. In 1978 they presented a modification 

of the original equation, which is the most frequently used equation of state, including in 

compositional reservoir simulation (ROBINSON; PENG, 1978). 

Previous studies address the application of the Peng-Robinson equation of state to 

predict the speed of sound in the oil phase (DARIDON et al., 1998; SALIMI; BAHRAMIAN, 

2014; TAHANI, 2012). However, difficulties have been reported to represent the behavior of 

this variable in liquids, especially in heavy oils, (PICARD; BISHNOI, 1987; SALIMI; 

BAHRAMIAN, 2014). Some of these issues could be alleviated if experimental or field data 

were used to calibrate the EOS (equation of state) parameters. Furthermore, other equations of 

state, especially the SAFT-BACK, have achieved better performance in predicting the speed of 

sound in liquids (SALIMI; BAHRAMIAN, 2014; TAHANI, 2012). Nevertheless, they were 

not tested in this work, because this kind of EOS is still absent in popular reservoir engineering 

software, hindering field applications. 

Other researches focus on the use of the speed of sound experimental data to 

calibrate the equation of state (SHABANI; RIAZI; SHABAN, 1998; YE et al., 1991). Since 

there is a level of uncertainty in the EOS parameters of multicomponent mixtures, calibration 

using experimental data of the oil is usually necessary (PEDERSEN; CHRISTENSEN; 

SHAIKH, 2015). Here, we consider the speed of sound data as one of the sources of information 

to characterize the fluid for both reservoir engineering and seismic applications. 

To our knowledge, there is no published work addressing the sequential 

improvements of the EOS using specific field data, full pressure-volume-temperature (PVT) 

data, and speed of sound experimental data for the reservoir flow simulation and acoustic 

impedance changes. One noteworthy effort was performed by Barreau et al. (1997), who tuned 
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the Peng-Robinson EOS using part of experimental data on a condensate gas, and the authors 

were able to predict the speed of sound values with an average deviation of 2.8%. 

In this work, we apply the same Peng-Robinson cubic EOS in both the reservoir 

and the petroelastic models. We show that, following a classical reservoir engineering 

workflow, it is possible to obtain an EOS capable of predicting the speed of sound in the oil 

phase with an accuracy comparable to some of the best results reported in the literature for this 

kind of fluid. Our results, regarding an oil similar to a specific pre-salt reservoir, demonstrate 

that it is possible to further improve the EOS by calibrating its' parameters using experimental 

speed of sound data, without impairing the PVT and specific field data matches. In our case, 

the speed of sound data act as supplementary information to the EOS calibration process. 

Therefore, we propose a straightforward methodology to develop a fluid model based on a cubic 

EOS to be applied to both reservoir flow and acoustic impedance simulations. 

We address the practical implementation of the De-hua Han correlation and the 

Peng-Robinson EOS in a reservoir engineering workflow using commercial tools (CMG, 2017, 

2015). Some simplified models were also tested. Since the Peng-Robinson EOS is already 

implemented in the commercial flow simulators, the rigorous equations may be readily coupled 

with their outputs to represent the impedance changes, due to the fluids' movement in the porous 

media. We compared the EOS' results with experimental data and other models, using simple 

synthetic reservoir models. 

4.2.2 Objectives 

The objectives of this work are: 

• Show that it is possible to use the EOS model obtained after the conventional reservoir 

engineering calibration in the petroelastic models of pre-salt projects. 

• Show that it is possible to improve the EOS by calibration with experimental speed of 

sound data, without impairing other data matches. 

• Test the application in simplified models. 

• Propose a practical methodology to simulate both the fluid flow and the impedance 

changes in the reservoir, using commercial tools and the Peng-Robinson EOS, calibrated 

to the available data in pre-salt projects. 
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4.2.3 Organization 

The remainder of the text is organized as follows. The second section presents, in 

brief, the methods that we tested for computing the speed of sound in the oil phase. In the third 

section, we explain our methodology to model the fluid for both reservoir flow and petroelastic 

simulations. The fourth section includes information about the fluid that we studied and the 

available data. Due to confidentiality clauses, we show limited information about the latter. 

Section five contains a description of our test cases, whereas section six presents our results and 

some discussions. The conclusions of this work are in section seven. A list of symbols is shown 

after that. 

4.3 Methods to represent the speed of sound in oil phase 

We analyzed three of the available methods to represent the speed of sound in the 

oil phase. The first was the direct derivation of the speed of sound using the Peng-Robinson 

EOS (PENG; ROBINSON, 1976; ROBINSON; PENG, 1978). The second was the De-hua Han 

correlation (HAN; SUN; LIU, 2012, 2013), based on experimental data using fluids that are 

similar to the one applied in this work. The last was the Batzle-Wang correlation (BATZLE; 

WANG, 1992), one of the most popular models used to simulate the fluid behavior in time-

lapse seismic studies (AVSETH; MUKERJI; MAVKO, 2005). 

One could adopt some simplifications of the previously cited models, aiming at 

facilitating their implementation based on the outputs of the compositional reservoir simulator, 

at the cost of increased deviations. The general hypothesis to simplify the models is that the 

compositional changes in the porous fluids will not impact their behavior significantly during 

the simulation. By assuming that, some variables that would demand extra computations 

become approximately constant. The drawback will occur when the reservoir fluids’ 

composition changes dramatically. We test two possible simplifications: the constant 𝛾 

formulation and the constant gas content in De-hua Han correlation. We present more 

information about these models in sections 4.3.2 and 4.3.4, respectively. It is valid to highlight 

that the use of these simplifications is optional, and the full-fledged models should be applied 

when the accuracy of the simplified versions is not confirmed to the particular case. 

We describe the formulation of the applied methods in the following subsections. 

We do not intend to provide a comprehensive explanation of each technique. Only the general 

aspects and equations will be shown to provide a basis for specific discussions. The definition 

of each symbol is presented at the end of the manuscript. 
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4.3.1 Peng-Robinson EOS 

In this section, we show the equation of state formulation we have applied to obtain 

the speed of sound forecasts. We chose to work with the Peng-Robinson EOS (PENG; 

ROBINSON, 1976; ROBINSON; PENG, 1978), but similar results should be accomplished 

using other cubic equations, such as Soave–Redlich–Kwong (SOAVE, 1972).  

The Peng-Robinson equation of state considering volume translation 

(PÉNELOUX; RAUZY; FRÉZE, 1982) is shown in equation (4.1). 

𝑃 =
𝑅𝑇

(𝑉̅ + 𝑐 − 𝑏)
−

𝑎 [1 +𝑚(1 −
𝑇0.5

𝑇𝑐
0.5)]

2

(𝑉̅ + 𝑐)(𝑉̅ + 𝑐 + 𝑏) + 𝑏(𝑉̅ + 𝑐 − 𝑏)
 

(4.1) 

Each parameter in the equation is defined for a component in equations (4.2), (4.3), (4.4), and 

(4.5). 

𝑎 = 0.45724
(𝑅𝑇𝑐)

2

𝑃𝑐
 (4.2) 

𝑏 = 0.0778
𝑅𝑇𝑐
𝑃𝑐

 (4.3) 

𝑚 = 0.37646 + 1.54226𝜔 − 0.26992𝜔2   ;    𝜔 ≤ 0.49 (4.4) 

𝑚 = 0.379642 + 1.485030𝜔 − 0.164423𝜔2 + 0.0116666𝜔3   ;    𝜔 > 0.49 (4.5) 

The speed of sound in the fluid is obtained using equation (4.6). 

𝑣𝑃𝑂 = √
𝐶𝑃

𝐶𝑉𝜌𝑐𝑇
 (4.6) 

The specific heat ratio, 𝛾 is defined as (4.7). 

𝛾 =
𝐶𝑃
𝐶𝑉

= 1 −
𝑇

𝐶𝑉

(
𝜕𝑃(𝑇, 𝑉̅)
𝜕𝑇

)
𝑉

2

(
𝜕𝑃(𝑇, 𝑉̅)

𝜕𝑉̅
)
𝑇

 (4.7) 

The heat capacity at constant volume is obtained from (4.8). 

𝐶𝑉 = (
𝜕𝐻𝑖𝑑

𝜕𝑇
)
𝑃

− 𝑅 −
𝑚𝑎(1 +𝑚)

4√2𝑇0.5𝑇𝑐
0.5𝑏

ln {
𝑉̅ − [(−1 + √2)𝑏 − 𝑐]

𝑉̅ − [(−1 − √2)𝑏 − 𝑐]
} (4.8) 
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Since we represent the oil by a mixture of pseudo-components, we must apply 

mixing rules (PEDERSEN; CHRISTENSEN; SHAIKH, 2015) to compute the parameters of 

the equations (4.1), (4.6), (4.7) and (4.8). Note that the critical properties and molar weights of 

the pseudo-components and the interaction coefficients of the mixing rules exhibit a level of 

uncertainty. This uncertainty justifies the calibration of the model using experimental and field 

data. 

4.3.2 Constant 𝜸 simplification 

To avoid computing equations (4.7) and (4.8), in practical applications, one could 

adopt the simplifying assumption that the specific heat ratio, 𝛾, is constant. Thus, the two 

variables of equation (4.6), namely the oil density and the oil compressibility at a constant 

temperature, are the only necessary information to obtain the speed of sound in the 

corresponding phase for the whole reservoir grid. This assumption greatly simplifies the 

computations based on commercial reservoir simulators, since 𝜌 and 𝑐𝑇 are two common 

outputs to these programs. However, it is well known that 𝛾 will vary, especially when the 

composition of the fluid changes in the porous media. We show the impact of this on the time-

lapse seismic response in section 4.8.1.3. 

4.3.3 De-hua Han correlation 

Han, Sun and Liu (2012) measured the changes in the density and speed of sound 

in the fluid caused by CO2 in a mixture with oil over a pressure range of 20𝑀𝑃𝑎 ≤ 𝑃 ≤

100𝑀𝑃𝑎 and a temperature range of 40°𝐶 ≤ 𝑇 ≤ 100°𝐶. They proposed in (HAN; SUN; LIU, 

2013) an empirical model for the speed of sound that is represented by the equation (4.9). 

𝑣𝑃𝑂 = 𝑣𝑜𝑖𝑙+𝑔𝑎𝑠 − Δ𝑣𝑜𝑖𝑙+𝐶𝑂2 + 𝐶𝑜𝑖𝑙+𝑔𝑎𝑠+𝐶𝑂2

= 𝑣𝑜𝑖𝑙+𝑔𝑎𝑠 − (𝑣𝑑𝑒𝑎𝑑 𝑜𝑖𝑙 − 𝑣𝑜𝑖𝑙+𝐶𝑂2) + 𝐶𝑜𝑖𝑙+𝑔𝑎𝑠+𝐶𝑂2 

(4.9) 

In equation (4.9), 𝑣𝑜𝑖𝑙+𝑔𝑎𝑠 is the speed of sound in the oil with dissolved 

hydrocarbon gas, 𝑣𝑑𝑒𝑎𝑑 𝑜𝑖𝑙 pertains to the gas-free oil, 𝑣𝑜𝑖𝑙+𝐶𝑂2 pertains to the oil with dissolved 

CO2 and 𝐶𝑜𝑖𝑙+𝑔𝑎𝑠+𝐶𝑂2 is a correlation variable defined in equation (4.10). 

𝐶𝑜𝑖𝑙+𝑔𝑎𝑠+𝐶𝑂2 = 𝐶𝜌0𝐶𝐺𝑂𝑅

= (1.6457𝜌0 − 1.3174) [
𝐺𝑂𝑅𝐶𝑂2
600

(1 +
500

𝐺𝑂𝑅𝐶𝑂2 + 1
)] 

(4.10) 

Among the necessary data to compute the variables in equations (4.9) and (4.10), 

we highlight the Gas-Oil Ratio (GOR), the CO2-Oil ratio, the specific gravity of oil, and the 
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specific gravity of hydrocarbon gas. These properties change with composition and are not 

necessarily computed in the compositional simulation of fluid flow in the reservoir. This fact 

may add some difficulties in coupling its results with the petroelastic model built based on the 

so-called De-hua Han method. 

4.3.4 Constant gas content and composition in De-hua Han method simplification 

Aiming at avoiding the tedious external computations that may be necessary to use 

the De-hua Han method with commercial compositional reservoir simulation tools, one could 

assume the simplifying hypothesis of constant gas content and composition in the reservoir. 

Thus, the GOR and specific gravities could be estimated at a particular condition and would 

remain unchanged at different times and positions. Nevertheless, when the composition of the 

oil changes in the reservoir, the amounts of gas in solution and its properties will vary. We show 

the impact of this model imperfection in the test of section 4.8.1.3. 

4.3.5 Batzle-Wang equations 

Batzle and Wang (1992) proposed correlations to compute the elastic properties of 

fluids that are widely applied in time-lapse seismic studies. Here, we use their method to 

estimate the speed of sound in the oil phase to compare with the other formulations and the 

experimental data. In this work, we call it the Batzle-Wang model. 

Accordingly to Batzle and Wang (1992), the speed of sound in the oil phase can be 

computed using equation (4.11), where the pressure is in MPa, and the temperature is in °C. 

𝑣𝑃𝑂 = 2096(
𝜌′

2.6 − 𝜌′
)

0.5

− 3.7𝑇 + 4.64𝑃

+ 0.0115 [4.12 (
1.08

𝜌′
− 1)

0.5

− 1]𝑇 × 𝑃 

(4.11) 

The so-called pseudo-density, 𝜌′, is a correlation variable defined in equation 

(4.12), where 𝜌0 is the specific gravity of the oil, 𝐵𝑜 is its formation volume factor, and 𝑅𝑠 is 

its gas solution ratio (STANDING, 1962; apud BATZLE; WANG, 1992), which are 

dimensionless. These variables also change with composition and require an additional external 

calculation to adapt the output from the compositional reservoir simulator to the petroelastic 

model. 

𝜌′ =
𝜌0
𝐵𝑜
(1 + 0.001𝑅𝑠)

−1 (4.12) 
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4.4 Fluid characterization methodology 

Our methodology has a general aim of defining a single equation of state to be used 

in the reservoir flow simulation and to represent the speed of sound in the hydrocarbons. We 

focused our analysis on the oil phase because it is considered more challenging to characterize 

using this kind of model when compared to the gas phase in the porous media. The methodology 

comprises four steps, namely: equation of state and pseudo-components choice, data 

assimilation, PVT and flow behavior analysis, and speed of sound simulation analysis. The 

general methodology is shown in Figure 4.1. Each of these steps is described in the following 

subsections. 

 

Figure 4.1: General fluid modeling methodology. The equation of state and the pseudo-components are 

chosen in step 1. The data assimilation process is performed in step 2. The PVT and flow behavior are 

simulated and analyzed in step 3. The speed of sound and petroelastic simulations are done in step 4. 

 

4.4.1 Equation of state and pseudo-components choice 

A proper phase behavior prediction of oil and gas mixtures is an important task for 

effectively characterizing the reservoir fluids. In the petroleum industry, most of the 

calculations of pressure-volume-temperature (PVT) relation are based on Peng-Robinson cubic 

equation of state with Péneloux's volume translation. However, the commercial tools commonly 

provide options to work with other cubic equations, such as the SRK equation. It may be 

considered equivalent to the former for reservoir engineering purposes. 

A reservoir fluid is a complex mixture of hydrocarbons and other components, such 

as N2, CO2, and H2S and its complete characterization can consist of more than 80 components 

and pseudo-components (PEDERSEN; CHRISTENSEN; SHAIKH, 2015). Thus, to perform 

phase equilibrium calculations it is necessary to reduce this number of components. This 

process is usually known as lumping or pseudoization and requires a proper decision of how to 

group the components. In compositional reservoir engineering simulation studies, the lumping 
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procedure is highly dependent on the dynamic evaluations to be performed and a balance 

between computational performance and fluid representation is mandatory. 

In general, when gas is injected into the reservoir, a complex mass transfer occurs 

between oil and gas. Thus, the pseudoization process needs to be carried out without 

oversimplification of the light components, since this can jeopardize the expected interaction 

between injected gas and reservoir oil. On the other hand, if an immiscible fluid is injected and 

the reservoir pressure can be maintained above the saturation pressure, a more aggressive 

lumping scheme can be adopted for the same reservoir fluid. 

As a practical workflow for establishing an effective fluid pseudoization, we can 

begin with an aggressive simplification as a starting point, which represents the maximum 

performance solution for the problem. Then, after checking the PVT experimental results 

consistency, numerical reservoir simulation in the same conditions, to be expected in the 

development plan, can be conducted. In sequence, a more moderate lumping scheme can be 

tested, and the same checks performed until no significant changes in the numerical results are 

observed. By doing so, we can choose the number of pseudo-components that tends to balance 

both performance and compositional representation. 

4.4.2 Data assimilation 

In reservoir engineering applications, the equation of state is usually calibrated 

using experimental and field data before it is incorporated into flow simulators. During an oil 

field production life, increasing amounts of information become available and can be used to 

reduce the uncertainty in the fluid models. In this study, we consider the application of the EOS 

with four levels of accuracy: without experimental information, isolated information, full PVT 

analysis, and full PVT with speed of sound data. The three former cases are well established in 

reservoir engineering practice, and we briefly cite the definition and calibration processes. In 

our methodology, the analysis of the four cases is useful to determine at which point the fluid 

model is already suitable for speed of sound calculations. 

In the former case, while no experimental data is ready, tabulated data available in 

the literature (FIROOZABADI, 1999) are used to compute the EOS parameters. After that, in 

the initial stages of a field study, including the exploratory phase, some isolated information 

regarding the fluid behavior may become available before the full PVT analysis is performed. 

These data include saturation pressure and GOR, which may be used to improve the fluid 

model. Later, a full PVT dataset is ready to use. This is commonly available in the development 
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and management phases of oil production projects. Therefore, in a conventional reservoir 

engineering workflow, the EOS is calibrated with this amount of information.  

The reservoir engineering software provides tools to use the data mentioned so far 

to calibrate the equation of state parameters. The engineer must select the uncertain variables 

to determine, which usually include binary interaction coefficients and the properties of the 

heavier pseudo-components, such as molar weights and critical points. After selecting the 

parameters, the commercial tool performs a multivariable regression. Then, before the model 

is considered acceptable, the engineer checks the match's quality and the admissibility of the 

changes. For more details about this process, please refer to (PEDERSEN; CHRISTENSEN; 

SHAIKH, 2015). 

It is possible to improve the fluid models, especially for time-lapse seismic studies, 

using speed of sound experimental data. In a reservoir engineering perspective, when compared 

to PVT data, this information is uncommon. However, we show that it can be applied to 

improve the speed of sound predictions and reduce the uncertainty in the EOS parameters. Since 

the speed of sound is not a standard data, this calibration is not included in the reservoir 

engineering commercial tools. Therefore, we propose to perform this calibration in the iterative 

process shown in Figure 4.2 and described by the following steps: 

1. Generate multiple EOS varying the uncertain parameters. 

2. Calibrate each new EOS using the available PVT data. Since this is an inverse 

problem, this will lead to a set of different EOS that reasonably matches the 

experimental data. 

3. For each model, simulate the speed of sound experiment. 

4. The simulations of the speed of sound are compared with the speed of sound 

observed data. If the error level is ok, store the best EOS and end the process. If 

not, proceed to step 5. 

5. Select the uncertain parameters with the highest variance and the highest correlation 

with the speed of sound results. 

6. Estimate the parameter values to set the equation (A.2) to zero and go back to step 

2. 
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Figure 4.2: Process of calibration with speed of sound data. An ensemble of EOS with different initial 

parameters are generated in step 1. 

Each EOS is calibrated using PVT data in step 2. These EOS are used to simulate 

the speed of sound in step 3. The previous results are compared with the speed of sound data in 

step 4. If the error is within the tolerance range for at least one EOS, the process is finished. If 

not, the uncertain parameters of the EOS are selected in step 5. These parameters are calibrated 

using the speed of sound data in step 6. The process then returns to step 2. 

𝐴𝐴𝐷𝑆 =
1

𝑁𝑑
(∑

|𝑑𝑠𝑖𝑚,𝑖 − 𝑑𝑜𝑏𝑠,𝑖|

𝑑𝑜𝑏𝑠,𝑖

𝑁𝑑

𝑖=1

) × [
∑ (𝑑𝑠𝑖𝑚,𝑖 − 𝑑𝑜𝑏𝑠,𝑖)
𝑁𝑑
𝑖=1

∑ |𝑑𝑠𝑖𝑚,𝑖 − 𝑑𝑜𝑏𝑠,𝑖|
𝑁𝑑
𝑖=1

] (4.13) 

Note that the definition of Average Absolute Deviation with Sign, AADS, in 

equation (A.2) is very similar to AAD (Average Absolute Deviation), which is commonly used 

to quantify the deviation between the model and the experimental data. However, we opted to 

differentiate models that tend to overestimate or underestimate the speed of sound in the oil 

phase, by setting positive or negative values to AADS, respectively. Moreover, by using AADS, 

we highlight the close to linear behavior of our problem in the working range. Nevertheless, 

one could opt to minimize the AAD, which is equivalent to setting the AADS to approximately 

zero, and perhaps this is the more conventional way to formulate the problem. 

The objective of the workflow shown in Figure 4.2 is to generate a fluid model that 

is capable of representing all the available data: the full PVT data set and the speed of sound 

measurements. A direct multivariate regression could be applied to obtain models calibrated to 

these data. Nevertheless, we opted to adapt the methodology to use commercial tools that lack 

this option because we believe that this would facilitate immediate field applications. 
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Once the calibrated EOS is available, the fluid model can be tested in both the 

reservoir flow simulator and the petroelastic model. These tests will be covered in the following 

subsections. 

4.4.3 PVT and flow behavior analysis 

After the fluid model calibration, it is important to check the reservoir production 

forecast behavior. The specific objective of this step is to detect significant differences in fluid 

behavior and analyze their plausibility. If this is part of a practical project, the reservoir flow 

model may be used as a framework to test the fluid model behavior. One way to perform this 

is to analyze the oil, gas, and water production forecasts using each fluid model. If there is 

production data (history), it may be used to validate the models. If the equations of state were 

calibrated using PVT or PVT with speed of sound data, one should expect low model deviations 

between the model and the field data, if the errors of the reservoir model are neglectable. 

However, major differences may be observed due to fluid models calibrated using only isolated 

data or no data at all. 

When the development plan project considers miscible gas injection as a recovery 

method, it is crucial to check the miscibility behavior, apart from the regular PVT information. 

For this evaluation, the Minimum Miscibility Pressure (MMP) is an important parameter. This 

is the lowest pressure, at a fixed temperature, in which gas and oil in contact with each other 

achieve miscibility, no matter the proportion. 

Numerical evaluations were carried out reproducing the slimtube experiment 

(RIOS, VS; SANTOS; ESPÓSITO, 2016) to investigate the different fluid models regarding 

miscible behavior. There is no universally accepted method to define the MMP from slimtube 

experiments, but a widely adopted criterion for determining the MMP is the construction of a 

graph of oil recovery factor after the injection of 1.2 pore volumes (PV) of gas against the 

injection pressure. The MMP is the pressure value at which oil recovery factor reaches 90–95% 

(RIOS, V.S. et al., 2019). 

After validating the fluid model in the flow simulation, it is ready to be used to 

compute speed of sound and acoustic impedance variations, which will be addressed in the 

following subsection. 

4.4.4 Speed of sound and acoustic impedance simulation 

At this step, the PEM is used to compute the compressional wave velocity and 

acoustic impedance changes in the reservoir, due to the pressure changes and fluid movement. 
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In this work, for comparison and validation purposes, we performed this step using different 

models: EOS, De-hua Han, simplified De-hua Han, and constant 𝛾. The Batzle-Wang model 

was not applied in impedance simulations, because its results in the initial speed of sound tests 

were not satisfactory. 

In the following subsections, we briefly describe how each speed of sound method 

can be computed from the output of the reservoir simulator. Notice that we used WinProp, Fluid 

Property Characterization Tool version 2015.10 (CMG, 2015), and GEM, Compositional & 

Unconventional Simulator version 2017.10 (CMG, 2017), both from Computer Modelling 

Group Ltd. Nevertheless, equivalent simulation studies could be performed using other 

commercial tools. 

4.4.4.1 Obtaining the speed of sound using Peng-Robinson EOS 

To obtain the speed of sound directly from the cubic equation of state that is used 

in the reservoir simulation, it is possible to apply Equation (4.6). Both the fluid density, 𝜌, and 

the fluid compressibility at a constant temperature, 𝑐𝑇, are outputs of the reservoir simulator. 

However, the specific heat ratio 𝛾 must be calculated using Equation (4.7), whose derivatives 

may be obtained analytically from Equation (4.1). The heat capacity at constant volume is 

obtained using Equation (4.8), in which the ideal enthalpy derivative may be computed from 

the equation provided by the fluid simulator. Mixing rules are applied to obtain the parameters 

for each equation. Furthermore, unit conversions are usually needed. 

4.4.4.2 Obtaining the speed of sound using De-hua Han correlation 

It is necessary to estimate GOR and specific gravities of the fluids to compute the 

speed of sound using the De-hua Han correlation. Nevertheless, these are not variables 

necessarily calculated during a compositional reservoir simulation. It is possible to export these 

results from individual sectors of the reservoir. Still, it becomes time demanding to perform this 

in full-field reservoir simulations, particularly for giant models, reaching hundreds of thousands 

or millions of active cells. Another possible solution is to obtain these variables externally, by 

computing phase equilibria in the petroelastic model code, but this significantly increases its 

complexity. It is interesting to note that similar issues would be observed in the application of 

Batzle-Wang model from the output of compositional reservoir simulations. 

In our applications, we only calculated the rigorous implementation of the De-hua 

Han correlation for isolated fluid simulations, without requiring the reading of reservoir grid 

properties. We managed to compute the speed of sound using the full-fledged De-hua Han 
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correlation in a test to compare it with the experimental data. The results are discussed in section 

4.8.1.1. 

4.4.4.3 Obtaining the speed of sound using De-hua Han correlation with constant gas content 

and composition simplification 

By considering a constant gas content and composition simplification, it is possible 

to compute the speed of sound using the De-hua Han correlation, assigning constant values to 

the GOR and specific gravities. For instance, one can use the initial conditions of the reservoir 

simulation, which are commonly known. The simplification dramatically simplifies the 

coupling of the results of the reservoir flow simulation to the petroelastic model. Still, it can 

incur higher deviations if compositional changes occur in the porous media. 

4.4.5 Obtaining the speed of sound using the constant 𝛾 simplification 

The direct application of Equation (4.6) is possible since all the terms are either 

considered constant or obtained from the outputs of the compositional simulation. The value of 

the 𝛾 can be estimated using a specific condition, for instance, the initial values in the reservoir. 

4.5 Fluid information 

We performed simulation tests of the fluid models using the available information 

about oil from one reservoir in the Brazilian pre-salt region. In this section, we briefly describe 

this fluid and available data. 

4.5.1 General fluid characteristics 

We applied our methodology to a fluid whose characteristics are presented in Table 

4.1 and were obtained from the unclassified report (PETROBRAS, 2015). The main features of 

this fluid to our application is the volatility and high CO2 content at reservoir conditions. 

 

Table 4.1: Reservoir fluid properties at the initial conditions. 

Property Value 

API 27° 

GOR 415 L/L 

Fluid temperature at reservoir conditions 90 °C 

CO2 content in gas phase 44% 

CO2 content in reservoir fluid 37% 

Oil formation volume factor ≈ 2 L/L 
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4.5.2 Experimental data and methods 

This study employed two experimental data sets provided by an oil field operator 

in Brazil. The first one comprises standard PVT measurements using reservoir oil samples. 

Classical PVT experiments, such as constant composition experiment, differential liberation 

and separator tests were performed. For details about these experiments, we refer to the third 

chapter of (PEDERSEN; CHRISTENSEN; SHAIKH, 2015). 

The second data set comprised the speed of sound in the oil phase with dissolved 

gas, under pressure and temperature conditions similar to the reservoir. The test consists of 

measuring the transit times of a known ultrasound pulse in a cell, where the fluid is kept under 

different pressures and at the reservoir temperature. This study considers only data measured 

under pressure above the bubble point to avoid changing the amount of gas content in the oil 

phase and the influence of free gas in the experiment. For more details about this kind of 

experimental equipment and procedure, we refer to (WANG; NUR; BATZLE, 1988). 

The experimental data used in this study are confidential. Therefore, the data are 

not presented, and the graphs where they appear have linearly transformed axes to vary in the 

interval [0,1]. All axes whose data have the same dimension, for instance, speed of sound, were 

transformed using the same linear relation. 

4.6 Simulation studies 

We performed two tests using the fluid models: one simulation of the speed of 

sound experiment and a 2D numerical example. In the latter, we were able to analyze the 

distortions on the time-lapse impedance variation caused by the fluid models. In order to 

compute the impedance values, a petroelastic model compatible with the information available 

regarding one pre-salt reservoir was built. In the following subsections, we provide some details 

about the reservoir flow model and the petroelastic model. 

4.6.1 Case studies description 

Our first case study was the simulation of the pressure and temperature conditions 

during the speed of sound experiment. Our objective was to determine the average absolute 

deviation of each method in representing the experimental data. 

The second case study was a reservoir simulation, which was performed to evaluate 

possible distortions in the impedance variations estimation caused by the fluid models. In a field 

application, this analysis could be performed using a 3D reservoir model, representing the 
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whole complexity of the project. Nevertheless, the objective of our test is to capture the impact 

of the fluid properties in the impedance variations and show it visually. Therefore, the 

utilization of a simplified 2D model will not affect the conclusions. 

Therefore, we applied the 37°th layer of the widely known SPE10 problem 

(CHRISTIE; BLUNT, 2001) to our analysis and upscaled the model with a flow-based 

algorithm (CHRISTIE, 1996; KUMAR et al., 1997), to obtain 15 × 55 × 1 cells with the 

dimensions 24.348 × 12.192 × 0.6096 𝑚. The model's porosity field is shown in Figure 4.3, 

where four producers are located at the corners, and one injector is at its center. The temperature 

and pressure conditions of the model were altered to represent similar conditions of the fluid in 

the pre-salt reservoir. Moreover, the relative permeability curves and rock compressibility were 

chosen to represent the behavior of a carbonate reservoir. 

 

Figure 4.3: Porosity horizontal map and well locations of SPE10 2D model. 

We used the model shown in Figure 4.3 to simulate three different production 

strategies: waterflood, gas reinjection, and simple depletion. 

4.6.2 Petroelastic model 

To perform numerical examples using different fluid models, we built a petroelastic 

model compatible with the information available regarding one pre-salt reservoir. It reads the 

data from the reservoir compositional flow simulator and computes the acoustic impedance and 

other seismic attributes at any simulation time. Our PEM used the average of the Hashin-
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Shtrikman bounds (HASHIN; SHTRIKMAN, 1963; apud AVSETH; MUKERJI; MAVKO, 

2005; MAVKO; MUKERJI; DVORKIN, 2009) to compute the effective elastic properties of 

the mixture of minerals. The dry rock properties as functions of porosity were modeled based 

on available well data. Furthermore, the pressure dependence was obtained from published 

results for similar reservoirs (COSTA et al., 2016). Finally, we determined the saturated rock 

properties using the classical Gassmann equation (GASSMANN, 1951). 

We acknowledge that measured data may diverge from the Gassmann theory. One 

of the reasons for this behavior is that Gassmann model assumes that the rock is relaxed within 

a half cycle of the seismic wave. The equilibrium assumption may not hold, mainly when one 

or more of the following conditions occur: tight porous media, rocks saturated with high 

viscosity fluids, and when ultrasound frequencies are applied (BA et al., 2016, 2017; CHENG 

et al., 2019; XU; PAYNE, 2009). Some models are aiming at handling this effect (BA et al., 

2017; XU; PAYNE, 2009). Other limitations to Gassmann’s equations are homogeneous and 

isotropic medium with well-connected pores (MAVKO; MUKERJI; DVORKIN, 2009) and no 

rock-fluid chemical interactions. Nevertheless, there are results regarding the type of reservoir 

that we are investigating that support the application of the more straightforward Gassmann 

equation to model the time-lapse seismic response (SILVA et al., 2020). 

4.7 Results and discussions 

In this section, we show the main results that were generated to support our study. 

They are presented in the order of our proposed methodology, showing the reader the steps that 

can be performed in a field application. However, we also included additional comparisons with 

other methods in order to validate our main contributions. 

4.7.1 Equation of state and pseudo-components choice 

The first step in a fluid characterization process is to select the equation of state to 

be considered in the phase behavior modeling. Then, the pseudo-components selection is a 

crucial step to build a compositional numerical model, considering the fluid characteristics and 

dynamic evaluations. In this step, the objective is to find a harmonic balance between 

computational performance and compositional representation. 

As previously mentioned, we consider PR with Péneloux's volume translation as 

our cubic equation of state, since it is good at predicting both liquid and gas phases and is the 
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most frequently used equation. Despite that, it is worth mentioning that our methodology can 

be equally applied to other cubic equations, such as SRK. 

Our reservoir fluid is a volatile oil characterized by a high CO2 fraction. Also, the 

development plan establishes that the totality of the produced gas needs to be reinjected into 

the reservoir. These two aspects provide important information for the selection of the pseudo-

components.  

The most aggressive lumping procedure needs to consider that it is suggested to 

make CO2 and methane (usually combined with a small fraction of N2) as single components 

since they are the most representative ones. The other light components up to C5 can be 

combined into one pseudo-component. The pseudo-components from C6 to C20+ (this heavy 

component can vary depending on the laboratory characterization) can be grouped in two. This 

configuration tends to be efficient in performance (since it presents only 5 components) and 

still preserves the capability of reproducing the experiments. On the other hand, if the injected 

fluid is changed and detailed control of the C2-C5 group is required, this approach can be overly 

simplified. 

To overcome the limitation mentioned above, a new lumping scheme can be 

considered, in which the light components from C2 to C5 are grouped into two pseudo-

components. Also, the medium and heavy components can be grouped into four pseudo-

components. This division, with a total of eight pseudo-components, can be more flexible to 

predict phase behavior of a more detailed fluid composition but will have an impact on the 

numerical performance. 

We started our analysis with the former lumping strategy and then verified the 

impact of increasing the complexity of the model in section 4.8.2. 

4.7.2 Data assimilation 

Using the simplest pseudo-components choice described in section 4.7.1, we started 

the data assimilation process. Since we wanted to compare the quality of the speed of sound 

forecasts in different situations, we performed the data assimilation in three stages. The EOS 

started with all parameters defined with tabulated values from the literature, which we call the 

EOS5CV0 case. Using this model, we assimilated specific field data, including oil saturation 

pressure at the reservoir temperature and the Flash GOR. This was performed using the 

commercial reservoir engineering software Winprop version 2015.10 (CMG, 2015) and the 

result is here called the EOS5CV1. In the subsequent stage, a full PVT dataset was assimilated 
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using the same commercial software, leading to the EOS5CV2 case. This information content 

is a common situation in the development and management phases of a project. Finally, the 

EOS5CV3IT4 case was obtained using the previous information and speed of sound 

experimental data of the same oil, after four data assimilation iterations (see Figure 4.2). In 

Table 4.2, we show a list of the EOS cases and the information that was available at each step. 

 

Table 4.2: Equation of state cases with 5 pseudo-components. 

Model Information 

EOS5CV0 None 

EOS5CV1 Saturation pressure and Flash GOR 

EOS5CV2 Full PVT dataset 

EOS5CV3IT4 Full PVT dataset and speed of sound experimental data 

 

In Figure 4.4, we show the comparison of the last three fluid models, using 5 

pseudo-components, in terms of PVT behavior. The EOS5CV0 results are not included in the 

figure, because they are too different from the calibrated models, and the fluid simulator failed 

to converge when calculating the experiments at some conditions. We noticed that the equation 

of state models from version 1 provides a reasonable representation of the fluid PVT behavior 

for reservoir engineering purposes. If a stricter evaluation is performed, one could point the 

exception of EOS5CV1, which incurs an AAD of 17% in forecasting the oil density, while 

EOS5CV2 and EOS5CV3IT4 exhibit 0.5% and 2.8% respectively. This points to the 

importance of using the full PVT data set to characterize the fluid. The EOS5CV1 still has high 

uncertainty, particularly in the properties of the heavy pseudo-components, which leads to 

higher deviation levels in the oil density. 

The results in Figure 4.4 show that both the EOS5CV2 and the EOS5CV3IT4 

reasonably represent the PVT behavior of the fluid. This suggests that, by applying the 

workflow presented in Figure 4.2, we were able to match both the PVT data and the speed of 

sound data. Therefore, the additional data assimilation did not jeopardize the classic fluid 

characterization process. 
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Figure 4.4: Volumetric behavior of the equations of state, based on different amounts of experimental 

data used in the calibration. All vertical axes are linearly transformed to vary in the interval [0,1] due to 

confidentiality clauses. Therefore, the vertical axes are dimensionless. 

 Figure 4.5 presents the results of the speed of sound experimental data assimilation. 

This was computed outside the commercial reservoir engineering tool because this data is rarely 

available for reservoir engineers, and the most known commercial tools lack options to deal 

with it. The parameters changed at this stage were chosen based on the variability after the PVT 

data assimilation and the correlation with the speed of sound values. Therefore, we selected the 

parameters whose uncertainty remained relatively high after the calibration using PVT data and 

that were correlated to the speed of sound. In our case, the chosen parameters were the binary 

interaction coefficients between the third and the first, the third and the second, the fifth and 

the first, and the fifth and the second pseudo-components. 

From Figure 4.5, it is possible to notice that the relations between the four selected 

parameters and the speed of sound average deviation are almost linear. This facilitates the 

assimilation process, which reached the desired level of deviation after four iterations. The 

average relative deviation of the final model, EOS5CV3IT4, was 0.35%. 
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Figure 4.5: Equation of state parameters calibration using speed of sound experimental data. 

The speed of sound variation with the pressure is shown in Figure 4.6. The results 

of the models are compared to the experimental data. The EOS5CV1 led to speed of sound 

values lower than the observed data, with an average absolute deviation of roughly 8%. 

Relatively high AAD values were expected for this model since only isolated information 

regarding saturation pressure and GOR were applied in the calibration process. This deviation 

decreases to values limited to 2.7% for EOS5CV2 when including a set of PVT experiments to 

estimate the parameters. Finally, after the iterations of speed of sound incorporation shown in 

Figure 4.6, the EOS5CV3IT4 exhibits better accuracy, with average absolute deviations of 

roughly 0.35%. 
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Figure 4.6: Speed of sound data match. The vertical axis is linearly transformed to stay in the interval 

[0,1] for confidentiality. 

At the end of the data assimilation process, we considered the EOS5CV3IT4 to be 

our best model, using the Peng-Robinson formulation, in a sense that it represents our empirical 

knowledge about the fluid. In the next section, this model and the intermediate versions are 

compared in terms of production the forecast in a reservoir simulator. 

4.8 PVT and flow behavior analysis 

After performing the complete data assimilation process, it is important to check 

the fluid flow behavior in the reservoir and how it affects the production forecasts. Intending to 

capture different aspects of the fluid behavior, we performed three simulation examples: 

waterflood, gas injection, and depletion recovery processes. In all tests, we applied a modified 

version of the SPE-10 model described in section 4.6.1. 

In Figure 4.7, we show the reservoir forecast in the waterflood experiment. We 

analyzed the cumulative oil production (Figure 4.7 a), the ratio between the gas and oil rates at 

surface conditions (Figure 4.7 b), the average reservoir pressure (Figure 4.7 c), and the 

cumulative water production (Figure 4.7 d). In this case, the well in the center injects water to 

maintain the pore-pressure. All the producers operate at a constant bottom-hole pressure of 

50000 𝑘𝑃𝑎, while the injector exhibits a bottom-hole pressure of roughly 78500 𝑘𝑃𝑎 and a 

maximum water rate at surface conditions of 0.6 𝑚³ 𝑠𝑡𝑑 / 𝑑. Despite the EOS5CV0, the 

remaining models that were calibrated in the previous step exhibited similar behavior in terms 
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of reservoir rates and pressure forecasts. Moreover, the EOS5CV1 presents minor deviations in 

the pressure forecast in comparison to the other models (Figure 4.7 c), due to the lack of 

information applied in the data assimilation process. The cause of this behavior was a slight 

difference in the compressibility of the fluid in the case where only isolated field data was 

incorporated. 

 

Figure 4.7: Reservoir forecast in the waterflood experiment. 

In the following step, we performed a gas injection experiment to capture 

compositional changes and mass transfer interaction between the injected fluid and the reservoir 

fluid, as in the behavior of the injected fluid itself. The well in the center of the reservoir injected 

gas with the same composition of the produced gas and with a maximum bottom-hole pressure 

of roughly 78500 𝑘𝑃𝑎.  

The results of the gas injection simulation are shown in Figure 4.8, where the 

cumulative water production was omitted because it is nearly zero in this kind of simulation. 

Again, as expected, the EOS5CV0 exhibits significant differences when compared to the others 

because no calibration was computed in it. Moreover, we were able to notice higher deviations 

among the other models when compared to the waterflood experiment, especially in the GOR 

of EOS5CV1 (Figure 4.8 b). This was expected for this latter model because the oil saturation 

pressure and the initial GOR are not enough to characterize the oil and gas behavior in the 

reservoir. 

Comparing the two remaining models, EOS5CV2 and EOS5CV3IT4, we see 

similar results, which indicates that the PVT dataset is enough to model the fluid behavior for 
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reservoir flow simulation purposes. The only noticeable difference occurs in the average 

reservoir pressure (Figure 4.8 c), which motivated another comparison of these models in a 

simple depletion simulation. 

 

Figure 4.8: Reservoir forecast in the gas injection experiment. 

In the following reservoir simulation test, we computed a simple depletion case, by 

closing the injector well located at the center of the reservoir. Since our objective at this point 

was to investigate the pressure differences observed in Figure 4.8 c, only EOS5CV2 and 

EOS5CV3IT4 simulation models were run. We found slight variations in the cumulative oil 

production (Figure 4.9 a), GOR (Figure 4.9 b), and average reservoir pressure (Figure 4.9 c). 

This was caused mainly because of the differences in the gas and oil compressibilities at a 

constant temperature, shown in Figure 4.9 d. This indicates that the speed of sound data may 

help calibrate the compressibilities that remain somewhat uncertain after the PVT data 

assimilation. In our case, the incorporation of the speed of sound experimental data reduced the 

oil compressibility at constant temperature and increased the gas compressibility at a constant 

temperature, when compared to the previous model. Therefore, the average reservoir pressure 

remained slightly lower when using EOS5CV3IT4 at the early times of production, while the 

porous media is saturated mainly with oil. At later times, when more gas appears inside the 

reservoir, the pressure in the simulation with EOS5CV3IT4 remains slightly higher than in the 

simulation with EOS5CV2. It is worth mentioning that this was expected because the pressure 

decline rate is inversely proportional to the overall reservoir compressibility. Nevertheless, 

despite it being considered beneficial to the reservoir characterization process, this 
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compressibility change may be secondary in a production forecast point of view, because the 

effects are minor. 

 

 

Figure 4.9: Reservoir pressure and compressibility behavior in a depletion experiment. 

In projects that apply miscible recovery strategies, it is essential to check if the fluid 

model represents the miscibility conditions adequately. Therefore, in the final simulation test, 

we analyzed the miscibility between the injected gas and the reservoir oil in a slimtube test. The 

results are highlighted in Figure 4.10, where a classical slimtube plot is presented. Again, 

EOS5CV0 was not considered due to its high distortion in the results. We can observe that all 

three models presented MMP in the investigated pressure range. However, EOS5CV1 predicted 

a lower MMP. EOS5CV2 and EOS5CV3IT4 showed similar results, as also observed in the 

previous investigations. It is essential to highlight, however, that experimental slimtube results 

would be necessary to allow a more accurate and quantitative evaluation. 
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Figure 4.10: Miscibility simulation using different EOS versions. 

The results reported in this subsection indicates that the two last models, namely 

the EOS5CV2 and EOS5CV3IT4 produce similar results when used in a reservoir flow 

simulator. Moreover, since they also reasonably match the PVT data in Figure 4.4, and the 

speed of sound experimental data in Figure 4.6, both are appropriate for reservoir production 

forecast and time-lapse seismic analysis. The results of this latter application will be addressed 

in the next subsection. 

4.8.1 Speed of sound and acoustic impedance simulation 

In this section, three simulations are presented to illustrate the application of the 

proposed fluid model in time-lapse seismic analysis. We compare the results obtained with the 

EOS5CV2 and the EOS5CV3IT4 models to two correlations from the literature: the classical 

Batzle-Wang – BW correlation (BATZLE; WANG, 1992) and the De-hua Han correlation 

(HAN; SUN; LIU, 2012, 2013). In the first simulation, the speed of sound experiment was 

reproduced to compare the models with the observed data. In the second and third, time-lapse 

seismic data from the waterflood and the gas injection applications were computed, 

respectively. The SPE-10 model, described in section 4.6.1, was used in these two latter tests. 

4.8.1.1 Pressure dependence experiment 

We simulated the speed of sound in the oil phase experiment using the four models: 

Batzle-Wang, De-hua Han, EOS5CV2, and EOS5CV3IT4. The results are shown in Figure 

4.11, and the average absolute deviations (AAD) of each model are presented in Table 4.3. 
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Based on these results, we noticed that, as expected, the Batzle-Wang model is not 

recommended for fluids similar to ours. It is volatile and contains high amounts of carbon 

dioxide, resulting in an AAD of roughly 11.3%. This finding is in agreement with previous 

studies (ALTUNDAS, Yusuf B.; CHUGUNOV; RAMAKRISHNAN, 2013; TAHANI, 2012).  

The De-hua Han model and the equation of state calibrated with PVT data reached 

similar performance, resulting in AAD between 2.0 and 2.5%, respectively. Therefore, both are 

recommended for future applications with this fluid. However, it is essential to remember that 

the equation of state approach is much less demanding in terms of straightforward coupling 

with the commercial compositional reservoir simulator, which already applies this kind of 

model. Based on these results, our best model is the EOS5CV3IT4. This finding was expected 

since this EOS was calibrated using the same experimental data shown in Figure 4.11 and 

managed to maintain the PVT match, as was presented in Figure 4.4. 

 

Figure 4.11: Batzle-Wang, De-hua Han and calibrated EOS models comparison with experimental data in 

a depletion experiment. The vertical axis is linearly transformed to stay in the interval [0,1] for 

confidentiality. 

 
Table 4.3: Average absolute deviations of the models of speed of sound in the oil phase. 

Model AAD 

Batzle-Wang 11.28% 

De-hua Han 2.00% 

EOS5CV2 2.49% 

EOS5CV3IT4 0.35% 
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Except for the Batzle-Wang correlation, the deviation results of the models 

presented in Table 4.3 are compatible with other studies regarding speed of sound in reservoir 

fluids. For instance, Daridon et al. (1998) reported an AAD of 2.5% in light oil using Peng-

Robinson equation with volumetric translation, Tahani (2012) presented AAD of less than 1% 

in reservoir oils using SAFT-BACK equation, and Dashti and Riazi (2014) reported AAD from 

1.9% to 3.8% in crude oils, at varying temperatures and pressures, using a model based on the 

extended principle of corresponding states. 

After this initial comparison of the models, we performed time-lapse seismic 

simulations using the modified SPE-10 model with two different production strategies: 

waterflood and gas injection. These results are presented in the following subsections. 

4.8.1.2 Waterflood SPE-10 experiment 

In this simulation, two acoustic impedance maps were generated using the PEM 

described in section 4.6.2, one before beginning the oil production and one after 2500 days, or 

8.3% of the pore volume injected. Three fluid models were considered for comparison 

purposes: the EOS5CV3IT4, the De-hua Han, and the simplified model with constant 𝛾. It is 

important to mention that only the simplified version of the De-hua Han model was 

implemented in a petroelastic model, coupled with the reservoir compositional flow simulator 

in our studies. This was because of the demanding calculations required to simulate a rigorous 

version of the correlation, which requires information about GOR and gas phase composition 

at surface conditions for the fluid in each reservoir cell. With our commercial compositional 

reservoir simulation, this would require time-consuming exporting and importing of grid 

properties or phase equilibria computations outside the reservoir simulator. The simplification 

adopted here was constant GOR and gas phase composition at surface conditions throughout 

the simulation. This is met in this waterflood experiment because the reservoir pressure was 

kept above the saturation point at all times, and the fluid compositions are constant inside the 

porous media. Thus, for comparison purposes, we can treat the results of the simplified version 

of the De-hua Han model, in this simulation, as equal to the original correlation. 

The results in Figure 4.12 show that the differences between the De-hua Han and 

EOS5CV3IT4 models are neglectable in terms of impedance variations forecasts in a 

waterflood simulation. Both Figures (a and b) are nearly identical. Moreover, the absolute 

deviation values are less than 5 
𝑔

𝑐𝑚3

𝑚

𝑠
, while the relative deviations are less than 2% at most of 

the points, except in a few cells where the low impedance variations cause high relative errors 
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of roughly 10%. Since the impedance variation can exhibit values of zero, we used the 

definition of relative absolute deviation (RAD), defined in equation (4.14). 

𝑅𝐴𝐷 =
2|𝑑𝑠𝑖𝑚,𝑖 − 𝑑𝑜𝑏𝑠,𝑖|

|𝑑𝑠𝑖𝑚,𝑖| + |𝑑𝑜𝑏𝑠,𝑖| + 10−6
 (4.14) 

 

Figure 4.12: Comparison of the De-hua Han and EOS5CV3IT4 models in the waterflood simulation: (a) 

De-hua Han 𝚫𝑰𝑷, (b) EOS5CV3IT4 𝚫𝑰𝑷, (c) absolute deviation, (d) relative absolute deviation. 

In Figure 4.13, we compare the constant 𝛾 simplification with the EOS5CV3IT4 

model. Again, the constant composition condition in the simulation is consistent with the 

premise of the simplification. Slight variations in 𝛾 occur due to pressure variations, but they 

have minor effects on the speed of sound and impedance results. Figures (a) and (b) are almost 

identical, and the absolute deviations are less than 5 
𝑔

𝑐𝑚3

𝑚

𝑠
 and the relative absolute deviations 

are less than 2% in most cells. The only exceptions to the latter are in the cells where the 

impedance variations are nearly zero. 
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Figure 4.13: Comparison of the constant 𝜸 and EOS5CV3IT4 models in the waterflood simulation: (a) 

constant 𝜸 𝚫𝑰𝑷, (b) EOS5CV3IT4 𝚫𝑰𝑷, (c) absolute deviation, (d) relative absolute deviation. 

The results of the waterflood simulations indicate that the models De-hua Han, 

constant 𝛾, and EOS5CV3IT4 are capable of representing the fluid behavior in this test. The 

neglectable compositional variations inside the porous media during these simulations 

influences this result. However, this condition does not hold in the case of miscible or nearly 

miscible gas injection. Therefore, we performed the same test, changing the oil recovery 

strategy to gas injection. The results are shown in the next subsection. 

4.8.1.3 Gas injection SPE-10 experiment 

The gas injection simulation was performed throughout 2500 days of production 

when 45.5% of the porous volume was injected in the reservoir. The impedance variations from 

the beginning of the simulation until day 2500 were computed using the petroelastic model. 

The same fluid models were tested: the EOS5CV3IT4, the De-hua Han with constant gas 

content and composition, and the simplified model with constant 𝛾. However, in this case, the 



151 

 

gas injection caused the hydrocarbon fluid composition to change regionally and over time. 

Therefore, we expected significant deviations between the models. 

We compare the De-hua Han model with constant gas content and composition with 

EOS5CV3IT4 in Figure 4.14. Even though figures a and b are visually similar, there are 

important differences, shown in c, caused by the simplification in the fluid model. Analyzing 

the difference between figures a and b, we notice that major deviations of roughly 50 
𝑔

𝑐𝑚3

𝑚

𝑠
 

occur at the gas front, where the oil saturation is still high, and the composition is changing. 

Another region in which significant differences occur is behind the gas front, where the gas has 

already replaced the oil. These differences, which vary between 9 and 10 
𝑔

𝑐𝑚3

𝑚

𝑠
, are due to 

deviations in the baseline map. They are less intense in the waterflood case because error 

cancelation occurs when Δ𝐼𝑝 is computed with oil existing in both times. The systematic 

deviations present in the gas injection case, using the De-hua Han model, with constant gas 

content and composition, could cause bias in a data assimilation process and, when possible, 

should be avoided. 
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Figure 4.14: Comparison of the De-hua Han with constant gas content and composition and EOS5CV3IT4 

models in the gas injection simulation: (a) De-hua Han 𝚫𝑰𝑷, (b) EOS5CV3IT4 𝚫𝑰𝑷, (c) difference of 

images, (d) absolute deviation, (e) relative absolute deviation. 

In Figure 4.15 we present the same analysis with the constant 𝛾 model, compared 

to EOS5CV3IT4. In this case, the differences are lower than in Figure 4.14. Nevertheless, 

significant deviations of roughly 10 
𝑔

𝑐𝑚3

𝑚

𝑠
 occur at the gas front, where remaining oil with 

altered composition saturates the porous media. It is important to notice that we considered an 

almost exact 𝛾𝑖 = 1.167 (dimensionless) in the simulation, leading to no error in the baseline 

map. One should be cautious using this model if there is relevant uncertainty in determining the 

representative value of 𝛾 for baseline and monitor times. 
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Figure 4.15: Comparison of the constant 𝜸 and EOS5CV3IT4 models in the gas injection simulation: (a) 

constant 𝜸 𝚫𝑰𝑷, (b) EOS5CV3IT4 𝚫𝑰𝑷, (c) difference of images, (d) absolute deviation, (e) relative absolute 

deviation. 

We tested the same fluid models in the gas injection experiment using the Elastic 

Impedance attribute defined in equation (4.15) (AVSETH; MUKERJI; MAVKO, 2005; 

CONNOLLY, 1998; MAVKO; MUKERJI; DVORKIN, 2009; MUKERJI et al., 1998).  In this 

equation, 𝐾 = (𝑣𝑆 𝑣𝑃⁄ )2, the variables 𝑣𝑃𝑜, 𝑣𝑆0 and 𝜌0 are normalization constants and were 

defined as the mean values of the baseline map using EOS5CV3IT4. The incidence angle, 𝜃, 

was 30°. We applied the normalization proposed by Whitcombe (2002) to allow the direct 

comparison with the acoustic impedance images. The objective of this analysis is to confirm 

the results presented in Figure 4.14 and Figure 4.15 using an attribute that can be more sensitive 

to changes in porous fluids. 

𝐼𝑒(𝜃) = 𝑣𝑃𝑜𝜌0 (
𝑣𝑃
𝑣𝑃0

)
1+(tan𝜃)2

(
𝜌

𝜌0
)
1−4𝐾(sin𝜃)2

(
𝑣𝑆
𝑣𝑆0

)
−8𝐾(sin𝜃)2

 (4.15) 



154 

 

In Figure 4.16, we compare the De-hua Han model with constant gas content and 

composition with EOS5CV3IT4 using the Elastic Impedance attribute. The results are similar 

to Figure 4.14, except that the new attribute highlights the fluid-related anomalies. Furthermore, 

the absolute value of the difference of the images shown in Figure 4.16 (c) is also more 

significant, reaching values higher than 50
𝑔

𝑐𝑚3 ×
𝑚

𝑠
 at the gas front and around 12

𝑔

𝑐𝑚3 ×
𝑚

𝑠
 

behind it. The same effect was observed in the comparison between the constant 𝛾 and the 

EOS5CV3IT4 in Figure 4.17. The fluid-related anomalies are more intense when compared to 

the pressure-related changes. Moreover, the absolute difference of the maps slightly increased, 

reaching values higher than 12
𝑔

𝑐𝑚3 ×
𝑚

𝑠
 at the gas front. 

 

Figure 4.16: Comparison of the De-hua Han with constant gas content and composition and EOS5CV3IT4 

models in the gas injection simulation using the Elastic Impedance: (a) De-hua Han 𝚫𝑰𝒆, (b) EOS5CV3IT4 

𝚫𝑰𝒆, (c) difference of images, (d) absolute deviation, (e) relative absolute deviation. 
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Figure 4.17: Comparison of the constant 𝜸 and EOS5CV3IT4 models in the gas injection simulation using 

the Elastic Impedance: (a) constant 𝜸 𝚫𝑰𝒆, (b) EOS5CV3IT4 𝚫𝑰𝒆, (c) difference of images, (d) absolute 

deviation, (e) relative absolute deviation. 

The results of this subsection suggest that the simplified models of De-hua Han 

with constant gas content and composition, and constant 𝛾, should be avoided when significant 

compositional changes may occur during the simulation. Despite the latter exhibiting deviations 

on a lower scale, there is a risk of higher error if the estimated 𝛾 value does not represent the 

fluid in the baseline or monitor conditions. 

When we perform the gas injection simulations, the amount of light components in 

the oil phase increases in regions when it is in contact with the injected fluid. This situation is 

more complicated than our experimental data about the speed of sound in the oil phase since a 

constant gas content was imposed during the measurements. Therefore, we expect that all of 

our models would exhibit more significant deviations than the ones that we reported here if they 

were compared with comprehensive data with varying gas contents. Furthermore, we expect 

that the EOS5CV3IT4 model would perform better than the others in this situation for two 
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reasons. First, it is more consistent with thermodynamic principles than the empirical 

correlations. Second, it is calibrated with all the available speed of sound data and PVT data. It 

is important to notice that this latter considers the variation of the volatile components' contents 

during the experiments. 

If it is possible to obtain detailed information about the speed of sound in the oil 

phase with different gas content, we recommend applying our methodology, including all the 

compositions in steps 3 to 6 of Figure 4.2. Thus, one would obtain a model that is fully capable 

of representing the real fluid in miscible gas injection projects. 

4.8.2 Additional analysis 

In order to check the applicability of our methodology with more complex models, 

we decided to repeat it selecting 8 pseudo-components instead of 5. After that, we performed 

the data assimilation process, including PVT and PVT with speed of sound data. The results of 

this process are shown in Figure 4.18, where we can notice that the final simulated values of 

the speed of sound are approximately the same. Nevertheless, it is important to mention two 

differences in this case. 

Firstly, by choosing to represent the fluid by 8 pseudo-components, we increased 

the number of uncertain parameters. Therefore, we needed to select more parameters to 

calibrate with the speed of sound data in the iterative process. Moreover, due to the higher 

complexity, the total number of iterations increased from 4, with 5 pseudo-components, to 6. 

However, this is not considered a critical issue. 

Secondly, the higher degrees of freedom of the model with 8 pseudo-components 

led to higher variability of the speed of sound results of the 2 EOS version, which are calibrated 

only with the PVT data. Therefore, we decided to use the mean result of a set of calibrated 

equations instead of working with individual results. 
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Figure 4.18: 5 and 8 pseudo-components EOS comparison. The vertical axis is linearly transformed to 

stay in the interval [0,1] for confidentiality. 

4.9 Conclusions 

In this work, we propose a methodology to characterize oil for time-lapse seismic 

analysis using Peng-Robinson equation of state calibrated with reservoir engineering and speed 

of sound data. We show that, by following this workflow, it is possible to obtain satisfactory 

models for volatile oils with high CO2 content, which are characteristics of some pre-salt 

reservoir fluids. We compared our model with experimental data and correlations from the 

literature and described some situations when each of them may be applicable. 

The main advantages of applying the EOS to speed of sound computations are: (1) 

the possibility to improve the fluid model using different information sources and (2) the 

easiness in coupling the flow and the petroelastic models using commercial tools since the same 

equations are applied for the fluid behavior. In practice, the petroelastic model with the cubic 

equation of state as a fluid model may be implemented as a plugin of a post-processing reservoir 

simulation tool. This may lead to simulations of impedance changes with one-click, facilitating 

the geophysics and reservoir engineering integration. 

The specific conclusions of our work are: 
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• Our results show that it is possible to apply the same EOS to simulate the flow in the 

reservoir and the speed of sound changes in the oil phase, after the calibration using 

PVT data (2.5% average absolute deviations). 

• Despite the favorable results that were achieved using the EOS calibrated with PVT 

data, we advocate for the acquisition of speed of sound experimental data to improve 

fluid models for both reservoir flow and petroelastic simulations. 

• Based on our PVT data assimilation results, it is possible to improve the EOS model 

using the speed of sound data, maintaining the PVT match. 

• Some simplified fluid models that consider constant gas content and characteristics may 

be applied to simulations where only slight compositional changes are expected, such 

as waterflood projects. 

• In cases with miscible gas injection with a significative 𝐶𝑂2 content, we recommend 

performing a rigorous implementation of De-hua Han correlation or using a calibrated 

equation of state. 

• In some early analysis, only isolated field data is available, such as saturation pressure, 

oil specific gravity, and flash GOR. In this situation, we recommend applying the De-

hua Han correlation to predict the speed of sound in oil phase in projects where the fluid 

characteristics are close to ours. 

• The application of Batzle-Wang correlations in other cases where the fluids are volatile 

and with significant 𝐶𝑂2 content would require specific tests to check its accuracy. In 

our tests, these correlations poorly represented the speed of sound in the oil phase, 

leading to average absolute deviations about 11.28%. 

We list the following future researches to continue developing this work:  

• Test fluid models using more extensive experimental data, including different gas 

contents. 

• Analyze the capability of the speed of sound experimental data to provide information 

regarding the fluid behavior in a gas injection flow simulation. 

• Study the uncertainty quantification considering fluid model parameters as uncertain 

attributes with different amounts of information available. 
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4.10 Symbols and nomenclature 

Variable Definition 

𝑎 and 𝑏 Equation of State parameters 

𝐵𝑜 Oil formation volume factor 

𝑐 Volume-shift parameter 

𝑐𝑇 Isothermal compressibility 

𝐶𝑃 Heat capacity at constant pressure 

𝐶𝑉 Heat capacity at constant volume 

𝑑𝑠𝑖𝑚 Simulated data 

𝑑𝑜𝑏𝑠 Observed data 

𝐺𝑂𝑅 Gas-oil ratio 

𝐺𝑂𝑅𝐶𝑂2
 Gas-oil ratio of 𝐶𝑂2 

𝐼𝑒 Elastic impedance 

𝐼𝑃 Acoustic impedance 

𝑃 Pressure 

𝑃𝑐 Critical pressure 

𝑅 Gas constant 

𝑅𝑠 Gas solution ratio in the oil 

𝑇 Temperature 

𝑇𝑐 Critical temperature 

𝑣𝑑𝑒𝑎𝑑 𝑜𝑖𝑙  Speed of sound in the oil without dissolved gas 

𝑣𝑜𝑖𝑙+𝐶𝑂2
 Speed of sound in the oil with dissolved 𝐶𝑂2 

𝑣𝑜𝑖𝑙+𝑔𝑎𝑠 Speed of sound in the oil with dissolved hydrocarbon gas 

𝑣𝑃 P-wave velocity 

𝑣𝑃𝑒 P-wave velocity normalization constant 

𝑣𝑃𝑂 Speed of sound in the oil phase 

𝑣𝑆 S-wave velocity 

𝑣𝑆𝑒 S-wave velocity normalization constant 

𝑉̅ Molar volume 

Δ𝐼𝑒 Elastic impedance difference between monitor and base times 

Δ𝐼𝑃 Acoustic impedance variation between monitor and base times 

Δ𝑣𝑜𝑖𝑙+𝐶𝑂2
 Variation of the speed of sound in the oil when 𝐶𝑂2 is dissolved 

𝛾 Specific heat ratio 

𝜃 Incidence angle 

𝜌 Density 

𝜌0 Density of the oil without dissolved gas 

𝜌𝑒 Density normalization constant 

𝜔 Acentric factor 
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5.1 Abstract  

Time-lapse seismic and well data are complementary information sources to 

calibrate reservoir models, enabling them to provide useful production forecasts. Iterative 

ensemble smoothers are a typical class of methods to solve this kind of problem. Nevertheless, 

the data assimilation workflows, including both types of data, are commonly challenging.  

Brazilian pre-salt, located in Santos and Campos sedimentary basins, is currently 

the most significant oil field province in Brazil regarding production rates and reserves. Besides 

the high productivity and large volumes, there are relevant characterization challenges for this 

province’s reservoirs. We highlight the complex physics and the big data sets among the known 

challenges for well and time-lapse seismic data assimilation. The former is related to the 

heterogeneous porous media containing volatile fluids with high CO2 contents and miscible gas 

injection, while the latter is associated with the big reservoir models and seismic monitoring 

projects.  

With this background, this work presents a synthetic case study of a reservoir flow 

model calibration using well and time-lapse seismic data, employing two methods. The first is 
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a compositional fluid model for time-lapse seismic simulation, enabling the consistent 

representation of the water alternating gas recovery strategy. The second is the Subspace 

Ensemble Randomized Maximum Likelihood method, with local analysis, an iterative 

ensemble smoother that is suitable for big reservoir models and big data sets. Using the realistic 

synthetic UNISIM-III benchmark, we show that these methods provide a viable solution to 

assimilate well and seismic data in a challenging pre-salt-like case. Furthermore, we 

demonstrate that the time-lapse seismic data provide useful information to improve production 

forecast in this situation. 

 

Abbreviations: 

BHP – Bottom-Hole Pressure 

EOS – Equation of State 

ESMDA – Ensemble Smoother with Multiple Data Assimilations 

GOR – Gas-Oil Ratio 

ICV – Interval Control Valve 

IES – Iterative Ensemble Smoother 

NQDS – Normalized Quadratic Deviation with Sign 

PEM – Petroelastic Model 

PVT – Pressure Volume Temperature 

EnKF – Ensemble Kalman Filter 

EnRML – Ensemble Randomized Maximum Likelihood 

SEnRML – Subspace Ensemble Randomized Maximum Likelihood 

TLS – Time-Lapse Seismic 

TSVD – Truncated Singular Value Decomposition 

WAG – Water-Alternating-Gas 

 

Keywords 

Model calibration; iterative ensemble smoothers; history matching; data assimilation; time-

lapse seismic. 
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5.2 Introduction 

Brazilian pre-salt is an important oil province, contributing to a significant portion 

of the country’s reserves and daily production (ABELHA; PETERSOHN, 2018; DE MORAES 

CRUZ et al., 2016; VASQUEZ; MORSCHBACHER; JUSTEN, 2019). Located in Santos and 

Campos sedimentary basins, the pre-salt reservoirs consist of microbial and coquina rocks at 

depths that surpass 5000 m (JOHANN; MONTEIRO, 2016). The task of building geological 

simulation models for these reservoirs is highly challenging, involving significant technical 

uncertainties. Some of the main uncertainties related to pre-salt simulation models are reservoir 

connectivity, facies and petrophysical properties distributions, response to the enhanced oil 

recovery strategy, distribution and behavior of faults and fractures, and fluid properties 

(MOCZYDLOWER, B.. et al., 2012). Furthermore, the projects in this province involve huge 

investments (DE SANT´ANNA PIZARRO; BRANCO, 2012). All these characteristics 

corroborate the importance of mitigating the model uncertainties using all the information 

available. In this respect, well and time-lapse seismic (TLS) data are complementary sources 

of information to calibrate the reservoir simulation models. The former provides information 

abundant in time but scarce in space, especially in offshore projects, the pre-salt province 

situation. The latter provides information distributed in space, helping updating parameters far 

from the wells. 

Iterative ensemble smoothers (IES) are a popular choice for assimilating well ant 

TLS data into reservoir models (EMERICK, Alexandre A., 2016; EMERICK, Alexandre A.; 

REYNOLDS, 2013b; FAHIMUDDIN; AANONSEN; SKJERVHEIM, 2010a; SKJERVHEIM, 

Jan-Arild et al., 2007). This type of application is associated with relevant challenges related to 

pre-salt reservoirs. The reservoirs are big and highly heterogeneous in terms of permo-porous 

and facies distribution, diagenesis, faults, and fractures (JOHANN; MONTEIRO, 2016). These 

characteristics complicate the representation of the reservoir’s main features using an ensemble 

with a limited number of models, each with a restricted number of active cells. Both the 

ensemble and the model sizes contribute to increasing computational costs. The production 

involves complex physics, with volatile fluids, high CO2 contents, miscible gas injection 

alternated with water (JOHANN; MONTEIRO, 2016; MOCZYDLOWER, B.. et al., 2012). 

Therefore, compositional fluid models are necessary to represent this process, increasing the 

complexity of both reservoir flow and time-lapse seismic forward models. The reservoir sizes 

and the application of seismic monitoring technologies (DEPLANTE et al., 2019; JOHANN; 
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MONTEIRO, 2016) contribute to increasing data points, requiring efficient ensemble-based 

methods to handle big data sets. 

Batzle and Wang (1992) proposed classical correlations, which have been the 

standard method for fluid characterization in quantitative TLS studies (AVSETH; MUKERJI; 

MAVKO, 2005). Nevertheless, the presence of volatile fluids containing significant amounts 

of CO2 limits classical correlations’ applicability to estimate the speed of sound in the oil phase 

(ALTUNDAS, Bilgin et al., 2017; SILVA NETO, Gilson M. et al., 2020; TAHANI, 2012). 

There are specific correlations for fluids with such characteristics (HAN; SUN; LIU, 2012, 

2013). However, they require significant extra computations to integrate with compositional 

reservoir simulators, and one still needs to validate them for conditions that are different from 

the ranges applied during the experiments.  

With this in mind, Silva Neto et al. (2020) proposed the application of a standard 

cubic equation of state (EOS) calibrated for the reservoir fluids to estimate the speed of sound 

in the reservoir hydrocarbons as part of the petroelastic model (PEM). This model has the 

advantage of efficiently coupling with the compositional reservoir flow simulator, which 

involves the same EOS. Furthermore, in their test with the Peng-Robinson EOS (PENG; 

ROBINSON, 1976; ROBINSON; PENG, 1978), they obtained simulations matching the 

experimental data in a similar level as Han et al. (2012, 2013) correlations, when they calibrated 

the EOS parameters with pressure-volume-temperature (PVT) data, a standard procedure in 

reservoir engineering. However, Silva Neto et al.’s study (2020) did not include a time-lapse 

seismic data assimilation experiment, which we perform using the same model in the present 

work. Therefore, this is the first application of this fluid model in a time-lapse seismic data 

assimilation case, including miscible gas injection and water-alternating-gas (WAG) injection. 

The Ensemble Randomized Maximum Likelihood (EnRML) method initially 

represented an iterative scheme to improve the performance of the Ensemble Kalman Filter 

(EnKF) (EVENSEN, Geir, 1994) for highly nonlinear applications (GU; OLIVER, 2007). 

Later, Chen and Oliver (2012, 2013) adapted the method for batch data assimilation instead of 

the previous sequential approach, thus avoiding the need for time-consuming simulation restarts 

in reservoir applications. Recently, Raanes et al. (2019) improved the EnRML method 

conceptually and computationally using the property that the solution is in the ensemble 

subspace. Evensen et al. (2019) followed their work in the same year and proposed an efficient 

algorithm to calibrate reservoir models using big data sets, the Subspace EnRML (SEnRML). 

Silva Neto et al. (2021) applied the SEnRML method with local analysis to assimilate TLS data 
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in synthetic applications. They concluded that this method could lead to equivalent results to 

the Ensemble Smoother with Multiple Data Assimilations (EMERICK, Alexandre A.; 

REYNOLDS, 2013a) with Kalman gain localization. They also reported that the SEnRML with 

local analysis has the advantage of requiring lower computational costs when there is a big data 

set. 

In this work, we apply the SEnRML method with local analysis to assimilate well 

and TLS data. This method is promising for pre-salt-related applications due to the big reservoir 

models and seismic monitoring. SEnRML with local analysis provided reasonable results in the 

previous application in TLS data assimilation to update reservoir grid parameters (SILVA 

NETO, Gilson Moura et al., 2021). In this work, we increase the problem complexity in terms 

of the model, the inclusion of well data, and the calibration of different parameter types, grid, 

scalar, and categorical. Therefore, this application mimics most of the challenges of a real field. 

The current case study uses the benchmark called UNISIM-III (CORREIA et al., 2020), which 

follows a pre-salt reservoir’s characteristics. To our knowledge, this work is the first application 

of SEnRML with local analysis in a data assimilation workflow to improve reservoir 

characterization using both well and seismic data in a pre-salt-like field. 

The specific objectives of this study are: 

• To apply the compositional fluid model in time-lapse seismic data assimilation in a 

realistic case. 

• To validate the SEnRML method, with local analysis, in a complex, realistic case, 

including well and seismic data. 

• To analyze the time-lapse seismic benefits in a pre-salt-like case. 

5.3 Background Information and methods 

This work integrates two methods proposed previously to enable the well and 

seismic data assimilation in a pre-salt-like synthetic application. We apply a compositional fluid 

model to compute the forward seismic simulation and use an iterative ensemble smoother that 

is suitable for big data sets and big reservoirs, called SEnRML, with local analysis, to calibrate 

the parameters. Figure 5.1 illustrates our workflow, including the reservoir flow model (1), 

which provides the inputs for the compositional model for speed of sound in the fluid (2), 

enabling the petroelastic model computations (3). We ran the reservoir flow models with the 

compositional reservoir simulator GEM version 2017.1 (CMG, 2017). The production and TLS 
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data from the reservoir flow and the petroelastic models are compared to the observed data. The 

differences cause model parameter updates through the SEnRML with local analysis (4). 

 

Figure 5.1: Well and time-lapse seismic data assimilation workflow. 

We describe the fluid model and the data assimilation method in the following 

subsections. Besides the data assimilation workflow, we use a quadratic metric called 

Normalized Quadratic Deviation with a Sign (NQDS) to analyze the well data match. We define 

this metric in subsection 5.3.3. We address the petroelastic model, step three, in section 5.4.4. 

5.3.1 Compositional fluid model for seismic simulation 

The current work’s application considers volatile oil with around 40% CO2 content. 

The widely known Batzle and Wang (1992) correlation exhibit a relatively high deviation in 

representing the speed of sound in the oil phase with these characteristics (ALTUNDAS, Bilgin 

et al., 2017; TAHANI, 2012). Silva Neto et al. (2020) proposed to use a calibrated cubic 

equation of state (EOS) to model the speed of sound in the hydrocarbon phases. We apply this 

model to compute the second step of the workflow depicted in Figure 5.1. 

Considering the Peng-Robinson EOS (PENG; ROBINSON, 1976; ROBINSON; 

PENG, 1978) with volume translation (PÉNELOUX; RAUZY; FRÉZE, 1982), the pressure-

volume-temperature relation is 

𝑃 =
𝑅𝑇

(𝑉̅ + 𝑐𝑃𝑅 − 𝑏𝑃𝑅)
−

𝑎𝑃𝑅 [1 + 𝑚𝑃𝑅 (1 −
𝑇0.5

𝑇𝑐
0.5)]

2

(𝑉̅ + 𝑐𝑃𝑅)(𝑉̅ + 𝑐𝑃𝑅 + 𝑏𝑃𝑅) + 𝑏𝑃𝑅(𝑉̅ + 𝑐𝑃𝑅 − 𝑏𝑃𝑅)
, 

(5.1) 

where 𝑃 is the pressure, 𝑇 the temperature, 𝑉̅ the molar volume, 𝑅 the gas constant, and the 

parameters 𝑎𝑃𝑅, 𝑏𝑃𝑅, 𝑐𝑃𝑅, and 𝑚𝑃𝑅 undertake different values for different components. One 

can calculate them as a function of the acentric factor, critical pressure, 𝑃𝑐, and critical 

temperature, 𝑇𝑐. Furthermore, it is necessary to apply mixing rules to represent the oil and gas 

phases as mixtures of components and pseudo-components (PEDERSEN; CHRISTENSEN; 
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SHAIKH, 2015). From de relation defined in equation (5.1), one can compute the heat capacity 

at a constant volume 

𝐶𝑉 =
𝜕𝐻𝑖𝑑

𝜕𝑇
|
𝑃

−
𝑚𝑃𝑅𝑎𝑃𝑅(1 + 𝑚𝑃𝑅)

4√2𝑇0.5𝑇𝑐
0.5𝑏𝑃𝑅

ln {
𝑉̅ − [(−1+ √2)𝑏𝑃𝑅 − 𝑐𝑃𝑅]

𝑉̅ − [(−1− √2)𝑏𝑃𝑅 − 𝑐𝑃𝑅]
} − 𝑅, (5.2) 

where the first term on the right side is a derivative of the ideal enthalpy at a constant pressure, 

which one can calculate from the relations that the Winprop (CMG, 2015) fluid simulator 

provides for the reservoir flow simulation. After calculating the heat capacity at a constant 

volume, it is possible to obtain the heat ratio using 

𝐶𝑃
𝐶𝑉

= 1 −
𝑇

𝐶𝑉

(
𝜕𝑃(𝑇, 𝑉̅)
𝜕𝑇

|
𝑉
)
2

𝜕𝑃(𝑇, 𝑉̅)

𝜕𝑉̅
|
𝑇

, (5.3) 

in which the pressure partial derivative at a constant molar volume (numerator) and a constant 

temperature (denominator) are calculated analytically from equation (5.1). Finally, the speed of 

sound in the fluid is 

𝑣𝑃 = √
𝐶𝑃
𝐶𝑉
×

1

𝜌𝑐𝑇
, (5.4) 

where 𝜌 is the fluid density and 𝑐𝑇 is the isothermal compressibility, which are outputs from 

the reservoir flow simulator. We built the EOS model for the reservoir simulator using Winprop 

version 2015.10 (CMG, 2015). 

Silva Neto et al. (2020) concluded that the present model could reasonably represent 

the speed of sound in the oil, as long as one calibrates the EOS parameters using PVT data, 

which is a standard procedure in reservoir engineering. Furthermore, if the speed of sound 

laboratory data is available, it is possible to calibrate the EOS with this information to improve 

the model without impairing the PVT data match. 

5.3.2 The Subspace Ensemble Maximum Likelihood (SEnRML) method with local analysis 

Focusing on the fourth step of the workflow depicted in Figure 5.1, the current 

SEnRML implementation with local analysis follows the revision presented by Raanes et al. 

(2019), the efficient algorithm for big data sets proposed by Evensen et al. (2019), and the local 

analysis scheme of Silva Neto et al. (2021). In this section, we present a method summary, 

highlighting the main features of this algorithm. 
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The SEnRML method aims at minimizing the objective function 

𝒥(𝒘𝑗) =
1

2
𝒘𝑗
𝑇𝒘𝑗 +

1

2
[𝒈(𝒙𝑎) − 𝒅𝑗]

𝑇
𝑪𝑑𝑑
−1[𝒈(𝒙𝑎) − 𝒅𝑗], 

(5.5) 

where 𝒈(𝒙𝑎) is the forward simulation model as a function of the updated parameters, 𝒙𝑎, the 

variable 𝒅𝑗 is the perturbed observed data and it follows the distribution 𝒩(𝒅𝑜𝑏𝑠, 𝑪𝑑𝑑), with a 

covariance matrix of measurement errors 𝑪𝑑𝑑, and 𝒘𝑗 are column vectors that define the 

changes in the parameters during the calibration for each model. Therefore, the first term on the 

right side of equation (5.5) relates to the distance to the prior ensemble, and the second one 

refers to the data misfit. These two terms form the total cost function of the Bayesian methods 

(EVENSEN, Geir, 2009). The ensemble of updated parameters forms the matrix 

𝑿𝑎 = 𝑿𝑓 + 𝑨𝑾, (5.6) 

in which 𝑿𝑓 is a matrix whose columns are prior parameters samples and 𝑨 are ensemble 

anomalies defined as 

𝑨 = 𝑿𝑓
1

√𝑁 − 1
(𝑰𝑁 −

1

𝑁
𝟏𝑁𝟏𝑁

𝑇) = 𝑿𝑓𝚷𝑁, (5.7) 

Where 𝑁 is the ensemble size and the projector 𝚷𝑁 removes the mean and 

normalizes the matrix by √𝑁 − 1. Note that the change of variables defined in equation (5.6) 

means that the model updates are a linear combination of the prior ensemble anomalies. The 

algorithm updates the matrix 𝑾, that defines this linear combination. 

One obtains the iterative procedure to update the matrix 𝑾 and the parameters 

applying the Gauss-Newton method in the cost function equation (5.5). After some 

manipulations, it is possible to find 

𝑾𝒊+𝟏 = 𝑾𝑖 − 𝜸 [𝑾𝑖 − (𝑺𝑖)
𝑇
(𝑺𝑖(𝑺𝑖)

𝑇
+ 𝑪𝑑𝑑)

−𝟏

𝑯𝑖], (5.8) 

in which the step-length parameter, 𝛾, controls the update speed, 𝑺𝑖 is the matrix of predicted 

and deconditioned ensemble anomalies 

𝑺𝑖 = (𝑫𝑠𝑖𝑚)
𝑖
𝚷𝑁(𝑰𝑁 +𝑾

𝑖𝚷𝑁)
−1
, (5.9) 

where the simulated data form the matrix 𝑫𝑠𝑖𝑚, 𝑰𝑁 is the identity matrix with size equals to the 

ensemble size, 𝑁. 𝑯𝑖 is called the matrix of innovations, defined as 

𝑯𝑖 = 𝑺𝑖𝑾𝑖 +𝑫 − (𝑫𝑠𝑖𝑚)
𝑖
, (5.10) 
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considering the matrix containing the perturbed observed data, 𝑫. Note that we previously 

defined each column of 𝑫 as 𝒅𝑗. 

We compute the matrix inverse (𝑺𝑖(𝑺𝑖)
𝑇
+ 𝑪𝑑𝑑)

−1

 by representing the covariance 

matrix 𝑪𝑑𝑑 with the approximation 𝑪𝑑𝑑 ≈ 𝑬𝑬𝑇, where 𝑬 columns are samples of the 

distribution 𝒩(0, 𝑪𝑑𝑑) normalized by √𝑁𝐸 − 1. The number of samples that form 𝑬, 𝑁𝐸, is a 

tradeoff between the approximation fidelity and the computational cost. After that, we project 

the approximated matrix onto the subspace defined by 𝑺. Aiming at performing the matrix 

inverse, we compute a truncated singular value decomposition (TSVD) of 𝑺 and an eigenvalue 

decomposition of the modified covariance matrix of measurement errors. It is relevant to note 

that the user needs to define the fraction of the 𝑺 matrix singular values to keep in the TSVD. 

The final update equation scales linearly with the data size, improving the efficiency for big 

data sets compared to other ensemble-based methods that form the full matrix 𝑪𝑑𝑑. In these 

methods, the equations scale with the square of the number of data points. For instance, see the 

algorithm (EMERICK, Alexandre A., 2016). For more details regarding this method, we refer 

to (EVENSEN, Geir et al., 2019; SILVA NETO, Gilson Moura et al., 2021). 

5.3.2.1 The local analysis scheme 

The limited ensemble size makes it vital to apply a localization strategy in 

ensemble-based data assimilation. This technique mitigates exaggerated uncertainty reduction 

due to spurious correlations and limited degrees of freedom (EMERICK, Alexandre; 

REYNOLDS, 2011). Silva Neto et al. (2021) proposed a local analysis scheme to assimilate 

time-lapse seismic data using the efficient implementation of the SEnRML method. We apply 

this algorithm here to assimilate well and TLS data in the current case study. 

In the local analysis scheme, we divide the data assimilation problem into 

independent analyses. In each one of them, we update a predefined subset of the parameters, 

called local group, using only the part of the data set that we assume correlated to the group. 

Each problem follows the same data assimilation procedure, described in equations (5.6) to 

(5.10). 

One can segregate the parameters using their physical positions or considering the 

correlation between them and the data. A popular choice is to include in the same analysis all 

the parameters in vertical columns of grid cells from the reservoir model (CHEN, Yan; 

OLIVER, 2017; SILVA NETO, Gilson Moura et al., 2021), which is the configuration that we 
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adopted in the current study. Furthermore, we updated each scalar parameter in an individual 

group, enabling a refined analysis for these parameters that significantly impact the model 

response. It is worth mentioning that creating a local group for each scalar parameter causes a 

minor increase in the computational costs in practical applications because the number of 

parameters of this type is usually much lower than the number of grid parameters. 

One approach of selecting the data that influence each local group is called distance-

based localization, in which the algorithm computes the physical distance between each local 

group and the data point. Note that a well data is at the well position. The method includes any 

data located at the same position as the group with weight 1. Moreover, it tapers the influence 

of the remaining data using the Gaspari-Cohn function (GASPARI; COHN, 1999), defining the 

argument as the distance, normalized by the so-called localization lengths. One can consider 

these localization lengths as tunning parameters of the method. In our tests, the whole data set 

influences scalar parameters that do not have a specific physical position in the model, for 

instance, relative permeability tables. We call this procedure a global update. We assumed that 

one well data do not influence scalar parameters related to other wells’ productivity or 

injectivity during the data assimilation. 

Another method to select the data that influence the local groups is correlation-

based localization (LUO; BHAKTA, 2020). In this case, the algorithm assumes the correlation 

threshold 

𝜃 =
1

√𝑁
√2 ln(𝑛𝑎𝑐), (5.11) 

where 𝑛𝑎𝑐 is the number of active cells in the reservoir model. This threshold relates to the 

statistical noise in the ensemble estimate of the correlation matrix between the data and 

parameters. For each parameter in a group and each data point, the influence tapering is the 

result of the Gaspari-Cohn function using the argument 

𝑧 = max(1.67 − 0.67
|𝑟|

𝜃
, 0), (5.12) 

in which 𝑧 is called the pseudo-distance dummy variable, and 𝑟 is the correlation between the 

parameter and the simulated data point, computed from the prior ensemble results (SILVA 

NETO, Gilson Moura et al., 2021). Note that each group comprises a certain number of 

parameters. Therefore, it is necessary to define which pseudo-distance value will prevail for the 

group. If one chooses the minimum value, all data that influences at least one parameter in the 
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group will influence the whole group. The maximum 𝑧 will include only data points that relate 

to all parameters in each group. Finally, an intermediate option is to use a percentile of the 𝑧 

distribution in the groups. Note that the smaller the groups, the more insignificant this choice 

is. In this work, we tapered the data influence using the minimum value of 𝑧 for each local 

group, which seems to be a conservative choice, avoiding neglecting correlated data at the cost 

of a more severe uncertainty reduction. 

5.3.2.2 Configuration of the SEnRML method with local analysis 

The SEnRML method with the local analysis scheme described in this section has 

some user-defined parameters. We list these parameters in Table 5.1. We comment on the 

parameters’ most relevant influences in the results section 3.6. 

 

Table 5.1: SEnRML with local analysis parameters. 

Parameter Configuration 

𝑬 matrix size 1000 columns (10 × 𝑁) 

Fraction of the singular values in TSVD 0.99 

Step-length control (𝜸) Declining from 0.5 to 0.1 

Parameter segregation Grid: vertical columns of cells 

Scalar: one parameter per group 

Localization distance 

(distance-based local analysis) 

Well data: based on the influence area 

Seismic: 1400 m (7 grid cells) 

Pseudo-distance 

(correlation-based local analysis) 

Minimum value 

 

5.3.3 NQDS metric 

The Normalized Quadratic Deviation with Sign (NQDS) measures the distance 

between the observed and simulated data. The main characteristic of this quadratic norm is that 

it designates a negative sign to ensemble elements that underestimates the data and a positive 

one to the models that tend to overestimate them (AVANSI; MASCHIO; SCHIOZER, 2016). 

Therefore, it helps to identify bias and interpret the results’ physical meaning. Commonly, one 

plots the NQDS statistical distribution of a subset of the data (CAVALCANTE et al., 2020; 

FORMENTIN et al., 2019), such as individual producers’ oil rate and injectors’ bottom-hole 

pressure. We define the NQDS related to a data subset 𝑙 of an ensemble element 𝑗 as 
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(𝑁𝑄𝐷𝑆𝑗)𝑙 =
𝟏𝑚𝑙
𝑇 [(𝒅𝑗

𝑠𝑖𝑚)
𝑙
− (𝒅𝑜𝑏𝑠)𝑙]

|𝟏𝑚𝑙
𝑇 [(𝒅𝑗

𝑠𝑖𝑚)
𝑙
− (𝒅𝑜𝑏𝑠)𝑙]|

×
[(𝒅𝑗

𝑠𝑖𝑚)
𝑙
− (𝒅𝑜𝑏𝑠)𝑙]

𝑇
[(𝒅𝑗

𝑠𝑖𝑚)
𝑙
− (𝒅𝑜𝑏𝑠)𝑙]

[(𝒅𝑜𝑏𝑠)𝑙 × 𝜏𝑙 + 𝜑𝑙]𝑇[(𝒅𝑜𝑏𝑠)𝑙 × 𝜏𝑙 + 𝜑𝑙]
, 

(5.13) 

where 𝟏𝑚𝑙
𝑻  is a row vector whose elements are one and whose size is the number of points in 

the data subset, 𝑚𝑙, 𝒅𝑗
𝑠𝑖𝑚 is the simulated data, 𝒅𝑜𝑏𝑠 is the observed data, 𝜏 is a tolerance value, 

and 𝜑 is a constant. The tolerance is analogous to the relative standard deviation of the 

measurement noise if one defines it as uncorrelated. The constant 𝜑 avoids division by numbers 

close to zero if the measured data is close to zero for a specific data type. We used 10% and 3% 

as the rates and pressure tolerances in this work, respectively. Furthermore, we set 40 as 

constant for the rates and 0.01 for the pressures. The latter is not meaningful because the 

pressure is never close to zero. Note that in equation (5.13), the first term on the right side 

relates to the positive or negative sign, while the second one is the Normalized Quadratic 

Deviation (NQD). 

5.4 Application 

5.4.1 General case description 

The present case study uses the UNISIM-III benchmark model representing a 

fractured carbonate karst reservoir from the pre-salt province (CORREIA et al., 2020). We only 

included the so-called Sector 1 as a hydraulic isolated reservoir model, which has a production 

strategy considering eight producers and nine injectors and corresponds to one platform’s 

drainage area, as depicted in Figure 5.2a. The model has two zones. The upper consists mainly 

of stromatolites, while the lower corresponds to the coquinas. We present the model geometry 

and these zones in Figure 5.2b. There are three faults in this sector, whose locations are 

indicated in Figure 5.2a. 

The observed data come from a fine-scale reference model, which we consider the 

true earth model or, in other words, the synthetic truth. The reservoir simulation model 

represents partial information from the synthetic truth at the wells’ locations. Therefore, the 

reference model contains unknown characteristics during the simulation studies, mimicking a 

real field application. The geological uncertainty in the simulation model enables generating an 

ensemble of 100 geostatistical realizations, each one with different permeability and porosity 
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fields. This ensemble size is a tradeoff between the representation of the uncertainty statistics 

and the computational costs to simulate the forward models. Table 5.2 lists the general models’ 

characteristics. For more details regarding the geological models, we refer to (CORREIA et al., 

2020). 

 

Figure 5.2: UNISIM-III Sector 1 model. The figure depicts an intermediate layer porosity map sample 

from the prior ensemble (a), including well and fault locations, and the 3D model (b), highlighting the two 

zones, stromatolites and coquinas. In the well’s names, the letter “P” refers to a producer and “I” to an 

injector. 

 
Table 5.2: General simulation model characteristics. 

Characteristic Value 

Horizontal permeability (mD) 0 to 9000 (median ≈ 50) 

Vertical permeability (mD) 0 to 900 (median ≈ 1) 

Porosity 0 to 0.3 (median ≈ 0.11) 

Average depth (m) ≈ 5500 

Initial datum pressure (kPa) 63000 

Average cell size (m) ≈ 200 × 200 × 5 

Number of active cells 77071 

Total number of cells 533403 

 

The benchmark reservoir model includes hydrocarbon fluids whose characteristics 

reproduce the public report (PETROBRAS, 2015) regarding a pre-salt field. We present the 

reservoir fluids’ main characteristics in Table 5.3. Among them, it is worth highlighting the 

high CO2 content, around 40%. Furthermore, the fluid volatility is associated with the initial 

gas-oil ratio (GOR) of 415 and the high oil formation volume factor of 2. The oil phase at 

reservoir conditions presents low viscosity, roughly 0.4 cP, which is favorable to the recovery 

process sweep efficiency. 
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Table 5.3: General fluid properties. 

Characteristic Value 

API (°) 27 

Initial gas-oil ratio (L/L) 415 

Oil formation volume factor (L/L) 2 

Initial saturation pressure (kPa) ≈ 49000 

Initial oil viscosity (cP) ≈ 0.4 

CO2 in the gas phase (%) 44 

CO2 in reservoir fluid 37% 

Temperature at the reservoir (°C) 90 

 

The benchmark case considers 17 vertical wells in Sector 1, eight producers and 

nine injectors, as presented in Figure 5.2a. All well completions include interval control valves 

(ICV), allowing the flow control in two zones for the injectors and three intervals for the 

producers. The injectors’ ICV aim at uniformizing the injection of water and gas between the 

zones. Therefore, when it detects a predefined level of unbalance between the two intervals, the 

ICV closes the one that received a larger volume and opens the other. In the producers, the ICV 

aim at avoiding high GOR production from each interval. If it detects a GOR value above a 

predefined threshold, it closes the respective production zone. For more detail on the operation 

and optimization of the ICV for this benchmark, we refer to (BOTECHIA et al., 2021). 

During the history-matching process, each well operates with measured rates as 

boundary conditions. The total liquid rate represents this condition for each producer, while the 

injected water or gas rate plays the same role for each injector. It is worth mentioning that all 

the ICVs must reflect the same states as the actual operation during this period. Failing to report 

the valve restrictions in the forward simulation will act as a modeling error, which may impair 

the parameter calibration. Although not considered in this work, mechanical failure may be 

represented as an uncertain attribute and included in the data assimilation workflow 

(EVENSEN, Geir, 2019).  

Besides those boundary conditions, it was vital to limit the pressure during the 

history-matching to avoid unphysically high or low values in any model. One of the benefits of 

preventing unphysical conditions in the simulation models is avoiding numerical problems 

related to exaggerated gas liberation in the porous media due to extremely low pressures. When 

one sets these pressure limits, it is crucial to avoid restricting the pressure at levels too close to 

the measured bottom-hole pressure (BHP), as this condition will tend to conceal productivity 

or injectivity mismatches. One way to do so is to check each well’s BHP NQDS, using the 
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respective pressure limit as the simulated data. All wells should exhibit a relatively high 

normalized quadratic deviation in this test, above 10, for instance. 

It is essential to include the wells and platform operational constraints to simulate 

the forecast after the history-matching process. We present these constraints in Table 5.4. It is 

worth mentioning that the rate boundary conditions indirectly apply these constraints during 

the history matching. For instance, in this application, the platform operates at the maximum 

produced gas rate during most of the history period. 

 

Table 5.4: Sector 1 operational constraints (CORREIA et al., 2020). 

Constraint Value Applies to 

Maximum oil rate (m³/d) 28617 Platform 

Maximum liquid rate (m³/d) 28617 Platform 

Maximum water production rate (m³/d) 23848 Platform 

Maximum water injection rate (m³/d) 35771 Platform 

Maximum gas production rate (m³/d) 12 million Platform 

Minimum BHP (kPa) 50000 Producer well 

Maximum BHP (kPa) 75000 Injector well 

Maximum liquid rate (m³/d) 8000 Producer well 

Maximum gas injection rate (m³/d) 4 million Injector well 

Maximum water injection rate (m³/d) 10000 Injector well 

 

The recovery strategy in this benchmark case assumes that the injectors reinject all 

the produced gas in the reservoir. Furthermore, each injection well operates in WAG cycles of 

6 months, except for well I16, which only injects gas. We control the total water injection rate 

to maintain the average reservoir pressure at a target value of 61000 kPa (BOTECHIA et al., 

2021). 

5.4.2 Uncertain parameters 

We apply the data assimilation workflow presented in Figure 5.1 to calibrate the 

reservoir simulation models of the UNISIM-III Sector 1 benchmark case. The simulation 

models represent partial information of the fine-scale reference model, and they carry 

geological uncertainties regarding the permeability fields at the three main directions and the 

porosity field. We represent all the four grid-related parameters using an ensemble of 100 

models. Furthermore, we apply a logarithmic transformation to the permeability to compute the 

data assimilation, the fourth step of Figure 5.1. This transformation aims at approximating the 
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problem to a linear Gaussian one since the permeability commonly has a log-normal 

distribution. 

The benchmark case also considers 47 scalar parameters, 𝑥 ∈ ℜ1×1. We apply a 

logarithmic transformation to all these scalar parameters during the calibration process. Firstly, 

there are three transmissibility multipliers related to the three faults presented in Figure 5.2a. 

We represent the faults using a uniform distribution in the transformed domain, from closed to 

fully opened or equivalently from nearly zero transmissibility to 100% transmissibility. 

Secondly, each producer has uncertain productivity at each of the three intervals, represented 

by a multiplier with a gaussian distribution, centered at 1 in the transformed domain. The same 

occurs in each injector but with two intervals. These intervals relate to the ICV operation. 

Finally, the simulation model assumes three categorical variables, the relative 

permeability curves of each zone (Figure 5.2b) and the equation of state. SEnRML, with local 

analysis, handles these variables by representing them with auxiliary continuous variables with 

a prior standard normal distribution. The algorithm selects thresholds to determine the discrete 

levels based on the prior probability of each category. During the calibration process, the 

analysis equation updates each model auxiliary variable to determine the calibrated categories. 

Note that one should order each variable’s categories in a way that enables a monotonic 

tendency between the discrete levels and the impacts on the measured data. For instance, the 

relative permeability curves should cause an increasing or decreasing water and gas production 

among the categories. This procedure aims at reducing the nonlinearity of the relation between 

the parameters and the simulated data. 

5.4.3 Observed data 

We assimilated the production and TLS data during the first 2161 days of the 

UNISIM-III Sector 1 operation. We included the oil, gas, water rates, and BHP using a 30-day 

periodicity for each producer. Moreover, each injector provided the BHP and the individual 

rate, gas or water, depending on WAG cycles. Each measured data contains uncorrelated noise 

with a standard deviation of 10% for the rates and around 2% for the pressures. In a practical 

application, one must treat the correlated measurement errors properly when there are 

combinations of measurements to estimate individual well rates (EVENSEN, Geir; EIKREM, 

2018). 

Our seismic data set comprises one baseline acquisition, after 608 days of the 

extended well test (MOCZYDLOWER, Bruno; FIGUEIREDO JUNIOR; PIZARRO, 2019; 
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NAKANO et al., 2009), and two monitors, in times 1583 and 1948 days. It is worth mentioning 

that the UNISIM-III benchmark considers permanent seismic monitoring, with one monitor 

every six months after this. The analysis regarding the seismic benefits with an increasing 

number of acquisitions will be the theme of a future study. Furthermore, it is essential to 

consider in the analysis that, depending on the WAG-cycles and TLS acquisition dates, physical 

effects with opposite influences, hardening and softening, may attenuate the time-lapse signal. 

We generated the observed data applying a petroelastic model in the fine-scale 

reference model results. We represented the flow-related variations using each monitor acoustic 

impedance ratio, monitor 1 divided by the baseline, and monitor 2 divided by monitor 1 in the 

present work. After that, we extracted maps considering the vertical resolution of seismic data 

for this case, a permanent monitoring system, and performing a scale transference to the 

simulation scale. At this scale, each seismic map corresponds to five to ten model layers. In 

total, we worked with 30 time-lapse seismic maps, 15 for each pair of surveys, with a total of 

roughly 20000 active data points. One should note that assuming one new survey every six 

months, the number of data points will reach the order of 105 in 4 years from the second 

monitor’s date only for Sector 1. Furthermore, this number will significantly increase when one 

includes other sectors. This analysis motivated the choice of a method that is suitable for bigger 

data sets. We consider the seismic data in this application as a quasi-ideal case since the 

complexities related to wave propagation are not present. 

Aiming at describing the data set main characteristics, we present four TLS maps 

with both monitor times in Figure 5.3. Note that the bluish regions correspond to a hardening 

effect and the reddish areas to a softening. With around 4% impedance variation, the most 

intense anomalies relate to a porous pressure increase with gas substituting water or oil. We see 

the combination of these softening effects in the hot regions in the north of a2 and a3, maps 3 

and 5. The bluish regions in these two maps indicate a pressure reduction around producers, 

causing around 2% variation on the impedance ratio. The water injection already started at four 

injectors located in the northern area, but the high pressure and gas saturation still conceal its 

effect. One can observe gas substituting water and oil anomalies with minor pressure effects in 

a4, map 12. 

Focusing on the variation between the two monitors, Figure 5.3 row b, it is 

noticeable in maps 1 and 3, b1 and b2, pore pressure variations effects causing almost 2% 

variations in the acoustic impedance. In map 5, b3, besides the pressure-related variations, there 

is an apparent WAG anomaly, with water replacing gas, causing a nearly 3% impedance 
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increase. There is a similar anomaly in map 12, b4, where a gas front advance also occurs in 

the north-east. 

In the data assimilation process, we perturbed the seismic data using Gaussian noise 

with 0.7% standard deviation and 600 m exponential correlation length. We estimated the 

correlation length based on synthetic seismic modeling that considered the noise characteristics 

expected in permanent reservoir monitoring surveys. Furthermore, the standard deviation 

allowed balanced cost-function contributions between seismic and production data in the prior 

ensemble. 

 

Figure 5.3: Time-lapse seismic observed data. The figure depicts four TLS maps, 1, 3, 5, and 12, in 

columns 1, 2, 3, 4, respectively. Furthermore, it presents the acoustic impedance ratio of monitor 1 divided 

by the baseline in row a and monitor 2 divided by monitor 1 in row b. 

 

5.4.4 Petroelastic model 

The petroelastic model applied in this work, the third step of Figure 5.1, considers 

a mixture of three minerals in the rock, calcite, dolomite, and quartz, with fractions of 85%, 

11%, and 4%, respectively. The dry-rock properties as a function of effective pressure were 

logarithmic functions fitting laboratory data regarding a pre-salt field, as detailed in (COSTA 

et al., 2016; SILVA et al., 2020). Declining exponential functions matching data from a pre-

salt reservoir represented the dry rock moduli as a porosity function. We considered different 

pressure and porosity laws for each reservoir zone, stromatolites and coquinas. Vasquez et al. 

(2019) and Silva et al. (2020) reported that the Gassmann equation (GASSMANN, 1951; apud 

MAVKO; MUKERJI; DVORKIN, 2009) provides a reasonable representation of the fluid 

substitution in reservoirs similar to ours. Therefore, we apply the Gassmann equation to the 
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current PEM. The Batzle and Wang (1992) equations represent the water phase bulk modulus, 

while the fluid model described in section 5.3.1 (SILVA NETO, Gilson M. et al., 2020) enables 

computing the gas and oil bulk moduli and densities. 

5.5 Results and discussion 

We divide the analysis of this research results into five sections. We start by 

verifying the well and seismic data match because the model ensemble must honor the past 

information before predicting the field behavior. After that, we analyze the SEnRML algorithm 

convergence when only well data and when well and seismic data are available. In the fourth 

subsection, we compare the well-rates forecast in the different data assimilation numerical 

experiments. Finally, we discuss the localization strategy in the last subsection. 

For the results reported in this section, we ran SEnRML, with local analysis, using 

declining step-lengths, starting with 0.5 and ending with 0.1. Evensen (2019) applied a similar 

declining function when assimilating well data in a reservoir flow model with global analysis. 

The stop criterium was a maximum of 15 iterations. Nevertheless, we noticed that only minor 

changes occur after seven iterations. In future practical applications, it is worthwhile to include 

stop criteria based on parameter changes and cost function reduction throughout the iterations 

to avoid unnecessary flow simulations. We represented the covariance matrix of measurement 

errors with 1000 error samples in the matrix 𝑬. The ESMDA, which serves as a quality 

reference for well data match, ran with eight data assimilations with constant inflation factors. 

We applied the ESMDA algorithm reported by Emerick (2016). 

5.5.1 Well-data match 

We use the NQDS metric defined in section 5.3.3 to evaluate the well data match, 

as depicted in Figure 5.4. The figure includes the prior ensemble, the ESMDA assimilating well 

data results, and the SEnRML results after assimilating well and well jointly with TLS data. 

For simplicity, we are going to call these three cases ESMDA, SEnRML well, and SEnRML 

TLS, respectively. Note that the ESMDA results represent a reference of the well-data match 

quality, as it is considered a standard option for production data history matching. In Figure 

5.4, the boxes represent the models between the 25th and the 75th percentiles for the designed 

variable. The horizontal line inside the box is the median, while the dashed vertical lines show 

the distribution range. The points are outliers, corresponding to values whose distance to the 

75th and 25th percentiles are greater than 1.5 times the difference of those percentiles. 
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In this analysis, we considered the tolerance as 10% of the rate measurements, the 

constant for the rates are 40, and the pressure tolerance is 3%. 

 

Figure 5.4: NQDS metric of all wells: (a) oil rate, (b) produced or injected gas rate, (c) produced or 

injected water rate, and (d) bottom-hole pressure. The WAG injectors appear twice. For instance, I11 is 

the injector injecting gas, and I11W is the same injector operating with water. 

The oil rate, Figure 5.4a, and the gas rate, Figure 5.4b, are not critical parameters 

for the well data match. All methods were able to match these measurements, as all NQDS 

values are close to zero. These variables’ prior results are already acceptable for most wells. A 

good prior match occurs because the liquid rate is a boundary condition for the producers, while 
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the injected rate plays the same role for the injectors. Moreover, the produced water rate is much 

lower than the oil rate during the history period. One exception is P16, for which the initial 

ensemble underestimates the oil and gas production. P16 cannot honor the boundary condition 

in the prior ensemble due to the pressure constraint, which we included to avoid numerical 

problems related to exaggerated gas liberation, as discussed in section 5.4. Other exceptions are 

the injectors I14 and I15, whose rates also appear lower than expected initially. They also reach 

pressure limits, which we included to avoid unphysical high-pressure values. These difficulties 

of the prior ensemble in honoring the boundary conditions indicate a pessimistic bias in the 

transmissibility around these wells, causing flow compartmentalization. It is worth mentioning 

that uncertainty regarding reservoir connectivity is expected in this type of reservoir (DE 

SANT´ANNA PIZARRO; BRANCO, 2012; MOCZYDLOWER, B.. et al., 2012). 

The water rate, displayed in Figure 5.4c, was the most challenging variable to match 

for the producers based on the NQDS metric. One of the reasons for this difficulty is that the 

produced water rates are low compared to the oil rates. Therefore, the relative tolerance for this 

variable is lower. For instance, the SEnRML well case underestimated the water rate of P15, as 

shown in Figure 5.5. We mention P15 because it was the worst well data match that we 

obtained. As the liquid rate is a boundary condition, an error in the water rate leads to an 

equivalent error in the oil rate, with opposite direction. Nevertheless, the impact of this error is 

minor in the latter due to the variable magnitude (see Figure 5.5b). 
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Figure 5.5: Oil rate (a, b, and c) and water rate (d, e, f) of P15. The figure shows the prior, ESMDA, 

SEnRML well, and SEnRML TLS results, respectively. 

For the water production representation, the ESMDA results were better than the 

SEnRML when assimilating only well data. The latter method reduced the water-production-

related cost function, but it did not reach values as low as the former. We believe that this result 

is related to a similar issue reported by Chen and Oliver (2013) related to the approximation of 

the sensitivity matrix to compute the model updates in more nonlinear problems. Evensen et al. 

(2019) suggested reducing the step size (𝛾) to overcome instabilities and improve the cost 

function reduction throughout the iterations. However, we could not improve the results beyond 

the ones reported here. The limit, in this case, is a tradeoff between the step size and the number 

of required iterations. 

The water rate match quality improved for the SEnRML when we added the time-

lapse seismic data to the data assimilation problem. As the seismic provides spatially rich 

information related to the reservoir fluid distribution, it helped the method reach lower water 

rate NQDS values, as depicted in Figure 5.4c and Figure 5.5f for P15. This result was closer to 

the ESMDA assimilating only well data, our reference for history-match quality. 

One must note that the NQDS metric used for history matching quality assessment 

is mathematically different from the data assimilation cost function defined in equation (5.5). 

In the IES cost function, the inverse of the measurement noise covariance matrix normalizes 

the quadratic distance from the simulated to the observed data. If one assumes that this matrix 
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is diagonal, which is a common choice for production data, this is equivalent to dividing each 

measurement by the respective standard deviation before computing the distance. Since we 

defined the standard deviation as 10% of the observed data, each denominator is different. In 

NQDS, equation (5.13), all data of the same type have the same denominator. This difference 

explains the result of Figure 5.6 in comparison with Figure 5.4c. We computed the cost function 

in Figure 5.6 using 

ℒ𝑙,𝑗 =∑
(𝒅𝑙,𝑗

𝑠𝑖𝑚 − 𝒅𝑙,𝑗
𝑜𝑏𝑠)

2

𝜎𝑙
2

𝑙

, (5.14) 

where ℒ is the data cost function, 𝑙 indexes a specific subset of the data, the produced water rate 

in Figure 5.6, and 𝜎2 is the variance of each measured data point. Note that the SEnRML 

method assimilating well and TLS data provided water rate cost function slightly lower than 

ESMDA (Figure 5.6). Nevertheless, the absolute value of the NQDS of P14, P15, and P16 in 

Figure 5.4c are marginally higher. This combination of results indicates that the SEnRML 

results are closer to the observed data for the lower rates and farther for the higher rates, as it is 

possible to confirm for P15 in Figure 5.5d and Figure 5.5f, ESMDA and SEnRML TLS, 

respectively. One should be cautious in comparing the results depicted in Figure 5.4 and Figure 

5.6 since the former highlight the data match metric on a well-by-well basis, while the latter 

represents a global assessment, in which a better matched well can compensate another in the 

comparison. 

 

Figure 5.6: Normalized water rate cost function throughout the SEnRML TLS iterations compared to the 

final ESMDA result. The prior ensemble’s median cost value is the normalization factor. 

We evaluate the bottom-hole pressure match using the results in Figure 5.4d. Most 

producers exhibit a significant pressure deviation with an underestimation tendency in the prior 

ensemble, while most injectors show expressive deviation with the opposite sign. This 
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information indicates that the initial models are somewhat compartmentalized. In other words, 

effective transmissibility between injectors and producers is lower than in the synthetic truth 

(fine-scale reference model). The relatively poor communication between the wells is related 

to two characteristics of the prior ensemble. Firstly, the transmissibility multiplier across the 

three faults in the model is low for most of the models, as the median value is 10−4. Secondly, 

the permeability field is anisotropic and heterogeneous, with very low permeability values for 

most cells. Despite the prior ensemble’s behavior, the three data assimilation examples provided 

a good match for all wells’ bottom-hole pressure, as depicted in Figure 5.4d. The well data 

managed to provide enough information to correct the connection degree between producers 

and injectors. 

In summary, the SEnRML method managed to provide well data match comparable 

to ESMDA for most of the measurements. One exception is the water rate match of three wells, 

which was poorer with SEnRML when assimilating only well data. The inclusion of TLS data 

in the data assimilation with SEnRML did not jeopardize the well-data match. On the contrary, 

it improved the overall water rate, providing a cost function for the well data slightly lower than 

the ESMDA case, which is the reference for the well-data match in this work. 

5.5.2 Seismic-data match 

We evaluate the seismic data match using the sum of the cost function terms related 

to this information source, equation (2.3), in Figure 5.7. We notice a significant deviation 

reduction in the first four iterations and minor reductions afterward. The SEnRML method 

reduced the cost function to less than 20% of the initial median value. We also compare this 

result with the SEnRML well case. To do so, we took the final ensemble from this case, ran a 

forward seismic simulation, and computed the deviation from the seismic measurements. It is 

possible to note that the well data provide indirect information regarding the pressure and fluid 

spatial distribution, improving the TSL cost function compared to the prior. Nevertheless, this 

information is limited, as the well data is scarce in space. Therefore, the well normalized TLS 

cost function is roughly 35% of the initial cost function, but it is about twice as higher as the 

TLS cost function when the SEnRML method integrated TLS data. 
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Figure 5.7: Normalized TLS data cost function throughout the SEnRML TLS iterations, compared to the 

final SEnRML well result. The prior ensemble’s median value is the normalization factor. 

It is also possible to evaluate the seismic data assimilation by comparing the maps 

of Figure 5.8, where we show for three maps and two monitors: the observed data, the results 

of the prior ensemble, the calibrated ensemble of the SEnRML well data assimilation, and the 

SEnRML TLS data assimilation. Note that in the latter, the well data is also present. The first 

general characteristic we note is the compartmentalization of the prior ensemble, which is 

noticeable from the discontinuities of the maps of Figure 5.8 column 2, especially b2. 

Furthermore, this compartmentalization is not present at the same level in the observed data of 

column 1 nor the calibrated ensembles of columns 3 and 4. Therefore, it is possible to conclude 

that both well and TLS data provide information to improve the models’ connectivity compared 

to the synthetic truth. For instance, the north fault (Figure 5.2a) that causes the apparent 

discontinuity in maps d2 and e2 behaves differently in the calibrated ensembles d3, d4, e3, and 

e4. The same occurs for the intermediate fault in e2. Nevertheless, the available information 

from wells and TLS was not enough to change the south fault behavior, which impairs 

transmissibility in maps a3 and, to a lesser extent, a4. 

In a practical application, we recommend that the differences in 

compartmentalization between the observed data, Figure 5.8 column 1, and the prior results, 

Figure 5.8 column 2, should lead to a new prior geological modeling. One of the likely changes 

is the fault transmissibility multiplier distribution, which should admit open faults with a more 

pronounced probability. The new prior should also exhibit an improved communication through 

the permeability field than the former. This process would bring the flow dynamics closer to 

the observed seismic, even before the data assimilation process. Furthermore, starting with an 

ensemble that fully represents the available data interpretation, the Bayesian data assimilation 

process would lead to an ensemble that better describes the reservoir flow dynamics. 
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Nevertheless, the prior ensemble redefinition in a new geological modeling process is beyond 

the present work scope. 

Another relevant piece of information from Figure 5.8 is the difference between the 

SEnRML well and SEnRML TLS cases in columns 3 and 4. As expected, the TLS provides 

richer data regarding the spatial distribution of pore pressure and fluids in the porous media. 

Therefore, we expected that the ensemble of models calibrated only with well data could result 

in system behavior far from the wells that are different from the synthetic truth. It is possible to 

notice this difference in the west and south regions of map a3, compared to the observed data 

in a1. However, one could also note similarities between the two calibrated ensembles that 

justify the cost function reduction of the SEnRML well case compared to the prior in Figure 

5.7. For instance, the main characteristics of maps f3 and f4 are similar to each other and the 

observed map f1. 

Figure 5.8 also allows us to verify which kind of information the TLS can provide 

when we have a carbonate reservoir with volatile fluid at high pressure. Based on our 

petroelastic model results described in section 5.4.4, it is possible to observe a WAG anomaly, 

the bluish changes surrounded by a hot area in the maps of row e. These maps represent injected 

water after a period of injecting gas in the porous media. Furthermore, pressure-related 

anomalies, combined with localized increased gas saturation, are also present, as one can 

observe in the softening areas of the b maps. The water-related hardening effect increased the 

impedance by 3%, while the pore-pressure and gas softening effect decreased the acoustic 

impedance by 4%. 
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Figure 5.8: Time-lapse seismic maps, acoustic impedance ratio, of horizons 2 (a and d), 6 (b and e), 8 (c 

and f), monitor one divided by baseline (a, b, and c) and monitor two divided by monitor one (d, e, and f). 

The figure compares the observed data (1), the prior ensemble mean (2), the calibrated ensemble mean of 

SEnRML wells (3), and SEnRML TLS (4). 

In summary, the SEnRML method managed to use the TLS information to improve 

the models’ capabilities to describe the pore-pressure and fluids distribution in the porous 

media. Using the well data alone, one could improve the models’ general behavior, but some 

discrepancies remain when comparing their results to the TLS data from the synthetic truth, 
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especially in regions far from the wells. It is worth mentioning that the most appealing 

advantage of SEnRML in this application is the capability of handling bigger data sets 

originated from the TLS acquisitions, which we assimilate simultaneously with production data. 

5.5.3 Convergence speed and cost-function behavior 

The SEnRML method is an iterative ensemble smoother. As such, it differs from 

the classical ensemble smoother (EVENSEN, Geir, 2009; EVENSEN, Geir; VAN LEEUWEN, 

1996) because it makes parameters updates in steps, which are usually smaller than the 

ensemble smoother’s single time update. In this context, it is necessary to check in which 

iteration the method stopped to perform a significant change in the models’ behavior, an 

indication of convergence. Obviously, the sooner we stop data assimilation, the lower the data 

assimilation process computational cost. Nevertheless, it is vital to ensure that we do not impose 

a premature stop, jeopardizing the data match.  

We show the data cost function, equation (2.3), of each ensemble member 

throughout the iterations in Figure 5.9. We compare the results of two data assimilation cases, 

the first assimilating only well data and the second well and TLS. If we consider a stop criterium 

based on the reduction level of the average cost function (CHEN, Yan; OLIVER, 2013), it is 

possible to note that both cases would stop around iteration 8. Moreover, in the two cases, the 

calibration process reduced the cost function by roughly one order of magnitude.  

 

Figure 5.9: All the ensemble members’ data cost function throughout the iterations of SEnRML, 

assimilating well and well jointly with TLS data. In each graph, the prior median value is the 

normalization factor. 

Based on the analysis of Figure 5.9, it is possible to note that the presence of TLS 

data changed the problem in a way that allowed a more monotonic reduction of each ensemble 

member’s data cost function throughout the iterations. We believe that there are at least two 

possible reasons for this behavior. Firstly, the TLS data seem to have a relation with the 

parameters that are closer to linear. Furthermore, it provides complementary information to the 
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well data, reducing the tendency of occurring multiple minima close to each other in the 

parameter space. In other words, it reduces the ill-posedness of the problem. 

When only well data was available, some models presented oscillating cost 

functions at some iterations. One could reduce this tendency by reducing the SEnRML step-

length parameter (EVENSEN, Geir et al., 2019). However, it is vital to keep in mind that more 

iterations will be necessary if the step length is too low. In this context, we believe that the 

results presented in Figure 5.9 are a tradeoff between the importance of fast convergence and 

allowing stable results for most of the models. The ESMDA algorithm also exhibited oscillating 

data cost functions of models during the multiple data assimilations of the well data, as depicted 

in Figure 5.10. These results corroborate the complexity and nonlinearity of this problem. 

 

Figure 5.10: All the ensemble members’ data cost function throughout the multiple data assimilations of 

ESMDA, assimilating well data. The prior median value is the normalization factor. 

 

5.5.4 Well rates forecast 

Most of the importance of having calibrated reservoir simulation models comes 

from their application in production forecasts to support the decision-making process. 

Therefore, it is interesting to evaluate the data assimilation results in predicting field behavior. 

Since this is a synthetic application, we can compare the calibrated model responses with the 

synthetic truth, which we commonly call a reference solution. It is worth mentioning that we 

apply a bottom-hole pressure lower limit for all wells during the forecast. The platform 

capacities impose an overall limit for each produced and injected rate. Furthermore, we employ 

the same control rules to the intelligent control valves to uniformize the injection profile in the 

reservoir zones and avoid excessive gas or water production. For more detail regarding these 

strategies, we refer to (BOTECHIA et al., 2021). 
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We show the forecasted overall field oil, gas, and water rates in Figure 5.11. The 

two data assimilation cases are present: SEnRML well and SEnRML TLS. In terms of overall 

field behavior, the results are relatively similar. As expected, SEnRML TLS results, column 2, 

exhibit less variability due to the higher amount of information available during the calibration 

process. 

In this application, the gas rate limits the oil rate due to the gas-oil ratio and the 

platform capacity to process the produced gas. Therefore, we observe the constant gas 

production rates in Figure 5.11, row b. High gas production is a common bottleneck in pre-salt 

reservoirs (DE MORAES CRUZ et al., 2016; DEPLANTE et al., 2019). Both calibrated 

ensembles seem to capture this behavior until around day 8000. Nonetheless, some models 

exhibit declining gas rates at the end of the forecast period in both cases, but more severely in 

the SEnRML well example. This discrepancy in some models occurs after around day 8000, 

which seems plausible since we only used data from the first 2161 days of production. The TLS 

data assimilation seemed to alleviate this discrepancy, but it could not avoid it for some models.  

Both calibrated ensembles exhibit a declining oil rate whose tendency is similar to 

the reference in Figure 5.11, row a. However, there is an optimistic bias that the available TLS 

data did not mitigate. The GOR defines the oil production rate, and we associate this bias with 

the lack of data regarding the gas front advance in the porous media until the end of the history 

period. All wells exhibit relatively low gas rates during this period, with a GOR of less than 

510 𝑚3 𝑠𝑡𝑑/𝑚3 𝑠𝑡𝑑. Furthermore, the gas-related anomalies in the TLS data are close to the 

injectors, providing limited information about how this fluid will advance in the reservoir. 

Although the most challenging data to match during the history matching, the water 

rate does not play a crucial role during the forecast. Despite the increasing values during the 

history period, the forecasted water production remains lower than the oil production. In 

general, both calibrated ensembles capture this behavior (see Figure 5.11c). The SEnRML TLS 

case provides results closer to the reference, with a significant uncertainty reduction compared 

to the SEnRML-well case. The relatively worse results for the water rate match of SEnRML 

well did not jeopardize this ensemble’s capability to provide forecast results comparable to the 

SEnRML-TLS case. This similarity corroborates that the wells’ water rates during the history 

matching are not critical to describing future field behavior in this application. 

One relevant aspect of the results presented in Figure 5.11 is how we define 

reservoir management during the forecast. Firstly, we impose the platform limits of Table 5.4, 
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of which the maximum gas production rate is the most important. This limit will cause well rate 

restrictions throughout the forecast. Secondly, each injector ICV will balance the fluid volumes 

injected in each interval. Thirdly, each producer ICV will shut in any interval that produces gas 

above a predefined GOR limit (BOTECHIA et al., 2021). It is important to highlight that the 

management rules are identical in the reference and the simulation models. Nevertheless, the 

well restrictions and the ICV operation will differ in each model due to differences in reservoir 

properties among the models, which complicates the model comparison using forecast results 

alone. For instance, the opened producer wells and intervals at the end of the history period 

differ in each model, explaining part of the gas rate discrepancies in Figure 5.11b1 and Figure 

5.11b2 after day 8000. 

There are cases where a minor difference in a model can lead to a substantial impact 

due to differences in reservoir management operations, for instance, ICV changes and well shut-

in. It is possible to reduce these effects on the model evaluation. For instance, one can run the 

reservoir simulation beyond the history period applying the same operation sequence on all well 

valves. In a real field application, reserving part of the history for validation enables this 

analysis. Furthermore, in a benchmark synthetic study such as the current work, one could run 

the synthetic truth and the reservoir models without reservoir management rules, a human-

intervention free simulation. Nevertheless, it is worth highlighting that both tests are 

appropriate for validation purposes, but they are not realistic production forecasts. While the 

former uses information regarding the forecast’s actual reservoir management operations, the 

latter applies a naïve strategy, neglecting any well intervention to reduce undesired fluid 

production. Comparing these methods to validate and compare the models’ predictive 

capabilities will be the focus of a future study. 
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Figure 5.11: Forecast field oil, gas, and water rates (a, b, c, respectively), of SEnRML Well (1) and 

SEnRML TLS (2) cases. 

Although it is relevant to check the calibrated ensembles’ performance at the field 

level, the analysis of field rates presented in Figure 5.11 may be misleading. These rates are the 

sum of all wells’ contributions, and errors of different directions attenuate each other. 

Therefore, it is also essential to evaluate the forecast on a well-by-well basis. Aiming at 

comparing the ensembles’ results with the synthetic truth in detail, we computed the sum of the 

squared differences between the well’s rates and the reference solution for the forecast period. 

We normalized this value by the prior ensemble’s median and called it the normalized forecast 

cost function. Figure 5.12 depicts this variable for the oil production rates (a), gas production 

rates (b), and water production rates (c). 

For both the oil and gas production rates in Figure 5.12a and Figure 5.12b, the well 

data assimilation significantly reduced the normalized forecast cost function compared to the 
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prior. The addition of TLS data to the calibration process further reduced this metric for all 

models, as expected. For the water rates presented in Figure 5.12c, the data assimilation 

improved the responses of the worst models for this metric from the prior. Nonetheless, the best 

solutions in the prior ensemble are close to the calibrated ensembles’ best solutions. 

Furthermore, incorporating TLS data does not seem to improve the water rate forecast on a 

well-by-well basis. This fact may be related to the fewer water-related anomalies in the TLS 

maps, as depicted in Figure 5.8. Moreover, three out of the six opened wells do not produce 

water during the history period, while the other three produce low water rates compared to the 

oil. 

 

Figure 5.12: Forecast period cost function. Each graph is an experimental cumulative distribution curve, 

including each model’s results. The figure shows the oil rate (a), gas rate (b), and the water rate (c) cost 

functions. 
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The producers P17 and P18 open after the end of the history period. Therefore, they 

are examples of how the models can predict a new well performance. These wells are in a 

central portion of the reservoir, as shown in Figure 5.2. Figure 5.13 depicts P17 predicted rates 

in rows a and b. The TLS case provided oil, gas, and water production forecasts closer to the 

reference solution with reduced uncertainty compared to the case where only well data is 

available. P18 oil rates in Figure 5.13c1 and Figure 5.13d1 are close to the reference, with an 

early pessimistic tendency in the former and optimistic in the latter. P18 gas and water 

production evidence the TLS benefits for this well, as the calibrated ensemble results are closer 

to the reference in the SEnRML TLS case. The SEnRML well results of P17 and P18 reflect 

the lack of spatial information regarding the reservoir properties far from the wells that open 

during the history. In this sense, the TLS data provides complementary information to the 

former.  

Note that, in the reference solution of Figure 5.13, rows a and b, P17 shut in around 

time 4100 days due to the gas production limit. This early shut-in also occurs in the calibrated 

models but at different dates for each model, which results from how the reservoir management 

rules function in models with different reservoir properties. For instance, a model may keep the 

well open for a more extended period because the peak GOR was slightly lower than the limit 

at around time 4100 days. A similar effect in the opposite direction occurs for P18, in Figure 

5.13, rows c and d. In the reference, P18 shuts in at around day 10000. Nevertheless, some 

simulation models cause earlier shut-in, before day 9000. 
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Figure 5.13: Oil (column 1), gas (column 2), and water (column 3) rate forecasts of wells P17 (rows a and 

b) and P18 (rows c and d). The figure compares the SEnRML well case (rows a and c) to the SEnRML 

TLS case (rows b and d). 

The forecast results indicate that the well and TLS data assimilation using SEnRML 

with local analysis improved the models’ capability to represent the field’s future behavior. The 

TLS data contributed to improving the oil and gas rate forecasts on a well-by-well basis. 

5.5.5 Additional analysis: localization strategy 

It is crucial to employ a localization strategy to avoid exaggerated uncertainty 

reduction when applying an ensemble-based data assimilation algorithm with a limited 

ensemble size (EMERICK, Alexandre; REYNOLDS, 2011). Silva Neto et al. (2021) proposed 
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two local analysis schemes for the SEnRML method, one based on the distance between the 

parameters and the data and another based on their correlation.  

All sections 5.5.1 to 5.5.4 results used distance-based localization. The well-data 

localization lengths related to the drainage area and each well’s influence region, estimated 

from streamlines (EMERICK, Alexandre; REYNOLDS, 2011; SOARES; MASCHIO; 

SCHIOZER, 2018). It is worth mentioning that ESMDA with Kalman gain localization, a 

reference for well match in section 5.5.1, employed the same localization metrics. Moreover, 

we set an arbitrary value for the TLS-data localization length of 1400 m, or seven reservoir 

cells. 

In addition to the distance-based, we tested the automatic or correlation-based 

localization strategy in the present study. Figure 5.14 displays a comparison of this strategy to 

the distance-based scheme. It is apparent that the correlation-based localization led to worse 

data matches than the distance-based method. This difference was enough to impair the pressure 

and rates well match quality, based on the NQDS metric. 

 

Figure 5.14: Comparison of the data cost function reduction between the distance-based and the 

correlation-based localization methods. Each line represents the median of the ensembles throughout the 

iterations. 

We identified three characteristics of the present case study that led to the 

correlation-based localization method’s worse performance. Firstly, the correlation level 

between the local groups and the TLS data is relatively low, resulting in data tapering below 

0.5 for most of the localization matrix, even in positions close to the local group of parameters, 

as depicted in Figure 5.15 row a. The dot in the maps shows the local group location, while the 

maps relate the group to the TLS data. There are four different combinations of local groups 

and TLS horizons in the figure. 

Secondly, the correlation between data and parameters seems to change as the data 

assimilation scheme updates the models. To illustrate that, we compare the localization value 
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computed from the correlations using the prior ensemble and the final ensemble from the 

SEnRML Well case in Figure 5.15 rows a and b, respectively. For instance, one can note that 

the localization matrix includes data far from the local group to the southeast in map a1, and it 

is limited to an area close to the group in map b1. On the other hand, maps a2, a3, and a4 do 

not assign significant weight to any data around the local groups, while the maps b2, b3, and 

b4 do. It is worth mentioning that we expected lower correlation levels in b due to the calibrated 

ensemble’s lower variability. 

The low correlation levels and the variation during the calibration seem to be related 

to the highly heterogeneous reservoir, with complex flow paths in the prior ensemble, as 

illustrated by the permeability cross-section and maps of one arbitrary model Figure 5.16a. The 

figure represents the permeability in three levels, low permeability in blue, intermediate in 

green, and high permeability in red. The horizontal and vertical prior permeability distributions 

are discontinuous, which means that there are multiple regions with intermediate to high 

permeability, separated by low permeability cells. This pattern occurs in the vertical 

communication in (a1) and horizontal communication (a2).  

The prior permeability distribution, jointly with the three faults transmissibility 

multipliers, create poorly communicated regions in the reservoir, corroborating the pressure 

discrepancies discussed in section 5.5.1. Furthermore, the calibration process alleviates the 

compartmentalization, as in Figure 5.16b1 and Figure 5.16b2, equalizing the pressure close to 

injectors and producers (Figure 5.4d). This process seems to change the flow dynamics and the 

correlations between the parameters and the simulated data. In summary, the prior ensemble is 

biased towards poor connectivity, which changes after the calibration procedure. 
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Figure 5.15: Correlation-based localization maps. The figure depicts the tapering results using the prior 

ensemble in the TLS horizon scale (a), the calibrated ensemble with only well data in the TLS horizon 

scale (b), and the prior ensemble in the reservoir simulation scale (c). It also shows four combinations of 

local groups and TLS horizons in columns 1 to 4. 

The third reason for the low correlations in Figure 5.15 is the fact that the seismic 

horizons are vertically upscaled, representing the weighted mean of five to ten simulation layers 

for most regions. If we compare this correlation to the one computed with the simulated data in 

the reservoir model scale, row c, it is apparent that the upscaled data attenuated some 

correlations. It is worth mentioning that, for each TLS map, Figure 5.15 row c displays the 

highest correlation in the layers that form the map. This procedure highlighted correlated data 

influence on the parameters, as indicated by the higher tapering values around the group in 

Figure 5.15c1 and Figure 5.15c2 compared to a1 and a2. Nevertheless, it can also amplify the 

spurious correlation effects. 
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Figure 5.16: Model 80 permeability. The figure shows the prior (a) and calibrated (b) fields using well and 

TLS data. The vertical permeability cross-sections (J = 20) are in column 1, and the maps (K = 96) of 

horizontal permeability in one direction are in column 2. The dashed lines indicate the position of the 

horizontal and vertical cuts. 

The current results indicate that the distance-based localization performance was 

better than the correlation-based scheme in this application. We identified some characteristics 

of the present study that contributed to this difference. Some of these characteristics are related 

to our highly heterogeneous prior ensemble, which has a general flow behavior different from 

the calibrated ensembles in reservoir connectivity. Furthermore, a bigger ensemble would also 

improve the correlation representation by lowering the statistical noise at the cost of increasing 

simulation time. We indicate that it is relevant to investigate different ensembles’ influence on 

the correlation-based data tapering during iterative calibration in future studies. 

5.6 Summary and conclusions 

We performed well and time-lapse seismic data assimilation in a realistic synthetic 

case that represents challenges similar to a Brazilian pre-salt reservoir. We considered a 

compositional fluid model for both reservoir flow and petroelastic models, water-alternating-

gas injection for enhanced oil recovery, interval control valves in the wells, and permanent 
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seismic monitoring. We employed the SEnRML method with local analysis to assimilate the 

data and compared the well data match quality with the ESMDA. 

The specific conclusions of this work are: 

• The SEnRML method, with local analysis, managed to assimilate well and time-lapse 

seismic data from two monitor surveys simultaneously, leading to models that represent 

the production history information similarly to ESMDA assimilating well data. The 

former has the advantage of assimilating bigger data sets, as the permanent seismic 

monitoring provides multiple monitor acquisitions, with lower computational costs 

when compared to the latter (SILVA NETO, Gilson Moura et al., 2021). 

• The assimilation of time-lapse seismic data jointly with well data improved the reservoir 

forecast compared to the prior ensemble and the one calibrated only with production 

data. This result corroborates the importance of time-lapse seismic data in a pre-salt 

reservoir application. Moreover, it demonstrates that integrating the compositional fluid 

model and SEnRML with local analysis is a viable solution to take advantage of the 

time-lapse seismic information. 

• SEnRML with local analysis and ESMDA with Kalman gain localization led data cost 

function oscillating throughout the iterations or multiple data assimilations for some 

models in well data assimilation only. Moreover, the SEnRML data match was slightly 

worse than ESMDA in terms of the final data cost function. However, incorporating 

time-lapse seismic data improved the SEnRML method’s performance in terms of stable 

data cost function reduction throughout the iterations. Note that this is the type of 

problem for which SEnRML shows more advantages due to more giant data sets.  

• In the present case study, the well data reveal part of the information associated with 

the time-lapse seismic data. The assimilation of the former significantly improves the 

representation of the latter in terms of the cost function. 

• The assimilation of time-lapse seismic data improved the reservoir characterization in 

regions far from the wells opened during the history period, improving the time-lapse 

seismic data match and new wells production forecasts. 

• Seismic simulation using a compositional fluid model provided useful information for 

reservoir parameters calibration in a miscible gas injection alternating water synthetic 

case. 
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• The distance-based localization performed better than the correlation-based localization 

in terms of data match. This result is related to the highly heterogeneous and biased 

prior models, whose flow dynamics differ from the calibrated ones. 

We indicate four future studies derived from this work’s observations. Firstly, it is 

relevant to test further the SEnRML method in assimilating well data in highly nonlinear 

problems. Secondly, it is worth investigating how to apply correlation-based localization when 

the correlation pattern varies during the calibration process. Thirdly, future research will 

evaluate methodologies to validate the predictive capabilities of reservoir models. Lastly, the 

seismic monitoring benefits to the reservoir characterization and production forecast, with an 

increasing number of monitors, will be a theme of future work. 

5.7 Nomenclature 

Variables 

𝟏 Vector whose elements are equal to one 

𝑎𝑃𝑅 Equation of state parameter 

𝑏𝑃𝑅 Equation of state parameter 

𝑐𝑃𝑅 Equation of state volume-shift parameter 

𝑐𝑇 Isothermal compressibility 

𝒅 Data vector 

𝒈 Forward model 

𝑚 Number of datapoints 

𝑚𝑃𝑅 Equation of state parameter 

𝑛 Number of parameters 

𝑛𝑎𝑐 Number of active cells 

𝑟 Correlation coefficient 

𝑣𝑃 P-wave velocity 

𝒘 Vector of coefficients of parameters updates 

𝒙 Vector of parameters 

𝑧 Element of pseudo-distance dummy variable 

𝑨 Matrix of ensemble anomalies 

𝑪𝑑𝑑 Covariance matrix of measurement errors 

𝐶𝑃 Heat capacity at constant pressure 

𝐶𝑉 Heat capacity at constant volume 

𝑫 Matrix of data realizations 

𝑬 Matrix of measurement perturbations 

𝑯 Matrix of innovations 

𝐻𝑖𝑑 Ideal enthalpy 

𝑰 Identity matrix 

𝒥 Cost function 

ℒ Data cost function 

𝑁 Ensemble size 
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𝑁𝐸 Number of samples that form the 𝑬 matrix 

𝑃 Pressure 

𝑅 Gas constant 

𝑺 Matrix of predicted and deconditioned ensemble anomalies 

𝑉̅ Molar volume 

𝑾 Matrix of coefficients of parameters updates 

𝑿 Matrix of the ensemble of parameters 

𝛾 Step-length parameter 

𝜃 Correlation threshold 

𝜌 Density 

𝜎 Standard deviation 

𝜏 NQDS data tolerance 

𝜑 NQDS data constant 

𝚷 Projector that subtracts the mean and normalizes parameters or data matrices 

 

Subscripts 

𝑐 Critical point 

𝑗 Ensemble member 

𝑙 Subset of the data 

𝑚 Indicates that the size is equal to the number of data points 

𝑁 Indicates that the size is equal to the ensemble size 

 

Superscripts 

𝑎 Updated, also known as posterior or analysis result 

𝑓 Prior, also known as background 

𝑖 Iterations 

𝑜𝑏𝑠 Observed data 

𝑠𝑖𝑚 Simulated data 

𝑇 Matrix transpose 
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6 CONCLUSIONS 

This thesis addressed two critical challenges related to seismic data assimilation in 

reservoir simulation models: (1) to mitigate model errors and their effects and (2) incorporate 

big data sets using ensemble-based methods. The first scientific study presented a methodology 

to handle significant spatially-correlated model errors in time-lapse seismic data assimilation. 

The second proposed a local analysis method with the subspace ensemble randomized 

maximum likelihood method to assimilate seismic big data sets in reservoir models. The third 

work addressed a compositional fluid modeling method to simulate seismic responses. The 

fourth and last study integrated the two previous studies, aiming to assimilate well and time-

lapse seismic data in a synthetic study resembling a pre-salt reservoir. 

The first study methodology consists of a weak constraint formulation to the data 

assimilation problem. We include an additive error-related grid parameter in the data 

assimilation process, whose prior distribution relates to data assimilation residuals. The results 

show that model errors with long-range spatial correlation can jeopardize the data assimilation 

results. However, the proposed methodology avoids physically inconsistent updates and 

improves the reservoir characterization and production forecast using time-lapse seismic data 

in the presence of spatially-correlated model errors. 

The second study addresses a local analysis scheme to the subspace ensemble 

randomized maximum likelihood method to assimilate time-lapse seismic data. The proposed 

algorithm is suitable for big reservoirs with big data sets. Furthermore, it can provide data 

assimilation results comparable to a popular ensemble-based method in the calibration of grid 

parameters with time-lapse seismic data. The distance-based and correlation-based schemes 

mitigated limitations related to the small ensemble, such as exaggerated uncertainty reduction 

and reduced degrees of freedom. 

The third work focused on improving the seismic forward modeling, adopting a 

compositional fluid model to compute the bulk moduli of the oil and gas phases. The proposed 

method can represent volatile reservoir fluid with significant amounts of CO2. Furthermore, 

since it uses the same equation of state applied in the reservoir flow simulators, one can readily 

integrate it with the latter in a data assimilation workflow. The results show that the presented 

model provides a match to experimental data similar to a correlation built for this type of fluid 

when only pressure-volume-temperature data is available. Moreover, it is possible to improve 

the model by incorporating speed of sound experimental data. 
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This thesis’s last work represents a synthetic case study that mimics some Brazilian 

pre-salt challenges. It considers volatile fluid containing CO2, miscible gas alternating water 

injection, interval control valves, highly heterogeneous carbonate rock, and seismic monitoring 

with multiple monitor times. This work integrates the proposed data assimilation method and 

fluid model to assimilate production and time-lapse seismic data in this situation. Compared to 

the application presented in the second study, this case increased the complexity by including 

some relevant features for a practical application, such as well data, scalar and categorical 

parameters, and a more physically complex problem. The results showed that it was possible to 

improve the reservoir characterization and production forecast by assimilating well and time-

lapse seismic data using the proposed methods even in a complex nonlinear problem. Moreover, 

seismic monitoring can play an important role in improving reservoir characterization in 

Brazilian pre-salt projects. 

Besides these four most relevant studies to this thesis’s objective, it presents, as an 

appendix, the fifth work with a methodology to mitigate the influence of correlated model errors 

in the calibration of reservoir models using 3D seismic data. This study helps applications 

where the prior ensemble of reservoir models does not represent the 3D baseline seismic data 

due to geological modeling limitations. Furthermore, one could potentially adopt a similar 

methodology to time-lapse seismic data assimilation. 

The main contributions and conclusions are: 

• The weak-constraint formulation to the TLS data assimilation problem enabled the 

mitigation of the spatially correlated model error effects.  

• It was possible to reduce the limitations regarding the data set size using the proposed 

iterative ensemble smoother method with local analysis for TLS data assimilation.  

• The fluid modeling methodology contributed to reducing model errors by providing a 

physically consistent representation of volatile fluid production with significant CO2 

content. 

• The two latter methods provided a viable solution to the data assimilation problem 

considering challenges similar to a Brazilian pre-salt field. 
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7 FUTURE STUDIES 

Based on the observations of the five academic studies that comprise this thesis, it 

is possible to list some topics for future research: 

• In chapter 2, a weak constraint formulation was the basis of a methodology to assimilate 

time-lapse seismic data considering spatially-correlated model error. Even though the 

error was additive, it is possible to build error models with different relations between 

the error parameter and the simulation output, inserting physical relations to the 

problem, which can be a topic for future developments. 

• In the field application presented in chapter 2, the unmodeled resolution loss caused 

model errors that affected the data assimilation results. Although this effect was 

mitigated using a weak constraint formulation, it is also possible to improve the TLS 

forward model by including the seismic modeling process after the PEM. Future studies 

may address this approach to TLS data assimilation in complex realistic cases. 

• In chapter 3, the SEnRML method assimilated TLS data in a local analysis scheme, 

leading to an efficient algorithm for big data sets. Nevertheless, it is possible to 

formulate the ESMDA method with a similar subspace inversion method, enabling an 

efficient formulation for problems with a vast number of measured data points. 

Comparing these two algorithms for production and time-lapse seismic data 

assimilation is a relevant topic for future research. 

• The local analysis algorithm applied in chapter 3 grouped the parameters based on their 

physical positions in the model grid. Nevertheless, this process’s idea is to consider the 

parameters related to the same subset of the data in a single analysis step. Therefore, 

future work can propose a correlation-based method to select local groups in the local 

analysis scheme. 

• In chapter 4, the compositional fluid model for time-lapse seismic simulation provided 

speed of sound estimates in agreement with experimental data. However, measurements 

of the speed of sound with varying compositions were not available. The variation of 

light components in the porous media will occur when a miscible gas injection is part 

of the recovery strategy. Therefore, it is relevant to validate and possibly calibrate the 

current fluid model in this situation, which can be part of future research. 

• In chapter 5, the SEnRML method with local analysis exhibited significant cost function 

oscillations when assimilating only well data. Moreover, the final data cost function 
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value was slightly worse than ESMDA considering this type of data. Therefore, more 

efforts to test the SEnRML method in highly nonlinear problems, like production data 

assimilation, are worthwhile. Developments in the sensitivity matrix estimation and the 

step-length control strategies could probably improve the data assimilation results. 

• The application of the correlation-based local analysis method in the pre-salt-like case 

in chapter 5 led to results worse than the distance-based scheme in terms of data cost 

function value. One reason for this behavior was a biased prior ensemble that led to low 

correlation estimates different from the updated ensembles. Thus, it seems necessary to 

investigate how the prior ensemble definition can influence correlation-based 

localization and propose a methodology to mitigate such influences. 

• The results presented in chapter 5 highlighted the influence of reservoir management 

operations in the production forecast evaluation. In some cases, a minor difference in 

the simulation model can cause a drastic change in the forecasts due to well valve 

changes and shut-in. Therefore, future research will evaluate different methods of 

validating and comparing models regarding their predictive capabilities. 

• The UNISIM-III benchmark brings opportunity for other researches related to time-

lapse seismic data assimilation. Firstly, it is possible to investigate the impact of 

multiple monitors in the reservoir calibration process as a total of eight seismic monitor 

acquisitions will be available. Secondly, one can study the influence of resolution loss, 

other seismic modeling processes, noise levels, and noise correlated with 3D seismic 

amplitude in the TLS data assimilation results. If there is a significant influence of 

spatially correlated errors, it is possible to apply the methodology presented in chapter 

2 to improve the results. 

• Another relevant topic for future studies is to assess the use of different seismic 

attributes in the TLS data assimilation workflow, such as elastic impedance, data with 

varying offsets, and time-shift. 
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A.1 Abstract 

Decisions in petroleum reservoir management usually involve a high level of 

uncertainties. Therefore, information of different types is used to calibrate reservoir models for 

the production forecasts and decision analysis. One source of information is 3D seismic, which 

is highly correlated to petrophysical properties. These properties are a major source of 

uncertainty. The incorporation of 3D seismic data in flow models is affected by errors caused 

by discretization, scale differences, seismic modeling uncertainties, seismic propagation related 

distortions, among others. Nevertheless, these errors are commonly neglected in conventional 

model calibration workflows. This work treats seismic resolution loss as a form of model error 

that needs to be considered in the data assimilation process. In our tests, we used synthetic data 

from a realistic benchmark case. First, we extended the methodology proposed by Oliver and 

Alfonzo (2018a) to 3D seismic data assimilation. We focus on the model improvement by 

estimating a “total” observation error covariance matrix. Furthermore, we reduced the influence 

of systematic errors by including a simple analytical function in our forward model. The 

function is defined based on physical premises and the parameter is calibrated in the data 

assimilation workflow. This procedure increases the dimension of the problem. The error 

covariance update improved the reservoir volume characterization in all of our tests. Moreover, 

we show that the update provides a way to improve the determination of the residual weights 

in the data assimilation problem. These weights are difficult to define in practice and the results 

were relatively insensitive to the initial values. By using the proposed methodology, we were 
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able to improve the reservoir volume calibration using relatively low-resolution data. If the 

correlated errors were neglected, the data assimilation would lead to implausible parameter 

distributions. 

 

Abbreviations: 

ESMDA – Ensemble Smoother with Multiple data Assimilations 

OF – Objective Function 

PEM – Petro-elastic Model 

VOIP - Volume of Oil in Place 

 

Keywords: 

Model calibration; ensemble data assimilation; history matching; model error; model 

improvement; ESMDA 

 

A.2 Introduction 

Oil and gas production forecasts based on numerical flow simulation models are 

used in the decision-making process involving important investments and complex challenges. 

Ultimately aiming to improve the outcome of the decisions made based on the predicted 

production, it is important to use all the relevant information available to reduce the uncertainty 

in these forecasts. Therefore, data assimilation methods that apply field measured data have 

become increasingly popular in reservoir engineering (OLIVER, D. S.; REYNOLDS; LIU, 

2008; OLIVER, Dean S.; CHEN, 2011). Here, we apply the probabilistic ensemble-based 

method ESMDA (EMERICK, Alexandre A.; REYNOLDS, 2013a) to reduce the uncertainty of 

our reservoir flow models through seismic data assimilation. 

3D seismic is a well-known source of information in reservoir modeling, providing 

crucial data to structural modeling and petrophysical properties distribution (DOYEN, 2007). 

In this work, the 3D seismic data assimilation is performed directly in the simulation models 

using ESMDA. It is important to assure that these models represent the 3D baseline data before 

the 4D (or time-lapse) data is incorporated. Similar calibration of flow simulation models using 
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3D seismic data have been reported (EMERICK, Alexandre A., 2016; EMERICK, Alexandre 

A.; REYNOLDS, 2013b; LEEUWENBURGH; BROUWER; TRANI, 2011; STEPHEN, Karl 

D. et al., 2006). 

We recognize that all models are simplifications of the real systems. In other words, 

all data assimilation workflows will be affected by model errors. Some common sources of 

model errors are incorrect parametrization, numerical discretization, lack of important physical 

phenomena description, etc. (CARRASSI; VANNITSEM, 2016; HARLIM, 2013). Focusing 

specifically on seismic data assimilation, there will be deviations caused by scale differences, 

discretization, petro-elastic model (PEM) uncertainties, seismic propagation-related distortions, 

among others. Nevertheless, these sources of errors are commonly neglected in conventional 

uncertainty reduction workflows (DONG; GU; OLIVER, 2006; EMERICK, Alexandre A.; 

REYNOLDS, 2013b; LEEUWENBURGH; BROUWER; TRANI, 2011; SKJERVHEIM, Jan-

Arild et al., 2005). This may cause incorrect adjustments and uncertainty underestimation, due 

to the assimilation of large datasets without considering relevant errors (EVENSEN, G., 2018; 

OLIVER, D.S.; ALFONZO, 2018a; SUN; VINK; GAO, 2017). 

There are several studies from other research areas that address data assimilation 

considering model errors (HARLIM, 2013). Although this topic is less addressed in the 

petroleum literature, there is previous work which considered model errors in the data 

assimilation workflows. Some of them require the knowledge of a reference model, which has 

reduced model errors. Therefore, it can be used to quantify bias or to model the covariance 

matrix of observation errors (O’SULLIVAN, 2004; RAMMAY, Muzammil H.; ELSHEIKH; 

CHEN, 2019; STEPHEN, K. D., 2007; STEPHEN, Karl D.; SHAMS; MACBETH, 2009). This 

requirement limits the application of such methodologies in some practical cases. Sun et al. 

(2017) and Vink et al. (2015) proposed ways to inflate the covariance matrix of errors to 

mitigate the influence of model imperfections. Furthermore, Evensen (2018) has shown that 

one way to treat model errors is to increase the dimension of the problem, e.g. by estimating 

another set of parameters related to model errors. This leads to weaker updates of the uncertain 

parameters but improves the forecasts. 

Oliver and Alfonzo (2018a) proposed a workflow that comprises model 

construction, model calibration, model criticism, and model improvement to perform data 

assimilation considering model imperfections. Their model diagnostics method was based on 

the analysis of the magnitude and the spatial or temporal distribution of the mismatch of the 

last updated ensemble. According to the author’s methodology, if the diagnostics indicate that 
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there are important model errors, it is possible to repeat the data assimilation. In the subsequent 

calibrations, a “total” observation error covariance matrix should be estimated from the 

residuals of the last conditioned ensemble. Later, Rammay et al. (2019) investigated different 

approaches to deal with model errors in production data history matching, including Oliver and 

Alfonzo’s methodology. Oliver and Alfonzo (2018b) applied this methodology to time-lapse 

seismic data assimilation, but some of their premises do not hold in our case.  

An adaptation of Oliver and Alfonzo’s (2018a) methodology to 3D data 

assimilation is proposed here. The main source of model errors is the simplified forward model, 

which comprises only the reservoir flow simulator and a PEM to compute acoustic impedance, 

neglecting the effects of resolution loss and seismic inversion. We apply our workflow to a 

realistic benchmark case called UNISIM-I-H, which is based on the data from the Namorado 

Field, an offshore turbidite sandstone reservoir in the Campus Basin, Brazil (AVANSI; 

SCHIOZER, 2015). 

The specific objectives of our work are: (1) show the possible impacts of resolution 

loss in 3D seismic data assimilation; (2) extend the application of the methodology proposed 

by Oliver and Alfonzo (2018a) to 3D seismic data assimilation; (3) propose a way to reduce 

systematic model errors; (4) present a method to update the covariance matrix of “total” 

observation errors in 3D seismic data assimilation, allowing for heterogeneous variance; and 

(5) show that this methodology provides a way to estimate the error covariance that is not 

sensitive to the initial covariance values. 

A.3 Theoretical background 

This section provides a brief description of three important elements that are applied 

in the proposed methodology. First, we address the data assimilation algorithm employed here, 

namely Ensemble Smoother with Multiple Data Assimilations. Then, the model errors 

treatment and how it affects the definition of the “total” observation error covariance matrix is 

addressed. 

A.3.1 Ensemble Smoother with Multiple data Assimilations (ESMDA) 

The ensemble-based methods have been investigated and applied extensively for 

conditioning reservoir models to production and seismic data (JUNG et al., 2018). Among 

them, the Ensemble Smoother with Multiple Data Assimilations (EMERICK, Alexandre, 2012; 

EMERICK, Alexandre A.; REYNOLDS, 2013a) has been applied in reservoir engineering 



229 

 

problems, due to the simple formulation and the easy implementation using popular commercial 

tools. For reservoir engineering applications, the ESMDA has two advantages over the 

Ensemble Kalman Filter (EVENSEN, Geir, 1994). First, it does not perform sequential data 

assimilation in time. Secondly, it does not update the vector of states. Furthermore, the method’s 

iterative scheme leads to better matches than the Ensemble Smoother (EVENSEN, Geir, 2009; 

EVENSEN, Geir; VAN LEEUWEN, 1996) in reservoir data assimilation. In the following 

paragraphs, we will show the basic formulation of the method. For a full description of 

ESMDA, refer to (EMERICK, Alexandre, 2012; EMERICK, Alexandre A.; REYNOLDS, 

2013a). 

Here we represent a model with 𝑁𝑚 unknown parameters with an ensemble of 𝑁𝑒 

members. Moreover, we have a set of 𝑁𝑑 observed data to reduce the uncertainty of those 

parameters. The ESMDA analysis equation with Kalman gain localization (ZHANG, Yanfen; 

OLIVER, 2011) is: 

𝒎𝑗
𝑙+1 = 𝒎𝑗

𝑙 + (𝑹𝑚𝑑 ∘ 𝑲
𝑙) (𝒅𝑜𝑏𝑠 + 𝒆𝑗

𝑙 − 𝒈(𝒎𝑗
𝑙)) (A.1) 

where 𝒎𝑗
𝑙 is the vector containing the parameters of the 𝑗th model realization at the 𝑙th data 

assimilation of the ESMDA method, 𝑹𝑚𝑑 is the localization matrix, ∘ denotes the Schur 

product, 𝒅𝑜𝑏𝑠 is the vector of observed data, 𝒆𝑗
𝑙 ∈ ℝ𝑁𝑑 is a vector randomly drawn from the 

distribution 𝒩(0, 𝛼𝑙+1𝐶𝑒), 𝑪𝑒 is the error covariance matrix and 𝒈(𝒎𝑗
𝑙) is the simulated data 

using the vector of parameters 𝒎𝑗
𝑙. The Kalman gain is defined in equation (A.2), 

𝑲𝑙 = 𝑪̃𝑚𝑑
𝑙 (𝑪̃𝑑𝑑

𝑙 + 𝛼𝑙+1𝑪𝑒)
−1
, (A.2) 

where 𝛼𝑙 is known as the error covariance inflation factor of the 𝑙th step, 𝑪̃𝑚𝑑
𝑙  and 𝑪̃𝑑𝑑

𝑙  are 

covariance matrices computed at each step using equations (A.3) and (A.4). 

𝑪̃𝑚𝑑
𝑙 = Δ𝑴𝑙(Δ𝑫𝑙)𝑇 (A.3) 

𝑪̃𝑑𝑑
𝑙 = Δ𝑫𝑙(Δ𝑫𝑙)𝑇 (A.4) 

Furthermore, Δ𝑴𝑙 and Δ𝑫𝑙 are computed at each step using equations (A.5) and 

(A.6). 

Δ𝑴𝑙 =
1

√𝑁𝑒 − 1
[𝒎1

𝑙 −𝒎𝑙̅̅ ̅̅ … 𝒎𝑁𝑒
𝑙 −𝒎𝑙̅̅ ̅̅ ] (A.5) 
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Δ𝑫𝑙 =
1

√𝑁𝑒 − 1
[𝒈(𝒎1

𝑙 ) − 𝑔(𝒎𝑙)̅̅ ̅̅ ̅̅ ̅̅ …  𝒈(𝒎𝑁𝑒
𝑙 ) − 𝑔(𝒎𝑙)̅̅ ̅̅ ̅̅ ̅̅ ] (A.6) 

To perform multiple data assimilations, equation (A.1) is used 𝑁𝑎 number of times, 

which are previously selected. Apart from this, the inflation factor of each step, 𝛼𝑙, must satisfy 

the equation (A.7). 

∑(𝛼𝑙)−1

𝑁𝑎

𝑙=1

= 1 (A.7) 

Among the variables in equation (A.1), the error covariance matrix, 𝑪𝑒, is especially 

important to the data assimilation results because it influences the weights of each data 

deviation on the parameter modifications. However, its computation considering the data-error 

correlations is not well defined in petroleum literature. In the following subsection, we address 

the model errors and how they influence the definition of 𝑪𝑒. 

A.3.2 Model errors and the error covariance matrix 

The measurement errors are not the only source of deviations when the output of 

the models is compared to the observed data. The model’s limited capabilities of accurately 

predicting the true responses cause what we call model errors. Therefore, even if it was possible 

to use the “true” parameters, the output of the model would not be exactly the true response of 

the reservoir. For instance, focusing on seismic data assimilation, common sources of model 

errors include discretization, scale differences, PEM uncertainties, seismic propagation related 

distortions, among others. 

Oliver and Alfonzo (2018a) proposed a methodology to treat the model errors in a 

data assimilation process by replacing 𝑪𝑒 by a total observation error covariance matrix, 𝑪𝐷 =

𝑪𝑒 + 𝑪𝑔, where 𝑪𝑔 is the covariance matrix of model error, that is assumed to be Gaussian with 

zero mean. In their methodology, 𝑪𝐷 is iteratively estimated from the behavior of the 

observation residuals of the previously calibrated ensemble. Here, we apply this idea in the 3D 

seismic data assimilation workflow. 

Neglecting observation bias, we can assume that our observed data comprise the 

so-called “true” response of the reservoir and a measurement error, 𝒆𝑑. Furthermore, neglecting 

model bias for now, we assume that our model output is the “true” response summed with a 

model error 𝒆𝑔. Assuming that both errors are Gaussian with zero mean, they are characterized 
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by the covariance matrices 𝑪𝑒 and 𝑪𝑔. Therefore, the mismatch between the model output and 

the observed data will be the total observation error: 

𝒈(𝒎𝑗
𝑘) − 𝒅𝑜𝑏𝑠 = (𝒆𝑑)𝑗 + (𝒆𝑔)𝑗 . 

(A.8) 

Oliver and Alfonzo (2018a) proposed estimating the total observation error 

covariance matrix by the iterative procedure represented by the equation (A.9). The matrix 𝑴𝑘 

contains the vectors 𝒎𝑗
𝑘 in each of its columns, which in turn represents the calibrated 

parameters from the last ESMDA run, using the total observation error covariance matrix 𝑪̃𝐷
𝑘 . 

The matrix 𝒈(𝑴𝑘) contains the reservoir simulation results using the last calibrated ensemble. 

In the first step, 𝑘 = 0, the initial covariance matrix can be defined based on the estimated 

measurement error covariance matrix, usually assumed to be diagonal. The authors have shown 

in a simple nonlinear application that this procedure improves the data assimilation results in 

the presence of model errors and is also able to converge to the true measurement error variance 

when there is only uncorrelated observation error in the data and no model errors. 

𝑪̃𝐷
𝑘+1 = cov(𝒈(𝑴𝑘) − 𝒅𝒐𝒃𝒔). (A.9) 

In this section, we revisited some key topics that were important to the development 

of the proposed workflow to assimilate 3D seismic data considering model imperfections. In 

the next section, we detail each step of the methodology. 

A.4 Methodology 

The methodology shown here follows the general steps for model improvement and 

calibration proposed by Oliver and Alfonzo (2018a) and applied to 4D seismic data assimilation 

by Oliver and Alfonzo (2018b). However, there are some key differences in the assumptions to 

develop each step of the 3D seismic data assimilation workflow, based on the application in the 

realistic case that we have investigated. First, in our application, the addition of a systematic 

error reduction term was necessary to reduce the biased discrepancies originated by the 

simplification in the forward seismic model. Furthermore, we realized that it was not possible 

to assume stationarity to simplify the computations involving the covariance matrix of the total 

observation errors. 

Our model improvement and calibration workflow using 3D seismic data are 

presented in Figure A.1. It comprises four steps, namely data assimilation, model diagnosis, 
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systematic error reduction, and “total” observation error covariance estimation. Each of these 

steps is detailed in the following subsections. 

 

Figure A.1: Model improvement workflow. 

 

A.4.1 Data assimilation 

The data assimilation workflow is detailed in Figure A.2. The flow simulator 

coupled with the PEM and the systematic error reduction represents the improved forward 

model, whose output is compared to the observed data. The reservoir flow simulator and the 

petro-elastic model are detailed in sections A.5.1 and A.5.2, respectively. For each ensemble 

member, the ESMDA method computes the parameter modifications from the deviations 

between the perturbed vector of observations, 𝒅𝑜𝑏𝑠 + 𝒆, and 𝒅𝑠𝑖𝑚 = 𝒈(𝒎). The new ensemble, 

with altered parameters, is simulated again and this process is repeated until the previously 

specified number of data assimilations is reached. This workflow follows the same basic steps 

of previous applications, e.g. (EMERICK, Alexandre A., 2016; EMERICK, Alexandre A.; 

REYNOLDS, 2013b), except for the systematic error reduction term, which will be detailed in 

section A.4.3. 

 

Figure A.2: Data assimilation workflow. 
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A.4.2 Model diagnosis 

There are three basic pieces of evidence of the important influence of model errors 

in the data assimilation results: large deviations between simulated and observed responses after 

the calibration, spatial or temporal correlations in these deviations, and resulting implausible 

parameter values (OLIVER, D.S.; ALFONZO, 2018a). Moreover, it is possible to define 

quantitative diagnostic metrics based on the comparison of calibrated model responses and the 

observed data (OLIVER, D. S.; REYNOLDS; LIU, 2008; OLIVER, D.S.; ALFONZO, 2018a; 

TARANTOLA, 2005).  

In this work, we suggest starting the evaluation of the data assimilation quality with 

the analysis of the posterior parameters’ values, considering the previous geological knowledge. 

When strong model errors are present, it is possible to identify implausible parameter 

distributions in the calibrated ensemble by comparing them with the prior distributions. 

Furthermore, we recommend the analysis of the minimum and maximum values of the observed 

and simulated data from the prior and the calibrated ensembles. To avoid misleading results 

due to outliers, percentile measures could be used. If there are persistent differences that are not 

associated with physical parameter updates, this indicates that a systematic error reduction 

function may be beneficial to the data assimilation process. 

A.4.3 Reduction of systematic errors 

When the acoustic impedance data obtained directly from the forward PEM is 

compared with the observed acoustic impedance data from the inversion process, there is an 

intrinsic error. This error is caused by the resolution loss due to the seismic wave frequency 

content and the interference between layers. Moreover, the seismic inversion process is 

uncertain and may result in a relative-acoustic impedance attribute, whose physical unities are 

arbitrary (STEPHEN, Karl D.; KAZEMI, 2014). Part of these errors is systematic and may lead 

to inconsistent model updates and exaggerated uncertainty reduction in the data assimilation. 

By systematic, we mean that it affects the whole data in the same way, causing a significant 

distortion. 

It is possible to mitigate this resolution effect by improving the models applied in 

the data assimilation workflow. To do so, one can apply a filter after the PEM that aims to limit 

the frequency content of the simulated signal to the realistic spectrum, e.g. (FAHIMUDDIN; 

AANONSEN; SKJERVHEIM, 2010b; OLIVER, D.S.; ALFONZO, 2018b). However, this 

tends to increase the complexity of the simulation model and the computational costs. 
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Therefore, other applications neglect this resolution loss in the forward model, e.g. (EMERICK, 

Alexandre A.; REYNOLDS, 2013b; GOSSELIN et al., 2003; STEPHEN, K. D., 2007; 

STEPHEN, Karl D.; MACBETH, 2008). Here, we decided to simplify the model and consider 

the resolution loss as a source of model errors due to missing physics. 

One possible way to mitigate the systematic error effect is to add an observation 

bias term in the data assimilation process (OLIVER, D.S.; ALFONZO, 2018a), which is similar 

to increasing the dimension of the problem (EVENSEN, G., 2018). Here, it was possible to 

consider some physically related premises that helped define a systematic error reduction 

function. This nonlinear transformation, which is applied after the PEM (Figure A.2), can be 

interpreted as a resolution distortion proxy. However, since there is a level of subjectivity in the 

definition of such function, we included an uncertain parameter that defines its format. Thus, 

this methodology also increased the dimension of the data assimilation problem, similarly to 

the previously cited methodologies. 

It is important to mention that this procedure aims to reduce systematic model 

errors. However, it is clear that there will be relevant remaining errors that motivate the 

application of the “total” error covariance matrix estimation, which will be described in the 

following section. 

A.4.4  “Total” error covariance matrix estimation 

In a general sense, the total error covariance matrix estimation follows the iterative 

procedure proposed by Oliver and Alfonzo (2018a) and is shown in equation (A.9). 

Nevertheless, as expected in most practical applications involving seismic data, 𝑁𝑑 ≫ 𝑁𝑒 . 

Therefore, the direct application of equation (A.9) would lead to a low-rank covariance matrix. 

To overcome this issue, if it is possible to assume stationarity, one can apply the procedure 

proposed by Oliver and Alfonzo (2018b). They generated vectors of perturbed data by shifting 

and recombining the deviations from the previous data assimilation. On the contrary, if the 

problem is non-stationary, one can apply the shrinkage algorithm of Ledoit and Wolf (2004) or 

the one presented by Chen et al. (2010), which outperforms the former when 𝑁𝑑 ≫ 𝑁𝑒. 

Nevertheless, this latter approach may require the storage and inversion of huge matrices, 

especially in cases that involve large reservoir models. 

Here, we propose to fit covariance models to the experimental covariance matrix, 

enabling heterogeneous variance of the residuals, reducing the storage requirements, and also 

simplifying the inverse computations. In summary, considering the workflow of Figure A.1, we 
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start the first data assimilation with an arbitrary diagonal covariance matrix, whose elements 

can be the variance of the measurement errors or inflated variances (SUN; VINK; GAO, 2017; 

VINK; GAO; CHEN, 2015). After the first data assimilation, we compute the residuals, 

𝒈(𝑴𝑘) − 𝒅𝒐𝒃𝒔, and estimate their variances. Then, we obtain the correlation lengths by fitting 

an analytical model to the experimental correlation matrix of the residuals. Any correlation 

model could be applied at this step, but the exponential anisotropic function, equation (A.10), 

fitted well in all of our cases. In equation (A.10), Δ𝑥, Δ𝑦, and Δ𝑧 are physical distances of 

residuals points, while 𝐿1, 𝐿2, and 𝐿3 are calibrated correlation lengths. Alternatively, one could 

fit an experimental semivariogram of the residuals, leading to equivalent results. Finally, we 

apply the new covariance matrix, with the estimated diagonal elements and correlation lengths, 

in a new data assimilation process. These steps are repeated until the covariance model changes 

are negligible. 

𝑐(ℎ) = exp(−3√(
Δ𝑥

𝐿1
)
2

+ (
Δ𝑦

𝐿2
)
2

+ (
Δ𝑧

𝐿3
)
2

) (A.10) 

A.5 Application 

After describing our methodology, in this section we detail the realistic application 

through which we generated our results. We start by describing the Benchmark case, following 

with our PEM. Then, we detail the seismic data generation process and compare the different 

seismic data that we used. Finally, the computed data assimilation cases are listed. 

A.5.1 Case description 

We applied the methodology described in section A.4 to the realistic Benchmark 

case UNISIM-I-H, which is based on the data from the Namorado Field, an offshore turbidite 

sandstone reservoir in the Campus Basin, Brazil (AVANSI; SCHIOZER, 2015). All the 

observed data, which may be referred to as “measured”, was generated from the fine-scale 

model called UNISIM-I-R, that mimics a real reservoir in our application. This reference model 

has 3,408,633 active cells, whose approximated dimensions are 25 × 25 × 1 m. The 

application of our methodology in this realistic Benchmark allows us to compare the results 

with the reference for validation purposes. 

The simulation models were built based on data from the wells, 14 producers and 

11 injectors, which means that only limited information about the reference was available 
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during the geological modeling. Furthermore, the simulation models are at a coarser scale, 

having 38,466 active cells with 100 × 100 × 8 m each (Figure A.3). 

Despite the existence of other uncertain attributes in this benchmark case 

(MASCHIO, C. et al., 2013), we chose to use the synthetic 3D seismic data to calibrate the 

porosity. There is a strong correlation of this variable with the acoustic impedance. Moreover, 

we have included the permeabilities in the 3 main directions in the data assimilation process, 

because its distribution is correlated with the porosity. All these spatially distributed attributes 

are represented by a prior ensemble of 500 3D models that is available in (MASCHIO, C. et 

al., 2013). 

 

Figure A.3: Simulation model example (porosity). 

 

A.5.2 Petro-elastic model 

We used the same PEM in the observed data generation and in the data assimilation 

workflow because the analysis of model errors caused by petro-elastic uncertainties is outside 

the scope of this work. This PEM is based on the popular Gassmann equation (GASSMANN, 

1951). We considered two minerals in the reservoir, shale and quartz, and their proportions 

were described by the net-to-gross ratio. This is a common simplification (e.g. (EMERICK, 

Alexandre Anozé et al., 2007; STEPHEN, K. D., 2007)). Furthermore, the Hashin-Shtrikman 

bounds (HASHIN; SHTRIKMAN, 1963; apud AVSETH; MUKERJI; MAVKO, 2005) were 

used to compute the equivalent mineral elastic properties. The dry rock properties were modeled 

by polynomial equations (EMERICK, Alexandre Anozé et al., 2007), whose pressure and 

porosity dependencies were similar to the Hertz-Mindlin model (MAVKO; MUKERJI; 
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DVORKIN, 2009). Finally, the fluid properties were obtained using the Batzle-Wang 

correlations (BATZLE; WANG, 1992) and Wood’s formula (MAVKO; MUKERJI; 

DVORKIN, 2009). 

A.5.3 Seismic data 

The synthetic seismic data that we used in this study were generated using the 

workflow presented in Figure A.4. First, we ran the reference model at the fine-scale and 

obtained the pressure and saturation fields at the start of the simulation. These results, together 

with the rock and fluid properties, were used in the PEM to generate the fine-scale P-wave 

impedance field. Thereafter, this data was transferred to a regular seismic grid, where the 

seismic forward model, 1D convolution, was computed to obtain the amplitude data. A colored 

(coloured in the original manuscript) inversion algorithm (LANCASTER; WHITCOMBE, 

2000) was applied to obtain the relative 𝐼𝑃 data again, which was then transferred to the coarse 

simulation scale. Thus, a deterministic seismic inversion was considered. For a detailed 

explanation of this process, refer to (DAVOLIO; SCHIOZER, 2019; DE SOUZA, 2018). 

The complete process of Figure A.4 was used to generate the so-called INV data 

(inverted impedance – step 5), which represents the lower resolution information in our 

application, mimicking observed real data. We also used, as observed data in our tests, the 

impedance obtained directly from the PEM (step 2) applied to the output of the upscaled 

reference model. In this study, this is called the PEM data and it represents the best seismic 

impedance (as if the seismic data were almost perfect). This kind of data does not exist in real 

applications, but it was used for validation and comparison purposes. Nevertheless, it is 

important to mention that when this information is used to calibrate the simulation models, this 

cannot be considered a model error-free case. The simulation models were built from limited 

information from the reference and none of the elements of the ensemble is able to reproduce 

its entire complexity. In other words, some heterogeneities are not represented by the simulation 

models. 
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Figure A.4: Synthetic seismic data generation workflow. 

Figure A.5 compares the fine-scale reference (a), the PEM (b) and the INV (c) 

observed impedance data. The differences of the former and the PEM are due to the upscaling 

of the reference model, which causes subtle value changes and geometric alterations due to 

discretization. The two main effects of the resolution loss between the PEM (b) and the INV 

(c) data are the reduction of the high impedance values, due to averaging, and the distortion of 

the images, due to the inter-layer interference. These deviations were treated in this work as 

systematic errors and part of the “total” observation errors in the data assimilation process. 

A.5.4 Data assimilation cases 

We used the PEM and INV data to compute several data assimilations, whose 

results will be discussed in the next section. To facilitate the reading, we apply the nomenclature 

presented in Table A.1, where the cases are classified based on the observed data, the presence 

of the systematic error reduction function and the arbitrary diagonal initial error covariance 

matrix. We give further detail about the latter in section A.6.1. In Table A.1, DA-PRIOR means 

the initial dataset before any data assimilation, while all the other cases are assimilating 3D 

seismic. For instance, DA-INV-SER corresponds to the data assimilation using INV as 

observed data with the application of the systematic error reduction procedure. 

In addition to this nomenclature, we use the term iteration 0 (it. 0) to refer to first 

data assimilation in the workflow of Figure A.1, in which an arbitrary diagonal error covariance 

matrix is applied. Furthermore, iterations 1, 2 and 3 refer to the iterative estimation of the 

covariance matrix. 

In all of the data assimilations discussed in section 0, we have applied the ESMDA 

algorithm discussed in section A.3.1. We used 4 data assimilations in the ESMDA formulation, 
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with decreasing inflation factors: 𝛼1 = 9.333, 𝛼2 = 7, 𝛼3 = 4 and 𝛼4 = 2, which are the same 

used by Emerick and Reynolds (2013b). Due to a large amount of data, we also applied 

subspace inversion (EMERICK, Alexandre A.; REYNOLDS, 2012), maintaining 99% of the 

sum of the nonzero singular values. Moreover, we used Kalman gain localization (ZHANG, 

Yanfen; OLIVER, 2011) with a correlation length of 1000 𝑚 in the horizontal plane using the 

fifth-order distance-based correlation function proposed by Gaspari and Cohn (1999). 

 

Figure A.5: Impedance observed data comparison: (a) reference fine-scale, (b) PEM data and (c) INV 

data. The layer 12 on the simulation scale and the correspondent position on the fine-scale model are 

shown on the left. A cross section of each case is shown on the right. 

 
Table A.1: Data assimilation nomenclature. 

Nomenclature Observed data Systematic error reduction Initial covariance 

DA-PRIOR No No Usual 

DA-PEM PEM No Usual 

DA-INV INV No Usual 

DA-INV-SER INV Yes Usual 

DA-INV-INFL INV No Highly inflated 
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A.6 Results and discussions 

In this section, we show the results of our application and discuss how the proposed 

methodology helped in reservoir characterization through 3D seismic data assimilation. The 

results are presented following the methodology order. We compare the results using the PEM 

data and the INV data to evidence the impact of the resolution loss in the latter. We start by 

discussing the initial data assimilation, which are the first step in Figure A.1. Thereafter, we 

address a model diagnosis based on the first data assimilations results. Since we detect the need 

for a systematic error reduction function, the definition of this function is described 

subsequently. After that, we present our approach to update the “total” observation error 

covariance matrix. Finally, the results from the complete methodology are discussed. 

Throughout this section, we compare our data assimilation results in terms of the 

volume of oil in place (VOIP) distribution. The VOIP represents the total volume of oil at the 

start of the flow simulation, measured at standard conditions (15 ºC and approximately 1 atm). 

The notation 𝑚3𝑠𝑡𝑑 indicates that the value is in cubic meters measured at standard conditions. 

This variable was chosen because it reflects the overall change in the porosity field, and it is 

correlated to the field production performance. Nevertheless, sometimes we represent our 

results in terms of porosity maps to highlight specific spatial changes. 

A.6.1 Initial data assimilation 

Following the general workflow of Figure A.1, we start by performing an initial 

data assimilation using the available observed data. In this first computation, no specific model 

error treatment is applied. However, it is necessary to specify an initial error covariance matrix 

that will be used in the ESMDA method. Therefore, we analyzed the influence of the initial 

value of the diagonal elements of an uncorrelated covariance matrix on the final uncertainty 

quantification, after the application of the iterative update of a correlated matrix. 

In Figure A.6 we can see the comparison of the results of DA-INV and DA-INV-

INFL. The first starts with a low variance uncorrelated error covariance matrix (red curves), 

initially leading to increased VOIP with smaller variance in comparison with the first iteration 

of the latter. In this case, the iterative procedure (dashed red curves) slightly increased the final 

VOIP variance and reduced its expected value. The other test (purple curves) started with a 

diagonal matrix with standard deviations about 15 times greater than the former. As expected, 

the initial iteration led to higher uncertainty in the final VOIP. However, after 2 iterations of 

the “total” observation error covariance matrix update, we obtained a response which was 



241 

 

approximately equal to the former case. This result was obtained using the INV data, but we 

experienced similar behavior using the PEM data. 

 

Figure A.6: Influence of the initial variance of the observation errors on the final uncertainty 

quantification, using the iterative update of the “total” error covariance matrix. The VOIP distributions 

of the DA-INV cases are in red and the distributions of the DA-INV-INFL cases are in purple. The 

iterations are shown in dashed lines. 

The results of Figure A.6 indicate that the initial value of the diagonal elements of 

the observation error covariance matrix is not a critical parameter in this methodology. 

Therefore, we recommend starting with the magnitude of the measurement errors, or inflated 

values, and perform some steps of the “total” observation error covariance matrix update. In all 

our applications, 3 iterations were enough to reach approximately stable values of the posterior 

uncertainty quantification. For the initial data assimilation in each case hereafter (it. 0), an 

arbitrary uncorrelated error covariance matrix with the standard deviation corresponding to 

50% of the standard deviation of the data was applied. 

Figure A.7 shows the results of DA-PEM (it. 0) and DA-INV (it. 0). In both cases, 

the information reduced the VOIP variance and changed its averages to higher values, when 

compared to the DA-PRIOR. This indicates that our prior ensemble is somewhat pessimistic. 

In a field application, this could be the final result, if no correlated error impact is detected. 

However, in the following subsection, we show that our simplified forward model impairs our 

data assimilation results in the DA-INV (it. 0) case. 
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Figure A.7: First data assimilations results. 

 

A.6.2 Model diagnosis 

We start the model diagnosis from the results of the first data assimilations, which 

are summarized in Figure A.7. The calibration DA-INV (it. 0) resulted in volumes higher than 

all the models from the prior ensemble. This result could imply the poor parametrization of the 

prior ensemble or the influence of observation errors, due to the difference between the 

simplified forward model and the seismic data generation process (Figure A.4). This latter is 

the main impact in our case, which resulted in implausible volume distributions. 

In order to check the necessity of systematic error reduction and confirm the last 

conclusion, we compare the histograms of the observed INV data and the simulated impedance 

from cases DA-PRIOR and DA-INV (it. 0) in Figure A.8. Note that the full seismic data 

generation process reduced the high impedance values, that reached 10000 
𝑚

𝑠
.
𝑔

𝑐𝑚3 in the 

observed INV data and almost 12000 
𝑚

𝑠
.
𝑔

𝑐𝑚3 in both the simulated data. Although the high 

impedance points frequency was reduced in the DA-INV (it. 0), due to the data assimilation 

process, the discrepancy of the maxima remains. Since we expect the occurrence of low porosity 

regions in both the reservoir and the simulation models, this analysis indicates the distortion 

caused by the resolution loss process, that is not included in our forward model. Since this effect 

was more pronounced in higher impedances, it led to optimistic and inconsistent model updates 

(see Figure A.7). This corroborates the application of a systematic error reduction function in 

the data assimilation involving the INV observed data, to avoid inconsistent parameters 

updates. This will be addressed in the following subsection. 
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Figure A.8: Comparison of the observed and simulated impedance histograms. The ordinate is the relative 

frequency, with a maximum of 1 if all the data belonged to the same interval. 

 

A.6.3 Reduction of systematic errors 

Our systematic error reduction may be interpreted here as a resolution distortion 

proxy that was applied to the forward model. To define the format of this function, we assumed 

two physically related premises, as follows. 

Our first assumption is that the minimum and maximum values of the baseline 

impedance should be approximately the same in the observed and the simulated data. This is 

analogous to consider that the range and the combinations of the PEM input variables and 

parameters, such as porosity, saturation, mineral content, and pressure, are the same in the 

reservoir and the simulation model. Therefore, we can obtain one point of the transformation 

function from the maximum values of the simulated and observed data. To reduce the influence 

of outliers, we took the mean of the 0.5% highest values in the DA-PRIOR forward simulations 

and the observed data to define one point of the transformation function. 

The second assumption is that most of the distortions caused by resolution loss 

happened at the high impedances or worse reservoir regions because the heterogeneities, 

including non-reservoir rocks, are more frequent in those areas. Apart from the geological 

knowledge, there is evidence that supports this premise. First, the minimum values from the 

simulated responses are close to the minimum values in the observed data, despite the 

deviations in the high impedance points. Second, when the logs from the wells are compared to 

the observed data in those regions, the deviations are significantly higher at the worst reservoir 

regions, even when both the log and the seismic data indicate relatively high impedances (see 

Figure A.9). 
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Figure A.9: Comparison of the INV data with two well logs. 

Following the previous premises, our systematic error reduction function tends to 

the original simulated value at low impedance and equalizes the maximum of the observed and 

simulated data at the higher values. We opted here to use a simple nonlinear function composed 

of two straight lines of different slopes. The point where the function deviates from the 𝑥 = 𝑦 

line is used to define the systematic error reduction nonlinear function. It is important to 

mention that there is a level of subjectivity in this parameter, which justifies a definition of an 

uncertain range and its inclusion in the data assimilation process. This uncertain range was 

defined based on the comparison between the simulated DA-PRIOR and the INV observed data.  

The three points that define the 2-line function are presented in Table A.2. The 

function converts the simulated result, 𝑥, to a distorted value, 𝑦, trying to mimic the resolution 

loss effect in the data. The first point is a small impedance value that pertains to the 𝑦 = 𝑥 line. 

The second point represents where the attenuation begins, and it is uncertain. The third point 

represents the relation of the maxima of the simulated and observed data. 

Table A.2: Points that define the systematic error reduction function. 

𝒙 [
𝒎

𝒔
.
𝒈

𝒄𝒎𝟑
] 𝒚 [

𝒎

𝒔
.
𝒈

𝒄𝒎𝟑
] Source 

5000 𝑦 = 𝑥 Any small impedance value in the 𝑦 = 𝑥 line. 

~𝑁(8800,350) 𝑦 = 𝑥 Uncertain point where the impedance distortion begins. 

11100 10000 0.5% highest values in simulated and observed data. 
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Taking for instance the mean of the midpoint distribution, the systematic error 

reduction function follows the equation (A.11). 

𝑦 = 𝑎𝑥 + 𝑏, where {
𝑎 = 1 and 𝑏 = 0 if 𝑥 ≤ 8800

𝑎 = 0.522 and 𝑏 = 4.206 × 103 if 𝑥 > 8800
 (A.11) 

Once the systematic error reduction function was defined, following the 

methodology illustrated in Figure A.1, we studied a way to update the “total” observation error 

covariance matrix, which will be addressed in the following subsection. 

A.6.4 “Total” observation error covariance matrix update 

We started our analysis of the update of the “total” observation error covariance 

matrix by testing the hypothesis of stationarity. This could simplify our methodology, as 

reported by Oliver and Alfonzo (2018b). In Figure A.10, we show the behavior of the variance 

of the residuals of the final ensemble from DA-INV (it. 0) case, where it is noticeable that these 

residuals’ second moment changes regionally. 

 

Figure A.10: Variance of the difference between the simulated and observed acoustic impedance data 

from DA-INV (it. 0) case. The map on the left shows the 2nd layer of the simulation model. The histogram 

on the right shows the distribution of the variance in the entire model. 

The variance distributions shown in Figure A.10 motivated the use of 

heterogeneous variances in all applications. Therefore, we have decided to update the “total” 

error covariance matrix using a simplified analytic covariance model fitted to the experimental 

data, enabling heterogeneous variance. In all our cases, exponential functions with horizontal 

lengths of roughly 400 𝑚 and vertical lengths of approximately 10 𝑚 fitted well to the 

residuals’ behavior. One example using the residuals from DA-INV (it. 0) case is shown in 

Figure A.11. 

0 2.0E+06

Variance [m/s . g/cm³]²
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Figure A.11: Example of correlation model match for DA-INV (it. 1). 

 

A.6.5 Complete methodology results 

We applied the full methodology, including systematic error reduction and “total” 

observation error covariance update in the DA-INV-SER case. The “total” observation error 

covariance matrix update was also applied in the DA-PEM case. Nevertheless, the systematic 

error reduction was not necessary for this latter because this data is quasi-ideal, and there is no 

bias to be corrected. The results, in terms of VOIP distributions, are presented in Figure A.12. 

Note that more plausible volume distributions ensued from the leveling of the high impedance 

values in DA-INV-SER, even on the initial iteration. Furthermore, the following iterations 

slightly increased the variability of the posterior ensemble and brought the VOIP expected value 

closer to the reference. This latter result was also noticed in the DA-PEM and, in different 

degrees, on all other tests that were performed. This indicates that the iterative update of the 

“total” observation error covariance matrix contributes to improving the definition of the 

residual weights, mitigating the effects of the errors in the data assimilation process. It is worth 

mentioning that the reference value is a possible outcome in all distributions in Figure A.12. 
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Figure A.12: VOIP cumulative distribution curves of DA-PRIOR (light blue), DA-PEM (light green) and 

DA-INV-SER (yellow). Three iterations of the “total” observation error covariance matrix estimation are 

shown in dashed lines for both assimilations. 

In Figure A.13, we show the mean porosity maps of the simulation model’s 12th 

layer, which was chosen based on the high contrast of good and bad reservoir regions. The 

mean porosity maps of DA-PRIOR, DA-PEM, DA-INV, and DA-INV-SER are compared. 

There are important distortions caused by the seismic forward simulation and the inversion 

process in our data, which cause the major differences observed between the porosity 

estimations from DA-PEM and the DA-INV or DA-INV-SER, especially in the northwestern 

region (red arrows), where lower impedance values occur in (𝐼𝑃𝑜𝑏𝑠)𝐼𝑁𝑉 data, due to the 

interference between layers (Figure A.5). 

When DA-INV results are compared to DA-INV-SER in Figure A.13, we observe 

that the full methodology application reduces the mean parameter changes in comparison with 

the prior distribution. This is more pronounced in the eastern region (black arrows), where the 

porosity is kept relatively low in DA-INV-SER, despite the reduction of the impedance values 

in that region in the INV data (Figure A.5). Another example of a weaker model update occurs 

in the southwest (blue arrows), where the porosity is maintained in intermediate values in DA-

INV-SER, despite the low impedance in the observed INV data (Figure A.5). We refer to 

weaker model updates in the sense that the values are kept closer to the prior ensemble. Even 

though it is not shown in Figure A.13, the standard deviation of the porosity in DA-PEM is 

reduced to about 56% of the standard deviation of the initial ensemble, from 6.1% to 3.4% on 

average. Moreover, the DA-INV porosity distribution has, on average, 52% of the standard 

deviation of the DA-PRIOR. This number is slightly increased to 55% in the DA-INV-SER 

case. 
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Figure A.13: Mean porosity maps of layer 12. 

To check the usefulness of the 3D seismic data assimilation in helping the well data 

history matching, we analyzed the deviations during the 2618 days history of the DA-PRIOR, 

DA-PEM (it. 3), and DA-INV-SER (it. 3) cases in Figure A.14. These two last cases were 

selected because they were the best results to be used as prior ensembles in the following 

production and time-lapse seismic data assimilation studies. We considered the oil rate, water-

cut, gas-oil-ratio, and bottom-hole pressure of the 14 producers and the water injection rate and 

bottom-hole pressure of the 11 injectors as the available data. The sum of quadratic deviations 

OF was normalized using the variance of the measurement errors, as reported in (MASCHIO, 

C. et al., 2013). We can see that the 3D seismic data assimilation alone helped reduce the overall 

well data OF from around 6.7 to around 3.1 on average in DA-PEM (it. 3). However, the 

resolution loss limited this reduction to about 4.9 (DA-INV-SER (it. 3)). 

 

Figure A.14: Well data normalized OF. 
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A.7 Final remarks 

This work proposed a methodology to deal with model and observed data errors 

when assimilating 3D seismic data. The calibrated porosity models output from this procedure 

should be used as prior models for a complete data assimilation of well production data and 4D 

seismic data (if available), which is a topic for future work. The application of the full 

methodology in the case studied presented promising results. It provided estimations of 

volumes of oil in-place that were more consistent with the reference (Figure A.12) and it also 

yielded lower well data OF (Figure A.14). 

Nevertheless, there are still some distortions in the final ensemble’s models that 

were caused by the observation errors in the DA-INV-SER (it. 3) case (Figure A.13). This was 

expected as INV is a very realistic observed data. Despite some simplifications assumed in the 

modeling process, it does present important features of real data, such as the poor vertical 

resolution. Indeed, the whole dataset used here presents challenges of real cases: distortions on 

observed data and lack of information when building prior models. Moreover, an ideal case 

(free of any model or observation errors) is not comprised in the dataset. 

The ideal case considered here (DA-PEM cases) also showed that our methodology 

positively contributes to the reservoir characterization in the presence of moderately low model 

errors (Figure A.12). 

It is worth highlighting that this work brings an important contribution regarding 

the definition of the covariance matrix 𝑪𝑒, which is a difficult task, especially for seismic data. 

In Figure A.6, we show that one can try different values when defining this matrix, that the 

iterative updating of the “total” error covariance matrix will converge to plausible estimations 

after few iterations. 

The promising results of the proposed methodology in the realistic benchmark used 

here for 3D seismic data assimilation encourage its application on more complex cases 

involving different data types in future work. 

A.8 Conclusions 

We addressed the 3D seismic data assimilation process in the presence of model 

errors caused by the resolution loss. We showed the possible impacts of this kind of error in the 

reservoir volume characterization. Moreover, we have proposed a methodology to deal with 

model errors, which considers the non-stationary behavior of seismic data errors. The “total” 
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observation error covariance update is performed here by fitting an analytical correlation model, 

enabling heterogeneous variance. We also included a systematic error reduction function that 

is calibrated during the data assimilation process and whose format is defined based on 

physical-related premises. The key specific conclusions of this work are: 

• The iterative update of the “total” error covariance matrix provided a way to improve 

the weights of the data assimilation method that was practically insensitive to the initial 

covariance estimate, a parameter that is hard to define in some applications. 

• By using the heterogeneous experimental variance and fitting an analytical correlation 

model, we were able to update the “total” error covariance matrix. This methodology 

improved the reservoir volume characterization in all of our tests, reducing the impacts 

of the model errors. 

• The inclusion of an uncertain systematic error reduction function was necessary to 

reduce the bias in the simulated data and adequately calibrate our models’ parameters. 

• The systematic error reduction function, which was calibrated during the data 

assimilation process, tends to weaken the model parameters’ updates, in a sense that 

they are kept closer to the prior ensemble. 

• When the resolution loss was neglected in the 3D seismic data assimilation, we have 

obtained implausible volume distributions, according to our prior geological 

knowledge. 

• This iterative methodology may be too costly, from a computational perspective, for 

some practical cases. However, 3D data assimilation is necessary just once in a closed-

loop workflow and it has the benefit of providing more geologically consistent prior 

models to be used in well production (and 4D seismic data) assimilation. 

• The computational cost may be reduced by only considering the first couple of 

iterations, which already improves the final uncertainty representation. 

• We obtained stable uncertainty quantification results after three iterations in all of our 

tests. 

In future work, we will extend this methodology to 4D seismic data assimilation 

and consider other sources of model errors, such as PEM uncertainties. 
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B.1 Assimilating time-lapse seismic data in the presence of significant spatially 

correlated model errors 
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B.2 Subspace Ensemble Randomized Maximum Likelihood with local analysis for time-

lapse seismic data assimilation 
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B.3 Improving fluid modeling representation for seismic data assimilation in 

compositional reservoir simulation 
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B.4 3D seismic data assimilation to reduce uncertainties in reservoir simulation 

considering model errors 
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