
Universidade Estadual de Campinas

Instituto de Física “Gleb-Wataghin”

Leonardo Pipolo de Gioia

Celestial Holography from the Flat Space Limit

of AdS/CFT

Holografia Celestial a partir do Limite de Espaço Plano

de AdS/CFT

Campinas

2023



Leonardo Pipolo de Gioia

Supervisor/Advisor: João Paulo Pitelli Manoel
Co-Advisor: Marcos Cesar de Oliveira

Celestial Holography from the Flat Space Limit of AdS/CFT
Holografia Celestial a partir do Limite de Espaço Plano de AdS/CFT

Dissertação apresentada ao Instituto de Física

Gleb Wataghin da Universidade Estadual de

Campinas como parte dos requisitos exigidos para

a obtenção do título de Doutor em Física

Dissertation presented to the Institute of Physics

Gleb Wataghin of the University of Campinas in

partial fulfilment of the requirements for the degree

of PhD in Physics

ESTE EXEMPLAR CORRESPONDE À VERSÃO FINAL DA DISSERTAÇÃO DEFEN-

DIDA PELO ALUNO LEONARDO PIPOLO DE GIOIA E ORIENTADA PELO PROF.

JOÃO PAULO PITELLI MANOEL

Campinas

2023



Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Física Gleb Wataghin
Lucimeire de Oliveira Silva da Rocha - CRB 8/9174

    
  Gioia, Leonardo Pipolo de, 1994-  
 G436c GioCelestial holography from the flat space limit of AdS/CFT / Leonardo Pipolo

de Gioia. – Campinas, SP : [s.n.], 2023.
 

   
  GioOrientador: João Paulo Pitelli Manoel.
  GioCoorientador: Marcos Cesar de Oliveira.
  GioTese (doutorado) – Universidade Estadual de Campinas, Instituto de Física

Gleb Wataghin.
 

    
  Gio1. Holografia celestial. 2. Holografia de espaço plano. 3. Gravidade

quântica. 4. Correspondência AdS/CFT. I. Manoel, João Paulo Pitelli, 1982-. II.
Oliveira, Marcos Cesar de, 1969-. III. Universidade Estadual de Campinas.
Instituto de Física Gleb Wataghin. IV. Título.

 

Informações Complementares

Título em outro idioma: Holografia celestial a partir do limite de espaço plano de AdS/CFT
Palavras-chave em inglês:
Celestial holography
Flat space holography
Quantum gravity
AdS/CFT correspondence
Área de concentração: Física
Titulação: Doutor em Ciências
Banca examinadora:
João Paulo Pitelli Manoel [Orientador]
Arlene Cristina Aguilar
Donato Giorgio Torrieri
Sebastião Alves Dias
José Abdalla Helayël-Neto
Data de defesa: 12-05-2023
Programa de Pós-Graduação: Física

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0003-4149-1718
- Currículo Lattes do autor: http://lattes.cnpq.br/4582400430937933  

Powered by TCPDF (www.tcpdf.org)



   
 

 
 

 

MEMBROS DA COMISSÃO EXAMINADORA DA TESE DE DOUTORADO DO ALUNO LEONARDO 
PIPOLO DE GIOIA - RA 136511 APRESENTADA E APROVADA AO INSTITUTO DE FÍSICA GLEB 
WATAGHIN, DA UNIVERSIDADE ESTADUAL DE CAMPINAS, EM  12/05/2023. 

 

 

COMISSÃO JULGADORA: 

- Prof. Dr. João Paulo Pitelli Manoel – Presidente e orientador (IMECC/UNICAMP) 

- Profa. Dra. Arlene Cristina Aguilar (IFGW/UNICAMP) 

- Prof. Dr. Donato Giorgio Torrieri (IFGW/UNICAMP) 

- Dr. Sebastião Alves Dias (Centro Brasileiro de Pesquisas Físicas) 

- Dr. Jose Abdalla Helayel-Neto (Centro Brasileiro de Pesquisas Físicas) 
 
 

 

OBS.: Ata da defesa com as respectivas assinaturas dos membros encontra-se no SIGA/Sistema de 
Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade. 

 

 

 

 

 

 

 

 

CAMPINAS 

2023 



I dedicate this work to my dear and

beloved father Waldir de Gioia



Citations to previously published work

The work in this thesis is in collaboration with Ana-Maria Raclariu. Chapter 3 ap-

peared in [1] and Chapter 4 appeared in [2].



Acknowledgements

First and foremost I thank God for all the opportunities through my life that allowed

me to carry out this work, and for the wisdom to recognize them.

I thank my family for all the support, not only during the years I have developed my

Ph.D., but in my whole life: my father Waldir de Gioia, my mother Maria Helena Pipolo,

my aunt Nancy Pipolo and my grandparents Angelo Pipolo, Nair Sampaio Pipolo and

Maria Isabel Sampaio. I also thank my wife Maria Fernanda Araujo Vieira Matos for

all the support and encouragement, not only during the years of this Ph.D. but since I

started studying Physics, especially in the most difficult times. Very specially I want to

thank my father, who passed away as I conducted this work. He always gave me all the

support in following the profession I have chosen. I dedicate this work to all of my family,

but specially to him, who will always be my dear and beloved father.

Most importantly, I thank Ana Raclariu for collaboration, advice, and friendship,

without which this work would not have been made. Working with Ana is being an

enormous honor and joy. How I improved as a Physicist by our many discussions is

beyond words, but I have also learned greatly from her example. Her mastery of Physics

and impressive intuition have always amazed me and inspired me to become a better

Physicist. Apart from an awesome collaborator, Ana has also become a very dear friend

to whom I will be forever grateful for everything.

I thank my advisor João Paulo Pitelli Manoel for supporting me in working in this



amazing subject, for encouragement and advice. I also thank him for the various dis-

cussions that were very important to develop this thesis. I likewise thank my co-advisor

Marcos Cesar de Oliveira, who supported me in pursuing this research since I told him I

wanted to do so when I was his master student.

A great deal of Physics that was fundamental for my work I have learned by taking

several courses at the Brazilian Center for Research in Physics (CBPF). I am forever

grateful to Sebastião Alves Dias, Álvaro Luís Martins de Almeida Nogueira and José

Abdalla Helayël-Neto for everything they taught me. I also thank Sebastião Alves Dias

for the various discussions that we had, for wise counsel that had great impact upon

my work, and most importantly for friendship and encouragement. I also thank Donato

Giorgio Torrieri for participation in our initial studies in the Infrared Triangle.

I thank CNPq (process number 140725/2019-9) for financial support.



Resumo

A formulação de uma teoria completa de gravitação quântica é um fenomenal problema

em aberto na Física Teórica contemporânea, com o princípio holográfico, precisamente

formulado para gravitação quântica em espaços-tempo assintoticamente negativamente

curvados na forma da correspondência AdS/CFT, permanecendo uma das principais fer-

ramentas para abordá-lo. Mais geralmente, ele propõe que uma teoria quântica da gravi-

tação deva admitir uma formulação equivalente em termos de uma teoria não gravitacional

de menor dimensão. Nesse contexto, Holografia Celestial emergiu na última década como

uma proposta para holografia em espaços-tempo assintoticamente planos, conjecturando

que a gravitação quântica em tais backgrounds deva ser dual a uma Teoria de Campos

Conforme Celestial (CCFT) de codimensão dois vivendo na esfera celestial no infinito

nulo.

Se por um lado diversas entradas no dicionário foram descobertas e novos insights

sobre a teoria do bulk tenham emergido por essa proposta, desenvolver uma definição

inrínseca de uma CCFT e propor a construção concreta de pares duais de teorias no bulk

e no boundary permanece um grande desafio. Nesta tese de doutorado, pretendemos

contribuir para esse problema propondo uma conexão entre CCFT e CFT, motivada pelo

limite de espaço plano da correspondência AdS/CFT.

Mostramos que diagramas de Witten em AdS, com operadores colocados em faixas

infinitesimais de largura ∆τ ∝ O(R−1) ao redor de dois time-slices separados por π no



tempo global, reduzem à amplitudes celestiais no limite R → ∞, mediante a introdução

de uma apropriada identificação antípoda dos dois time-slices. Esse resultado é verificado

por cálculo explícito para a função de dois pontos não perturbativa de um operador

escalar em uma onda de choque em AdS, sugerindo sua validade como um resultado não

perturbativo.

Motivados por essa análise, consideramos uma CFT genérica no cilindro Lorentziano

e estudamos a simetria conforme de uma faixa infinitesimal genérica ao redor de um

time-slice, encontrando que no limite R → ∞ um aprimoramento de dimensão infinita

da simetria conforme so(3, 2) emerge, com os vetores de Killing conformes associados

parameterizados por uma função f(z, z̄) e um vetor de Killing conforme Y (z, z̄) em S2.

Notavelmente, mostramos que no limite R → ∞ esses campos vetoriais podem ser reor-

ganizados em campos vetoriais que obedecem a álgebra de BMS4 estendida.

Um operador primário com dimensão ∆ e autovalor de spin s na CFT é mostrado

então se transformar como um operador primário bidimensional com dimensão efetiva

∆̂ = ∆ + u∂u e spin bidimensional ℓ = s pela ação da subálgebra de superrotações,

sugerindo a introdução de uma transformada integral para diagonalizar tais dimensões.

Mostramos que isso é realizado por uma transformada tipo Mellin temporal que extrai

modos do operador primário na CFT que se transformam como operadores primários sob

superrotações. O processo pelo qual esses modos são construídos é análogo à redução

dimensional de Kaluza-Klein, em que uma torre de campos de diferentes massas é obtida

pela redução dimensional de um único campo no espaço de dimensão maior. Assim,

observamos que estamos de fato estudando uma redução dimensional de uma CFT no

cilindro para uma teoria bidimensional em S2.

Procedemos então a mostrar que em um número arbitrário de dimensões as com-

ponentes transversas da transformação shadow de uma corrente J̃a e da transformação

shadow da parte simétrica sem traço do tensor de energia-momentum T̃{ab} reproduzem



o teorema do gluon soft em ordem dominante, o teorema do graviton soft em ordem

dominante e o teorema do graviton soft em ordem sub-dominante, quando inseridos em

funções de correlação, estabelecendo a emergência das simetrias soft através do processo

de redução dimensional. Os resultados sugerem que qualquer CFT no cilindro Lorentziano

possui um setor celestial, caracterizado por uma redução dimensional à time-slices, gov-

ernado por simetrias soft. Essa observação sugere que seja possível construir CCFT a

partir de CFT por redução dimensional, por conseguinte provendo uma possível ferra-

menta para investigar a definição intrínseca de CCFT e a construção de pares duais em

holografia celestial a partir de exemplos conhecidos de AdS/CFT.



Abstract

The formulation of a complete theory of quantum gravity is an outstanding problem

in contemporary Theoretical Physics, with the holographic principle, precisely formulated

for quantum gravity in asymptotically negatively curved spacetimes in the form of the

AdS/CFT correspondence, remaining one of the main tools to approach it. More gener-

ally it states that a quantum theory of gravity should admit one equivalent formulation in

terms of a lower-dimensional non-gravitational theory. In that context, Celestial Holog-

raphy emerged in the last decade as a proposal for holography in asymptotically flat

spacetimes, conjecturing that quantum gravity in such backgrounds should be dual to a

codimension two Celestial Conformal Field Theory (CCFT) living in the celestial sphere

at null infinity.

While several entries of the dictionary have been uncovered and new insights about

the bulk theory have emerged from this proposal, developing one intrinsic definition of

a CCFT and proposing the construction of concrete dual pairs of bulk and boundary

theories remains a major challenge. In this Ph.D. thesis, we intend to contribute to this

problem by proposing a connection between CCFT and standard CFT, motivated by the

flat space limit of the AdS/CFT correspondence.

We show that AdS Witten diagrams, with operators placed on infinitesimal strips of

width ∆τ ∝ O(R−1) about two time-slices separated by π in global time, reduce to celestial

amplitudes in the R → ∞ limit provided a suitable antipodal identification of the two



slices is introduced. This result is verified by explicit calculation for a non-perturbative

two-point function of a scalar operator in an AdS shockwave background, suggesting its

validity as a non-perturbative result.

Motivated by this analysis, we consider a generic CFT on the Lorentzian cylinder and

study the conformal symmetry of a generic infinitesimal strip about a time-slice, finding

that in the strict R → ∞ limit an infinite-dimensional enhancement of the standard global

conformal algebra so(3, 2) arises, with the associated conformal Killing vectors parame-

terized by a function f(z, z̄) and a conformal Killing vector Y (z, z̄) on S2. Remarkably,

we show that in the R → ∞ limit these vector fields can be reorganized into vector fields

obeying the extended BMS4 algebra.

A primary operator with dimension ∆ and spin eigenvalue s in the CFT is then shown

to transform as a two-dimensional primary operator with effective dimension ∆̂ = ∆+u∂u

and two-dimensional spin ℓ = s under the action of the superrotation subalgebra, sug-

gesting the introduction of an integral transform to diagonalize the dimensions. We show

this is accomplished by a time Mellin-like transform that extracts modes from the parent

CFT primary operator that transform as two-dimensional primary operators. The proce-

dure by which these modes are constructed is analogous to the Kaluza-Klein dimensional

reduction in which a tower of fields of different masses is obtained from the dimensional

reduction of a single field in a higher-dimensional space. As such, we observe that we are

in fact studying a dimensional reduction of a three-dimensional CFT on the cylinder to a

two-dimensional theory on the S2 time-slices.

We then proceed to show in arbitrary dimensions that the transverse components of

the shadow current J̃a and of the symmetric traceless part of the shadow stress tensor T̃{ab}

reproduce the leading soft gluon theorem, leading soft graviton theorem and subleading

soft graviton theorem when inserted into correlation functions, establishing the emergence

of soft symmetries from the dimensional reduction procedure. The results suggest that



any CFT on the Lorentzian cylinder has a celestial sector, characterized by a dimensional

reduction to time-slices, governed by soft symmetries. This realization suggests that it

may be possible to construct CCFT from CFT by dimensional reduction, thereby giving

a possible tool to investigate the intrinsic definition of CCFT and the construction of

AFS/CCFT dual pairs from known AdS/CFT examples.
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1

Introduction

The holographic principle is the statement that a quantum theory of gravity in a

D-dimensional spacetime (M, g) should be equivalently encoded in a non-gravitational

theory in its boundary ∂M [3]. This general property of gravity can be argued on general

grounds from the black hole area-entropy law

S =
A

4G
, (1.1)

and the observation that if a black hole were big enough to contain all of the universe, the

total amount of information contained in it should scale as the area of the boundary and

not as its volume. A precise realization of this principle has been given for the first time by

Maldacena in Anti-de Sitter (AdS) spacetime in the form of the duality between Type IIB

Superstring Theory in AdS5 × S5 with N units of five form flux and N = 4 Super Yang-

Mills theory with gauge group SU(N) living in its conformal boundary in a suitable large

N limit and subject to a specific relation between the coupling constants of the theories [4].



Chapter 1. Introduction 22

Today this is known as one example of the broader AdSd+1/CFTd dualities, which suggest

that quantum gravity in asymptotically negatively curved spacetimes should be dual to

conformal field theories living in their conformal boundaries, see [5, 6] for reviews.

On the one hand, AdS/CFT has proven a powerful duality that has given many in-

sights both into the nature of quantum gravity, as well as in properties of conformal field

theories which possess gravitational duals. On the other hand, the argument in favor of

a holographic principle is general enough that it suggests that spacetimes with different

asymptotic structures should also admit a holographic description. In that regard, one

particular case of interest is clearly the class of asymptotically flat spacetimes (AFS),

which can be invoked in several scenarios as a good approximation of reality, especially if

one avoids discussing phenomena at cosmological scales.

Compared to the AdS case, flat space holography poses additional challenges. In par-

ticular, while the conformal boundary of AdS is timelike, and hence is able to house a

standard quantum field theory, the boundary of asymptotically flat spacetimes is com-

prised of two null surfaces, future and past null infinities I±, together with singular points,

future and past timelike infinities i± and spacelike infinity i0. These singular points may

be described as codimension one slices by the introduction of appropriate hyperbolic slic-

ings [7–9]. Quantum field theories living in this kind of manifold are much less understood

than those defined in standard Lorentzian manifolds, presenting one of the challenges to

the construction of flat space holography. In fact, it has been anticipated in [10], by rely-

ing upon an uplift of AdS3/CFT2 holography through a hyperbolic slicing of Minkowski

spacetime, that in asymptotically flat spacetimes the boundary theory should live in two

dimensions lower than the bulk theory and have Euclidean signature, in stark contrast

with AdS/CFT in which case the boundary theory lives in one dimension lower than the

bulk theory and shares the Lorentzian signature with the bulk.

Despite the challenges, remarkable progress has been achieved in the past decade,



Chapter 1. Introduction 23

propelled by the seminal work of Strominger [11] in which the symmetries of the gravita-

tional scattering problem in AFS have been revisited. BMS supertranslations have been

shown to be a symmetry of the gravitational S-matrix, whose Ward identity takes the

form of a U(1) Kac-Moody current algebra in the celestial sphere at null infinity [11]. Not

only that, such Ward identity is remarkably equivalent to the statement of Weinberg’s

leading soft graviton theorem [12], an observation which lies at the heart of being able to

ascertain that such transformations are really symmetries of the gravitational S-matrix.

In the following years, it has been further demonstrated that the gravitational memory

effect measures transition between inequivalent vacua connected by supertranslations and

is nothing but a Fourier transform of the soft graviton theorem [13], thereby establishing

one triangular equivalence between asymptotic symmetries, soft theorems and memory

effects, which became known as an instance of the IR Triangle [14]. In the years fol-

lowing Strominger’s original analysis, the relation between asymptotic symmetries, soft

theorems, and memory effects has been extended to abelian [9, 15–21] and non-abelian

gauge theories [22–25].

Central to the development of the holographic proposal is the fact that in the same

way as the leading soft graviton theorem is a statement of supertranslation symmetry of

the gravitational S-matrix, there exists a subleading soft graviton theorem which implies

the superrotation symmetry of the gravitational S-matrix [26, 27]. While BMS super-

translations comprise one infinite-dimensional enhancement of the standard translations,

superrotations comprise one infinite-dimensional enhancement of the Lorentz group. Ge-

ometrically, the Lorentz group SO(1, 3) ≃ SL(2,C)/Z2, acts on the cross-sectional spheres

at future and past null infinities I± by means of the global conformal transformations.

Superrotations, on the other hand, act as the infinite-dimensional local enhancement of

the global conformal algebra to the full local conformal Virasoro algebra. The superrota-

tion Ward identity then implies that S-matrix elements behave as correlation functions
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of primary operators in a two-dimensional conformal field theory with operator-valued

weights [28].

Choosing a basis of external scattering states to be a so-called conformal primary bases

diagonalizes these conformal weights and recasts the S-matrix as an object sharing the

properties of a conformal correlator on the celestial sphere [29, 30]. Celestial Holography

then conjectures that there exists a two-dimensional Celestial Conformal Field Theory

(CCFT) living in the celestial sphere whose correlators holographically encode the bulk

quantum gravity S-matrix in such a basis. Much of the research to date has then focused

on understanding the imprints of asymptotic symmetries and universal aspects of bulk

scattering on CCFT [31–50].

An important development has been the understanding of the celestial Operator Prod-

uct Expansion (OPE). It is well-known that tree-level scattering amplitudes of massless

particles develop singularities in the limit in which two of the particles are taken to be

collinear [51]. Once recast in a conformal primary basis, this collinear singularity was

shown to translate into a structure that resembles an OPE for the CCFT. It was later un-

derstood that the celestial OPE could be equivalently derived from symmetry arguments,

at first by imposing conformal symmetry and soft symmetries [52], and later by imposing

just a subset of the full Poincaré symmetry [53].

By manipulating the celestial OPE as a standard CFT2 OPE, it was understood that

it implies in a whole tower of soft symmetries generated by various positive-helicity soft

gluons and gravitons to various subleading orders in the low energy expansion [54]. In

turn, after a suitable redefinition of the currents amounting to taking a light-transform,

this tower of soft symmetries was shown to organize, in the gravitational case, in the

form of the wedge subalgebra of the loop algebra of w1+∞, with an analogous result

for the gauge theory version [55]. It is remarkable that this rich symmetry structure

encoded in the w1+∞ algebra, unveiled by manipulating celestial correlators as true CFT2
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correlators, has then been explicitly shown to be realized in the Einstein equations of

General Relativity [56] thereby providing one extremely non-trivial check of the validity

of the holographic dictionary.

Despite its many successes, Celestial Holography is really in its infancy, with many

open problems remaining to be understood. Firstly, most of the analyses so far have been

conducted in perturbation theory and at tree level. Secondly, contrary to AdS/CFT, that

since its early days had concrete dual pairs construable from string theories, like the type

IIB superstring theory in AdS5 × S5 dual to N = 4 SYM proposed by Maldacena, up

until recently there were no proposals of intrinsic CCFT constructions, neither of their

gravitational duals. Very recently a concrete proposal of a dual pair has emerged [57],

but it still has the shortcoming of relying on restricting to self-dual gravity. Moreover,

the connection between Celestial Holography and string theory is still far from being

completely understood.

In this thesis we aim to contribute to both of these concerns. Firstly, we study the

eikonal approximation to celestial four-point functions. It is well-known that in momen-

tum space, 2 → 2 scattering amplitudes of massless particles, mediated by arbitrarily

spinning exchanges, have a regime known as eikonal regime, characterized by high ener-

gies s ≫ 1 and small scattering angle t
s
≪ 1, in which the amplitude is dominated by

t-channel exchanges and can be written in terms of an eikonal phase which resums an

infinite number of Feynman diagrams including all orders in the coupling constant. In

that regime one can access non-perturbative Physics of scattering through the eikonal

phase.

In particular, it is possible to equivalently formulate the problem as the propagation of

one of the incoming particles in the semiclassical background created by the other. Such

background is an Aichelburg-Sexl shockwave, and the propagation of the first particle

in this background is known to be characterized by the Shapiro time delay acquired by
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the particle when it crosses the shock. The eikonal phase then computes exactly this

time delay, from an analysis of 2 → 2 scattering mediated by gravitons. We therefore

are motivated to extend the eikonal approximation to CCFT in order to have a regime in

which we can compute a non-perturbative celestial correlator which may have applications

for the study of causality constraints in Celestial Holography.

Secondly, we establish a precise connection between AFS/CCFT and the flat space

limit of AdS/CFT, which in turn is tantamount to a precise connection between CCFT

and CFT. Establishing a tight connection between AdS/CFT and AFS/CCFT is an in-

teresting goal firstly because it brings Celestial Holography closer to the well-established

AdS/CFT, allowing for the employment of known AdS/CFT results in the study of flat

space holography. Secondly because it can potentially lead to a prescription to construct

AFS/CCFT dual pairs from known AdS/CFT ones.

The construction of flat space S-matrices from a flat space limit of AdS/CFT has been

studied in the past from several perspectives [58–63], relying on the observation that AdS

spacetime of radius R turns into flat spacetime in the large R limit. All of the previous

analyses tried to reconstruct momentum space S-matrix elements. In particular, one

such prescription based on the HKLL buk reconstruction has been recently put forward

in [62, 63] where it was argued that conformal correlators restricted to infinitesimal time

intervals of width ∆τ ∝ R−1 about global times τ = ±π
2

on the Lorentzian cylinder give

rise to momentum space S-matrix elements after being subject to a certain transform.

Motivated by this analysis, we study this kinematic configuration in the CFT.

In AdS/CFT correlation functions of the boundary theory are computed through a

bulk calculation in perturbation theory by means of AdS Witten diagrams. This method

is analogous to how S-matrices in flat space are evaluated in terms of Feynman diagrams.

In the Witten diagram case, external lines are bulk-to-boundary propagators correspond-

ing to operator insertions in the correlator, internal lines are bulk-to-bulk propagators,
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and vertices are integrals over AdS with factors of the coupling, corresponding to inter-

action terms in a bulk effective Lagrangian expanded about AdS, see e.g. [5,6] for a more

comprehensive discussion. By studying the large R behavior of AdS Witten diagrams

we find that the CFT correlators in this flat space limit configuration directly reduce to

celestial correlators in the large AdS radius limit, a priori without the necessity of any

non-trivial transform. We verify this explicitly for the two-point function in an AdS shock-

wave background, providing one non-perturbative check of the validity of this proposal.

This suggests that there is a connection between a dimensional reduction of CFTs on the

Lorentzian cylinder to constant time slices and CCFTs on the sphere. We then show that

for a generic CFT carefully studying this dimensional reduction it is possible to derive

the CCFT conformally soft theorems, a key signature of CFT.

This thesis is organized as follows: in Chapter 2 we give a comprehensive review of

celestial holography. In Chapter 3 we study the eikonal approximation in Celestial CFT

and the associated celestial propagation on shockwave backgrounds. We also study the flat

space limit of scalar AdS Witten diagrams and show that they reduce to scalar celestial

amplitudes in the large AdS radius limit, with the flat space limit of an AdS shockwave

two-point function being an explicit verification of the result. In Chapter 4 we study the

emergence of CCFT symmetries from a dimensional reduction to time-slices of a CFT on

the Lorentzian cylinder, obtaining both the extended BMS4 algebra and the conformally

soft symmetries. Finally in Chapter 5 we discuss the results and ponder on their impact

on the understanding of the AFS/CCFT correspondence.
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2

Celestial Holography Review

2.1 Introduction

What are the observables of quantum gravity in asymptotically flat spacetimes and what

are its symmetries? These are the zeroth order questions one would ask when trying to

formulate flat space holography since the observables must be encoded in the dual theory

and the symmetries of the two theories must match. On the one hand, since a quantum

theory of gravity precludes the existence of local observables, the most natural observable

to consider is the S-matrix. On the other hand, the question of what the symmetries

of the quantum gravitational S-matrix are is subtle. This is already illustrated in clas-

sical GR: in the 1960s, Bondi, Metzner, van der Burg, and Sachs have given a precise

formulation of asymptotic flatness and found that, contrary to expectations, the diffeo-

morphisms preserving asymptotic flatness provide one infinite-dimensional enlargement

of the Poincaré group of Minkowski isometries, where translations are enhanced to su-

pertranslations [64–66]. The resulting symmetry group takes the form of a semi-direct
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product of supertranslations and Lorentz transformations and became known as the BMS

group.

It was only in the last decade, however, that the BMS group has been shown to give

rise to a symmetry of the gravitational S-matrix [11] and that the supertranslation Ward

identity was shown to be, in fact, equivalent to Weinberg’s soft graviton theorem [12]. This

led to the realization that soft theorems in general are symmetry statements. Indeed, a

subleading soft graviton theorem has been shown to hold at tree level [26] and shown

to imply that superrotations, proposed earlier in [67] as an enhancement of the Lorentz

symmetry in the asymptotically flat bulk, are indeed a symmetry of the gravitational

S-matrix [27].

Remarkably, such Ward identities of bulk asymptotic symmetries, obeyed by S-matrix

elements of massless particles, take the form of current algebra Ward identities in a two-

dimensional CFT on the celestial sphere CS2 obeyed by conformal correlators of primary

operators, with non-standard operator-valued dimensions, whose insertion points on the

sphere are the angles at which the particles enter and exit spacetime through past and

future null infinities I±. Indeed the supertranslation Ward identity takes the form of a

U(1) Kac-Moody current algebra where the role of the charges of the various operators is

played by the bulk energies [68], while the superrotation Ward identity takes the form of

a stress tensor Ward identity where the role of the two-dimensional spin is played by the

four-dimensional helicities, and the role of the two-dimensional conformal dimensions is

played by an operator ∆̂ = −ω∂ω [28].

While from a bulk perspective, it is interesting to describe the S-matrix in a basis

of momentum eigenstates, diagonalizing the action of translation symmetry, what this

showed is that from a boundary perspective, a basis that diagonalize the operator-valued
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conformal dimensions is more interesting. This led to the introduction of conformal pri-

mary bases [29, 30], which from the boundary perspective diagonalize conformal dimen-

sions and from a bulk perspective, diagonalizes the boost generator in the direction of the

momentum. Upon transforming to a conformal primary basis, the S-matrix behaves like

a conformal correlator in a two-dimensional CFT on CS2, with each asymptotic particle

corresponding to a continuum of fields of various possible conformal dimensions. The

S-matrix elements in a conformal primary basis are then called celestial amplitudes or

equivalently celestial correlators.

In this chapter, we review the basics of Celestial Holography. We start in section

2.2 by discussing the general framework of asymptotic symmetries, in order to give a

precise definition of the asymptotic symmetry group and lay the foundations of why gauge

transformations with non-trivial action at the boundary of spacetime are true symmetries

of the theory and not mere redundancies. In section 2.3 we then discuss the asymptotic

structure of Minkowski spacetime by Penrose’s conformal compactification description

of I+ and I−. In section 2.4 we introduce the more general concept of asymptotically

flat spacetimes, introducing the BMS group as a group of asymptotic symmetries and its

proposed extension to the extended BMS group, with the associated canonical surface

charges. Then in section 2.5 we discuss how in the quantum scattering theory the Ward

identities of these symmetries are implied by soft theorems. The natural appearance of

Ward identities characteristic of a two-dimensional U(1) Kac-Moody symmetry and of

a two-dimensional stress tensor motivate us to introduce the conformal primary bases

and recast the S-matrix as a celestial correlator in section 2.6 along with some of its

consequences. Finally, in section 2.7 we review how the investigation of the symmetry

structure of celestial CFT has been improved by the understanding of the celestial OPE

and how employing this framework reveals the w1+∞ symmetry of gravity.
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2.2 Asymptotic Symmetries

We start by discussing the definition of asymptotic symmetries. We consider field theories

in some generic D-dimensional spacetime (M, g) in which there are local symmetries, also

known as gauge symmetries. The formalism which allows us to better discuss these

symmetries is the Covariant Phase Space (CPS) formalism, which permits us to construct

a phase space (Γ,ΩΩΩ) in a covariant manner starting from a given Lagrangian form L in

(M, g). See [25, 69,70] for detailed reviews.

The construction of Γ starts with A, the space of allowed field configurations, defined

by a choice of boundary conditions on the fields. Given S ⊂ A the space of solutions to

the classical equations of motion, the CPS formalism provides a prescription to construct

a pre-symplectic form ΩΩΩ in S. This pre-symplectic form will be a closed two-form in

S, but because of trivial gauge transformations, it will in general be degenerate. The

actual phase space is therefore a subset Γ ⊂ S defined by a gauge-fixing condition that

disallows trivial gauge transformations and renders the pullback of ΩΩΩ to Γ a closed and

non-degenerate two form, which is finally chosen as the symplectic form of the theory [25].

We now outline the prescription. First one observes that by using the Liebnitz rule

several times, a generic variation δL of the Lagrangian form can always be put in the

form

δL = E[Φ]δΦ + dΘΘΘ[Φ, δΦ], (2.1)

where E[Φ] are the equations of motion of the theory and ΘΘΘ is a (d−1)-form on spacetime,

known as pre-sympletic potential density, which depends on the field configuration Φ being

varied and depends linearly on the variation δΦ. For that reason, ΘΘΘ is also interpreted

as a 1-form in A. In general, an object which is a p-form in M and is also a q-form in A

is called a (p, q)-form, so that ΘΘΘ is a (D − 1, 1)-form. A more rigorous definition can be

provided by employing jet bundles and the variational bicomplex [69].
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From ΘΘΘ one defines the pre-sympletic density ωωω, which is a (D− 1, 2)-form, by taking

one anti-symmetric variation:

ωωω[Φ, δ1Φ, δ2Φ] = δ1ΘΘΘ[Φ, δ2Φ]− δ2ΘΘΘ[Φ, δ1Φ]. (2.2)

Finally, choosing a Cauchy slice Σ ⊂ M , one defines the pre-sympletic form ΩΩΩ which is

finally a 2-form in A:

ΩΩΩ[Φ, δ1Φ, δ2Φ] =

∫
Σ

ωωω[Φ, δ1Φ, δ2Φ]. (2.3)

The study of symmetries in this language now follows from standard Hamiltonian me-

chanics. Let δ1Φ = δεΦ be a symmetry transformation with parameter ε and let δ2Φ = δΦ

be a generic field variation. The condition that δεΦ be a symmetry is the condition that

it be a canonical transformation. It translates into the existence of a Hamiltonian charge

Qε such that [25]

ΩΩΩ[Φ, δεΦ, δΦ] = −δQε[Φ]. (2.4)

This equation is just the statement that using the Poisson bracket defined by ΩΩΩ, the

charge Qε generates the symmetry, i.e.

{Qε, f} = δεf, (2.5)

for a generic phase space function f ∈ C∞(Γ). In that case, in the CPS formalism, to

study a certain symmetry, one studies ΩΩΩ[Φ, δεΦ, δΦ] and tries to write it in the form (2.4).

In particular, one may follow this prescription for a gauge symmetry that the theory

admits. When the symmetry is local, Noether’s second theorem applies and it directly

leads to the fundamental theorem of the covariant phase space [69], which says that for a
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local symmetry δε there exists a (D−2, 1)-form kε[Φ, δΦ], unique up to exact differentials,

such that on S,

ωωω[Φ, δεΦ, δΦ] = dkε[Φ, δΦ], ∀Φ ∈ S. (2.6)

Employing Stokes theorem, an immediate corollary is that ΩΩΩ[Φ, δεΦ, δΦ] is a corner term

at ∂Σ:

ΩΩΩ[Φ, δεΦ, δΦ] =

∫
∂Σ

kε[Φ, δΦ]. (2.7)

At this stage one may encounter three possibilities:

1. The contraction of the pre-symplectic form with the gauge transformation vanishes

identically for all δΦ. In that case, δε is a degenerate vector ofΩΩΩ and thereforeΩΩΩ does

not yet qualify as a true symplectic form. These are the trivial gauge transformations

and they must be gauge fixed to give rise to a true phase space Γ ⊂ S.

2. The integral does not vanish, and it can be written exactly as −δQε[Φ]. In that

particular case, the gauge transformation δε is a true canonical transformation. It

has non-trivial action on phase space and has physical consequences. As such it

is not a mere redundancy in the description, but rather a symmetry of the theory.

These are called large gauge transformations.

3. The integral does not vanish, but it cannot be written as −δQε[Φ] for some Qε ∈

C∞(Γ) because there is an additional inexact term, i.e., which cannot be written as

δ of some phase space function. In that case we say that we have one non-integrable

charge and a prescription is necessary to select one integrable part.
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The asymptotic symmetry group of the theory is defined to be the quotient:

ASG =
Allowed gauge transformations
Trivial gauge transformations

. (2.8)

Moreover, upon using a gauge condition to eliminate the trivial gauge transformations so

as to have a well-defined phase space, one may identify

ASG = Residual gauge transformations. (2.9)

We notice that residual gauge transformations may never contain trivial gauge transfor-

mations, otherwise, one merely observes that the gauge-fixing condition was not enough

to ensure the existence of a well-defined phase space.

The definition of ΘΘΘ from δL leaves some residual ambiguities unfixed [69]. In fact,

δL only defines dΘΘΘ and therefore we may redefine ΘΘΘ → ΘΘΘ + dB which in turn leads to

ωωω → ωωω+ dηηη. This reflects on the charge by transforming kε → kε +ηηη. These ambiguities

can be harnessed to perform a renormalization procedure when one encounters a divergent

symplectic structure and a divergent canonical charge, see for example [71].

Finally, we remark that what characterizes a gauge transformation as trivial or non-

trivial is its behavior at ∂Σ. Since Σ has been chosen as a Cauchy slice, it must be such

that any causal curve in M intersects it exactly once. In that case, ∂Σ necessarily lies at

the boundary of spacetime, at infinity. We shall illustrate that concretely in the case of

asymptotically flat spacetimes to which we turn next.
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2.3 Asymptotic Structure of Minkowski Spacetime

2.3.1 Penrose’s Conformal Compactification and Null Infinities

Our starting point will be a review of the structure of the asymptotic boundary of

Minkowski spacetime. With that in mind, we shall introduce the standard Penrose com-

pactification construction which introduces null infinities I± as codimension one surfaces.

These are adequate for the study of massless fields, but inadequate for the study of massive

ones, in which case one needs to introduce the hyperbolic slicing of Minkowski spacetime.

In this thesis we are not going to discuss massive fields, see [14,72] for reviews of including

the massive case.

The intuitive idea behind the Penrose compactification is a simple one: we follow light

rays traveling radially. These will fall into two categories: they are either incoming or

outgoing. If they are incoming, when we follow these light rays to large distances we are

going to reach the place where light rays come from - this is what we define as I−. If

they are outgoing, when we follow these light rays to large distances we are going to reach

the place where light rays go to - this is what we define as I+. Mathematically what we

need to do is to find coordinates on spacetime whose coordinate lines coincide with these

light rays. In other words we need to find functions which are constant along outgoing

radial null geodesics or along incoming radial null geodesics. One way to do so is to first

introduce spherical coordinates (t, r, xA), where t is the usual inertial time, r is the radial

coordinate and xA are coordinates on S2. The metric in these coordinates reads

ds2 = −dt2 + dr2 + r2γABdx
AdxB, (2.10)

where γ is the S2 round metric.

Next we introduce the retarded time u = t − r, which is constant along the outgoing
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radial null geodesics, and the advanced time v = t+r, which is constant along the incoming

radial null geodesics. If we switch to coordinates (u, r, xA) and keep (u, xA) fixed we will

have one outgoing radial null geodesic and r works as a parameter along it. If we take

r → ∞ we are following such a geodesic to large distances. This is what we define as

I+. Likewise if we switch to coordinates (v, r, xA) and keep (v, xA) fixed we will have one

incoming radial null geodesic with r a parameter along it. Taking r → ∞ we follow such

a geodesic to large distances and the resulting set of points is what we define as I−.

While I± are not true sets of points in Minkowski spacetime, Penrose’s conformal

compactification realizes these surfaces in a larger unphysical spacetime. Consider the

coordinates (u, v, xA) where we have eliminated both t and r in favor of u and v. Observe

that the condition r ≥ 0 in the original coordinates translates into v ≥ u. Now I+ is

reached keeping (u, xA) fixed and taking v → +∞ while I− is reached keeping (v, xA) fixed

and taking u → −∞. The idea now is to pull I± to finite coordinate values preserving

the causal structure. One simple transformation that achieves the two goals is to set

u = tan ũ and v = tan ṽ. In that case u, v → ±∞ corresponds to ũ, ṽ → ±π
2
. Moreover,

this transformations is conformal, and the metric tensor in the new coordinates has the

form

ds2 =
1

4 cos2 ũ cos2 ṽ

(
− dũdṽ + sin2(ũ− ṽ)γABdx

AdxB
)
. (2.11)

In the chart (ũ, ṽ, xA) the new coordinates have ranges −π
2
< ũ, ṽ < π

2
subject to

the constraint ṽ ≥ ũ and by our discussion we would like to identify I+ with ṽ = π
2

and I− with ũ = −π
2
. It is again clear that these points are not a part of Minkowski

spacetime. Not only that, it is clear that we cannot extend the Minkowski metric to a

larger spacetime described by the coordinates in the compactified range −π
2
≤ ũ, ṽ ≤ π

2

as we can see from (2.11) that it diverges in the boundary. More technically, Minkowski

spacetime is already a geodesically complete Lorentzian manifold and therefore cannot be
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further extended.

On the other hand, we see that the Minkowski metric has been writen as a Weyl

rescaling of another metric, which in these coordinates reads

ds̃2 = −dũdṽ + sin2(ũ− ṽ)γABdx
AdxB. (2.12)

The spacetime described by the same coordinates, but with this metric instead of the

Minkowski one, is not geodesically complete and can be extended by compactifying the

ranges of the coordinates ũ, ṽ. It turns out, however, that this metric is not uniquely

determined by the physical Minkowski spacetime geometry: any Weyl rescaling of it would

be equally good. What this tells us is that this manifold on which we have embedded

Minkowski spacetime does not really carry a metric, it carries a conformal structure: an

equivalence class of metrics where two metrics are equivalent if and only if they are Weyl

rescalings of one another.

This tells us that we can choose a representative of the equivalence class of the metric

but it will be an unphysical metric. Fixing one choice of this unphysical metric, the

bigger spacetime (M̃, g̃), which in the aforementioned sense extends Minkowski spacetime

to include null infinity, is called the associated unphysical spacetime. Its boundary ∂M̃

now contains I± as true null hypersurfaces with topology I± ≃ R×S2. The cross-sectional

spheres at I± are what we call celestial spheres denoted by CS2
±. We observe that at

first, we have two separate spheres, one at I+ and one at I−, but there is one natural

antipodal identification between them which allows us to talk about a single celestial

sphere CS2 [11].
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The coordinates on the sphere will be chosen to be complex stereographic projection

coordinates given by:

x̂1 =
z + z̄

1 + zz̄
, (2.13)

x̂2 =
−i(z − z̄)

1 + zz̄
, (2.14)

x̂3 =
1− zz̄

1 + zz̄
. (2.15)

The boundary ∂M̃ has more than just I±. We have described the loci ũ = −π
2

and

ṽ = π
2
, but we also have introduced with the compactification ũ = π

2
and ṽ = −π

2
. Because

of the constraint ṽ ≥ ũ we see that when ũ = π
2

the only possible value of ṽ is ṽ = π
2

also.

This would at first seem to correspond to a surface diffeomorphic to S2, but observe in the

unphysical metric g̃ that the scaling factor sin2(ũ − ṽ) defining the radius of this sphere

vanishes identically and that this clearly also happens for all metrics in the conformal

equivalence class of g̃. This means that this sphere is shrunk to a point in M̃ . This point

characterized by ũ = ṽ = π
2

is what we call future timelike infinity and denote by i+.

Physically it is the place where massive particles asymptote to in the far future. The

same applies to ṽ = −π
2

that is a point i− called past timeline infinity, identified as the

place where massive particles come from. Finally, we also have ũ = −π
2

and ṽ = π
2
, which

is also a point i0 called spacelike infinity, corresponding to far away distances at a fixed

time, in other words, r → ∞ with constant t.

In summary the Penrose conformal compactification tells us that Minkowski spacetime

can be conformally embedded into one unphysical spacetime whose metric is determined

only up to conformal transformations and inside of which we can identify its asymptotic

boundary which is comprised of two null surfaces I± corresponding to the places where

massless particles come from and go to, two points i± corresponding to places where

massive particles come from and go to, and a point i0 corresponding to far away places
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in space.

2.3.2 Coordinates near I±

Instead of directly employing the Penrose conformal compactification procedure and work-

ing in the unphysical spacetime it is common to work directly in Minkowski spacetime and

treat I± by taking limits. In this section, we present two commonly employed coordinate

systems in this analysis, the retarded and advanced coordinates. These coordinates are

then generalized by the definition of Bondi gauge coordinates in the next section when

gravity is present.

We start with retarded coordinates (u, r, z, z̄), useful near I+, in which the inertial

time t is traded by retarded time u and on which the metric takes the form

ds2 = −du2 − 2dudr + 2r2γzz̄dzdz̄. (2.16)

The transformation between Cartesian coordinates xµ and retarded coordinates is given

by

t = u+ r, x1 + ix2 =
2rz

1 + zz̄
, x3 =

r(1− zz̄)

1 + zz̄
, (2.17)

and γzz̄ is the only non-vanishing component of the S2 round metric in the (z, z̄) coordi-

nates, γzz̄ = 2
(1+zz̄)2

.

As we have already observed, in the Penrose conformal compactification picture, at the

two ends of I+ there are the points i+ and i0. We shall define I+
± by taking a point (u, z, z̄)

at I+ and taking the limit u → ±∞. This gives us two spheres, which characterize the

way one may approach i+ and i0 from within I+.
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Near I− on the other hand we shall employ the advanced coordinates (v, r, z, z̄) in

which the metric takes the form

ds2 = −dv2 + 2dvdr + 2r2γzz̄dzdz̄, (2.18)

and whose transformation to Cartesian coordinates is given by

t = v − r, x1 + ix2 = − 2rz

1 + zz̄
, x3 = −r(1− zz̄)

1 + zz̄
. (2.19)

In that scenario I− is reached fixing (v, z, z̄) and taking r → ∞. As we we did with I+

we define the boundaries I−
± obtained by fixing (z, z̄) and taking v → ±∞. In that sense,

I−
+ is what we get approaching i0 from within I− and I−

− is what we get approaching i−

from within I−.

It is important to observe that the (z, z̄) coordinates in the retarded chart (u, r, z, z̄)

and (z, z̄) coordinates in the advanced chart (v, r, z, z̄) are not the same coordinates on

S2, but are rather antipodally matched. This is a convention taken for convenience to

simplify formulas and is connected to our observation in the last section that I+ and

I− are antipodally matched across i0 giving rise to a single celestial sphere CS2. Put

differently the two charts are related by the product of parity and time reversal elements

of the Lorentz group PT .

2.4 Asymptotically Flat Spacetimes

2.4.1 Asymptotically Flat Gravity

Now that we have elucidated the asymptotic structure of Minkowski spacetime we con-

sider asymptotically flat spacetimes, in which we have gravity. The intuitive idea is that

asymptotically flat spacetimes should have the same asymptotic structure as Minkowski

spacetime, but can be totally different in their interior, in particular having non-trivial
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topology. Asymptotically flat spacetimes can be defined either in the gauge-fixing ap-

proach, following the work of Bondi, van der Burg, Metzner and Sachs [64–66] or in the

geometrical formulation of Penrose. Here we review the definition in the gauge-fixing

approach. In that case one first defines a Bondi coordinate system to be a chart (u, r, xA)

such that

grr = grA = 0, ∂r det
(gAB

r2

)
= 0. (2.20)

When these conditions are met we also say that the metric is in Bondi gauge. A spacetime

is said to be asymptotically flat at future null infinity I+ when there exists an open set in

which the metric can be put in Bondi gauge by choosing coordinates (u, r, xA) in which

r is unbounded from above, xA parameterize a complete S2, and where the metric takes

the form

ds2 = e2β
V

r
du2 − 2e2βdudr + gAB(dx

A − UAdu)(dxB − UBdu) (2.21)

with the functions β(u, r, xA), V (u, r, xA), gAB(u, r, x
A) and UA(u, r, xA) obeying the falloff

conditions:

V (u, xA)

r
= −1 +O(r−1), (2.22)

β(u, xA) = O(r−2) (2.23)

UA(u, x
A) = O(r−2), (2.24)

gAB(u, x
A) = r2γAB +O(r), (2.25)

Likewise, it is said to be asymptotically flat at past null infinity I− when there is a region

with Bondi coordinates (v, r, xA) in which r is unbounded from above, with the metric
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taking the form:

ds2 = e2β
− V −

r
dv2 + 2e2β

−
dvdr + gAB(dx

A − U−A
du)(dxB − U−B

du). (2.26)

We shall consider spacetimes that are asymptotically flat at both future and past null

infinities, so that both I+ and I− can be defined. Henceforth we are going to focus on I+

with the understanding that all we say has a parallel at I−. We shall then discuss how

these two are connected in the definition of the scattering problem in General Relativity.

The geometry is assumed to be sourced by a matter stress tensor TM
µν of massless

matter assumed to obey the fall-off conditions near I+:

TM
uu = O(r−2), TM

ur = O(r−4), TM
rr = O(r−4), (2.27)

TM
uA = O(r−2), TM

rA = O(r−3), TM
AB = O(r−1). (2.28)

Imposing Einstein’s equations the metric can be shown to have an expansion of the form

[69]

ds2 = −du2 − 2dudr + r2γABdx
AdxB

+
2mB

r
du2 + rCABdx

AdxB +DBCABdudx
A

+
1

r

[
4

3
(NA + u∂AmB)−

1

8
DA(CBCC

BC)

]
dudxA

+ · · · (2.29)

where mB(u, z, z̄), CAB(u, z, z̄) and NA(u, z, z̄) are parameters identifying the solution

known as Bondi mass aspect, gravitational shear and angular momentum aspect and where

DA is the (S2, γ) covariant derivative. We further define NAB = ∂uCAB the Bondi news

tensor. The parameters mB(u, z, z̄) and NA(u, z, z̄) are further constrained by Einstein’s
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equation to obey

∂umB =
1

4
DADBNAB − Tuu, (2.30)

∂uNA = −1

4
DB

(
DBD

CCAC −DAD
CCBC

)
− u∂u∂AmB − TuA, (2.31)

where Tuu and TuA contain contributions from the matter source TM
µν and from the energy-

momentum carried away by gravitational radiation as well

Tuu =
1

8
NABN

AB + 4πG lim
r→∞

r2TM
uu , (2.32)

TuA = −1

4
∂A(CBCN

BC) +
1

4
DB

(
CBCNCA

)
− 1

2
CABDCN

BC + 8πG lim
r→∞

r2TM
uA.

(2.33)

We therefore see that prescribing the Bondi news NAB(u, z, z̄) together with the initial

values of mB(u, z, z̄), NA(u, z, z̄) and CAB(u, z, z̄) as u → −∞ determines the metric

components near I+. Indeed, knowing NAB we may integrate ∂uCAB = NAB and deter-

mine CAB up to its initial value while knowing NAB and CAB together with the matter

sources, the constraint equations determine mB(u, z, z̄) and NA(u, z, z̄) up to their initial

values. Notice, in particular, that owing to the Bondi gauge conditions, the gravitational

shear is a traceless field, i.e., γABCAB = 0, and as a consequence so is NAB. The field

NAB, therefore, encodes two degrees of freedom corresponding to the two polarizations of

gravitons in four dimensions.

2.4.2 BMS and Extended BMS Algebras

With the specification of the theory given in the last section, we turn to its asymptotic

symmetries. The gauge transformations of the theory are diffeomorphisms generated

by spacetime vector fields ξµ and under which the metric varies by its Lie derivative

δξg = Lξg. The asymptotic symmetries of the theory are therefore characterized by
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all the vector fields ξ which preserve the Bondi gauge condition (2.20) and the falloff

conditions (2.22), i.e.,

Lξgrr = LξgrA = 0, gABLξgAB = 0, (2.34)

Lξguu = O(r−1), Lξgur = O(r−2), LξguA = O(1), LξgAB = O(r). (2.35)

The solutions to these conditions are vector fields ξ(f,Y ) given by [69]

ξ(f,Y ) =
(u
2
(D · Y ) + f

)
∂u +

(
−r
2
(D · Y )− u

2
(D · Y ) +

1

2
D2f +O(r−1)

)
∂r

+

(
Y A −

DAf + u
2
DA(D · Y )

r
+O(r−2)

)
∂A (2.36)

parameterized by an arbitrary function f(z, z̄) on S2 and a vector field Y A(z, z̄) on S2

constrained to obey the conformal Killing equation

DAYB +DBYA = γAB(D · Y ). (2.37)

It is useful to split the space of these vector fields in a subspace ξf = ξ(f,0) and another

ξY = ξ(0,Y ). The vector fields ξf are the generators of supertranslations. The four rigid

translations are obtained when f is taken to be:

f0 = 1, f1 =
z + z̄

1 + zz̄
, f2 =

−i(z − z̄)

1 + zz̄
, f3 =

1− zz̄

1 + zz̄
. (2.38)

On the other hand, it is known that the conformal Killing equation on S2 admits both

globally-defined solutions, which span the global conformal algebra sl(2,C), and locally-

defined solutions, which have point singularities, giving rise to two copies of the Witt

algebra wittL ⊕ wittR. Indeed in the (z, z̄) coordinates, the conformal Killing equation
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reduces to

∂z̄Y
z = 0, ∂zY

z̄ = 0, (2.39)

whose solutions are holomorphic and anti-holomorphic vector fields Y z(z) and Y z̄(z̄). If

the vector fields are allowed to have point singularities, the BMS asymptotic flatness

boundary conditions are violated at these point singularities, and for that reason on the

original BMS analysis, the vector fields Y have been demanded to be globally defined.

In that case, the vector fields ξY are the generators of Lorentz transformations, with the

three rotations given by the choices

Y12 = −i(z∂z − z̄∂z̄), Y23 = −iz
2 − 1

2
∂z + i

z̄2 − 1

2
∂z̄, Y31 = −1 + z2

2
∂z −

1 + z̄2

2
∂z̄,

(2.40)

and the three boosts given by the choices

Y01 =
1− z2

2
∂z +

1− z̄2

2
∂z̄, Y02 =

i(1 + z2)

2
∂z −

i(1 + z̄2)

2
∂z̄, Y03 = −z∂z − z̄∂z̄.

(2.41)

In [67] it was proposed that one should indeed drop the requirement that Y be globally

defined, allowing for meromorphic vector fields with poles on the sphere. When that

happens the vector fields ξY generate superrotations, which we see to be an infinite-

dimensional enhancement of the Lorentz transformation inasmuch as the supertranslations

are an infinite-dimensional enhancement of the translations. We will see later that soft

theorems indeed give the proper justification to consider this enlargement which is central

to the celestial holography proposal. Another proposal, also motivated by soft theorems

is to allow Y to generate arbitrary diffeomorphisms on S2 [73, 74].
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Regardless of the choice of which Y should be allowed, if one projects the vector field

ξ(f,Y ) to I+ the result is

ξ(f,Y )|I+ = f∂u +
1

2
(D · Y )u∂u + Y A∂A (2.42)

Using the Lie bracket at I+ one may then show that these vector fields obey the algebra

[ξf , ξf ′ ] = 0, [ξY , ξf ] = ξf̂ , [ξY , ξY ′ ] = ξŶ ,

f̂ = Y (f)− 1

2
(D · Y )f, Ŷ = [Y, Y ′].

(2.43)

When Y is demanded to be globally defined the resulting algebra is known as the BMS

algebra bms4, when Y is demanded just to be meromorphic with possible point singular-

ities the resulting algebra is known as the extended BMS algebra ebms4, and when Y is

an arbitrary diffeomorphism generator the resulting algebra is known as the generalized

BMS algebra gbms4. Henceforth we are going to focus on the extended BMS algebra.

Having the spacetime diffeomorphisms ξf and ξY we can study the variation of the

gravitational data by acting on the metric through the Lie derivative. The supertransla-

tion action on gravitational data is [75]

δfCAB = f∂uCAB + (−2DADB + γABD
2)f, (2.44)

δfNAB = f∂uNAB (2.45)

while the superrotation action is [75]

δYCAB =

[
(D · Y )

2
(u∂u − 1) + LY

]
CAB +

u

2
(−2DADB + γABD

2)(D · Y ), (2.46)

δYNAB =

[
(D · Y )

2
u∂u + LY

]
CAB +

1

2
(−2DADB + γABD

2)(D · Y ) (2.47)

Following the Covariant Phase Space prescription one may then derive the surface
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charges associated with the extended BMS transformations that implement the above

symmetry actions through the Poisson brackets in phase space1. What one finds is [14]

Q+(f) =
1

4πG

∫
I+
−

d2z
√
γfmB, (2.48)

Q+(Y ) =
1

8πG

∫
I+
−

d2z
√
γY ANA. (2.49)

2.4.3 Boundary Conditions at I+
± and I−

±

To have a well-defined phase space in the classical theory, in which the charges Q±(f) and

Q±(Y ) generate supertranslations and superrotations through the Poisson bracket, one

also imposes boundary conditions at u → ±∞ and v → ±∞. The conditions considered

in [11] are the Christodoulou-Kleinerman (CK) boundary conditions characterized by

NAB ∼ O(|u|−1−ϵ) and NAB ∼ O(|v|−1−ϵ) for ϵ > 0 at I+ and I−, together with mB

and NA finite as u→ ±∞ and v → ±∞. One also imposes the conditions that mB|I−
−
=

mB|I+
+
= 0 and thatNA|I−

−
= NA|I+

+
= 0. These boundary conditions have been motivated

by the analysis of Christodoulou and Kleinerman of the non-linear stability of Minkowski

spacetime, in which it was shown that it exists solutions to the Einstein equations with

appropriate matter sources which give rise to geodesically complete solutions verifying

these properties [76].

Assuming that ∂umB and ∂uNA are also finite at large |u|, the finiteness of mB and

NA in this limit implies that actually ∂umB → 0 and ∂uNA → 0 at large |u|. In that case,

the CK boundary conditions together with the constraint equation (2.31) imply that

DB
(
DBD

CCAC −DAD
CCBC

)
|I+

±
= 0 (2.50)

1The derivation is subtle, however, because the charges are non-integrable and because for superrota-
tions the charge diverges. A renormalization is thus necessary together with a prescription to select an
integrable part [69,71].
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and this equation in turn implies that [69]

CAB|I+
±

= (−2DADB + γABD
2)C±, (2.51)

where C±(x
A) are two scalar functions on the sphere parameterizing the boundary values

of the shear. We may equivalently trade C±(x
A) by C(xA) = C−(x

A) and the shift

∆C = C+(x
A) − C−(x

A). It is then clear that a supertranslation f(xA) acts on these

variables by shifting the field at I+
− , namely C(xA):

C(xA) → C(xA) + f(xA). (2.52)

With these boundary conditions, one obtains a phase space in which the action of

the supertranslation charges is well-defined and generates the correct symmetry action

through the Poisson bracket. The action of superrotations, however, is not well-defined

in this phase space. This can already be seen from the fact that δYCAB has a term that

is linear in u. As a result, configurations in the phase space defined by CK boundary

conditions are moved out of this phase space by superrotations [14]. To have a phase

space in which superrotations can be defined demands altering these boundary conditions

so that the news tensor does not vanish at I+
± , but rather diverges linearly in u. See [71,75]

for developments in this direction.

2.4.4 Scattering Problem and Charge Conservation

The scattering problem in gravity can be described in the classical theory in finding a

map between the phase space at I− to the phase space at I+ mapping in configurations

to out configurations. In the quantum theory, which we discuss in the next section, we

instead seek to define one S-matrix mapping the in Hilbert space defined at I− to the

out Hilbert space defined at I+.
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The key insight due to Strominger is that in the absence of an extra boundary condition

linking data at I− and data at I+ the scattering problem is, in fact, ill-defined, and that

one such simple boundary condition can be proposed by demanding it to be compatible

with Lorentz and CPT symmetries [11]. The reason is that the gravitational data at

I± is defined in terms of one specific BMS frame. If we choose some BMS frame at I−

and specify the in data, the Einstein equations only determine the out data up to BMS

transformations acting at I+.

The proposal in [11] was to antipodally identify data at I+
− and I−

+ , motivated by the

fact that it respects Lorentz and CPT symmetries:

mB|I+
−
(Ω) = mB|I−

+
(−Ω), (2.53)

CAB|I+
−
(Ω) = CAB|I−

+
(−Ω), (2.54)

NA|I+
−
(Ω) = NA|I−

+
(−Ω). (2.55)

where Ω ∈ S2. This proposal is further a posteriori justified by the fact that super-

translation and superrotation symmetries of the gravitational S-matrix follow from the

leading and subleading soft graviton theorems. At the classical level, from the expression

of the charges as integrals over I+
− and I−

+ it is clear that this proposal leads to charge

conservation in the scattering problem once the symmetries are demanded to preserve

this condition.

2.5 Ward Identities of Asymptotic Symmetries

2.5.1 Quantum Scattering Preliminaries

All the analysis done so far pertains to a classical theory. We now consider the quantum

version, by connecting the formalism of asymptotic symmetries, where massless fields are

studied through their data at I±, to the formalism of scattering in QFT. In this section
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we briefly review how scattering amplitudes are calculated through the LSZ prescription

in QFT, establishing notation and conventions in doing so. Notice that in this section we

assume the standard setting of QFT in which fields vanish at infinity.

The possible one-particle Hilbert spaces of relativistic particles are given by Wigner’s

classification [77]. For a massless particle of spin s, this state space is spanned by states

|p, ℓ⟩ where p is the null four-momenta, p2 = 0, p0 > 0, and ℓ = ±s is the particle’s

helicity. From the one-particle Hilbert spaces one can then construct the many-particle

Fock spaces with basis states

|p1, ℓ1; . . . ; pn, ℓn⟩ = a†ℓ1(p1) · · · a
†
ℓn
(pn)|0⟩. (2.56)

Free states are normalized according to the covariant normalization convention in which

the creation and annihilation operators obey the oscillator algebra in the form

[aℓ(p), a
†
ℓ′(p

′)] = (2π)32p0δℓℓ′δ
(3)(p⃗− p⃗′). (2.57)

The spaces of in/out scattering states Hin/out ⊂ H, where H is the Hilbert space of

the interacting theory of interest, are related to the free Fock spaces by the isomorphism

established by Møller operators Ω± [77]:

|p1, ℓ1; . . . ; pn, ℓn;±⟩ = Ω±|p1, ℓ1; . . . ; pn, ℓn⟩, Ω± ≡ lim
t→±∞

eiHte−iH0t, (2.58)

where H0 and H are respectively the free and interacting Hamiltonians and the label

± indicates the out/in states. The overlap between an element of Hin and one element

of Hout defines the S-matrix, which can be written as a matrix element of a certain

S-operator between free states

⟨p′1, ℓ′1; . . . ; p′n, ℓ′n|S|p1, ℓ1; . . . ; pm, ℓm⟩ = ⟨p′1, ℓ′1; · · · ; p′n, ℓ′n; +|p1, ℓ1; . . . ; pm, ℓm;−⟩ (2.59)
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where S = Ω†
+Ω−. The way in which the S-matrix is then evaluated in Quantum Field

Theory is by means of the LSZ reduction formula. The starting point is to rewrite the

scattering amplitudes in terms of creation and annihilation operators

⟨p′i, ℓ′i; +|pi, ℓi;−⟩ = ⟨Ω|
n∏

i=1

aout(p
′
i, ℓ

′
i)

n∏
i=1

a†in(pi, ℓi)|Ω⟩, (2.60)

where we assume the same in/out vacuum |Ω⟩. This is the standard assumption in the

LSZ derivation in consonance with the QFT assumption that fields vanish at i0. When

this assumption is dropped and fields are allowed to be non-trivial at i0, their boundary

values at I+
− and I−

+ parameterize out and in vacua, which become distinct. This has

important implications in the context of IR divergences [25,78].

One then observes that any free or in/out creation/annihilation operators can be

embedded into quantum fields transforming on specific representations of the universal

cover of the Lorentz group:

Φin/out(x) =
∑
ℓ

∫
H+

0

d3p

(2π)32ωp

(
ε∗ℓ(p)a

in/out
ℓ (p)eipx + εℓ(p)a

in/out
ℓ (p)†e−ipx

)
, (2.61)

where εℓ(p) are the polarization vectors/tensors/spinors, which take values in the repre-

sentation space of Φin/out(x). One then relates Φin/out(x) to the full bulk interacting fields

by means of the scattering assumption: in the asymptotic regions of spacetime, the bulk

field should become free

Φ(x) →
√
ZΦin/out(x), as t→ ±∞ (2.62)

where Z is the wavefunction renormalization [79]. The operators aoutℓ (p) and ainℓ (p)
†

can then be extracted directly from Φ(x) by taking an appropriate inner product with

a corresponding position space wavefunction living in the space of positive-frequency
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solutions to the linearized field equations. To be more precise, we consider the cases of

spin zero, one, and two. In these cases we have the following inner products:

(ϕ, ϕ′) = −i
∫
Σ

dΣµ (ϕ∇µϕ
′∗ − ϕ′∗∇µϕ) , (2.63)

(A,A′) = −i
∫
Σ

dΣµ
[
Aν
(
∇µA

′∗
ν −∇νA

′∗
µ

)
− A′ν (∇µA

∗
ν −∇νA

∗
µ

)]
, (2.64)

(h, h′) = −i
∫
Σ

dΣρ
[
hµν

(
∇ρh

′∗
µν − 2∇µh

′∗
ρν

)
− h′µν

(
∇ρh

∗
µν − 2∇µh

′∗
ρν

)]
, (2.65)

where Σ is a Cauchy surface. These inner products are constructed from the symplectic

structure ΩΩΩ whose construction we outlined in section 2.2 [80]. In that regard, in the same

way as ΩΩΩ, they can be shown to be independent of the choice of Cauchy surface.

We can then extract aoutℓ (p) and ainℓ (p)† by taking the inner product with wavefunctions

that are plane waves dressed with the appropriate polarizations:

ainℓ (p)
† = −(εℓ(p)e

−ipx,Φin), aoutℓ (p) = (ε∗ℓ(p)e
ipx,Φout). (2.66)

Since the inner products are then independent of the Cauchy surface used in their evalu-

ation, one may push that surface to the asymptotic regions of spacetime, where (2.62) is

assumed to hold and then one can trade Φin/out in these inner products by the full bulk

interacting field Φ. As a result, one may eliminate each ainℓ (p)† and each aoutℓ (p) in (2.60)

in favor of the interacting bulk field using this procedure. This leads to the LSZ reduction

formula:

⟨p′i, ℓ′i; +|pi, ℓi,−⟩ =

(∏
i

∏
j

∫
d4xid

4xjε
∗
ℓj
(pj)e

ip′j ·x′
jεℓi(pi)e

−ipi·xi

)
C(xi, x

′
j), (2.67)

where C(x1, . . . , xn) is the connected component of the interacting time-ordered correlator

⟨Ω|T{Φ(x1) · · ·Φ(xn)}|Ω⟩ with external legs removed, and where we are suppressing the

Lorentz representation indices in both the polarizations and the time-ordered correlator,
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which are assumed to be appropriately contracted with one another.

We are going to parameterize massless momenta in terms of variables (ω, z, z̄) as

pµ(ω, z, z̄) = ηωq̂µ(z, z̄), (2.68)

where η = +1 for outgoing particles and η = −1 for incoming ones, ω is the energy and

q̂µ(z, z̄) is the embedding of S2 on the lightcone of R1,3 given by

q̂µ(z, z̄) = (1,Ω(z, z̄)), (2.69)

Ω(z, z̄) =

(
z + z̄

1 + zz̄
,
−i(z − z̄)

1 + zz̄
,
1− zz̄

1 + zz̄

)
. (2.70)

On the other hand, in the integer spin case, to parameterize the polarization tensors we

first define the polarization vectors εαµ(p) by

ε+(p(ω, z, z̄)) =
1√
2
(z̄, 1,−i,−z̄), ε−(p(ω, z, z̄)) =

1√
2
(z, 1, i,−z), (2.71)

and then we define ε±µν = ε±µ ε
±
ν . We shall then use the shorthand notation

εℓ(z, z̄) = εℓ(p(ω, z, z̄)), (2.72)

aℓ(ω, z, z̄) = aℓ(p(ω, z, z̄)), aℓ(ω, z, z̄)
† = aℓ(p(ω, z, z̄))

†. (2.73)

2.5.2 Soft Theorems and Asymptotic Symmetries

In the quantum theory, the statement of supertranslation and superrotation symmetry of

the scattering problem can be written as

⟨out|Q+(f, Y )S − SQ−(f, Y )|in⟩ = 0, (2.74)
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where by Q±(f, Y ) we mean either Q±(f) or Q±(Y ). We are going to call these equations

the asymptotic symmetry Ward identities in accordance to the terminology employed in

the literature2. We are now going to review the argument by which one shows these Ward

identities are implied by the leading and subleading soft graviton theorems. To shorten

some equations we are going to introduce the notation

: Q(f, Y )S : ≡ Q+(f, Y )S − SQ−(f, Y ). (2.75)

The starting point is to rewrite Q+(f) and Q+(Y ) as integrals over I+, using the

constraint equations for ∂umB and ∂uNA, and observing that the boundary conditions

imply in particular that mB|I+
+
= 0 and NA|I+

+
= 0:

Q+(f) = − 1

16πG

∫
I+

dud2zγzz̄(D
2
zfN

zz +D2
z̄fN

z̄z̄)

+
1

4πG

∫
I+

dud2z
√
γfTuu, (2.76)

Q+(Y ) = − 1

16πG

∫
I+

dud2zγzz̄(D
3
zY

zuN zz +D3
z̄Y

z̄uN z̄z̄)

+
1

8πG

∫
I+

dud2z
√
γ [Y z(Tuz + u∂zTuu) + Y z̄(Tuz̄ + u∂z̄Tuu)] (2.77)

The first term in both Q+(f) and Q+(Y ) depends only on the news tensor NAB, is linear

in the fields and is called the soft term, denoted respectively Q+
S (f) and Q+

S (Y ), whereas

the second term is quadratic in the fields, includes dependence on matter fields, and is

called the hard term, denoted respectively Q+
H(f) and Q+

H(Y ). Under this splitting the

Ward identities take the form of a balance between soft and hard contributions:

⟨out|: QS(f, Y )S :|in⟩ = −⟨out|: QH(f, Y )S :|in⟩. (2.78)

Since the news tensor is the I+ data of the gravitational field, it can be related to the
2This should not be confused with the Ward-Takahashi identity encountered in QFT.
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creation and annihilation operators of outgoing gravitons given that the bulk gravitational

field in the asymptotic region becomes free and can be matched to the in/out fields

according to (2.62)3. The precise relation is that the Fourier modes of the news tensor,

Nω
AB(z, z̄) =

∫ ∞

−∞
duNAB(u, z, z̄)e

iωu. (2.79)

are given by [12]

Nω
zz(z, z̄) = −κωaout(ω, z, z̄,+2)

2π(1 + zz̄)2
, (2.80)

N−ω
zz (z, z̄) = −κωa

†
out(ω, z, z̄,−2)

2π(1 + zz̄)2
, (2.81)

where ω > 0 is assumed and where κ2 = 32πG. The zero mode is defined by an averaging

procedure so that the resulting mode is hermitian in the quantum theory:

N0
zz = lim

ω→0+

1

2
[Nω

zz +N−ω
zz ]. (2.82)

3When allowing for non-trivial fields at I+
± it is necessary to be careful about relation (2.62). The

reason is that the interacting field I+ data need not have boundary values at I+
+ and I+

− summing to zero,
whereas a field possessing a Fourier transform, such as the out field, does indeed satisfy this property. A
resolution is to split I+ data as

ϕ(u, z, z̄) = ϕ̂(u, z, z̄) + χ(z, z̄)

where ϕ̂(u, z, z̄) has a Fourier transform and χ(z, z̄) = 1
2 [ϕ(∞, z, z̄) + ϕ(−∞, z, z̄)]. Then ∂uϕ(u, z, z̄)

always has a Fourier transform and can be matched to the corresponding I+ data constructed from
the out field. For gravity, in particular, this means that we should match the news tensors of the bulk
interacting field and the out field. More generally, (2.62) should be understood as a matching between
the radiative data at I± of interacting and in/out fields.
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These relations imply that Q+
S (f) and Q+

S (Y ) depend respectively on the following

modes of the news tensor

N (0)+
zz ≡

∫ ∞

−∞
duNzz

= − κ

4π(1 + zz̄)2
lim
ω→0

ω
[
aout− (ω, z, z̄) + aout+ (ω, z, z̄)†

]
, (2.83)

N (1)+
zz ≡

∫ ∞

−∞
duuNzz

=
iκ

4π(1 + zz̄)2
lim
ω→0

∂ω
[
ω
(
aout− (ω, z, z̄)− aout+ (ω, z, z̄)†

)]
, (2.84)

with analogous results for N (0)+
z̄z̄ and N

(1)+
z̄z̄ and for the various N (0)−

AB and N
(1)−
AB at I−.

In turn, invoking crossing symmetry, this means that the soft side of the supertranslation

Ward identity reads [12]

⟨out|: QS(f)S :|in⟩ = − 1

2πκ

∫
d2zD2

zf lim
ω→0

ω⟨out|aout− (ω, z, z̄)S|in⟩, (2.85)

whereas the soft side of the superrotation Ward identity reads [27]

⟨out|: QS(Y )S :|in⟩ = − i

2πκ

∫
d2zD3

zY
z lim
ω→0

∂ω
(
ω⟨out|aout− (ω, z, z̄)S|in⟩

)
. (2.86)

Likewise, the hard contributions are constructed from the news tensor and the I+

radiative data of the other massless fields in the theory. They can be connected to

creation and annihilation operators of the corresponding outgoing particles in the same

way as the news tensor is connected to outgoing gravitons in (2.80), (2.81) and (2.82). As

a result, it is possible to show that for supertranslations we have [12]

−⟨out|: QH(f)S :|in⟩ =
∑
i

f(zi, z̄i)ωi⟨out|S|in⟩, (2.87)
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and for superrotations we have [27]

− ⟨out|: QH(Y )S :|in⟩ = −i
∑
k

(
Y zk∂zk + Y z̄k∂z̄k + hkDzkY

zk + h̄kDz̄kY
z̄k
)
⟨out|S|in⟩,

(2.88)

where we have defined the following operators, with a suggestive notation which will be

fully explained in the next section

hi =
∆̂i + ℓi

2
, h̄i =

∆̂i − ℓi
2

, ∆̂i = −ωi∂ωi
. (2.89)

We thus notice that establishing the Ward identities of asymptotic symmetries demands

us to study scattering amplitudes in which the outgoing state has an additional graviton

whose energy is taken to be small and show that (2.85) reproduces (2.87) and (2.86) re-

produces (2.88) . Fortunately, in the 1960’s Weinberg established the leading soft graviton

theorem, which exhibits the leading behavior of such amplitudes in the ω → 0 limit [81],

while in the last decade, Strominger and Cachazo extended Weinberg’s result to the sub-

leading and sub-subleading orders in the small energy expansion, at tree level [26].

In general, soft graviton theorems state that an S-matrix element with an additional

outgoing or incoming graviton whose energy is taken to be sufficiently small, factorize

into one soft term, admitting one Laurent expansion in the graviton energy, multiplied by

the S-matrix element without the graviton. The soft term can be an operator acting on

the remaining S-matrix element, as it happens for the subleading and sub-subleading soft

graviton theorems. The soft graviton theorem with leading and subleading contributions

can be written as

⟨out|aoutℓ (p)S|in⟩ =
(
S
(ℓ)
0 + S

(ℓ)
1 +O(ω)

)
⟨out|in⟩, (2.90)
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where the leading and subleading soft factors are

S
(ℓ)
0 =

κ

2

n∑
k=1

pµkp
ν
kε

ℓ
µν(p)

pk · p
, S

(ℓ)
1 = −iκ

2

n∑
k=1

εℓµν(p)p
µ
kpλ

pk · p
J λν

k , (2.91)

and we have S(ℓ)
0 = O(ω−1) and S(ℓ)

1 = O(1). Observe that we have

lim
ω→0

ω⟨out|aout− (ω, z, z̄)S|in⟩ = S
(−)
0 ⟨out|in⟩, (2.92)

lim
ω→0

∂ω
[
ω⟨out|aout− (ω, z, z̄)S|in⟩

]
= S

(−)
1 ⟨out|in⟩, (2.93)

so that the soft theorem allows for the explicit evaluation of the soft side of the Ward

identities in terms of the soft factor.

To proceed we use the parameterization (2.68) of the momenta, so that we can show

that the leading and subleading soft factors take the following form [28]

S
(+)
0 = −κ(1 + zz̄)

2ω

∑
k

ωk(z̄ − z̄k)

(z − zk)(1 + zkz̄k)
, (2.94)

S
(−)
0 = −κ(1 + zz̄)

2ω

∑
k

ωk(z − zk)

(z̄ − z̄k)(1 + zkz̄k)
, (2.95)

S
(+)
1 =

κ

2

∑
k

(z̄ − z̄k)
2

z − zk

[
2h̄k
z̄ − z̄k

− Γz̄k
z̄k z̄k

h̄k − ∂z̄k + |sk|Ωz̄k

]
, (2.96)

S
(−)
1 =

κ

2

∑
k

(z − zk)
2

z̄ − z̄k

[
2hk
z − zk

− Γzk
zkzk

hk − ∂zk + |sk|Ωzk

]
, (2.97)

where Γz
zz, Γz̄

z̄z̄ are the Christoffel symbols of the Levi-Civita connection on S2 with round

metric γAB and where Ωz =
1
2
Γz
zz parameterizes the associated spin connection [28].

It is now possible to evaluate the soft side of the Ward identities explicitly. We integrate

by parts on CS2 transfering the covariant derivatives D2
z and D3

z to the soft factors. We
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then observe that

γzz̄D2
z

(
γzz̄S

(−)
0

)
= −2πκ

∑
k

ωkδ
(2)(z, zk), (2.98)

γzz̄D3
z

(
γzz̄S

(−)
1

)
= −2πκ

∑
k

[
δ(2)(z, zk)∂zk −Dzδ

(2)(z, zk)hk
]
. (2.99)

It is then immediate to evaluate the integral on the soft side of the Ward identities using

the delta distributions and check explicitly that the hard side of the Ward identities

are reproduced. As a result, the leading and subleading soft graviton theorems imply

respectively on the supertranslation and superrotation symmetry of the gravitational S-

matrix4.

2.5.3 Kac-Moody Current and Stress Tensor Ward Identities

The supertranslation and superrotation Ward identities are, by definition, statements of

symmetries of the bulk gravitational theory. In this section, we show that they take a form

that is reminiscent of statements of symmetry of two-dimensional conformal correlators,

that being the starting point of Celestial Holography.

Starting with supertranslations, we are going to define a two-dimensional vector on the

celestial sphere P±
z to be the soft supertranslation charge for the choice of supertranslation

parameter f(w) = 1
z−w

where (z, z̄) is a fixed point:

P±
z = Q±

S (f), f(w) =
1

z − w
, (2.100)

4The leading soft graviton theorem is exact and has no loop corrections, but the subleading soft
graviton theorem indeed has quantum corrections [82]. The implications of these corrections to the
superrotation symmetry have been discussed in [83] with evidence that symmetry survives at loop level
after renormalizing the generators
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with the anti-holomorphic component defined similarly. One then may show by explicit

computation

P±
z =

8π

κ2
γzz̄∂z̄N

(0)±
zz . (2.101)

Substituting this particular supertranslation on the supertranslation Ward identity we

observe it reads

⟨out|: PzS :|in⟩ =
∑
i

ωi

z − zi
⟨out|S|in⟩. (2.102)

This takes the form of a U(1) Kac-Moody Ward identity for a current (Pz,Pz̄) on a two-

dimensional CFT on the sphere, where the current is inserted at (z, z̄) and each of the

charged operators inserted at (zi, z̄i) and have charges ωi. Observe that just as in the

proof that soft theorems imply in the Ward identities, after writing P±
z explicitly in terms

of graviton creation and annihilation operators we can invoke crossing symmetry in order

to write everything just in terms of the outgoing field P+
z .

Likewise, we consider superrotations. Suppose we choose the superrotation parameter

to be the holomorphic field Y w = 1
z−w

for some fixed point (z, z̄). Define

T±
zz = 2iQ±

S (Y ), (Y w, Y w̄) =

(
1

z − w
, 0

)
, (2.103)

with the anti-holomorphic component T±
z̄z̄ defined similarly. The corresponding superro-

tation Ward identity then takes the form [28]

⟨out|: TzzS :|in⟩ =
∑
k

[
hk

(z − zk)2
+

Γzk
zkzk

z − zk
hk +

1

z − zk
(∂zk − |ℓk|Ωzk)

]
⟨out|S|in⟩.

(2.104)
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This equation takes the form of a stress tensor Ward identity for a stress tensor in a two-

dimensional conformal field theory, where the stress tensor is inserted at (z, z̄) and each

primary operator is inserted at (zi, z̄i) and has operator-valued conformal weights (hi, h̄i).

In particular, such primary operators have dimensions ∆̂i = −ωi∂ωi
and two-dimensional

spins equal to the four-dimensional helicities ℓi.

2.6 Conformal Primary Bases and Celestial Correlators

2.6.1 Diagonalizing Dilatations on CS2

The subleading soft graviton theorem implies the superrotation Ward identity, which for a

particular choice of superrotation parameter takes the form of a CFT2 stress tensor Ward

identity where the operators have operator-valued dimensions. This suggests recasting

the S-matrix in a basis in the asymptotic Hilbert spaces Hin/out diagonalizing these di-

mensions. To do so, in the one-particle state one must diagonalize the operator −ω∂ω.

This in turn is accomplished by a Mellin transform:

|∆, z, z̄, ℓ⟩ =

∫ ∞

0

dωω∆−1|ω, z, z̄, ℓ⟩, (2.105)

so that the resulting state is an eigenstate of ∆̂ with eigenvalue ∆. At the level of wave-

functions appearing in the LSZ prescription, the in/out scalar plane waves get mapped

to

φη
∆(x; z, z̄) =

(iη)∆Γ(∆)

(−q̂(z, z̄) · x+ iηϵ)∆
, (2.106)

where the iϵ prescription distinguishes in/out wavefunctions. When dressed with ap-

propriate polarization vectors/tensors/spinors these are the position space wavefunctions

corresponding to the states (2.105) which are obtained by diagonalizing the operator
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−ω∂ω. These are examples of a more general class of wavefunctions called conformal

primary wavefunctions.

Before giving the general definition of conformal primary wavefunctions let us review

the connection between bulk Lorentz transformations and boundary conformal transfor-

mations. The key observation is the well-known fact that the global conformal group of

Rp,q is isomorphic to SO(p + 1, q + 1). In particular, the global conformal group of the

sphere Sd−1, which is the conformal compactification of Rd−1, is isomorphic to SO(1, d).

In particular, the global conformal group of S2 is the Möbius group SL(2,C)/Z2 known

to be isomorphic to the Lorentz group SO(1, 3). Geometrically, let there be given an

embedding q̂(z, z̄) of the sphere into the ligthcone of R1,3. In the previous sections, we

have chosen the round embedding

q̂(z, z̄) = (1,Ω(z, z̄)), (2.107)

which is used together with the standard advanced and retarded Bondi coordinates near

I±. In this section, we are going to choose instead

q̂(z, z̄) = (1 + zz̄, z + z̄,−i(z − z̄), 1 + zz̄), (2.108)

which effectively flattens the sphere to a plane, and is used together with flat null coor-

dinates near I±, see for example [25] for an analysis of I± in these coordinates in the

context of non-abelian gauge theory theory.

The vector q̂(z, z̄) then connects bulk Lorentz transformations and bondary conformal

transformations:

q̂µ (z′, z̄′) =

∣∣∣∣∂(z′, z̄′)∂(z, z̄)

∣∣∣∣1/2 Λµ
ν q̂

ν(z, z̄), (2.109)
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where (z, z̄) → (z′, z̄′) is a global conformal transformation on the sphere:

z′ =
az + b

cz + d
, z̄′ =

āz̄ + b̄

c̄z̄ + d̄
, (2.110)

and Λ ∈ SO(1, 3) is an associated Lorentz transformation by means of the isomorphism

SL(2,C)/Z2 ≃ SO(1, 3) [72, 84]. At the level of generators, the Lorentz generators Jµν

are reorganized into the global conformal generators {Ln, L̄n : n = −1, 0, 1} of global

conformal transformations on the sphere as [72,84]

L−1 =
1

2
(−J1 + iJ2 + iK1 +K2), L̄−1 =

1

2
(J1 + iJ2 + iK1 −K2),

L0 =
1

2
(J3 − iK3), L̄0 =

1

2
(−J3 − iK3),

L1 =
1

2
(J1 + iJ2 − iK1 +K2), L̄1 =

1

2
(−J1 + iJ2 − iK1 −K2),

(2.111)

where we have split the Lorentz generators into rotations Ji and boosts Ki. Under these

definitions the Lorentz algebra of Jµν becomes equivalent to the sl(2,C) algebra of the

Ln, L̄n:

[Ln, Lm] = (n−m)Ln+m, [L̄n, L̄m] = (n−m)L̄n+m, [Ln, L̄m] = 0. (2.112)

After these preliminaries we are ready to define in generality the concept of conformal

primary wavefunctions :

Definition: A radiative conformal primary wavefunction of dimension ∆ and spin

ℓ is a wavefunction Φ∆,ℓ(x; z, z̄) in the spin s = |ℓ| representation of the Lorentz group

Ds : Spin(1, 3) → GL(V ) that satisfies the spin s linearized equations of motion and which

transforms as a conformal quasi-primary operator of dimension ∆ and 2D spin ℓ under
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Lorentz transformations:

Φ∆,ℓ

(
Λµ

νx
ν ;
aw + b

cw + d
,
āw̄ + b̄

c̄w̄ + d̄

)
= (cw + d)∆+ℓ(c̄w̄ + d̄)∆−ℓDs(Λ)Φ∆,ℓ(x;w, w̄). (2.113)

The terminology radiative in the above definition means that the wavefunction solves

the linearized field equations and has the 2D and 4D spins related by s = |ℓ|. This is to

be contrasted to generalized conformal primary wavefunctions that do not need to obey

the field equations and can have |ℓ| < s [48]. When we just talk about conformal primary

wavefunctions it is to be understood that we are talking about radiative ones.

Conformal primary wavefunctions have been introduced in [30,85], in which they were

constructed and analyzed for massive and massless scalars, as well as gauge fields and

metric perturbation. The construction was a posteriori extended to other spins [48]. To

write these wavefunctions it is convenient to introduce a null tetrad {ℓ, n,m, m̄} given by

ℓµ =
q̂µ

−q̂ · x
, nµ = xµ +

x2

2
ℓµ, (2.114)

mµ = ϵ+µ + (ϵ+ · x)ℓµ, m̄µ = ϵ−µ + (ϵ− · x)ℓµ, (2.115)

that are null vectors satisfying ℓ ·n = −1 and m · m̄ = 1. In terms of these quantities, the

spin one and spin two conformal primary wavefunctions are

Aη
∆,J=+1 = mφη

∆, Aη
∆,J=−1 = m̄φη

∆,

hη∆,J=+2 = mmφη
∆, hη∆,J=−2 = m̄m̄φη

∆.

(2.116)

These wavefunctions transform in the necessary manner and they can be shown to be

gauge-equivalent to the Mellin transforms of plane waves dressed with polarization vectors

and tensors [30]. The half-integer spin wavefunctions can be constructed by decomposing

the null tetrad {ℓ, n,m, m̄} into a spin frame, see e.g. [48] for the details and explicit wave-

functions. These are not the only possible conformal primary wavefunctions though, as it
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is possible to construct a different set of such wavefunctions by taking a two-dimensional

shadow transform in the boundary variables (z, z̄) [30].

In a conformal primary wavefunction Φ±
∆,ℓ(x; z, z̄) the quantities (∆, z, z̄, ℓ) label the

state of the asymptotic particle. In particular, (z, z̄) labels the point at CS2 at which the

particle enters or exits spacetime, thereby encoding the direction of its momentum, ℓ is

the particle’s helicity and ∆ is a conformal dimension which replaces the energy eigenvalue

and can be interpreted as a boost weight.

It is then possible to show that the Mellin transforms of plane waves form a basis

of solutions to the linearized field equations of positive-frequency when the dimensions

lie in the principal series ∆ ∈ 1 + iR [30]. More recently it has been shown that for

wavefunctions that as a function of retarded time belongs to Schwartz space S(R) a set

of conformal primary wavefunctions with integer dimensions also form a basis [86].

From conformal primary wavefunctions, one may extract the associated annihilation

and creation operators. In the LSZ prescription, outgoing states are created by outgoing

annihilation operators acting to the left, while incoming states are created by incoming

creation operators acting to the right. These operators corresponding to conformal pri-

mary wavefunctions are denoted O±
∆,ℓ(z, z̄). We are also going to define the conformal

weights

h =
∆+ ℓ

2
, h̄ =

∆− ℓ

2
, (2.117)
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and equivalently denote the operators by O±
h,h̄

(z, z̄). Reorganizing the Lorentz generators

into {Ln, L̄n} as in (2.111) they act on these operators as

[L−1,O
±
h,h̄

(z, z̄)] = ∂O±
h,h̄

(z, z̄), [L̄−1,O
±
h,h̄

(z, z̄)] = ∂̄O±
h,h̄

(z, z̄),

[L0,O
±
h,h̄

(z, z̄)] = (h+ z∂)O±
h,h̄

(z, z̄), [L̄0,O
±
h,h̄

(z, z̄)] = (h̄+ z̄∂̄)O±(z, z̄),

[L1,O
±
h,h̄

(z, z̄)] =
(
2hz + z2∂z

)
O±

h,h̄
(z, z̄), [L̄1,O

±
h,h̄

(z, z̄)] =
(
2h̄z̄ + z̄2∂z̄

)
O±

h,h̄
(z, z̄).

(2.118)

An operator transforming under the action of {Ln, L̄n} like this is called a quasi-primary

operator. Any operator generated from it by acting with L−1 and L̄−1 a certain number

of times is then called a descendant. As such, Lorentz symmetry alone implies that

creation and annihilation operators in a conformal primary basis transform as quasi-

primary operators on the celestial sphere. Superrotation symmetry then implies that

they actually behave as primary operators in a two-dimensional CFT [87].

In the case of gravitons, we denote the corresponding primary operator of dimension

∆ and spin ℓ = ±2 by G±,η
∆ (z, z̄) where as usual η = ± indicates whether the parti-

cle is outgoing/incoming. Likewise, in the case of gluons, we denote the corresponding

primary operator by O±a,η
∆ (z, z̄), where a is the corresponding color index in the adjoint

representation of the structure group of the theory.

In summary, taking a Mellin transform with respect to the external energies, the S-

matrix elements are then transformed into objects that behave as conformal correlators:

n∏
i=1

∫ ∞

0

dωi

ωi

ω∆i
i ⟨out|S|in⟩ =

〈
O±

h1,h̄1
(z1, z̄1) · · ·O±

hn,h̄n
(zn, z̄n)

〉
, (2.119)

where the right-hand side is then called a celestial amplitude or celestial correlator.
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2.6.2 Poincaré constraints

Let us denote by An(pi, ℓi) one momentum space S-matrix element of n massless particles

with momenta pi = ηiωiq̂(zi, z̄i) and helicities ℓi. Taking a Mellin transform we obtain

the associated celestial amplitude

Ãn(∆i, zi, z̄i, ℓi) =
n∏

i=1

∫ ∞

0

dωi

ωi

ω∆i
i A(ηiωiq̂(zi, z̄i), ℓi). (2.120)

This amplitude is subject to the constraints of Poincaré symmetry. In particular, we

have the Lorentz constraints

n∑
i=1

L(i)
m Ãn =

n∑
i=1

L̄(i)
m Ãn = 0, (2.121)

where L(i)
m and L̄(i)

m are the Lorentz/conformal generators acting on the i-th particle, and

we also have the translation constraints

n∑
i=1

P (i)
µ Ãn = 0, (2.122)

where P (i)
µ are the generators of translations acting on the i-th particle. In a plane wave

basis, P (i)
µ acts diagonally, extracting the momentum eigenvalue

P (i)
µ Ai(pi, ℓi) = ηiωiq̂µ(zi, z̄i)Ai(pi, ℓi). (2.123)

This action can be transformed to a conformal primary basis by means of the Mellin

transform and it follows that the translation generator acts on conformal primary wave-

functions as weight-shifting operators [33, 40]

P (i)
µ = ηiq̂µ(zi, z̄i)e

∂∆i . (2.124)
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This means that when transforming to a conformal basis, the energy maps to a weight-

shifting operator according to ω → e∂∆ . Considering the lightcone component P+ =

P 0+P 3 which is given by P+ = 2ηe∂∆ it thus follows that celestial amplitudes must obey

the constraint

n∑
i=1

ηiÃn(∆1, . . . ,∆i + 1, . . . ,∆n) = 0, (2.125)

where we have suppressed dependence on (zi, z̄i) and ℓi for conciseness.

On the one hand, (2.121) are the constraints of global conformal invariance that are

well-known to constrain the form of conformal correlators in standard conformal field

theories [88]. On the other hand, (2.125) are new constraints that come from translations

in the asymptotically flat bulk, which do not appear in standard conformal field theories.

These extra constraints imply, in particular, that two, three and four-point functions are

singular in their dependence on (zi, z̄i) [40].

One important example is that of the four-point function. It can be shown using

Poincaré symmetry that a generic celestial four-point function can be put in the form

Ã4(hi, h̄i, zi, z̄i) = Khi,h̄i
(zi, z̄i)δ(z − z̄)fhi,h̄i(z, z̄), (2.126)

where Khi,h̄i
(zi, z̄i) is a conformally-covariant prefactor

Khi,h̄i
(zi, z̄i) =

4∏
i<j=1

z
h/3−hi−hj

ij z̄
h̄/3−h̄i−h̄j

ij , (2.127)

with zij = zi−zj, z̄ij = z̄i− z̄j, h =
∑

i hi, h̄ =
∑

i h̄i and where z and z̄ are the conformal

cross-ratios:

z =
z13z24
z12z34

, z̄ =
z̄13z̄24
z̄12z̄34

, (2.128)



Chapter 2. Celestial Holography Review 69

which are invariant under conformal transformations and further related to the Mandel-

stam invariants s = −(p1 + p2)
2 and t = −(p1 + p3)

2 by

z = − t

s
. (2.129)

It can be further shown that fhi,h̄i(z, z̄) just depends on the (hi, h̄i) through the combi-

nation β =
∑

i∆i and the individual helicities ℓi, so that we can also write fhi,h̄i(z, z̄) =

fβ,ℓi(z, z̄) [72].

It is important to observe that while standard conformal symmetry implies that a

four-point function of a conformal field theory takes the form of a conformally-covariant

prefactor such as Khi,h̄i
(zi, z̄i) multiplied by a function of the cross-ratios (z, z̄), the pres-

ence of a delta distribution δ(z − z̄) enforcing reality of the cross ratios comes from

momentum conservation in the bulk: the four particles must scatter on a plane which

intersecting the celestial sphere imposes that the four-points must lie on a circle. This

behavior is a non-standard feature of CCFT in comparison to CFT and is a manifestation

of the extra symmetries it enjoys, in this case the bulk translation symmetry. Recent

investigations have considered the possibility of breaking translation invariance in the

bulk in a controlled manner so as to obtain regular celestial amplitudes, whose behavior

is closer to that of standard CFT [89,90].

2.6.3 Conformally Soft Limits

The change of basis from momentum eigenstates to conformal primary wavefunctions has

been motivated by the existence of soft symmetries, namely, by the fact that certain soft

insertions in the S-matrix behave as currents in a two-dimensional CFT and, moreover,

express asymptotic symmetries in the bulk scattering. Since the change of basis trades

energies by conformal dimensions through the Mellin transform it is not a priori obvious

how these results carry over to the conformal primary basis. It turns out that the soft
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mode to subleading order s can be accessed as a ∆ = 1 − s conformal primary operator

[36,38,91,92].

To get started, assume the soft theorem for the insertion of a massless particle of

helicity ℓ holds good to arbitrary subleading orders, so that we have the momentum space

identity

⟨out|aoutℓ (ω, z, z̄)S|in⟩ =

[
1

ω
S
(ℓ)
0 + S

(ℓ)
1 + · · ·

]
⟨out|S|in⟩. (2.130)

We call the operator N (ℓ)
s (z, z̄) defined by

N (ℓ)
s (z, z̄) ≡ 1

s!
lim
ω→0

∂sω
[
ωaoutℓ (ω, z, z̄)

]
(2.131)

an outgoing sub(s)-leading soft particle because its insertions in the S-matrix projects out

the sub(s)-leading soft factor by

⟨out|N (ℓ)
s (z, z̄)S|in⟩ = S(ℓ)

s ⟨out|S|in⟩. (2.132)

The non-trivial observation is that N (ℓ)
s (z, z̄) can be also accessed in the conformal

primary basis because of the Dirac delta identity

(−1)s

s!
δ(s)(x) = lim

ϵ→0

ϵ

2
|x|ϵ−s−1, s ∈ Z, s ≥ 0 (2.133)

valid on a space of functions that decay to zero sufficiently fast as |x| → ∞ [36]. Indeed,

consider such a function f(ω) and observe that

lim
∆→1−s

(∆− 1 + s)

∫ ∞

0

dω

ω
ω∆f(ω) = lim

ϵ→0

∫ ∞

0

dω
(
ϵωϵ−s−1

)
[ωf(ω)], (2.134)
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where we set ϵ = ∆− 1 + s. We can now use (2.133) to evaluate the integral, obtaining

lim
∆→1−s

(∆− 1 + s)

∫ ∞

0

dω

ω
ω∆f(ω) =

1

s!
lim
ω→0

∂sω[ωf(ω)]. (2.135)

In particular this means that if O+
∆,ℓ(z, z̄) is a celestial operator obtained as the Mellin

transform of aoutℓ (ω, z, z̄) we can identify

lim
∆→1−s

(∆− 1 + s)O+
∆,ℓ(z, z̄) = N (ℓ)

s (z, z̄). (2.136)

For this reason, we call the ∆ → 1− s limit a sub(s)-leading conformally soft limit and we

refer to a graviton with dimension ∆ = 1−s as a sub(s)-leading conformally soft graviton,

with the same terminology applied for other massless particles such as the gluon.

Using these ideas the standard momentum space soft theorems directly imply into

conformally soft theorems obeyed by celestial correlators. More precisely, whenever in-

sertions of a massless particle of helicity ℓ obeys a sub(s)-leading energetic soft theorem,

insertions of O+
∆,ℓ(z, z̄) exhibit a corresponding pole as ∆ → 1 − s and the residue on

that pole is a conformally soft factor times the amplitude without the conformally soft

particle. Equivalently, insertions of the conformally soft operator N (ℓ)
s (z, z̄) factorize in

terms of a conformally soft factor.

2.7 Celestial Holographic Algebras

2.7.1 OPE in Conformal Field Theory

Generically in QFT quantum fields are operator-valued distributions. As such, the prod-

uct of fields develops singularities in the coincidence limit, as is well-known to happen

for standard scalar-valued distributions. The Operator Product Expansion (OPE) aims to

precisely characterize this singular structure, being the statement that in some suitable

set of fields, the product of two elements of the set can be approximated in terms of other
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members of the set as [93]

Φi(x)Φj(y) ∼
∑
k

Ck
ij(x, y)Φk(y), (2.137)

where the ∼ sign means that the right-hand side well approximates the left-hand side

in the coincidence limit. The series is generally understood as asymptotic, instead of

convergent, and understood to be valid inside of correlation functions [93].

In CFT the OPE can be formulated precisely, with the set of fields being the set of

primary fields and their descendants, and in that case, it becomes a convergent series,

valid in correlation functions, inside an open ball containing the two operators and no

other insertions. What lies behind the existence of an OPE in CFT is the state-operator

map [88]. The OPE in a CFT is then heavily constrained by conformal symmetry. Indeed,

writing the OPE as5

Oh1,h̄1
(z1, z̄1)Oh2,h̄2

(z2, z̄2) =
∑
h,h̄

∑
m,m̄

C
(m,m̄)

h,h̄
(z1, z̄1, z2, z̄2)∂

m∂̄m̄Oh,h̄(z2, z̄2), (2.138)

we may impose symmetry constraints by choosing a symmetry generatorQ and demanding

its adjoint action through the commutator commutes with taking the OPE. This gives

rise to constraints on the OPE coefficients C(m,m̄)

h,h̄
(z1, z̄1, z2, z̄2).

The constraints imposed by L−1 and L̄−1 are

(∂z1 + ∂z2)C
(m,m̄)

h,h̄
(z1, z̄1, z2, z̄2) = 0,

(∂z̄1 + ∂z̄2)C
(m,m̄)

h,h̄
(z1, z̄1, z2, z̄2) = 0,

(2.139)

and together they imply that C(m,m̄)

h,h̄
(z1, z̄1, z2, z̄2) = C

(m,m̄)

h,h̄
(z12, z̄12). In particular this

expresses translation invariance of the OPE and means we can study the OPE without
5In this section we consider a generic CFT2. As such we denote its primary operators by Oh,h̄(z, z̄)

in order not to confuse with the celestial primaries Oh,h̄(z, z̄) in CCFT2.



Chapter 2. Celestial Holography Review 73

loss of generality by choosing z2 = 0 and z1 = z. Doing so, the L0 and L̄0 constraints are

(h1 + h2 + z∂z)C
(m,m̄)

h,h̄
(z, z̄) = (h+m)C

(m,m̄)

h,h̄
(z, z̄),

(h̄1 + h̄2 + z̄∂z̄)C
(m,m̄)

h,h̄
(z, z̄) = (h̄+ m̄)C

(m,m̄)

h,h̄
(z, z̄),

(2.140)

and assuming (z, z̄) as independent complex variables we have that

C
(m,m̄)

h,h̄
(z, z̄) = C

(m,m̄)

h,h̄
zh+m−h1−h2 z̄h̄+m̄−h̄1−h̄2 . (2.141)

Finally, the L1 and L̄1 constraints are

(m+ 1)(2h+m)C
(m+1,m̄)

h,h̄
= (h− h1 − h2 +m)C

(m,m̄)

h,h̄
,

(m̄+ 1)(2h̄+ m̄)C
(m,m̄+1)

h,h̄
= (h̄− h̄1 − h̄2 + m̄)C

(m,m̄)

h,h̄
,

(2.142)

and they are recursion relations fixing the contributions of descendants in terms of the

corresponding primary contribution. In particular they are special cases of the general

recursion relation

(m+ 1)(x+m)am+1 = (y +m)am, (2.143)

that once iterated has the unique solution

am =
1

m!

Γ(x)

Γ(y)

Γ(y +m)

Γ(x+m)
a0. (2.144)

As such we find that the solution to the L1 and L̄1 constraints is

C
(m,m̄)

h,h̄
=

1

m!m̄!

Γ(2h3)Γ(2h̄3)Γ(h1 − h2 + h3 +m)Γ(h̄1 − h̄2 + h̄3 + m̄)

Γ(h1 − h2 + h3)Γ(h̄1 − h̄2 + h̄3)Γ(2h3 +m)Γ(2h̄3 + m̄)
C

(0,0)

h,h̄
. (2.145)
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In summary, a CFT has a convergent OPE among primary operators and their descen-

dants, valid inside correlation functions in an open ball containing the two operators being

multiplied and no other insertions, with the property that all contributions from the de-

scendants of a primary operator are determined in terms of the primary contribution. We

then often write the OPE as

Oh1,h̄1
(z1, z̄1)Oh2,h̄2

(z2, z̄2) ∼ Ch,h̄z
h−h1−h2
12 z̄h̄−h̄1−h̄2

12 Oh,h̄(z2, z̄2), (2.146)

where ∼ means up to the descendants’ contributions. We next turn to the analysis of

how an OPE structure arises in CCFT.

2.7.2 Collinear Limits as a Celestial OPE

Scattering amplitudes of gluons and gravitons develop singularities when two of the ex-

ternal particles are taken to be collinear [94–99], see also [100] for a review. These singu-

larities arise from Feynman diagrams in which the two external lines are connected to a

three-point vertex. If they have momenta p1 and p2 the third, internal, line connected to

the vertex will have momentum P = p1 + p2 and its propagator will behave as

1

(p1 + p2)2
=

1

2p1 · p2
, (2.147)

with a pole singularity in the colinear limit p1 · p2 → 0. When that happens the third line

becomes on-shell and the diagram factorizes into a contribution coming from the vertex

in the collinear configuration times the diagram in which the two external particles are

replaced by a single one.

If the particles have momenta p1 = ω1q̂(z1, z̄1) and p2 = ω2q̂(z2, z̄2) the collinear

singularity occurs when |z12|2 → 0, which corresponds to the coincidence limit on the

celestial sphere. As such it is natural to conjecture that the collinear limit in the bulk
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corresponds to the OPE limit in the boundary. This was indeed shown to be the case

in gauge theory [34] and gravity [52] using known results of collinear factorization, with

the analysis extended to any massless particles coupling by a three-point vertex using a

BCFW shift [53].

It is important to remark that when studying the celestial OPE one often considers

either the holomorphic limit z12 → 0 with z̄12 fixed, or the anti-holomorphic limit z̄12 → 0

with z12 fixed, instead of just |z12|2 → 0. The reason for doing this is that when both

z12 → 0 and z̄12 → 0 order of limit issues arise [52]. Very importantly, in order to make

sense of these holomorphic and anti-holomorphic limits, it is necessary to analytically

continue the spacetime signature from Lorentzian (1, 3) to Kleinian (2, 2), because in (2, 2)

signature the variables (z, z̄) parameterizing null momenta become real and independent

instead of complex conjugates of one another. In particular, the SL(2,C) symmetry is

continued to SL(2,R)L × SL(2,R)R where the left factor acts on z and the right factor

acts on z̄.

For gravitons, the collinear limit can be written as

lim
z12→0

As1s2···sn(p1, p2 . . . , pn) =
∑
s=±2

Splitss1s2(p1, p2)As···sn(P, · · · , pn). (2.148)

where Splitss1s2(p1, p2) are known as splitting functions and the singular ones in the holo-

morphic limit z12 → 0 can be shown to take the form [52]

Split222(p1, p2) = −κ
2

z̄12
z12

ω2
P

ω1ω2

, Split−2
2−2(p1, p2) = −κ

2

z̄12
z12

ω3
2

ω1ωP

. (2.149)

The Mellin transform of As1···sn(p1, . . . , pn) in the collinear limit can be taken by changing

the variables (ω1, ω2) to (t, ωP ) where

ω1 = tωP , ω2 = (1− t)ωP . (2.150)
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In terms of these variables, As···sn(P, . . . , pn) depends just on ωP while all the t dependence

lies in the splitting functions. In particular one observes that the integral over t can be

evaluated explicitly in terms of Euler beta functions, while the integral over ωP can

be combined with the remaining energy integrals to transform As···sn(P, . . . , pn) into a

celestial amplitude. Using the celestial correlator notation, this means that we have

⟨G+
∆1
(z1, z̄1)G

+
∆2
(z2, z̄2) · · · ⟩ ∼ −κ

2

z̄12
z12

B(∆1 − 1,∆2 − 1)⟨G+
∆1+∆2

(z2, z̄2) · · · ⟩,

⟨G+
∆1
(z1, z̄1)G

−
∆2
(z2, z̄2) · · · ⟩ ∼ −κ

2

z̄12
z12

B(∆1 − 1,∆2 + 3)⟨G−
∆1+∆2

(z2, z̄2) · · · ⟩,
(2.151)

in which by ∼ we mean up to terms that are regular in the collinear limit. Since these

equations are true for any other insertions into the celestial correlator, they can be written

as operator equations

G+
∆1
(z1, z̄1)G

+
∆2
(z2, z̄2) ∼ −κ

2

z̄12
z12

B(∆1 − 1,∆2 − 1)G+
∆1+∆2

(z2, z̄2),

G+
∆1
(z1, z̄1)G

−
∆2
(z2, z̄2) ∼ −κ

2

z̄12
z12

B(∆1 − 1,∆2 + 3)G−
∆1+∆2

(z2, z̄2).

(2.152)

Observing the powers of z12 and z̄12 it is possible to see that they are consistent with

the ones corresponding to contributions of primaries of dimension ∆1+∆2 and spin ℓ = ±2

to the OPEs of the primaries on the left-hand side. As such, we see that indeed collinear

singularities in scattering amplitudes translate into an OPE-like structure on celestial

correlators.

At this point, it is already possible to appreciate the advantage of the holographic

perspective. Assuming that an OPE obeying the constraints of conformal symmetry

exists, and knowing the primary contribution, it is possible to include all anti-holomorphic

descendants using (2.145), or equivalently by employing the OPE block construction [54,

101,102].

In the next section, we are going to review how even the primary contribution, which
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in this section we argued can be computed from collinear singularities of scattering am-

plitudes, can also be constrained and determined from symmetry.

2.7.3 Celestial OPE from Symmetry

The celestial OPE suggested by collinear limits can remarkably be fixed by symmetry.

Indeed, in [52] it was shown that assuming that the celestial operators have an operator

product expansion and proposing a sensible ansatz, translation symmetry together with

conformally soft symmetries were capable of fixing the contributions of primary operators

to the celestial OPE. The results match the ones obtained by the analysis of collinear sin-

gularities, such as the one we have exemplified in the last section. Even more surprisingly,

it was then later shown in [53] that just a subset of Poincaré symmetry alone is capable

of achieving the same result. In this section, we briefly review this argument and write

down the celestial OPE with SL(2,R)R descendants constructed in [53].

The starting point of the analysis is to recall that ultimately the celestial OPE cap-

tures bulk collinear singularities. As such, given two celestial operators Oh1,h̄1
(z1, z̄1) and

Oh2,h̄2
(z2, z̄2) each contribution to the product Oh1,h̄1

(z1, z̄1)Oh2,h̄2
(z2, z̄2) is associated to

a particular three-point vertex in a bulk effective Lagrangian. If the vertex has dimension

dV , a dimensional analysis argument shows that the corresponding primary contribution

to the Oh1,h̄1
(z1, z̄1)Oh2,h̄2

(z2, z̄2) OPE must have ∆ = ∆1 + ∆2 + dV − 5 (see Appendix

A of [52]). Defining p = dV − 4 and assuming such primary has spin ℓ, it’s conformal

weights are

h = h1 + h2 +
p− 1 + (ℓ− ℓ1 − ℓ2)

2
, h̄ = h̄1 + h̄2 +

p− 1− (ℓ− ℓ1 − ℓ2)

2
. (2.153)

Since at tree-level scattering amplitudes can have only simple poles as singularities one

must rule out branch points and higher-order poles. This imposes a constraint that there
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must be n ∈ Z such that

p− 1 + ℓ− ℓ1 − ℓ2 = 2(n− 1), 0 ≤ n ≤ p. (2.154)

In that case the primary contribution to the OPE takes the form

Oh1,h̄1
(z1, z̄1)Oh2,h̄2

(z2, z̄2) ∼ C(0)
p,n(h̄1, h̄2)z

n−1
12 z̄p−n

12 Oh,h̄(z2, z̄2), (2.155)

where we understand C(0)
p,n(h̄1, h̄2) as a function of (h̄1, h̄2) and of the spins ℓ1 and ℓ2, the

dependence on which we leave implicit. In [53] the case n = 0 has been considered and the

contributions of all SL(2,R)R descendants have been included, keeping only the leading

singularity in the holomorphic collinear limit z12 → 0, which in this case is a simple pole.

To that end one proposes the ansatz

Oh1,h̄1
(z1, z̄1)Oh2,h̄2

(z2, z̄2) ∼
1

z12

∞∑
m̄=0

C(m̄)
p (h̄1, h̄2)z̄

p+m̄
12 ∂m̄z̄2Oh,h̄(z2, z̄2). (2.156)

We already know that all C(m̄)
p (h̄1, h̄2) are fixed in terms of C(0)

p (h̄1, h̄2) by conformal

symmetry. The key element of the analysis is to further constrain the OPE with the

translation charges Pµ to determine C(0)
p (h̄1, h̄2). Writing the momentum operators in

terms of spinor components Pαα̇ = σµ
αα̇Pµ, where σµ = (1, σi), with σi being the Pauli

matrices, we observe that the charges P− 1
2
,± 1

2
do not mix SL(2,R)L descendants and can be

consistently imposed while studying just the leading pole in z12. The constraint imposed

by P− 1
2
,− 1

2
is

C(0)
p

(
h̄1 +

1

2
, h̄2

)
+ C(0)

p

(
h̄1, h̄2 +

1

2

)
= C(0)

p (h̄1, h̄2), (2.157)

while the constraint imposed by P− 1
2
, 1
2

is

C(m̄)
p

(
h̄1 +

1

2
, h̄2

)
= (m̄+ 1)C(m̄)

p (h̄1, h̄2). (2.158)
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Combining this constraint with the L̄1 constraint gives a recursion relation in h̄1 at fixed

m̄ which for the special case m̄ = 0 reduces to

(2h̄1 + p)C(0)
p (h̄1, h̄2) = (2h̄1 + 2h̄2 + 2p)C(0)

p

(
h̄1 +

1

2
, h̄2

)
. (2.159)

Further combining with the P− 1
2
,− 1

2
constraint gives a similar recursion relation in h̄2

(2h̄2 + p)C(0)
p (h̄1, h̄2) = (2h̄1 + 2h̄2 + 2p)C(0)

p

(
h̄1, h̄2 +

1

2

)
. (2.160)

The two recursion relations can be combined to show that under suitable assumptions on

the behavior of the OPE coefficients on (h̄1, h̄2) there is a unique solution [52,53]

C(0)
p (h̄1, h̄2) = γℓ1,ℓ2p B(2h̄1 + p, 2h̄2 + p), (2.161)

where γℓ1,ℓ2p is a constant that captures the remaining dependence on spin, that can be

shown to be proportional to the coupling constant of the vertex by comparing to the

collinear limit analysis [53]. Conformal symmetry then fixes

C(m̄)
p (h̄1, h̄2) = γℓ1,ℓ2p

1

m̄!
B(2h̄1 + p+ m̄, 2h̄2 + p), (2.162)

and therefore the celestial OPE with complete dependence on z̄12 takes the form

Oh1,h̄1
(z1, z̄1)Oh2,h̄2

(z2, z̄2) ∼
γℓ1,ℓ2p

z12

∞∑
m̄=0

B(2h̄1 + p+ m̄, 2h̄2 + p)

m̄!
z̄p+m̄
12 ∂m̄z̄2Oh,h̄(z2, z̄2).

(2.163)

It is then straightforward to check that the symmetry-based derivation recovers the

collinear singularity result from the previous section.
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2.7.4 Conformally soft currents and w1+∞

We finally turn to the subject of how the celestial OPE allows for the organization of

conformally soft symmetries to arbitrary subleading orders [54]. In the particular case of

gravity that we are going to consider, this reveals a w1+∞ symmetry of gravity [53, 55].

We review this analysis by following [53–56], in particular we follow closely the analysis

of [56], that carefully keeps track of contact terms. We consider positive-helicity gravitons,

however, while in [56] negative-helicity ones have been considered. We connect to the

notation used in the other papers in the end.

We start by recalling that a primary field ϕ(z, z̄) with weights (h, h̄) in a two-dimensional

conformal field theory admits a mode expansion near (z, z̄) = (∞,∞) [56]

ϕ(z, z̄) = z−2hz̄−2h̄

∞∑
n,m=0

ϕn,m

znz̄m
. (2.164)

We can equivalently resum the complete holomorphic dependence and write this as

ϕ(z, z̄) = z̄−2h̄

∞∑
m=0

ϕm(z)

z̄m
. (2.165)

Note that this differs from the standard mode expansion used in CFT2 [88] that has been

employed to study the soft algebra in [54] by a shift n→ n+ h and m→ m+ h̄.

Let us then consider Ns(z, z̄) ≡ N
(+2)
s (z, z̄) a positive-helicity sub(s)-leading soft gravi-

ton with weights (h, h̄) = (3−s
2
,− s+1

2
). In particular we have −2h̄ = s + 1 and it follows

that when 0 ≤ m ≤ s+ 1 we have a polynomial contribution to the mode expansion and

when m > s+ 1 we have a Laurent series contribution. We thus split [56]

Ns(z, z̄) = Hs(z, z̄) + Ňs(z, z̄), (2.166)
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where

Hs(z, z̄) =
s+1∑
m=0

z̄mN−m
s (z), Ňs(z, z̄) =

∞∑
m=1

Nm
s (z)

z̄m
. (2.167)

In particular, we observe that ∂s+2
z̄ annihilates Hs(z, z̄). As such, defining6

q1s(z, z̄) ≡ ∂s+2
z̄ Ňs(z, z̄), (2.168)

this field gives an equivalent encoding of the modes Nm
s (z) of Ňs(z, z̄), while the field

Hs(z, z̄) encodes currents N−m
s (z) that together form a (s + 2)-dimensional SL(2,R)R

multiplet with highest weight 1+s
2

and lowest weight −1+s
2

.

The OPE of Ns(z, z̄) with an arbitrary field Oh,h̄(z, z̄) is obtained by taking a confor-

mally soft limit of the OPE in (2.163). In this limit, (∆1 + s− 1)B(2h̄1 + p+ m̄, 2h̄2 + p)

is nonzero only when m ≤ s+ 1− p and then we have

Ns(z1, z̄1)Oh2,h̄2
(z2, z̄2) ∼ −

γℓ1,ℓ2p

z12

s+1−p∑
m̄=0

(−1)m̄+p+sΓ(2h̄2 + p)

(1− m̄− p+ s)!Γ(−1 + 2h̄2 + m̄+ 2p− s)

× ¯̄zp+m̄
12 ∂m̄z̄2Oh,h̄(z2, z̄2).

(2.169)

The contribution from the minimal coupling vertex is obtained for p = 1 [53], and

henceforth we focus on that particular case. In particular, we note an important difference

between (1, 3) and (2, 2) bulk signatures. In (1, 3) signature, z12 and z̄12 are complex

conjugates of one another while in (2, 2) signature they are real and independent. In that

case we have

∂z̄1
1

z12
=


2πδ(2)(z12), (1, 3) bulk signature,

0, (2, 2) bulk signature.
(2.170)

6The notation q1s(z, z̄) has been introduced in [56] because it is the linear contribution to a quantity
qs(z, z̄) that generalizes the Bondi mass aspect and angular momentum aspect at I+

− to higher spins. As
such, q1s(z, z̄) is the soft part of the spin s charge aspect, that once integrated against a corresponding
spin s parameter gives rise to a spin s soft charge at I+

− .
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In that case we observe that the OPE of q1s(z, z̄) with other fields will identically vanish

in (2, 2) signature while it will just give contact terms in (1, 3) signature. In particular,

we observe that q1s(z, z̄) encodes the same mode expansion of Ňs(z, z̄), so that Ňs(z, z̄)

can be omitted in (2, 2) signature or if we disregard operators that just produce contact

terms in OPE’s, that being the reason it doesn’t appear in [54].

Now the w1+∞ symmetry of gravity can be unveiled by taking a light-transform of the

positive-helicity gravitons. More precisely, the light-transform is defined by

L[Oh,h̄](z, z̄) ≡
∫

dw̄

2πi

1

(z̄ − w̄)2−2h̄
Oh,h̄(z, w̄), (2.171)

and it is justified in (2, 2) signature. In that case one may show by taking the light-

transform of the soft graviton mode expansion that (see Appendix G of [56])

1

κ
(−1)s+3Γ(s+ 3)L[G+

1−s+ϵ](z, z̄) =
1

κ

q1s(z, z̄)

ϵ
+Ws(z, z̄) +O(ϵ), (2.172)

where

Ws(z, z̄) =
1

κ

s+1∑
n=0

(−1)n+sN−n
s (z)

z̄s+2−n
n!(s+ 1− n)!, (2.173)

q1s(z, z̄) =
∞∑
n=0

(−1)sNn
s (z)

z̄s+2+n

(s+ 1 + n)!

(n− 1)!
. (2.174)

Both Ws(z, z̄) and q1s(z, z̄) have (h, h̄) = (3−s
2
, s+3

2
). In order to match the notation

of [53, 55] we define q = 3+s
2

so that (h, h̄) = (3− q, q). We then define wq(z, z̄) by

wq(z, z̄) ≡ W2q−3(z, z̄). (2.175)
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In order to write the mode expansion of wq(z, z̄) in the standard conformally covariant

form we need to shift n→ q − 1− n. In that case one obtains

wq(z, z̄) =

q−1∑
n=1−q

wq
n(z)

z̄n+q
, (2.176)

where the currents wq
n(z) are related to the modes of Hs(z, z̄) by

wq
n(z) =

1

κ
(−1)3q−n(q − n− 1)!(q + n− 1)!Nn+1−q

2q−3 (z). (2.177)

Finally, if we denote by Hk
n(z) the modes of H1−k(z, z̄) in a conformally covariant expan-

sion, as done in [54,55], we find Nm
s (z) = H1−s

m+ s+1
2

(z). As a result

wq
n(z) =

1

κ
(−1)3q−n(q − n− 1)!(q + n− 1)!H4−2q

n (z). (2.178)

Up to the factor of (−1)3q−n, this is the definition of the w-currents given in [55]. Finally

it is possible to show that defining the commutator of holomorphic fields

[A,B](z) =

∮
dw

2πi
A(w)B(z), (2.179)

and invoking the celestial OPE, the currents wq
n(z) obey the algebra

[wp
m, w

q
n] = [m(q − 1)− n(p− 1)]wp+q−2

m+n . (2.180)

Given the restricted ranges 1 − p ≤ m ≤ p − 1 and 1 − q ≤ n ≤ q − 1, this is known as

the wedge subalgebra of the loop algebra of w1+∞, which is often called just the w1+∞

algebra for simplicity.

Remarkably, in [56] the w1+∞ symmetry of gravity, derived originally using CFT2

methods together with the holographic perspective, has been shown to be encoded in the
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Einstein equations of classical GR. The analysis was based on the generalization of the

supertranslation and superrotation charges to a whole family of higher-spin charges and

the w1+∞ symmetry was derived from the Poisson bracket in the classical phase space.

This is an extremely non-trivial check of the AFS/CCFT dictionary and also an example

in which the holographic duality has taught something new about the bulk.
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3

Eikonal Approximation in Celestial CFT

3.1 Introduction

Advances in understanding the asymptotic structure of asymptotically flat spacetimes

(AFS) [11, 12, 64, 65, 103–106] have recently crystallized into the proposal that gravity

in four-dimensional (4D) AFS may be dual to a conformal field theory (CFT) living on

the celestial sphere at null infinity [26–30]. A central aspect of the holographic dictio-

nary is the identification of asymptotic massless fields at I± with operator insertions on

the celestial sphere upon exchanging their dependence on retarded/advanced times for

conformal scaling dimensions via a Mellin transform. The resulting observables on the

sphere, also known as celestial amplitudes, compute overlaps between past and future

asymptotic boost, instead of the standard energy-momentum, eigenstates. As such, ce-

lestial amplitudes carry the same information as the S-matrix while making the Lorentz

SL(2,C) symmetries manifest [29, 30].

As anticipated in [10], the proposed holographic correspondence in AFS distinguishes
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itself from its counterparts in asymptotically negatively and positively curved spacetimes

in that the boundary conformal theory lives in two lower dimensions compared to the

gravitational theory. Consequently, familiar aspects of standard CFTs with bulk gravity

duals such as the state operator correspondence, unitarity or the relationship between

entanglement and bulk geometry are obscured. As a first step in gaining intuition about

celestial CFT (CCFT), much of the research to date has focused on studying the imprints

of asymptotic symmetries and universal aspects of bulk scattering on celestial amplitudes

[31–50]. Remarkably, at tree-level, the symmetry structure of CCFT appears to be much

richer than anticipated, including global shift symmetries associated with bulk translations

and their local enhancements [11, 12], a Virasoro enhancement of the Lorentz SL(2,C)

[27,28], all of which are further promoted to a w1+∞ symmetry associated with the tower

of subleading soft graviton theorems [53–55].

Taking a leap of faith, one hope is that celestial CFT will ultimately provide a non-

perturbative completion of gravity in AFS (see [107] for recent evidence in this direction

in a 2D model of gravity), while a complete understanding of celestial symmetries would

serve as a guiding principle for extracting non-perturbative details of scattering processes.

Evidence for the latter is already manifest, on the one hand in the realization that large

gauge symmetries suggest a prescription to eliminate infrared divergences at the S-matrix

level to all orders in perturbation theory in abelian [78,108–110] and possibly non-abelian

gauge theory [25, 111, 112], and gravity [109, 113–115], on the other hand in that CFT

machinery such as operator product expansion (OPE) blocks [54, 102, 116] allows for the

resummation of the leading holomorphic or antiholomorphic collinear divergences – a key

element in the identification of the w1+∞ higher spin symmetry of classical gravitational

scattering [56].

One of the goals of this thesis is to provide a new entry in the AFS/CCFT dictionary
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related to a universal, non-perturbative property of 2-2 scattering amplitudes in four-

dimensional AFS, namely the leading eikonal exponentiation of t-channel exchanges at

high energy [117–119]. Naively, one challenge is that celestial amplitudes scatter boost

eigenstates involving integrals over all energies and hence it is a-priori not clear how to

take a high-energy limit. However, as shown in [109] low- and high-energy features of

massless 4-point scattering are reflected in the analytic structure of the corresponding

celestial amplitudes in the net boost weight β. While low energy features are captured

by the poles at negative even β (see also [36–38] for similar behavior in conformally

soft limits), the high-energy regime can be accessed in the limit of large β [32, 109]. It

is natural to suspect then that at large β and small cross-ratio z ≡ −t/s ≪ 1, celestial

amplitudes are dominated by t-channel exchanges. In section 3.3 we present arguments in

favor of this proposal by revisiting the position-space calculation of the flat-space eikonal

amplitude [119] in a conformal primary basis. As a result we obtain a celestial version of

the eikonal exponentiation of t-channel exchanges of arbitrary spin.

Interestingly, the celestial eikonal phase is in general1 operator valued and each term

in its small-coupling expansion acts as a weight-shifting operator [33] on the external

scaling dimensions. This is expected as spinning operators couple to scalars via higher

derivative interactions which in a conformal primary basis result in shifted weights and

resonates with results found in the exponentiation of IR divergences in gauge theory and

gravity [109, 120]. Note however that our analysis is complementary, since the eikonal

phase discussed here is related to the imaginary part of the exponent of soft S-matrix

that results from virtual particle exchanges, rather than the typically discussed real part

which arises when the exchanges become on-shell [81].

The eikonal exponentiation of graviton exchanges is particularly interesting as in flat
1For exchanges of spin j ̸= 1.
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space it is well known to be reproduced by the propagation of a probe particle in a shock-

wave background [121–123]. The eikonal exponentiation of graviton exchanges has also

been generalized to scattering on black hole backgrounds where the scattering is governed

by virtual graviton exchanges on the horizon and is non-perturbatively described in ℏ and

γ ∼MPl/MBH in terms of a black-hole eikonal phase, in the regime s≫ γ2M2
Pl, where MPl

is the Planck mass and MBH the black hole mass [124–129]. More recently, the scattering

problem in non-perturbative backgrounds has been approached with modern amplitude

methods [130–132] including double copy constructions [133–137]. This motivates us to

compute the celestial two-point function in a shockwave background. The result is strik-

ingly similar to the analog formula in AdS4 [123] and we establish a relation between the

two by demonstrating that the celestial result can be directly recovered as a flat space

limit of the AdS result. This observation is a special case of a more general relation be-

tween celestial amplitudes and flat space limits of Witten diagrams which we discuss in

section 3.6. In particular, we present a general argument that scalar (d+ 1)-dimensional

AdS Witten diagrams reduce to (d − 1)-dimensional CCFT amplitudes to leading order

in the limit of large AdS radius provided the boundary operators are placed on certain

past and future time-slices. While it is well known that flat space S-matrices in 4D can

be extracted from CFT3 correlators either via the HKLL prescription [61–63] or via the

flat space limit of Mellin space correlators [60,138–140] (see also [141] for a recent review

of the connection between the two), what we find here instead is that celestial amplitudes

arise directly as flat space limits of CFT3 correlators with particular kinematics and with

analytically continued dimensions. We regard this as additional evidence that celestial

amplitudes are natural candidate holographic observables for quantum gravity in 4D AFS.

This chapter is organized as follows. In section 3.3 we identify an eikonal regime in

celestial CFT and derive the celestial eikonal amplitude for the scattering of 4 massless

scalars mediated by massive scalar exchanges. In section 3.3.1 we show that the same



Chapter 3. Eikonal Approximation in Celestial CFT 89

result is reproduced by the direct Mellin transform of the flat-space eikonal amplitude,

while in section 3.3.2 we explicitly check that the first term in a small coupling expansion

precisely reproduces the t-channel celestial amplitude in the celestial eikonal limit. We

generalize our result to exchanges of arbitrary spin in section 3.3.3. Section 3.4 is devoted

to the study of the celestial propagator in a shockwave background. After a review of

the momentum space phase shift acquired by a particle crossing a shockwave in section

3.4.1, we express this in a conformal primary basis in section 3.4.2. We identify the CCFT

source that relates this to the celestial eikonal formula for graviton exchange in section

3.4.3. In section 4.5.3 we show that the same formula can be obtained as the flat space

limit of the CFT3 correlator associated with propagation through a shock in AdS4. We

establish a general relation between AdSd+1 Witten diagrams in the flat space limit and

CCFTd−1 amplitudes in section 3.6. Various technical details are collected in the appen-

dices.

3.2 Preliminaries

The momentum space scattering amplitude of 4 massless scalars in 4D Minkowski space-

time takes the general form

A4(p1, · · · , p4) = A4(s, t)(2π)
4δ(4)

(
4∑

i=1

pi

)
. (3.1)

Here the Mandelstam invariants s, t are defined as

s = −(p1 + p2)
2, t = −(p1 + p3)

2 (3.2)
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and we parameterize massless on-shell momenta as

pi = ηiωiq̂(zi, z̄i), (3.3)

where ωi are external energies, q̂ are null vectors towards a point (zi, z̄i) on the celestial

sphere2

q̂(z, z̄) = (1 + zz̄, z + z̄,−i(z − z̄), 1− zz̄) (3.4)

and ηi = +1 (ηi = −1) for outgoing (incoming) particles.

The amplitudes (3.1) are mapped to celestial amplitudes3 or 2D CCFT observables Ã

by a Mellin transform [29,30],

Ã(∆j, zj, z̄j) =

(
4∏

i=1

∫ ∞

0

dωiω
∆i−1
i

)
A4(pj). (3.5)

This map effectively trades asymptotic energy-momentum eigenstates for states that di-

agonalize boosts towards the point (zi, z̄i) on the celestial sphere. As such, the resulting

celestial amplitudes transform covariantly under the Lorentz SL(2,C).

In the following, it will be convenient to recall that the momentum space ampli-

tude (3.1) and the celestial amplitude (3.5) can be obtained directly by integrating the

connected component of the time-ordered bulk correlation function C(x1, · · · , x4) with

amputated external legs against different external wavefunctions ψ(xi; pi). While (3.1) is

defined by integrating C against plane wave eigenstates ψ(xi; pi) = e−ipi·xi [119]4

A4(pj) =

(
4∏

i=1

∫
d4xie

−ipi·xi

)
C(xj), (3.6)

2Technically in this parameterization the celestial sphere is flattened to a plane.
3Unless otherwise stated, celestial amplitudes will refer to observables on the 2D celestial sphere.
4We work in the mostly + signature in which the mode expansion of a massless scalar field takes the

form ϕ(x) = 1
(2π)3

∫
d3k
2k0

(
a†
k⃗
e−ik·x + ak⃗e

ik·x
)
. Then (3.6) with pi = ηiωiq̂i is such that positive (negative)

energy modes are created in the in (ηi = −1) (out (ηi = 1)) states (see eg. [142]).
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celestial amplitudes arise from choosing the external wavefunctions ψ(xi; pi) to be instead

conformal primary solutions to the scalar wave equation φ∆i
(xi; ηiq̂i) [29, 30]

φ∆i
(xi; ηiq̂i) =

(iηi)
∆iΓ(∆i)

(−q̂i · xi + iηiϵ)∆i
, (3.7)

namely,

Ã(∆j, zj, z̄j) =

(
4∏

i=1

∫
d4xiφ∆i

(xi; ηiq̂i)

)
C(xj). (3.8)

Indeed, (3.5) follows immediately upon noticing that plane waves and massless conformal

primaries are related by a Mellin transform [29,30],

φ∆(x; ηq̂) ≡
∫ ∞

0

dωω∆−1e−iωηq̂·x =
(iη)∆Γ(∆)

(−q̂ · x+ iηϵ)∆
. (3.9)

One of the aims of this work is to explore the relationship between celestial amplitudes

and correlation functions of CFT3 with bulk AdS4 gravity duals. Such a relation was first

proposed in [143], where it was argued that amplitudes in d-dimensional celestial CFT

should be related to CFTd+1 correlators in the bulk point limit. There, this correspondence

was studied explicitly for the case of 4-point scalar scattering in AdS3 mediated by massive

and massless scalar exchanges in which case the corresponding Witten diagrams in the

bulk-point configuration were found to reduce to amplitudes in 1-dimensional CCFT.

In the next chpater we extend the relationship between celestial amplitudes and AdS

Witten diagrams by showing that generic scalar AdSd+1 Witten diagrams with particular

kinematics reduce to CCFTd−1 amplitudes in the flat space limit.5 We will check this

explicitly in the example of propagation of a particle in a shockwave background, related to

the eikonal exponentiation of t-channel graviton exchanges [117,118,122,123]. As we will
5See also [90] for a different kind of relation between celestial amplitudes and AdS3 Witten diagrams in

the particular case of Yang-Mills CCFT with a marginal deformation involving a chirally coupled massive
scalar. Celestial Yang-Mills theory in the presence of a spherical dilaton shockwave has also been studied
in [89,144]
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ψ1

ψ2

ψ3

ψ4

G(xn − xn−1)

Ge(x1 − x̄1) ⋯

x̄1 x̄n−1 x̄n

x1

+ ⋯

x̄1 x̄n−1 x̄n

x1 xn−1 xn

ψ1

ψ2

ψ3

ψ4

An = + ⋯

Figure 3.1: Contributions from ladder diagrams involving n t-channel
exchanges to the scattering of 4 scalars.

see, it is the representation (3.8) that makes the connection between celestial amplitudes

and CFT correlators in the flat space limit most manifest. In the next section we start

by deriving a formula for the eikonal exponentiation of arbitrary spinning exchanges in

celestial 4-point massless scalar scattering.

3.3 Eikonal regime in celestial CFT

In this section we propose that celestial 4-point amplitudes of massless particles have

universal behavior in the limit of large net conformal dimension β ≫ 1 and small cross

ratio z ≪ 1. We argue that in this kinematic regime, the CCFT encodes the eikonal

physics [117, 119] of bulk 4-point scattering amplitudes. We present a formula for the

eikonal exponentiation of arbitrary spinning t-channel exchanges in a conformal primary

basis. We find that the eikonal exponent is in general operator valued, with weight-

shifting operators replacing powers of the center-of-mass energy in a momentum space

basis. Our formula shares similarities with the eikonal amplitude in AdS4 suggesting a

relation between celestial amplitudes and CFT3 correlators with particular kinematics.
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Consider the 4-point scalar scattering amplitude associated with the sum over crossed

ladder diagrams with n massive exchanges of arbitrary spin j in Figure 3.1

An = (ig)2n
∫
d4x1 · · · d4xnd4x̄1 · · · d4x̄nψ(xn; p3)G(xn − xn−1) · · ·G(x2 − x1)ψ(x1; p1)

× ψ(x̄n; p4)G(x̄n − x̄n−1) · · ·G(x̄2 − x̄1)ψ(x̄1; p2)
∑
σ∈Sn

Ge(x1 − x̄σ(1)) · · ·Ge(xn − x̄σ(n)).

(3.10)

As indicated in Figure 3.1, G andGe are internal position-space propagators corresponding

to the external legs and exchanges respectively, while ψ(x; p) are external wavefunctions.

Each vertex comes with a factor of ig, where g is the coupling constant. As reviewed in

section 3.2, the momentum space amplitude associated with n crossed ladder exchanges

is obtained by taking ψ(x; p) to be plane waves. Resuming the amplitudes in (3.10)

for all n > 0, n ∈ Z (which excludes the disconnected contribution from n = 0) in

the approximation where G are on-shell valid at high energies s ≫ −t, one obtains the

standard eikonal amplitude [119,145]

Aeik(s, t = −p2⊥) ≃ 2s

∫
R2

d2x⊥e
ip⊥·x⊥

(
e

ig2

2
sj−1G⊥(x⊥) − 1

)
. (3.11)

Here G⊥(x⊥) is the transverse propagator

G⊥(x⊥) ≡
∫

d2k⊥
(2π)2

eik⊥·x⊥

k2⊥ +m2
, (3.12)

p⊥ ≡ p3,⊥+p1,⊥ is the net momentum transfer and j is the spin of the exchanged particles.

(3.11) is expected to approximate 4-point massless scalar scattering amplitudes in the high

energy s ≫ −t limit [146]. It is natural to expect a similar regime to exist in celestial

CFT, in which celestial amplitudes are dominated by a phase. The s ≫ −t regime

immediately maps to a small cross-ratio z ≡ − t
s
≪ 1 limit in the CCFT. Moreover,
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we will see in the next section that in a conformal primary basis external lines become

approximately on-shell in the limit of large external dimensions ∆1,∆2, or equivalently

β ≡
∑4

i=1 ∆i−4 ≫ 1. This resonates with the results of [33,109] where it was shown that

Mellin integrals are dominated by high energies in the limit of large net boost weight. We

will therefore identify a universal eikonal regime in CCFT characterized by

β ≫ 1, z ≪ 1. (3.13)

3.3.1 Celestial eikonal exponentiation of scalar exchanges

The celestial counterpart of (3.11) can be obtained by evaluating (3.10) with the exter-

nal wavefunctions replaced by conformal primary wavefunctions ψ(xi; qi) → φ∆i
(xi; ηiq̂i),

where φ∆i
(xi; ηiq̂i) were defined in (3.7). By construction, the resulting celestial ampli-

tudes transform covariantly under Lorentz transformations x → Λ · x, z → z′ = az+b
cz+d

like 2D correlation functions of scalar primary operators since the measure, G and Ge in

(3.10) are Lorentz invariant while [29]

φ∆i
(Λ · xi; ηiq̂i(z′i, z̄′i)) =

∣∣∣∣∂z⃗′i∂z⃗i

∣∣∣∣−∆i/2

φ∆i
(xi; ηiq̂i(zi, z̄i)). (3.14)

This implies that the celestial amplitude for n crossed ladder t-channel exchanges will be

of the form

Ãn(∆i, zi, z̄i) = I13−24(zi, z̄i)fn(z, z̄), (3.15)
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where I13−24 is a 4-point conformally covariant factor6 and fn is a function of the confor-

mally invariant cross-ratio z. Motivated by the center of mass kinematics (see appendix

A.3.1), it is convenient to parameterize the null vectors q̂i as7

q̂i = (1 + qi, qi,⊥, 1− qi), i = 1, 3

q̂i = (1 + qi, qi,⊥,−1 + qi), i = 2, 4,

(3.17)

where qi,⊥ are 2-component vectors and q̂2i = 0 =⇒ 4qi = |qi,⊥|2. At high energies,

ω1 ≃ ω3, ω2 ≃ ω4 and p+i = 2ηiωi ≫ pi,⊥, p
−
i ≃ 0, for i = 1, 3 and vice-versa for 2, 4

meaning that qi ∝ |qi,⊥|2 ≪ 1. In this case the cross-ratio reduces to

z = − t

s
=
ω3

ω2

q̂1 · q̂3
q̂1 · q̂2

≃ (q124,⊥ + iq224,⊥)(q
1
13,⊥ − iq213,⊥), (3.18)

where we used momentum conservation

ω3

ω2

=
q124,⊥ + iq224,⊥
q113,⊥ + iq213,⊥

=
q124,⊥ − iq224,⊥
q113,⊥ − iq213,⊥

. (3.19)

We hence see that eikonal kinematics imply small z. Note that in the z → 0 limit, (3.17)

are a special case (up to a Jacobian factor) of (3.3) where the momenta of 1, 3 and 2, 4

are respectively expanded around antipodal points on the celestial sphere. This kinematic

configuration is illustrated in Figure 3.2.
6For n ≥ 1 it takes the form

I13−24(zi, z̄i) =

(
z34
z14

)h13
(

z14
z12

)h24

zh1+h3
13 zh2+h4

24

(
z̄34
z̄14

)h̄13
(

z̄14
z̄12

)h̄24

z̄h̄1+h̄3
13 z̄h̄2+h̄4

24

(3.16)

with hi = h̄i =
∆i

2 , but it may also involve singular conformally covariant structures as will be the case
for the disconnected n = 0 contribution.

7The complex coordinates (zi, z̄i), (wi, w̄i) in the parameterizations qi,⊥ = (zi + z̄i,−i(zi − z̄i)) for
i = 1, 3, and qi,⊥ = (wi + w̄i,−i(wi − w̄i)) for i = 2, 4 are in different patches. Writing both in the same
patch introduces Jacobian factors in the celestial amplitudes.
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p1

p2

p3

p4

z → 0

Figure 3.2: Eikonal kinematics in which the operators associated with
particles 1, 3 and 2, 4 are respectively inserted around antipodal points on

the celestial sphere.

To evaluate the integrals in (3.10) we employ light-cone coordinates,

x− = x0 − x3, x+ = x0 + x3, xi⊥ = xi, i = 1, 2, (3.20)

in which the Minkowski metric takes the form

ds2 = −dx−dx+ + ds2⊥. (3.21)

In the limit qi ≪ 1, q̂i · x are approximated by [119]

q̂i · x = −x− + qi,⊥ · x⊥ − qix
+ ≃ −x− + qi,⊥ · x⊥, i = 1, 3, (3.22)

q̂i · x = −x+ + qi,⊥ · x⊥ − qix
− ≃ −x+ + qi,⊥ · x⊥, i = 2, 4 (3.23)

and the conformal primary wavefunctions are therefore given by

φ∆1(x;−q̂1) =
(−i)∆1Γ(∆1)

(x− − q1,⊥ · x⊥ − iϵ)∆1
, φ∆3(x; q̂3) =

i∆3Γ(∆3)

(x− − q3,⊥ · x⊥ + iϵ)∆3
, (3.24)
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φ∆2(x;−q̂2) =
(−i)∆2Γ(∆2)

(x+ − q2,⊥ · x⊥ − iϵ)∆2
, φ∆4(x; q̂4) =

i∆4Γ(∆4)

(x+ − q4,⊥ · x⊥ + iϵ)∆4
. (3.25)

In a momentum space basis it can be argued that in the high energy limit, the in-

ternal 1-3 and 2-4 propagators are well approximated by on-shell ones (corresponding

to classical particle trajectories). In a conformal primary basis, energies are traded for

conformal dimensions and it is not obvious whether an analogous argument can be made.

Nevertheless, we show in appendix A.1 that a similar approximation holds instead at large

∆1,∆2 ≫ 1, in which case these propagators become

G13(xi, xj) = −i(x
−
i − q1,⊥ · xi,⊥ + iϵ)

2∆1

δ(x−i − x−j )Θ(x+i − x+j )δ
(2)(xi,⊥ − xj,⊥), (3.26)

G24(x̄i, x̄j) = −i(x̄
+
i − q2,⊥ · x̄i,⊥ + iϵ)

2∆2

Θ(x̄−i − x̄−j )δ(x̄
+
i − x̄+j )δ

(2)(x̄i,⊥ − x̄j,⊥). (3.27)

As for the propagators for scalar exchanges of mass m, we use the standard formula [142]

Ge(x− x̄) = −i
∫

d4k

(2π)4
eik·(x−x̄)

k2 +m2 − iϵ
. (3.28)

We now have all ingredients needed to evaluate (3.10). We refer the reader to appendix

A.2 for the lengthy yet straightforward calculation and simply state the result. For n

crossed scalar exchanges of mass m we find

Ãn = 4(2π)2
∫
d2x⊥d

2x̄⊥
(iχ̂)n

n!

i∆1+∆3Γ(∆1 +∆3)

(−q13,⊥ · x⊥)∆1+∆3

i∆2+∆4Γ(∆2 +∆4)

(−q24,⊥ · x̄⊥)∆2+∆4
, (3.29)

where we defined

χ̂ ≡ g2

8
e−∂∆1e−∂∆2G⊥(x⊥, x̄⊥), (3.30)

and G⊥ is the position space transverse propagator in (3.12).
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Summing all connected diagrams with n > 0 yields the eikonal celestial amplitude

Ãeik ≃ 4(2π)2
∫
d2x⊥d

2x̄⊥
(
eiχ̂ − 1

) i∆1+∆3Γ(∆1 +∆3)

(−q13,⊥ · x⊥)∆1+∆3

i∆2+∆4Γ(∆2 +∆4)

(−q24,⊥ · x̄⊥)∆2+∆4
, (3.31)

where ≃ stands for the leading terms in the celestial eikonal regime of large ∆1,∆2 and

small z. This formula (together with its generalization to arbitrary spinning exchanges

where (3.30) is simply replaced by (3.59)) is one of the main results of this chapter. It has

two interesting features. First, the eikonal phase χ̂ is operator valued for all spins j ̸= 1.

This feature of CCFT is familiar from both celestial double copy constructions [45,147] and

the conformally soft exponentiation of infrared divergences in gravity [109, 114, 148, 149].

Second, it looks remarkably similar to the eikonal amplitude in AdS [119]. Indeed, we will

later establish a relation between its cousin, the celestial two-point function in a shockwave

background, and the flat-space limit of its AdS counterpart. A general argument for the

relation between AdSd+1 Witten diagrams in the flat-space limit and CCFTd−1 amplitudes

will be given in section 3.6.

The eikonal formula can also be directly derived as a Mellin transform of the mo-

mentum space amplitude (3.11). While this is to be expected from the standard relation

between conformal primary wavefunctions and plane waves (3.9), we find it nevertheless

instructive to provide this alternate derivation in the remainder of this section.

Mellin transform of the eikonal amplitude

We now show that the celestial eikonal amplitude (3.31) is simply a Mellin transform of

the scalar momentum space eikonal amplitude (3.11) including the momentum conserving

delta function,

Aeik = 2s

∫
R2

d2x⊥e
ip⊥·x⊥

[
exp

(
ig2

2s
G⊥(x⊥)

)
− 1

]
(2π)4δ(4)

(
4∑

i=1

pi

)
. (3.32)
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Our strategy is to start with the celestial eikonal formula (3.31) and show that it can be

recast as a Mellin transform of (3.32) with respect to the external energies. To this end,

consider the Taylor expansion of (3.31) in powers of g2,

Ãeik = 4(2π)2
∞∑
n=1

1

n!

∫
d2x⊥d

2x̄⊥

(
ig2

8
G⊥(x⊥, x̄⊥)

)n

× i∆1+∆3−nΓ(∆1 +∆3 − n)

(−q13,⊥ · x⊥)∆1+∆3−n

i∆2+∆4−nΓ(∆2 +∆4 − n)

(−q24,⊥ · x̄⊥)∆2+∆4−n
. (3.33)

Introducing parameters ω1, ω2 and using the Mellin representation (3.9) for each term in

the sum,

Ãeik = 4(2π)2
∞∑
n=1

1

n!

∫
d2x⊥d

2x̄⊥

(
ig2

8
G⊥(x⊥, x̄⊥)

)n ∫ ∞

0

dω1

ω1

∫ ∞

0

dω2

ω2

ω∆1+∆3−n
1 ω∆2+∆4−n

2

× e−iω1q13,⊥·x⊥e−iω2q24,⊥·x̄⊥

=

∫ ∞

0

dω1

ω1

∫ ∞

0

dω2

ω2

ω∆1+∆3
1 ω∆2+∆4

2 4(2π)2
∫
d2x̄⊥e

−i(ω1q13,⊥+ω2q24,⊥)·x̄⊥

×
∞∑
n=1

1

n!

∫
d2x⊥

(
ig2

2 · 4ω1ω2

G⊥(x⊥)

)n

e−iω1q13,⊥·x⊥ ,

(3.34)

where the last line follows from shifting x⊥ → x⊥ + x̄⊥ under which G(x⊥, x̄⊥) → G(x⊥).

The integrals over x⊥ and x̄⊥ are now decoupled and the latter evaluates to a delta

function

Ãeik =

∫ ∞

0

dω1

ω1

∫ ∞

0

dω2

ω2

ω∆1+∆3
1 ω∆2+∆4

2 4(2π)4δ(2)(ω1q1,⊥ + ω2q2,⊥ − ω1q3,⊥ − ω2q4,⊥)

×
∞∑
n=1

1

n!

∫
d2x⊥

(
ig2

2 · 4ω1ω2

G⊥(x⊥)

)n

e−iω1q13,⊥·x⊥ . (3.35)
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Inserting the identity

∫ ∞

0

dω3dω4δ(ω3 − ω1)δ(ω4 − ω2) = 1, (3.36)

(3.35) reduces to

Ãeik =

∫ ∞

0

(
4∏

i=1

dωi

ωi

ω∆i
i

)
(2π)4δ(ω1 − ω3)δ(ω2 − ω4)δ

(2)(ω1q1,⊥ + ω2q2,⊥ − ω3q3,⊥ − ω4q4,⊥)

× 4ω1ω2

∞∑
n=1

1

n!

∫
d2x⊥

(
ig2

2 · 4ω1ω2

G⊥(x⊥)

)n

e−iω1q13,⊥·x⊥ .

(3.37)

Using the parameterizations of momenta (3.3) in the eikonal configuration (3.17) with

qi ≪ 1,8

p+1 = −2ω1, p−2 = −2ω2, p+3 = 2ω3, p−4 = 2ω4, (3.38)

while the components with + ↔ − vanish to leading order. Then

Ãeik =

∫ ∞

0

4∏
i=1

dωi

ωi

ω∆i
i (2π)44δ(p+1 + p+3 )δ(p

−
2 + p−4 )δ

(2)(p1,⊥ + p2,⊥ + p3,⊥ + p4,⊥)

× 4ω1ω2

∞∑
n=1

1

n!

∫
d2x⊥

(
ig2

2 · 4ω1ω2

G⊥(x⊥)

)n

ei(p1,⊥+p3,⊥)·x⊥ , (3.39)

and since

δ(4)(p) = 2δ(p+)δ(p−)δ(2)(p⊥), s ≃ 4ω1ω2 (3.40)

we find

Ãeik =
4∏

i=1

(∫ ∞

0

dωi

ωi

ω∆i
i

)
Aeik. (3.41)

8Here p+ = p0 + p3, p− = p0 − p3.
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This shows that the celestial eikonal amplitude (3.31) is precisely the Mellin transform

of the momentum space eikonal formula (3.11). On the one hand, this result seems to

follow from the defining relations (3.6), (3.8), (3.9). On the other hand, our first derivation

in appendix A.2 invokes the approximations (3.26), (3.27) for the external line propagators

in a conformal primary basis which are valid at large ∆1,∆2. Here, we see instead that

∆1,∆2 need to be large in order for the integrand of (3.41) to be dominated by eikonal

kinematics. We regard this perfect match as evidence that (3.31) describes the behavior

of scalar celestial 4-point scattering to leading order in the celestial eikonal limit (3.31)

and to all orders in the coupling g. We conclude by pointing out that the Mellin transform

of the eikonal phase (3.41) is not strictly convergent. This issue can be cured by allowing

for the phase-shift to acquire an imaginary part. Physically, this could be for example due

to black hole production [150], or due to radiation-reaction effects [151,152]. It would be

interesting to further study the implications of the convergence of celestial amplitudes, in

relation to the conjecture proposed in [36] (for recent work in this direction see also [153]).

In the next section we show that the leading term in an expansion of (3.31) in powers

of g reproduces the tree-level celestial scalar 4-point amplitude with a massive t-channel

exchange in the z → 0 limit.

3.3.2 Perturbative expansion

As a warm up, let us start by evaluating the disconnected contribution

Ã0 = 4(2π)2
∫
d2x⊥

i∆1+∆3Γ(∆1 +∆3)

(−q13,⊥ · x⊥)∆1+∆3

∫
d2x̄⊥

i∆2+∆4Γ(∆2 +∆4)

(−q24,⊥ · x̄⊥)∆2+∆4
(3.42)

given by setting n = 0 in (3.29). While this term has been removed in our formulas,

we expect it to reduce to the product of two scalar celestial two point functions with

the correct normalization given in [30]. These integrals can be evaluated by writing the

integrands in their Mellin representations and evaluating the integrals over the transverse
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coodinates which give rise to delta functions,

Ã0 = 4(2π)2
[
(2π)2δ(2)(q13,⊥)

∫ ∞

0

dω1ω
(∆1+∆3−2)−1
1

] [
(2π)2δ(2)(q24,⊥)

∫ ∞

0

dω2ω
(∆2+∆4−2)−1
2

]
.

(3.43)

The remaining Mellin transforms follow from [30]9

δ(i∆) =
1

2π

∫ ∞

0

dωω∆−1, (3.44)

therefore Ã0 factorizes as

Ã0 =
[
(2π)4δ(2)(z13)δ(∆1 +∆3 − 2)

] [
(2π)4δ(2)(w24)δ(∆2 +∆4 − 2)

]
. (3.45)

(3.45) agrees with the product of two celestial two-point functions, or equivalently the

disconnected contribution to massless scalar 4-point t-channel scattering.

We now turn to the leading contribution to (3.31) in a small g expansion. This should

reproduce the celestial amplitude for massive t-channel exchange [35,155]. We start with

Ã1 = 2π2ig2
∫
d2x⊥d

2x̄⊥G⊥(x⊥, x̄⊥)
i∆1+∆3−1Γ(∆1 +∆3 − 1)

(−q13,⊥ · x⊥)∆1+∆3−1

i∆2+∆4−1Γ(∆2 +∆4 − 1)

(−q24,⊥ · x̄⊥)∆2+∆4−1
.

(3.46)

Replacing G⊥(x⊥, x̄⊥) by its Fourier representation (3.12), and using the Mellin repre-

sentation of the conformal primary wavefunctions, the integrals over x⊥ and x̄⊥ decouple
9Such integrals are formally valid for ∆i ∈ 1+iλ for λ ∈ R, violating our eikonal conditions ∆1,∆2 ≫ 1.

We regard the dimensions in (3.45) as analytically continued away from the principal series, see [154] for
a prescription to do so. Note that the eikonal conditions on ∆1,∆2 only translate into a condition on β
for connected celestial amplitudes.
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and again become delta functions

Ã1 =
(2π)4ig2

2

∫ ∞

0

dω1

ω1

ω∆1+∆3−1
1

∫ ∞

0

dω2

ω2

ω∆2+∆4−1
2

×
∫
d2k⊥

1

k2⊥ +m2
δ(2)(k⊥ − ω1q13,⊥)δ

(2)(k⊥ + ω2q24,⊥).

(3.47)

The remaining integrals are evaluated in appendix A.3 and result in

Ã1 =
(2π)4ig2

sin πβ/2

πmβ−2

4

(
−
q124,⊥
q113,⊥

)∆2+∆4−2

|q13,⊥|−β δ(q124,⊥q
2
13,⊥ − q224,⊥q

1
13,⊥). (3.48)

From (3.18) we immediately see that the delta function imposes reality of the cross-ratio,

z − z̄ = 0. Moreover, in the center of mass frame with z allowed to be complex,

q1,⊥ = (0, 0), q2,⊥ = (0, 0),

q3,⊥ =
(√

z +
√
z̄,−i(

√
z −

√
z̄)
)
, q4,⊥ =

(
−
√
z −

√
z̄,−i(

√
z −

√
z̄)
) (3.49)

we find that

Ã1 = (2π)4i
(√

z
)−β

δ(z − z̄)
g2π

8m2

(m/2)β

sin πβ/2
+ · · · . (3.50)

Here · · · denote subleading terms in the small z limit which don’t contribute at leading

order in the eikonal approximation (3.13).

To compare to the expected result (see [155] for the formula in the same conventions

used here up to a factor of (2π)4i)

Ãt−channel(∆i, zi, z̄i) = I13−24(zi, z̄i)Ngm(β)δ(z − z̄)|z|2|z − 1|h13−h24 , (3.51)

Ngm(β) =
g2π

8m2

(m/2)β

sin πβ/2
(3.52)
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we now evaluate (3.51) in the corresponding kinematic configuration

z1 = 0, z2 = ∞, z3 =
√
z, z4 = − 1√

z
. (3.53)

We find10

lim
z2→∞,z→0

|z2|2∆2
∣∣√z∣∣−2∆4 Ãt−channel

(
0,∞,

√
z,− 1√

z

)
=
g2π

8m2

(m/2)β

sin πβ/2
δ(z − z̄)(

√
z)−β.

(3.54)

We hence see that the tree-level contribution to the eikonal expansion (3.31) agrees with

the t-channel massive scalar exchange celestial amplitude as it should.

3.3.3 Generalization to spinning exchanges

In this section we generalize the celestial eikonal formula (3.31) to the case where the

exchanges have arbitrary spin j.

Spinning propagators Gµ1...µjν1...νj
e (x, x̄) couple to the external lines via derivative in-

teractions. As argued in section 3.3.1, in the eikonal limit external propagators are ap-

proximated by (3.26) and (3.27). This implies that, in analogy to the derivation in [119],

the dominant contribution from (celestial) spinning propagators in the eikonal limit is

G̃e(xi, x̄σ(i)) = (−2)jP 1
µ1
· · ·P 1

µj
Gµ1...µjν1...νj

e (xi, x̄σ(i))P
2
ν1
· · ·P 2

νj
, (3.55)

with11

Gµ1...µjν1...νj
e (x, x̄) ≃ η(µ1ν1 · · · ηµjνj)Ge(x, x̄). (3.56)

Here the indices µ, ν are separately symmetrized, Ge(x, x̄) is the scalar propagator given
10Note that 1, 3 and 2, 4 are evaluated in patches around the north and south poles respectively, hence

the Jacobian factor is needed in (3.54) for comparison with (3.50).
11We stick to the convention in [119] that the external particles are oppositely charged with respect to

odd j fields. Trace terms vanish since P1, P2 are on-shell, while terms where the derivatives are distributed
over all 1, 3 and the propagator are subleading in the eikonal limit.
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in (3.28) and we defined the celestial massless momentum operators P 1
µ and P 2

µ acting on

external particles 1 and 2 [33]

P i
µ = −(q̂i)µe

∂∆i , i = 1, 2. (3.57)

One can therefore follow through the same derivation in appendix A.2 with the simple

replacement

Ge(xi, x̄σ(i)) → G̃e(xi, x̄σ(i)) ≃ (−2P 1 · P 2)jGe(xi, x̄σ(i)). (3.58)

Recalling that the eikonal kinematics are such that q̂1 · q̂2 ≈ −2, the final result is of the

same form as (3.31) with χ̂→ χ̂j, where

χ̂j =
g2(4e∂∆1e∂∆2 )j−1

2
G⊥(x⊥, x̄⊥). (3.59)

For j = 0, we recover precisely (3.31). The same derivation goes through for massless

exchanges, with the transverse propagator (3.12) replaced by its massless counterpart

with m = 0. In this case the transverse propagator develops a logarithmic divergence

which can be regulated by introducing an IR cutoff. The AdS radius R provides a natural

cutoff in AdS. The IR divergence reappears in the limit as R → ∞, as we will see in the

related analysis of shockwave two-point functions in section 4.5.3. We finally note that,

for j = 2, the celestial eikonal amplitude (3.41) is analytic in the right-hand complex

net boost-weight β plane. A similar analytic structure was found in [109] for celestial 2-2

scattering dominated by black hole production at high energies. It would be interesting to

further explore the relation between non-perturbative aspects of gravitational scattering

and the analytic properties of celestial amplitudes.

In the remainder of this chapter, we will focus on the formula for graviton exchanges,

namely j = 2 and m = 0, in which case g2 = 8πG. We will see that the celestial eikonal

exponentiation of graviton exchanges is related to the celestial two-point function of a
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particle in a shockwave background. In particular, we will identify the source in the

CCFT that relates the two to leading order in perturbation theory. Interestingly, this

relation is analogous to the one in AdS/CFT and will be shown in section 4.5.3 to be

directly recovered in a flat space limit of the AdS result.

3.4 Celestial scattering in shockwave background

In this section we study the celestial amplitude describing the propagation of a scalar

field in the presence of a shock h−−(x
−, x⊥) = δ(x−)h(x⊥). We compare the leading term

in an expansion of this two-point function in powers of h with the leading connected

contribution to the eikonal celestial amplitude involving a spin 2 exchange computed in

section 3.3 and find perfect agreement. Moreover, we show that this formula arises as

the flat-space limit of the scalar two-point function in the presence of a shock in AdS4.

This establishes a relation between celestial propagation in a shockwave background and

the flat space limit of four-point functions in CFT3 with operators inserted in small time

windows around future and past boundary spheres.

3.4.1 Review: scalar field in shockwave background

We consider the shockwave geometry

ds2 = −dx−dx+ + ds2⊥ + h(x⊥)δ(x
−)(dx−)2 (3.60)

sourced by a stress tensor whose only non-vanishing component is

T−− = δ(x−)T (x⊥), (3.61)



Chapter 3. Eikonal Approximation in Celestial CFT 107

localized along the null surface x− = 0. The metric (3.60) solves the full non-linear

Einstein’s equations provided that [118,122,123]

∂2⊥h(x⊥) = −κ
2

2
T (x⊥), (3.62)

where κ2 = 32πG.12

On the other hand, the propagation of a scalar field in the background (3.60) is

governed by the wave equation

□shockϕ(x) = 0 (3.63)

which reduces to

− 4∂−∂+ϕ− 4δ(x−)h(x⊥)∂
2
+ϕ+ ∂2⊥ϕ = 0. (3.64)

In a neighborhood of x− = 0, the transverse part can be neglected and (3.64) simplifies

to

∂+∂−ϕ = −h(x⊥)δ(x−)∂2+ϕ. (3.65)

Taking a Fourier transform of both sides with respect to x+ and integrating by parts, we

find

∂−ϕ̃(x
−, k, x⊥) = −ikh(x⊥)δ(x−)ϕ̃(x−, k, x⊥), (3.66)

where we defined the Fourier transform of ϕ with respect to x+

ϕ̃(x−, k, x⊥) ≡
∫ ∞

−∞
dx+ϕ̃(x−, x+, x⊥)e

−ikx+

. (3.67)

12Our conventions follow from the Einstein-Hilbert action coupled to matter Sg+m =∫
d4x

√
−g
(

2
κ2R+ LM

)
.
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The solution is obtained by integrating (3.66) over x− with x− ∈ [−ϵ, ϵ] for infinitesimal

ϵ > 0. One finds that the scalar modes before and after the shock are simply related by

a phase shift

ϕ̃(ϵ, k, x⊥) = ϕ̃(−ϵ, k, x⊥)e−ikh(x⊥). (3.68)

Equivalently, upon inverting the Fourier transform we find the matching condition

ϕ(ϵ, x+, x⊥) =

∫ ∞

−∞

dk

2π
ϕ̃(−ϵ, k, x⊥)e−ikh(x⊥)+ikx+

= ϕ(−ϵ, x+ − h(x⊥), x⊥). (3.69)

We hence recover the well known result [122] that upon crossing a shockwave, probe

particles acquire a time shift ∆x+ = h(x⊥).

3.4.2 Celestial shock two-point function

Equipped with this result, it can be shown (see appendix A.4) that the scalar propagator

in the background of the shock (3.60) takes the form

Ashock(p2, p4) = 4πp−4 δ(p
−
4 + p−2 )

∫
d2x⊥e

i(p4,⊥+p2,⊥)·x⊥ei
h(x⊥)

2
p−2 . (3.70)

To express this in a conformal primary basis, we parameterize pi as in (3.3), (3.17) in

which case

p−i = 2ηiωi, pi,⊥ = ηiωi(zi + z̄i,−i(zi − z̄i)) ≡ ηiωiqi,⊥ (3.71)

and the momentum space amplitude (3.70) becomes

Ashock(p2, p4) = 4πω4δ(ω4 − ω2)

∫
d2x⊥e

i(ω4q4,⊥−ω2q2,⊥)·x⊥e−iω2h(x⊥). (3.72)
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The celestial propagator is then found by evaluating Mellin transforms with respect to ω2

and ω4,

Ãshock(∆2, z2, z̄2; ∆4, z4, z̄4) =

∫ ∞

0

dω2ω
∆2−1
2

∫ ∞

0

dω4ω
∆4−1
4 Ashock(p2, p4). (3.73)

One of the Mellin transforms is easily computed due to the delta function in energy and

the remaining Mellin integral reduces to the standard Mellin transform of an exponential,

namely

Ãshock(∆2, z2, z̄2; ∆4, z4, z̄4) = 4π

∫ ∞

0

dω2ω
∆2+∆4−1
2

∫
d2x⊥e

−iω2[q24,⊥·x⊥+h(x⊥)]

= 4π

∫
d2x⊥

i∆2+∆4Γ(∆2 +∆4)

[−q24,⊥ · x⊥ − h(x⊥) + iϵ]∆2+∆4
.

(3.74)

This formula is remarkably similar to its counterpart in AdS4 [123]

⟨O∆(p2)O∆(p4)⟩shock = C∆
∫
H2

d2x⊥
Γ(2∆)

(2q · x⊥ − h(x⊥) + iϵ)2∆
, (3.75)

where p2 = −(0, 1, 0), p4 = (q2, 1, q)13 are embedding space (here R1,1×R1,2) coordinates,

h(x⊥) is a solution to the AdS counterpart of (3.62) and C∆ is a normalization constant

given by

C∆ ≡ 1

π2

R2(∆−1)

Γ(∆− 1
2
)2
. (3.76)

In section 4.5.3 we explain how it can be obtained from a flat space limit. Before that,

we clarify the relation between (3.74) and the celestial amplitude that resums the eikonal

spin 2 exchanges.
13Our h is defined with respect to a future-pointing x+ hence the apparent sign difference with respect

to [123]
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3.4.3 Relation to eikonal amplitude

The momentum space scalar propagator (3.70) reproduces the plane wave basis four-point

eikonal amplitude of massless scalars interacting by graviton exchange, given an appro-

priate choice for the shockwave source [122]. In this section we identify the shockwave

source in the CCFT following a similar procedure to that of [123] in the AdS context.

To this end, we consider the leading term in the expansion of the celestial eikonal

amplitude for graviton exchange, namely

Ãj=2
1 = 8π2iκ2

∫
d2xd2x̄⊥G

m=0
⊥ (x⊥, x̄⊥)

i∆1+∆3+1Γ(∆1 +∆3 + 1)

(−q13,⊥ · x⊥)∆1+∆3+1

i∆2+∆4+1Γ(∆2 +∆4 + 1)

(−q24,⊥ · x̄⊥)∆2+∆4+1
.

(3.77)

On the other hand, expanding (3.74) to linear order in h(x⊥), we find

Ã1
shock = −4πi

∫
d2x⊥

i∆2+∆4+1Γ(∆2 +∆4 + 1)

(−q24,⊥ · x⊥ + iϵ)∆2+∆4+1
h(x⊥). (3.78)

Upon choosing

h(x⊥) = −2πκ2
∫
d2x̄⊥G

m=0
⊥ (x⊥, x̄⊥)

i∆1+∆3+1Γ(∆1 +∆3 + 1)

(−q13,⊥ · x̄⊥)∆1+∆3+1
, (3.79)

with

T = T (x̄⊥) = −4π
i∆1+∆3+1Γ(∆1 +∆3 + 1)

(−q13,⊥ · x̄⊥)∆1+∆3+1
, (3.80)

we see that (3.78) reproduces (3.77). Note that while in a momentum space basis, the

energy-momentum tensor carries a scale associated with the energy of the source,14 (3.80)

provides a definition of the source intrinsic to the CCFT. Up to normalization, (3.80) is

analogous to the CFT3 source found in [123] when relating the AdS shockwave two-point

function to the AdS eikonal amplitude. It is obtained by comparing the leading term
14We thank Tim Adamo for an interesting discussion on this point.
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in the perturbative expansion of (3.74) in h(x⊥) to the celestial amplitude (3.46) for t-

channel graviton exchange. As such the stress tensor (3.80) corresponds to a point source

in a conformal primary basis. In the next chapter we clarify this connection by showing

that the celestial formulas can be obtained directly as flat space limit of CFT3 correlators

with particular kinematics.

3.5 Flat space limit of shockwave two-point function in

AdS4

The symmetries of celestial amplitudes inherited from 4D Lorentz invariance are the same

as the symmetries that preserve codimension-1 slices of CFT3. Since in the flat space

limit, CFT3 operators are known to localize on such global time slices [61,63,138,141], it

is natural to expect a direct relation between CFT3 correlation functions in the flat space

limit and celestial amplitudes. In this section we illustrate how this works in the case of

the shockwave two-point function (3.74). Specifically, after reviewing the calculation of

the shockwave two-point function in AdS4, we show that for particular kinematics, in the

limit of large AdS radius R, this two-point function reduces to the celestial propagator in

a shockwave background (3.74).

Consider the embedding of a 4-dimensional hyperboloid

− (X0)2 − (X1)2 +
4∑

i=2

(X i)2 = −R2 (3.81)

in R1,1 × R1,2 with metric

ds2 = −dX+dX− − (dX1)2 +
3∑

i=2

(dX i)2 (3.82)

and where

X± = X0 ±X4 (3.83)
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are lightcone coordinates in R1,1.

Parameterizing

X+ = −Rcos τ − sin ρΩ4

cos ρ
, X− = −Rcos τ + sin ρΩ4

cos ρ
,

X1 = −R sin τ

cos ρ
, X i = R tan ρΩi, i = 2, 3,

(3.84)

with
∑4

i=2Ω
2
i = 1, (3.82) becomes the AdS4 metric in global coordinates

ds2 =
R2

cos2 ρ

(
−dτ 2 + dρ2 + sin2 ρdΩ2

S2

)
. (3.85)

The (τ, ρ) coordinates cover the ranges ρ ∈ [0, π
2
], τ ∈ [−π, π] and the boundary is ap-

proached as ρ→ π
2
. Up to conformal rescaling, points on the boundary are parameterized

by

p = lim
ρ→π/2

1

2
R−1 cos ρX (3.86)

with p2 = 0. We denote AdS4 bulk points by X = (X+, X−, X i) and boundary points by

p.

Following [123] we consider the AdS4 shock geometry

ds2shock = −ds2AdS4
+ dX−dX−δ(X−)h(X i), (3.87)

where for X− = 0,

− (X1)2 +
3∑

i=2

(X i)2 = −R2 (3.88)

and hence on the shock front, h depends only on transverse directions x⊥ ∈ H2 in the

2-dimensional hyperbolic space H2 defined by (3.88). Einstein’s equations imply h is a
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solution to the sourced wave equation on H2 [123]

[
□H2 −

2

R2

]
h(x⊥) = −κ

2

2
T(x⊥). (3.89)

Note also that the shock front is chosen to lie along the Poincaré horizon as illustrated in

Figure 3.3.

p2

p4
π

π
2

−π

− π
2

τ Ω

ρ

0

X−X+

p2

p4
π
2

0

τ′￼

ρ

∝ R−1− π
2

Figure 3.3: Left: Poincaré patch of AdS4 with a shockwave along the
horizon at X− = 0. The boundary is approached as ρ → π

2 and Ω parame-
terize S2 constant τ boundary slices. Right: Zooming into a bulk flat space
region of AdS around the shock at ρ = 0. As R → ∞, the AdS4 shock-
wave two-point function with p2,p4 inserted around τ ′2 = −π

2 and τ ′4 = π
2

respectively becomes the celestial shockwave two-point function.

The two-point function in this shockwave background takes the form [123]

⟨O∆(p2)O∆(p4)⟩shock = C∆
∫
H2

d2x⊥
Γ(2∆)(

2
∑3

i=1 q
iXi(x⊥)− h(x⊥)

)2∆ , (3.90)
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with C∆ given in (3.76) and and without loss of generality, the boundary operators are

inserted at

p2 = − (0, 1, 0) , p4 =
(
q2, 1, q

)
. (3.91)

The relative sign is chosen such that the operators are inserted on opposite sides of the

shock, otherwise the two point function can be shown to take the same form as in empty

AdS.

We would like to zoom in around the flat space region around τ = π
2
, ρ = 0. To this

end we consider the shifted coordinate

τ ′ = τ − π

2
(3.92)

and take the limit R → ∞ with

τ ′ =
t

R
, ρ =

r

R
(3.93)

and (t, r) fixed, as illustrated in Figure 3.3. It is straightforward to show that in this limit

X+ → t+ rΩ4 +O(R−1) = x+, X− → t− rΩ4 +O(R−1) = x−,

X1 → −R +O(1), X i → rΩi = xi⊥, i = 2, 3,

(3.94)

and hence the shockwave metric becomes that of a planar shock in Minkowski space

ds2 = −dx+dx− + ds2⊥ + (dx−)2δ(x−)h(x⊥) (3.95)

with

□⊥h(x⊥) = −κ
2

2
T (x⊥). (3.96)
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Finally, parametrizing

q = (− cos τ ′q, Ω̃2, Ω̃3), (3.97)

where τ ′q ∈ [0, π] we find

lim
R→∞

⟨O∆(p2)O∆(p4)⟩shock = C∆
∫
d2x⊥

Γ(2∆)(
−R cos τ ′q + x⊥ · Ω̃− h(x⊥)

)2∆ . (3.98)

Unless τ ′q = π
2
+ O(R−1), we see that (3.98) is suppressed15 by a factor R−2∆ and the

amplitude will vanish. This is to be expected as otherwise the point in the bulk at which

O interacts with the shockwave will be outside the flat space region we are zooming

into (see Figure 3.3). It is also consistent with the HKLL prescription that relates bulk

scattering states in the flat space limit to boundary operators localized in windows of

width ∆τ ∼ R−1 around τ ′ = ±π
2

[62, 63]. It follows that for this configuration, the

shockwave two-point function reduces to

lim
R→∞

⟨O∆(p2)O∆(p4)⟩shock = C∆
∫
d2x⊥

Γ(2∆)

(−x⊥ · q24,⊥ − h(x⊥))
2∆
, (3.99)

which precisely agrees with the celestial result (3.74). Placing O∆(p4) anywhere else in

the ∆τ = O(R−1) window results in a constant shift that can be absorbed in the definition

of h.16

We conclude that

lim
R→∞

⟨O−
∆(p2)O+

∆(p4)⟩shock =
R2(∆−1)

4π3i2∆
Γ

(
∆− 1

2

)−2

Ãshock(∆, q̂2; ∆, q̂4), (3.100)

where the + (−) labels on the LHS indicate that the CFT3 boundary operators are to be

inserted at global times τ = π
2
+ τ0 (τ = −π

2
+ τ0) provided that the bulk flat space region

15It is assumed that the “parent” boundary CFT3 is unitary and hence the operators have positive
dimensions.

16Recall that (3.96) determines h up to solutions of □⊥h = 0.
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of interest lies at τ0. It would be interesting to generalize this analysis for the scattering of

arbitrary spin particles in spherical shock backgrounds (see [90] in the massless background

limit for a recent example). It would also be interesting to study the flat space limit of

scattering in AdS black hole backgrounds and in particular its implications for signatures

of chaos in CCFT [156,157].

3.6 Celestial amplitudes from flat space limits of Wit-

ten diagrams

The discussion in the previous section is a particular instance of a general result namely,

that celestial amplitudes arise naturally as the leading term in a large radius expansion of

AdS4/CFT3 Witten diagrams. More generally, in this section we show that scalar Witten

diagrams in AdSd+1/CFTd reduce to CCFTd−1 amplitudes in the flat space limit. We

restrict to non-derivative interactions for simplicity. In establishing this correspondence

we assume the following:

• The boundary CFTd operators O∆i
(pi) are inserted on global time slices τ = ±π

2
.

• The two spheres at τ = ±π
2

on the boundary of AdS are antipodally matched.17

We start by studying the individual building blocks of AdSd+1 Witten diagrams -

external lines, vertices and internal lines - and their expansion in a large R limit. We will

see that they map precisely to (d+1)-dimensional flat space Feynman diagrams computed

in a basis of external conformal primary wavefunctions, or equivalently, CCFTd−1 celestial

amplitudes.
17It would be interesting to understand the physical meaning of such a matching condition in AdS,

perhaps by studying asymptotic field configurations as the boundary is approached along different null
directions. We thank Laurent Freidel for a discussion on this point.
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3.6.1 External lines

Let K∆(p,x) be the bulk-to-boundary propagator in the embedding space representation

[60],18

K∆(p,x) =
Cd

∆

(−2p · x+ iϵ)∆
(3.101)

and

Cd
∆ ≡ Γ(∆)

2πd/2Γ(∆− d
2
+ 1)R(d−1)/2−∆

. (3.102)

Parameterizing respectively bulk and boundary points x and p with (τ, ρ,Ω) and (τp,Ωp)

as in (3.84), (3.86) where Ωp,Ω ∈ Sd−1, setting τ = t/R and ρ = r/R and expanding at

large R, we find

K∆(p,x) = Cd
∆

[
1

(R cos τp + t sin τp − rΩp · Ω +O(R−1) + iϵ)∆

]
. (3.103)

Like in the shockwave analysis, we see that assuming ∆ ≥ 0, unless τp = ±π
2
, the

leading contribution to the bracket in (3.103) vanishes as R → ∞. On the other hand,

choosing τp = π
2

we have

K∆(p,x) = Cd
∆

[
1

(−q̃ · x+ iϵ)∆
+O(R−1)

]
, (3.104)

where x = (t, rΩ) ∈ R1,d is the point in flat space and where q̃ = (1,Ωp) ∈ R1,d is a

null vector in the direction Ωp. As a result, up to normalization, K∆(p,x) maps (up to

a phase) under R → ∞ to an outgoing conformal primary wavefunction, when τp = π
2
.

18This representation of K∆(p,x) is valid only in particular Poincaré patches [119]. It is sufficient in
our case since we restrict to configurations with boundary insertions at τ = ±π

2 and bulk points close to
the center of AdS.
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Likewise if we choose τp = −π
2
,

K∆(p,x) = Cd
∆

[
1

(q̃ · x+ iϵ)∆
+O(R−1)

]
(3.105)

where x is the same, but now q̃ = (1,ΩA
p ) with ΩA

p = −Ωp the antipodal point of Ωp on the

sphere. In this case we see that the bulk-to-boundary propagator maps (up to a phase)

to an incoming conformal primary wavefunction.

Outgoing or incoming iϵ prescriptions are obtained depending on the sign of τp = ±π
2
.

Moreover, the antipodal identification is needed to ensure Lorentz covariance of the re-

sulting conformal primary wavefunctions. Note that placing the operators at other global

times τp = ±π
2
+∆τp with ∆τp ∝ R−1 leads, in the flat space limit, to conformal primary

wavefunctions that diagonalize boosts with respect to different origins in spacetime.

3.6.2 Vertices

For the particular case of non-derivative coupling we are considering, AdSd+1 vertices take

the form

ig

∫
AdSd+1

dd+1x. (3.106)

Writing the measure explicitly in global coordinates (τ, ρ,Ω), and transforming to τ = t/R

and ρ = r/R, we have its large R expansion

dd+1x = dd+1x+O(R−2). (3.107)

Moreover since t = Rτ and r = Rρ, it follows that t ∈ (−∞,∞) and r ∈ [0,∞) in the

flat space limit. Hence

ig

∫
AdSd+1

dd+1x = ig

∫
R1,d

dd+1x+O(R−2), (3.108)
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and the rule for the vertex in AdSd+1 maps to the rule for the vertex in R1,d.

3.6.3 Internal lines

To discuss the internal lines we recall that the AdSd+1 bulk-to-bulk propagator of dimen-

sion ∆ obeys the equation [123]

(
□AdSd+1

− ∆(∆− d)

R2

)
Π∆(x, x̄) = iδAdSd+1

(x, x̄). (3.109)

On the one hand the Laplacian is

□AdSd+1
=

− cos2 ρ

R2
∂2τ +

cosd+1 ρ

sind−1 ρ
∂ρ

(
sind−1 ρ

cosd+1 ρ

√
γ
cos2 ρ

R2
∂ρ

)
+

cos2 ρ

R2 sin2 ρ

1
√
γ
∂A
(√

γγAB∂B
)

= □R1,d +O(R−2),

(3.110)

where γ is the round Sd−1 metric and □R1,d is the flat space Laplacian. On the other hand

the delta function is

δAdSd+1
(x, x̄) =

δ(τ − τ̄)δ(ρ− ρ̄)δd−1(Ω− Ω̄)√
−gAdSd+1

= δR1,d(x, x̄) +O(R−2),

(3.111)

where δR1,d(x, x̄) is the Minkowski space delta distribution. Altogether the large R expan-

sion of the defining equation for the bulk-to-bulk propagator is

[(
□R1,d +O(R−2)

)
− ∆(∆− d)

R2

]
Π∆(x, x̄) = iδR1,d(x, x̄) +O(R−2). (3.112)

It follows that the AdSd+1 propagator has a large-R expansion

Π∆(x, x̄) = G(x, x̄) +O(R−2), (3.113)
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where G(x, x̄) ought to obey

(□R1,d −m2)G(x, x̄) = iδR1,d(x, x̄), m ≡ lim
R→∞

∆

R
. (3.114)

Therefore, we either recover massive exchanges when ∆ = O(R) or massless exchanges

when ∆ = O(1).

A final remark is that while equation (3.114) does not have a unique solution, the

fact that Π∆(x, x̄) computes time-ordered two-point functions in AdSd+1 implies that its

leading behavior G(x, x̄) also computes time-ordered two-point functions in R1,d. This

imposes one additional condition on (3.114) which singles out the Feynman propagator.

3.6.4 Forming the diagrams

Combining all of the ingredients, we find that none of the large-R corrections contribute at

leading order. As a result, the leading term in a large R expansion of a Witten diagram

reduces to the position space Feynman diagram for the same interaction in flat space

with external wavefunctions taken to be conformal primaries. By the definition (3.8), this

coincides with the corresponding celestial amplitude!

We exemplify by considering a t-channel exchange Witten diagram

⟨O∆1(p1)O∆2(p2)O∆3(p3)O∆4(p4)⟩ = (ig)2
∫
AdSd+1

dd+1xdd+1yΠ∆(x,y)

K∆1(p1,x)K∆3(p3,x)K∆2(p2,y)K∆4(p4,y).

(3.115)

Taking p1 and p2 inserted at τ = −π
2

and p3 and p4 inserted at τ = π
2
, we find

K∆i
(pi,x) = N d

∆i

[
φ∆i

(x;−q̂i) +O(R−1)
]
, i = 1, 2, (3.116)

K∆i
(pi,x) = N d

∆i

[
φ∆i

(x; q̂i) +O(R−1)
]
, i = 3, 4, (3.117)
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where N∆i
are given by

N d
∆i

=
Cd

∆i

i∆iΓ(∆i)
=

R−(d−1)/2+∆i

2πd/2i∆iΓ(∆i − d−1
2
)
. (3.118)

Assuming further that the exchanged operator has ∆ = mR +O(1), then

⟨O−
∆1
(p1)O−

∆2
(p2)O+

∆3
(p3)O+

∆4
(p4)⟩ =

(
4∏

i=1

N d
∆i

)(
(ig)2

∫
R1,d

dd+1xdd+1yGe(x, y)

× φ∆1(x;−q̂1)φ∆2(y;−q̂2)φ∆3(x; q̂3)φ∆4(y; q̂4) +O(R−1)

)
,

(3.119)

and up to normalization the leading term in the large R expansion is the corresponding

flat space Feynman diagram computed with position space Feynman rules and conformal

primary external wavefunctions. More generally, in the flat space limit, CFTd correlators

with operators inserted at τi = ±π
2
+O(R−1) are related to CCFTd−1 amplitudes of in/out

operators with the same dimensions, namely

Ã(∆i, zi, z̄i) = lim
R→∞

(
4∏

i=1

N d
∆i

)−1

⟨O−
∆1
(p1)O−

∆2
(p2)O+

∆3
(p3)O+

∆4
(p4)⟩. (3.120)

Celestial amplitudes of operators with arbitrary dimensions (such as conformally soft

ones) may then be obtained by analytic continuation.

At the operator level, what we have shown is that a generic CFTd quasi-primary

operator O∆(p) inserted on past/future global time slices Sd−1 maps in the flat space

limit to an incoming/outgoing celestial operator O±
∆(z⃗) in CCFTd−1 via

O±
∆(z⃗) ≡ lim

R→∞
(N d

∆)
−1O±

∆

(
τ = ±π

2
, z⃗
)
, (3.121)
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where the limit holds in the weak sense,

⟨O±
∆(z⃗) · · · ⟩ = lim

R→∞
(N d

∆)
−1
〈
O±

∆

(
τ = ±π

2
, z⃗
)
· · ·
〉
. (3.122)

This prescription beautifully matches with the relation between two-point functions in a

shock background found by explicit calculation in (3.100).
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4

Celestial Sector in CFT: Conformally

Soft Symmetries

4.1 Introduction

Celestial holography proposes a correspondence between theories of gravity in 4-dimensional

(4D) asymptotically flat spacetimes and conformal field theories (CFT) living on the 2D

celestial sphere at infinity [29,158]. In particular, scattering observables in the 4D theory

are computed by correlation functions in the 2D theory, also known as celestial ampli-

tudes,1 and are subject to a wide range of symmetries [33,35–38,52,91,154] (see also [159]

for a recent review). This correspondence appears to be very different from other in-

stances of holography. Most notably, it relates a bulk theory to a boundary theory in two

lower dimensions, while the bulk soft theorems imply the existence of towers of negative
1Celestial amplitudes will be assumed to be defined in 2D whenever the dimension is not explicitly

specified.
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dimension operators in the celestial CFT [39], naively rendering the boundary theory

non-unitary.

On the other hand, for massless2 scattering, a simple flat space limit of holographic

CFTd correlators was found in [1] to yield (d− 1)-dimensional celestial amplitudes. This

suggests that at least some of the unique features of celestial CFT should arise in a certain

limit of conventional CFT in one higher dimension. The goal of this paper is to explain

how leading and subleading conformally soft symmetries [35–38] emerge precisely in this

way.

Motivated by the configuration of boundary operators for which CFT3 correlators re-

duce to celestial amplitudes, we first study the symmetries of an interval on the Lorentzian

cylinder of small width ∆τ ∝ R−1 in global time. We show that in the limit R → ∞,

the conformal isometries of this strip are enhanced to an infinite dimensional symmetry

parameterized by a function and a local conformal Killing vector on a two-sphere. For

finite large R (corresponding to a strip of small, but finite width), the infinite dimensional

symmetry is broken by O(R−1) terms. We show explicitly via a procedure that mimics the

Inonu-Wigner contraction [163] of the conformal algebra to Poincaré, that the enhanced

conformal isometries of the intervals around τ = ±π
2

generate an extended BMS4 algebra

to leading order at large R. Moreover, under these symmetries, CFT3 primary operators

of dimension ∆ at τ = ±π
2
+ u

R
transform as 2D primary operators of effective dimension

∆̂ = ∆+u∂u. ∆̂ can be diagonalized by an integral transform with respect to u analogous

to that relating Carrollian and celestial operators [164,165].

This analysis suggests that conformally soft symmetries in 2D CCFT are generated

by certain modes of the 3D stress tensor in the strips. In the second part of the paper
2It has been long known that massive and in some cases massless momentum space scattering am-

plitudes can be extracted from correlation functions of unitary CFTd with holographic AdSd+1 duals in
various flat space limits [58–60,160,161]. Interestingly, it was recently shown that such CFTd 4-point cor-
relators exhibit conjectured properties of (d+1)-dimensional scattering amplitudes, including dispersion
relations, unitarity and the Froissart bound in a flat-space limit [162].
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we show that the shadow stress tensor Ward identities in CFTd allow one to extract both

the leading and subleading conformally soft graviton operators in CCFTd−1. We establish

this by lifting the method used in [166] to derive stress tensor Ward identities from the

subleading soft graviton theorem in arbitrary dimensions to the embedding space. This

allows us to derive the shadow stress tensor Ward identities on the Lorentzian cylinder

R× Sd−1 and study their restriction to an infinitesimal global time strip. Specifically, we

find that

lim
u→0

∂uT̃ab and lim
u→0

(1− u∂u)T̃ab, (4.1)

where T̃ab is the shadow transform of the CFTd stress tensor and a, b are indices on Sd−1

become respectively, upon subtracting the trace, the leading and subleading conformally

soft gravitons in CCFTd−1!

Our results are interesting for several reasons. Firstly, they demonstrate that celestial

CFT may not be as exotic of a theory as anticipated. On the contrary, the leading

and subleading conformally soft symmetries arise universally in a simple limit of any

CFT3, irrespective of whether or not it is holographic. In this sense, our approach is

complementary to that in [63,167,168] which relies on the existence of an AdS bulk dual.

More generally, we find that any CFTd contains a (d − 1)-dimensional “celestial” sector

characterized by an emergent BMS-like symmetry.3 Secondly, our results suggest that

holographic CFTd correlators encode information about gravity in (d + 1)-dimensional

asymptotically flat spacetimes (AFS) that need not be lost in the flat space limit. It

would be extremely interesting to understand the further implications, as well as the

limitations of this approach.

This paper is organized as follows. In section 4.2 we review the relation between

AdS Witten diagrams and celestial amplitudes at large AdS radius. We show how each

operator in an infinitesimal time interval around τ = ±π
2

in a CFTd on the Lorentzian
3In d > 3 the vector fields are parameterized by a function on the sphere and a CKV on Sd−1, in

particular there is no local enhancement of the latter like for d = 3.
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cylinder maps to a continuum of operators in CCFTd−1 via an integral transform over

the interval. In section 4.3 we generalize the relation between AdS Witten diagrams and

celestial amplitudes to massless spinning external states. In particular, we demonstrate

that, at large AdS radius, spinning bulk-to-boundary propagators in AdSd+1 with fixed

dimensions become massless spinning conformal primary wavefunctions in R1,d. In section

4.4 we analyze the conformal Killing equations in a global time strip of the 3D Lorentzian

cylinder of infinitesimal width ∆τ ∼ R−1. We find an emergent infinite dimensional

symmetry in the limit R → ∞ labelled by a function and a vector field on the sphere.

We show in section 4.4.1 that the associated vector fields reorganize into the generators

of an extended BMS4 algebra after a Inonu-Wigner-like contraction. In section 4.4.2 we

show that CFT3 operators in the strips around τ = ±π
2

transform like conformal primary

operators in CCFT2 under these symmetries.

In section 4.5 we derive the conformally soft gluon and graviton theorems in CCFTd−1

as a limit of the Ward identities of a shadow current and the stress tensor in CFTd. In

sections 4.5.1, 4.5.2 we revisit the derivation of these Ward identities using the embedding

space formalism. The large-R limits of these identities are worked out in section 4.5.3.

After projection to the Lorentzian cylinder, we demonstrate in section 4.5.3 that the

leading conformally soft gluon is obtained from the components of the shadow current

transverse to the Sd−1 at τ = π
2
. The leading and subleading conformally soft gravitons

are similarly extracted from an expansion of the transverse traceless component of the

shadow stress tensor around τ = π
2

in section 4.5.3. We collect various technical results

in the appendices.

4.2 Preliminaries

In this section we review how, in the large AdS radius limit, scalar AdS Witten diagrams

reduce to Feynman diagram constituents of celestial amplitudes. This result will be



Chapter 4. Celestial Sector in CFT: Conformally Soft Symmetries 127

extended to account for massless spinning external states, as well as exchanges of arbitrary

mass and spin in section 4.3. Importantly, we clarify the relation between insertions of

CFT operators at different global times τ0 in a strip of width ∆τ = O(R−1) and the

continuum of celestial operators corresponding to an asymptotic state in 4D AFS.

Conformal correlation functions in CFTd are obtained by summing over all possible

AdSd+1 Witten diagrams [169]. The building blocks of the latter are bulk-to-boundary

and bulk-to-bulk propagators. It will be convenient to express the bulk-to-boundary

propagators in the embedding space formalism [170, 171]. We denote points or vectors

in the embedding space R2,d by capital letters X, P , · · · . Points in bulk AdSd+1 are

constrained to obey X2 := ηµνX
µXν = −R2, where ηµν = (−,+, · · · ,+,−) and can be

parameterized by global coordinates (τ, ρ, z⃗) as

X0(τ, ρ, z⃗) = R
sin τ

cos ρ
, Xd+1(τ, ρ, z⃗) = R

cos τ

cos ρ
, X i(τ, ρ, z⃗) = R tan ρΩi(z⃗). (4.2)

Here Ω(z⃗) ∈ Sd−1 are unit normals to the sphere parameterized by coordinates z⃗ with

Ω(z⃗) =

(
2z1

1 + |z⃗|2
, . . . ,

2zd−1

1 + |z⃗|2
,
1− |z⃗|2

1 + |z⃗|2

)
. (4.3)

In these coordinates the boundary is located at ρ = π
2

and boundary points correspond

to null vectors P 2 = 0, where

P (τ, z⃗) = lim
ρ→π

2

cos ρ

R
X(τ, ρ, z⃗), (4.4)

or equivalently

P 0(τ, z⃗) = sin τ, P d+1(τ, z⃗) = cos τ, P i(τ, z⃗) = Ωi(z⃗). (4.5)
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The correlation functions ⟨O∆1(P1) · · · O∆n(Pn)⟩ of scalar operators O∆i
(Pi) in a holo-

graphic CFTd can be computed by summing over AdSd+1 Witten diagrams (see [5] for a

review). Motivated by the relation between scattering amplitudes and AdS/Witten dia-

grams in the flat space limit [60,62,63], a limit was proposed in [1] in which AdS/Witten

diagrams reduce to celestial amplitudes. In this prescription, boundary operators are

placed at

τi = ±π
2
+
ui
R
, (4.6)

while bulk global coordinates are redefined as

τ =
t

R
, ρ =

r

R
, (4.7)

before taking R → ∞ with (t, r) fixed. One of the main observations of [1] is that to

leading order at large R, scalar bulk to boundary propagators in AdSd+1

K∆(X,P ) =
C∆

(−P ·X + iϵ)∆
, (4.8)

with C∆ a normalization constant, become proportional to R1,d conformal primary wave-

functions [29]

φ∆(x; ηq̂) =
(iη)∆Γ(∆)

(−q̂ · x+ iηϵ)∆
. (4.9)

Here η = ±1 depending on whether the boundary operators are placed around τ = ±π
2

with the spheres at τ = ±π
2

assumed to be antipodally related, x is a point in (d + 1)-

dimensional flat space and

q̂(z⃗) = (1,Ω(z⃗)) . (4.10)
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Analyzing the other elements of the AdS/Witten diagrams, one concludes that these

reduce to the building blocks of celestial amplitudes to leading order at large R.

The correspondence established in [1] left an important question open. A bulk scalar

field in AdS corresponds to an operator of definite dimension in CFT, while massless

asymptotic states in flat space should map to a continuum of operators of dimensions ∆ =

d−1
2

+ iλ in CCFTd−1 [30]. In contrast, according to (4.8), (4.9) the celestial amplitudes

appear to simply inherit the dimension of the primary operator in the parent CFT. We

conclude this section by explaining how one can in fact extract a continuum of operators

in CCFT from the large R expansion of (4.8).

Recall that the conformal primary wavefunctions obtained from bulk-to-boundary

propagators in the large R limit depend on the position at which the CFTd operators

are inserted within the global time strip of infinitesimal width ∝ R−1. In particular,

lim
R→∞

K∆(X,P )|τp=π
2
+

u0
R

∝ 1

(t− u0 − rΩ · Ωp + iϵ)∆
+O(R−1). (4.11)

This result corresponds to an outgoing conformal primary wavefunction defined with

respect to a different origin in spacetime, namely

φ∆(x− x0; q̂) ∝
1

(−q̂ · (x− x0) + iϵ)∆
, (4.12)

where x0 = (u0, 0, 0, 0). Now note that this shift in origin can be traded for a shift in the

conformal dimension ∆ by an integral transform on u0. Specifically,

∫ ∞

−∞
du0u

−∆0
0

i∆

(t− u0 − rΩ · Ωp + iϵ)∆
=

1

Γ(∆)

∫ ∞

−∞
du0u

−∆0
0

∫ ∞

0

dωω∆−1eiω(t−u0−rΩ·Ωp+iϵ)

=
2i∆−1 sin(π∆0)B(∆ +∆0 − 1, 1−∆0)

(t− rΩ · Ωp + iϵ)∆+∆0−1
, Re∆0 ∈ (0, 1),

(4.13)
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where B(x, y) is the Euler beta function. Similar to calculations involving conformal

primary wavefunctions in CCFT, the integral formally converges only for ∆0 = c+iλ, with

c ∈ (0, 1) and λ ∈ R. Nevertheless the result may be analytically continued away from

this line in the complex ∆0 plane [86, 154, 172]. Following [30], these conformal primary

wavefunctions can then be shown to form a complete basis for asymptotic scattering states

in R1,d provided that ∆0 takes the appropriate continuum of values.

We conclude that up to an interesting normalization,4 insertions of CFTd operators at

different points in the infinitesimal global time intervals generate the expected continuum

of CCFTd−1 operators. The transformation (4.13) is the same that maps operators in a

Carrollian conformal field theory to celestial operators [164, 165]. We will return to this

in section 4.4.2. A complementary approach is to keep the u0 dependence and then relate

the R → ∞ limit of AdS Witten diagrams to Carrollian correlators instead of celestial

ones [176].

4.3 Spinning celestial amplitudes from flat space limit

We now discuss the extension of the result reviewed in the previous section to external

spinning operators. We analyze in turn the flat space limit of massless spinning bulk-to-

boundary propagators, spinning bulk-to-bulk propagators and vertices.
4In (4.13) we assumed that one can exchange the order of integrals over u0 and ω. It would be

important, yet beyond the scope of this paper, to study under what conditions this is allowed. It
is possible that different prescriptions will yield celestial amplitudes that differ by Poincaré invariant
structures as observed for example in [90, 173]. We thank Walker Melton and Sruthi Narayanan for a
discussion on this point. It would also be interesting to understand the precise relation between our
prescription and those proposed in [174,175] based on an AdS/dS slicing of flat space.
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4.3.1 Bulk-to-boundary propagators

We start by considering the spinning bulk-to-boundary propagators for fields of dimension

∆ and spin J [171]

K∆,J
µ⃗;ν⃗ (X;P ) = C∆;J∂µ1X

A1 · · · ∂µJ
XAJ∂ν1P

B1 · · · ∂νJPBJ
I{A1;{B1(X;P ) · · · IAJ};BJ}(X;P )

(−P ·X + iϵ)∆
,

(4.14)

where

IA;B(X;P ) =
−P ·XηAB + PAXB

−P ·X + iϵ
. (4.15)

Here Ai, Bi are R2,d embedding space indices, µi run over the rescaled coordinates (t, r,Ω)

defined in (4.3), (4.7) and νi run over the boundary coordinates (u,Ω) in (4.6). ∂µi
XAi ,

∂νiP
Bi hence implement projections onto the corresponding bulk and boundary tensors

respectively and {·} denotes the symmetric traceless component. We collect some useful

results on the embedding space formalism in appendix B.1. C∆,J is a normalization

constant [171]

C∆,J =
(J +∆− 1)Γ(∆)

2πd/2(∆− 1)Γ(∆ + 1− d
2
)R(d−1)/2−∆+J

. (4.16)

We see that spinning bulk-to-boundary propagators are obtained from the scalar ones

defined in (4.8) by dressing with the conformally covariant tensors in (4.15). It then

suffices to analyze the behavior of these tensors in the flat space limit.

Using the large R expansions

X(τ, ρ, z⃗) = (0, R) + (x, 0) +O(R−1), (4.17)

P (τi, z⃗i) = ±(q̂(z⃗i), 0)∓
(
0,
ui
R

)
+O(R−2) (4.18)

of the bulk and boundary embedding space vectors, where x = (t, rΩ(z⃗)) are Cartesian



Chapter 4. Celestial Sector in CFT: Conformally Soft Symmetries 132

coordinates and q̂ is defined in (4.10), one obtains the expansions of the projectors ∂µXA

and ∂νPB. From these expansions it immediately follows that

ηAB∂µX
A∂νP

B =


O(R−2), ν = u,

±∂aq̂µ(z⃗) +O(R−1), ν = za,

(4.19)

PAXB∂µX
A∂νP

B =


q̂µ(z⃗) +O(R−1), ν = u,

(∂aq̂(z⃗) · x) q̂µ(z⃗) +O(R−1), ν = za.

(4.20)

The expansion of the conformally covariant tensors (4.15) projected onto bulk and

boundary indices follows directly from these results. We distinguish between two cases.

First, when the boundary index is ν = u we have

Iµ,u(X,P ) = ± lim
∆→0

1

∆

[
∂µ

(
1

(−q̂ · x± iϵ)∆

)
+O(R−1)

]
, (4.21)

which we recognize as the derivative of a scalar conformal primary wavefunction. Likewise,

if the boundary index is ν = za we have

Iµ,a(X,P ) = ±
[
∂aq̂µ(z⃗) +

∂aq̂(z⃗) · x
(−q̂ · x± iϵ)

q̂µ(z⃗) +O(R−1)

]
. (4.22)

Hence, up to normalization and a phase, the flat space limit of Iµ,a(X,P ) corresponds

to the conformally covariant tensor used in the construction of spinning conformal pri-

mary wavefunctions given in [85].5 Putting everything together, we conclude that general

massless spinning conformal primary wavefunctions are obtained from flat space limits

of the spinning bulk-to-boundary propagators (4.14) with transverse indices. Note how-

ever that the dimensionally reduced bulk to boundary propagators have a non-vanishing

trace. In order to obtain conformal primary wavefunctions in CCFTd−1 the trace has to
5The polarization vectors ∂aq̂ are gauge equivalent to the ones defined in [30].
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be subtracted. For example, in the spin two case this is implemented by applying the

projector [30]

P b1b2
a1a2

≡ δb1{a1δ
b2
a2} −

1

d− 1
δa1a2δ

b1b2 . (4.23)

Finally, (4.21) implies that bulk-to-boundary propagators with time indices on the

boundary result in pure gauge conformal primary wavefunctions. We leave a better un-

derstanding of this, as well as additional data resulting from the dimensional reduction

to future work.

4.3.2 Bulk-to-bulk propagators and vertices

The spin J bulk-to-bulk propagator in AdSd+1 obeys the equations [171]

(
□AdS − ∆(∆− d)

R2
+

J

R2

)
Πµ1...µJ ,ν1...νJ (X, X̄) = −gµ1{ν1 · · · g|µJ |νJ}δAdS(X, X̄),

∇µ1Πµ1...µJ ,ν1...νJ (X, X̄) = 0.

(4.24)

To take the flat space limit we assume that all of the components are in the chart (t, r,Ω),

in which the AdS metric gµν becomes the Minkowski metric ηµν to leading order at large

R

gµν = ηµν +O(R−2). (4.25)

On the other hand, the Laplace operator behaves as □AdS = □R1,d+O(R−2) and the Dirac

delta behaves as δAdS(X, X̄) = δR1,d(x, x̄)+O(R−2) [1]. Therefore the first equation turns

into the equation for the propagator of a spin J field of mass m = lim
R→∞

∆
R

in flat space.

The second equation can be treated in the same way since gµν = ηµν + O(R−2) and the

AdS covariant derivative becomes the flat spacetime covariant derivative when R → ∞.
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As a result, the bulk-to-bulk propagator must have an expansion of the form

Πµ1...µJ ,ν1...νJ (X, X̄) = Gµ1...µJ ,ν1...νJ (x, x̄) +O(R−2), (4.26)

where Gµ1...µJ ,ν1...νJ (x1, x2) is the Feynman propagator for a symmetric traceless tensor of

spin J in R1,d.

Since vertices are simply integrals over AdS which become integrals over R1,d in the

flat space limit, we conclude that AdS-Witten diagrams for spinning particles reduce to

CCFTd−1 amplitudes of spinning massless particles in the flat space configuration (4.6).

4.4 From conformal to infinite dimensional symmetry

Consider a d-dimensional CFT on the Lorentzian cylinder with metric

ds2 = gµνdx
µdxν = −dτ 2 + dΩ2

d−1, (4.27)

where dΩ2
d−1 is the metric on the (d−1)-sphere of unit radius. Conformal transformations

are coordinate transformations that preserve the metric up to a Weyl rescaling. Specifi-

cally, infinitesimal conformal transformations are obtained by finding the diffeomorphisms

x
′µ = xµ + ϵµ(x) (4.28)

under which the metric transforms as

g′µν(x
′) = gµν(x) + δgµν , δgµν = σ(x)gµν(x). (4.29)

Such diffemorphisms are subject to the conformal Killing equations

∇µϵν +∇νϵµ =
2

d
∇ · ϵ(x)gµν . (4.30)
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The solutions to these equations generate the conformal algebra so(d, 2) for d ≥ 3, while

for d = 2 this algebra admits a Virasoro enhancement.

The relation between celestial amplitudes on the (d − 1)-dimensional celestial sphere

and conformal correlation functions of primary operators localized to strips of infinitesimal

width ∆τ ∝ 1
R

as R → ∞ suggests that, on short global time scales, d-dimensional

conformal field theories should develop an infinite dimensional symmetry. In this section

we show that this is indeed the case by analyzing the conformal Killing equations (4.30)

in this limit. We specialize to d = 3 in which case the emergent “celestial” CFT is

2-dimensional and expected to be governed by the extended BMS symmetries of 4D

asymptotically flat spacetimes (AFS) [11,12,27,67].

For d = 3, (4.27) reduces to

ds2 = −dτ 2 + 2γzz̄dzdz̄, γzz̄ =
2

(1 + zz̄)2
, (4.31)

where we introduced stereographic coordinates (z, z̄) on the unit 2-sphere with metric

γzz̄. We would like to zoom into a region of the 3-dimensional Lorentzian cylinder of

infinitesimal width centered around a global time slice at τ0. To this end, we introduce

the coordinate u defined by

τ = τ0 +
u

R
, (4.32)

in which case the metric (4.31) becomes

ds2 = −R−2du2 + 2γzz̄dzdz̄. (4.33)
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The conformal Killing equations associated with (4.33) take the form

∂uϵ
u =

1

3
∇ · ϵ, (4.34)

∂uϵz + ∂zϵu = 0, (4.35)

Dz̄ϵz +Dzϵz̄ =
2

3
∇ · ϵγzz̄, Dzϵz = 0, (4.36)

where DA is the covariant derivative on the sphere and we denote indices tangent to the

sphere by A.

The last equation in (4.36) is solved by

γzz̄∂zϵ
z̄ = γzz̄∂z̄ϵ

z = 0 =⇒ ϵA = F (u)Y A(z, z̄), (4.37)

where Y A are conformal Killing vectors on the sphere. Moreover (4.34) and the first

equation in (4.36) yield6

2∂uϵ
u = F (u)D · Y =⇒ ϵu =

1

2

∫ u

du′F (u′)D · Y + f(z, z̄). (4.38)

Finally, F (u) is determined from (4.38) and (4.35). In the limit as R → ∞ we distinguish

between two cases. If D · Y = 0 we immediately find

∂uF (u) = O(R−2) =⇒ F (u) = c+O(R−2), (4.39)

where c is a constant. For future convenience we chose c = 1 which reproduces the

standard Lie algebra of rotation generators to leading order at large R. On the other
6Note that f(z, z̄) may depend on R. As we show later, the global translations are obtained from an

Inonu-Wigner contraction of vector fields with f(z, z̄) = R. Supertranslations may also be obtained by
allowing f(z, z̄) = Rf0(z, z̄) and directly applying (4.56) to the local generators.
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hand, if D · Y ̸= 0, taking a u derivative of (4.35) we find

∂2uF (u)YA − F (u)∂AD · Y
2R2

= 0, (4.40)

or upon taking the divergence on the sphere,7

[
∂2uF (u) +

1

R2
F (u)

]
D · Y = 0. (4.42)

(4.42) is solved by

F (u) = e±i(τ0+
u
R
). (4.43)

Since we have taken a u derivative and a divergence on the sphere in order to arrive at

(4.39) and (4.43), it is important to verify whether these solutions also obey the original

conformal Killing equation (4.35). In fact (4.39), (4.43) fail to obey (4.35) away from the

R → ∞ limit. For D · Y ̸= 0

δϵ±guA = ±ie
±i(τ0+

u
R
)

R
αA(z, z̄)−

∂Af(z, z̄)

R2
, αA = YA +

1

2
DA(D · Y ). (4.44)

Therefore the violation is O(R−1) for the local CKV on the sphere, while in the special

case D ·Y = 0 the violation is O(R−2). The enhanced conformal Killing symmetry in the

strip is therefore broken at O(R−1). Singularities in the local CKVs on the sphere also

lead to a violation of the conformal Killing equations by contact terms.
7Recall that conformal Killing vectors on the sphere obey

DAD
ADBY

B = −2D · Y. (4.41)
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The vector fields that preserve the metric of a 3D Lorentzian cylinder in an infinitesimal

time interval ∝ R−1 in the limit R → ∞ are hence

ϵ± =

[
∓iR

2
F±(u)D · Y + f(z, z̄)

]
∂u + F±(u)Y

A∂A, (4.45)

where 
F±(u) = e±i(τ0+

u
R
), D · Y ̸= 0,

F±(u) = 1, D · Y = 0.

(4.46)

It may be interesting, yet beyond the scope of this paper, to systematically understand

whether (4.33) and (4.45) admit subleading corrections8 at large R that allow for an

enhancement of conformal symmetry in a strip of small yet finite size.

A few comments are in order. Just like the generators of the extended BMS group in 4D

AFS, the vector fields (4.45) are labelled by a function f(z, z̄) and a local conformal Killing

vector Y A(z, z̄) on the sphere. The resulting symmetry group is infinite dimensional, in

contrast to the conformal group in 3 dimensions. At first glance this may seem surprising,

however we ought to keep in mind that (4.45) are not symmetries of full 3D CFT but

only of infinitesimal time intervals.

Moreover, note that in the R → ∞ limit the metric (4.33) develops a “null direc-

tion” reflected by the vanishing of the guu component. As such, the restriction to short

global timescales shares similarities with the Carrollian limit [177, 178]. In the next sec-

tion we show how the extended BMS4 algebra is recovered from the enhanced conformal

symmetries (4.45) of the strip by a Inonu-Wigner contraction [163].
8Unfortunately this naively appears to require coupling the boundary CFT to gravity. We thank Jan

de Boer for a discussion on this point.
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4.4.1 Extended BMS4 algebra in CFT3

We now show that the extended BMS4 algebra can be extracted from the algebra generated

by the vector fields (4.45). This procedure is analogous to Inonu-Wigner contraction of

the conformal algebra to Poincaré [163].

We start by noting that appropriate linear combinations of (4.45) generate an so(3, 2)

algebra for constant f(z, z̄) and Y = Y A∂A restricted to the global conformal Killing

vectors of the sphere [27],

Y12 = −i(z∂z − z̄∂z̄), Y23 = −iz
2 − 1

2
∂z + i

z̄2 − 1

2
∂z̄, Y31 = −1 + z2

2
∂z −

1 + z̄2

2
∂z̄,

(4.47)

Y01 =
1− z2

2
∂z +

1− z̄2

2
∂z̄, Y02 =

i(1 + z2)

2
∂z −

i(1 + z̄2)

2
∂z̄, Y03 = −z∂z − z̄∂z̄.

(4.48)

(4.47) correspond to rotations of the 2-sphere and have vanishing divergence D · Yij = 0

while (4.48) have non-vanishing divergence

D · Y0i = −2Ωi, (4.49)

where Ω = 1
1+zz̄

(z + z̄,−i(z − z̄), 1− zz̄) is the unit normal to the sphere at (z, z̄). Specif-

ically, identifying

D = −iϵf=R, Jij = iϵYij
, (4.50)

Pi = iϵ+Y0i
, Ki = iϵ−Y0i

, (4.51)
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we find the commutation relations [5]

[D, Jij] = 0, [D,Pi] = Pi, [D,Ki] = −Ki,

[Jij, Pk] = i(δikPj − δjkPi), [Jij, Kk] = i(δikKj − δjkKi),

[Pi, Kj] = 2i(iδijD − Jij), [Jij, Jkℓ] = i [δikJjℓ + δjℓJik − δjkJiℓ − δiℓJjk].

(4.52)

These generators can be reorganized in terms of Lorentz generators MAB of the em-

bedding space R2,3 9

M40 = −D, Mi4 =
Pi +Ki

2
, (4.53)

Mij = Jij, Mi0 =
Pi −Ki

2i
, i = 1, 2, 3. (4.54)

Explicit computation shows that (4.52) imply that MAB obey the so(3, 2) algebra

[MAB,MCD] = i(ηACMBD + ηBDMAC − ηBCMAD − ηADMBC) (4.55)

with η00 = η44 = −1, ηii = 1 and all other components vanishing. The Inonu-Wigner

contraction is implemented by redefining

Pµ =
1

R
M4µ, µ = 0, · · · , 3 (4.56)

and taking R → ∞ while keeping Pµ and Mµν fixed. It is straightforward to show that

in this limit, (4.52) reduce to the Poincaré algebra, with Pµ and Mµν the translation and

Lorentz generators in R1,3 respectively.
9Our conventions differ slightly from those in [60] and are simply related by exchanging the 0 and 4

directions or equivalently shifting τ → τ + π
2 in (4.2).
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We now demonstrate that an analogous Inonu-Wigner contraction of the local vector

fields (4.45) leads to the extended BMS4 algebra ebms4. In analogy with (4.56) we define

TY = i
ϵ+Y + ϵ−Y
2R

, LY =
ϵ+Y − ϵ−Y

2
(4.57)

for arbitrary conformal Killing vector fields Y 10 and take the limit R → ∞. Setting

τ0 =
π
2
+O(R−1), we find from (4.45) and (4.57)

−iTY =
1

2
D · Y ∂u +O(R−2), (4.58)

−iLY = Y A∂A +
u

2
D · Y ∂u +O(R−2). (4.59)

Together with the vector fields with Y = 0, parametrized by an arbitrary function f on

the sphere

Tf ≡ iϵf = if(z, z̄)∂u +O(R−2), (4.60)

LY generate ebms4

[Tf1 , Tf2 ] = O(R−2),

[LY1 , LY2 ] = iL[Y1,Y2] +O(R−2),

[Tf , LY ] =

[
Y (f)− 1

2
(D · Y )f(z, z̄)

]
∂u +O(R−2) = iTf ′= 1

2
(D·Y )f−Y (f) +O(R−2).

(4.61)

Note that

lim
R→∞

TY = lim
R→∞

Tf= 1
2
D·Y (4.62)

which means that TY correspond to a special class of supertranslation vector fields Tf
10Note that the rotation generators with D · Y = 0 are obtained directly as Mij = Jij , hence no linear

combination is necessary.
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with f = 1
2
D · Y and are hence redundant. Analogous results are obtained by expanding

(4.57) around τ0 = −π
2
. The results of this section are summarized in Figure 4.1.

so(3, 2) generators local enhancement (4.45)

Poincaré ebms4

short times

Inonu−Wigner Inonu−Wigner

Figure 4.1: The metric of a CFTd on the Lorentzian cylinder develops an
approximately null direction over infinitesimal global time intervals ∆τ ∼
R−1. In the limit R → ∞, the conformal Killing equations admit an infinite
dimensional set of solutions parameterized by a function on Sd−1 and a
conformal Killing vector on Sd−1. In particular, for d = 3, an Inonu-Wigner
contraction in the intervals around τ = ±π

2 leads to vector fields that obey
the extended BMS4 algebra.

Finally, consider the shift τ0 → τ0 + π in ϵ±Y defined in (4.45). Under this transforma-

tion, ϵ±Y → −ϵ±Y . The same transformation can be implemented for the globally defined

vector fields by keeping τ fixed and considering instead an antipodal map on S2. There-

fore, the action of LY and TY on S2 slices of the Lorentzian cylinder separated by π in

global time becomes the same provided the slices are antipodally related. This is com-

patible with the observation in [1] that in order to respect Lorentz invariance in the flat

space limit of AdS Witten diagrams it is necessary to antipodally identify the time-slices

corresponding to in/out states. It further suggests that the antipodal matching condition

between I+
− and I−

+ employed in AFS [11] arises naturally in the flat space limit proposed

in [1]. Note that similar arguments led to a derivation of the matching conditions via a

resolution of i0 with hyperbolic slices [179,180].

4.4.2 Transformation of CFT3 primary operators in the strip

We now study the action of the conformal Killing vectors on CFT3 primary operators

and show that when restricted to global time slices, these operators transform as quasi-

primary operators in CCFT2. We work in Euclidean signature and Wick rotate at the
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end.

A primary operator O∆(x) of arbitrary spin transforms in some representation D :

SO(3) → GL(V ). The action action of a conformal Killing vector ϵ on such an operator

is [181]

δϵO∆(x) = −
[
(∇ · ϵ)∆

3
+ ϵµ∇µ +

i

2
∇µϵνS

µν

]
O∆(x), (4.63)

where ∇µ is the spin covariant derivative [25] 11

∇µ = ∂µ +
i

2
ω ab
µ Sab. (4.64)

Here ω ab
µ is the torsion-free spin connection defined in terms of a vielbein eaµ

gµν = eaµe
b
νδab, (4.65)

where gµν is the 3-dimensional metric, Sab are the generators of the representation D

and Sµν = eaµe
b
νSab. Note that O∆(x) are defined to only carry internal indices. As an

example, in appendix B.2 we demonstrate that (4.64) reduces to the standard Levi-Civita

connection when acting on Lorentz vectors. The (Wick rotated) metric (4.33) is recovered

with the following choice of vielbein eaµ

e1 =

√
γzz̄
2
(dz + dz̄), e2 = −i

√
γzz̄
2
(dz − dz̄), e3 =

du

R
. (4.66)

Taking ϵ = LY , namely

LY ≡ ϵ+Y − ϵ−Y
2

(4.67)

=
i

2
(D · Y )u∂u + iY A∂A +O(R−1), τ0 =

π

2
, (4.68)

11This agrees with the definition involving Σ in [25] upon setting Σµν = iSµν , with Sµν obeying (4.55).
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we show in appendix B.3 that (4.63) becomes

δLY
O∆(x) = −i

[
DzY

zh+Dz̄Y
z̄h̄+ Y z(∂z − ΩzJ3) + Y z̄(∂z̄ − Ωz̄J3) +O(R−1)

]
O∆(x),

(4.69)

where we defined the operator-valued weights

h ≡ ∆̂ + J3
2

, h̄ ≡ ∆̂− J3
2

, ∆̂ ≡ ∆+ u∂u. (4.70)

Finally given that J3 acts diagonally on a primary operator,

J3O∆ = sO∆, (4.71)

the operator-valued weights simplify to

h =
∆̂ + s

2
, h̄ =

∆̂− s

2
. (4.72)

On the other hand, note that the dilatation operator in the two-dimensional theory is

not diagonal in the basis of primary operators of the CFT3. Indeed, only operators placed

at u = 0 diagonalize the two-dimensional weights (4.72). For this special case, one obtains

operators transforming like two-dimensional primary operators with respect to conformal

transformations of the slices, whose dimensions agree with those of the corresponding

CFT3 operators. More generally ∆̂ can be diagonalized by the time Mellin-like transform

discussed at the level of the bulk-to-boundary propagators in section 4.2, namely

Ô∆(z, z̄; ∆0) ≡ N(∆,∆0)

∫ ∞

−∞
du u−∆0O∆(u, z, z̄), (4.73)
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where N(∆,∆0) is chosen to reproduce the standard normalization of CCFT operators.

Under this transformation we have

u∂u → ∆0 − 1 (4.74)

and therefore it follows that Ô∆(z, z̄; ∆0) transforms as a two-dimensional quasi-primary

operator with weights

h =
(∆ +∆0 − 1) + s

2
, h̄ =

(∆ +∆0 − 1)− s

2
. (4.75)

The transformation of Ô∆ under LY is therefore

δLY
Ô∆(z, z̄; ∆0) = −i

[
DzY

zh+Dz̄Y
z̄h̄+ Y z(∂z − sΩz) + Y z̄(∂z̄ − sΩz̄) +O(R−1)

]
Ô∆.

(4.76)

As an example consider a CFT3 current Jµ of dimension ∆ = 2 and spin s = 1.

According to (4.76) its restriction to an equal time slice, (Ĵz, Ĵz̄), transforms under 2d

conformal transformations of the slice as an operator of dimension ∆CCFT = 1 +∆0 and

spin s = 1. Choosing ∆0 = 0 then yields a 2D current. Likewise the stress tensor Tµν

has ∆CFT = 3 and spin s = 2. In this case its 2D counterpart T̂ has ∆CCFT = 2 + ∆0.

Therefore choosing ∆0 = 0 again yields an operator that transforms as the stress tensor

in two-dimensions. Currents in the dimensionally reduced theory can be equivalently

obtained from currents in the parent CFT3 by performing a 3D shadow transform followed

by restriction to the u = 0 slice and a 2D shadow transform. It can be easily checked that

this prescription lowers the dimension of the operator by 1. This is detailed in appendix

B.4 and motivates our calculations in the following section.

This discussion brings the proposed projection from CFTd to CCFTd−1 closer to the

standard dimensional reduction procedure. The starting point in dimensional reduction
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is a manifold M ×K, where K is usually taken to be compact. A field Φ in this higher-

dimensional space can be decomposed into modes that diagonalize a differential operator

on K. The coefficients in the expansion of Φ in terms of these modes are then a tower

of fields Φm in M [182]. This is analogous to what happens here. Explicitly, we start

with a CFT3 on R × S2 and note that the operator O∆(u, z, z̄) can be expanded in

terms of eigenfunctions of the differential operator u∂u in R and a continuum of modes

Ô∆(z, z̄; ∆0). In this case the role of K is played by the non-compact R and therefore

we obtain a continuum instead of a discrete set of fields in the dimensionally-reduced

theory on S2. Similar ideas applied to the distinct context of relating celestial holography

to holography for the continuum of AdS3/CFT2 slices of the future/past Milne wedges

of Minkowski spacetime have been put forward in [10, 31]. It would be interesting to

establish a precise equivalence between these two approaches.

Finally, note that the transformation (4.73) is the same as the one recently employed

in [164, 165] to relate Carrollian and celestial holography. This transformation appears

here in a novel context and we believe it deserves further study. One difference here is that

the effective dimension of the CCFT operator is not simply ∆0, but instead ∆+∆0 − 1.

One hence has to account for the shift by the dimension ∆ of the operator in the parent

CFT3 when taking conformally soft limits for example. The additional shift by 1 is

due to the fact the CFT3 vector field (4.59) has no radial component. In the case of

superrotation vector fields in AFS this is known to induce a shift by 1 in the conformal

primary dimension of on asymptotic field with respect to its action [27]. It would be

interesting to further explore how radial evolution in AFS arises from the perspective of

the flat space limit of CFT3.

We conclude this section by noting that in the case when Y is a globally defined CKV

on S2, the vector fields LY are also globally-defined on the cylinder and therefore must be

linear combinations of so(3, 2) generators. In this case, conformal symmetry of the CFT3
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implies the Ward identity

n∑
i=1

δLYi
⟨O1 · · · On⟩ = 0. (4.77)

In the large R limit this reduces to

n∑
i=1

[
DziY

zihi +Dz̄iY
z̄ih̄i + Y zi(∂zi − siΩzi) + Y z̄i(∂z̄i − siΩz̄i) +O(R−1)

]
⟨O1 · · · On⟩ = 0,

(4.78)

which corresponds to the global SL(2,C)/Z2 symmetry of the CCFT2 as expected. When

Y are not globally defined, we expect the symmetry action on the correlator (4.77) to

reduce in the large R limit to an insertion of the CCFT2 stress tensor. In the next section

we will show that the subleading conformally soft graviton theorem in CCFT and the

associated stress tensor Ward identity follow from the flat limit of the CFT3 shadow

stress tensor Ward identities. Remarkably, the large-R expansion of the shadow stress

tensor Ward identity in CFT3 allows us to also directly recover the leading conformally

soft graviton theorem.

4.5 CCFTd−1 conformally soft theorems from CFTd

In this section we describe how soft symmetries in CCFTd−1 emerge from the higher-

dimensional CFTd upon dimensional reduction. As a first step, we identify the operators

in CFTd that become conformally soft operators. In particular, we show that the leading

conformally soft gluon in CCFTd−1 arises in the flat limit12 from a shadow-transformed

conserved current in CFTd. Similarly, the leading and subleading conformally soft gravi-

tons are obtained from the CFTd stress tensor.
12Defined here as the localization of the operator at u = 0 in a time strip τ = τ0 +

u
R of infinitesimal

width. As we show in appendix B.4 one can equivalently start from the time-Mellin transformed shadow
current (4.73) in the strip and take ∆0 = 1. In this paper, the flat space limit, while motivated by
holography, doesn’t require the CFTd to have a holographic dual.
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The relation between soft theorems in R1,d+1 and shadow stress tensor Ward identities

in CFTd was first observed in [166]. Here we combine this general correspondence with

the flat space limit to derive CCFTd−1 conserved operators (associated instead with soft

theorems in R1,d) from CFTd ones.

Particularly relevant will be the shadow transform of a spin J tensor field in CFTd

which is defined in the embedding space (see appendix B.1) as

Φ̃A1···AJ (P ) ≡
∫
DdY

∏
i(η

AiBi(P · Y )− Y AiPBi)

(−2P · Y )d−∆+J
ΦB1···BJ

(Y ). (4.79)

The shadow transform squares to the identity up to normalization [183]. This integral

transform maps a primary of dimension and spin (∆, J) to another primary of dimension

and spin (d − ∆, J). In the remainder of this section we lift the analysis of [166] to the

embedding space R1,d+1 and evaluate shadow current and shadow stress tensor insertions

⟨J̃A(P )O1(P1) · · · On(Pn)⟩, ⟨T̃AB(P )O1(P1) · · · On(Pn)⟩. (4.80)

Our approach is therefore independent on the choice of lightcone section or conformally

flat manifold (Σ, g). In order to take the flat space limit we project and analytically

continue to CFTd on the Lorentzian cylinder. To simplify formulas we introduce the

notation X for a string of primary field insertions in correlation functions

⟨X⟩ ≡ ⟨O1(P1) · · · On(Pn)⟩. (4.81)

Since the dimensions of the leading conformally soft gluon and subleading conformally

soft gravitons are ∆ = 1 and ∆ = 0 respectively in any number of dimensions, it is

perhaps to be expected that the flat limit will lead the corresponding conformally soft

theorems. What we find remarkable is that this approach also allows us to easily recover
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the the leading conformally soft graviton! This can be obtained by acting on the CFTd

shadow stress tensor with ∂u in the strip. We will see that in the limit R → ∞ this indeed

precisely reproduces the leading conformally soft graviton theorem in CCFTd−1.

4.5.1 Shadow current

Using the defining relation (4.79), the shadow transform of a spin-1 field in the embedding

space can be written as

J̃A(P ) =
1

4

∫
DdY

∂PA∂Y B log(−2P · Y )

(−2P · Y )d−∆−1
JB(Y ). (4.82)

Here we have used the following identities

∂

∂PA
log(−2P · Y ) =

YA
P · Y

,
∂

∂PA

∂

∂Y B
log(−2P · Y ) =

ηAB(P · Y )− PBYA
(P · Y )2

. (4.83)

We now consider a g-valued current where g is the Lie algebra of a Lie group G which

is a global symmetry of the CFTd. Omitting color indices and recalling that the dimension

of a current is ∆ = d− 1, (4.82) reduces to

J̃A(P ) =
1

4

∫
DdY ∂PA∂Y B log(−2P · Y )JB(Y ) (4.84)

= −1

4

∫
DdY ∂PA log(−2P · Y )∂Y BJB(Y ), (4.85)

where in the last line we have integrated by parts.13 We now invoke the Ward identity14

[170]

∂B⟨JB(Y )X⟩ =
n∑

i=1

δ(Y, Pi)Ti⟨X⟩, (4.86)

13Recall that on the lightcone JB(Y ) ∼ JB(Y ) + Y Bf(Y ).
14The embedding space delta function δ(Y, Pi) is defined by

∫
DdY δ(Y, Pi) = 1.
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where Ti are the generators of the representation of G in which Oi transforms. It follows

immediately that

⟨J̃A(P )X⟩ = −1

4

n∑
i=1

(Pi)A
P · Pi

Ti⟨X⟩. (4.87)

Finally, we can project (4.87) to a particular section of the lightcone parameterized

by PA(x). In this case we find

⟨J̃µ(x)O1(x1) · · · On(xn)⟩ = −1

4

n∑
i=1

∂µP (x) · P (xi)
P (x) · P (xi)

Ti⟨O1(x1) · · · On(xn)⟩. (4.88)

Equivalently, as described in appendix B.1 we can choose a set of orthogonal polarization

tensors εAa (x) (B.7) and project the components of the shadow current to an orthogonal

basis obtaining

⟨J̃a(x)O1(x1) · · · On(xn)⟩ = −1

4

n∑
i=1

εa(x) · P (xi)
P (x) · P (xi)

Ti⟨O1(x1) · · · On(xn)⟩, (4.89)

which coincides with the leading soft gluon theorem in the embedding space R1,d+1 with

the soft gluon operator given by [166] 15

Sa(x) ≡ −4J̃a(x). (4.91)

Our main result will be to demonstrate that analytic continuation to Lorentzian signature

followed by the flat limit prescription of [1] will yield the leading conformally soft gluon.
15Note that we normalize the shadow transform (4.79) according to [183]. This normalization differs

from the one in [166] by a factor of (−1/2)J . To see this, note that when contracted onto lightcone
tensors,

1

4

ηAB(P · Y )− PBYA

(P · Y )
JB(Y ) =

1

4

ηAB(P · Y )− PBYA − YBPA

(P · Y )
JB(Y )

= − 1

2(P − Y )2

[
ηAB − 2

(P − Y )A(P − Y )B
(P − Y )2

]
JB(Y ).

(4.90)
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The leading and subleading conformally soft gravitons in CCFTd−1 (or equivalently the

soft graviton in R1,d) can be recovered in a similar way from the CFTd stress tensor. To

show this, we first need to generalize the embedding space analysis herein to the shadow

stress tensor.

4.5.2 Shadow stress tensor

For a spin two field the shadow transform takes the form

T̃AB(P ) =
1

16

∫
DdY

∂PA∂Y C log(−2P · Y )∂PB∂Y D log(−2P · Y )

(−2P · Y )d−∆−2
TCD(Y ). (4.92)

For the stress tensor, ∆ = d and so

T̃AB(P ) =
1

16

∫
DdY (−2P ·Y )2∂PA∂Y C log(−2P ·Y )∂PB∂Y D log(−2P ·Y )TCD(Y ). (4.93)

While the steps involved in the derivation of the relation between the shadow transform

of the stress tensor and the soft graviton theorem are similar to those in [166], we find

it instructive to repeat the significantly simpler calculation here in the embedding space.

Integrating by parts and using (4.83) this can be written as

T̃AB(P ) = −1

8

∫
DdY

YA
P · Y

∂Y C

{
[ηBD(P · Y )− PDYB]T

CD(Y )
}
+ (A↔ B) (4.94)

and further evaluating the derivative with respect to Y one finds

T̃AB(P ) =
1

4

∫
DdY

YA
P · Y

ηB[CPD]T
CD(Y )

− 1

8

∫
DdY

YA
P · Y

[ηBD(P · Y )− PDYB]∂Y CTCD(Y ) + (A↔ B),

(4.95)

where [., .] stands for antisymmetrization. We ensured that the manifest symmetry of

(4.92) under A↔ B is preserved upon integration by parts.
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The insertions of both terms on the RHS of (4.95) in correlation functions are deter-

mined by the uplift of the stress tensor Ward identities to the embedding space [170]. In

particular, the first line involves T [CD] whose insertions are related to the spin component

SCD of the Lorentz generators in the embedding space

⟨T [CD](Y )X⟩ = − i

2

n∑
i=1

δ(Y, Pi)SCD
i ⟨X⟩. (4.96)

We then find that inside correlation functions, the first line in (4.95) simplifies to

1

4

∫
DdY

YA
P · Y

ηB[CPD]⟨TCD(Y )X⟩ = − i

8

n∑
i=1

(Pi)APD

P · Pi

ηBCSCD
i ⟨X⟩

=
i

8

n∑
i=1

(Pi)AP
D

P · Pi

(Si)DB⟨X⟩. (4.97)

On the other hand, the second term in (4.95) is determined by the stress tensor Ward

identity

⟨∂Y CTCD(Y )X⟩ = −ηDE

n∑
i=1

δ(Y, Pi)∂PE
i
⟨X⟩. (4.98)

Using this Ward identity, insertions of the second term in (4.95) can then be shown to be

related to the orbital part of the embedding space Lorentz generators, LDB, namely

LDB ≡ −i(PD∂PB − PB∂PD). (4.99)

Specifically, we find that inside correlation functions the second term in (4.95) reduces

to

− 1

8

∫
DdY

YA
P · Y

[ηBD(P · Y )− PDYB]⟨∂Y CTCD(Y )X⟩ = i

8

n∑
i=1

(Pi)AP
D

P · Pi

(Li)DB⟨X⟩.

(4.100)
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Combining the two contributions from equation (4.95) we find the embedding space for-

mula for insertions of the stress tensor in CFTd

⟨T̃AB(P )X⟩ =
i

8

n∑
i=1

(Pi)AP
D

P · Pi

[(Li)DB + (Si)DB]⟨X⟩+ (A↔ B)

≡ i

8

n∑
i=1

(Pi)AP
D

P · Pi

(Ji)DB⟨X⟩+ (A↔ B). (4.101)

As before, we can now project to a particular section parameterized by PA(x)

⟨T̃µν(x)X⟩ =
∂PA

∂xµ
∂PB

∂xν
⟨T̃AB(P (x))X⟩

=
i

4

n∑
i=1

∂{µP
A(x)∂ν}P

B(x)PA(xi)P
D(x)

P (x) · P (xi)
(Ji)DB⟨X⟩. (4.102)

Alternatively, using the orthogonal set of polarization vectors εAa (B.7) to construct

the spin two tensors εAB
ab = εA{aε

B
b} and projecting to the associated orthonormal basis, we

find [166]

⟨T̃ab(x)O1(x1) · · · On(xn)⟩ =
i

4

n∑
i=1

εAB
ab (x)PA(xi)P

D(x)

P (x) · P (xi)
(Ji)DB⟨O1(x1) · · · On(xn)⟩,

(4.103)

which upon defining16

Gab = −4T̃ab (4.104)

we recognize as the formula for a subleading soft graviton insertion in the embedding

space R1,d+1.

4.5.3 Large R expansions

We now apply these results to a CFTd on the Lorentzian cylinder and show that the

conformally soft theorems in the dimensionally reduced CCFTd−1 arise naturally from

16Working in units where κ =
√
32πG = 2.
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the flat space limit prescription proposed in [1]. We work with the analytic continuation

to Lorentzian signature of the Euclidean results derived in the previous sections.

Consider the embedding

P (τ, z⃗) = (sin τ,Ω(z⃗), cos τ) (4.105)

of the d-dimensional Lorentzian cylinder in R2,d with metric ηAB = (−1, 1, · · · ,−1) in-

troduced in section 4.2. Here Ω2 = 1 are unit normals to Sd−1. We also consider the

polarization tensors

εa(τ, z⃗) = (za sin τ, δ
b
a,−za, za cos τ), a = 1, . . . , d− 1, (4.106)

εd(τ, z⃗) = (cos τ, 0⃗,− sin τ), (4.107)

where δba denotes a vector with vanishing components except for an entry equal to 1 at

b = a. These are such that εa · P = εd · P = 0 provided that

za =
Ωa

1 + Ωd

, a = 1, · · · d− 1. (4.108)

Moreover, εa·εb = ηab where ηdd = −1. They also enjoy the property that setting τ = π
2
+ u

R

and expanding at large R

εa = (za, δ
b
a,−za, 0) +O(R−1),

εd = (0, 0⃗,−1) +O(R−1).

(4.109)

We therefore see that εa = (ϵa, 0)+O(R
−1) where ϵa are polarization vectors in R1,d [166].

In the case of CFT3 (d = 3), it will be convenient to trade the coordinates (z1, z2) for

complex coordinates (z, z̄) ≡ (z1 + iz2, z1 − iz2), and ε1(τ, z⃗) and ε2(τ, z⃗) for the following
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linear combinations

εz(τ, z, z̄) =
1√
2
(z̄ sin τ, 1,−i,−z̄, z̄ cos τ), εz̄(τ, z, z̄) =

1√
2
(z sin τ, 1, i,−z, z cos τ).(4.110)

In the flat space limit, (4.110) become εa = (ϵa, 0)+O(R
−1) with ϵz and ϵz̄ the polarization

vectors associated respectively with positive and negative helicities in R1,3, namely

ϵz(z, z̄) =
1√
2
(z̄, 1,−i,−z̄), ϵz̄(z, z̄) =

1√
2
(z, 1, i,−z). (4.111)

For simplicity we will assume that all of the operators are placed at τ = π
2
, which

holographically would amount to considering all bulk particles to be outgoing. If one of

the particles is taken to be incoming, following [1] we insert the corresponding operator at

(−π
2
, z⃗A) where z⃗A denotes the antipodal map. In that case we observe that P (−π

2
, z⃗A) =

−P (π
2
, z⃗). Taking this into account therefore produces the required sign difference in the

corresponding contribution to the leading soft graviton factor. Finally, recall that at large

R and τ = π
2
+ u

R

P (τ, z⃗) = (q(z⃗), 0) +O(R−1), (4.112)

where q(z⃗) = (1,Ω(z⃗)) is a null vector in R1,d.

Leading conformally soft gluon theorem

Equipped with these results, consider a g-valued conserved current J in a CFTd with global

symmetry group G. Insertions of the shadow transform of this current into correlation

functions on the Lorentzian cylinder are obtained from the embedding space formula

(4.89) by projecting with the polarization tensors {εa, εd} in (4.106). Expanding at large
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R and using (4.109) together with (4.112) we find

⟨Sa(x)O1(x1) · · · On(xn)⟩ =
n∑

i=1

ϵa(x) · q(xi)
q(x) · q(xi)

Ti⟨O1(x1) · · · On(xn)⟩+O(R−1),(4.113)

which reproduces the leading conformally soft gluon theorem in CCFTd−1. Note that in

the limit u → 0 the large R corrections drop out. In the particular case of CFT3 using

the set of polarizations {εz, εz̄, ε3} we find

ϵz(x) · q(xi)
q(x) · q(xi)

=
1√
2

1 + zz̄

z − zi
,

ϵz̄(x) · q(xi)
q(x) · q(xi)

=
1√
2

1 + zz̄

z̄ − z̄i
, (4.114)

and therefore we recover

⟨Sz(x)O1(x1) · · · On(xn)⟩ =
1 + zz̄√

2

n∑
i=1

Ti
z − zi

⟨O1(x1) · · · On(xn)⟩+O(R−1),(4.115)

⟨Sz̄(x)O1(x1) · · · On(xn)⟩ =
1 + zz̄√

2

n∑
i=1

Ti
z̄ − z̄i

⟨O1(x1) · · · On(xn)⟩+O(R−1),(4.116)

which are the holomorphic and antiholomorphic g-Kac-Moody Ward identities [184].

The time component of the CFT3 shadow current leads to an identity that resembles

a soft scalar theorem [185]

⟨J̃u(x)O1(x1) · · · On(xn)⟩ ∼
u

R

n∑
i=1

Ti
q(x) · q(xi)

⟨O1(x1) · · · On(xn)⟩+O(R−3). (4.117)

Note that the leading term in (4.117) is of a different order in a largeR expansion compared

to (4.115), (4.116). Such soft theorems were argued in [186,187] to arise from conservation

laws associated with higher form symmetries in 4D AFS. From a boundary perspective, we

find that they are a simple consequence of dimensional reduction. It would be interesting

yet beyond the scope of this paper to understand the relation between these different

perspectives, as well as the role of these additional symmetries in CCFTd−1.
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Leading and subleading conformally soft graviton theorems

Next we consider the shadow stress tensor T̃AB(P ) whose insertions are given by (4.101)

or, upon projection to the Lorentzian cylinder, by (4.103). As we show in details in

Appendix B.5 restricting to components on a constant time slice a, b ∈ {1, . . . , d− 1}, we

find in the flat limit that

∂u⟨G{ab}O1 · · · On⟩ =
n∑

i=1

ϵAB
ab (x)qA(xi)qB(xi)

q(x) · q(xi)
∂ui

⟨O1 · · · On⟩+O(R−1). (4.118)

Here ϵab is the transverse, traceless polarization tensor in R1,d. Upon switching to a basis

that diagonalizes the dilatation operator on Sd−1 via the transform (4.73), ∂ui
becomes

the weight-shifting operator e∂∆i . Note that in the limit u → 0, the large R corrections

to (4.118) drop out. We hence see that insertions of lim
u→0

∂uG{ab} reproduce the leading

conformally soft graviton theorem in R1,d with N
(0)
ab ≡ lim

u→0
∂uG{ab} the leading soft graviton

operator.

Moreover, we show in Appendix B.5, that

(1−u∂u)⟨G{ab}O1 · · · On⟩ = i
n∑

i=1

ϵAB
ab (x)qA(xi)q

C(x)

q(x) · q(xi)
(Ji)BC⟨O1 · · · On⟩+O(R−1), (4.119)

where (Ji)BC have indices restricted to B,C < d + 1 due to ϵd+1
a = qd+1 = 0. In

this case, (Ji)BC coincide with the so(d, 2) generators whose action on conformal primary

operators restricted to the strip (4.33) was worked out in section 4.4.2. Their action hence

coincides with that of the Lorentz generators in (d+1)-dimensional AFS, or equivalently,

conformal so(d, 1) transformations. Therefore insertions of lim
u→0

(1−u∂u)G{ab} reproduce the

subleading conformally soft graviton theorem in R1,d and the subleading conformally soft

graviton operator is related to the CFTd shadow stress tensor via N
(1)
ab ≡ lim

u→0
(1−u∂u)G{ab}.

The constructions of the supertranslation current and the stress tensor from N
(0)
ab and N

(1)
ab
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then follow directly from respectively [11, 12] and [27,28] .

We now specialize to CFT3. Using the large R expansions 4.109 of the polarization

tensors {εz, εz̄, ε3} we construct the transverse traceless spin 2 polarization tensors ϵab =

ϵ{aϵb}. The only non-vanishing components are ϵAB
zz = ϵAz ϵ

B
z and ϵAB

z̄z̄ = ϵAz̄ ϵ
B
z̄ . Therefore

the expressions for the leading soft factors reduce to those derived in [12],

ϵAB
zz (x)qA(xi)qB(xi)

q(x) · q(xi)
= − z̄ − z̄i

z − zi

1 + zz̄

1 + ziz̄i
, (4.120)

ϵAB
z̄z̄ (x)qA(xi)qB(xi)

q(x) · q(xi)
= −z − zi

z̄ − z̄i

1 + zz̄

1 + ziz̄i
, (4.121)

and consequently

⟨N(0)
zz O1 · · · On⟩ = −

n∑
i=1

z̄ − z̄i
z − zi

1 + zz̄

1 + ziz̄i
∂ui

⟨O1 · · · On⟩, (4.122)

⟨N(0)
z̄z̄ O1 · · · On⟩ = −

n∑
i=1

z − zi
z̄ − z̄i

1 + zz̄

1 + ziz̄i
∂ui

⟨O1 · · · On⟩. (4.123)

Insertions of N(1)
zz and N

(1)
z̄z̄ can be treated similarly. Relegating the complete calcula-

tion to Appendix B.6, we find that

⟨N(1)
zz O1 · · · On⟩ =

n∑
i=1

[
(z̄ − z̄i)(1 + z̄zi)

(z − zi)(1 + ziz̄i)
2h̄i −

(z̄ − z̄i)
2

z − zi
(∂z̄i − Ωz̄iJ3)

]
⟨O1 · · · On⟩,

⟨N(1)
z̄z̄ O1 · · · On⟩ =

n∑
i=1

[
(z − zi)(1 + zz̄i)

(z̄ − z̄i)(1 + ziz̄i)
2hi −

(z − zi)
2

z̄ − z̄i
(∂zi − ΩziJ3)

]
⟨O1 · · · On⟩,

(4.124)

which agrees with the formula for the subleading soft factor [27,28] with external weights

(hi, hi) and helicities J3 as defined in (4.72). Taking a two-dimensional shadow transform

of N(1)
ab as in [28] yields the CCFT2 stress tensor.



Chapter 4. Celestial Sector in CFT: Conformally Soft Symmetries 159

4.6 Discussion

In this paper we studied the symmetries of CFT3 on the Lorentzian cylinder over short

time intervals. We showed that strips of infinitesimal width ∝ R−1 around any time-slice

admit an infinite-dimensional set of locally-defined solutions in the R → ∞ limit. These

can be reorganized into vector fields obeying the ebms4 algebra. The extended BMS4

symmetry emerges via a Inonu-Wigner contraction which for the global subalgebra reduces

to the contraction of the so(3, 2) algebra to Poincaré. We studied the transformation

properties of CFT3 primary operators in the strip under the superrotation subalgebra

of ebms4 and found that they transform as two-dimensional conformal primaries with

operator-valued effective dimensions ∆̂ = ∆ + u∂u.

The two-dimensional dilatation can be diagonalized by a time Mellin-like transform.

Consequently each CFT3 primary operator results in a continuum of CCFT2 primary

operators of the same spin and with dimensions ∆CCFT = ∆ + ∆0 − 1 where ∆ is the

CFT3 dimension and ∆0 is the dual Mellin dimension. We argued that the special case

∆0 = 1 implements a restriction to the u = 0 time-slice, in agreement with previous

results [1].

We showed that, inside the strip, the transverse components T̃ab of the ∆ = 0 shadow

stress tensor give rise to operators N(0)
ab and N

(1)
ab whose insertions into correlation functions

reproduce the leading and subleading conformally soft graviton theorems. Likewise, the

transverse components J̃a of the ∆ = 1 shadow current provide an operator Sa whose

insertions reproduce the leading soft gluon theorem. As such, conformally soft theorems

and the corresponding infinite-dimensional CCFTd−1 symmetries effectively emerge from

the dimensional reduction of the CFTd.

There are several aspects of our dimensional reduction or flat space limit that we

believe deserve further investigation. The conformal Killing vectors (4.45) giving rise to

the ebms4 algebra violate the conformal Killing equation at finite R. This appears to
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be in stark contrast to the asymptotic symmetries of 4D AFS that are exact and can be

extended into the bulk. It would be interesting to understand whether the symmetries

can be preserved in the strip beyond the R → ∞ limit and relate this to the emergence

of a bulk radial direction from the CFT. Interestingly, both large r corrections to the

asymptotic charges in 4D AFS and corrections away from the large AdS radius limit

have been linked to loop corrections [168,188]. It would also be interesting to connect our

enhanced conformal Killing symmetries (4.45) in the strip to the bulk Λ-BMS algebra [189]

which similarly arises, subject to certain boundary conditions, in the limit of infinite AdS

radius.

More generally, our analysis provides motivation for looking for boundary conditions

in AdS that turn on shadow operators on the boundary. These operators are dual to

modes in AdS that are in general non-normalizable near the boundary, but normalizable

deep inside the bulk. This seems consistent with the flat space limit prescription which

amounts to zooming in close to the center of AdS [62,63], as well as proposals suggesting

that flat space physics may be obtained via a T T̄ deformation [190,191]. It would also be

interesting to understand if the whole tower of w1+∞ currents in celestial CFT [55] can

similarily arise from a limit of CFT3.

The approach we have adopted in this paper proposes a connection between CCFT

and standard CFT. In principle these ideas may allow for an understanding of how gen-

eral features of CFT, such as the existence of an associative OPE, are reflected in the

dimensionally reduced theory, potentially allowing for a better understanding of the cor-

responding features of CCFT. In particular, our results suggest that the stress tensor of

the reduced theory is closely related to the stress tensor of the parent CFT, so that it may

be possible to extract a CCFT central charge from this procedure. This may shed light

on previous proposals based on a hyperbolic slicing of Minkowski spacetime [31,156,192].

Finally, the shadow transform played an important role in this analysis, since it allowed
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for the construction of the soft operators from the stress tensor and current. In Lorentzian

signature, the shadow transform constructed by Wick rotating the Euclidean shadow

is just one member out of a group of transformations preserving the Casimirs of the

conformal group [193]. It therefore seems plausible that the other transforms will also

play meaningful roles in the dimensionally reduced CCFT. We hope to address some of

these issues in future work.
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5

Conclusion

In this thesis we have studied non-perturbative aspects of celestial amplitudes in the

high-energy regime in terms of the eikonal approximation, and the connection between

Celestial Holography and the flat space limit of AdS/CFT.

We first identified the celestial eikonal regime of large net conformal dimension β and

small cross-ratio z in which massless 4-point celestial amplitudes are governed by a simple

formula (3.31) in terms of a celestial eikonal phase, shown to be the standard momentum

space eikonal phase written in a conformal primary basis. Our formula shares similarities

with the analog eikonal formula that approximates four-point functions in AdS4.

The expected connection between the eikonal amplitude for graviton exchanges and

the two-point function in a shockwave background motivated us to compute the celes-

tial shockwave two-point function of scalars. Like for the eikonal amplitude, the celes-

tial shockwave two-point function is remarkably similar to the AdS shockwave two-point

function studied in [123] and, as in the AdS case, we were able to find a source for the

shockwave that reproduces the celestial eikonal amplitude at tree level.
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The similarity between the celestial shockwave two-point and the corresponding AdS

shockwave two-point function led us to prove that the celestial result is obtained as the

R → ∞ limit of the AdS result when the operators are placed on time slices in the AdS

boundary separated by π in global time. We have then shown by studying the constituents

of Witten diagrams that more generally scalar AdSd+1/CFTd correlators reduce in the

R → ∞ limit to CCFTd−1 correlators of celestial operators of the same dimension as the

CFTd operators when the later are again placed on global time slices separated by π.

We generalized this prescription to spinning Witten diagrams and for operators placed

on strips of width ∆τ ∝ 1
R

about the time slices separated by π in global time, obtaining

spinning conformal primary wavefunctions from the first generalization, and the contin-

uum of dimensions, characteristic of CCFT, from the second one. Motivated by these

results we then studied the conformal symmetry of the Lorentzian cylinder on such in-

finitesimal time intervals. Remarkably we found that the finite-dimensional so(3, 2) global

conformal symmetry admits one infinite-dimensional enhancement in the strict R → ∞

limit. Moreover, the associated vector fields were then shown to reorganize into vector

fields obeying a ebms4 algebra up to corrections that vanish in the R → ∞ limit, gener-

alizing the Inonu-Wigner contraction from so(3, 2) to Poincaré, well-known from the flat

space limit of bulk AdS4.

The infinitesimal transformation of a CFT3 primary operator with respect to the ebms4

vector fields generating superrotations was shown to reduce to the transformation of a two-

dimensional primary operator on the spherical time-slices of the cylinder with effective

dimension ∆̂ = ∆ + u∂u. The diagonalization of the dimensions is performed by the

time Mellin-like transform that we introduced at the level of Witten diagrams to generate

the continuum of celestial dimensions, and in this new context has been motivated by

symmetry. In particular the ∆0 = 1 mode has been shown to essentially reproduce the

restriction of the CFT3 primary operator to the slices, consistently recovering our earlier
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results. This analysis suggests that our flat space limit prescription hints at CCFT2

emerging from a dimensional reduction of CFT3 on the Lorentzian cylinder to the spherical

time-slices, being very similar to the standard Kaluza-Klein reduction.

We then showed that starting from a g-valued conserved current Jµ, taking its 3d

shadow transform and restricting to its transverse components J̃a, we obtain a field Sa

that is a ∆ = 1 gluon on the reduced theory. Its insertions into correlators are determined

from the Ward identity of Jµ and reproduce the conformally soft gluon theorem. Likewise,

starting from the CFT3 stress tensor Tµν and taking the transverse components of its

shadow T̃ab it is possible to obtain fields N
(0)
ab and N

(1)
ab that are respectively ∆ = 1 and

∆ = 0 gravitons on the reduced theory. Their insertions are determined by the stress

tensor Ward identities and have been shown to reproduce respectively the leading and

subleading conformally soft graviton theorems. Remarkably, the subleading soft factor

was then shown to match the standard soft factor, with ∆̂ = ∆+ u∂u in place of the flat

space dimension −ω∂ω. These results show that conformally soft symmetries are present

in the reduced theory, further suggesting that it is indeed a CCFT2.

These results suggest that a manner in which CCFTd−1 can be intrinsically constructed

from a CFTd by a dimensional reduction procedure to time-slices. On the one hand, this

brings Celestial Holography into the broader framework of holography that has been

developed based on AdS/CFT since Maldacena’s original work, by showing that it is a

natural consequence of AdS/CFT. On the other hand, this seems to provide a prescription

for the construction of CCFT that has the potential to overcome a major shortcoming

in the field, namely, the lack of methods to construct examples of dual pairs. Moreover,

linking Celestial Holography and AdS/CFT can potentially help to establish a connection

between Celestial Holography and string theory that is still lacking. In particular, there

exists a duality between M-theory in AdS4×S7 and ABJM theory in the AdS4 boundary.

As such it may be possible to construct a complete CCFT2 by dimensionally reducing
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the ABJM theory according to our prescription, and this would possibly describe a bulk

asymptotically flat quantum gravity theory that originates form M-theory.

There are many questions to answer about this dimensional reduction procedure still.

Is the reduced theory a CCFT? It appears that to give a definite answer to this question

in terms of a mathematical proof would require us to have an intrinsic definition of CCFT,

other than a theory whose correlators reproduce a bulk S-matrix in a conformal primary

basis. In that case, possibly our best approach to it is to understand what other features

of CCFT can be obtained via dimensional reduction and whether there are limitations in

the sense that some known CCFT features do not arise from this procedure. In this line

of thought, the natural next step would be then to understand if we can obtain the w1+∞

symmetry of gravity encoded in the further subleading conformally soft gravitons.

Can the dimensional reduction teach us something new about CCFT? Linking CCFT

to a full CFT certainly has the potential to allow for a better understanding of CCFT

features. In particular, we may harness the dimensional reduction perspective to better

understand a possible CCFT central charge and even to better comprehend the corrections

to the w1+∞ algebra, supposing that it indeed emerges from the dimensional reduction.

In summary, we believe that this work provides good evidence that dimensionally

reducing CFTd on the cylinder to time-slices produces CCFTd−1. As such, it potentially

provides a new tool with which non-perturbative aspects of CCFT as well as the intrinsic

construction of CCFT can be studied.
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A

Appendix to Chapter 3

A.1 Celestial propagators in eikonal regime

In this appendix we show that in a conformal primary basis, in a limit of large external

dimensions, the external leg propagators become nearly on-shell. For massless scalars the

Klein-Gordon equation in (x−, x+, x⊥) coordinates (3.20) reads

(
−4∂−∂+ + ∂2⊥

)
G∆(x; q̂) = 2iδ(x+)δ(x−)δ(2)(x⊥). (A.1)

Integrating this equation against a generalized conformal primary wavefunction [48] with

eikonal kinematics like in (3.24), we find

∫
d4x

f(x2)

(x− − qi,⊥ · x⊥)∆i

[ (
−4∂−∂+ + ∂2⊥

)
G∆i

(x, x0; q̂i)

− 2iδ(x− − x−0 )δ(x
+ − x+0 )δ

(2)(x⊥ − x⊥,0)
]
= 0.

(A.2)
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Upon integration by parts,

∫
d4x

(
−4∂−∂+f(x

2) + ∂2⊥f

(x− − qi,⊥ · x⊥)∆i
+∆i

4∂+f(x
2) + 2qi,⊥ · ∂⊥f

(x− − qi,⊥ · x⊥)∆i+1

)
G∆i

(x, x0; q̂i)

− 2i

∫
d4x

f(x2)

(x− − qi,⊥ · x⊥)∆i
δ(x− − x−0 )δ(x

+ − x+0 )δ
(2)(x⊥ − x⊥,0)

]
= 0.

(A.3)

For ∆i ≫ 1, and |qi,⊥| = 2
√
qi ≪ 1, the only term that survives in the first line is

∫
d4x∆i

4∂+f(x
2)

(x− − qi,⊥ · x⊥)∆i+1
G∆i

(x, x0; q̂i)

− 2i

∫
d4x

f(x2)

(x− − qi,⊥ · x⊥)∆i
δ(x− − x−0 )δ(x

+ − x+0 )δ
(2)(x⊥ − x⊥,0)

]
= 0

(A.4)

and so

− 4∆i(x
−− qi,⊥ ·x⊥)−1∂+G∆i

(x, x0; q̂i) = 2iδ(x−−x−0 )δ(x
+−x+0 )δ

(2)(x⊥−x⊥,0), i = 1, 3.

(A.5)

Repeating the same calculation with wavefunctions as in (3.25) we find that the propa-

gators for the external lines can therefore be approximated in the celestial eikonal limit

by

G∆i
(x, x0; q̂i) = −i(x

− − qi,⊥ · x⊥)
2∆i

δ(x− − x−0 )Θ(x+ − x+0 )δ
(2)(x⊥ − x⊥,0), i = 1, 3,

G∆i
(x, x0; q̂i) = −i(x

+ − qi,⊥ · x⊥)
2∆i

Θ(x− − x−0 )δ(x
+ − x+0 )δ

(2)(x⊥ − x⊥,0), i = 2, 4,

(A.6)

as promised.
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A.2 Eikonal amplitude in CCFT

Applying position space Feynman rules to the ladder diagrams with n exchanges we have

Ãn = (ig)2n
∫
d4x1 · · · d4xnd4x̄1 · · · d4x̄nφ∆3(xn; q̂3)G(xn − xn−1) · · ·G(x2 − x1)φ∆1(x1;−q̂1)

× φ∆4(x̄n; q̂4)G(x̄n − x̄n−1) · · ·G(x̄2 − x̄1)φ∆2(x̄1;−q̂2)

×
∑
σ∈Sn

Ge(x1 − x̄σ(1)) · · ·Ge(xn − x̄σ(n)).

(A.7)

The propagators G(xk − xk−1) connecting particles 1 and 3 and G(x̄k − x̄k−1) connecting

particles 2 and 4 can respectively be approximated by (A.6). In this approximation,

writing the integrals in the (3.20) coordinates, we find

Ãn =

(
ig

2

)2n ∫
φ∆1(x1;−q̂1)φ∆2(x̄1;−q̂2)φ∆3(xn; q̂3)φ∆4(x̄n; q̂4)

×
n∏

k=2

−i(x−k − q1,⊥ · x⊥,k − iϵ)

2∆1

δ(x−k − x−k−1)Θ(x+k − x+k−1)δ
(2)(x⊥,k − x⊥,k−1)

×
n∏

k=2

−i(x̄+k − q2,⊥ · x̄⊥,k−iϵ)
2∆2

Θ(x̄−k − x̄−k−1)δ(x̄
+
k − x̄+k−1)δ

(2)(x̄⊥,k − x̄⊥,k−1)

×
∑
σ∈Sn

n∏
k=1

Ge(xk, x̄σ(k))
n∏

k=1

(
dx−k dx

+
k d

2x⊥,kdx̄
−
k dx̄

+
k d

2x̄⊥,k

)
. (A.8)

Integrating over the delta functions sets x−k = x−1 , x⊥,k = x⊥,1, x̄+k = x̄+1 and x̄⊥,k = x̄⊥,1

for all k and (A.8) reduces to

Ãn =

(
ig

2

)2n( −1

4∆1∆2

)n−1 ∫
(−i)∆1Γ(∆1)

(x− − q1,⊥ · x⊥−iϵ)∆1+1−n

(−i)∆2Γ(∆2)

(x̄+ − q2,⊥ · x̄⊥−iϵ)∆2+1−n

× i∆3Γ(∆3)

(x− − q3,⊥ · x⊥+iϵ)∆3

i∆4Γ(∆4)

(x̄+ − q4,⊥ · x̄⊥+iϵ)∆4
dx−d2x⊥dx̄

+d2x̄⊥

×
∫ n∏

k=2

Θ(x−k − x−k−1)Θ(x̄+k − x̄+k−1)
∑
σ∈Sn

n∏
k=1

Ge(xk, x̄σ(k))
n∏

k=1

(dx+k dx̄
−
k ). (A.9)
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Now thanks to the theta functions the integrals on the third line decouple [119] and

Ãn =

(
ig

2

)2n( −1

4∆1∆2

)n−1
1

n!

∫
(−i)∆1Γ(∆1)

(x− − q1,⊥ · x⊥−iϵ)∆1+1−n

(−i)∆2Γ(∆2)

(x̄+ − q2,⊥ · x̄⊥−iϵ)∆2+1−n

× i∆3Γ(∆3)

(x− − q3,⊥ · x⊥+iϵ)∆3

i∆4Γ(∆4)

(x̄+ − q4,⊥ · x̄⊥+iϵ)∆4

(∫
dx̄−dx+Ge(x, x̄)

)n

dx−dx̄+d2x⊥d
2x̄⊥.

(A.10)

Using the Fourier representation (3.28) of Ge(x, x̄) one can show that

∫
dx̄−dx+Ge(x, x̄) = −2iG⊥(x⊥, x̄⊥), (A.11)

where

G⊥(x⊥, x̄⊥) ≡
∫

d2k⊥
(2π)2

eik⊥·(x⊥−x̄⊥)

k2⊥ +m2 − iϵ
. (A.12)

Further combining everything to the power n we have

Ãn = 4

∫
dx−dx̄+d2x⊥d

2x̄⊥
(−i)∆1+1Γ(∆1 + 1)

(x− − q1,⊥ · x⊥ − iϵ)∆1+1−n

(−i)∆2+1Γ(∆2 + 1)

(x̄+ − q2,⊥ · x̄⊥ − iϵ)∆2+1−n

× i∆3Γ(∆3)

(x− − q3,⊥ · x⊥ + iϵ)∆3

i∆4Γ(∆4)

(x̄+ − q4,⊥ · x̄⊥ + iϵ)∆4

(−1)n

n!

(
ig2

8∆1∆2

G⊥(x⊥, x̄⊥)

)n

,

which at large ∆1,∆2 can be approximated by

Ãn = 4

∫
dx−dx̄+d2x⊥d

2x̄⊥
(−i)∆1+1−nΓ(∆1 + 1− n)

(x− − q1,⊥ · x⊥ − iϵ)∆1+1−n

(−i)∆2+1−nΓ(∆2 + 1− n)

(x̄+ − q2,⊥ · x̄⊥ − iϵ)∆2+1−n

× i∆3Γ(∆3)

(x− − q3,⊥ · x⊥ + iϵ)∆3

i∆4Γ(∆4)

(x̄+ − q4,⊥ · x̄⊥ + iϵ)∆4

1

n!

(
ig2

8
G⊥(x⊥, x̄⊥)

)n

,

since

(∆i)n = ∆i(∆i − 1) · · · (∆i − n+ 1) ≃ ∆n
i , i = 1, 2. (A.13)
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The shifts in n can then be written in terms of weight-shifting operators e−n∂∆1 , e−n∂∆2

and therefore the connected eikonal celestial amplitude is

Ãeik. =
∞∑
n=1

Ãn = 4

∫
dx−dx̄+d2x⊥d

2x̄⊥
(
eiχ̂ − 1

) (−i)∆1+1Γ(∆1 + 1)

(x− − q1,⊥ · x⊥ − iϵ)∆1+1

× (−i)∆2+1Γ(∆2 + 1)

(x̄+ − q2,⊥ · x̄⊥ − iϵ)∆2+1

i∆3Γ(∆3)

(x− − q3,⊥ · x⊥ + iϵ)∆3

i∆4Γ(∆4)

(x̄+ − q4,⊥ · x̄⊥ + iϵ)∆4
,

(A.14)

where the eikonal phase is now an operator

χ̂ ≡ ig2

8
e−∂∆1

−∂∆2G⊥(x⊥, x̄⊥). (A.15)

Note that (A.15) is the same as the momentum space formula with the center of mass

energy promoted to an operator s→ ŝ ≃ 4e∂∆1
+∂∆2 .

Since χ̂ is independent of x−, x̄+ we can further evaluate these integrals upon shifting

x− → x− + q1,⊥ · x⊥ and x̄+ → x̄+ + q2,⊥ · x̄⊥ and then rescaling x− → (q13,⊥ · x⊥)x− and

x̄+ → (q24,⊥ · x̄⊥)x̄+. The resulting integrals can be evaluated in terms of the standard

identity [194]

∫ ∞

−∞
dz

1

zx
1

(1− z)y
=

2ix sin(πy)

1− x− y
B(x+ y, 1− y), (A.16)

yielding

Ãeik. = 4× (2π)2
∫
d2x⊥d

2x̄⊥
(
eiχ̂ − 1

) i∆1+∆2i∆3+∆4Γ(∆1 +∆3)Γ(∆2 +∆4)

(−q13,⊥ · x⊥)∆1+∆3(−q24,⊥ · x̄⊥)∆2+∆4
. (A.17)
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A.3 t-channel exchange

In this section we evaluate the tree-level contribution to the eikonal celestial amplitude.

We start with (A.21) and compute the integral over k⊥,

Ã1 =
(2π)4ig2

2

∫ ∞

0

dω1

ω1

ω∆1+∆3−1
1

∫ ∞

0

dω2

ω2

ω∆2+∆4−1
2

1

(ω1q13,⊥)2 +m2
δ(2)(ω1q13,⊥ + ω2q24,⊥)

(A.18)

The integral over ω2 can be done by first noting that given two two-dimensional vectors

v = (v1, v2) and w = (w1, w2),

δ(2)(ξv + ξ′w) = δ(ξv1 + ξ′w1)δ(ξv2 + ξ′w2)

=
1

ξ
δ

(
ξ′ + ξ

v1

w1

)
δ(w1v2 − v1w2). (A.19)

As a result,

δ(2)(ω1q13,⊥ + ω2q24,⊥) =
1

ω1

δ

(
ω2 + ω1

q124,⊥
q113,⊥

)
δ(q124,⊥q

2
13,⊥ − q224,⊥q

1
13,⊥) (A.20)

and we can integrate over ω2

Ã1 =
(2π)4ig2

2

(
−
q124,⊥
q113,⊥

)∆2+∆4−2

δ(q124,⊥q
2
13,⊥ − q224,⊥q

1
13,⊥)

×
∫ ∞

0

dω1

ω1

ω∆1+∆2+∆3+∆4−4
1

1

(ω1q13,⊥)2 +m2
. (A.21)
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Relabeling β =
∑

i∆i − 4 and changing variables by rescaling ω1 → 1
|q13,⊥|ω1, we find

Ã1 =
(2π)4ig2

2

(
−
q124,⊥
q113,⊥

)∆2+∆4−2

δ(q124,⊥q
2
13,⊥ − q224,⊥q

1
13,⊥)

×
(

1

|q13,⊥|

)β ∫ ∞

0

dω1ω
β−1
1

1

ω2
1 +m2

.

(A.22)

Finally, the remaining integral is a standard Mellin transform 1

∫ ∞

0

dω1ω
β−1
1

1

ω2
1 +m2

=
πmβ−2

2

1

sin πβ/2
, (A.23)

and (A.21) can be put into the form

Ã1 =
πmβ−2

4

(2π)4ig2

sin πβ/2

(
−
q124,⊥
q113,⊥

)∆2+∆4−2

|q13,⊥|−βδ(q124,⊥q
2
13,⊥ − q224,⊥q

1
13,⊥). (A.24)

A.3.1 Eikonal kinematics

By studying the small scattering angle kinematics in a center of mass frame one finds that

the momenta of the particles can be written as

p1 = −
√
s

2
(1, 0, 0, 1), p2 = −

√
s

2
(1, 0, 0,−1), (A.25)

p3 =

√
s

2
(1, 2

√
z, 0, 1), p4 =

√
s

2
(1,−2

√
z, 0,−1). (A.26)

This motivates us to define

q̂i = (1 + qi, qi,⊥, 1− qi), i = 1, 3, (A.27)

q̂i = (1 + qi, qi,⊥,−1 + qi), i = 2, 4. (A.28)
1While the integral converges for β ∈ (0, 2), the result can be analytically continued.
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In this case small z kinematics are equivalent to qi ≪ 1. Note that setting

q̂i = (1 + ziz̄i, zi + z̄i,−i(zi − z̄i), 1− ziz̄i), i = 1, 3, (A.29)

q̂i = (1 + wiw̄i, wi + w̄i,−i(wi − w̄i),−1 + wiw̄i), i = 2, 4, (A.30)

implies that (zi, z̄i) and (wi, w̄i) are coordinates in different charts of S2, namely, the

stereographic projections based respectively on the north and the south poles of the sphere.

To express the momenta in the same chart, we perform an inversion, (wi, w̄i) =
(

1
z̄i
, 1
zi

)
which yields

q̂i = (1 + ziz̄i, zi + z̄i,−i(zi − z̄i), 1− ziz̄i), i = 1, 3, (A.31)

q̂i =
1

ziz̄i
(1 + ziz̄i, zi + z̄i,−i(zi − z̄i), 1− ziz̄i), i = 2, 4. (A.32)

In particular, one sees that the center of mass momenta (A.25) are obtained by choosing

z1 = 0, z2 = ∞, z3 =
√
z, z4 = − 1√

z
. (A.33)

Notice that it immediately follows from (A.25) and (A.33), that in the eikonal approxi-

mation, z is indeed −t/s and also the two-dimensional cross-ratio:

z = − t

s
=
z13z24
z12z34

. (A.34)

Our derivation of the celestial eikonal amplitude will therefore assume external conformal

primary wavefunctions φ∆i
(x; ηiq̂i) with null vectors of the form (A.27) satisfying qi ≪ 1.

This kinematic configuration is illustrated in Figure 3.2
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A.4 Propagator in shockwave background

In this section we review the evaluation of the momentum space scalar propagator

A(p1, p2) ≡ ⟨0|aout(p2)a†in(p1)|0⟩ (A.35)

in a shockwave background. Let vin/outp (x) and uin/outp (x) be solutions to the Klein-Gordon

equation behaving respectively as e−ipx and eipx in the in/out regions of the spacetime

under consideration. Define the Bogoliubov coefficients α(p, q) and β(p, q) by the expan-

sion

vinq (x) =

∫
H+

0

dΩ(p)
[
α(p, q)voutp (x) + β(p, q)uoutp (x)

]
, (A.36)

where H+
0 is the zero mass shell and dΩ(q) = d3q

(2π)32q0
is the Lorentz invariant measure.

Recalling that in/out fields are defined by

ϕin/out(x) =

∫
H+

0

dΩ(p)
(
ain/out(p)u

in/out
p (x) + a†in/out(p)v

in/out
p (x)

)
, (A.37)

and that they are related to interacting fields through

ϕ(x) →
√
Zϕin/out(x), as t→ ±∞, (A.38)

where Z is the wavefunction renormalization, one may show that

a†in(q) =

∫
H+

0

dΩ(p)
[
α(p, q)a†out(p)− β(p, q)aout(p)

]
. (A.39)
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For the particular case β(p, q) = 0, in which case the in/out vacua coincide, this immedi-

ately allows one to show that

A(p1, p2) = α(p2, p1). (A.40)

To evaluate α(p, q) consider vinq (x) = e−iq·x when x− < 0. Using the boundary condition

relating the solution at x− < 0 and x− > 0 one finds that

vinq (ϵ, x
+, x⊥) = vinq (−ϵ, x+ − h(x⊥), x⊥)

=

∫
H+

0

dΩ(p)

(
4πp−δ(p− − q−)

∫
d2x′⊥e

−i
h(x′⊥)

2
q−eix

′
⊥·(p⊥−q⊥)

)
ei

x+

2
p−e−ip⊥·x⊥ .

(A.41)

Comparison with the definition of the Bogoliubov coefficients shows that β(p, q) = 0 and

allows one to read off the propagator:

Ashock(p1, p2) = 4πp−2 δ(p
−
2 − p−1 )

∫
d2x⊥e

i(p2,⊥−p1,⊥)·x⊥e−i
h(x⊥)

2
p−1 . (A.42)
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B

Appendix to Chapter 4

B.1 Embedding space primer

A Euclidean CFTd is defined on the projective null cone in the embedding space R1,d+1

with metric ηAB.1 The projective null cone is parametrized by a vector P obeying

P 2 = 0, P ∼ λP, λ ̸= 0. (B.1)

Choosing a representative from each equivalence class yields a section of the lightcone

Σ ⊂ R1,d+1 corresponding to a conformally flat manifold on which the CFTd is realized.

The non-linear action of the conformal group on Σ is realized through the combination

of Lorentz transformations SO(d+1, 1) and rescalings of the null cone that preserves the

chosen section. Let P (x) be an embedding of Σ into R1,d+1. Then the metric it inherits
1Lorentzian CFTd are instead lifted to R2,d.
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from the ambient space is

ds2Σ = ηAB
∂PA

∂xµ
∂PB

∂xν
dxµdxν . (B.2)

A different section Σ′ embedded by P ′(x′) is related to Σ by a rescaling

P ′(x′) = ω(x)P (x). (B.3)

The metrics on the two sections Σ,Σ′ can then be shown to be related by a Weyl rescaling

ds2Σ′ = ω2(x)ds2Σ. (B.4)

We conclude that conformal maps between different conformally flat manifolds are rep-

resented in the embedding space by Weyl rescalings and Lorentz transformations of the

embeddings of the corresponding lightcone sections (see [181] for a review).

A primary field of dimension ∆ and spin J in a CFTd on a given section can be lifted

to a field on the lightcone as follows. If ϕµ1···µJ
(x) is a spin J symmetric traceless tensor,

its lift to a tensor ΦA1···AJ
(P ) defined on the embedding space lightcone has to obey the

following properties [170]

1. ΦA1···AJ
(P ) is symmetric, traceless and transverse PAiΦA1···AJ

(P ) = 0,

2. ΦA1···AJ
(P ) is defined up to terms PAi

ΛA1···Âi···AJ
(P ), where Âi denotes a missing

index,

3. ΦA1···AJ
(P ) is homogenous of degree −∆: ΦA1···AJ

(ωP ) = ω−∆ΦA1···AJ
(P ).

If Σ is parameterized by P (x), ϕµ1···µJ
(x) is then recovered by the projection [170]

ϕµ1···µJ
(x) =

∂PA1

∂xµ1
· · · ∂P

AJ

∂xµJ
ΦA1···AJ

(P (x)). (B.5)
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Projecting using the Jacobian of the embedding as done above reproduces the coordinate

components of the tensor field. Alternatively, we can introduce a set of polarization

vectors εAa (x) in the embedding space obeying

εa · P = 0, εa · εb = δab. (B.6)

The pullback of εa to the section (Σ, g) can then be shown to give rise to a vielbein in

(Σ, g), namely

eaµ =
∂PA

∂xµ
εaA, εAa = eµa

∂PA

∂xµ
− (εa · q̄)qA, (B.7)

where [181]

gµν
∂PA

∂xµ
∂PB

∂xν
= ηAB + qAq̄B + qB q̄A, (B.8)

with gµν = (P+)2ηµν , q
A = PA/P+ and q̄A = −2δA−.

As a result, the symmetric, traceless combination εA1···AJ
a1···aJ = εA1

{a1 · · · ε
Aj

aJ} can be used

as projectors which allow us to recover the components of the tensor field with respect to

the orthonormal basis

ϕa1···aJ (x) = εA1···AJ
a1···aJ (x)ΦA1···AJ

(P (x)). (B.9)

Primary fields in more general representations of SO(d) can be handled in the same way.

They are lifted to fields in representations of SO(1, d + 1) defined on the lightcone with

homogeneity of degree −∆ which are transverse in the appropriate sense and which can

be projected back to the original representation by introducing appropriate projection

matrices. These fields are again only defined modulo terms that lie in the kernel of the

projection matrices. The particular case of Dirac spinors in several dimensions is discussed

for example in [181].
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It will also be useful to recall the definition of conformal integrals on the space of

homogeneous functions f(X) of degree −d on the lightcone [183]

∫
DdXf(X) =

1

Vol(GL(1,R)+)

∫
dd+2Xδ(X2)f(X). (B.10)

In practice such integrals are evaluated by gauge-fixing the rescaling freedom and intro-

ducing an appropriate Faddeev-Popov determinant.

B.2 Properties of the spin covariant derivative

In this section we show that the spin-covariant derivative (4.64) reduces to the Levi-Civita

connection when acting on fields transforming in the vector representation of SO(3),

namely if

(Sab)
c
d = −i (δcaδbd − δadδ

c
b) (B.11)

then

∇µV
ν = ∂µV

ν + Γν
µσV

σ. (B.12)

To see this we evaluate ∇µV
a where V a are the vielbein components of the vector field,

and then transform to the coordinate components ∇µV
ν . We start with

∇µV
a = ∂µV

a + ω a
µ bV

b. (B.13)

The coordinate components are defined by

∇µV
ν ≡ eνa∇µV

a. (B.14)

Evaluating ∇µV
ν ,

∇µV
ν = eνa∂µV

a + eνaω
a

µ bV
b. (B.15)



Appendix B. Appendix to Chapter 4 202

We now transform V a = eaσV
σ on the RHS

∇µV
ν = eνa∂µ(e

a
σV

σ) + eνae
b
σω

a
µ bV

σ (B.16)

= (eνa∂µe
a
σ)V

σ + eνae
a
σ∂µV

σ + eνae
b
σω

a
µ bV

σ (B.17)

and recall that eνaeaσ = δνσ and eνaebσω
a

µ b = ω ν
µ σ, where ω ν

µ σ is given by (B.25). In this case

∇µV
ν = (eνa∂µe

a
σ)V

σ + ∂µV
ν + (Γν

µσ − eνa∂µe
a
σ)V

σ. (B.18)

The terms with eνa∂µeaσ cancel and we are left with

∇µV
ν = ∂µV

ν + Γν
µσV

σ, (B.19)

which agrees with the Levi-Civita covariant derivative of the vector field with respect to

the coordinate components.

B.3 Conformal Killing vector field action in the strip

The components of the rotation generators with respect to the vielbein

e1 =

√
γzz̄
2
(dz + dz̄), e2 = −i

√
γzz̄
2
(dz − dz̄), e3 =

du

R
(B.20)

are Sµν = eaµe
b
νSab. Explicitly, we find

Suz =
i

R

√
γzz̄
2
J−, (B.21)

Suz̄ = − i

R

√
γzz̄
2
J+, (B.22)

Szz̄ = iγzz̄J3, (B.23)
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where

J− = S23 − iS31, J+ = S23 + iS31, J3 = S12. (B.24)

The coordinate components of the torsion-free spin connection ω σ
µ ν are given by

ω σ
µ ν = Γσ

µν − eσa∂µe
a
ν (B.25)

and therefore, we see that its only non-vanishing components are

ω z
z z = −ω z̄

z z̄ =
1

2
Γz
zz, (B.26)

ω z̄
z̄ z̄ = −ω z

z̄ z =
1

2
Γz̄
z̄z̄, (B.27)

where

Γz
zz = − 2z̄

1 + zz̄
, Γz̄

z̄z̄ = − 2z

1 + zz̄
. (B.28)

As a result, defining

Ωz ≡ 1

2
Γz
zz, Ωz̄ ≡ −1

2
Γz̄
z̄z̄ (B.29)

we find that the spin covariant derivative of O∆ is given by

∇uO∆ = ∂uO∆, (B.30)

∇zO∆ = ∂zO∆ − ΩzJ3O∆, (B.31)

∇z̄O∆ = ∂z̄O∆ − Ωz̄J3O∆. (B.32)
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Now fix τ0 = π
2

and take ϵ = LY given by

LY ≡ ϵ+Y − ϵ−Y
2

=
i

2
(D · Y )u∂u + iY A∂A +O(R−1).

(B.33)

We will show that δLY
O∆ reproduces the action of Y on a 2D primary operator in the

large R limit. To this end observe from (B.30)-(B.32) and (B.21)-(B.23) that for this

vector field we have

∇ · LY = i
3

2
D · Y +O(R−1),

Lµ
Y∇µO∆ = i

[
1

2
D · Y u∂u + Y z(∂z − ΩzJ3) + Y z̄(∂z̄ − Ωz̄J3) +O(R−1)

]
O∆,

i

2
∇µ(LY )νS

µν =
i

2
(DzY

z −Dz̄Y
z̄)J3 +O(R−1).

(B.34)

From this we immediately see that the expansion of δLY
O∆(x) is

δLY
O∆(x) = −i

[
DzY

zh+Dz̄Y
z̄h̄+ Y z(∂z − ΩzJ3) + Y z̄(∂z̄ − Ωz̄J3) +O(R−1)

]
O∆(x).

(B.35)

Here we have defined the operator-valued weights

h ≡ ∆̂ + J3
2

, h̄ ≡ ∆̂− J3
2

, ∆̂ ≡ ∆+ u∂u. (B.36)

This agrees precisely with the transformation of a 2D primary operator, as given for

example in [28].
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B.4 Shadows and dimensional reduction

In this appendix we discuss the connection between the d-dimensional shadow transform

on the cylinder and the Mellin-like transform on an infinitesimal time strip that imple-

ments the dimensional reduction to Sd−1. All embedding space fields are assumed to obey

the properties described in appendix B.1. We begin by projecting the embedding space

formula for the shadow transform to a particular section. Starting from (4.79), we find

Φ̃µ1···µJ
(x) =

∏
i

∂PAi

∂xµi
Φ̃A1···AJ

(P (x))

=
∏
i

∂PAi

∂xµi

∫
DdP (y)

∏
i(ηAiBi

P (x) · P (y)− PAi
(y)PBi

(x))

(−2P (x) · P (y))d−∆+J

∏
i

ηBiCiΦC1···CJ
(P (y)),

(B.37)

where the conformal integral is gauge-fixed to a particular section Y = P (y). We now use

(B.8) to eliminate ηBiCi , noting that the q(Bi q̄Ci) contributions contract to zero, namely

Φ̃µ1···µJ
(x) =

∏
i

∂PAi

∂xµi

∫
DdP (y)

∏
i(ηAiBi

P (x) · P (y)− PAi
(y)PBi

(x))

(−2P (x) · P (y))d−∆+J

×
∏
i

gσiρi(y)
∂PBi

∂yσi

∂PCi

∂yρi
ΦC1···CJ

(P (y))

=

∫
DdP (y)

∏
i
∂PAi

∂xµi

∂PBi

∂yνi
(ηAiBi

P (x) · P (y)− PAi
(y)PBi

(x))

(−2P (x) · P (y))d−∆+J
Φν1···νJ (y).

(B.38)

We finally observe that owing to (4.83) we can write

Φ̃µ1···µJ
(x) =

∫
ddy
√
g(y)

∏
i ∂xµi∂yνi log(−2P (x) · P (y))

(−2P (x) · P (y))d−∆
Φν1···νJ (y), (B.39)

which is the shadow transform restricted to a section of lightcone [183].
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Now we consider the particular case of the cylinder section parameterized by (4.105)

and expand at large R. In this case taking x = (τ,Ω) and y = (τ ′,Ω′) we have

P (x) · P (y) = − cos(τ − τ ′) + Ω · Ω′. (B.40)

Setting τ = ±π
2
+ u

R
, expanding at large R and taking the time Mellin-like transform

(4.73) we find

Γ(∆0)

∫ ∞

−∞
duu−∆0Φ̃±

µ1···µJ
(u,Ω) = Γ(∆0)

∫ ∞

−∞
duu−∆0

×
∫
dτ ′dd−1z⃗

′
∏

i ∂xµi∂yνi log(±2 sin τ ′ ∓ 2 u
R
cos τ ′ − 2Ω · Ω′)

(±2 sin τ ′ ∓ 2 u
R
cos τ ′ − 2Ω · Ω′)d−∆

Φν1···νJ (y)

= −i Γ(∆0)

Γ(d−∆)

∫ ∞

−∞
duu−∆0

∫
dτ ′dd−1z⃗

′
∫ ∞

0

dω(−iω)d−∆−1eiω(±2 sin τ ′∓2 u
R

cos τ ′−2Ω·Ω′)

× Fµ1···µi
(x, y),

(B.41)

where

Fµ1···µi
(x, y) =

∏
i

∂xµi∂yνi log(±2 sin τ ′ − 2Ω · Ω′)Φν1···νJ (y) +O(R−1) (B.42)

and µi, νi are restricted to Ω,Ω′. We also defined

Φ±(u,Ω) ≡ Φ(±π
2
+
u

R
,Ω). (B.43)

In general,
∫
duu−∆0Φ̃ is an operator in CFTd with dimension d−∆+∆0−1 (see section

4.4). Setting ∆0 = 0 should then yield an operator of dimension d−∆− 1 in CCFTd−1.

Note that for ∆0 = 0, (B.41) is singular which suggests one should take a residue [36].
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Indeed, the residue of (B.41) at ∆0 = 0 reduces to

∫ ∞

−∞
duΦ̃±

µ1···µJ
(u,Ω) = − 1

Γ(d−∆)

∫
dτ ′dd−1z⃗

′
∫ ∞

0

dω(−iω)d−1−∆−1R

2

∑
τ0=±π

2

δ(τ ′ − τ0)

× eiω(±2 sin τ ′−2Ω·Ω′)Fµ1···µi
(x, y)

= − i

2

R

d− 1−∆

∫
dd−1z⃗

′ ∑
α∈{0,1}

∏
i ∂xµi∂yνi log(±eiπα2− 2Ω · Ω′)

(±eiπα2− 2Ω · Ω′)d−1−∆

× Φν1···νJ (eiπα
π

2
,Ω′) +O(R0),

(B.44)

which we recognize as proportional to a linear combination of (d−1)-dimensional shadow

transforms in the strips around ±π
2
. Note the appearance of a linear combination of

incoming and outgoing insertions. It may be interesting to understand this better, perhaps

in relation to the proposal of [195].

On the other hand, taking the residue at ∆0 = 1 of (B.41) and using the identity [36]

lim
ϵ→0

ϵxϵ−1 = 2δ(x), (B.45)

we find

Res
∆0=1

Γ(∆0)

∫ ∞

−∞
duu−∆0Φ̃±

µ1···µJ
(u,Ω) = 2Φ̃±

µ1···µJ
(0,Ω). (B.46)

This operator is a primary of dimension d −∆ in the CFTd as well as in the CCFTd−1.

For d = 3, taking a 2D shadow then yields an operator of dimension ∆− 1, which in the

special case of the CFT3 stress tensor reduces to the stress tensor in the CCFT2.

More generally, given operators O±
∆(u,Ω) in strips around ±π

2
,

Res
∆0=1

∫ ∞

−∞
duu−∆0O±

∆(u,Ω) = 2O±
∆(0,Ω). (B.47)

Since ∆CCFT = ∆+∆0 − 1 we get an operator of ∆CCFT = ∆. We conclude that placing
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an operator at u = 0 inside a small time interval corresponds in CCFT to an operator

that inherits the dimension ∆ of the operator in the parent CFT, as found in [1].

B.5 Derivation of CCFTd−1 conformally soft theorems

from CFTd

In this appendix, we give the derivation of the leading and subleading conformally soft

graviton theorems from the higher dimensional shadow stress tensor correlator. We start

by defining

S
(d)
ab =

n∑
i=1

εAa ε
B
b (x)PA(xi)P

C(x)

P (x) · P (xi)
(Ji)CB, (B.48)

so that the shadow stress tensor correlator in the CFTd becomes

⟨GabO1 · · · On⟩ = −iS(d)
{ab}⟨O1 · · · On⟩. (B.49)

To compute the flat space limit of S(d)
ab we expand at large R keeping the first subleading

contributions. To keep track of them we introduce the following notation:

P = q + δq, εa = ϵa + δϵa, a ∈ {1, . . . , d− 1}, (B.50)

where q = (q0, qi, 0) denotes the leading term in P and ϵa = (ϵ0a, ϵ
i
a, 0) the leading term

in εa. These correspond to the flat space counterparts of P and εa. δq and δϵa are the

deviations from the flat space limit and take the form

δq = (sin τ − 1, 0⃗, cos τ), δϵa = zaδq, a ∈ {1, · · · , d− 1}. (B.51)
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We restrict our attention to the components of the shadow stress tensor tangent to the

Sd−1 on which the CCFT is defined, namely with a ∈ {1, · · · , d− 1}.

We need to evaluate

εa(x) · P (xi)
P (x) · P (xi)

, PA(x)εBb (x)(Ji)AB. (B.52)

The first quantity is immediate to expand and yields

εa(x) · P (xi)
P (x) · P (xi)

=
ϵa(x) · q(xi)
q(x) · q(xi)

+O(R−1). (B.53)

For the second one we have

PA(x)εBb (x)(Ji)AB = qA(x)ϵBb (x)(Ji)AB + zbq
A(x)δqB(x)(Ji)AB + δqA(x)ϵBb (x)(Ji)AB.

(B.54)

We now study the second and third terms observing that for τ = π
2
+ u

R
and large R,

(Ji)A,d+1 = iRqA(xi)∂ui
+O(1)

qA(x)δqB(x)(Ji)AB = −(sin τ − 1)qj(x)(Ji)0j + cos τq(x) · q(xi)
(
iR∂ui

+O(R0)
)
,

δqA(x)ϵBb (x)(Ji)AB = (sin τ − 1)ϵjb(x)(Ji)0j − cos τϵb(x) · q(xi)
(
iR∂ui

+O(R0)
)
.

(B.55)

As a result, we have

PA(x)εBb (x)(Ji)AB = qA(x)ϵBb (x)(Ji)AB − zb(sin τ − 1)qj(x)(Ji)0j

+ zb cos τq(x) · q(xi)
(
iR∂ui

+O(R0)
)
+ (sin τ − 1)ϵjb(x)(Ji)0j

− cos τϵb(x) · q(xi)
(
iR∂ui

+O(R0)
)
. (B.56)



Appendix B. Appendix to Chapter 4 210

At this point, we can further expand at large R. In particular, we notice that the first

term is O(1) because A,B < d + 1. For the others we write τ = π
2
+ u

R
and expand at

large R to find

PA(x)εBb (x)(Ji)AB = qA(x)ϵBb (x)(Ji)AB − iuzbq(x) · q(xi)∂ui
+ iuϵb(x) · q(xi)∂ui

+O(R−1). (B.57)

Combining with (B.53) we find

S
(d)
ab =

n∑
i=1

εa(x) · P (xi)
P (x) · P (xi)

PA(x)εBb (x)(Ji)AB

=
n∑

i=1

[
ϵa(x) · q(xi)
q(x) · q(xi)

(
qA(x)ϵBb (x)(Ji)AB − iuzbq(x) · q(xi)∂ui

+ iuϵb(x) · q(xi)∂ui

)
+O(R−1)

]
.

(B.58)

Taking one derivative in u we get

∂uS
(d)
ab = i

n∑
i=1

[
ϵa(x) · q(xi)
q(x) · q(xi)

(
− zbq(x) · q(xi)∂ui

+ ϵb(x) · q(xi)∂ui

)
+O(R−1)

]
= i

n∑
i=1

[(
− zbϵa(x) · q(xi)∂ui

+
ϵa(x) · q(xi)ϵb(x) · q(xi)

q(x) · q(xi)
∂ui

)
+O(R−1)

]
.

(B.59)

Now observe that the first term is proportional to the operator
∑

i q
A(xi)∂ui

which anni-

hilates conformal correlators by the global conformal symmetry of the CFTd to leading

order at large R (or equivalently by momentum conservation in the flat limit). Specifically

n∑
i=1

Jj,d+1(xi)⟨X⟩ =
n∑

i=1

(
−iPj(xi)∂P d+1(xi) + iPd+1(xi)∂P j(xi) + Sj,d+1

)
⟨X⟩ = 0, j = 0, · · · d,

(B.60)
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and therefore

n∑
i=1

iqj(xi)∂ui
⟨X⟩ = 1

R

n∑
i=1

(
−iPd+1(xi)∂P j(xi) − Sj,d+1

)
⟨X⟩ = O(R−1), j = 0, · · · d.

(B.61)

As such, only the second term remains

∂uS
(d)
ab = i

n∑
i=1

[
ϵa(x) · q(xi)ϵb(x) · q(xi)

q(x) · q(xi)
∂ui

+O(R−1)

]
, (B.62)

which coincides with the leading soft factor. Moreover, it is also clear that

(1− u∂u)S
(d)
ab =

n∑
i=1

ϵa(x) · q(xi)
q(x) · q(xi)

qA(x)ϵBb (x)(Ji)AB +O(R−1), (B.63)

where since a, b ∈ {1, . . . , d−1} it follows that A,B ∈ {0, . . . , d} and in this range (Ji)AB

act as the R1,d Lorentz generators in the flat space limit. Finally we take the (d − 1)-

dimensional symmetric traceless component of S(d)
ab with a, b ∈ {1, . . . , d− 1} by applying

the projector (4.23). Then

ϵab ≡ ϵA{aϵ
B
b} =

1

2
[ϵAa ϵ

B
b + ϵBa ϵ

A
b ]−

ηab
d− 1

[ηcdϵAc ϵ
B
d ]. (B.64)

However, since ϵd+1
a = 0 it follows that ηcdϵAc ϵBd = δcdϵAc ϵ

B
d and that ϵA{aϵ

B
b} = 0 when either

A or B are d+ 1. As a result, for a, b ∈ {1, . . . , d− 1},

ϵA{aϵ
B
b} =

1

2
[ϵAa ϵ

B
b + ϵBa ϵ

A
b ]−

δab
d− 1

[δcdϵAc ϵ
B
d ], A,B < d+ 1, (B.65)

which coincide with the symmetric traceless polarizations in R1,d. As a result, the op-

erators N
(0)
ab = lim

u→0
∂uG{ab} and N

(1)
ab = lim

u→0
(1 − u∂u)G{ab} play the role of leading and

subleading conformally soft gravitons in R1,d. It is immediate to see that they have the

expected dimensions ∆ = 1 and ∆ = 0 respectively.
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We conclude this appendix with a comment on the timelike components of the shadow

stress tensor. For d = 3 one can construct from the u,A components of the shadow stress

tensor operators which coincide with the supertranslation currents in the dimensionally

reduced theory. This is perhaps to be expected, as conservation of the CFT3 stress tensor

leads to relations among its transverse and time components. It may be interesting to

further explore these constraints in relation to the asymptotic Einstein equations in 4D

AFS.

B.6 Subleading soft factor in CCFT2

In this appendix we calculate the subleading soft factor

(1− u∂u)S
(d)
ab =

n∑
i=1

ϵa(x) · q(xi)
q(x) · q(xi)

qA(x)ϵBb (x)(Ji)AB +O(R−1), (B.66)

in the specific case of reduction from CFT3 to CCFT2. We need to evaluate qA(x)ϵBb (x)(Ji)AB

using the complex polarization vectors {ϵz, ϵz̄}. We recall that (Ji)AB are the so(3, 2) gen-

erators acting on the i-th primary operator. The actions of such conformal Killing vectors

and their large R expansion have been studied in section 4.4.2. In particular, we note

that since q4 = ϵ4b = 0, only (Ji)AB with A,B < 4 appear. For this range of indices, we

have2

JABOi = −δLYAB
Oi, A,B = 0, · · · 3, (B.67)

2It is possible to check by explicit computation that JAB reproduces the conformal Killing vector
action by studying its action on lightcone fields in coordinates adapted to the cylinder section. Indeed,
parameterizing the lightcone as X = (r sin τ, rΩ, r cos τ), so that the cylinder section is obtained by gauge-
fixing r = 1, and evaluating JABO∆(X), we find due to the homogeneity of O∆(X) under rescalings that
−r∂rO∆ = ∆O∆. Then (B.67) follows by straightforward computation.
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where LY has been defined in (4.59) and YAB are the S2 conformal Killing vectors (4.47)

and (4.48). We have computed the large R expansion of δLYAB
Oi in (4.69), which yields

(Ji)ABOi = i
(
DziY

zi
ABhi +Dz̄iY

z̄i
ABh̄i + Y zi

AB(∂zi − ΩziJ3) + Y z̄i
AB(∂z̄i − Ωz̄iJ3) +O(R−1)

)
Oi.

(B.68)

Now using the explicit parametrization of q and {ϵz, ϵz̄} it is straightforward to compute

the following contractions

qA(x)ϵBz̄ (x)YAB(zi, z̄i) = −(z − zi)
2

1 + zz̄
∂zi , (B.69)

qA(x)ϵBz (x)YAB(zi, z̄i) = −(z̄ − z̄i)
2

1 + zz̄
∂z̄i , (B.70)

from which we immediately obtain

−iqA(x)ϵBz̄ (x)(Ji)ABOi =

[
(z − zi)(1 + zz̄i)

(1 + zz̄)(1 + ziz̄i)
2hi −

(z − zi)
2

1 + zz̄
(∂zi−ΩziJ3) +O(R−1)

]
Oi,

−iqA(x)ϵBz (x)(Ji)ABOi =

[
(z̄ − z̄i)(1 + z̄zi)

(1 + zz̄)(1 + ziz̄i)
2h̄i −

(z̄ − z̄i)
2

1 + zz̄
(∂z̄i−Ωz̄iJ3) +O(R−1)

]
Oi.

(B.71)

In turn, this means that we have

(1− u∂u)S
(3)
z̄z̄ = i

n∑
i=1

[
(z − zi)(1 + zz̄i)

(z̄ − z̄i)(1 + ziz̄i)
2hi −

(z − zi)
2

z̄ − z̄i
(∂zi−ΩziJ3)

]
+O(R−1),

(1− u∂u)S
(3)
zz = i

n∑
i=1

[
(z̄ − z̄i)(1 + z̄zi)

(z − zi)(1 + ziz̄i)
2h̄i −

(z̄ − z̄i)
2

z − zi
(∂z̄i−Ωz̄iJ3)

]
+O(R−1),

(B.72)

which take the form of the standard CCFT2 soft factors [27,28] with the operator-valued

weights (h, h̄) in place of the standard weights.
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