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Resumo
O objetivo desta tese é estudar o desempenho de algoritmos de aprendizagem de máquina
para estimar a componente muônica do sinal medido nas estações do detector de superfície
do Observatório Pierre Auger. A componente muônica de um chuveiro atmosférico está
altamente correlacionada com a massa da partícula primária que deu origem a este chuveiro.
O conhecimento da massa dos raios cósmicos permite aos cientistas estudar melhor os
mecanismos de propagação e aceleração destas partículas e formular melhor modelos
de interações hadrónicas em energias que os aceleradores artificiais não são capazes de
atingir. O tipo de algoritmo de aprendizagem de máquina utilizado foi o das redes neurais
recorrentes. Estes algoritmos foram utilizados para prever a componente muônica em cada
intervalo medido de tempo. Os resultados mostram que os algoritmos de aprendizagem de
máquina podem estimar com precisão o sinal muônico.

Palavras-chave: Componente muônica, Observatório Pierre Auger, aprendizagem de
máquina.



Abstract
The objective of this thesis is to study the performance of machine learning algorithms for
estimating the muon component of the signal measured at the surface detector stations
of the Pierre Auger Observatory. The muon component of an atmospheric shower is
highly correlated to the primary particle mass. The knowledge of the cosmic ray mass
enables scientists to better study the propagation and acceleration mechanisms of these
particles and to better formulate hadronic interaction models at energies that human-made
accelerators are not able to generate. The type of machine learning algorithm used was a
recurrent neural network. It was used to predict the muon component at each time bin.
The results show that machine learning algorithms can accurately estimate the muon
signal.

Keywords: Muon component, Pierre Auger Observatory, machine learning.
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1 Introduction

The discovery of cosmic rays by Victor Hess in 1912 sparked great interest and
investigation. Despite being researched for nearly a century, the true nature of these rays
remains a mystery. This is particularly true for ultra-high energy cosmic rays (UHECRs),
whose source and mechanism behind their acceleration have yet to be uncovered.

The Pierre Auger Collaboration was established to investigate UHECRs. Over
the last decade, the Collaboration has made notable progress in its research. One such
advancement was the discovery of a dipole pattern in the arrival direction distribution of
UHECRs on Earth, which points to a direction 125˝ away from the center of our galaxy
[1]. This anisotropy indicates that UHECRs may have an extragalactic origin. However,
the exact source of these cosmic rays remains unknown despite these advancements.

A different study has found that cosmic rays with higher energy tend to have a
larger mass than those with lower energy [2]. As cosmic rays are charged particles, their
trajectory is affected by magnetic fields on their journey to Earth, causing their arrival
direction to deviate from their source. The degree of deflection is determined by the rigidity
of the particle, which is defined as the momentum of the particle divided by its charge.
For example, a proton would experience less deflection than an iron nucleus of the same
energy. By focusing on lighter nuclei, it may be possible to gain a deeper understanding of
UHECRs and differentiate between heavy and light particles. This work aims to provide a
way to make this differentiation.

1.1 Cosmic Rays
The study of cosmic rays dates back to the early 1900s and started with the

observation that electroscopes would discharge even when positioned far from radioactive
materials. At the time, researchers were uncertain whether the radioactivity originated
from Earth or the sky. Subsequently, numerous experiments were conducted to measure
atmospheric ionization at various altitudes to shed light on the issue.

The Austrian-American physicist Victor Hess conducted balloon flights in 1912
to measure atmospheric ionization at different altitudes, reaching as high as 5 km [3].
His experiments discovered that ionization levels increased with altitude, leading him to
conclude that the ionization was caused by radiation originating from space.

In 1913, the German physicist Werner Kolhörster conducted similar balloon
flights, reaching altitudes of around 9 km [4]. He obtained similar results as Hess, as
demonstrated in Figure 1.
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In their experiments, Hess and Kolhörster measured not only cosmic rays but
also particles generated from air showers created by cosmic rays interacting with the
atmosphere. An air shower refers to the chain reaction of particles and photons produced
when a cosmic ray collides with a nucleus from an atmospheric molecule. The formation
and evolution of air showers will be discussed in further detail in a later section, 1.1.2.1.

Figure 1 – Changes in ionization with altitude. Left panel: Data from the final ascension
of Hess (1912), which carried two ionization chambers. Right panel: Data from
Kolhörster’s ascension (1913, 1914). Taken from [5]

1.1.1 Energy spectrum

The energy spectrum of cosmic rays spans a wide range, ranging from 109 eV
to 1021 eV, and can be approximated by a power law. Two distinct parts of the spectrum
stand out: the ‘knee’ at 1015 eV and the ‘ankle’ at 1018 eV. The complete spectrum is
depicted in Figure 2.

Due to the broadness of the cosmic-ray energy spectrum, different measurement
techniques are required to study each portion. It is common to divide the spectrum into
two groups: before and after the ‘knee.’ Particles with lower energy than the ‘knee’ are
more abundant and can be measured by detectors in space. However, particles after the
‘knee’ are less frequent, and it is more effective to measure the air showers they initiate
when entering the atmosphere. An exciting aspect of the cosmic-ray spectrum is the
particles with energies less than 109 eV. In Figure 2, it is evident that these particles do
not conform to a power law. This phenomenon is called Solar Modulation and is caused
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Figure 2 – Cosmic-ray energy spectrum. Taken from [6]
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by the Solar Wind, which deflects cosmic rays with energies lower than 109 eV. This study
will concentrate on UHECRs, which are cosmic rays with energies greater than 1018 eV.

1.1.2 Composition

The composition of cosmic rays holds vital information about their origin and
how they were accelerated. To gather this information, John Alexander Simpson, an
American physicist, collected data on the composition of cosmic rays and compared it to
the abundance of elements in the Solar System [7]. The comparison can be seen in Figure
3.

Figure 3 – Comparison between nuclear abundances in low-energy cosmic rays and in the
Solar System. Normalized to C=100. Taken from [8]

The similarities between both compositions are noticeable, but there are signif-
icant divergencies in two cases:

• For lighter elements, such as lithium, beryllium, and boron, their abundance in
cosmic rays is higher than in the Solar System.

• For heavier elements, such as scandium, titanium, vanadium, chromium, and man-
ganese, their abundance is also higher in cosmic rays than in the Solar System.
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These differences could be explained through the process of spallation, which
involves the breaking apart of nuclei like carbon and iron. Simpson’s comparison was based
on data from cosmic rays with low energy (less than 1015 eV) [7]. The composition of
higher-energy cosmic rays, such as UHECRs, is different. Using various techniques, the
Pierre Auger Collaboration has found that UHECRs are mainly composed of protons at
energies of 1018 eV and show an increasing mass at higher energies[2].

1.1.2.1 Air Showers

The interaction of a cosmic ray with air molecules can result in a cascade of
particles known as an air shower. If the cosmic-ray energy exceeds 1014 eV, the air shower
created can reach the ground level and is referred to as an extensive air shower (EAS).
The size of an EAS increases rapidly with the energy of the initial cosmic ray, for instance,
at 1015 eV, an air shower would consist of 106 particles and cover an area of 104 m2 on the
ground, while at 1020 eV, it would consist of approximately 1011 particles and cover an
area of 10 km2 [9]. Pierre Auger and his team established the existence of EAS in 1939
[10].

Due to the limited number of UHECRs, direct measurement of these high-
energy cosmic rays is not feasible. The Pierre Auger Collaboration demonstrated this in
their experiments, as UHECRs above 1018.5 eV are found only once per square kilometer
per year. To study these rare events, researchers must instead observe the EAS they
produce. Air showers have two major components, an electromagnetic component and a
hadronic component. The electromagnetic component produces photons, electrons, and
positrons, and the hadronic component produces mostly pions, which in turn decay and
produce electrons, positrons, muons, and neutrinos.

1.1.2.1.1 Electromagnetic component

A simple model used to understand the development of the electromagnetic
component is the Heitler model [11]. This model assumes that a particle (electron, positron,
or photon) with energy E0 travels a fixed length X0 until it interacts, creating a pair
of particles or a particle and a photon by the bremsstrahlung process, each with half of
the available energy. After n repetitions, there are N “ 2n particles, each with energy
E “ E0{N . This process continues until the energy E is too low to create new pairs.
At that point, the air shower reaches its peak, and the distance traveled up until then
is referred to as the atmospheric depth of the shower maximum, XMAX “ nMAXX0. An
illustration of this process can be seen in Figure 4.
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Figure 4 – Representation of iterations of a shower cascade according to the Heitler model.
Taken from [12]

1.1.2.2 Hadronic component

Matthews, using a similar approach to Heitler’s model, modeled a shower
initiated by a proton [12]. In his model, a proton travels a fixed distance until it interacts,
producing Nch charged pions and 1{2Nch neutral pions. Each pion created has one-third
of the available energy. It is important to note that this process creates more than just
pions. However, the kaons created rapidly decay into pions, muons, or electrons and will
not be considered in this model. An illustration to this model is shown in Figure 5.

Figure 5 – Representation of iterations of a shower cascade according to the Heitler-
Matthews model. Taken from [13]
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Similarly, the neutral pions rapidly decay into muons and electrons, which start
new electromagnetic sub-showers. After n repetitions, there are Nπ “ Nn

ch particles, each
with energy E “

E0

p2{3Nchqn
.

In the later stage of the particle shower, charged pions that can no longer
produce new pions begin to decay into muons and neutrinos. The amount of muons
created is calculated through Nµ “ Nnmax

ch , with nmax denoting the maximum number of
interactions before the energy of the charged pions is no longer enough to generate new
particles. When this occurs, the only remaining particles that can reach the ground are
electrons, positrons, neutrinos, and high-energy muons. Meanwhile, muons with low energy
will decay into electrons and neutrinos.

The number of muons in a shower created by a cosmic ray with mass number
A can be estimated using the following equation:

NA
µ “ Np

µA0.15. (1.1)

This calculation assumes that the shower is equivalent to multiple independent
proton showers, each with an energy of E0{A.

This basic model demonstrates that the quantity of muons depends solely on
the mass of the primary cosmic particle. As a result, it is feasible to identify the particle’s
mass just by analyzing the number of muons observed in the air shower.

The purpose of this study is to develop a technique for separating the signal of
the muon component in the total signal registered by the surface detector stations of the
Pierre Auger Observatory. Doing so allows differentiating between air showers initiated by
lighter elements versus those initiated by heavier particles.
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2 The Pierre Auger Observatory

The Pierre Auger Observatory is a product of a unique partnership of researchers
from 18 countries. This partnership is known as the Pierre Auger Collaboration. The
observatory construction in Malargüe, Argentina, began in 2001 and finished in 2008. The
Collaboration projected the observatory to study cosmic rays with energy superior to
1018 eV, and to that goal, the observatory covers approximately 3000 km2. Additionally,
it uses two types of detectors: a large surface detector (SD) and a fluorescence detector
(FD).This hybrid scheme allows for part of the events (an event is a detected air shower)
to be detected by both detector types simultaneously, which permits energy calibration of
the SD.

2.1 Surface detector
The Pierre Auger Observatory has over 1600 water-Cherenkov detectors ar-

ranged as an array on a triangular grid with 1500 m spacing. Additional 60 detectors
separated by 750 m form an infilled array. A scheme of the entire observatory is shown in
Figure 6.

Figure 6 – A schematic view of the Pierre Auger Observatory where each dot represents
an SD station. The FD buildings are shown with their respective names, and
the lines indicate each telescope’s individual field of view. Taken from [14]
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Figure 7 – A picture of an SD station, highlighting its principal components. Taken from
[15]

Each station in the Surface Detector (SD) comprises a tank with a diameter of
3.6 m and reflective walls. The tank holds 12, 000 l of ultra-pure water, along with three
photomultipliers (PMT), a GPS receiver, a radio transceiver, and a solar power system
with batteries to power the electronics. A single station is depicted in Figure 7. The PMT
counts the number of photons produced by the Cherenkov process. This process occurs
when shower particles cross the water at supra-luminal speeds. The recorded signal is
then transformed from a count into vertical equivalent muons (VEM). The unit VEM is
defined as the signal registered by a station when a muon traverses it vertically through
its center. This conversion requires calibration to be performed accurately. The calibration
is performed with the measurement of atmospheric muons [16]. They provide an excellent
method for measuring 1 VEM in terms of the PMT charge signal because they pass through
stations with a frequency of approximately 2500 Hz. However, an SD station cannot select
from these muons only those that pass vertically, but the charge distribution they produce
has a peak that equals 1.09 VEM. Figure 8 shows an example of a charge histogram. The
passage of vertical muons creates the second peak of the open histogram. The leftmost
peak of the open histogram exists due to low-energy and clipping muons. The hatched
histogram is the charge distribution when only the vertical muons enter the station.
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Figure 8 – Charge histogram of the SD station for atmospheric muons (open histogram).
Charge histogram of the SD station when just vertical muons are allowed.
Taken from [15].

In this work, the prediction of the muon signal is based only on SD measure-
ments.

2.2 Fluorescence detector
The Fluorescence Detector (FD) consists of 27 telescopes located at five different

sites: Loma Amarilla, Los Morados, Los Leones, Coihueco, and HEAT (High-Elevation
Auger Telescopes). These locations are indicated in Figure 6. The first four locations
have six telescopes each, while HEAT has only three. Each telescope has a field of view
of 30˝

ˆ 30˝, allowing for 180˝ coverage in azimuthal angle by combining six telescopes.
Figure 9 shows the Los Leones facility with the telescopes on display.
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Figure 9 – Picture of Los Leones building with the telescopes on display. Taken from [15].

The telescopes at HEAT can observe up to 58˝ as the facility can incline.
This higher viewing angle allows the detection of cosmic rays with lower energy down to
1017 eV. All the telescopes monitor the atmosphere above the SD, enabling simultaneous
measurement of events by both detectors. The FD measures the intensity of fluorescence
light emitted by the nitrogen molecules excited by the air shower particles. Since the light
emitted by the shower is proportional to the collisional energy, this approach provides a
near-calorimetric measurement of the cosmic-ray energy. However, due to the sensitivity
of the telescopes, they can only be operated on dark, clear nights, which represents
approximately 15% of the time.

2.3 Angular convention
The axes of the coordinate system are defined as follows: z is normal to the

observatory pointing to the zenith, x is tangent to the parallel that crosses through the
observatory and points to the East, and y is tangent to the meridian that crosses through
the observatory and points to the North.The coordinate system is shown in figure 10.The
angles used are the local azimuthal ϕ and zenithal θ. The angle ϕ is the angle formed with
x, and the angle θ is the angle formed with z. It is important to note that the time of
measurement is also necessary because the coordinate system is local and rotates with
Earth.
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Figure 10 – Representation of the coordinate system used on the Pierre Auger Observatory.

2.4 Event reconstruction
Since this work will focus on analyzing SD station signals, only the reconstruc-

tion of SD events will be explained. The seed reconstruction is the first step in reconstructing
an SD event. This first step helps to identify and exclude accidental stations and provides
the initial estimates for the proper event reconstruction. For the seed reconstruction, the
first step is finding the point x⃗b, which is the signal-weighted center-of-mass of stations in
an event. This point is also used for the first impact position of the shower core on the
ground x⃗gr. Now, assuming that the shower front moves as a plane perpendicular to the
shower axis at the speed of light, as shown in figure 11, it is possible to obtain the time
tpx⃗q when the shower front passes through the point x⃗ with the formula:

ctpx⃗q “ ctb ´ â ¨ px⃗ ´ x⃗bq, (2.1)

where tb is the time when the shower plane passes through the point x⃗b and ´â is the
direction of the shower propagation. This equation gives the first estimate of the cosmic-
ray direction.With this first approximation, there are two ways to continue: the Herald
framework and the Observer reconstruction, each of which uses different assumptions and
different lateral distribution functions (LDF), Sprq.
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Figure 11 – Diagram of the air-shower development considering the shower front as a
plane. Taken from [17].

The process of reconstructing SD events involves determining the LDF at the
position of each station. The LDF is a representation of a station’s signal as a function
of its perpendicular distance from the shower axis, represented by r. Due to statistical
fluctuations, two air showers created by cosmic rays with similar mass, energy, and direction
can trigger different stations. To accurately estimate the shape of the LDF, a sufficient
number and distribution of stations must be activated by the shower. To overcome this
challenge, the signals from the stations are adjusted to a function fLDF prq such that:

Sprq “ SproptqfLDF prq, (2.2)

where Sproptq is the shower size estimator and ropt is the optimal value distance that
minimizes the differences due to statistical fluctuations. This distance is chosen based on
the array configuration. At the Pierre Auger Observatory, this value is ropt « 1000 m. One
important constraint of fLDF prq is that fLDF proptq “ 1. Figure 12 shows the LDF of an
event.



Chapter 2. The Pierre Auger Observatory 30

Figure 12 – Lateral distribution function for an event recorded at the Pierre Auger Obser-
vatory. The signal at 1000 m from the shower core is highlighted. Taken from
[15].

2.4.1 Herald framework

The assumption made for this framework is: The air-shower front is curved,
and the curvature is considered constant. With this assumption, the particles are delayed
proportionally to

R0 ´

b

R2
0 ´ rrâpx⃗ ´ x⃗grqs2, (2.3)

where R0 is the constant radius, and

râpx⃗q “ |â ˆ x⃗|, (2.4)

is the perpendicular distance of x⃗ to â. Expanding equation 2.3 up to the second order in
r{R0, we obtain a paraboloidal extension of eq. 2.4 as:

ctpx⃗q “ ctgr ´ â ¨ px⃗ ´ x⃗grq ` k0rrâpx⃗ ´ x⃗grqs
2, (2.5)

where k0 “ 1{2R0 is the curvature parameter, and tgr is the time when the shower hits
the ground.

2.4.1.1 Lateral distribution function

A log-log parabola is the fLDF prq used in the Herald framework. The form of
the parabola is given by:

ln fLDF prq “ βρ ` γρ2, (2.6)

where ρ “ lnpr{roptq, β and γ are the adjusted parameters.
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2.4.2 Observer reconstruction

The assumption made for this framework is: The air shower development is
considered a sphere propagating toward the ground from the point x⃗0 with a start time of
t0.With this assumption, the arrival time is given by:

ctpx⃗q “ ct0 ` |x⃗ ´ x⃗0|, (2.7)

with the equation 2.7, it is possible to obtain the starting point and time. The arrival
direction is obtained through the equation:

â “
x⃗0 ´ x⃗gr

|x⃗0 ´ x⃗gr|
. (2.8)

Again, it is possible to use the lateral distribution function to obtain a better approximation
in the the value of x⃗gr.

2.4.2.1 Lateral distribution function

A modified NKG function is the fLDF prq used in the Observer framework. The
form of the parabola is given by:

fLDF prq “ p
r

ropt

q
β
p

r ` rs

ropt ` rs

q
β`γ, (2.9)

where rs “ 700 m, β and γ are the adjusted parameters.

2.4.3 Energy calibration

For the SD to be able to estimate the energy of a cosmic ray more accurately,
it needs to be calibrated with hybrid events. Hybrid events are detected by both the SD
and FD simultaneously. This calibration step is crucial to ensure that energy estimations
are precise. The signal of an event is inversely proportional to its zenith angle, so an
attenuation curve is necessary to allow comparing different events. Using the assumption
of an isotropic flux of cosmic ray particles and the Constant Intensity Cut (CIC) method,
the attenuation curve is adjusted to the function fCICpθq “ 1 ` ax ` bx2

` cx3, where
x “ cos2 θ ´ cos2 θ, θ “ 38˝, a “ 0.980 ˘ 0.004, b “ ´1.68 ˘ 0.01, and c “ ´1.30 ˘ 0.45.
The θ “ 38˝ is the median angle. With fCICpθq defined, it is possible to estimate the signal
of an event at r “ 1000 m as if it arrived at a zenithal angle of θ “ 38˝. This attained
signal is given by S38 “ Sp1000q{fCICpθq. In figure 12, the Sp1000q is marked by the red
circle in the curve. Since hybrid events are detected individually at both detectors, a power
law is used to correlate the energy measured at the FD, EF D, with the S38 calculated for
the event measured at the SD. This power law is given by: EF D “ ApS38{VEMq

B, where
A “ p1.90 ˘ 0.05q ˆ 1017 eV, B “ 1.025 ˘ 0.007, and VEM is the signal unit used in SD.
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3 The method

The method employed to separate the muon signal component from the total
signal registered by the SD station is a recurrent neural network (RNN), which belongs to
the category of machine learning algorithms. Machine learning algorithms leverage vast
amounts of data to uncover patterns that are then utilized to carry out an assigned task.

A recurrent neural network (RNN) was selected due to its proven effectiveness
in various tasks, including natural language processing and machine translation. Its success
in these applications is because it utilizes the output from the previous time step as input
for the next. Among the different types of RNNs, this project will utilize the Long Short
Term Memory (LSTM) network, one of the most widely used and particularly well-suited
for the intended task due to its extended memory capability.

3.1 The input
The inputs fed into the neural network include the total trace, which is the

signal recorded at the SD station, the secant of the reconstructed zenith angle (sec θ), and
the distance between the station and the shower core on the shower plane (r). The signal
recorded by the station is expressed in VEM and stored in bins of 25 nanoseconds each,
where each bin represents the average signal measured by the station’s three PMTs.

The total trace length is 768 bins, but the last 568 bins are not required as
most of the muon signal is concentrated within the first 200 bins. In the utilized dataset,
the first 200 bins contain the complete muon signal in 90% of the stations for cosmic rays
with energy E ă 1019 eV and 70% of the stations for cosmic rays with energy E ą 1019 eV
[18]. The remaining stations have more than 99% of their muon signal within the first 200
bins for cosmic rays with energy E ă 1019 eV, and for cosmic rays with energy E ą 1019

eV, approximately 99% of the muon signal is in the first 200 bins [18]. Using more than
200 bins does not significantly enhance the prediction capability of the neural network
and would consume a larger amount of memory. Henceforth, the first 200 bins of the total
trace will be referred to as the "trace".

The distance traveled by the particles in the atmosphere affects the air-shower
composition. This happens because of the different cross-sections of each particle. Electrons
and positrons have higher cross-sections than muons, so they are more likely to interact
with atmospheric particles. Particles in inclined showers transverse more atmosphere, so
the relative concentration of muons at the ground is higher when compared to vertical
showers that do not transverse as much atmosphere. So it is essential to give the neural
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network a way to know the amount of atmosphere traversed, which is the role of the inputs
sec θ and r. The distance traveled is proportional to sec θ and r. As explained earlier, both
parameters can be obtained by event reconstruction.

3.2 Neural network
The type of machine learning used in this work is a supervised learning algorithm.

Therefore, the neural network must go through a process of training with labeled examples
to learn the patterns in the data. To explain the training process, the following example
will be used: Imagine that a neural network must be trained to label an image according
to its content. For simplicity, the images can only be of a cat, a dog, or a bird.

The initial step in training the neural network is to present it with images
of each animal. The neural network will then generate a label for the image, which is
typically incorrect. This output process is referred to as forward propagation and a pictorial
representation is shown in figure 13 a. The generated label is then compared to the correct
label for the image using a loss function, which measures the prediction error. Forward
propagation involves calculating the total input, z, to each neuron at each layer. This
is done by taking a weighted sum of the outputs from the units in the previous layer.
Subsequently, a non-linear function, fp.q, is applied to z to obtain the output of the neuron.
The bias terms have been omitted for simplicity. Common non-linear functions used in
neural networks include the rectified linear unit function (ReLU), the hyperbolic tangent,
and the logistic function.

To improve its predictions, the neural network changes its internal parameters.
These internal parameters are weights that are used to multiply the input values. To
modify the weights in the neural network, the algorithm employs the backpropagation
process. It begins by calculating the gradient for each weight, which indicates how the
error would increase if the weight were slightly increased. The weights are then adjusted
in the opposite direction of the gradient, effectively minimizing the error. This process is
illustrated in Figure 13 b.

During the backward pass, the computation involves determining the error
derivatives at each hidden layer concerning the output of each neuron. This is done by
considering the weighted sum of the error derivatives with respect to the total inputs to
the units in the layer above. To convert the error derivative from output to input, it is
multiplied by the gradient of the non-linear function used in the neural network, such as
ReLU or sigmoids. At the output layer, the error derivative is computed by differentiating
the cost function, such as the mean square error. If the cost function is 0.5pyl ´ tlq

2, where
tl is the target value, the error derivative is given by yl ´ tl. By knowing the BE{Bzk (where
zk is the input to neuron k), we can calculate the error derivative for the weight wjk that
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connects the neuron j in the layer below, using the equation yj ˚ BE{Bzk.

Figure 13 – a: The equations utilized for carrying out the forward propagation in a neural
network with two hidden layers and a single output layer. b: The procedures
for computing the backward pass involve computing the error derivatives at
each hidden layer with respect to the output of each neuron. The details of
the procedures are explained in the text. Taken from [19]

The architecture

The architecture of the models used in this work combines two basic blocks:
fully connected layers (FC) and long short-term memory (LSTM) cells.

3.2.1 Fully connected layer

FC stands for fully connected and refers to the type of layer commonly used in
feed-forward neural networks, which are a traditional type of machine learning algorithm.

In a fully-connected layer, each neuron in a layer is connected to every neuron
in the next layer through a set of weights. The input layer receives the input data, while the
output layer generates the final prediction. The hidden layers, located between the input
and output layers, perform intermediate computations to arrive at the final prediction.
The strength of the connection between neurons is represented by the weights, which are
adjustable through the training process to minimize the error.

The values of each neuron are calculated as the weighted sum of the values
from the previous layer, and an activation function is applied to the values, except for the
input layer, to allow for non-linear data fitting.

Figure 13 shows an example of an FC layer, where xi are the inputs given to
the network and wij is the weight between the neuron i and j.
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This work will use FC layers with and without activation functions. FC layers
without activation functions will be called "projectors," while those with activation functions
will be referred to as "FC layers."

If an FC layer’s activation function is not given, a ReLU activation function is
used. Its equation and plot can be seen in Figure 14.

In PyTorch, the input of an FC layer must be of dimensions [˚, Hin], and the
output must be of dimension [˚, Hout], where Hin and Hout are defined on the FC layer
initialization, and ˚ is any dimension.
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R(x) = max(0,x)

ReLU

Figure 14 – Graphic representation of the ReLU function for values between ´10 and 10.

3.2.2 Long short-term memory

The LSTM architecture was first introduced in 1997 [20]. It aimed to address
the issue of vanishing gradients that was present in traditional RNNs, allowing LSTMs to
store information over an extended period of time. To achieve this goal, the LSTM cell
requires three key elements at each time step: the cell state, the hidden state, and the
input.

The vector responsible for preserving long-term memory is referred to as the
cell state. The hidden state acts as the output from the previous time step and is in charge
of the short-term memory. Finally, the input is the value provided at the current time step.

The LSTM cell utilizes three distinct gates to regulate the cell state vector: the
forget gate, the input gate, and the output gate. A graphical representation of an LSTM
cell can be seen in Figure 15. In this illustration, the cell state from the previous time
step is represented as ct´1, the previous hidden state is ht´1, and the current input is xt.
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Figure 15 – An LSTM cell diagram showing the gates that determine how the inputs are
combined to produce the output. Based on a figure from [20].

In PyTorch, the input of an LSTM cell must have dimensions [L, Hin], where L

is the sequence length and Hin is the number of sequences given to the LSTM. The hidden
state and cell state provided to the LSTM cell must have dimensions [1, Hout], where Hout

is the number of produced sequences. The output, the last hidden state, and the last cell
state of the LSTM cell are of dimensions [L, Hout], [1, Hout], and [1, Hout], respectively.

Forget gate

The forget gate decides which information to discard from the cell state ct´1.
This is achieved by combining the current input, xt, and the previous hidden state, ht´1.
The resulting concatenated vector is then fed through a fully connected layer (FC) that
is equipped with a sigmoid activation function. The output of this FC layer, ft, is then
elementwise multiplied by the cell state. This process can be mathematically represented
as follows:

ft “ σpWf ¨ rht´1, xts ` bf q, (3.1)

cf “ ct´1 ˆ ft, (3.2)

where the f subscript indicates that it belongs to the forget gate.
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Input gate

The input gate is responsible for determining which information to add to the
cell state: cf . It consists of two components, one that decides what information to add
and another that determines the magnitude of the added content. The initial step for
both components is to concatenate the current input, xt, and the previous hidden state,
ht´1. The concatenated vector is then passed through two parallel FC layers: one with a
sigmoid activation function and the other with a hyperbolic tangent activation function.
The output of the FC layer with the tanh activation, c̃t, is used to decide what to add to
the cell state, while the output of the FC layer with the sigmoid activation, mt, modulates
the magnitude of the added content. Both outputs are then multiplied and combined with
the cell state, cf . This process can be mathematically represented as follows:

c̃t “ tanhpWc ¨ rht´1, xts ` bcq, (3.3)

mt “ σpWm ¨ rht´1, xts ` bmq, (3.4)

ct “ cf ` c̃t ˚ mt. (3.5)

Output gate

The output gate determines the final output of the LSTM cell, ht, by combining
the cell state, ct, the hidden state, ht´1, and the input, xt. This is done by first concatenating
the input, xt, and the hidden state, ht´1. The resulting concatenated vector is then passed
through an FC layer with a sigmoid activation function. The output of this FC layer, ot, is
then multiplied by the hyperbolic tangent of the cell state. This process can be represented
mathematically as follows:

ot “ σpWo ¨ rht´1, xts ` boq, (3.6)

ht “ ot ˚ tanhpctq. (3.7)

It is important to note that the cell output is used as the next cell’s hidden
state.
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3.3 Models used
In this work, four models were used to predict the muon signal of an event

station. All of them are encoder-decoder-based architectures. The varying elements of the
models are the number of LSTM cells on the encoder and if the hidden and cell states are
passed or not from one LSTM to the other.

In all models, the distance, r, and the secant of the reconstructed zenithal
angle, sec θ, are passed through two modules. Each module is composed of two consecutive
FC layers.

The output of one module is used as the initial hidden state of the encoder,
and the output of the other module is used as the initial cell state of the encoder. These
modules are shown in figure 16. The inputs to the modules are of dimensions [1, 2]. The
shape of the outputs depends on the model.

[1,2]

[1,32]FC

FC

2 X 32

2 X 32

FC

FC

32 X 70

32 X 70

[1,32]

Hidden module

Cell module

[1,70]

[1,70]

Figure 16 – Schematic representation of the modules used to prepare the static inputs to
be fed for the encoder.

3.3.1 First model

This model comprises an encoder with two LSTM cells, a decoder with one
LSTM cell, and an FC layer at the end. The last hidden and cell states from the LSTM
cell do not pass to the next LSTM cell. This model is the same as used by the Pierre
Auger Collaboration in the paper [18].

The encoder receives three inputs: the initial hidden and cell states, both of
shape [1, 70], and the station trace, of shape [200, 1]. The first LSTM cell receives 1 trace
from the encoder and outputs 70 sequences, each containing 200 values.

These sequences are then fed to the next LSTM cell, which produces a 32 series
of 200 values. Based on these 32 series, the decoder generates a trace. This final trace is
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passed through an FC layer that generates the prediction of the muon signal. Figure 17
shows the model schematics.
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The last Hidden state of the N sequences

M X N LSTM receives M sequences and output N sequences

M X N FC layer receives M numbers and output N numbers

The last cell state of the N sequences

Figure 17 – Schematic representation of the first model used. It consists of two LSTM
layers in the encoder and one LSTM layer on the decoder.

3.3.2 Second model

This model comprises an encoder and a decoder, both with just one LSTM cell.
The last hidden and cell states from the LSTM cell do not pass to the next LSTM cell.

The encoder receives three inputs: the initial hidden and cell states, both of
shape [1, 70] and the station trace of shape [200, 1]. The LSTM cell encoder receives 1
trace in the encoder and outputs 70 traces.

Based on these 70 traces, the decoder generates a trace. This final trace is
passed through an FC layer that generates the prediction of the muon signal. Figure 18
shows the schematics of the model.
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Figure 18 – Schematic representation of the second model used. It consists of one LSTM
layer in the encoder and one LSTM layer on the decoder.

3.3.3 Third model

This model comprises an encoder with two LSTM cells and a decoder with one
LSTM cell. The last hidden and cell states from the LSTM cell are inputs to the next
LSTM cell.

The encoder receives three inputs: the initial hidden and cell states, both of
shape [1, 70] and the station trace of shape [200, 1]. The first LSTM cell receives 1 trace
from the encoder and outputs 70 sequences, each containing 200 values.

Because the number of sequences generated by LSTM cells is different, the
output hidden and cell states must be projected to be used as inputs for the next LSTM
cell.

Between the first and last encoder LSTM cells, a pair of projectors transforms
the hidden and cell states dimension from [˚,70] to [˚, 32].

Together with the 70 sequences, the projected hidden and cell states are fed to
the next LSTM cell that produces 32 sequences, each containing 200 values.

Between the last encoder and first decoder LSTM cell, another pair of projectors
transforms the hidden and cell states dimensions from [˚,32] to [˚, 1].

The decoder generates a trace based on the 32 sequences and the projected
hidden and cell states. This final trace is passed through an FC layer that generates the
prediction of the muon signal. Figure 19 shows the schematics of the model.
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Figure 19 – Schematic representation of the third model used. It consists of two LSTM
layers in the encoder and one LSTM layer on the decoder. The last cell state
and hidden state from one LSTM layer are passed through a projector, serving
as inputs for the next LSTM layer.

3.3.4 Fourth model

This model comprises an encoder with one LSTM cell and a decoder with one
LSTM cell. The last hidden and cell states from the LSTM cell are inputs to the next
LSTM cell.

The encoder receives three inputs: the initial hidden and cell states, both of
shape [1, 70] and the station trace of shape [200, 1]. The first LSTM cell receives 1 trace
from the encoder and outputs 70 sequences, each containing 200 values.

Between the first encoder and the first LSTM cell decoder, a pair of projectors
transforms the hidden and cell states dimensions from [˚,70] to [˚, 1].

The decoder generates a trace based on the 70 sequences and the projected
hidden and cell states. This final trace is passed through an FC layer that generates the
prediction of the muon signal. Figure 20 shows the schematics of the model.
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Figure 20 – Schematic representation of the fourth model used. It consists of one LSTM
layer in the encoder and one LSTM layer on the decoder. The last cell state
and hidden state from one LSTM layer are passed through a projector, so
they serve as inputs for the next LSTM layer.

3.4 Dataset
Providing the muon signal of each station is a crucial aspect of the gradient

descent procedure. However, this poses a challenge as the SD stations cannot differentiate
between Cherenkov radiation produced by electrons, positrons, or muons. To overcome
this obstacle, the neural network will be trained using simulations.

The air shower simulation in this study was carried out using the CORSIKA
software with EPOS-LHC as the hadronic interaction model. In particular, the showers
used were simulated with CORSIKA 7.6400, 7.7100, and 7.7400. The offline software of
the Pierre Auger Collaboration was utilized to reconstruct each simulated air shower. The
versions used for the reconstructions were v3r3p4 and v3r99p2a. The simulated events
used in this work were compiled by the Pierre Auger Collaboration and downloaded via
the Internet from the Naples Shower Library.

The study selected only simulated events that met certain conditions for further
analysis. These conditions included the requirement that there were six operating stations
around the station with the highest signal, which was done to exclude events that took
place at the periphery of the array. Additionally, the signal in the stations had to be
at least 5 VEM and not saturated, as saturation occurs when the Cherenkov radiation
produced is too intense, causing the PMT to display nonlinear behavior.

After these cuts, there were 8.866.662 signals available for use. Due to the
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available memory, 50.26% of the available simulations were used to compose the dataset
for this work. The signals available were randomly selected. To ensure reproducibility, a
file containing only the selected events was created.

The selected simulations were divided into three sub-datasets: the training
dataset, the validation dataset, and the test dataset. This division was made randomly,
but the validation and training datasets were sampled using a uniform distribution in sec θ

and the logarithm of energy. Each of them has 4.000.000, 108.640, and 348.000 station
simulations, respectively. The particle composition of each dataset is displayed in table 1.
Approximately, there are 25% more events initiated by heavy particles (iron nuclei) than
by light particles (hydrogen nuclei).

Table 1 – Number of initial particles in each dataset

Training dataset Validation dataset Test dataset
Proton 924141 25158 79948
Helium 961188 26029 84121
Oxygen 1029537 27971 89469

Iron 1085133 29482 94462

The energy distribution of the training dataset is shown in Figure 21a. The
distribution of the simulated energies has two peaks. Figure 21b shows the muon signal
as a percentage of the total signal as a function of the logarithm of the cosmic-ray energy,
where the color represents the concentration of points. The absence of an uptrend or a
downtrend shows that cosmic-ray energy has little influence on the muon-to-total signal
ratio.

(a) Distribution of stations. (b) Percent of muonic signal in relation to the
total signal.

Figure 21 – Distributions of stations in relation to the energy.

The arrival angle distribution of the training dataset is shown in Figure 22a.
The distribution of the simulated arrival angles shows a decreasing trend, which is expected
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since the simulations were done with a uniform distribution with respect to cos2 θ. Figure
22b shows the percentage of muon signal in relation to the total signal as a function
of the cosmic-ray arrival angle; it clearly has an upward trend, which shows that the
muon-to-total signal ratio increases with higher arrival angles.

(a) Distribution of stations in relation to the
secant of the arrival angle.

(b) Percent of muonic signal in relation to the
total signal.

Figure 22 – Distributions of stations in relation to the arrival angle.

The distance between the station and the shower core distribution, as expected,
is not isotropic. Figure 23 (a) shows a clear peak around 1500 m. Figure 23 (b) shows the
percentage of muon signal in relation to the total signal as a function of this distance. It
also shows an upward trend, which indicates that the muon signal depends on the distance.

(a) Distribution of stations. (b) Percent of muonic signal in relation to the
total signal.

Figure 23 – Distributions of stations in relation to the distance to the core on the plane
perpendicular to the shower plane.

Before the training process begins, the data in the datasets are adjusted by
scaling each trace to a range between 1 and 0. The largest value of the trace is used as the
scale factor, and the muon signal is also scaled using this factor. The distance (r) and the
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secant of the zenithal angle (sec θ) are also scaled by the largest value. The scaled datasets
are then divided into batches of 512 samples. The mean squared root error (RMSE) is
employed as the loss function and is defined as:

L “

g

f

f

e

1
200

200
ÿ

i“1
p pSµ

i ´ Sµ
i q2, (3.8)

where the pSµ
i represents the predicted muon signal at time step i, and Sµ

i represents the
simulated muon signal at the same time step. This function is calculated for each batch
trace and averaged over all examples.

The training process used the ADAM [21] optimization algorithm with a
learning rate of 10´4. The training was performed for a total of 150 epochs on a Nvidia
Tesla T4 GPU using the Google Colab platform. The training time for each of the four
models varied, but it took approximately eight hours to complete each one.

(a) Loss values as a function of epochs during
training of all models.

(b) Loss values as a function of epochs during
validation of all models.

Figure 24 – Loss values as a function of epochs of training and validation.

The training loss as a function of epochs is shown in Figure 24 (a), the validation
is shown in Figure 24 (b). Since both have similar values, it indicates that the models
learned the patterns of the data without overfitting.
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4 Results

In this chapter, only the results of the third model will be presented. This
choice is made because the models have similar results, so there is no point in discussing
them repeatedly. The graphs of the remaining models are presented in Appendix A.

Beyond that, a comparison between the results of this work and that done by
the Collaboration [18], and some examples of traces, will also be done in this chapter.

4.1 Differences in the traces
One of the ways to compare the simulated muon signal, Sµ, to the one predicted

by the neural network, xSµ, is by comparing the integral of the signals, Sµ
“

200
ÿ

i“1
Sµ

i and

pSµ
“

200
ÿ

i“1

pSµ
i . The integral of the muon trace is proportional to the number of muons that

reach the ground and therefore is related to the primary cosmic-ray mass.

Figure 25 – Distribution of the simulated and predicted muon signals for every station in
the dataset, separated by the primary cosmic-ray composition.
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Figure 25 hows the distribution of the muon signal across all stations in the
test dataset alongside the distribution predicted by the third model. Each figure contains
the distribution of showers initiated by a proton, an iron nucleus, a helium nucleus, and
an oxygen nucleus. All the models have successfully reproduced the distribution shape.

Figure 26 – Distribution of the difference between simulated and predicted muon signals
for every station in the test dataset, separated by the primary cosmic-ray
composition.

The difference between the predicted integrated signal and the simulated
integrated signal as a percentage of the total signal, S, for each station is shown in Figure
26. The distribution is centered near 0 for every primary cosmic ray, indicating that the
third model does not have a significant tendency to under or overestimate the muon
signal. The other models follow the same tendency. The standard deviation of the same
distribution shows that around 99.7% of the predictions agree within 30%.

Figures 27 and 28 show the mean value of the difference as a function of the
logarithm of the energy and sec θ, respectively.
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(a) (b)

(c) (d)

Figure 27 – Mean value (27a) and standard deviation (27b) of the difference between the
predicted and simulated values as a function of the logarithm of the energy.
Mean value (27c) and standard deviation (27d) of the difference between the
predicted and simulated values divided by the total signal as a function of the
logarithm of the energy.

Figure 27a shows that for all bins, the mean value is close to zero. Figure 27b
shows an increase in the standard deviation for higher energies; this uptrend happens
because the signal increases with the energy, and consequently, the difference between
the predicted signal and the simulated signal increases. But this does not mean that the
accuracy of the third model decreases with energy, as is shown in figure 27d.
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(a) (b)

(c) (d)

Figure 28 – Mean value (28a) and standard deviation (28b) of the difference between the
predicted and simulated values as a function of the secant of the arrival angle.
Mean value (28c) and standard deviation (28d) of the difference between the
predicted and simulated values divided by the total signal as a function of the
secant of the arrival angle.

Figure 28a shows the mean value of the difference for values inside a 0.1 sec θ

bin. This figure has an interesting information for the more inclined events with sec θ « 2:
the prediction is less dependent on the primary cosmic ray composition, and the predicted
muon signal is slightly underestimated. Figure 28b shows the standard deviation of the
difference between the predicted and simulated muon signals as a function of sec θ. The
accuracy of the predictions improves with higher arrival angles up to sec θ « 1.6 and after
this point, the accuracy worsens, as shown in Figure 28d.
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Figure 29 – Integral of the predicted muon signal as a function of the integral of the
simulated muon signal. The black line corresponds to the linear fit of the
points, and the red line corresponds to the ideal case.

Figure 29 shows the predicted muon signal as a function of the simulated
muon signal. The color of each hexagon corresponds to the number of points inside of it.
This figure provides another good way to evaluate the model performance. The Pearson
correlation coefficient between the predicted and simulated muon signals is higher than 0.98
for all primary, suggesting a strong positive linear correlation between the predicted and
simulated muon signals. To further investigate this linear correlation, a linear regression
was performed. By comparing the linear regression, the black line in Figure 29, and the
perfect case, the red line in Figure 29, it is clear that for lighter primaries the model has
a tendency to overestimate the muon signal, while for heavier primary cosmic rays the
muon signal is underestimated.

4.2 Comparison
The findings of this study align well with those of the Pierre Auger Collaboration

study[18]. However, there is a notable difference between the two studies regarding their
standard deviation comparison.
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(a) (b)

Figure 30 – 30a: Mean and standard deviation of the difference between simulated and
predicted muon signals, for every station with energies and zenith angles
specified in the box. Taken from [18]. 30b: Standard deviation of the difference
between simulated and predicted muon signals, for every station separated by
the primary cosmic-ray composition.

This variation in results is due to the different datasets used. The Pierre Auger
Collaboration study used a dataset with fewer stations that recorded signals greater than
40 VEM compared to the dataset used in this study. Therefore, the difference between the
predicted and simulated signals is smaller in their study. Figure 30a and 30b depicts the
relationship between the standard deviation and the muon signal.

(a) (b)

Figure 31 – 31a: Distribution of pSµ and Sµ for all stations in the test dataset. Taken
from [18]. 31b: Distribution for Sµ for all stations in the test dataset with an
atmospheric shower initiated by a proton.

To support this claim, some findings from the collaboration work will be
presented. Figure 31a illustrates the distribution of muon signals for the test dataset used
in the Pierre Auger study, comprising approximately 65720 stations (calculated using
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ImageJ software). As we can see, there are not many stations with muon signals greater
than 40 VEM in this figure. In contrast, the dataset used in this study features numerous
events above 40 VEM, as shown in figure 31b.

4.3 Trace examples
Figures 32 and 33 present two examples of randomly selected muon traces

obtained with the third model, comparing them with the initially simulated ones; The
predictions of the other models are shown in Appendix A.

Figure 32 – Example of predicted muon trace for one simulated event with EPOS-LHC, for
an electromagnetic-dominated signal. The total simulated signal is represented
by the blue line, the simulated muon signal is represented by the orange line,
and the predicted muon signal is represented by the green line.
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Figure 33 – Example of predicted muon trace for one simulated event with EPOS-LHC,
for an muon-dominated signal. The total simulated signal is represented by
the blue line, the simulated muon signal is represented by the orange line, and
the predicted muon signal is represented by the green line.

In both examples shown in Figures 32 and 33, the model could satisfactorily
reproduce the muon signal of the simulated event.
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5 Conclusions

In this work, the performance of machine learning algorithms was examined to
predict the muonic component on the signal recorded with a surface detector station of
the Pierre Auger Observatory.

The analysis was made using recurrent neural networks, or RNNs, as the main
component of the algorithm. Four models were developed in total. They were all based
on the model developed by the Pierre Auger Collaboration [18]. The models received the
same inputs, which were the recorded signals in the first 200 time bins at the surface
detector station, the logarithm of the energy, and the arrival direction of the cosmic ray.

The models were trained using simulations because the current surface detector
stations are unable to differentiate the particles that cause the Cherenkov effect. The
simulations were done with the CORSIKA program with EPOS-LHC as the hadronic
model of each simulated atmospheric shower was reconstructed using the Offline software.

The results found show that the resolution varies from 10% to 9% depending
on the arrival direction. Another interesting result is found by comparing my results with
those of [18]. The used dataset has a strong influence on the standard deviation of the
predictions but does not have a strong influence on the resolution. To ensure this is not
just statistical fluctuations, a bigger variety of datasets should be used.
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APPENDIX A – Models 1, 2, 4 figures

Here we present the results for the first, second and fourth models, and as
explained in Chapter 4, there will be no discussion since there is no significant difference
between the models.

A.1 First model

Figure 34 – Distribution of the simulated and predicted muon signals for every station in
the dataset, separated by the primary cosmic-ray composition.
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Figure 35 – Distribution of the difference between simulated and predicted muon signals
for every station in the test dataset, separated by the primary cosmic-ray
composition.
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(a) (b)

(c) (d)

Figure 36 – Mean value (36a) and standard deviation (36b) of the difference between the
predicted and simulated values as a function of the logarithm of the energy.
Mean value (36c) and standard deviation (36d) of the difference between the
predicted and simulated values divided by the total signal as a function of the
logarithm of the energy.
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(a) (b)

(c) (d)

Figure 37 – Mean value (37a) and standard deviation (37b) of the difference between the
predicted and simulated values as a function of the secant of the arrival angle.
Mean value (37c) and standard deviation (37d) of the difference between the
predicted and simulated values divided by the total signal as a function of the
secant of the arrival angle.
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Figure 38 – Integral of the predicted muon signal as a function of the integral of the
simulated muon signal. The black line corresponds to the linear fit of the
points, and the red line corresponds to the ideal case.

Figure 39 – Example of predicted muon trace for one simulated event with EPOS-LHC,
for an eletromagnetic-dominated signal. The simulated signal is represented
by the blue line, the simulated muon signal is represented by the orange line,
and the predicted muon signal is represented by the green line.
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Figure 40 – Example of predicted muon trace for one simulated event with EPOS-LHC,
for an muon-dominated signal. The simulated signal is represented by the
blue line, the simulated muon signal is represented by the orange line, and
the predicted muon signal is represented by the green line.
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A.2 Second model

Figure 41 – Distribution of the simulated and predicted muon signals for every station in
the dataset, separated by the primary cosmic-ray composition.
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Figure 42 – Distribution of the difference between simulated and predicted muon signals
for every station in the test dataset, separated by the primary cosmic-ray
composition.
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(a) (b)

(c) (d)

Figure 43 – Mean value (43a) and standard deviation (43b) of the difference between the
predicted and simulated values as a function of the logarithm of the energy.
Mean value (43c) and standard deviation (43d) of the difference between the
predicted and simulated values divided by the total signal as a function of the
logarithm of the energy.
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(a) (b)

(c) (d)

Figure 44 – Mean value (44a) and standard deviation (44b) of the difference between the
predicted and simulated values as a function of the secant of the arrival angle.
Mean value (44c) and standard deviation (44d) of the difference between the
predicted and simulated values divided by the total signal as a function of the
secant of the arrival angle.
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Figure 45 – Integral of the predicted muon signal as a function of the integral of the
simulated muon signal. The black line corresponds to the linear fit of the
points, and the red line corresponds to the ideal case.

Figure 46 – Example of predicted muon trace for one simulated event with EPOS-LHC,
for an eletromagnetic-dominated signal. The simulated signal is represented
by the blue line, the simulated muon signal is represented by the orange line,
and the predicted muon signal is represented by the green line.
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Figure 47 – Example of predicted muon trace for one simulated event with EPOS-LHC,
for an muon-dominated signal. The simulated signal is represented by the
blue line, the simulated muon signal is represented by the orange line, and
the predicted muon signal is represented by the green line.
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A.3 Fourth model

Figure 48 – Distribution of the simulated and predicted muon signals for every station in
the dataset, separated by the primary cosmic-ray composition.
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Figure 49 – Distribution of the difference between simulated and predicted muon signals
for every station in the test dataset, separated by the primary cosmic-ray
composition.
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(a) (b)

(c) (d)

Figure 50 – Mean value (50a) and standard deviation (50b) of the difference between the
predicted and simulated values as a function of the logarithm of the energy.
Mean value (50c) and standard deviation (50d) of the difference between the
predicted and simulated values divided by the total signal as a function of the
logarithm of the energy.
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(a) (b)

(c) (d)

Figure 51 – Mean value (51a) and standard deviation (51b) of the difference between the
predicted and simulated values as a function of the secant of the arrival angle.
Mean value (51c) and standard deviation (51d) of the difference between the
predicted and simulated values divided by the total signal as a function of the
secant of the arrival angle.
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Figure 52 – Integral of the predicted muon signal as a function of the integral of the
simulated muon signal. The black line corresponds to the linear fit of the
points, and the red line corresponds to the ideal case.

Figure 53 – Example of predicted muon trace for one simulated event with EPOS-LHC,
for an eletromagnetic-dominated signal. The simulated signal is represented
by the blue line, the simulated muon signal is represented by the orange line,
and the predicted muon signal is represented by the green line.
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Figure 54 – Example of predicted muon trace for one simulated event with EPOS-LHC,
for an muon-dominated signal. The simulated signal is represented by the
blue line, the simulated muon signal is represented by the orange line, and
the predicted muon signal is represented by the green line.
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