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RESUMO

Na última década, a aquisição de dados sísmicos 4D (S4D) incorporou sistemas de

monitoramento permanente onde sensores são instalados no fundo do oceano, coletando dados

sísmicos de forma recorrente de acordo com a demanda de monitoramento do projeto.

Simultaneamente, os fluxos de trabalho de gerenciamento de reservatórios baseados em

modelos evoluíram para incluir incertezas, onde centenas de realizações são consideradas.

Processar, interpretar e avaliar todas as informações disponíveis rapidamente é crucial para

tomar decisões críticas a tempo. Alguns dos principais passos das abordagens para desenvolver

e gerenciar um campo baseadas em modelos dependem de minimizações de erro entre dados

modelados e medidos, convencionalmente, através de dados de produção nos poços, e mais

recentemente, adaptados para dados S4D. Quantificar estas incertezas é uma tarefa complexa,

e estimativas globais para cada realização nem sempre são suficientes para capturar desajustes

locais, que podem ser significativos e ocorrer, por exemplo, em uma região importante

considerada para a perfuração de poços. O foco deste estudo é, portanto, apresentar um fluxo

de trabalho rápido, robusto e com supervisão mínima para medir indicadores de similaridade

entre um levantamento monitor sísmico observado e os modelos de simulação de reservatório,

considerando-se todas estas complexidades. A metodologia compreende (1) calibrar um modelo

petro-elástico; (2) modelagem direta para entendimento de possíveis sinais sísmicos 4D sob

vários cenários de produção; (3) adaptação do fluxo de trabalho para lidar com centenas de

modelos simulados para medir sua similaridade com o sinal de S4D observado; (4) medidas de

erros que combinam estimativas de erros de formato e magnitude das anomalias 4D, com

diagnósticos globais e locais (por regiões). O fluxo de trabalho foi aplicado a um reservatório

turbidítico ultra profundo localizado no Brasil (denominado campo S), com monitoramento

sísmico permanente desde o início de sua produção. A parte inicial do estudo reduziu as

incertezas relacionadas à não singularidade na interpretação dos efeitos 4D que ocorrem

simultaneamente e mediu seu impacto nas métricas de similaridade entre S4D observada e

modelada. Em seguida, o estudo forneceu as principais contribuições da tese, demonstradas em

quatro aplicações: (1) rápido diagnóstico de várias iterações de geomodelagem, (2) rápido

diagnóstico de iterações de assimilação de dados sísmicos e de poço, (3) avaliação rápida de

um novo levantamento monitor sísmico e (4) filtragem de modelos de classificação para estudos

posteriores de tomada de decisão. O fluxo de trabalho foi essencial em todo o esquema de

gerenciamento do campo S. Para a aplicação (1), sinalizamos, com sucesso, como as anomalias



de S4D estavam sendo honradas nos modelos de simulação e quantificamos o impacto da

melhora no entendimento das heterogeneidades do reservatório e na introdução de feições

interpretadas na S4D na geomodelagem. Para a aplicação (2), quantificamos as melhorias nos

modelos de simulação após diversas etapas de assimilação de dados. Para a aplicação (3),

avaliamos rapidamente a qualidade dos modelos de simulação existentes com relação a um

novo monitor sísmico assim que sua aquisição e processamento foram concluídos, validando a

necessidade de recalibrar os modelos de simulação ou não. O fluxo de trabalho ainda foi

fundamental para selecionar os melhores modelos, dentre centenas, para o processo de tomada

de decisão, na aplicação (4). Por fim, o trabalho apresenta uma comparação entre o diagnóstico

realizado em diferentes domínios: os domínios da amplitude sísmica, Impedância-P e saturação,

onde discutimos e realizamos recomendações de cada domínio para cada aplicação específica.

Palavras-Chave: monitoramento sísmico; sísmica 4D; assimilação de dados;

modelos de simulação; modelos de reservatórios.



ABSTRACT

In the last decade, 4D seismic (4DS) data acquisition has incorporated permanent

monitoring systems where sensors are installed at the ocean bottom, collecting seismic data

repeatedly according to the project’s monitoring demand. Simultaneously, model-based

reservoir management workflows evolved to include uncertainties, where hundreds of

realizations are considered. Processing, interpreting, and assessing all the information available

rapidly is crucial to make critical decisions on time. Some of the main stages of model-based

approaches for developing and managing a field rely on error minimizations between modeled

and measured data, traditionally from well production data, and hereafter adapted to 4DS data.

Quantifying these uncertainties is a complex task, and global error estimates for each realization

are not always sufficient to capture local misfits, which can be relevant when they occur, for

example, in an important region being considered for well drilling. The focus of this study is,

therefore, to present a fast, robust and minimal-supervision workflow to measure similarity

indicators between observed seismic monitor and reservoir simulation models, considering all

these complexities. The methodology comprises (1) calibrating a petro-elastic model; (2)

forward modeling to understand elastic changes under various individual and combined

production scenarios; (3) adapting the workflow to handle hundreds of simulated models to

measure their similarity with the observed 4DS signal; and (4) error measures that combine

4DS signal format and magnitude evaluations with global and local diagnosis for each model.

The workflow was applied to an ultradeep Brazilian turbidite reservoir (named field S) with a

permanent seismic monitoring system since the field’s production started. The initial part of the

study reduced uncertainties related to non-uniqueness in the interpretation of competing 4DS

effects and measured their impact at the 4DS similarity metrics. The next step provided the

main contributions of the thesis, demonstrated in four applications: (1) feedback on various

iterations of geomodeling, (2) feedback on well and seismic data assimilation, (3) quick

evaluation of a new seismic monitor, and (4) ranking models for further decision-making

studies. The workflow is proven essential in the entire field model-based management outline.

For application (1), we successfully flagged which and how the 4DS anomalies were being

honored in the simulation models, and it quantified the impact of introducing features

interpreted from seismic monitors in the geomodeling and on heterogeneity behavior. For

application (2), we quantified simulation model improvements provided by data assimilation.



For application (3), we rapidly evaluated the quality of the existing simulation models as soon

as a new seismic monitor acquisition and processing was complete, validating the requirement

to recalibrate the simulation models or not. The workflow was crucial to filter best models, out

of hundreds, for the decision-making process in application (4). Finally, this work presents a

comparison between the diagnosis performed in different domains: the seismic amplitude, P-

impedance and saturation domains, where we discuss and make recommendations for each

domain in each application.

Key Words: seismic monitoring, 4D seismic; data assimilation; simulation

models; reservoir models.
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1 INTRODUCTION

4D seismic (4DS) data are critical for understanding reservoirs and have become the

standard practice for reservoir monitoring. It provides input to predictive simulation models,

contributing to insights regarding compaction, pressure and fluid changes and movement over

the production and injection regime of a field. In the last decade, 4DS monitoring broadened

from towed streamers to permanent systems where sensors are either installed or deployed on

demand at the ocean bottom, collecting seismic data according to the project’s monitoring

requirements. Although the operational effort to place the receivers on the seafloor and the

acquisition costs are higher in this kind of systems, the benefits are threefold: good illumination,

high 4DS repeatability and 4DS monitors may be available more frequently. These are all recent

demands of the giant Brazilian presalt fields, considering their complex geological settings with

deep targets. However, once the 4DS data are acquired, it is necessary to process, interpret and

assimilate important dynamic information. These are all time-consuming steps that may prevent

operators from making reservoir management decisions on time.

On the reservoir management side, the frameworks under uncertainties, considering

hundreds of realizations, add up more data to analyze, process and interpret. Diagnosing such

a large number of models can be complex and time-consuming. Most studies on this topic have

employed the closed-loop reservoir management concept presented by JANSEN.; BROUWER;

DOUMA (2009), which involves the use of various uncertainties in the models related to the

reservoir, economical settings, and production systems, in combination with measurements

such as well production and 4DS, to continuously update the models. This concept was then

detailed by SCHIOZER et al. (2019) in twelve steps, where all the main components, such as

reservoir characterization, data assimilation, resulting scenario reduction and subsequent

decisions, rely on the measurements of errors between modeled and observed data. In this

context, the inclusion of 4DS information as observed data to be honored by the simulation

models in a timely and practical manner is essential.

This thesis proposes practical and comprehensive frameworks to integrate 4DS into the

decision-making process under uncertainties; more specifically, we provide robust and fast

measurements of the matching quality between simulation models and 4DS data. We developed

a workflow and tested the proposed methodology on a deepwater turbidite field (field S) that

has been monitored through an ocean-bottom cable (OBC) seismic system since 2013 with five

monitors up to this moment. We begin the work by calibrating a petro-elastic model (PEM) to
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the data, understanding the observed 4DS anomalies and revealing the competing effects, first

in the 1D domain, applying the PEM at the well scale to understand the 4DS signal under

various scenarios. Then, in the 3D domain, a few simulation models are used to understand the

4DS signal at the reservoir scale. Last, the workflow is adapted to ensembles of simulated

models. The ultimate purpose of the workflow is to diagnose hundreds of models using

similarity metrics between observed 4DS and predicted 4DS given by the simulation models.

Figure 1 illustrates the forward and inversion modeling steps and the various domains at

which a diagnosis based on data comparisons can be performed. The forward modeling top

arrow shows the conversion of the simulation models to the seismic amplitude domain,

hereafter focused on the compressional amplitude and referred as the “amplitude domain” for

simplicity. The grey double arrow 3 represents a diagnosis based on comparisons between

observed and modeled 4DS amplitudes. The goal of this part of the work is to provide a quick

data diagnosis as soon as the observed 4DS monitor is made available, which occurs in the

amplitude domain.

The red double arrow 2 shows comparisons performed at the P-impedance (IP) domain.

This is a very practical domain because it does not require the full forward modeling process

and it results in layer properties (rather than interface properties) that can be more easily

incorporated in the models. However, running a 4DS inversion may take several months and

carries uncertainties: it is an ill-posed problem and depends on seismic data frequency content,

which are discussed in detail in ROSA; SCHIOZER; DAVOLIO (2022).  This work was

developed for available acoustic data, i.e., considering full-stack seismic data and acoustic (P)

impedance, but the workflow can be extended to the elastic domain where angle stacks and

elastic attributes such as Vp/Vs, Lambda-Rho and Mu-Rho can be evaluated.

The data comparison workflow can be adapted to the saturation/pressure domain, through

direct correlations between seismic amplitudes and physical effects, as illustrated by the double

green arrow 4. The comparison from the blue arrow 1, on the other hand, is not a focus of this

thesis because it requires running petro-elastic inversions, which are costly and time-consuming

and therefore not qualified as a fast and robust approach. However, several inversion methods

using deep neural networks are recently being developed to overcome this requirement (e.g.

CÔRTE et al. 2020; MALEKI et al., 2022; XUE et al., 2019) where forward modeled data is

used in the training dataset for obtaining inverted saturation changes estimates. Because of the

inherent dependency of the PEM and the forward modeling steps, this work did not consider

these results for making the comparison from arrow 1.
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Figure 1 - The various data integration domains (modified from DAVOLIO (2013)) between the 4DS and
simulation models. Blue arrow 1, red arrow 2, gray arrow 3, and green arrow 4 represent respectively

comparisons made in the saturation/pressure, IP, amplitude and cross-domains.

Having established the methodology in several domains, the final contribution of this

thesis is a comparison of the various diagnoses obtained for each domain. The working domain

remains an open research question to which the thesis aims to propose recommendations. The

expected outcome of this work is an advanced integration of 4DS data to reservoir simulation

through a quick diagnosis of ensembles of simulation models, such as geomodeling and data

assimilation quality assessment.

1.1 Motivation

The recent development of more complex fields, with very deep and complex geological

structures, demand higher quality data, with good illumination and exceptional 4DS

repeatability so that errors in reflectivity related to noise and processing of 4DS data are not

incorrectly introduced in the workflows. The deepwater presalt reservoirs from the most recent

Brazilian discoveries in the Campos and Santos basins, for example, are difficult to image not

only due to their depths but also due to their tectonic complexity and multiple heterogeneities

inherent to their depositional systems. In addition, a small 4DS signal may be expected in these

types of reservoirs due to the rock’s response to physical changes (as low as 1.5% changes in

IP reported in CRUZ et al.), and the importance of excellent 4DS data increases. The oil price

volatility demands exploration and monitoring schemes to be developed at a lower cost and

more efficiently; therefore, making accurate predictions that add more value to the project is
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essential. Besides, efficient exploration and production activities are crucial for supporting low-

carbon targets.

The evolution of monitoring technologies has resulted in better imaging resolution,

increased repeatability, high-quality and frequent 4DS signals. However, the value of this

advancement highly depends on assimilating data on time to make decisions. Integrating 4DS

in the reservoir management workflows for these decisions remains a challenging task, and

there are limited studies on how to practically include these observations in the models.

A proper framework provides a quick diagnosis in a data-massive environment, where

we can extract knowledge and insights from a large amount of data while addressing challenges

with meaningful scenario reduction. Understanding this leads to more confidence in the

decision-making process (reliable models), which is essential knowledge to guarantee that the

4DS are incorporated safely and rapidly with the simulation models.

1.2 Objectives

The general objective of this work is to propose a methodology to quickly diagnose

simulation models according to their 4DS representation.

The specific objectives are as follows:

● To use seismic forward modeling to explore the interdependence between the sensitivity

of the 4D seismic signal, the rock physics model and each simulated model;

● To develop a workflow for seismic forward modeling hundreds of simulation models;

● To develop similarity metrics to diagnose models based on the shape and magnitude of

observed 4D anomalies; and

● To compare the different domains where to calculate the similarity metrics at.

1.3 Thesis structure

The thesis consists of eight chapters and three appendices, the last two in scientific papers

format. In this subsection, we summarize these chapters and the articles.

Chapter 2 presents a literature review, with a discussion of the most current research

concerning the 4DS and simulation model integration topic.

Chapter 3 proposes a methodology for 4DS and simulation integration under uncertainties

and details the main steps developed and used.

Chapter 4 defines the geological setting and the dataset where the methodology is applied.

This chapter provides details about the 4DS acquisition, field development, and main 4DS

signals present in the data.



25

Chapter 5 presents the results obtained using the methodology proposed in several

reservoir management steps. It also presents some important insights regarding the need to

make region-by-region evaluations and complementarity between the shape and magnitude

similarity metrics. The results are presented in three different sections, one for each analysis

domain: the seismic amplitude, the IP and the saturation domain. This section also presents

comparisons of diagnosis performed in different domains.

Chapter 6 shows the conclusions and recommendations.

Chapter 7 lists future work suggestions.

Although the application case comprehends 5 seismic monitors, we show examples on

monitors 3 (that contains larger and stronger anomalies) and 5 (last monitor available to

demonstrate model forecast applicability). The Appendix A, however, shows the results of the

diagnosis performed in all different seismic monitors, with different levels of noise and

repeatability. The Appendix B shows the well rates of the diagnosed models on a selected set,

and their match with actual production data.

This thesis utilizes previously published material under the two appendix papers:

Appendix C is a conference paper presented at the American (ATCE): SANTOS, J. M.

C.; SCHIOZER, D. J.; DAVOLIO, A. Multi attribute approach for quantifying competing time

lapse effects and implications for similarity indicators in data assimilation. Proceedings - SPE

Annual Technical Conference and Exhibition, [s. l. ],.], v. 2020-Octob, 2020. Available at

https://doi.org/10.2118/201426-MS. This paper details the first part of the general methodology

of the thesis: calibrating a PEM and seismic forward modeling to understand the main 4D

effects that occur in the reservoir. The outcome of this paper is an increased knowledge of the

competing 4D effects and how they may affect the 4DS similarity indicators.

 Appendix D is an article published at the Journal of Petroleum Science and Engineering:

SANTOS, J. M. C.; ROSA, D. R. L.; SCHIOZER, D. J.; DAVOLIO, A. Fast diagnosis of

reservoir simulation models based on 4D seismic similarity indicators, available at

https://doi.org/10.1016/j.petrol.2021.110083. This paper presents the second part of the general

thesis methodology that proposes similarity metrics between the observed 4DS signals and

predicted 4DS signals. This work is the outcome of a workflow that handles hundreds of models

and diagnoses them according to their shape and magnitude similarity with 4DS, region by

region, with several interesting example discussions.

Appendix E shows the permissions to include the published work in this thesis.

https://doi.org/10.1016/j.petrol.2021.110083
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2 LITERATURE REVIEW

This chapter explains how previous works handled the 4DS integration into reservoir

management processes and introduces the key concepts used for the thesis.

2.1 The model-based reservoir development and management concept

JANSEN et al. (2005) presented the use of production measurements and other data, such

as 4DS, to continuously update reservoir models, inspired by measurement and control theory

from the process industry and data assimilation techniques from meteorology and

oceanography. They discussed the closed loop concept, where initially only static information

is available, such as 3D seismic and well tests. As production starts, the models can be history-

matched so that their simulated dynamic behavior can reproduce the actual behavior while

considering their uncertainties. The history-matching concept then evolved to the data

assimilation process, where the focus is to find models with higher probability to make good

predictions.

The main stages of the decision analysis process in model-based reservoir development

and management based on the closed-loop concept rely on error measures between modeled

and measured data. SCHIOZER et al. (2019) expanded the concept and presented a

comprehensive methodology establishing 12 steps for model updating and production

optimization under uncertainty, where building and calibrating models, data assimilation,

selecting representative models, and risk assessment are steps supported by the errors measured

from well production data and are increasingly being supplemented from 4DS.

2.2 4D data integration and its different levels

Finding a practical framework for integrating 4DS into decision analysis remains a major

challenge in reservoir management. The amount of data to analyze and include in the

procedures increases substantially as the project evolves and as new technologies, such as

permanent seismic monitoring systems, are implemented. Another challenge in these

workflows is the analysts’ subjectivity to evaluate, interpret and incorporate 4DS in the

simulation models. This may vary according to experience, background, and availability of

complementary data such as production rates and geological information.

Fundamentally, we need a quick way to diagnose if the generated simulation model

ensembles are minimally matching dynamic data responses before they are inserted in the loops.
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Assessing 4DS monitors as soon as they are made available for guiding critical decisions is

therefore essential.

As an interdisciplinary task, reservoir simulation and 4DS data integration are complex,

and data assimilation workflows have the potential to quantitatively incorporate these data into

simulation models. An example of a powerful tool to perform data assimilation is the Ensemble

Smoother with Multiple Data Assimilation (ES-MDA) proposed by EMERICK; REYNOLD

(2013), which aims to modify uncertain properties from the models to match with observations

(well and 4DS data), as they become available (OLIVER; ALFONZO, 2018). However, one

assumption for a successful application of this method is to have a good prior ensemble with

well-mapped prior uncertainties. A framework to diagnose the prior ensembles becomes an

important step to be performed before running data assimilation, and 4DS integration in this

prior generation phase is limited to manual and qualitative. The quantitative 4DS integration is

mostly limited to the data assimilation process, where 4DS is used as a component of the

objective function.

In many cases, integrating different domains requires conversions such as seismic

forward modeling and/or seismic inversions. The best domains in which to incorporate the

seismic at remain uncertain; however, the most common domain is seismic impedance (e.g.

GOSSELIN et al. (2003), ROGGERO et al. (2007), EMERICK (2016), LORENTZEN et al.

(2018), SILVA NETO; DAVOLIO; SCHIOZER (2021)), which requires running a petro-

elastic modeling for the simulation model and the execution of a 4DS inversion to convert

observed seismic amplitudes into impedance changes.

The amplitude domain has the advantage of being immediately available once the seismic

campaign acquisition and processing finishes and avoids including time-consuming seismic

inversions into the workflows. On the other hand, the amplitude is an interface property, while

the impedance is a layer property, which can be more practical to integrate into the reservoir

models. In addition, to convert reservoir properties into amplitudes, it is necessary to perform

full forward modeling. AMINI (2014) established a structured workflow for the simulation-to-

seismic (sim2seis) domain conversion process and demonstrated it with real case applications

using a single model. LEEUWENBURGH; BROUWER; TRANI (2011) and SOUZA et al.

(2018) selected the full petro-elastic and forward modeling approach to consider most

characteristics of the seismic method, such as the influence from overburden, underburden,

wavelet, and, most importantly, the combinations of dynamic effects. Their works were tested



28

in 3D synthetic model ensembles, where the first used 4DS in their history matching workflow,

and the second used 4DS similarity checks to rank and select optimum models.

LUO et al. (2016) adopted amplitude vs. angle (AVA) domain comparisons in a 2D case,

where the AVA attributes were computed from the reflection coefficients calculated by a petro-

elastic model, introducing a wavelet-based sparse representation to further assimilate 4DS into

their ensemble of models. The authors then successfully extended their work to a 3D case in

LUO et al. (2018). SOARES et al. (2020) also adopted the AVA domain and selected the main

features of the 4DS attributes for history matching an ensemble of reservoir models using a

dictionary learning method.

Meanwhile, several authors successfully used direct cross-domain comparisons between

responses from simulator and different seismic attributes, avoiding the additional petro-elastic

and forward modeling steps. OBIDEGWU; CHASSAGNE; MACBETH (2015) applied

threshold values to provide binary maps of observed amplitude and simulated gas saturation 4D

difference maps, where the threshold values separated the presence and absence of anomalies.

They then used the Hamming distance to calculate the misfit between the binary 4DS map and

the binary saturation difference map. TRANI et al. (2017) used k-means clustering to binarize

maps of time-lapse relative changes in P-wave velocity and maps of simulated dynamic

properties. They then measured the misfit between the maps according to distances to the 4D

anomaly front. DAVOLIO; SCHIOZER (2018) also worked with k-means clustered amplitude

and saturation maps, applying the misfit function proposed by TILLIER; DA VEIGA;

DERFOUL (2013). ZHANG; LEEUWENBURGH (2017) adapted the Hausdorff distance to

measure dissimilarity at fluid fronts.

Some authors also proposed interesting data-driven solutions to provide cross-domain

misfits between 4DS and simulation models, such as the momenta tree method (SORIANO-

VARGAS et al., 2020) and deep learning using models trained by 4D experts using

convolutional neural networks (ROLLMANN, 2020), which have been tested in synthetic cases

and look promising on real cases.

As illustrated, the reported applications vary from deterministic to ensemble-based,

where hundreds of simulation models can be converted into the elastic domain, facilitated by

petro-elastic models coupled to the simulator (e.g. GOSSELIN et al. (2003) and SKJERVHEIM

et al. (2007)). Few ensemble-based works have been reported with the full forward modeling

(e.g. FAHIMUDDIN; AANONSEN; SKJERVHEIM (2010) and SOUZA et al. (2018)), which,

although realistic, were synthetic cases. LIU; GRANA (2020) also report ensemble-based use
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of synthetic 4DS in the amplitude domain but sparsely represented to reduce data

dimensionality.

2.3 The similarity metrics

For well data, it is common to use mean square errors measured between simulated and

observed data series, such as the NQDS (Normalized Quadratic Deviation with Sign) used in

several works (e.g. AVANSI; MASCHIO; SCHIOZER (2016); ALMEIDA et al. (2018);

FORMENTIN et al. (2019)), to obtain a complete view of all objective functions in a concise

plot. Regarding 4DS data, this comparison is not straightforward, as we need to compare maps

(or 3D volumes) and not time series. Furthermore, these misfit measures may be affected by

biases toward outliers or may generate global error values that mask significant local misfits,

which emphasize the importance of evaluating the reservoir region by region.

The methods published thus far for providing these misfits are successful but cannot

address all aspects of the problem at the same time. The most typically used least-square-based

errors do not account for shape errors between both responses; likewise, shape-based methods

disregard problems related to magnitude 4DS signal misfits. (CHASSAGNE; ARANHA, 2020)

conducted a very comprehensive review of magnitude-based measures in the data assimilation

context and discussed that the least-squares metric is as able to capture important information

as other more sophisticated metrics.

Regarding the shape similarity metrics, several authors proposed approaches to represent

the 4DS information by clustering their attributes into binary images and measuring errors

considering pixel-by-pixel misfits. TILLIER; DA VEIGA; DERFOUL (2013), for example,

effectively proposed a formulation with binary image analysis based on the Hausdorff distance

between observed and simulated IP changes and demonstrated it with a deterministic history

matching case. The binary approaches presented thus far have two main limitations: the 4DS

attributes are compared to one single dynamic property change, and they only account for the

existence and absence of a 4D signal, disregarding the polarity of the signal. In addition,

assembling the shape of the 4DS attributes into clusters may be challenging because they rely

either on threshold values for 4DS signal definition, filtering (e.g. DERFOUL et al., 2013), or

clustering algorithms, and their execution is not always straightforward, especially in a 4D

project. The threshold approach may be impractical because cutoff values may have to be

reviewed depending on the seismic monitor. Seismic monitors should ideally be acquired and

processed in the same way, but in practice, this is not always possible. Repeatability and noise
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level may vary among vintages depending on the seismic acquisition conditions (e.g. different

sources or acquisition parameters, seismic interference, and sea conditions). Moreover, the

intensity of the 4D signal changes throughout the monitor surveys. Additionally, if hundreds of

simulation models need to be compared with 4DS data, a fixed cutoff will probably not be

enough to cluster the data, as different threshold values may be required across models.

Regarding the clustering algorithms, the most applied in previous works is the k-means.

However, its convergence assumes spherical clusters and equal probabilities for each cluster.

Therefore, it may also not work for all kinds of seismic attribute value distributions because

centroids can be dragged by outliers not assuring the definition of the expected number of

clusters.

2.4 The Gaussian mixture models (GMM)

The GMM is an unsupervised learning technique, where data are unlabeled and the

program fits Gaussians for the input data. The expectation-maximization (E-M) algorithm then

estimates and optimizes the models based on their maximum likelihood that a certain

observation belongs to each Gaussian.

The GMM labels input data considering posterior probability distributions. The models

are fitted to data according to given or random initial conditions: the mean µ, the variance σ2

and, optionally, the mixing proportions π for each cluster k. The program estimates the

probability p(x) that a sample occurs at a certain location x of the component densities pk, given

their parametric initial conditions.

(࢞) = ࣊ (࣌,µ|࢞)
ࡷ

ୀ

(1)

where

0 < ߨ < 1 and ߨ



ୀଵ

= 1 (2)

The EM algorithm then fits the GMMs to the data, optimizing a maximum likelihood

function. The E-step provides soft clustering; that is, it computes the posterior probability E

that a component i belongs to cluster k.

,ܧ = (௫ୀ௫|ఓୀఓ ,ఙଶୀఙଶ)
∑ (௫ୀ௫|ఓୀఓ,ఙଶୀఙଶ)ೖ
సభ

(3)

The M-step estimates the distribution of each cluster based on the latest assignment.

,ߤ ,ߪ =
∑ ݔ,ܧ
ୀଵ

∑ ,ܧ
ୀଵ

(4)
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Limited seismic applications are reported for the technique: clustering earthquake signals

(SEYDOUX et al., 2020), as inversion prior models (ASTIC; HEAGY; OLDENBURG, 2021;

FJELDSTAD; AVSETH; OMRE, 2021), seismic facies analysis (WALLET; HARDISTY,

2019) and data assimilation schemes (DOVERA; DELLA ROSSA, 2011). Regarding specific

4DS applications, ZHAO et al. (2007) presented a modification of the EM algorithm, applied

to find GMM’s that group and measure errors in 4DS and well production data. For the

particular application of clustering 4DS anomalies and their integration with data assimilation

(history-matching), AMINI et al. (2019) compared several objective functions to history match

three models, including errors from binarized maps using GMM, initialized using manually

defined 4DS amplitude thresholds. With this parameterization they concluded, however, that

the GMM was not able to capture differences between the models. No other 4DS clustering

implementations using GMM were found reported in previous works.
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3 METHODOLOGY

The methodology of this work follows the diagram presented in Figure 2, in which the

steps are numbered and described in the next subsections. The top boxes and the gray steps are

the essential elements of a reservoir management workflow using 4DS (AMINI, 2014).

Essentially, the workflow automatically selects each model from the simulation ensemble,

extracts its dynamic information from a desired date to compare against the observed 4DS

response. As discussed in the chapter 1, this comparison can be achieved in many different

levels or domains, which in Figure 2 are indicated by the red, green and gray arrows,

respectively representing the IP, saturation and amplitude domains.

The simulation models and their data assimilation results used for this thesis were

generated in separate works performed and described by MASCHIO et al. (2021) and ROSA;

SCHIOZER; DAVOLIO (2022), where the last authors also derived the 4DS inversion steps

from the red boxes.

The blue steps are the specific methodologies which were developed as contributions of

the thesis. The specific methodology supplies a region-by-region diagnosis according to the

shape and magnitude similarity between simulation models and 4DS. It can be an iterative

workflow depending on the application; for example, when problematic regions are flagged in

the diagnosis step, the geological or simulation models can be revised, updated and re-

diagnosed until an optimal error level is reached. The model update process, however, is not

part of this work, although the outcome of the diagnosis we provide is a detailed guide for the

updates. In addition, when new seismic monitors are acquired, new modeled 4DS response at

the new dates can be obtained from the simulation ensemble to perform a new diagnosis.

Moreover, when new knowledge on the reservoir generates updates on the simulation model,

the workflow can be re-run, and the simulation ensemble can be re-evaluated.

The numbering of the boxes in Figure 2 follows the next sections’ numbering, where each

step is explained in detail.
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Figure 2 - Diagram describing the general (gray) and the specific (blue) methodology developed in this
thesis.

3.1 Data quality analysis and initial interpretations

This step consists of understanding the observed 4DS signal and assessing its overall

quality, according to the post-stack 4DS standard quality checks detailed in (STAMMEIJER;

HATCHELL, 2014), such as:

● Understanding the polarity of time-lapse changes;

● Extracting seismic attributes that depict the 4DS signal and 4DS repeatability and

processing issues; and

● Testing windows to map the seismic attributes.

To assess the 4DS repeatability quality, we used the NRMS metric calculated between

the survey pairs, determined by KRAGH; CHRISTIE (2002) as:

ܵܯܴܰ =
ܤ)ܵܯܴ (ܯ−

1
2 (ܤ)ܵܯܴ) + ((ܯ)ܵܯܴ (5)

3.2 4DS response modeling
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3.2.1 Calibrating a petro-elastic model (PEM)

The PEM is a set of equations that describe the link between reservoir rock and fluid

properties and elastic properties. Many theoretical and empirical methods are available for

defining these relations.

3.2.2 1D modeling

The PEM calibrated in the previous step is used to generate elastic attributes in the 1D

domain using available sonic and density logs. The 1D analysis aims to understand elastic

changes under various individual and combined production scenarios, e.g., variations in pore

pressure, gas and water saturation.

3.2.3 3D modeling using a simulation model

The aim of the 3D analysis is to evaluate elastic changes at the 3D scale using saturation,

effective porosity and pore pressure values from a simulation model. The purpose is to

understand the 4D changes under scenario interactions using reservoir conditions for simulated

production scenarios. This step extracts the dynamic and static properties from each simulation

model and calculates IP values (using the PEM defined in step 3.2.1) for each date as close as

possible to the 4D seismic monitor acquisition date.

In this step, the IP and the saturation/pressure values for each model can be used for the

IP and saturation/pressure domain comparisons (red and green arrows respectively in Figure 2

towards step 3.4). For the IP domain analysis, the IP ratio between monitor and baseline are

used. For the saturation/pressure domain, we propose to use saturation/pressure differences

between the monitor and the baseline.

3.2.4 Amplitude domain – forward modeling and noise

This step is performed in Petrel, where IP values from the previous steps are imported

and re-grided from the simulation model grid to a seismic cartesian grid. A constant overburden

and underburden are introduced, based on average measures from sonic and density logs, to

establish reliable interfaces between the reservoir’s top and base. For each seismic cell, the

zero-offset reflectivity is calculated using the normal incidence equation, and the reflectivity

values are convolved with a wavelet that mimics the frequency content from the observed data

at the reservoir level. The result is one 3D seismic amplitude volume for each date.

Synthetic seismic data must mimic the observed data to make fair comparisons. The

synthetic noise is generated and added to the synthetic amplitude to reproduce the seismic noise
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related to each vintage acquisition and to repeatability between vintages. The random noise is

defined according to the signal-to-noise ratio observed in the actual seismic data, and it may be

vintage-dependent.

3.3 Extracting 4DS attributes in the amplitude domain

3.3.1 Observed 4DS attribute

As the intention is to fast-track results to guide critical decisions, we generate

ܵܯܴ݀ amplitude maps, extracted in key reservoir intervals from each 3D seismic vintage,

described in STAMMEIJER; HATCHELL (2014) for an acoustically soft reservoir as follows:

௦ܵܯܴ݀ = ௦ܵܯܴ ௦ − ௦ܵܯܴ  (6)

where the ௦ܵܯܴ ௦ and ௦ܵܯܴ  are the values obtained from the observed 3D ܵܯܴ

baseline and monitor surveys respectively, extracted at the reservoir interval of interest. The

workflow can be adapted to any 4DS attribute.

3.3.2 Synthetic 4DS attribute

The steps described in sections 3.2.3 and 3.2.4 are carried out for all the models within

the ensemble. The ௦௬ܵܯܴ maps are extracted from each synthetic volume generated, at the

same window interval as step 3.3.1, and the ௦௬ between a baseline and a monitor isܵܯܴ݀

obtained as follows:

௦௬ܵܯܴ݀ = ௦௬ܵܯܴ ௦ − ௦௬ܵܯܴ  (7)

The result is, therefore, one .௦௬ map for each model within the ensembleܵܯܴ݀

3.4 4DS attribute standardization

The maps are then standardized to avoid distance-based problems in the error metrics and

in the clustering algorithm and to compare units in similar scales.

The observed 4DS standardized ܼ௦ attribute value is given by:

ܼ௦ =
௦ܵܦ4 − µ௦

௦ߪ
(8)

where µ௦ and ௦ are the mean and standard deviation of theߪ ௦ܵܦ4 map, respectively.

Similarly, the synthetic 4DS standardized ܼ௦௬ attribute is described by:
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ܼ௦௬ =
௦௬ܵܦ4 − µ௦௬

௦௬ߪ
(9)

where µ௦௬ and ௦௬ are the mean and standard deviation of theߪ ௦௬ܵܦ4 map, respectively.

This step is performed both for the amplitude (black arrows towards step 3.4 in Figure 2),

using the as the ܵܯܴ݀ term, and for the IP domain (red arrows towards step 3.4 in Figure ܵܦ4

2), using the IP ratio between a monitor and a baseline as the term, which can be adapted ܵܦ4

to any 4DS attribute.

3.5 Run GMM and EM to cluster observed and predicted maps

For a 4DS attribute in any domain, we consider three clusters: (k1) representing the

negative polarity (softening) anomalies, (k2) the zeroes (absence of 4D anomalies) and (k3) the

hardening anomalies, as schematized respectively by the red, green and blue cluster colors from

the Gaussian distributions in Figure 3 b and e and the ternary maps in Figure 3 c and f. We

assume that the repeatability noise level is low enough to be fitted in the same Gaussian k2, and

the random noise inherently has a normal distribution around zero.

Figure 3 - Illustrative scheme of GMM clusterization and ternary comparison. (a) ࢙࢈ࡿࡰ and (d)
࢙࢟ࡿࡰ maps, respectively converted to ternary maps displaying observed pixels o (c) and predicted pixels
p (f). The histograms from (b) and I show the clusters’ gaussian distributions: red for k1, green for k2 and

blue for k3.

We use a value initialization for each cluster’s mean and variance, providing the same

initial conditions for each observed and synthetic seismic attribute map based on statistics of

the normalized observed 4DS attribute ܼ௦ at the desired date.
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The green arrow from Figure 2 shows that the saturation domain data may also skip from

step 3.2.3 to step 3.5, where saturation difference maps are clustered and directly compared

with amplitude maps. The three clusters in this case are: (k1) representing a decrease in

saturation between a monitor and a baseline, (k2) the zeroes (absence of saturation difference)

and (k3) the increase in saturation.

3.6 Region segmentation

This step must be carried out in conjunction with the observed 4DS interpretation, where

each region accounts for the presence and absence of a 4D signal, and proximity with well

locations where a certain cluster of 4DS signal is expected.

3.7 Comparison of observed vs. synthetic seismic data

3.7.1 Shape evaluation: entire reservoir and region error calculation

The observed and predicted ternary maps are compared through a shape metric SM

calculated by the Hamming distance between the observed pixel o and predicted pixel p from

the ternary maps schematized in Figure 3 c and f, divided by nr, i.e., the size n of each region r

(or number of pixels inside each region), given by:

,]ܯܵ [ =
∑ (,)ߜ
ୀ

݊
(10)

where

(,)ߜ = { 1 ݂݅  ≠     0 ݂݅  =  (11)

3.7.2 Magnitude evaluation: entire reservoir and region error calculation

The magnitude metric MM is given by the mean square error between ܼ௦ and ܼ௦௬.

[௦,ܼ௦௬ܼ]ܯܯ =
∑ (ܼ௦ − ܼ௦௬)ଶ
ୀଵ

݊
(12)

3.8 Multi-objective filtering

We propose a multi-objective model filtering that creates separate high error model

(outliers) lists on each metric SM and MM, and on each region r.
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ௌெ,ݐݑܱ = µௌெ, + ܽ ௌெ,ߪ (13)

ெெ,ݐݑܱ = µெெ, + ܽ ெெ,ߪ (14)

where µ and ߪ  are respectively the mean and standard deviation of the error metrics SM

and MM within the models’ ensemble. The coefficient ܽ may be project-dependent and may be

based on the number of models to be filtered out.

The outlier lists can be used to discard models that do not honor 4DS observations. We

propose them to be used simultaneously, that is, for a model to be considered good, it must not

be contained in any outlier list from any region and any metric.
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4 APPLICATION

4.1 Field S background

4.1.1 Geological information

Field S is a deep water turbidite located in the Campos Basin at the Brazilian east margin.

The tectonic evolution of the Campos Basin has three main stages: (1) the pre-rift, characterized

by South Atlantic crustal expansion; (2) the rift from the South Atlantic opening, establishing

normal fault valleys and volcanism; and (3) the post-rift. The main petroleum system plays

were established syn- and post-rift. The reservoir sandstones from field S are interpreted to

belong to the Carapebus Formation, which is a marine regressive mega-sequence

predominantly composed of successions of fluvial-deltaic systems, with deltaic fans,

siliciclastic platforms and deep-water turbidites (WINTER; JAHNERT; FRANÇA, 2007).

The reservoir is located 1200 m below the mudline, and the water depth is between 1600

and 1700 m. The reservoir thickness is between 15 and 45 m, stratigraphically trapped, and

pinching out to the northeast. To the west, the reservoir is structurally contained by 3 major

faults oriented NE-SW. Figure 4 illustrates the mentioned structural characteristics interpreted

from the 3D seismic dataset, where the bright hot colors represent the soft IP reservoir

sandstones. The sandstone quality is good, with an average porosity of 25%, which may be

contaminated with thin (sub-seismic resolution) shale intercalations. The seismic data

resolution at the reservoir level, considering an average dominant frequency of 18 Hz, is

estimated by ROSA; SCHIOZER; DAVOLIO (2022) to be approximately 30 m.

Figure 4 - (a) Vertical cross-section of the baseline seismic data. The black lines show the reservoir´s top,
base and extra-sand interpretations, and the dashed lines are the major faults. (b) RMS amplitude map

between the top and base horizons. The black line shows the cross-section location.
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4.1.2 Field development and its seismic monitoring system

The field was initially developed with 7 horizontal producer wells (well trajectories in

red from Figure 5) and 4 horizontal water injector wells (well trajectories in blue from Figure

5). The baseline survey was acquired shortly after production started. Since then, several

seismic monitors were acquired: monitor 1 (7 months after the baseline, 4 months after water

injection started), monitor 2 (9 months after monitor 1), monitor 3 (almost one year after

monitor 2), monitor 4 (18 months after monitor 3) and monitor 5 (almost 3 years after monitor

4).

The initial reservoir pressure was approximately 0.7 MPa above the bubble point. The

field’s seismic monitoring uses 100 km of ocean-bottom cables (OBC) in 14 lines spaced 400

m crossline and 4 component sensors spaced 100 m inline covering the entire reservoir and

extending over the 3 aforementioned major faults that limit the reservoir to the west (BUKSH

et al., 2015), represented by the black lines in Figure 5. The seismic source is a single source

with 3 arrays shooting in a 50 x 50 m grid. The receiver array is permanently connected to a

recording system located on the FPSO that supports production activities in the field. This

equipment arrangement facilitates the need to mobilize only a shooting vessel to record

subsequent monitor seismic surveys for field surveillance (CHEN et al., 2015). Figure 5 shows

the layout of the system over an amplitude map of the field.

Figure 5 - Ocean bottom location of sensors and wells drilled up to 2015, overlaid with a seismic amplitude
map (adapted from BUKSH et al. (2015)).
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Monitors 1, 2 and 3 followed the same acquisition parameters and processing sequence.

Monitor 4 is a “snapshot” survey, which was acquired as an opportunity throughout a neighbor

survey being acquired with streamers. Because of that, this monitor has a different geometry,

shooting direction and coverage than the other surveys. CHANG et al. (2019), however, argue

that although noisier, the 4D signal is still clearly visible in the snapshot.

Monitor 5 has a different amplitude recovery compared to the other surveys because of a

different processing sequence. The baseline was therefore co-processed again to be compared

against this monitor.

4.2 Simulation models

The model ensembles and their data assimilation were generated by other specialist

members detailed in ROSA; SCHIOZER; DAVOLIO (2022) of the research group and were

not developed as part of this thesis. The simulation models have a total of 87,768 cells in a 73

x 38 x 32 grid, with approximate sizes of 150 m x 150 m x 4 m in the i, j and k directions,

respectively, simulated using the black-oil numerical reservoir simulator IMEX (CMG). The

models were generated under 53 scalar uncertainties, such as the initial water-oil contact depth,

multipliers that define the absolute permeability in the vertical direction, connate water

saturation, fluid relative permeability, irreducible oil saturation, and rock compressibility, with

200 geostatistical realizations of static properties, such as horizontal permeability, porosity, net-

to-gross ratio and facies. The full details on the uncertainty parameters and ranges are detailed

in MASCHIO et al. (2021). These uncertainties were combined using the discrete Latin

hypercube with geostatistical realizations method (SCHIOZER; AVANSI; SANTOS, 2017),

resulting in 200 different models.

Various iterations of geomodeling were performed and were constantly updated,

according to new information acquisition or as the field understanding increased. All the sets

were diagnosed using the proposed workflow. The following sets were selected to illustrate this

thesis, all comprising 200 reservoir simulation models with different levels of reservoir

characterization:

- Set S3D: Geomodeling iteration 1, using 3D seismic data (from the baseline survey) as

co-variable, without introducing features interpreted from the 4DS.

- Set S4D: Geomodeling iteration 2, adding features interpreted from 4DS introduced (up

to monitor 3), as described in MALEKI et al. (2021), and improved knowledge on the

reservoir behavior and its heterogeneities.
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- Set S4D_post_W: Set S4D after data assimilation using the ES-MDA method, including

well history data only, up to year 5). The models were updated in four iterations, using

BHP data for all wells and oil rates for producers and total liquid and water rates for

producers and injectors, respectively, as boundary conditions.

- Set S4D_post_WS: Set S4D after data assimilation using the ES-MDA method,

including well and 4DS data. The well data used are the same as Set S4D_post_W, and

the 4DS map is the ratio of inverted acoustic impedances between the monitor 3 and the

baseline, extracted between the reservoir top and base.

The seismic inversion and data assimilation used in the last two sets were generated and

discussed in detail in ROSA; SCHIOZER; DAVOLIO (2021).

4.3 Petro-elastic modeling (PEM)

The seismic signal is a combination of the responses of the rock, frame, minerals and

fluid and its ability to combine these responses (EMERICK et al., 2007). Several authors

proposed ways to describe the effective bulk and shear moduli of the rock’s granular assembly,

with the Hertz–Mindlin contact theory being one of the most used to model unconsolidated

sandstones (MAVKO; MUKERJI; DVORKIN, 2009). Given the geological characteristics

described in the previous section, the Hertz–Mindlin contact model is used to estimate the dry

bulk and shear modulus (ܭௗ௬ and µdry) of the rock at critical porosity and their dependency on

effective pressure ܲ (MAVKO; MUKERJI; DVORKIN, 1998).

ுெܭ = ඨܥ
ଶ (1 − ∅)ଶߤଶ

ଶ(1ߨ18 − ௦)ଶߥ ܲ
య

(15)

ுெߤ =
5 − ௦ߥ4

5(2 − (௦ߥ
ඨ3ܥଶ (1 − ∅)ଶߤଶ

ଶ(1ߨ2 − ௦)ଶߥ ܲ
య

(16)

where C is the coordination number (number of contacts per sphere), ௦ is Poisson’s ratio, andߥ

ߤ is the grain shear modulus.

The lower Hashin-Shtrikman bound can then be used to calculate ௗ௬ܭ and  µdry at

porosities between 0 and the critical ∅ according to:
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(18)

ܼ = ுெܭ9) + (ுெߤ8 (19)

Batzle & Wang (BATZLE; WANG, 1992) equations are used to define the bulk modulus

for each fluid (ܭ, ,ܭ ௪ for oil, gas and water, respectively), and Wood’s equation is used toܭ

define the bulk modulus for the fluid mixture (ܭ), according to:
1
ܭ

=
ܵ௪
௪ܭ

+
ܵ
ܭ

+ ܵ

ܭ (20)

Finally, Gassmann’s equations (GASSMANN, 1951) are used to state the final saturated

bulk modulus (ܭ௦௧) using the saturation estimates from the well logs.
ೞೌ

బିೞೌ
=

ೝ
బିೝ

+


∅(బି)
, µsat = µdry andߩsat= dry + Φߩ flߩ (21)

where  is the bulk modulus of the minerals that form the rock frame. The resultingܭ ௦௧ isܭ

then used to predict the elastic parameters of the saturated rock according to:

ܸ = ඨ
಼ೞೌశర

యഋ

ఘ
  and ܫ = ߩ ܸ (22)

ௌܸ = ට
ఓ
ఘ
  and ௌܫ = ߩ ௌܸ (23)

We use the templates defined by (ØDEGAARD; AVSETH, 2004), adjusted using the

RockSI software – the modeled data by the PEM’s are compared against the measured logs: P-

wave velocity ( ܸ), S-wave velocity ( ௌܸ) and density (ρ) to verify the well fit quality. After

calibration of the above parameters at the well, the equations can be applied to each cell of the

reservoir model, given their saturations and porosity.



44

5 RESULTS AND DISCUSSION

5.1 Data quality analysis

BUKSH et al. (2015) reported acquisition noise related to the in-field rig activities during

the baseline survey and seismic interference from another survey during the first monitor.

Pressure Inverted Echo Sounder (PIES) instruments provide water velocity and tidal depth data

for deep-water statics (WANG et al., 2015), which are also reported to have added insights into

overburden integrity and geomechanics (EBAID et al., 2017).

Regarding the seismic data processing, the seismic data used for this work are noise and

multiple-attenuated, 4D processed, and time-shift corrected. A QC prior to the interpretations,

however, showed residual time-shifts near gas-related 4DS anomalies and residual overburden

energy at the 4DS differences between monitors 1, 2 and 3 and the baseline. These residual

time-shifts had a minor effect on the interpretations between the reservoir top and base of the

reservoir but were acknowledged and flagged throughout the work. Nevertheless, the 4DS

repeatability quality is excellent, with NRMS values measured in the overburden of up to 5%

with patchy areas up to 10% on ultrafast-track products (seismic volumes obtained using a faster

processing sequence), providing confidence that these results can be used for influencing early

field life management decisions (BUKSH et al., 2015). Figure 6 shows the NRMS maps for all

the vintages, highlighting a lower repeatability region in the northeast up to monitor 3 (Figure

6 a to c). This is the region where the reservoir pinches out (where tuning effects may occur)

and has a slightly higher noise level. Therefore, the observed 4D signal interpretation

confidence is lower than that of the other regions. Monitor 4 (Figure 6 d) has lower repeatability,

as expected, due to the different acquisition parameters (different sail line acquisition azimuth,

which imprints are visible in the stripes from Figure 6 d), and monitor 5 (Figure 6 e) has the

best repeatability, where the improvement in NRMS values is clear across the entire survey

with the new processing sequence.
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Figure 6 - NRMS maps calculated at the overburden for monitors 1 (a), 2 (b), 3 (c), 4 (d), and 5 (e) vs.
baseline.

5.2 Initial data interpretations

Figure 7 shows the 4D ௦ܵܯܴ݀ map between the baseline and all monitors considering

the reservoir zone (from top to base), illustrating the evolution of the 4DS anomalies. As the

reservoir is thin (average 25 m), with a soft (through) reflection at the top and a peak at the

bottom, ௦ܵܯܴ݀ maps between the top and base of the reservoir are considered appropriate to

capture these anomalies. The main observed 4DS anomalies are hardenings (increase in IP)

related to water injection (injected water replacing oil), formation water from the aquifer

replacing oil (e.g. near P8 and P10), and softening (decrease in IP) related to gas going out of

solution.

Strong 4D signals related to gas going out of solution are observed in two regions: near

producer wells P5 and P6 and near producer wells P2 and P3. Pressure effects are not expected

to be significant due to the pressure maintenance being supported by water injection; however,

at monitor 4, re-pressurization caused some of the gas signal near wells P5 and P6 to attenuate.

MALEKI et al. (2021) present more detailed interpretations.
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Figure 7 - showing (baseline against monitors, measured between the reservoir’s top and base) ࢙࢈ࡿࡹࡾࢊ
the 4DS signal evolution: monitor 1 (a), 2 (b), 3 (c), 4 (d), and 5 (e). Note the different signal-to-noise ratios

in (d) due to its different acquisition configuration.

5.3 Petro-elastic modeling (PEM)

Figure 8 shows a comparison of the predicted Vp, Vs and ρ (colored lines) with the

measured sonic and density logs (black lines) using the predictions from Hertz–Mindlin with

coordination numbers 6 and 9 (red and green, respectively). The figures demonstrate that all

the models predict the density very well. The models also predict Vp and Vs fairly well, except

for the zones with abrupt changes in lithology, as highlighted by the blue arrows (Figure 8 d).

These are interpreted as high-velocity cemented sandstones. The Hertz–Mindlin PEM with

coordination number 9 was selected for use in this work because of its better fit with Vp (and

IP). Table 1 summarizes the other parameters used for the PEM.
Table 1 - Main parameters used for the PEM.

Parameter Quartz Clay

K0 (GPa) 36.6 25

G0 (GPa) 45 9

ρ (g/cm3) 2.65 2.55
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Figure 8 - Fit quality between measured (black) and modeled Vp, Vs, density and P-impedance (IP) logs
for wells A1 (a), A2 (b), A3 (c) and A4 (d). The red and green curves are modeled with coordination

numbers 6 and 9, respectively. The dashed black lines are the main petrophysical interpretations received
from Shell.

5.4 Seismic response modeling

5.4.1 1D modeling to understand the 4D effects

The set of equations defined in the previous step is then applied to various hypothetical

production scenarios in the 1D domain (well location) to understand the sensitivity of acoustic

impedance changes to each of them. These, according to the initial observations from sections

4.1 and 4.2, are:

- low salinity water injection replacing oil;

- formation water replacing oil;

- gas going out of solution (initial pressure in the S field was just above bubble point and

is expected to drop as production starts); and

- pore pressure increases and/or drop.

The 1D modeling illustrated in Figure 9 a and b shows the two main effects that occur

throughout the production of the S field: water saturation changes from 20% (connate water
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saturation) to 87% (100% - 13% of residual oil) and gas saturation variations from 0% to 40%,

(considering a critical gas saturation of 40%). Figure 9 a shows that an increase from 20 to 87%

in water saturation (formation water replacing oil) causes an 8% increase in IP. Figure 9 b shows

that a 2% increase in gas saturation represents a decrease of 6.2% in IP. This is a known effect

that occurs because the gas is more compressible, where ܭ dominates the resulting  (seeܭ

equation (20)).

Figure 9 - 1D modeling of (a) water saturation increase and (b) gas saturation increase. No free gas is
present at this well A1; therefore, the well data are calibrated to (a).

Figure 10 shows the effect of salinity decrease as a result of injected water replacing

formation water (180,000 ppm to 34,000 ppm). The salinity change causes an IP decrease of

3.5%.

Figure 10 - 1D modeling of the salinity effect: formation water (a) being replaced by injected sea water (b).
The water saturation values are kept constant.

Pressure effects are not significant for this field application, as no major pressure

variations are observed (up to a 3 MPa difference). The modeling from Figure 11 shows that
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less than 1.6% in IP change occurs when increasing the pore pressure from 30 to 33 MPa (a to

c) and 2% when decreasing to 27 MPa.

Figure 11 - 1D modeling of the pressure effect (a) 30 MPa, (b) 27 MPa and (c) 33 MPa.

The previous production scenarios are then combined to understand how their interaction

affects the elastic sensitivity. A scenario where only water saturation effects occur (e.g., aquifer

water invading oil zone, scenario s1 to s2 from Figure 12 a), a 12 to 16% IP increase is observed

(hardening effect). However, according to salinity measurements and tracers, injected sea water

with lower salinity than the formation water decreases the hardening effect to 8 to 10% in IP

change (scenario s1 to s3 compared to scenario s1 to s2 from Figure 12 a). This suggests that

the salinity effect, although unremarkable when considered individually as shown in the

decoupled modeling, may be significant when associated with other effects, such as the water

saturation increase. Additionally, combining these effects with gas going out of solution as a

result of depletion below the bubble point, the polarity of the 4D signal reverses (from scenarios

s1 to s4 from Figure 12 a), and a 10% increase in gas saturation softens the IP by 15% (scenarios

s1 to s5). The synthetic amplitude traces from Figure 12 d, e and f show the different 4D signal

polarities depending on the combination of effects. These modeled observations agree with the

4D response caused by saturation, salinity and pressure changes in the field discussed in section

5.2.
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Figure 12 - 1D modeling (appraisal well A1) of the 4D predicted effects. (a): (s1) initial scenario, log
saturated with oil and 20% formation connate water (salinity of 180000 ppm); (s2) fully saturated with

formation water; (s3) fully saturated with injected sea water (salinity of 34000 ppm); (s4) saturated with
formation water +2% increase in gas saturation and 2 MPa pore pressure decrease; and (s5) saturated

with formation water +10% increase in gas saturation and 2 MPa pore pressure decrease. (b):  modeled
IP for s1, s2, s3 and s4. (c) Modeled synthetic traces s1, s2, s3 and s4. (d), (e) and (f) show the synthetic 4D
amplitude differences (boosted 10 times in relation to c) resulting from each of the changes of scenarios: s2

to s3, s1 to s2 and s1 to s4.

5.4.2 Generating synthetic seismic data from a simulation model

After understanding the elastic changes in the 1D domain, the simulation model is

forward modeled using the described PEM. This step uses MATLAB codes to extract the

dynamic and static properties from each simulation model and to calculate IP values for each

date as close as possible to the 4D seismic monitor acquisition date. For each seismic vintage,

a 3D seismic volume is generated. An automatic Petrel workflow is setup to run the forward

modeling for each seismic vintage up to the desired 4DS attribute.

     Figure 13 a shows a vertical section of the modeled 4DS difference between monitor

3 and the baseline for one selected simulation model. Figure 13 b is the modeled 4DS difference

at the same location with the noise added to each seismic vintage, which is roughly similar to

the noise from the observed 4D section seen in Figure 13 c. We add Gaussian random noise to

each trace sample to match the observed noise level. The signal-to-noise ratio is defined using

root mean square (RMS) estimates from the observed 3D baseline seismic signal and noise. The

synthetic seismic data show a good correlation with observed data in terms of frequency

content, polarity and the main 4D physical effects, where the main differences between modeled

and observed 4DS are due to insufficient simulation model calibration (example from

simulation model set S3D).



51

Figure 13 - 4D difference vertical seismic section examples: (a) synthetic, (b) synthetic with random
spectrally shaped noise added, (c) observed.

5.5 Attribute maps and region separation

The 4D attribute map can be manually divided into well regions. Each regions’

boundaries are defined to contain the observed 4D anomalies forms, which in this application

case occur close to the wells. The polygons are then used to divide all the observed and synthetic

4DS attribute maps. The black dashed lines from Figure 14 show the region segmentation

(region names in green) over the ௦ܵܯܴ݀ map between monitor 3 and baseline.

Figure 14 - ࢙࢈ࡿࡹࡾࢊ extracted between reservoir top and base - monitor 3 vs. baseline. The black dashed
lines are the region separation, defined according to the 4D signal shape.

5.6 Automatic comparison metrics

The field S exhibits different 4D anomalies in terms of polarity, magnitude, and shapes,

and so the predicted 4DS from the sets of simulation models. The next sub-sections show the

4D maps and their anomalies clustering results obtained from different domains.
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5.6.1 Feature/shape extraction in the amplitude domain

Table 2 shows the cluster initialization values for the 4D maps in the amplitude domain.

The µଵ, and µଷ are, respectively, the minimum and maximum values of ܼ௦. This was done

to initialize the positive, zero and negative anomaly clusters apart from each other, but using

statistics automatically extracted from the observed maps so that the procedure is as less

dependent on manually set thresholds as possible. The cluster k2 is initialized with a small

variance (0.001) because its distribution is not expected to deviate considerably from the

initialized mean 0. The other clusters have slightly larger variance (0.05) initializations.

Table 2 - Value initialization for each cluster k (amplitude and IP domain).
Cluster µ ࢙࢈࣌

k1 min(ܼ௦) 0.05

k2 0 0.001

k3 max(ܼ௦) 0.05

Figure 15 shows three examples of the resulting ternary maps using the proposed method

(GMM) and two other conventional clustering methods (threshold and k-means). The

histograms show the fitted mixture models, k-means centroid and the threshold values overlaid

(Figure 15 e, j and o). The GMM method works as expected, clustering the softening anomalies,

zeroes, and hardening anomalies within clusters 1, 2 and 3, respectively, even in the presence

of noise, which had dubious interpretations. It also picks detailed 4D features such as the fluid

front indicated by the arrows from Figure 15 i, resulting from the injected water pushing oil.

The examples also suggest that threshold values are not the same across surveys, in this case,

due to noise content (dashed lines in Figure 15 e, j and o). The k-means optimization method,

using minimization of Euclidean distances, may push the centroids too far from initialization

values and result in an empty cluster, as seen in Figure 15 m. The GMM is, therefore, a good

compromise between clustering noise and picking the important 4D features. The APPENDIX

A shows the clustered maps applied in all monitors, to demonstrate the clustering works for

different noise levels, including the repeatability noise present in monitor 4.

Figure 16 shows the GMM clustering performance on ܵܯܴ݀ maps predicted for five

random simulation models (extracted between monitor 5 and baseline), from which we can

observe that the GMM successfully captured the three clusters of data in different dynamic

settings. This indicates that the methodology addresses the complexity of generating clusters

for very different models with various 4D amplitude ranges.
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Figure 15 - ࡿࡹࡾࢊ maps ternarized using threshold, k-means and GMM, and their corresponding
histograms. (a) to (e) for observed monitor 3 vs. baseline, (f) to (j) for observed monitor 5 vs. baseline and

(k) to (o) for the synthetic 4DS resulted from forward modeling of model 1 considering monitor 3 and
baseline times. The histograms show the Gaussian model mixture distributions (continuous lines), the k-

means centroids (dotted line) and the threshold values (dashed line) overlaid at the ࡿࡹࡾࢊ value
distributions.

Figure 16 - ࢙࢟ࡿࡹࡾࢊ maps between monitor 5 and baseline for 5 random models (top) and their
corresponding ternary maps (bottom).

5.6.2 Feature/shape extraction in the IP domain

The diagnosis application in the IP domain follows the same methodology as in the

amplitude domain, however, there are challenges inherent to the 4D inversion and the IP maps

may not exhibit the same kind of information as the 4D amplitude attributes. For example, the

observed 4D IP may be contaminated with sidelobe effects present in the amplitude data and

not resolved in the 4D seismic inversion. These sidelobes are the energy with opposite polarity
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that occur around the main signal lobe, typically caused by the absence of low frequencies in

the seismic data. The challenge is that modeled IP does not contain sidelobe effects (the IP is

calculated at each cell from the model using the PEM equations). Therefore, the comparison is

affected, where false mismatches may occur due to not comparing the primary observed lobes

with the modeled IP. Note that this is not an issue when the comparison is performed in the

amplitude domain, as the sidelobes are modeled in the forward seismic modeling.

Although the main 4D effects are detectable in the amplitude domain, once the seismic

spectra broadens after inversion, the vertical resolution increases, and more energy is recovered.

An average map between the reservoir top and base may not be sufficient to capture all the 4D

features and sets of vertical information. Figure 17 shows two vertical cross sections: the

amplitude difference and the IP ratio (RIPP) between monitor 3 and baseline, with the reservoir

top, middle (dashed) and base plotted in black. Figure 17 b shows both the resolution

enhancement as compared to Figure 17 a. This example indicates that RIPP maps extracted

between the same reservoir interval range as the amplitude domain may result in different

information. It also shows some requirement to carefully attenuate the sidelobe effects out from

the RIPP maps.

Figure 17 - Vertical cross-sections of observed 4D amplitude difference (a) and RIPP (b) between monitor
3 and baseline. The diagonal dashed line in (b) shows a channelized feature separation into regions 1 and 2

which were not as evident in the amplitude domain. Modified from ROSA; SCHIOZER; DAVOLIO
(2022).

ROSA; SCHIOZER; DAVOLIO (2022) proposed one mitigation strategy to filter the

sidelobes defining sidelobe polygons manually, within which the sidelobes were defined as

RIPP=1 (no 4D changes). These values were applied to the RIPP average map between the top

and base of the reservoir. The mapping window between top and base of the reservoir were

selected in order to maintain consistency with the amplitude domain. Figure 18 shows the

clustering results of the observed sidelobe-attenuated standardized RIPP map.



55

Figure 18 - Clustering results for the sidelobe attenuated RIPP map between the observed monitor 3 and
baseline: (a) RIPP, (b) clustered map, and (c) Gaussian mixture models.

Another more straightforward option is to make block-by-block comparisons (volume-

based comparisons instead of maps), however, downscaling and filtering the sidelobe energy in

a 3D volume at the reservoir model scale is unpractical, and therefore it was not tested in this

application.

5.6.3 Feature/shape extraction in the saturation/pressure domain

The cross-domain is an interesting adaptation of the workflow because it skips the PEM

and the forward modeling steps. The workflow extracts saturation and pressure properties from

the simulation results to be compared instantly to a given observed 4DS amplitude map.

As discussed in chapter 2, a few authors have proposed techniques to make the direct

cross-domain comparisons; however, they suggest simplifications without considering the

ambiguous (or destructive) aspect of the 4DS effects, which have been demonstrated to be

relevant in this study. For this reason, we performed an initial assessment of which dynamic

properties could be extracted from the simulation models and cross-correlated with seismic

attributes with minimal inaccuracy.

Figure 19 shows crossplots for the average of the 200 maps, between the ௦௬ܵܯܴ݀ and

the saturation/pressure differences measured for the monitor 3 vs. baseline in the S4D_post_WS

set. Table 3 shows the correlation coefficients between each physical effect and the

௦௬ܵܯܴ݀ for the average maps, calculated using the points inside the grey rectangle areas from

Figure 19. The crossplots suggest the dynamic physical effects that can be directly correlated

with the ௦௬ܵܯܴ݀ are the water, oil and gas saturations differences in the points located at the

quadrants Q2, Q3 and Q1 respectively. For the oil saturation difference (dSo), the points in

quadrant Q3 correspond to the areas where water replaced oil (quadrant Q2 in Figure 19 a) and

the water saturation increased. Therefore, we consider the crossplots from Figure 19 a and b

complementary, except for the region near the red arrow in Figure 19 b, where the points are

slightly shifted from 0 downwards. This is explained by the gas going out from solution effect
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points that show the gas saturation increase, strongly correlated with negative ௦௬ܵܯܴ݀ values

in the quadrant Q1 from Figure 19 c.

As discussed in the initial modeling (section 5.4.1), the pore pressure effect is not

significant in the field S. Figure 19 d shows a poor correlation between the decrease in pore

pressure and ܵܯܴ݀ (correlation coefficient of -0.141), which suggests the presence of

ambiguous effects, where the saturation signal is dominant.  For this reason, the water and gas

saturation difference (dSw and dSg) maps were selected for the cross-domain comparisons

presented in this section.

Figure 19 - Average of 200 ࢙࢟ࡿࡹࡾࢊ vs. average of 200 dSw (a), dSo (b), dSg (c) and dPP (d) – the
differences are between monitor 3 and base, modeled for set S4D_post_WS. The dashed lines divide the
crossplots through a zero point into quadrants Q1 to Q4. The grey rectangles highlight the areas where

the correlation coefficients were calculated at.
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Table 3 - Correlation coefficients for the analyzed physical effects.

Physical effect Correlation coefficient (r)

dSw -0.1410

dSo 0.6909

dSg -0.6979

dPP -0.527

This analysis suggests that the hardening cluster obtained from the ௦ܵܯܴ݀ map can be

fairly compared against the increase in water saturation cluster from the modeled dSw map.

The softening cluster can be compared with the increase in gas saturation cluster from the

modeled dSg map.

It is important to stress there is an inherent correlation between the ௦௬ܵܯܴ݀ and the

dynamic properties because the ௦௬ܵܯܴ݀ uses a PEM, whose parameters include these

dynamic properties themselves. We highlight the PEM’s calibration discussed in section 4.3 is

sufficient to assume this correlation is the consequence of the physical effects.

The values in Table 4 are the initial conditions for each modeled saturation difference

map, which were selected based on tests, adapted to the different saturation ranges.

Table 4 - Value initialization for each cluster k (water and gas saturation domains).
Cluster dSw dSg

µ ࢙࢈2ߪ µ ࢙࢈2ߪ
k1 -0.7 0.05 -0.01 0.0005

k2 0 0.001 0 0.00001

k3 +0.7 0.05 +0,01 0.0005

Figure 20 shows the clustering results obtained for the dSw and dSg maps. As only their

increase in saturation will be compared against the = ௦, the clustering is simplified as 0ܵܯܴ݀

absence of increase in saturation and 1 = increase in saturation.
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Figure 20 - Saturation difference, ternary map and Gaussian models (a) to (c): dSw and (d) to (f) dSg. The
maps are an average of all layers between reservoir top and base. Examples from model 1, monitor 3 vs.

base, set S4D_post_WS.

5.7 Combining the shape and magnitude metrics

This section shows the results in several reservoir management key steps. We used the

monitor 3 vs. baseline comparison maps, because it displayed most variety in 4D anomalies’

shape and magnitude (refer to Figure 7) to demonstrate their applicability. The sub-sections

5.7.1 to 5.7.4 present discussions in where the diagnosis was performed in the amplitude

domain. Section 5.8 presents a comparison between the diagnosis obtained at different (ܵܯܴ݀)

domains, where we review if the reservoir management decisions are different depending on

the selected one. The sub-section 5.8.1 shows a comparison between IP and amplitude domain

diagnosis, and the sub-section 5.8.2 demonstrates interesting discussions on the saturation

domain and how its diagnosis compares with the previous two. Finally, the APPENDIX A

shows tests performed in other monitors, with different levels of noise and repeatability.

5.7.1 Evaluating geomodeling

In the closed-loop field development and management workflow, it is common to have

various iterations of geomodeling as new information is acquired and as the knowledge on the

field’s behavior increases, the need to generate new prior models emerges. One approach to

quantify improvements within these iterations is to measure errors against observed data.

Conventionally, a simulation model uses quadratic errors against well production data, which

are very local measurements and do not always reflect problems from the geological model.
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The 4D similarity metric complements the error evaluation due to its spatial significance. Figure

21 a and Figure 21 b show a shape and magnitude measure, respectively, for two sequential

iterations of geomodeling (set S3D in blue and set S4D in black), highlighting two problematic

regions: P5+P6, in which both magnitude and shape mismatch are higher than other regions,

and P9, with higher shape errors. They also show that the improvement from geomodeling set

S3D to set S4D is not very straightforward to quantify. For example, the I2 region improves for

the shape metric but not so much for the magnitude one. The crossplots from Figure 22 highlight

that the shape and magnitude metrics do not always present a good correlation, suggesting that

the decisions to reject or accept a certain model would be different depending on the kind of

error metric used.

Region P5+P6 is highly influenced by a strong gas anomaly, which affects the errors the

most. Figure 23 and Figure 24 show the best and worst models selected by both metrics in set

S4D considering only the region P5+P6. The ranks obtained from both metrics are very similar,

where the same models are considered top best and top worst at both, differing by only a few

positions. In fact, there is a strong correlation between both metrics in this region, which is

illustrated in Figure 22 e.

The introduction of features detected on the 4DS monitor and better knowledge of vertical

heterogeneities on set S4D decreased the P8, P9 and P10 shape errors. However, this is not

detected by the magnitude metric from regions P8 and P10, and the crossplots from Figure 22

f and Figure 22 h suggest a poor correlation between both metrics for these two regions. The

shape error also decreases significantly for region I2 between iterations from set S3D and set

S4D.

Figure 25 shows the region I2 case in detail for both sets S3D and S4D, demonstrating

that although the median of the magnitude errors did not change significantly, the set S4D does

not have anomalously high errors models as S3D. The worst models for the shape metric (red

points) and for the magnitude metric (black points) from set S3D are indicated in the set S4D,

being collapsed toward the shape and magnitude error means, which occurred even without

running well/seismic data assimilation. Figure 26 a and b illustrate 5 of these worst models

ranked in region I2 according to the shape and magnitude metric, respectively, at set S3D and

their similarity improvement in set S4D.



60

Figure 21 - (a) Shape error and (b) magnitude error for the set S3D (blue) and set S4D (black). Note the
error scale difference for P5+P6 due to higher error.

Although the metrics flag some regions to address in the geomodeling iteration (from set

S3D to set S4D), an actual improvement was observed only after the model calibration/data

assimilation process, as shown in the next discussion (5.7.2) for the region P5+P6 case.

Figure 22 - Shape error vs. Magnitude error for set S4D.



61

Figure 23 - Best 5 models according to (a) shape and (b) magnitude similarity with 4DS (set S4D),
measured at region P5+P6 defined by the black polygon.

Figure 24 - Worst 5 models according to (a) shape and (b) magnitude similarity with 4DS (set S4D),
measured at region P5+P6 defined by the black polygon.

Figure 25 - Shape error vs. Magnitude error for region I2 at set S3D (a) and set S4D (b). The red and
black points are the highest errors from the shape and magnitude metrics, respectively.
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Figure 26 - Worst 5 models according to (a) shape and (b) magnitude similarity with 4DS measured at set
S3D for region I2 in the black polygon. The bottom figures show their similarity increase in set S4D.

5.7.2 Evaluating data assimilation

Figure 27 shows a comparison between the set S4D from the previous section before data

assimilation (blue), after data assimilation using only well data (set S4D_post_W, in black) and

after assimilation with well and 4D seismic data simultaneously (set S4D_post_WS, in red).

Most improvements from data assimilation are visible in the magnitude metric, as the ES-MDA

technique uses the least-squares calculation on the data-mismatch objective function. In

contrast, the shape errors are larger or similar after data assimilation in regions such as P2+P3,

P8, P9, and I5.

Region P5+P6 presents an error decrease after data assimilation for both metrics. The

data assimilation process has a significant impact on this region because its effort to adjust a

certain sample depends on its error standard deviation. This region contains a strong 4D

anomaly with larger standard deviation error; thus, its error level decreases toward the same

error level as the other regions. This analysis suggests that an objective function balancing may

improve the data assimilation impact in other regions.
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Figure 27 - (a) Shape error and (b) magnitude error for the set S4D (blue), set S4D_post_W (black), and
set S4D_post_WS (red). Note the error scale difference for region P5+P6 due to higher error.

Figure 28 shows the models whose errors are closest to the median error from each of the

three sets, using both the shape (Figure 28 a to c) and magnitude (Figure 28 d to f) metrics,

highlighting the incremental 4DS similarity improvement as the 4DS is assimilated, as

expected. The median error map analysis presented in Figure 28 also suggests that at least 50%

of the models (higher error half) for the two sets S4D and S4D_post_W do not sufficiently

represent the expected 4D signal at region P5+P6, enhancing the need to quantitatively

assimilate the 4DS data for these models. Note that the same does not occur for all regions; for

instance, the data assimilation did not perform very well for region P8 and P9 – these regions

have weaker and smaller anomalies then the others and the data assimilation effort is less.

The methodology assisted us in evaluating the data assimilation results of various sets

resulting from different data assimilation parameters within 2 days (i.e., steps 3.2.3 to 3.8 from

the workflow).
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Figure 28 - Models with errors closest to the median error measured at region P5+P6 for models from set
S4D, S4D_post_W, and S4D_post_WS. (a) to (c) Use the shape metric, and (d) to (f) use the magnitude

metric.

5.7.3 Multi-objective filtering

The previous applications demonstrate that both magnitude and shape metrics are

complementary. This section proposes to filter models using the metrics individually for each

region and each metric. The crossplots from Figure 29 show that the correlation between both

metrics in some cases worsens as the errors increase. This is demonstrated by the models from

Figure 30 and Figure 31: the best models according to the entire reservoir error look similar for

both metrics, but the worst do not. In addition, a global error given by the sum of magnitude

and shape metrics may have a good overall average error for the entire reservoir, but local errors

can vary depending on the region. Model 11, represented by the red cross in the crossplots from

Figure 29, presents the best overall error (lowest sum of magnitude and shape errors for the

entire reservoir). However, crossplots from Figure 29 b, e, f, i and j show that this model is

ranked as intermediate for these regions. The green arrow 1 from Figure 32 indicates the lack

of softening anomaly from injector I1 (water pushing oil) in this model, arrow 2 shows a non-

existent softening anomaly in the observed data, incorrectly predicted by the model, and arrow

3 shows a major magnitude and shape mismatch for the hardening anomaly caused by the water

saturation increase. Also note the anomaly from region I1 is not contained, invading part of

region P9, which also affects its error.

The examples suggest that ranking and selecting models using error cutoffs considering

each region and each metric separately is a better solution than summing and averaging errors,
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as we guarantee that all regions are simultaneously good. We propose filtering out high error

models according to their statistical measures, as defined in equations (13) and (14) from

section 3.8. The workflow provides lists of multiple high error models, and for a model to be

considered good, it must be simultaneously not contained in any of the lists, resulting in the

black square outlines from Figure 29 crossplots. Additionally, the framework proposed to

evaluate 4DS misfits, as in Figure 30 and Figure 31, can maximize the models assessment for

some goals, such as defining an infill drilling position.

Figure 29 - Shape error vs. Magnitude error for set S4D_post_WS. The red plus sign represents model 11.
The green models were filtered by the shape metric and the red, by the magnitude metric in each

individual region. The black square outlines are the final outlier (high error) models, selected by the
multi-objective filtering procedure using all regions and both metrics.

Figure 30 - Best 5 models according to (a) shape and (b) magnitude similarity with 4DS (set
S4D_post_WS), measured at the entire reservoir.
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Figure 31 - Worst 5 models according to (a) shape and (b) magnitude similarity with 4DS (set
S4D_post_WS), measured at the entire reservoir.

Figure 32 - Region details of (a) ࢙࢈ࡿࡹࡾࢊ and (b) Model 11 ࢙࢟ࡿࡹࡾࢊ at set S4D_post_WS.

5.7.4 Adding a new monitor survey

A new seismic monitor (monitor 5) was acquired, and the workflow assisted us in quickly

evaluating if the simulation models were honoring the new vintage. Figure 33 a and b show the

shape and magnitude error for set S4D_post_WS, and its comparison with the errors calculated

from the monitor 3 vs. baseline. Although the data assimilation of set S4D_post_WS did not

include monitor 5 (only monitor 3), the metrics suggest that the models were able to generally

honor the subsequent seismic vintage. The problematic P5+P6 region magnitude error

decreased, and its error shifts to the same level as the other regions because the gas anomaly

becomes weaker, visible in the black arrow at the observed map from Figure 34. The boxplots

from Figure 33 show that the highest magnitude and shape errors now occur in region P2+P3.

This is explained by two reasons. The first is that the observed anomalies previously detected

in previous monitors for this region diminished, while they are still somewhat predicted by the

models. The second is that the modeled 4D signal from neighbor region I2 is not contained

within this region, and it extrapolates toward region P2+P3 (black arrows from Figure 36).
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Figure 33 - (a) Shape error and (b) magnitude error for set S4D_post_WS – monitor 3 vs. baseline (black)
and new monitor (monitor 5) vs. baseline (blue).

Figure 34 and Figure 35 show the best and worst models, respectively, considering the

shape and magnitude metrics for set S4D_post_WS, measured at the entire reservoir. The best

model examples generally honor the latest seismic monitor. Figure 37 shows the error

crossplots, highlighting in red the outlier models picked for each metric/region. Figure 38 shows

the high error models that were filtered out based on the monitor 3 vs. baseline similarity metrics

shown in Figure 29 (black dots, 48 models), the ones filtered out based on the monitor 5 vs.

baseline (red dots, 30 models), and the intersection between the ones that have been filtered out

based on monitor 3 and monitor 5 metrics (green dots, 21 models). The blue models are

considered to have low error. Although most high error outliers selected using monitor 5 maps

had also been selected out at monitor 3, the workflow exemplifies the new seismic monitor

indicated further high error models.

The subsequent monitor survey was evaluated without having to review any of the

methodology parameters, reinforcing the practical and robust aspect of the workflow. In

addition, this analysis supports the decision to assimilate new monitors.
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Figure 34 - Best 5 models according to (a) shape and (b) magnitude similarity with 4DS (new monitor 5)
for set S4D_post_WS, measured at the entire reservoir.

Figure 35 - Worst 5 models according to (a) shape and (b) magnitude similarity with 4DS (new monitor 5)
for set S4D_post_WS, measured at the entire reservoir.

Figure 36 - Best 5 models for region P2+P3 according to (a) shape and (b) magnitude similarity with 4DS
(new monitor 5) for set S4D_post_WS.
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Figure 37 - Shape error vs. Magnitude error for set S4D_post_WS, measured at monitor 5 vs. baseline.
The red dots are the outlier models filtered out based on each metric (total of 30 models).

Figure 38 - Shape error vs. magnitude error for set S4D_post_WS, measured at monitor 5 vs. baseline.
The black dots are the high error models filtered out based on the monitor 3 vs. baseline maps (48

models). The red dots are the models filtered out based on monitor 5 vs. baseline maps (30 models). The
green dots are models filtered out based on monitor 3 intersected with the ones filtered out based on

monitor 5 vs. baseline comparison (21 models).



70

5.8 Comparison between diagnosis performed in different domains

5.8.1 IP vs. Amplitude diagnoses

This section aims to evaluate if decisions such as simulation model ranks and model

filtering are different depending on the comparison domain. Figure 39 shows the mapped

anomalies are different at several locations, where the main ones are highlighted by the black

arrows. This occurs because of different resolutions between both domains, causing differences

in both the observed magnitude and shape metrics, as discussed in section 5.6.2.

Figure 39 - Seismic attribute, ternary map, and gaussian mixtures for each cluster, for the IP domain (a to
c respectively) and ࡿࡹࡾࢊ domain (d to f respectively). Maps generated for the monitor 3 vs. baseline

comparison, extracted between top and base. The black arrows highlight areas with anomalies differences
between both domains.

Figure 40 a and b show a comparison of the shape and magnitude errors respectively,

measured in the amplitude (blue) and IP domains (black). The boxplots show differences in

errors distributions between both domains. The outliers from the IP domain are more deviated

from the mean error models, as compared to the amplitude domain outliers. The mean error

between both domains is generally similar, except for the I2 and P9 regions, where for the P9

region, the IP domain shows higher error models, which the causes are discussed in the next

illustrations.
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Figure 40 - (a) Shape and (b) magnitude errors measured at set S4D_post_WS in the amplitude (blue) and
IP domain (black) – monitor 3 vs. baseline.

Figure 41 shows the filtered models (red points at the crossplots, indicating the bad

models) from the IP domain. 26 models were filtered in total, whilst 47 models were filtered in

the amplitude domain. Only models 52 and 112 were filtered in the IP domain and not in the

amplitude domain, both because of high errors in the P9 region. Figure 42 shows a zoom in this

region, in which we can observe an important difference in the observed 4D response in both

domains (Figure 42 a as compared to c), where the hardening is stronger and bigger in the IP

domain, and there is also a strong softening response sidewards contouring the hardening

(interpreted as water pushing oil effect) that is not visible in the amplitude domain.

The absence of this softening caused the model 52 to be flagged as a high magnitude

error. Likewise, the softening absence and the hardening shape mismatch seen in Figure 43 d,

flagged the model 112 as a high shape error.
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Figure 41 - Crossplots between shape and magnitude errors measured at set S4D_post_WS in the IP
domain – monitor 3 vs. baseline.

Figure 42 - (a) and (c) observed ࡿࡹࡾࢊ and RIPP, (b) and (d) synthetic ࡿࡹࡾࢊ and RIPP respectively –
model 52, the black polygon is region P9 – monitor 3 vs. baseline.
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Figure 43 - Observed ternary ࡿࡹࡾࢊ  (a) and RIPP (c) maps. (b) and (d) are the clusters of the synthetic
ࡿࡹࡾࢊ  and RIPP for model 112. The black polygon is region P9 – monitor 3 vs. baseline.

5.8.2 Cross-domain diagnosis

Although it does not consider all the 4D effects and their competing expression, as

discussed in section 5.6.3, the cross-domain diagnosis provides a quick-look on general model

errors by regions.

Figure 44 shows the 10 models with worst mismatches between dSw and ௦. Theܵܯܴ݀

anomalies highlighted by arrows 1 and 2 stand out, where the arrow 1 shows an increase in

௦ܵܯܴ݀ that the models consistently do not predict. This is a hardening anomaly caused by

water injection (injector well/region I6). The arrow 2, on the other hand, is in a low confidence

area due to tuning and presence of competing effects. Although this is an automatic diagnosis

tool, we highlight the importance of some supervision and on the initial interpretation and QC

step.
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Figure 44 - Worst shape similarity between dSw and ࢙࢈ࡿࡹࡾࢊ maps. (a) dSw maps and (b) their
corresponding binary maps. On the left, the ࢙࢈ࡿࡹࡾࢊ binary map showing the hardening cluster in blue
and its absence in green as a reference. Set S4D_post_WS, differences between monitor 3 and baseline.

Figure 45 and Figure 46 show the 10 models with best and worst errors between dSg and

௦. We can note the size of the gas anomaly from region P5+P6 and P2+P3 affects theܵܯܴ݀

model ranking the most (regions highlighted by the black polygons), however, Figure 46 shows

the worst models wrongly predicting small gas saturation changes (<1%) throughout other

regions. Although these saturation changes are not contained within the presence of dSg cluster,

these models are flagged as high errors because of their resulting gas anomaly larger shape. As

the gas saturation increase was flagged in the initial modeling as the strongest 4D effect,

affecting the data assimilation objective-function the most, this can be a useful quick check

after a data assimilation run.
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Figure 45 - Best shape similarity between dSg and ࢙࢈ࡿࡹࡾࢊ maps. (a) dSg maps and (b) their
corresponding binary maps. On the left, the binary map showing the softening cluster in red ࢙࢈ࡿࡹࡾࢊ
and its absence in green as a reference. Set S4D_post_WS, differences between monitor 3 and baseline.

Figure 46 - Worst shape similarity between dSg and ࢙࢈ࡿࡹࡾࢊ maps. (a) dSg maps and (b) their
corresponding binary maps. On the left, the binary map showing the softening cluster in red ࢙࢈ࡿࡹࡾࢊ
and its absence in green as a reference. Set S4D_post_WS, differences between monitor 3 and baseline.



76

The cross-domain shape error metrics are compared with the ones obtained within the

other domains in Figure 47. We can note the saturation domain has less outlier models than the

other domains, except for region P5+P6.

Figure 47 - Boxplots showing shape error comparisons measured in each region, for each domain:
amplitude (ࡿࡹࡾࢊ) (green), RIPP (black), dSw (blue) and dSg (red). Set S4D_post_WS, differences

between monitor 3 and baseline.

5.8.3 Pros and cons of each domain

Using the same multi-objective filtering methodology as for the amplitude and IP domain,

but with only the shape metric for the cross-domain analysis, the high error outlier models

identified from each domain are listed in Table 5. This list shows the amplitude domain

identified more high-error outliers to be filtered out. The models in green highlight the models

which had been filtered out in the amplitude (ܴ݀ܵܯ) domain, used as reference because it is

the domain able to reproduce most of the effects that occur in a real seismic data, such as the

frequency content, 4D competing effects, wavelet, and noise. The list reveals that all the

filtered-out models identified in the dSg domain had been identified as high errors in the

amplitude and the IP domain. The same did not occur in the dSw domain, which is expected

because the dSw effect often competes (and loses) against opposite effects, a phenomenon that

can only be replicated when performing the forward modeling.
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Table 5 - Models filtered out using error metrics measured in the amplitude (ࡿࡹࡾࢊ), IP, dSw and dSg
domains – set S4D_post_WS, monitor 3 vs. baseline comparison. The models highlighted in green are the

models which were also filtered out in the ࡿࡹࡾࢊ domain.

ࡿࡹࡾࢊ RIPP dSw dSg

3 3 10 3
14 18 17 18
16 20 18 20
17 22 20 22
18 31 22 31
20 36 27 36
22 52 30 55
31 55 44 71
36 71 49 87
49 87 68 95
55 95 71 102
56 102 79 124
60 112 89 127
68 123 90 132
71 124 91 134
79 127 105 138
82 129 108 151
84 132 117 165
87 134 120 172
91 138 126 192
94 151 133 195
95 165 134 200
102 172 150
109 192 159
110 195 160
118 200 179
123 197
124
125
127
129
132
134
137
138
143
146
151
155
165
166
172
181
192
195
198
200
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In this context, this section aims to discuss the pros and cons of each domain and suggest

recommendations for other application cases.

The analysis performed in the saturation domain shows that, in the presence of competing

effects, only the wining effect can be confidently used for the diagnosis. This is a useful quick-

look tool, however, is overlooks other substantial 4DS information. These results provide

further support for the hypothesis that we need a PEM to perform a more comprehensive

diagnosis, meaning the amplitude and the IP domains are most suitable for this task.

The amplitude domain comparison is different from the others in a number of respects. It

includes more steps, but it is able to reproduce several characteristics identified within this case

study, such as competing effects and the frequency content causing the wavelet (sidelobe) effect

and noise. The number of steps, however, is mitigated by the automatic workflow developed as

part of this thesis.

The IP domain is a very practical option because it outputs layer properties (rather than

interface properties) that can be easily transferred to the model grid. This is a requirement in

case the objective is to run a seismic data assimilation. However, running inversions can be

time-consuming, and less viable in a seismic PRM system with lots of vintages, because it may

need to be re-parametrized each time a seismic monitor is available. It may also require some

additional pre- and post-processing (e.g. for enhancing low-frequency or filtering sidelobes).

We stress that other inversion methods may account for the sidelobe effects, such as model

based inversions and methods that take 4D time-shifts into account, however, they are more

expensive and time-consuming, which may not be suitable for a quick 4DS diagnosis. One

additional advantage of the IP over the amplitude domain is the vertical resolution enhancement

that results in a better identification of additional features. These features may be critical to

improve the reservoir models, for example, if the objective is an infill well, it is more crucial to

have more precision in a certain region of interest, and increasing the seismic resolution

becomes critical.

We therefore endorse the amplitude as the general diagnosis domain and the IP as a

complementary domain where to make specific higher-resolution reservoir characterization.

The cross-domain is a quick-access diagnosis alternative, but not recommended for more

specific objectives such as history matching the models. In addition, the APPENDIX B – WELL

RATES shows the well oil rate results for this set, indicating the quality of the models in terms

of production matching for the ones filtered in each domain.
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6 CONCLUSIONS

     This work proposes a workflow to diagnose hundreds of simulations models according

to their similarity with observed 4DS data. The workflow is applied in a real dataset from the

Campos Basin (Brazil), with considerable 4DS signal complexity, ambiguity, and diversity in

terms of shape, magnitude, and sizes.

We performed a study to define a PEM according to its calibration to well sonic and

density logs. The overall match given by a Hertz-Mindlin model at the reservoir interval is

good, which gives a good confidence on the fluid substitution studies and on other physical

effects sensibility such as pore pressure variations. Besides, the addition of well history data

and tracers improved the understanding on the 4D effects and their magnitudes. The initial

interpretations were essential to divide the reservoir into regions and to define the best seismic

attributes to capture the most important 4DS changes at the reservoir. As specific contributions

from the thesis, we highlight the following:

● We developed an automatic tool to generate hundreds of synthetic seismic maps

(forward seismic modeling) and to rapidly diagnose these large datasets according to

the observed 4DS at the seismic amplitude domain, without the need to run a 4DS

inversion.

● Selecting the best similarity indicator between the predicted and observed 4DS is a very

complex task. The automatic tool generates hundreds of synthetic seismic maps and

different shape and magnitude similarity metrics that can be adapted and applied to any

4D project.

● We defined the importance of region-by-region analysis, as global errors may mask

local misfits that are important for further decision-making processes, such as an infill

well. The selection of the model (or set of models) to be used for this purpose can be

de-risked if one selects models with low regional misfits in the potential areas, rather

than selecting the best model on average for the entire reservoir.

● The regional similarity metrics provide two pieces of information: if the 4D anomaly

shape/magnitude inside each region are well matched and if they are laterally contained

within these regions.

● For the shape metric, we applied a fast, reliable and unsupervised method that isolates

noise from the 4D signal very well. The GMM parameters, once set, can be run

successfully on other vintages and in other domains.



80

● We demonstrate the complementarity between the shape and the magnitude metrics.

The methodology can be applied in every crucial step of a reservoir management

framework:

o to validate geological/simulation models;

o to rank and to select the best models for production forecasting and the decision-

making process;

o to identify anomalies not predicted by the dynamic model;

o for feedback on iterations of geomodeling; and

o for analyzing just-acquired seismic monitors with regards to their simulated

predictions.

● The outlier detection tool can be adapted for different applications. In this work, we

used as a multi-objective criterion where the model must be simultaneously not

contained in any outlier list to be accepted. In other applications, it can be used to discard

models with high errors within certain regions (e.g. an infill well region).

● The amplitude domain is endorsed as the best diagnosis domain; however, we highlight

the importance of the IP domain for higher-resolution reservoir characterization

purposes, and the saturation domain for a quick-look diagnosis.
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7 SUGGESTIONS FOR FUTURE WORK

We indicate the following areas as recommendations for a progression of this work:

● To address the limitation of constantly alternating between different softwares and

the generation of intermediate data sets, we suggest the development of a single

plugin handling different interfaces. This would expedite the whole process,

optimizing the amount of generated data and efforts.

● Development of a practical methodology on combining metrics obtained from more

than one monitor comparison at a time.

● Investigate the value of including elastic/AVO attributes in the workflow.

● For the saturation domain comparisons, we suggest weight adjustments for

balancing the influence of different types of physical effects.

● Couple the proposed diagnosis within the data assimilation procedure.
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APPENDIX A – OTHER MONITORS’ COMPARISONS

The thesis shows the applications and discussions on monitors 3 and monitor 5. This

appendix shows the workflow results on the other different monitors to demonstrate their

applicability on different noise and signal magnitudes.

Figure 48 a, d, g, j and m show the ௦ܵܯܴ݀ for monitors 1 to 5 respectively for

comparison. The second and third columns in Figure 48 exhibit, respectively, the shape metric

ternary map and their Gaussian fits on their ௦distribution. We note the monitors 2 andܵܯܴ݀

3 show similar overall 4D anomalies distribution.

The monitor 1, being acquired just a few months after the baseline, has a lower 4D signal

magnitude. In this case, the shape metric may be affected because of the narrow and symmetric

distribution observed in Figure 48 c, where the hardening (positive) anomalies are very ܵܯܴ݀

subtle. Figure 49 shows the best models selected from set S4D (before 4DS data assimilation)

using the shape metric. Their match is poor as compared to the ௦, where all the modelsܵܯܴ݀

predict stronger and larger 4D responses than observed, even for the top ranked examples. The

diagnosis suggests this set of models does not honor the early simulated time-steps, especially

in the central area (gas anomaly). The examples also demonstrate the workflow runs as

expected, where subtle 4D anomalies are clustered as 4D hardening and softening.

Figure 50 a and b show, respectively, the best and worst models selected from set S4D

for monitor 1 using the magnitude metric. We also note a general mismatch with ௦ forܵܯܴ݀

this monitor even for the top ranked models. In addition, the top ranked models for the

magnitude and the shape metric display a different overall response, especially in the central

region, except for the model 24. In fact, the top ranked models from the magnitude metric do

have low shape error values as well, but they have not been ranked at the top for the shape

metric because they are larger and mispositioned as compared to the observed map.
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Figure 48 - Workflow application on other monitors – (a) to (c) monitor 1 vs. base, (d) to (f) monitor 2 vs.
base, (g) to (i) monitor 3 vs. base, (j) to (l) monitor 4 vs. baseline and (m) to (o) monitor 5 vs. baseline. The

first column shows the the second shows their ternarized maps, and the third shows their ,࢙࢈ࡿࡹࡾࢊ
ࡿࡹࡾࢊ distribution in the histogram with their resulting Gaussian models.



91

Figure 49 - Best models from set S4D, selected using the shape metric at the full reservoir: monitor 1 vs.
baseline ࡿࡹࡾࢊ maps (a) and their respective ternary maps (b).
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Figure 50 - Best (a) and worst (b) models from set S4D, selected using the magnitude metric at the full
reservoir: monitor 1 vs. baseline ࡿࡹࡾࢊ maps.

As discussed in section 5.1, monitor 4 has lower repeatability due to its different

acquisition configuration, which imprints in the 4D attributes. These differences may affect

both comparison metrics. The magnitude metric may perform comparisons between undesired

noise from the observed maps and signal (or absence of signal) from the modeled maps. As the

noise is not consistent throughout the entire survey, it cannot be reproduced to the models, and

specific regions may be more affected. The regional diagnosis is, therefore, especially important

for this matter. The shape metric may be affected by clustering high intensity noise into a signal

cluster. The results from Figure 48 k and l, however, show their cluster found a reasonable

compromise between clustering noise and signal. The overall diagnosis on the south and

northeast regions, however, must be looked at carefully and used in a more qualitatively

manner. As the survey was an “opportunity monitor”, it was not expected to be quantitatively

assimilated in the reservoir models the same way as the other monitors regardless. Figure 51

show the magnitude metric works as expected even with the noise presence. Figure 52 shows

worst ranked models by the shape metric which, similarly to what occurred to the monitor 1,
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ranked different models than the magnitude metric (Figure 51 b), corroborating the metrics

complementarity.

Figure 51 - Best (a) and worst (b) models from set S4D, selected using the magnitude metric at the full
reservoir: monitor 4 vs. baseline ࡿࡹࡾࢊ maps.
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Figure 52 - Worst and ternary maps (b) - models from set S4D, selected using the shape metric (a) ࡿࡹࡾࢊ
at the full reservoir, monitor 4 vs. baseline.

Figure 53 and Figure 54 show the magnitude and shape errors measured in each region,

comparing all monitors before (set S4D in blue) and after (set S4D_post_WS in black) data

assimilation. Monitor 3 was used for assimilation, and therefore its error decrease after

assimilation is more consistent throughout the regions, as compared to the other monitors.

Regardless, the posterior exhibits lower errors in most monitors, with few exceptions such as

regions P8, P9 and I5 from monitor 1 and P5 from monitor 4. The behavior of monitor 2 errors

is very similar to monitor 3, which is expected due to their 4D signal similarities. As observed

in the previous examples from Figure 49, the models do not honor the observed dynamic

behavior at monitor 1, where in most regions presents the largest errors, for both metrics, even

after data assimilation. We also highlight the errors measured at monitor 4 are in the same order

as the other monitors, even though this survey was not recommended for quantitative purposes

due to poorer repeatability/higher noise, suggesting the noise has low impact in the diagnosis.
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Figure 53 - Magnitude error by region - Set S4D (blue) and set S4D_post_WS (black) measured for all
monitors.

Figure 54 - Shape error by region - Set S4D (blue) and set S4D_post_WS (black) measured for all
monitors.
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APPENDIX B – WELL RATES

This appendix shows a discussion about the quality of excluded models from the 4DS

analysis in terms of well production data match.

Figure 55 shows the producer wells’ oil rates for the set S4D_post_WS (solid lines) with

their historical production data (black dots). As this is a set after data assimilation, we can note

the models’ behavior are predominantly collapsed towards the historical data, indicating an

overall good history match. The period around the 4DS monitors 2, 3 and 4 presents most

variability, particularly at the wells P3 and P6. In these higher variability regions, we can note

several outliers (high error) models selected by the 4DS metrics in the amplitude domain (green

solid lines) and by all the domains simultaneously (pink lines) which are also deviated from the

history. Regarding the models in blue, as they have been excluded using error metrics from

dSw maps that presented most errors in the P2 and P10 regions, their production rate mismatch

is more visible in these two wells.

Figure 56 and Figure 57 show the wells P3 and P6 respectively, with the models excluded

using each domain in separate graphs. We can note in both wells the models excluded using the

amplitude domain present most deviation from the historical points (green lines from Figure 56

a and Figure 57 a). For the other domains, however, the correlation between the high error

models identified in the 4DS domains and the well domain is not clear. These results

demonstrate high error models identified using the 4DS metrics that would not be detected

using the conventionally used well historical data, which further demonstrates the

complementariness of the proposed 4DS metrics for further decision making.
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Figure 55 - Oil rates for each well: historic (black dots) and simulated (solid lines). The models highlighted
in green are the ones excluded at the amplitude domain, in black, at the IP domain, in blue, at the dSw

domain and magenta, using all domains simultaneously. The grey lines are the remaining (good) models.
The dashed lines indicate the 4DS monitor dates.
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Figure 56 - Oil rates for well P3: historic (black dots) and simulated (solid lines). The graphs highlight
separately the models excluded at the amplitude domain (a, in green), at the IP domain (b, in black), at the

dSw domain (c, in blue) and using all domains simultaneously (d, in pink). The grey lines are the
remaining (good) models. The dashed lines indicate the 4DS monitor dates.
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Figure 57 - Oil rates for well P10: historic (black dots) and simulated (solid lines). The graphs highlight
separately the models excluded at the amplitude domain (a, in green), at the IP domain (b, in black), at the

dSw domain (c, in blue) and using all domains simultaneously (d, in pink). The grey lines are the
remaining (good) models. The dashed lines indicate the 4DS monitor dates.
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