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Tese apresentada à Faculdade de Engenharia
Elétrica e de Computação da Universidade Es-
tadual de Campinas como parte dos requisitos
exigidos para a obtenção do t́ıtulo de Doutora
em Engenharia Elétrica, na Área de Telecomu-
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Abstract

This dissertation investigates the dictionary learning problem in sparse signal representation and their

applications across real-world scenarios. The study begins by presenting state-of-the-art algorithms for

sparse dictionary learning, which aim to minimise representation error and ensure sparsity through

different variations of alternating minimisation methods. Expanding on these methods, a proposed

sparse dictionary learning framework is introduced, employing an autoencoder design. This approach

utilises the Kullback-Leibler divergence as the sparsity penalty term, replacing the traditional adoption

of ℓ1 and ℓ0 norms in previous methods. The sparse representations are obtained from both fully-

connected and convolutional encoder architectures.

The autoencoder-based framework is able to replace the classical approaches based on alternating

minimisation. Rather than keeping an estimate of the dictionary fixed while estimating the sparse

coefficients and subsequently updating the dictionary based on these coefficients, the autoencoder

design effectively learns the dictionary and the sparse coefficients simultaneously. This is achieved by

training the autoencoder in an end-to-end manner, where the input data is encoded into sparse codes,

and then reconstructed to the original data source using the decoder part of the model, representing

the learned dictionary. This leads to a more efficient, flexible, and streamlined process.

The proposed framework is explored in signal modelling and image compression, demonstrating its com-

petitiveness and advantages over other signal transforms with fixed, predefined bases such as Wavelets

and Fourier. The final segment of this study introduces a discriminative dictionary learning setting

that combines a classification neural network model and the autoencoder-based framework. The joint

optimisation of the sparse representation and the classifier allows for simultaneous learning and re-

finement of both components. This enables the models to mutually benefit from each other’s training

process, leading to improved performance and more effective representation of the data. The proposed

discriminative framework is applied in the context of SSVEP signals from BCI systems.

Keywords: Sparsity; Digital Signal Processing; Machine Learning; Brain-Computer Interface.



Resumo

Esta tese investiga o problema de aprendizagem de dicionários para representação esparsa de

sinais e suas aplicações em cenários do mundo real. O estudo começa apresentando algoritmos

do estado-da-arte para aprendizado de dicionário esparsos, que visam minimizar o erro de repre-

sentação e garantir a esparsidade por meio de variações de métodos de minimização alternada.

Expandindo os métodos apresentados, introduz-se uma nova estrutura de formulação e resolução

do problema, empregando um modelo de autoencoder. Essa abordagem utiliza a divergência de

Kullback-Leibler como termo de penalização de esparsidade, substituindo as tradicionais nor-

mas ℓ1 e ℓ0 adotadas em métodos anteriores. As representações esparsas são obtidas a partir de

arquiteturas de redes totalmente conectadas e convolucionais.

A estrutura baseada em autoencoder substitui a abordagem clássica baseada na minimização

alternada. Em vez de manter uma estimativa do dicionário fixa enquanto estima os coeficientes

esparsos e posteriormente atualiza o dicionário com base nesses coeficientes, o modelo de auto-

encoder aprende efetivamente o dicionário e os coeficientes esparsos de forma simultânea. Isso

é obtido a partir do treinamento do modelo de autoencoder, em que os dados de entrada são

representados a partir de códigos esparsos via encoder e, em seguida, reconstrúıdos a partir do

decodificador do modelo, que representa o dicionário aprendido. Isso leva a um processo mais

eficiente, flex́ıvel e otimizado.

A estrutura proposta é explorada na modelagem de sinais e compressão de imagens, demons-

trando sua competitividade e vantagens em relação a outras transformações de sinal a partir de

bases fixas e predefinidas, como Wavelets e Fourier. O último segmento deste estudo introduz

um ambiente de aprendizado de dicionário discriminativo que combina modelos de redes neurais

de classificação na estrutura baseada em autoencoder. A otimização conjunta da representação

esparsa e do classificador permite o aprendizado e aprimoramento simultâneos de ambos os

componentes. Isso permite que os modelos se beneficiem mutuamente do processo de treina-

mento, resultando em melhor desempenho e representação mais efetiva dos dados. A estrutura

discriminativa proposta é aplicada no contexto de sinais SSVEP de sistemas BCI.

Keywords: Esparsidade; Processamento Digital de Sinais; Aprendizado de Máquina; Interface

Cérebro-Computador.



List of Figures

Figure 2.1–Example of the sparse dictionary learning framework: the co-

lumns of matrix D represent the atoms of the dictionary. The

columns of matrix Y contain the training samples, yi. These

samples are used to optimise the dictionary and its correspon-

ding sparse representations in the columns of X. In this par-

ticular example, each sample yi is approximated as a linear

combination of k = 2 dictionary atoms, based on the sparse

coefficients highlighted in green in the columns of X. . . . . . 29

Figure 3.1–The proposed autoencoders can be easily modified and exten-

ded to incorporate various architectural enhancements, regu-

larisation techniques, and loss functions. . . . . . . . . . . . . 56

Figure 3.2–Encoder layer configuration. . . . . . . . . . . . . . . . . . . 56

Figure 3.3–Decoder layer configuration. . . . . . . . . . . . . . . . . . . 56

Figure 3.4–Kullback-Leibler divergence achieves its minimum at p̂j = ρ

and blows up as p̂j approaches 0 or 1. In this example ρ = 0.2. 57

Figure 3.5–The probability density function of the sparse codes h. . . . . 57

Figure 3.6–The probability density function the ℓ2-norm of the dictionary

atoms di. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 3.7–The reconstruction of a selected subset of images from test

dataset. The average density level is d = 0.19 indicating that

approximately 19% of the 2500 atoms are linearly combined

to reconstruct these images. . . . . . . . . . . . . . . . . . . . 59



Figure 3.8–The loss function J and the individual terms that account for

sparsity penalty, unit ℓ2-norm of the dictionary atoms, and

the representation error throughout the training epochs. Re-

sults were compared for five different values of learning rate.

Minimum loss value was achieved for learning rate α = 0.001. 62

Figure 3.9–Comparing the original set of testing images from CIFAR-10

dataset and the sparsely reconstructed images Ŷ = DX. The
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reconstruction Ŷ = DX. The average density level is d = 0.1746. 69

Figure 3.14–Results obtained in terms of the classification accuracy, the

threshold t, PSNR and Density. The training was performed

for no noise condition only, i.e., σ = 0. . . . . . . . . . . . . . 71

Figure 3.15–Design of the autoencoders evaluated in the experiments. . . 75

Figure 3.16–Loss functions of the best encoder architecture. . . . . . . . . 77

Figure 3.17–Reconstruction achieved by utilising sparse codes and dictio-

nary obtained from the best encoder model. . . . . . . . . . . 78

Figure 3.18–Reconstruction achieved by utilising sparse codes and dictio-

nary obtained from the best encoder model. . . . . . . . . . . 79

Figure 3.19–Classification accuracy and density obtained from different en-

coder models. . . . . . . . . . . . . . . . . . . . . . . . . . . 81



Figure 3.20–Probability Density Distribution of the sparse code values for

convolutional encoder and fully-connected encoder. . . . . . . 82

Figure 3.21–The thresholds t imposed afterwards convolutional autoenco-

der training and their effects over density and the overall re-

presentation error ∥Y −DX∥2F. . . . . . . . . . . . . . . . . . 82

Figure 3.22–The sparse reconstruction achieved for a selected subset of

images from CIFAR-10 test dataset. . . . . . . . . . . . . . . 84

Figure 3.23–The thresholds t imposed after U-Net autoencoder training

and their effects on the average density levels and the overall

representation error |Y −DX|2F. . . . . . . . . . . . . . . . . . 85

Figure 4.1–Real part of DFT matrix for N = 128 . . . . . . . . . . . . . 98

Figure 4.2–Schematic of 2D FFT. At the second column the FFT is taken

at each row. At the third column the FFT is taken at each

column of the resulting transformed matrix. . . . . . . . . . . 99

Figure 4.3–Illustration of single level discrete wavelet transform. . . . . . 100

Figure 4.4–Compressed images were obtained using percentiles of the co-

efficients. Fixed thresholds were set to keep 5%, 3% and 0.2%

of the Fourier coefficients with the largest magnitudes. . . . . 103

Figure 4.5–Compressed images were obtained using percentiles of the co-

efficients. Fixed thresholds were set to keep 5%, 3% and 0.2%

of the Wavelet coefficients with the largest magnitudes. . . . 104

Figure 4.6–Compressed images using Dictionary Learning and Sparse Co-

ding Framework. . . . . . . . . . . . . . . . . . . . . . . . . . 105

Figure 4.7–Block diagram of the dictionary-based image coding framework.107

Figure 5.1–A diagrammatic representation according to the international

10-20 electrode setting system (94+ 3 locations). . . . . . . . 113

Figure 5.2–The positions of 256 EEG electrodes used for data acquisition

are marked by black dots. The place of the occipital channel

Oz is highlighted in red. . . . . . . . . . . . . . . . . . . . . . 114



Figure 5.3–Typical structure of the dictionary and the sparse matrix in

SRC framework. . . . . . . . . . . . . . . . . . . . . . . . . . 122

Figure 5.4–Typical structure and notation adopted in the COPAR fra-

mework. Brown items indicate shared/common patterns whilst

red, green and blue items from the dictionary and the sparse

codes indicate class-specific patterns. . . . . . . . . . . . . . . 125

Figure 5.5–Illustration of the proposed discriminative dictionary learning

and sparse coding framework. . . . . . . . . . . . . . . . . . . 129

Figure 5.6–Diagram illustrating the discriminative dictionary learning fra-

mework using neural networks, specifically designed for SS-

VEP signal classification. . . . . . . . . . . . . . . . . . . . . 130

Figure 5.7–Experimental setup for the third session (c) collected from sub-

ject S001: the session initiates with 100 seconds of resting and

then follows to another 100 seconds of the adaptation period.

After the adaptation period, the remaining trials initiate in

t=200 s. Each subset of trials consists of presenting one of the

five frequencies of interest three times, with a resting period

of 5 s between each trial. The subsets are separated with a

period of 30 s without visual stimulation. . . . . . . . . . . . 134

Figure 5.8–Magnitude and phase response of the IIR-Chebyshev I filter

applied as a bandpass filter to the raw EEG channels. . . . . 138

Figure 5.9–Confusion matrices obtained with LOSO cross-validation method,

using the first default configuration. . . . . . . . . . . . . . . 139

Figure 5.10–Confusion matrices obtained with LOSO cross-validation method,

using the second default configuration. . . . . . . . . . . . . . 141

Figure 5.11–The mean and standard deviation of coefficients in the sparse

vectors of each class exhibit statistical patterns that are not

easily distinguishable. . . . . . . . . . . . . . . . . . . . . . . 144



Figure 5.12–Clustering of sparse vectors for Subject S001 using LOSO

cross-validation. Each horizontal line represents the actual sig-

nal class, and the inner circles annotate the sample indices.

The colors indicate the clusters obtained from adapted k-means.

The horizontal axis represents the test sample indices. . . . . 145



List of Tables

Table 3.1–Detailed configuration used to train the autoencoder. . . . . . 61

Table 3.2–ResNet-56 v2 classification results. Red highlights indicate ac-

curacies surpassing the reference value of noisy test images (Yc).

Blue highlight represents benchmark accuracy without additi-

onal noise corruption (Yc = Y, σ = 0). . . . . . . . . . . . . . 68

Table 3.3–ResNet-56 v2 classification accuracy with diffrent image patch

sizes. Red values exceed reference from noise-corrupted images

(Yc), while blue value is benchmark accuracy without additional

noise (Yc = Y, σ = 0). . . . . . . . . . . . . . . . . . . . . . . 70

Table 4.1–Training Parameters. . . . . . . . . . . . . . . . . . . . . . . . 101

Table 5.1–Comparing different aspects of the discriminative dictionary

learning methods discussed in the section. . . . . . . . . . . . 128

Table 5.2–First default configuration of the EEG-based BCI application. 137

Table 5.3–Performance achieved with the first default configuration. . . . 138

Table 5.4–Second default configuration of the EEG-based BCI application. 140

Table 5.5–Performance achieved with the second default configuration. . 141

Table 5.6–Performance achieved with the proposed NNDDL method and

state-of-the-art methods of discriminative dictionary learning

using the second default configuration. . . . . . . . . . . . . . 143

Table 5.7–Results achieved in Subject S005: the NNDDL method outper-

forms all state-of-the-art methods. . . . . . . . . . . . . . . . 144



Table 5.8–Distribution of dictionary atoms utilised as class-specific fea-

tures (in bold) and as shared features. The total number of

dictionary atoms is 3110 and the sparsity threshold is tested

for two borderline cases where: (I) the atom is considered acti-

vated if the coefficient |xi,j| > 0 and (II) the atom is considered

activated if the coefficient |xi,j| > 5. . . . . . . . . . . . . . . . 146



Acronyms

AE Autoencoder

BCI Brain Computer Interface

COPAR Commonality and Particularity

CV Cross-validation

DCT Discrete Cosine Transform

DFT Discrete Fourier Transform

DL Dictionary Learning

DLSI Support Vector Machines

DWT Discrete Wavelet Transform

EEG Electroencephalogram

FDDL Fisher Discriminative Dictionary Learning

FFT Fast Fourier Transform

HCGSN HydroCel Geodesic Sensor Net

KL Kullback-Leibler

KNN K-Nearest Neighbor



LOSO Leave-One-Subject-Out

LRSDL Low-rank Shared Dictionary Learning

MAMEM Multimodal Authoring using your Eyes and Mind

ML Machine Learning

MLP Multi Layer Perceptron

MOD Method of Optimal Directions

MSE Mean-Squared Error

NN Neural Network

NNDDL Neural Network Dictionary Learning

OMP Orthogonal Matching Pursuit

SRC Sparse Representation Classifier

SSIM Structural Similarity Index

SSVEP Steady-State-Visual Evoked Potentials

SVD Singular Value Decomposition

SVM Support Vector Machines



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Background on Dictionary Learning and Sparse Coding . . . . . . . 24

2.1 Problem Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Tackling the Sparse Coding Problem . . . . . . . . . . . . . . . . 31

2.2.1 The Orthogonal Matching Pursuit (OMP) . . . . . . . . . . 34

2.2.2 The Batch-Orthogonal Matching Pursuit . . . . . . . . . . 38

2.2.3 Basis Pursuit . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Tackling the Dictionary Learning Problem . . . . . . . . . . . . . 41

2.3.1 Maximum Likelihood Dictionary Learning Method . . . . . 42

2.3.2 Maximum a Posteriori Probability Method for Dictionary

Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.3 Method of Optimal Directions (MOD) . . . . . . . . . . . . 44

2.3.4 K-SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.5 LASSO Approach . . . . . . . . . . . . . . . . . . . . . . . 48

3 Using Autocoders for Dictionary Learning and Sparse Coding . . . 50

3.1 Sparse Dictionary Learning: A Fully-Connected Autoencoder Ap-

proach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Convolutional Sparse Autoencoder for Dictionary Learning and

Sparse Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2.1 Sparse Dictionary Learning using U-Net architecture: an ex-

ploratory study . . . . . . . . . . . . . . . . . . . . . . . . 83

3.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.3.1 Comparing Proposed Approach and Related Work . . . . . 90

3.4 Final considerations . . . . . . . . . . . . . . . . . . . . . . . . . 91

4 Image Reconstruction Using Sparse Autoencoder and Analytic Dic-

tionaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



4.1 Fourier and Wavelet Transforms . . . . . . . . . . . . . . . . . . . 94

4.2 Experiment and Results . . . . . . . . . . . . . . . . . . . . . . . 100

4.3 Final Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3.1 Dictionary Learning and its applications in the field of image

and video compression . . . . . . . . . . . . . . . . . . . . . 106

4.3.2 Dictionary Learning Image Codec . . . . . . . . . . . . . . 107

5 Discriminative Dictionary Learning Algorithms for SSVEP-BCIs . . 109

5.1 Introduction to EEG Signals . . . . . . . . . . . . . . . . . . . . . 111

5.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4 Discriminative Dictionary Learning and Sparse Coding Methods . 120

5.5 Proposed Discriminative Dictionary Learning Framework . . . . . 128

5.6 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.7 Evaluation Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.8 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.9 Analysis of the Proposed Method . . . . . . . . . . . . . . . . . . 142

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152



19

Chapter 1
Introduction

T
ypical methods to represent real-valued signals are often built from a li-

near superposition of basis functions, which can efficiently encode high-

dimensional data spaces. Common bases such as Fourier harmonically-

related complex exponentials and wavelet bases can provide a suitable represen-

tation of some signals. However, these alternatives are limited, as they are not

data-driven bases.

A more general method for signal representation is to use overcom-

plete bases or dictionaries, which are composed of a set of dictionary atoms

that are not necessarily orthogonal. Ideally, this basis should be adapted to the

data so that each redundant basis function captures as many features as pos-

sible, specifically for the signal class of interest. Dictionary atoms, which are

essentially individual basis functions, can capture different aspects of the signal

and offer a flexible representation. The set of redundant atoms can allow for

several different representations of the same signal and a certain flexibility in

the sparse representation. This approach can be used to develop more efficient

signal representations for various applications.

Sparse dictionary learning is a computationally challenging optimisa-

tion problem that falls into the NP-Hard class. The standard method of solving

this problem involves a two-step iterative procedure, which typically utilises con-
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vex relaxation or a greedy-based approach. However, these methods are known

to have limitations and may not always provide satisfactory results. In this

study, we propose a novel approach of sparse dictionary learning based on sparse

autoencoder models. Our approach overcomes the limitations of traditional te-

chniques and provides a more flexible and efficient way of learning dictionaries.

By utilising backpropagation to simultaneously update both the dictionary and

the sparse code, our method can capture the essential features of the input data

and optimise them for specific tasks, such as signal classification. Our proposed

approach has shown promising results in experimental evaluations, demonstra-

ting the effectiveness of this method in learning high-quality dictionaries for

sparse representation.

An autoencoder is a neural network that typically includes an enco-

der function that maps the input data to a low dimensional latent space, and

a decoder function that reconstructs the original data from the encoded repre-

sentation. Although autoencoders can reduce the dimensionality of the input

data in the encoder latent space, their primary objective is to minimise the loss

function during training while preserving as much information as possible.

Autoencoders with specific cost functions can provide an alternative

framework for dictionary learning and sparse coding problems. Unlike traditional

methods that update the dictionary and its sparse code iteratively, autoencoders

utilise the backpropagation algorithm during training to simultaneously update

both the dictionary and its sparse code. The dictionary atoms can be obtained by

extracting the weights of the single-layer decoder side of the trained autoencoder.

The number of neurons in the latent space determines the number of atoms in

the dictionary. This approach can improve classification performance and avoid

issues with local minima, making it a promising solution for handling large

datasets with significant signal spaces.

In this work, we propose a novel method for discriminative dictionary
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learning based on sparse autoencoders. The method is initially analysed in terms

of sparse representation error and also from the standpoint of image classification

using the standard dataset CIFAR-10 (KRIZHEVSKY et al., 2009)). A second

contribution is the application of the proposed method to signal processing

in brain-computer interfaces based on steady state visually evoked potentials

(SSVEPs).

This dissertation is organised as follows:

• Chapter 2: In this chapter, we provide an overview of conventional dicti-

onary learning and sparse coding methods, including the popular K-SVD

and OMP algorithms. We discuss the fundamental principles of dictionary

learning, which involves learning a dictionary that provides a sparse repre-

sentation of the input data, and the subsequent use of sparse coding te-

chniques to encode the input data into a compressed representation using

the learned dictionary. We also explore the limitations of these conventi-

onal approaches and highlight the need for more innovative and flexible

techniques, which we will address in subsequent chapters.

• Chapter 3: This chapter introduces k-sparse autoencoders and their pro-

perties, which can be designed to solve various problems by encoding data

into a compressed representation using a learned dictionary. The sparsity

constraint in the autoencoder objective function encourages the learned

dictionary to be sparse, leading to a compact representation of the input

data. The proposed methodology builds upon fundamental principles in the

field of dictionary learning and sparse coding. The chapter proposes a novel

approach that offers a flexible selection of non-linear activation functions

on the encoder side, with no constraints tying up the encoder and decoder

weights. The methodology adopts a threefold cost function, whose terms:

(i) encourage sparsity in the latent space, (ii) penalise representation er-

ror and (iii) constrain the norms of the dictionary atoms. The proposed
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methodology offers an alternative solution that can accommodate a wide

range of purposes. In particular, it is suitable for large problem sizes where

conventional algorithms may not be feasible.

• Chapter 4: In this chapter, we present our studies in the field of image

compression using analytic and data-driven dictionaries. We provide an

overview of the literature on image compression, highlighting the use of

analytic transforms in image codecs. We then explore the use of data-driven

dictionary learning for image compression and discuss various approaches

in the field. Our study focuses on comparing the visual quality of com-

pressed images obtained using the proposed dictionary learning framework

with that of compressed images obtained using the Fourier and Wavelet

transforms. We evaluate the performance of the methods in terms of the

peak signal-to-noise ratio (PSNR) and the visual quality of the recons-

tructed images at different compression rates. We provide a comprehensive

study of data-driven dictionary learning for image compression, which cla-

rifies the potential of the proposed method as competitive alternative to

analytic transforms for image codecs.

• Chapter 5: In this chapter, we proposed a Neural Network-based Discri-

minative Dictionary Learning and Sparse Coding (NNDDL) method that

represents class-specific and shared features of a signal, and distinguishes

their sparse representations accordingly. This method uses a sparse auto-

encoder to learn the features in the dictionary and the sparse codes, and a

second model to classify the residual vector calculated from the autoenco-

der output and its input. The combined models encourage the discrimina-

tive power of the classifier model, implicitly encouraging a dictionary with

class-specific features, and implicitly encouraging a dictionary with shared

features containing common patterns. The proposed method is applied to

the context of SSVEP-BCI signals. The results showed that the proposed
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method achieved higher classification accuracy than Sparse Representation

Classification (SRC), although it performed worse than other methods. It

is our belief that there is significant room for improvement in aspects like

hyperparameter tuning, and this is a promising subject for future research.

• Chapter 6: In this chapter we summarise and discuss the results of this

dissertation, pointing point out further directions of research.
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Chapter 2
Background on Dictionary Learning and Sparse

Coding

Signal processing involves the rigorous examination and manipulation

of extensive data sets. The task of extracting pertinent information becomes

particularly demanding in certain domains, such as denoising and signal clas-

sification. To overcome these challenges, employing a sparse representation of

signals has proven to be a highly effective solution.

By adopting this methodology, the processing speed and efficiency can

be significantly enhanced, rendering it a widely favored option in numerous sig-

nal processing applications. A prevalent technique for achieving sparse signal

representation involves decomposing signals into elementary waveforms derived

from a collection of redundant elements known as a dictionary. A dictionary

allows us to generate a robust data representation that captures essential infor-

mation from complex signals in a streamlined and proficient manner.

There exist two primary methodologies for dictionary learning within

the framework of sparse representation. The first one is the modelling approach,

wherein dictionaries are constructed using non-adaptive functions such as DCT

bases, Wavelets, and Curvelets. These functions serve as atoms to form the dic-

tionaries. The second approach, known as the learning-based approach, involves
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solving an optimisation problem to obtain dictionaries that enable more precise

and sparse representation of the original signals.

Wavelet bases and local time-frequency dictionaries have paved the

way for numerous novel signal transformation techniques. These methods adapt

sparse representations to accommodate the unique properties exhibited by spe-

cific signals, expanding the realm of possibilities in signal processing.

The modelling approach to dictionary learning presents notable advan-

tages, primarily its inherent simplicity and computational efficiency, enabling

the generation of sparse representations from a predetermined and known dic-

tionary. However, a significant limitation of this approach lies in the potential

unsuitability of the resulting transforms under certain domains and for certain

families of signals. Additionally, there are limited means of identifying such ina-

dequacies in advance. Therefore the efficacy of these approaches is contingent

upon the suitability of the chosen dictionary for data representation.

Conversely, the learning-based approach is custom-tailored to optimise

sparsity and other desired properties. This approach offers the advantage of

adaptability to the data while also fulfilling specific objectives of interest, such as

the power of classifying represented signals. Nonetheless, a noteworthy drawback

of this approach is the potential for a higher computational burden compared to

the modelling approach utilising preexisting base functions to build dictionaries.

In the realm of real vector spaces, an orthogonal basis is a dictionary

of minimum size characterised by its atoms being mutually orthogonal, ensuring

their independence. Such a basis might be designed to concentrate the energy

of the signals across a small subset of vectors. On the other hand, an over-

complete dictionary encompasses a larger collection of vectors compared to an

orthogonal basis. The vectors in an overcomplete dictionary are not required to

be orthogonal, providing greater flexibility and enabling richer and redundant

data representations. These dictionaries are frequently employed in constructing
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sparse representations. The analogy for overcomplete dictionaries can be drawn

to a vast set of natural languages, allowing for the formation of concise and pre-

cise sentences, as first indicated by (MALLAT; ZHANG, 1993). However, the

selection of vectors for redundant dictionaries is a complex undertaking that

necessitates signal decomposition and optimisation algorithms.

Building on the understanding of signal representation, further insights

were gained through the pioneering work of Hubel and Wiesel in 1962, who de-

monstrated that a significant proportion of cells within the visual cortex exhibit

a preference for specific edges at particular angles. Subsequently, it has been

established that these cells possess receptive fields that are spatially localised

and oriented, and are capable of selective processing of the structural features

of visual input across different spatial scales.

One approach towards understanding the response properties of visual

neurons was introduced inOlshausen and Field’s seminal work in 1996 (OLSHAU-

SEN; FIELD, 1996). The authors pursued the topic of sparse coding by inves-

tigating the relationship between visual neurons and the statistical structure

of natural images, with the aim of developing efficient coding strategies. They

proposed an algorithm to identify sparse linear codes for natural images, and de-

signed a comprehensive set of localised, oriented, and bandpass receptive fields

that closely resemble those found in the primary visual cortex. Furthermore,

they posited that such neurons could model the structure of images, denoted by

I(x,y), as a linear superposition of basis functions ϕi and additive noise ϵ(x,y),

i.e.,

I(x,y) =
∑
i

siϕi(x,y) + ϵ(x,y) (2.1)

where (x,y) denotes the two-dimensional position within an image. This for-

mulation provides a useful framework for understanding how visual neurons

process and represent natural images. The coefficient values, denoted by si re-

present the activities of neurons in a cortical patch responsible for encoding the
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relevant image region. The basis functions, denoted by ϕi, may be viewed as a

set of feature vocabulary or dictionary atoms that need not be orthogonal to

one another. Notably, the objective of efficient coding is to determine a set of

basis functions ϕi that span the image space, while ensuring that the coeffici-

ent values are sparse and statistically independent across a given ensemble of

natural images.

The concept of sparse coding has emerged as a critical principle for

neural representations of sensory input, particularly in the visual system. This

principle is evident in the visual cortex, where neurons encode information using

only a small number of active units. The notion of statistical independence in

coding results in a reduced redundancy of the code and reflects the biological fact

that neurons are assumed to be independent of the activity of their neighboring

cells.

One potential solution to address the challenges of sparseness and in-

dependence is based on Principal Component Analysis (PCA), which aims to

discover a set of mutually orthogonal basis functions that capture the directions

of maximum variance in the data and produce pairwise uncorrelated coeffici-

ents si. Nevertheless, the receptive fields generated by PCA are not spatially

localised, which is a desirable feature. Additionally, PCA assumes that the un-

derlying data follows a Gaussian distribution, which is not the case for many

natural scenes that exhibit higher order forms of statistical structure. Indepen-

dent Component Analysis (ICA) has the potential to overcome this limitation

by accounting for non-Gaussian distributions (LEWICKI; SEJNOWSKI, 2000).

Nonetheless, both techniques share two common limitations: (I) they cannot

separate the signal structure from the noise in the input, and (II) they cannot

allow for overcomplete codes, where the number of basis functions exceeds the

input dimensions.

In (OLSHAUSEN; FIELD, 1997), the authors proposed a different ap-
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proach to sparse modeling than previously established methods. Whereas classi-

cal techniques in signal processing used fixed dictionaries, the method introduced

in their work consists of learning from training data. They demonstrated that

dictionary learning could easily recognise underlying structures in natural image

patches. In the past decades, their approach found several other applications in

many different fields such as in image and audio processing (see, e.g., (ELAD;

AHARON, 2006), (YANG et al., 2010a), (YANG et al., 2010b), and (RAMIREZ

et al., 2010)). Recent research has focused on applying dictionary learning in

areas such as image classification (WANG et al., 2022), anomaly detection (PI-

LASTRE et al., 2020), and medical imaging (MIAO et al., 2020). There has also

been a growing interest in combining dictionary learning with other machine le-

arning methods such as deep neural networks (TANG et al., 2020) for improved

performance in tasks such as face recognition and hyperspectral image analysis.

In signal processing, the observations, or data vectors, are called sig-

nals, and data modeling is an important step for many processing tasks such as

denoising, compression, and for solving inverse problems. The sparsity principle

also plays an important role in these scenarios (see, e.g., (MALLAT; ZHANG,

1993), (DONOHO, 2006)). Signals are approximated by a sparse linear com-

bination of prototypes called dictionary elements or atoms, resulting in simple

and compact models.

In this chapter, we will further describe the following aspects of dictio-

nary learning: in Section 2.1, we overview the problem illustrating further chal-

lenges involving dictionary learning and sparse coding solution. We introduce a

model formulation, in which we attempt to obtain the dictionary D and coeffi-

cients X with the best trade-off regarding sparsity and fidelity to the observed

data. We also exploit the non-convex formulation of the problem, the ℓ0-penalty

and ℓ1 approximation. In Section 2.3, we describe how this optimisation problem

has been recently handled through convex framework that iteratively solves the

problem with respect to either the dictionary or the sparse code, updating one
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Figure 2.1 – Example of the sparse dictionary learning framework: the columns of matrix D re-
present the atoms of the dictionary. The columns of matrix Y contain the training
samples, yi. These samples are used to optimise the dictionary and its correspon-
ding sparse representations in the columns of X. In this particular example, each
sample yi is approximated as a linear combination of k = 2 dictionary atoms,
based on the sparse coefficients highlighted in green in the columns of X.

and fixing the other variable. Finally, in Section 2.2, we present the results in-

troduced in (LEWICKI; SEJNOWSKI, 2000), showing that overcomplete bases

can yield a better approximation of the underlying statistical distribution of the

data and can thus lead to greater coding efficiency.

2.1 Problem Overview

Consider a matrix D, each column being referred to as a dictionary

atom. A dictionary is classified as undercomplete if the number of columns n

is smaller than the number of rows m, or, conversely, overcomplete in the case

that n > m. Typically, the framework for sparse dictionary learning assumes

overcompleteness, allowing for more flexible dictionary structures and richer

data representations.

Sparse coding aims to build succinct representations of input the data

using a linear combination of only a few dictionary atoms. The dictionary is

learned from the input data. Sparse coding has been widely used in applications

such as image and audio processing and machine learning.

Given a set of input signals Y ∈ Rm×p, Y = {y1, y2, · · · , yp}, sparse

coding aims at finding a good and sparse approximation xj ∈ Rn of the signal
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yj using the linear combination of the dictionary atoms D = {d1, d2, · · · , dn}

dj ∈ Rm, i.e., yj =
∑n

k=1dkx
k
j and most coefficients xkj are zero or very close to

zero. Figure 2.1 helps to illustrate the problem formulation.

Sparse coding can be typically formulated as the following optimisation

problem:

min
D,{xi}

p
1

p∑
i=1

∥yj −Dxj∥22 + λ ∥xj∥0 (2.2)

subject to ∥dj∥ = 1, j = 1, 2, · · · , n. The constraint ensures that the dictionary
atoms will not reach high values allowing for arbitrarily low (but nonzero) values.

To measure the sparsity, the ℓ0 penalty is defined as the number of nonzero

elements of a vector, i.e., ∥x∥0 = # {j|xj ̸= 0}, where # {} indicates the cardinality

of a set. The vector is called sparse if ∥x∥0 << n, x ∈ Rn.

The optimisation problem presented in equation (2.2) is a non-convex

problem due to the following facts:

• The presence of the sparsity term, promoted by the ℓ0 penalty;

• The optimisation is performed jointly over both the dictionary D and the

sparse codes in X, which interact with each other in the first term of equa-

tion (2.2).

Due to the bi-linearity in the first term of Equation (2.2), this pro-

blem can become a bi-convex optimisation problem with respect to each of the

variables D and xj, i.e., xj is optimised when D is fixed and vice-versa.

The problem in Equation (2.2) is a challenging NP-hard problem, and

only sub-optimal solutions can be found in polynomial time. Most existing algo-

rithms either use greedy algorithms to iteratively select locally optimal solutions

(e.g. Orthogonal Matching Pursuit (OMP) (MALLAT; ZHANG, 1993)) or re-

place the non-convex ℓ0 penalty with its convex relaxation ℓ1 norm (e.g. Basis

Pursuit (CHEN et al., 2001)). The dictionary for sparse approximation is usu-
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ally learned from training samples in order to maximise the efficiency of the

sparse approximation, i.e., improving the sparsity degree.

The classical approaches for dictionary learning and sparse coding (see

theoretical foundations from e.g. (AHARON et al., 2006), (MAIRAL et al.,

2010), (RUBINSTEIN et al., 2008)) involves an alternating iteration between

the following tasks:

1. The sparse coding: calculating the coefficients xi and;

2. The dictionary update: fixing xi and updating D

This iterative approach has been widely used in the literature and

provides a principled framework for dictionary learning.

Despite the success of the aforementioned alternating iterative methods,

none of them established the global convergence property for Equation (2.2).

Nevertheless, the work from (BAO et al., 2016) has recently proposed a multi-

block alternating proximal method with global convergence property for solving

a class of ℓ0-penalty for non-convex problems arising from sparse coding based

applications.

Several algorithms have been developed to solve the problem of sparse

coding and dictionary learning. The following sections are dedicated to explai-

ning these methods in detail.

2.2 Tackling the Sparse Coding Problem

The sparse coding problem can be discussed and grouped into diffe-

rent categories according to the chosen norm regularisation. The general goal

of sparse representation is to recover a set of signals from the most sparse co-

efficients of the linear combination of dictionary atoms resulting also on the
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minimum representation error between the input signals and the sparse appro-

ximation. Formally, if y is a column signal Rm and D ∈ Rm×n is the dictionary,

the sparsity assumption can be described as the following sparsity approxima-

tion

x̂ = argmin
x

∥x∥0 s.t. ∥y−Dx∥22 ⩽ ϵ (2.3)

or

x̂ = argmin
x

∥y−Dx∥22 s.t. ∥x∥0 ⩽ K (2.4)

where x is the sparse representation of y, ϵ is the error tolerance and the ℓo-

penalty is defined as

∥x∥0 = #
{
i = 1, 2, , · · · , p|xi ̸= 0

}
(2.5)

The sparse coding problem can be formulated as the task of appro-

ximating multiple input signals Y = [y1, y2, · · · , yp] simultaneously. This

involves finding optimal liner combinations of dictionary atoms to achieve good

approximations. The problem can be defined in terms of minimising the error

in representation (
∑p

i=1 ∥yi −Dxi∥22 = ∥Y −DX∥2F) while applying a penalty

term through an ℓ0 norm constraint to promote sparsity in the columns of the

coefficient matrix X (∥xi∥0 ⩽ K,∀i ∈ {1, 2, · · · , p}).

The structure of the sparse signal x is significantly influenced by the

regularisation imposed in the formulation shown in Equation (2.3). Using the

number of nonzero coefficients as a penalty term is problematic due to the non-

differentiable and nonconvex nature of the ℓ0 term. As a result, approximations

to this term have been proposed to address the challenges posed by the ℓ0 NP-

hard problem. There are two main approaches for approximating the original

sparsity penalty term:

1. using a convex relaxation or

2. using a greedy algorithm.
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Due to it faster convergence, greedy approaches are computationally more con-

venient than the convex relaxation ones. Greedy methods choose locally optimal

solutions at each stage. However, the reconstruction errors obtained from it are

relatively larger than the ℓ1-norm solutions. Convex relaxations, such as Basis

Pursuit and Lasso algorithm, have better theoretical guarantees and recovery

ability, but are more time consuming.

Notice that the optimisation task described in Equations (2.3) and (2.4)

can be changed to

x̂ = argmin
x

∥y−Dx∥22 + λ ∥x∥0 (2.6)

so that the constraint becomes a penalty term weighted by the constant λ.

There are reasonably good conditions wherein ℓ0 and ℓ1 regularisation are said

to be equivalent (for a proper choice of λ, the problems are equivalent to each

other). However, such equivalence is not trivial as considering that the original

problem of ℓ0 regularisation is NP-hard. It is also noteworthy to mention that

the regularisation parameter λ actually controls the trade-off between overfit-

ting and sparsity of the resulting target function in both cases, to ℓ0 and to ℓ1

regularisation.

The greedy strategy searches for the best local optimal solution in each

iteration (TROPP, 2004). For the sparse representation method, the greedy

strategy approximation chooses the K most appropriate atoms to approximate

the input data vector yi. Two algorithms of this type will be presented in this

section:

1. The Orthogonal Matching Pursuit (OMP), which was introduced for simple

sparse approximation in (DAVIS et al., 1997) and (PATI et al., 1993). At

each iteration, a greedy pursuit makes the best local improvement to the

current approximations in hopes of obtaining a good overall solution.

2. The Batch-OMP algorithm, whose major advantage is that it has a sim-

ple and fast implementation originally described in (RUBINSTEIN et al.,
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2008).

In addition, we will introduce the convex relaxation approach, which

addresses the problem of sparse coding by formulating it as a convex optimi-

sation problem. This formulation allows for efficient polynomial time solutions

using standard mathematical programming software (CHEN et al., 2001). The

Basis Pursuit (BP) algorithm is a benchmark of this approach. It ransforms the

original sparse approximation problem into a linear programming problem with

an ℓ1-penalty term (CHEN et al., 2001).

2.2.1 The Orthogonal Matching Pursuit (OMP)

A Matching Pursuit (MP) is a family of greedy algorithms that itera-

tively refines the signal approximation instead of directly solving the optimal

approximation problem (DAVIS et al., 1997). The objective of Matching Pursuit

algorithms is to approximate the solution of the sparsity-constrained problem,

defined as follows:

x̂ = argmin
x

∥y−Dx∥22 s.t ∥x∥0 ⩽ K (2.7)

or the error-constrained sparse coding problem, given by

x̂ = argmin
x

∥x∥0 s.t ∥y−Dx∥22 ⩽ ϵ (2.8)

For a signal y and a fixed dictionary D, the algorithm iteratively generates a

sorted list of atom indices based on their importance. The algorithm also de-

termines scalar coefficients that weight these atoms, resulting in locally-optimal

solutions.
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Pseudocode 2.1 Matching Pursuit:
Initialise Variables:

• Initialise Sparse Coefficients

x̂ = 0

• Initialise Residual
r = y

while (∥x̂∥0 ⩽ K) or
(
∥y−Dx̂∥22 ⩽ ϵ

)
:

• Select the dictionary atom di with maximum absolute inner
product with the residual r

î = argmax
i={1, ··· , n}

|dT
i r|

• Update the residual, and the sparse coefficient at î-th position
of x

x̂[̂i] = x̂[̂i] + dT
î
r

r = r− (dT
î
r)dî

An extension of the Matching Pursuit (MP) algorithm is the Ortho-

gonal Matching Pursuit (OMP). In OMP, a notable distinction from MP lies in

the coefficient update step. At each iteration, the coefficients in x are updated

by performing the orthogonal projection of the signal onto the subspace span-

ned by the previously selected atoms, rather than solely onto the current atom.

Incorporating this orthogonal projection enhances the algorithm’s capability to

achieve improved results when compared to the standard MP approach.

The OMP algorithm follows a greedy strategy where, at each step, the

atom with the highest absolute inner product with the current residual is selec-

ted. Once this atom is chosen, the signal is orthogonally projected onto the span

of the entire set of previously selected atoms. The residual is then recomputed,
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and the process continues until convergence is achieved (RUBINSTEIN et al.,

2008).

The selection of the most relevant dictionary atom is based on its

absolute inner product value with the residual vector r[k] at the k-th iteration

of the algorithm. The residual vector plays a crucial role in extracting the most

significant columns of the dictionary D. Let di denote the i-th column of D,

and λ[k] denote the column index of D with the highest absolute inner product

with the residual at the k-th iteration. The index set Λ[k] stores all the indices

of the most important atoms of D in terms of signal representation.

The residual vector r[k] is initialised as r[k] = y, and Λ[k] = ∅. The
index λ[k] is then calculated as

λ[k] = argmax
i

|dTi r| (2.9)

Note that the columns of D must be normalised to unit ℓ2-norm to make sure

that the inner product between any two columns is within the range [−1,+1]

and hence the absolute value of the inner product between any two columns is

bounded, i.e., 0 ⩽ |⟨di,dj⟩| ⩽ 1.

At k-th iteration, the active index set is augmented to Λ[k] = Λ[k−1] ∪
{λ[k]}. The sparse codes x̂[Λ[k]], i.e., the nonzero coefficients at the index positions

stored in Λ[k] are updated by solving the least squares problem with the sub-

matrix DΛ[k]

x̂[Λ[k]] = argmin
x

∥∥y−DΛ[k]
x
∥∥2
2

(2.10)

It is important to note that the computation of x̂[Λ[k]] can be computationally

intensive. This is mainly due to the matrix inverse operation when calculating

the pseudoinverse of DΛ[k]
, as follows:

x̂[Λ[k]] = (DTΛ[k]
DΛ[k]

)−1DTΛ[k]
y (2.11)

Therefore, practical implementations usually employ a progressive Cholesky up-

date process (BLUMENSATH; DAVIES, 2008) to reduce computational costs.
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Finally, the residual is then updated to

r[k] = y−DΛ[k]
(DTΛ[k]

DΛ[k]
)−1DTΛ[k]

y (2.12)

The main loop finishes either when k = K, due to the sparse-constrain,

or when the error-constrain
∥∥y−Dx[k]

∥∥2
2
⩽ ϵ is achieved. The OMP algorithm

is summarised next.

Pseudocode 2.2 Orthogonal Matching Pursuit:
Initialise Variables:

• Initialise Sparse Coefficients

x̂ = 0

• Initialise Residual
r = y

• Initialise the set of active indices

Λ[k] = ∅

while (∥x̂∥0 ⩽ K) or
(
∥y−Dx̂∥22 ⩽ ϵ

)
:

• Select the atom with maximum absolute inner product with
the residual

λ[k] = argmax
i={1, ··· , n}

|dT
i r|

• Update the set of active indices

Λ[k] = Λ[k−1] ∪ {λ[k]}

• Update the residual and the sparse coefficients

x̂[Λ[k]] = (DT
Λ[k]
DΛ[k]

)−1DT
Λ[k]

y

r[k] = y−DΛ[k]
(DT

Λ[k]
DΛ[k]

)−1DT
Λ[k]

y
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2.2.2 The Batch-Orthogonal Matching Pursuit

Batch-OMP is a variant of the Orthogonal Matching Pursuit (OMP)

algorithm that has been specifically optimised for efficiently performing sparse

coding on large sets of signals using the same dictionary. A key insight presented

in Rubinstein et al. (RUBINSTEIN et al., 2008) is that the atom selection step

in each iteration does not require the explicit calculation of the residue, r[k] =

y − ⟨y,dj⟩ dj
⟨dj,dj⟩ , or the sparse representation x̂[k] = (DΛ[k]TDΛ[k])−1DTΛ[k]

y.

Instead, only the term DTr is required, which facilitates the selection of the

most relevant atoms from the dictionary as λ[k] = argmaxj |⟨dj, r[k]⟩|.

It is noteworthy that the matrix DTΛ[k]
DΛ[k]

is always symmetric and

positive definite. Exploiting this property, we can bypass the need for inverting

large matrices thus reducing computational costs. By decomposing the term

from Equation (2.11) into two triangular matrices L and LT , we can employ the

incremental Cholesky decomposition. This iterative process leverages the results

from previous iterations and adds a single new row and column to L at each

step. The decomposition can be expressed as follows:

L =

(
L 0

wT
√
1−wTw

)
(2.13)

The fundamental concept underlying this algorithm is to substitute

the explicit computation of r and its multiplication by DT with a more efficient

calculation of DTr. Letting α = DTr, α0 = DTy, and G = DTD, we can express

this as follows:

α = DTr (2.14)

= DT(y−DΛ(DΛ)
+y) (2.15)

= α0 −GΛ(GΛ,Λ)
−1α0

Λ (2.16)

Hence, given pre-computed values of α0 and G, we can calculate α

in each iteration without the explicit computation of r. The updated step is
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modified by replacing the multiplication with DT by the matrix GΛ. The term

G−1
Λ,Λ is evaluated using progressive Cholesky factorisation. This method can also

be extended to the error-driven case by deriving efficient incremental formulas

for the squared error |r[k]|22. The initial step involves expressing the residual

in terms of the sparse approximations at the k-th iteration and its previous

iteration, denoted by [k− 1], i.e.,

r[k] = y−Dx[k] (2.17)

= r[k−1] −D(x[k−1] − x[k]) (2.18)

The second step involves leveraging the fact that the orthogonalisation process in

OMP guarantees the orthogonality between the residual and the current signal

approximation at each iteration, as indicated below:

(r[k])TDx[k] = 0 (2.19)

By substituting the expression from Equation (2.19) into Equation (2.18), we

obtain the following formula for updating the error∥∥∥r[k]∥∥∥2
2
=
∥∥∥r[k−1]

∥∥∥2
2
− (x[k])TGx[k] + (x[k−1])TGx[k−1] (2.20)

2.2.3 Basis Pursuit

Basis Pursuit (BP) is a method for finding signal representations in

overcomplete dictionaries through convex optimisation. It aims to find a decom-

position that minimises the ℓ1 norm of the sparse coefficients. BP uses linear

programming. Advancements in large-scale linear programming methods, speci-

fically those associated with interior-point methods, can be applied to BP. These

advancements have the potential to solve the BP optimisation problem nearly

linearly for certain dictionaries.

The principle of BP is to seek a signal representation whose coeffici-

ents possess the smallest ℓ1 norm. Mathematically, this problem is formulated
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in (CHEN et al., 2001) as follows:

x̂ = argmin
x

∥y−Dx∥22 − λ ∥x∥1 (2.21)

This forms the foundation for both LASSO and BP, which are similar

techniques but were developed independently by different research communities.

LASSO originated from the statistics community, whereas BP emerged from the

signal processing domain. BP involves solving a convex quadratic optimisation

problem.

The obtained solution x̂λ is dependent on the parameter λ and provides

a decomposition of the signal into a signal component and a residual component

as follows

y = Dx̂λ + r (2.22)

The size of the residual is controlled by λ. As λ → 0, the residual goes to zero

and the solution behaves exactly like BP applied to y. As λ→ ∞, the residual

gets large, r(λ) → y and Dx̂λ → y.

Equation (2.21) always has a solution, although it may not be uni-

que. It can be equivalently reformulated as a quadratic optimisation problem,

which can be solved using the Quadratic programming (QP). The quadratic

formulation is given as follows

minu,v,p λ1T

[
u

v

]
+

1

2
pTp (2.23)

s.t.
[
D −D

] [u
v

]
+ p = y; (2.24)

u, v ⩾ 0 (2.25)

where x = u−v. The QP problem can be effectively solved using various general

solvers, including interior point methods. However, for exceptionally large pro-

blem instances, specialised methods that surpass the efficiency of interior point

methods have been developed. One such approach is the alternating direction
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method of multipliers (BOYD et al., 2011) (ADMM), which has been proposed

in several variants for solving large-scale ℓ1 problems.

The Alternating Direction Method of Multipliers is a popular a opti-

misation technique used in many fields. In the context of dictionaries and sparse

coding, the optimisation objective is divided into three subproblems: updating X

by solving a sparse coding problem with a penalty term, updating D by solving

a dictionary update problem, and updating the auxiliary variable by adjusting

the Lagrange multiplier. These subproblems are solved iteratively until conver-

gence is reached. The method leverages the alternating minimisation strategy to

jointly optimise X and D, while the auxiliary variable and Lagrange multiplier

ensure consistency between the variables.

2.3 Tackling the Dictionary Learning Problem

Traditional dictionary learning methods can be divided into three main

categories:

• Probabilistic learning methods, including the Maximum Likelihood (ML)

Dictionary Learning Method, the Maximum a Posteriori Probability (MAP)

Method for Dictionary Learning, and the Method of Optimal Directions

(MOD).

• Learning methods based on clustering, such as K-SVD.

• Methods for learning dictionaries with specific characteristics. These methods

are typically guided by prior knowledge about the structure of the data or

the intended application of the learned dictionary.

This section aims to provide a comprehensive overview of representa-

tive algorithms in the first two categories of dictionary learning methods listed

above, highlighting their fundamental principles and key contributions.
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2.3.1 Maximum Likelihood Dictionary Learning Method

The methods introduced in the works of Olshausen and Field (OLSHAU-

SEN; FIELD, 1996) and Lewicki and Sejnowski (LEWICKI; SEJNOWSKI,

2000) employ a probabilistic framework, assuming that the input data matrix

Y = [y1,y2, . . . ,yp] is independently and identically distributed (i.i.d.). These

methods propose a generative model that describes the underlying process of

data generation, which can be expressed as follows

Y = DX+ ϵ (2.26)

with ϵ being a Gaussian white residual vector with zero mean µ = 0 and variance

σ2. Since the examples in each column of Y are i.i.d,

P(Y|D) =

p∏
i=1

P(yi|D) (2.27)

The likelihood function requires integrating out the hidden (unobservable) zero

mean, i.i.d. source vectors, X = [x1, x2, · · · , xp], i.e.,

P(yi|D) =

∫
P(yi, x|D)dx =

∫
P(yi|x,D)P(x)dx (2.28)

From the Gaussian assumption made over the noise model,

P(yi|x,D) = C exp

{
−

1

2σ2
∥yi −DX∥2

}
(2.29)

for C a constant value. Different authors suggested different distributions for

P(x). As a matter of fact, regardless the assumed distribution, the integration

over x is not easy to evaluate in Equation (2.28), because it requires integrating

over all possible states of x, which is in general intractable (OLSHAUSEN;

FIELD, 1997). Indeed, in (OLSHAUSEN; FIELD, 1996), the authors formulate

the optimisation as follows

D = argmax
D

p∑
i=1

max
xi

{P(yi|xi,D)} (2.30)

D = argmin
D

p∑
i=1

min
xi

{
∥yi −Dxi∥22 + λ ∥xi∥1

}
(2.31)
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The price paid for this approximation is the possibility of obtaining trivial solu-

tions for the sparse vectors xi, as the norm of the dictionary atoms dk increases,

causing the individual elements of xi to decrease. To address this issue, a cons-

traint on the ℓ2-norm of each atom is imposed.

To solve Equation (2.31), a two-phase iterative method, consisting of an

outer and inner phase, is proposed in (OLSHAUSEN; FIELD, 1997). In the inner

phase, Equation (2.31) is minimised with respect to xi for each input signal while

keeping D fixed. This is achieved through a network implementation where each

output unit represents the value of a single coefficient xji. The output activities

are then fed back through the dictionary atoms to reconstruct the signal yi.

The reconstructed signal is subtracted from the input signal, and the resulting

residual is propagated forward to update each output xji.

The second step involves updating the dictionary using a gradient des-

cent method, given by

D(n+1) = D(n) − η

p∑
i=1

(
D(n)xi − yi

)
xTi , (2.32)

where η represents the learning rate.

2.3.2 Maximum a Posteriori Probability Method for Dictionary Learning

In the Maximum a Posteriori (MAP) probability framework, rather

than working with the likelihood function P(Y|D), the posterior P(D|Y) is con-

sidered. It incorporates statistical preferences on the learned dictionary. By in-

corporating prior information, the posterior distribution is given by P(D|Y) ∝
P(Y|D)P(D), where the likelihood expression from the Maximum Likelihood

(ML) approach is combined with a prior distribution P(D). For instance, when

imposing the prior which constrains the dictionary to have a unit Frobenius

norm ∥D∥F = 1, the update expression is obtained as follows:

D(n+1) = D(n) + η
(
EXT + Tr

(
D(n)TEXT

)
D(n)

)
(2.33)
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where

E =
∥∥∥Y −D(n)X

∥∥∥2
F

(2.34)

is the representation mean squared error and η > 0 is the learning rate. Howe-

ver, the previous Frobenius norm constraint ∥D∥F = 1 introduces a challenge

where certain columns of D tend to approach zero. This issue arises because the

algorithm penalises the dictionary columns associated with terms in X that have

large magnitudes. If an atom dk has a relatively small magnitude, the weight of

its coefficient x[i] can be large, resulting in higher penalties compared to those

from columns with a larger norms. Consequently, this constraint can lead to

underuse of certain atoms.

This observation motivates the exploration of an alternative and more

restrictive form of the constraint, where each atom dk is normalised to a constant

value. Specifically, we enforce the condition ∥dk∥2 = c, where c > 0 ∈ Rk. The
adoption of this second prior leads to a modified update expression

d
(n+1)
i = dni + η

(
I− dni d

(n+1)
i

T
)
ExTi (2.35)

where xTi is the i-th column of the matrix XT .

2.3.3 Method of Optimal Directions (MOD)

The Method of Optimal Directions (MOD) was among the pioneering

methods proposed to address the problem of sparse dictionary learning. The

fundamental principle of this method involves solving a minimisation problem

with an ℓ0-penalty constraint, formulated as follows:

min
D,X

|Y −DX|2F s.t. |xi|0 ⩽ T , ∀i

The first term in the objective function penalises the representation error. The

use of the Frobenius norm is equivalent to the ℓ2-norm when considering the

vector form, i.e., minD,{xi}
p
1

∑p
i=1 ∥yj −Dxj∥22.



2.3. Tackling the Dictionary Learning Problem 45

The MOD algorithm iteratively alternates between the sparse coding

task, employing methods such as matching pursuit, and updating the dictionary

by computing the analytical solution using the Moore-Penrose pseudoinverse X+

i.e.,

D = YX+ (2.36)

Alternatively, the dictionary update can be expressed as

D = YXT(XXT)−1 (2.37)

Following the dictionary update, the atoms in D are normalised to satisfy the

unit-norm constraints. Subsequently, a new sparse coding step is performed, and

this iterative process continues until convergence, which is typically achieved

when the residue becomes sufficiently small.

Although the MOD is known for its efficiency in handling low-dimensional

input data X, requiring only a small number of iterations for convergence, it fa-

ces challenges when dealing with large datasets. Specifically, the computational

complexity associated with the matrix inversion operation, required for compu-

ting the pseudoinverse, renders it impractical in many cases. Consequently, this

limitation has driven the exploration of alternative dictionary learning methods.

2.3.4 K-SVD

The K-SVD is an algorithm introduced in the works of Aharon et

al. (AHARON et al., 2006) and Rubinstein et al. (RUBINSTEIN et al., 2008).

It employs Singular Value Decomposition (SVD) to iteratively update the atoms

of the dictionary one by one, while ensuring that each element of the input data

yi can be encoded by a linear combination of at most T atoms. The algorithm

consists of two main steps:

• In this step, a sparse representation matrix X is generated by leveraging ap-

proximate solving methods such as Orthogonal Matching Pursuit (OMP),
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Basis Pursuit (BP), Focal Under-Determined System Solver (FOCUSS),

among others. Given the current fixed dictionary D, the sparse coding

phase computes the sparse coefficients for each input signal, resulting in

the matrix X;

• The dictionary update phase focuses on updating the dictionary atoms

based on the current sparse representations. The underlying principle of

this step involves updating one column of D at a time while keeping all

other columns in D fixed, except for dk. The update procedure for the

k-th atom entails optimising a target function specific to the atom being

updated.

OMP is an iterative greedy algorithm that selects at each step the

column, which is most correlated with the current residuals. This method finds

matrix X for a given fixed dictionaryD, and formulates the optimisation problem

using either the sparsity constraint or the representation error constraint, i.e.,

min
X

∥Y −DX∥2F (2.38)

s.t. ∥xi∥0 ⩽ T , ∀i ∈ {1, , · · · , p} (2.39)

or equivalently,

min
X

∥xi∥0 , ∀i ∈ {1, , · · · , p} (2.40)

s.t. ∥Y −DX∥2F ⩽ ϵ (2.41)

Further details regarding the solving approach employed in OMP can be found

in Section 2.2.1 of the corresponding reference.

Once the sparse coding stage is completed and the matrix X is compu-

ted, the K-SVD algorithm proceeds to the second stage, which involves updating

the dictionary. In this stage, the dictionary atoms dk are updated individually

while keeping the remaining atoms fixed. The objective is to minimise the mean
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squared error (MSE) of the signal representations. By considering the coeffici-

ents of dk as xkT , corresponding to the k-th row of X, the penalty term can be

reformulated as follows:

∥Y −DX∥2F =
∥∥∥Y −

∑
djx

j
T

k

j=1

∥∥∥2
F

(2.42)

=

∥∥∥∥∥∥(Y −
∑
j ̸=k

djx
j
T) − dkx

k
T

∥∥∥∥∥∥
2

F

(2.43)

=
∥∥Ek − dkxkT∥∥2F (2.44)

where Ek refers to the approximation error without the k-th dictionary atom.

However, it is important to note that the aforementioned update does not ex-

plicitly enforce any sparsity constraint. To address this, the K-SVD algorithm

considers only a subset of examples denoted as YRk , which specifically utilise the

dictionary atom dk. Additionally, a subset of error columns ERk is selected based

on the use of the correspondent atom. To further promote sparsity, the coeffici-

ents of the row vector xkT are filtered by discarding the entries that are equal to

zero. This results in the short version of xkT denoted as xkR.

To minimise the error ERk with respect to dk, the authors propose em-

ploying SVD decomposition, expressed as ERk = U∆V
T . Accordingly, the solution

for the dictionary atom d̃k is derived from the first column of U, which corres-

ponds to the eigenvector associated with the maximum eigenvalue ∆(1,1). This

eigenvalue represents the maximum variance of the error matrix. Similarly, the

coefficient vector xkR is updated by multiplying ∆(1,1) with the first column of

V . A noteworthy aspect of this approach is that it ensures that the support of

all representations xkR either remains the same or becomes smaller, potentially

containing null terms (AHARON et al., 2006).

The K-SVD algorithm shares similar limitations to MOD, as it demons-

trates efficiency primarily for training signals with relatively low dimensionality

and is susceptible to local minima. In order to address these challenges, a fas-



2.3. Tackling the Dictionary Learning Problem 48

ter approach was proposed in (RUBINSTEIN et al., 2008), which employs an

approximate solution that guarantees a complexity reduction in the final objec-

tive function. An important advantage of this method lies in its ability to avoid

explicit computation of the matrix EkR, which is a computationally and memory-

intensive operation. Instead, the approximate formulation involves computing

matrix-vector products related to EkR, resulting in significant time and memory

savings. To further enhance the dictionary update step, the implementation of

the Approximate K-SVD algorithm incorporates Batch-OMP (RUBINSTEIN et

al., 2008) as the sparse coding method.

2.3.5 LASSO Approach

Conventional approaches to dictionary learning are predicated on the

availability of a typical and sufficiently large input data set Y = [y1, y2, · · · , yp]

for training the algorithm. However, when the input data is presented as a stream

yi, this assumption is clearly violated, and such scenarios fall within the realm

of online dictionary learning. In this field, the focus is on the iterative updates

to the dictionary as new data points yi become available.

The algorithm introduced in (MAIRAL et al., 2010) indicates a metho-

dology for updating Dt with respect to the input data stream received at time

instant t. It works as follows

1. For the new input data sample yt, find a sparse coding using LARS (Least-

Angle-Regression):

xt = argmin
x∈Rn

(
1

2
∥yt −Dt−1x∥+ λ ∥x∥1

)
(2.45)

where λ is a regularisation parameter. Despite being well known that the

ℓ1-norm yields a sparse solution for xt, there is no analytic link between

the value of λ and the corresponding effective sparsity in xt (MAIRAL et

al., 2010). To prevent D from being arbitrarily large (which would lead to
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arbitrarily small values of xt), it is common to constrain its atoms dk to

have ℓ2-norm less than or equal to one.

2. Update dictionary using block-coordinate descent approach: it computes

Dt from its previous version Dt−1 so that

Dt = argmin
D

1

t

t∑
i=1

(
1

2
∥yi −Dxi∥22 + λ ∥xi∥1

)
(2.46)

= argmin
D

t∑
i=1

(
1

2
xTiD

TDxi − yTiDxi

)
(2.47)

= argmin
D

1

2
Tr
(
DTDAt

)
− Tr

(
DTBt

)
(2.48)

where the matrices At and Bt essentially carry all the information from

the past coefficients in the vectors [x1, x2, · · · , xt] and all the informa-

tion from the previous input data vectors [y1, y2, · · · , yt], i.e., At =∑t
i=1 xix

T
i = At−1 + xtx

T
t and Bt =

∑t
i=1 yix

T
i = Bt−1 + ytx

T
t . The online

adjustment ofD for each new stream yi is made for each dictionary atom (in

blocks) by solving Equation (2.48). Taking At = [a1, a2, · · · , an] ∈ Rn×n

and Bt = [b1, b2, · · · , bn] ∈ Rm×n the atoms dj are updated as follows:

uj =
1

Aj,j
(bj −Dt−1aj) + dt−1

j (2.49)

dj =
1

max(∥uj∥2 , 1)
uj (2.50)

The solution to Equation (2.48) with respect to the j-th column of D, while

holding the other columns fixed under the constraint dTj dj ⩽ 1, can be derived

using a sequential least squares approach. This solution is expressed by Equa-

tion (2.50).
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Chapter 3
Using Autocoders for Dictionary Learning and

Sparse Coding

An autoencoder can be considered a semi-supervised neural network

model. The reason autoencoders can be considered semi-supervised is that while

they do not rely on explicit class labels during training, they can effectively

utilise partially labeled data by learning the underlying structure and patterns

in the data, which can enhance the performance of downstream classification

tasks.

Typically, autoencoders (AEs) are used to reconstruct their input using

partial information available from a bottleneck layer, which generates a latent

space. In the case of autoencoders, the compression is achieved by training the

network to learn the optimal representation that minimises the reconstruction

error between the input and output at the bottleneck layer. The existence of a

bottleneck layer, with a smaller number of neuron units compared to the input

size, enables the projection of data from a higher dimension to a lower dimension

through nonlinear transformations while preserving the most relevant features

according to the cost function’s emphasis.

Autoencoders consist of two main stages: the encoder, which produces

the representation space, and the decoder, which reconstructs the original input
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by minimising the representation error. AEs find applications in various tasks,

such as learning and selecting features from partially labeled data in classifica-

tion problems, noise reduction (HWAIDI; CHEN, 2022), dimensionality reduc-

tion (KAMAL; BAE, 2022), and anomaly detection (ZHOU; PAFFENROTH,

2017).

In this chapter, we propose a gradient based neural training algorithm

that can solve the dictionary learning and sparse coding problem using an au-

toencoder architecture. We provide theoretical and experimental evidences that

these problems can be tackled by training autoencoders with specific charac-

teristics. The primary objective of this section is to conduct a comprehensive

review of pertinent literature and illustrate the proposed framework.

The proposed loss function incorporates three penalty terms: one to

promote sparsity in the latent space, one to penalise representation error, and

one to encourage the unity norm of the dictionary atoms. The autoencoder-based

framework can accommodate a wide range of nonlinear activation functions, re-

sulting in greater flexibility and improved performance compared to conventio-

nal dictionary learning approaches described in Chapter 2. Moreover, the sparse

autoencoder proposed in this chapter can be a promising method for large da-

taset, where conventional dictionary learning and sparse coding algorithms may

be challenging to apply.

In addition to the proposed autoencoder architecture we also incorpo-

rate the Kullback-Leibler (KL) divergence as a penalty term in the loss function

used throughout the training stage. The proposed output layer employs a linear

activation function (specifically, the identity function) with the weight matrix

being associated to the dictionary, W2 = D
T . Additionally, to keep consistency

with the original problem formulation, no bias vector is added at this decoder

side.
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3.1 Sparse Dictionary Learning: A Fully-Connected Autoencoder Ap-

proach

An autoencoder is a neural network introduced in (RUMELHART et

al., 1986). It maps Rn → Rn and consists of an encoder and a decoder model.

The encoder network typically consists of one or more layers that compress the

input data into a latent space with a reduced dimension. The decoder network,

on the other hand, usually consists of one or more layers for reconstructing the

input back to the original dimensions of the input. The characteristics of the

latent space can also be controlled by incorporating regularisation terms into

the loss function applied for model training.

Autoencoders are designed to learn efficient representations of data

from a reduced-dimensional representation called the latent space. Typically,

autoencoders have a bottleneck layer in the latent space, which imposes a cons-

traint on the amount of information that can flow through the model.

However, in the context of sparse dictionary learning, we propose a

novel approach that deviates from the conventional autoencoder architecture.

Our model architecture involves a higher-dimensional space in the latent space,

allowing for a richer representation of the input data. To encourage sparsity in

this expanded latent space (NG, 2011), we add a sparsity penalty term to the

loss function of the proposed model.

In this section, we delve into the investigation of fully-connected sparse

autoencoders for the task of image reconstruction. By leveraging the benefits of

a higher-dimensional latent space and incorporating a sparsity penalty, we aim

to enhance the model’s ability to capture features and reconstruct images with

improved fidelity while also exploring a new method to learn sparse codes and

dictionaries.

The experimental analysis will focus on evaluating the performance of
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the proposed sparse autoencoder model using benchmark datasets. By exploring

this alternative approach to autoencoder design, we aim to contribute to the

advancements in sparse dictionary learning using deep learning models.

The training criterion utilised in sparse autoencoders (GOODFEL-

LOW et al., 2016) encompasses two essential components: the penalty denoted

as Lϵ() to account for reconstruction error and a sparsity penalty referred to as

Ps() targeting the output of the latent space, i.e.,

J = Lϵ (y− g(f(y))) + Ps (f(y)) (3.1)

where h = f(y) is the latent space, g() is the decoder function and f() is the

encoder function.

According to (MAKHZANI; FREY, 2013), the principle of the sparse

autoencoders can be summarised as follows

• An autoencoder with linear activation function, where in hidden layers only

the k highest activities are kept;

• sparse autoencoders can enforce exact or arbitrary sparsity levels in the

hidden layers;

• sparse autoencoders are suitable for pre-training deep discriminative neural

networks;

• sparse autoencoders may constitute a sparse coding method that is well-

suited to large problem sizes.

To bridge an equivalence between the original dictionary learning pro-

blem and an AE training scheme, we propose the input data, denoted as Y,

undergoes the sparse coding step through a multi-layer encoder stage. Without

loss of generality, let us consider a single-layer encoder composed of a weight

matrix, denoted as W1, a bias vector b1, and a nonlinear activation function,

denoted as f1(), governing the behavior of the hidden layer neurons.
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In the loss function we must induce sparsity at the latent space, de-

noted as x. To achieve this, we incorporate Kullback-Leibler divergence as a

sparsity regularisation term in the network’s loss function. Subsequently, these

sparse representation is transformed back to their original representation using

a linear activation function and the weight matrixW2 at the decoder side of the

model, which represents the dictionary’s transpose, i.e., W2 = D
T .

The proposed architecture employs the sigmoid function as the activa-

tion applied to the encoder model, which naturally constrains the latent space

to the interval σ ∈ [0, 1]. The decode layer employs a linear identity activation

function. The autoencoder structure is illustrated in Figures 3.1, 3.2 and 3.3.

Formally, the hidden layer and the output layer can be defined as follows

xi = σ
(
WT

1yi + b1

)
(3.2)

ŷ = WT
2xi (3.3)

σ(x) =
1

1+ exp−x
(3.4)

The vector yi ∈ Rm is an input sample, W1 ∈ Rm×n is the linear

transformation implemented at the first layer of the encoder, xi ∈ Rn is the

latent space obtained after the nonlinear activation function, b1 ∈ Rn is the

bias vector at the encoder side,W2 ∈ Rn×m is the linear transformation applied

at the decoder side, and ŷi ∈ Rm is the output of the autoencoder.

Our loss function is defined as follows

J =
1

2p

p∑
i=1

∥yi − ŷi∥22 +
α

n

n∑
i=1

∥∥1− dTi di
∥∥
1
+
β

n

n∑
j=1

KL(ρ||p̂j)(3.5)

p̂j =
1

p

p∑
i=1

h
(L)
j (xi) (3.6)

KL(ρ||p̂j) = ρ log
ρ

p̂j
+ (1− ρ) log

1− ρ

1− p̂j
(3.7)

where di is the i-th dictionary atom and h
(L)
j is the j-th neuron of L-th layer.
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Our objective is to minimise the loss function J with respect to the

variablesW1,W2, and b1. It is important to note that the weight matrix on the

decoder side, denoted as W2, is directly related to the dictionary, which can be

expressed as W2 = D
T . Additionally, the vector xi represents the sparse code of

the i-th input sample and corresponds to the latent space of the autoencoder.

The first term in the loss function aims to penalise the representation

error between the inputs and outputs of the autoencoder by utilising the ℓ2-

norm regularisation. The second term enforces the unit ℓ2-norm constraint on

the dictionary atoms. This constraint prevents situations where dictionary atoms

have arbitrarily large norms while sparse codes falsely exhibit small values not

related to sparsity. Finally, the third term encourages sparsity in the codes

represented by h(x).

The penalty function imposes a condition such that KL(ρ||p̂j) = 0 when

p̂j = ρ. On the other hand, the penalty increases monotonically as p̂j diverges

from ρ. The goal is to ensure that the average activation of the encoder’s hidden

neuron j closely approximates the desired value of ρ. Specifically, we aim to

set ρ to be approximately equal to zero. Figure 3.4 illustrates the behavior of

KL(ρI|p̂j) for a specific value ρ = 0.2.

The sparsity level achieved at the latent space is defined in terms of

the Kullback-Leibler sparsity parameter ρ as follows

si =
#
{
j |
∥∥∥x(j)i ∥∥∥

1
< ρ

}
n

(3.8)

and the density level is

di = 1−
#
{
j |
∥∥∥x(j)i ∥∥∥

1
< ρ

}
n

(3.9)

The sparsity parameter must be kept close to zero. In particular, we adopt

ρ = 0.01 to encourage sparsity. Figures 3.5 and 3.6 illustrate the probability

distribution function of the values in the latent space, h, and the probability
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Figure 3.1 – The proposed autoencoders can be easily modified and extended to incorporate
various architectural enhancements, regularisation techniques, and loss functions.
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Figure 3.2 – Encoder layer configuration.
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Figure 3.3 – Decoder layer configuration.
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approaches 0 or 1. In this example ρ = 0.2.
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Figure 3.5 – The probability density function of the sparse codes h.

distribution function of the ℓ2-norm of di, respectively. The values in h are con-

centrated around ρ, and dTi di values are also concentrated around 1, indicating

that most dictionary atoms have a unit norm.

In this first example of the proposed autoencoder-based approach, we

analyse the results obtained with the CIFAR-10 images. This dataset comprises

a collection of 60, 000 color images, each with dimensions of 32 × 32 pixels,

distributed among 10 distinct and mutually exclusive classes, with 6, 000 images
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Figure 3.6 – The probability density function the ℓ2-norm of the dictionary atoms di.

per class. The dataset is divided into a training set, which consists of 50, 000

images, and a test set, which contains 10, 000 images. The dataset’s classes are

entirely exclusive, with no overlap between the automobile and truck categories.

The automobile class encompasses sedans, sport utility vehicles, and similar

vehicles, while the truck class comprises only large trucks, excluding pickup

trucks.

Figure 3.7 illustrates a set of images used for testing the trained au-

toencoder as well as the results obtained by reconstruction using Ŷ = DX. The

performed simulation is implemented in Python using TensorFlow (ABADI et

al., 2015) library, version 1.13. The experiments were performed in a notebook

with Intel Core 8xI7-4720HQ Processor, 16GB RAM and a GPU GTX 970M.

To convert RGB images from CIFAR-10 to grayscale, thus decreasing

the number of connections between the neurons of the autoencoder, we take

the RGB values for each pixel and make as output a single value reflecting the

brightness of that pixel. For that end we take the weighted average of each

channel pixel (Ri,Gi,Bi) in the following way pi = 0.3Ri + 0.59Gi + 0.11Bi.
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Original Testing Images σ=0

(a) Original Images

Reconstruction DX

(b) Sparse reconstruction

Figure 3.7 – The reconstruction of a selected subset of images from test dataset. The average
density level is d = 0.19 indicating that approximately 19% of the 2500 atoms are
linearly combined to reconstruct these images.
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Converting a three-channel image into its grayscale representation le-

ads to a reduction in the required model’s size. The images are downgraded from

three channels to one, reducing by three times the number of parameters to be

trained. From the classification perspective, grayscale preprocessing is particu-

larly effective in datasets where the semantic meaning of object color is minimal.

However, it should be noted that this conversion is not considered beneficial for

classifying nature images such as those found in CIFAR-10.

For instance, when considering the ship class, ships are typically expec-

ted to appear against blue or green backgrounds rather than red backgrounds,

as water is predominantly blue or green. Therefore, in the context of classifica-

tion, grayscale preprocessing is not the most effective technique for CIFAR-10

images. However, it is worth noting that the autoencoder-based framework can

be successfully applied to RGB images by stacking the three color channels into

a single input vector, denoted as yi ∈ R3ṁ.

The preprocessing stage is completed by normalising the pixel values,

which involves rescaling the intensity range from [0, 255] to [0, 1]. This norma-

lisation is achieved by dividing each pixel value by 255.

To optimise all the parameters of the autoencoder model, we employ

the Adam (KINGMA; BA, 2014) algorithm, derived from the concept of adap-

tive moment estimation. This algorithm computes individual adaptive learning

rates for different parameters based on estimates of the first and second mo-

ments of the gradients. The Adam algorithm utilises the following configuration

parameters:

• α: also referred to as the learning rate or step size. Larger values results in

faster initial learning before the rate is updated. Smaller values results in

slow learning right down during training;

• β1: the exponential decay rate for the first moment estimates;
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Table 3.1 – Detailed configuration used to train the autoencoder.

Attribute Used Value

Activation Function Sigmoid
Batch Size 400

Loss Function J

Optimiser Adam
Epochs 250

Learning Rate 0.001
Initialiser function (W1,W2,b1) N(0, 0.32)
ρ sparsity parameter from KL 0.01

m - figure size 1024(32× 32)
p - number of training samples 50000
n - number of dictionary atoms 2500
α hyperparameter from J 250
β hyperparameter from J 300

• β2: the exponential decay rate for the second-moment estimates;

• ϵ: it is a very small number to prevent any division by zero in the imple-

mentation.

In the experiments reported next, we use the default parameters suggested

in (KINGMA; BA, 2014), i.e., α = 0.001, β1 = 0.9, β2 = 0.999, and ϵ = 10−8.

We remark that tuning the learning rate parameter α with a learning rate sche-

duler to adjust step size throughout the training epochs has not achieved good

results and due to that, we kept it fixed. Table 3.1 summarises the attribu-

tes used for training autoencoder, and Figure 3.8 illustrates the loss function J

throughout the training.

The primary aim of the initial phase of our simulation is to evaluate

the autoencoder’s potential to achieve significant sparsity levels while minimi-

sing representation errors. In this phase, we focus on the autoencoder’s sparse

representation capabilities, not focusing on its denoising capabilities widely ex-

plored in the literature (VINCENT et al., 2008). Therefore, we refrain from

introducing stochastic noise to the autoencoder inputs at this point. The results

of this preliminary assessment are presented in Figure 3.9, which shows a subset
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unit ℓ2-norm of the dictionary atoms, and the representation error throughout the
training epochs. Results were compared for five different values of learning rate.
Minimum loss value was achieved for learning rate α = 0.001.

of the achieved results.
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Figure 3.9 – Comparing the original set of testing images from CIFAR-10 dataset and the spar-
sely reconstructed images Ŷ = DX. The average density level is d = 0.19.
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Figure 3.10 illustrates the most activated atoms of each class in CIFAR-

10 dataset. These atoms are represented as images where the grayscale tones

are associated to the element values of each atom. This representation allows us

to visually inspect and interpret the atoms. The highly activated atoms repre-

sent the dominant features that the autoencoder has learned to extract among

different samples used in the training. By examining these atoms, we cannot

see highly discriminative characteristics that the autoencoder has identified for

each class. In fact, this model was not trained to capture these discriminative

features and therefore we cannot clearly identify distinguishable patterns among

the activated atoms.

Interestingly, when examining the most frequent atom for the images

in each class (except the ship class), we observe that they are the same. This

suggests the presence of a shared common pattern that is present in the majority

of samples across different classes. This finding highlights the presence of a

recurring visual characteristic that is consistent across various objects, such as

sedans, sport utility vehicles, trucks, and more, within the dataset.

Figure 3.11 depicts the relationship between sparsity, representation

error, and a sparsity threshold parameter denoted by t. The threshold parameter

t is applied after to the latent space values. In particular, if xi,j is less than t,

then xi,j is rounded to zero.

In Figure 3.12, the highlighted region indicates a lower level of sparsity

(higher density) with a relatively constant level of error achieved for the repre-

sentation. This region sets the best trade-off between sparsity and accuracy and

therefore it is useful in selecting the best value of t for the autoencoder.

The proposed autoencoder model, designed for sparse dictionary lear-

ning, can also serve as an effective tool for noise removal. To this end, during

its training the denoising autoencoder aims to reconstruct the original input

data from its noisy versions. Once the training process is completed, the trained
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Figure 3.10 – Top 5 most activated dictionary atoms for each class of CIFAR-10 dataset.

denoising autoencoder demonstrates the ability to remove noise from unseen

data.

To add Gaussian noise to the input images, we use the following steps:
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Figure 3.11 – The figure illustrates the relationship between thresholds, densities of sparse codes,
and achieved representation error.
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Figure 3.12 – The figure illustrates the relationship between thresholds, densities of sparse codes,
and achieved representation error.

1. Normalise the pixel values of the input image to be between 0 and 1.

2. Generate a Gaussian noise matrix of the same shape as the input image.

The values of the Gaussian noise matrix should have a mean of 0 and a

standard deviation of a chosen level of noise.

3. Add the Gaussian noise matrix to the normalised input image.

4. Clip the pixel values of the noisy image to be between 0 and 1 to ensure

that the image remains in the valid pixel range.
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This approach adds a random noise signal to the input image, which can be

useful for simulating real-world scenarios where images are often corrupted by

noise. The amount of Gaussian noise added can be controlled by adjusting the

standard deviation of the Gaussian noise matrix. Higher standard deviation

results in noisier images. For this experiment, the noise matrix Q is added to a

grayscale image E ∈ R
√
m×

√
m, ei,j ∈ [0, 1] from CIFAR-10 as follows

W = N(0
√
m×

√
m, diag(σ)

√
m×

√
m) (3.10)

Eq = E+Q (3.11)

Ec = max(0,min(1,Eq)) (3.12)

The peak signal-to-noise ratio (PSNR) is a metric used to assess the

quality of a reconstructed image in comparison to the original image. It quanti-

fies the ratio of the peak signal power to the mean squared error (MSE) between

the two images. A higher PSNR value indicates better image quality. PSNR is

commonly expressed in decibels (dB).

The MSE is a metric commonly used to assess image quality. It calcu-

lates the average squared error between the reconstructed and original images.

In contrast, the PSNR measures the peak error between the two images. A lower

MSE value indicates a lower overall error, while a higher PSNR value indicates

lower peak errors. The PSNR is computed by utilising the MSE, which is defined

according to the following equation:

MSE =

∑m
i=1

∑p
j=1 [yi,j − ŷi,j]

2

m · p
(3.13)

where m is the number of pixels from the input images yi, and p is the total

number of samples under evaluation. The PSNR is given by

PSNR = 10 log10

(
R2

MSE

)
(3.14)

where R is the maximum fluctuation in the input image data type. Particularly,

the input images used throughout this section have a single-precision floating-

point data type and R is 1.
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The classification accuracy obtained from the ResNet-56 architecture

will be also utilised as a third criterion to evaluate the image quality achieved

by the proposed sparse dictionary learning framework. ResNet, known as the

Residual Network, has demonstrated outstanding performance in various com-

puter vision tasks, including image classification. While classification is not the

primary objective in assessing image reconstruction quality with sparse codes,

it can serve as an auxiliary metric of success. ResNet allows us to compare the

classification performance between the original image samples and the sparse

reconstruction achieved from the autoencoder.

ResNet-56, a specific variant with 56 layers, was employed in this study.

The obtained classification results from ResNet-56 will be compared against the

benchmark accuracy achieved with the original image samples.

Table 3.2 presents the accuracy results obtained for Yc and Ŷ. Here,

Y represents the original image, Yc represents the noisy version of it, and Ŷ

represents the sparse reconstruction of Y. The compression rate C is defined

based on the density d, the number of atoms n, and the stacked figure size,

fsize = 32× 32 = 1024. The compression rate is given as follows

C =
d× n
fsize

(3.15)

To improve the statistical significance to a certain extent, we performed

10 independent runs and calculated the average results. We systematically varied

the values of σ and t to examine the impact of noise on classification accuracy.

The outcomes of these experiments are summarised in Table 3.2. We explored

different values of σ ranging from 0 to 0.15 and adjusted the threshold parameter

t from t = ρ = 0.01 to t = 0.42, which corresponds to the elbow point of the

density-representation error curve depicted in Figure 3.11. After training for

150 epochs, the ResNet-56 model achieved a reference accuracy of 91.13% on

the validation dataset when σ = 0 (i.e., Yc = Yw = Y). However, the accuracy

associated with Yc is highly dependent on the noise level controlled by σ.
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Table 3.2 – ResNet-56 v2 classification results. Red highlights indicate accuracies surpassing
the reference value of noisy test images (Yc). Blue highlight represents benchmark
accuracy without additional noise corruption (Yc = Y, σ = 0).

σ PSNR [dB] t Density C Accuracy Ŷ Accuracy Yc
25.84 0.01 0.1939 0.4734 60.19%

0 26.04 0.12 0.1751 0.4275 60.90% 91.13%
14.83 0.42 0.0579 0.1414 29.58%
25.00 0.01 0.1907 0.4656 49.71%

0.05 25.14 0.12 0.1700 0.4150 50.38% 43.43%
15.37 0.42 0.0544 0.1328 25.66%
23.60 0.01 0.1857 0.4534 35.78%

0.1 23.61 0.12 0.1614 0.3940 36.21% 23.45%
15.11 0.42 0.0485 0.1184 21.53%
22.2947 0.01 0.1697 0.4143 24.18%

0.15 22.3071 0.12 0.1470 0.3589 23.98% 15.50%
15.4884 0.42 0.049 0.1196 16.92%

In contrast, although the accuracy of the reconstructed images Ŷ at

σ = 0 is lower than that of Yc at σ = 0, Ŷ exhibits higher accuracy compared to

Yc for σ > 0. This also indicates the potential of the sparse dictionary learning

framework on achieving improved accuracy and enhanced robustness against

Gaussian noise.

In our experiment, we also investigated the use of different patch sizes

by dividing the images into smaller non-overlapping patches. Specifically, we

considered patch sizes of 16× 16, 8× 8, and 4× 4. The results are illustrated in

Figure 3.14. Detailed results are presented in Table 3.3.

To this experiment, the compression rate, denoted as C, is determined

by considering the patch size r, the density d, and the number of atoms n. The

equation defining the compression rate is given by

C =
dn

r
(3.16)

Additionally, the density threshold at which the compression rate equals 1 can

be calculated by dividing the patch size by the number of dictionary atoms,

which we set to 2500. In our analyses, if the density exceeds this threshold, it
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Figure 3.13 – Comparison between grayscale test images from CIFAR-10 dataset after white
Gaussian noise with σ = 0.15, and the sparse reconstruction Ŷ = DX. The average
density level is d = 0.1746.

implies that no compression is achieved.

Decreasing the patch size leads to an increase in the required sparsity

for compression. This means that smaller patches require a higher level of spar-

sity in order to achieve efficient compression. Additionally, reducing the patch

size results in lower accuracy under compression conditions. This indicates that

smaller patches are more challenging to accurately reconstruct.

Moreover, the limitations of fully-connected networks in image recons-

truction tasks are evident from the experiment, highlighting the need for alterna-

tive approaches such as convolutional networks. Fully-connected networks have

drawbacks such as a large number of parameters, making them computationally

expensive and challenging to train. They also lack the ability to capture spatial

information, disregarding the important relationships between pixels necessary

for accurate image reconstruction. Additionally, fully-connected networks are

prone to overfitting, resulting in poor generalisation performance.
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Table 3.3 – ResNet-56 v2 classification accuracy with diffrent image patch sizes. Red values
exceed reference from noise-corrupted images (Yc), while blue value is benchmark
accuracy without additional noise (Yc = Y, σ = 0).

r PSNR [dB] t Density C Accuracy Ŷ Accuracy Yc
30.52 0.01 0.0711 0.6943 78.71%
27.22 0.06 0.0611 0.5967 78.59% 91.13%

16 25.77 0.12 0.0536 0.5234 75.69%
20.49 0.24 0.0334 0.3262 53.69%
16.61 0.32 0.0209 0.2041 38.12%
11.10 0.42 0.0108 0.1055 26.40%
36.78 0.01 0.1006 3.9297 87.97%
24.52 0.06 0.0326 1.2734 68.27% 91.13%

8 22.34 0.12 0.0241 0.9414 60.74%
18.87 0.24 0.0179 0.6992 50.76%
15.71 0.32 0.0103 0.4023 35.95%
10.08 0.42 0.0037 0.1445 23.27%
23.87 0.01 0.1013 15.8281 78.44%
15.12 0.06 0.0301 4.7344 50.19% 91.13%

4 13.77 0.12 0.0206 3.2187 24.17%
12.94 0.24 0.0128 2.0000 21.94%
11.87 0.32 0.0088 1.3750 18.04%
9.17 0.42 0.0047 0.7344 14.30%

To address these limitations, we also investigate the convolutional neu-

ral networks (CNNs), which typically offer enhanced performance in image pro-

cessing tasks, as they can capture spatial information using convolutional filters.

Therefore, exploring convolutional autoencoders for sparse dictionary learning

holds potential for improving results in the image reconstruction set. This pros-

pect naturally motivates us to a deeper investigation in this set, which is con-

ducted in the next session.

3.2 Convolutional Sparse Autoencoder for Dictionary Learning and Sparse

Coding

Convolutional Neural Networks (CNNs) are a special type of deep neu-

ral network that perform particularly well in computer vision problems such as

image classification and object detection (LECUN et al., 2015) (HE et al., 2017).
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Figure 3.14 – Results obtained in terms of the classification accuracy, the threshold t, PSNR
and Density. The training was performed for no noise condition only, i.e., σ = 0.

In Section 3.1, it was demonstrated that the fully-connected encoder within the

autoencoder-based sparse dictionary learning framework exhibits certain limi-

tations. One of the drawbacks of a fully-connected encoder is the loss of spatial

information in the encoding process, as it involves flattening and stacking the

input data. These limitations motivate the exploration of the convolutional en-

coder architecture.

Convolutional layers are capable of preserving the spatial characteris-

tics of input images. This enables the extraction of relevant information th-
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rough local connectivity (GOODFELLOW et al., 2016), offering the potential

for enhanced performance in the sparsification task. Accordingly, we will tho-

roughly investigate the utilisation of a convolutional encoder while maintaining

the integrity of the traditional sparse dictionary learning formulation. In order

to achieve this objective, the decoder architecture will continue to feature a

single fully-connected layer with no activation function. Consequently, the dic-

tionary will be represented by the transpose of the decoder’s weight matrix, i.e.,

D =WT
2 .

The convolutional encoder significantly reduces computational opera-

tions by leveraging convolution on neighboring pixel patches, capitalising on the

meaningful information and salient features present in adjacent pixels (GOOD-

FELLOW et al., 2016). Additionally, pooling layers can be employed to downs-

cale the image, as the spatially organised features throughout the network align

with the image structure. In contrast, downsampling vectors in traditional 1D

stacked inputs is not feasible due to the absence of spatial coherence between

consecutive elements.

The encoder models employed in this section are illustrated in Fi-

gure 3.15. The depicted convolutional blocks encompass three sequential opera-

tions: 2D convolutions, batch normalisation, and ReLU activation function. To

downsample the data passing through the various encoder schemes, we utilised

strided convolutions with a stride value of s = 2.

The selection of network architectures is driven by the characteristics

of the data under consideration. For example, in Section 3.1, the training data-

sets consisted of different sizes of image patches: 50, 000 patches of size 32× 32,

200, 000 patches of size 16×16, 800, 000 patches of size 8×8, and 3, 200, 000 pat-

ches of size 4×4. These patches were stacked into vectors yi ∈ R1024, yi ∈ R256,

yi ∈ R64, and yi ∈ R16, respectively. However, since the convolutional encoder

performs convolutions and downsampling operations extracting smaller image
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patches from the original images, and considering that the original image sizes

are small, computational intensity is not a concern. Thus, in this experiment,

the sample tensors yi will always correspond to the i-th non-stacked full image,

i.e., yi ∈ R32×32.

In order to evaluate the sparse convolutional architecture, gray-scale

images were utilised. The objective was to explore the trade-off between spar-

sity and the quality of representation achieved by the dictionary and sparse

codes. Four different autoencoder models, as illustrated in Figure 3.15, were

trained at varying levels of noise corruption: σ = 0, σ = 0.05, σ = 0.1, and

σ = 0.15. To compare the image reconstruction performance of each model,

classification accuracy was assessed using the same ResNet-56 configuration as

described in Section 3.1. It is worth noting that ResNet-56 was trained using the

original CIFAR-10 images without additive Gaussian noise (σ = 0). To convert

the RGB CIFAR-10 images to grayscale, the pixel values pi were calculated

as the weighted average of each channel pixel (Ri,Gi,Bi) using the formula:

pi = 0.3Ri + 0.59Gi + 0.11Bi.

The CIFAR-10 dataset consists of images that are relatively small in

comparison to modern photographs. Due to the extremely low resolution, it

can be challenging to discern and differentiate the depicted content accurately.

This limited resolution is likely one of the primary factors contributing to the

modest performance achieved by state-of-the-art algorithms on this dataset.

Moreover, there exists a considerable variation in viewpoints, poses, and object

localisation within the images. To investigate potential convolutional encoder

architectures from scratch, systematic tests were conducted during the model

design phase. These tests encompassed exploring suitable numbers of layers,

kernel sizes, activation functions, optimisers, learning rates, and other relevant

training parameters. Notably, the following observations were made during this

phase:
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1. Excessive reduction of the image size along the encoder side deteriorates

performance, regardless the adopted pooling method.

2. Strided 2D convolutions yield superior results compared to a combination

of 2D convolutions followed by a Max Pooling layer.

3. The inclusion of batch normalisation layers significantly enhances perfor-

mance.

4. Shallow convolutional encoders outperform deep convolutional encoders

(i.e., with more than three convolutional layers).

The encoder architectures proposed in this section consist of one to

four convolutional layers, each equipped with ReLU activation functions. To

convert the output of the last convolutional layer into a 1D feature vector, we

incorporate a flatten layer. This feature vector is then connected to a dense

layer with a sigmoid activation function, resulting in the sparse latent space

xi. By utilising the sigmoid function, denoted as σ(), the values of xi naturally

fall within the interval [0, 1]. The decoder layer employs an identity activation

function, utilising the weight matrixWD without a bias vector. The latent space

and output layer are defined as follows

xi = σ

(
We · ReLU

(
WL ⊛ · · ·

(
ReLU

(
W2 ⊛ ReLU(W1 ⊛ yi + b1) + b2

))
· · ·+ bL

)
+ be

)
(3.17)

ŷ = WT
Dxi (3.18)

σ(x) =
1

1+ exp−x
(3.19)

where ⊛ denotes the convolution operation.

In this formulation, we have yi ∈ Rm, where m = 1024, representing

the fully stacked version of a single input image used for training the autoenco-

der. The weight tensors and bias vectors from the encoder’s convolutional layers

are denoted as W1,W2, . . . ,WL ∈ Rk×k×d×f and b1,b2, . . . ,bL ∈ Rf, respecti-
vely, where k represents the kernel size, d denotes the depth size, and f represents
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(a) Autoencoder model with a single convolutional layer at encoder side.
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(b) Autoencoder model with two convolutional layers at encoder side.
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(c) The autoencoder model achieved the best reconstruction performance by
employing a three-layer convolutional encoder architecture.
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(d) Autoencoder model with four convolutional layers at encoder side.

Figure 3.15 – Design of the autoencoders evaluated in the experiments.

the filter size. The fully-connected layer that connects xi to the flattened ver-

sion of the L-th convolutional layer is characterised by the weight matrixWe and

the bias vector be. The decoder side employs the linear transformation given
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by WD ∈ Rn×m, and the reconstructed output of the autoencoder is represen-

ted by ŷi ∈ Rm. For simplicity, batch normalisation after each 2D convolution

is not included in this formulation. However, this operation is included in the

experiments discussed next.

The objective function that governs our optimisation problem is similar

to that from Section 3.1. Recall that

J =
1

2p

p∑
i=1

∥yi − ŷi∥22 +
α

n

n∑
i=1

∥∥1− dTi di
∥∥
1
+
β

n

n∑
j=1

KL(ρ||p̂j)(3.20)

p̂j =
1

p

p∑
i=1

h
(L)
j (xi) (3.21)

KL(ρ||p̂j) = ρ log
ρ

p̂j
+ (1− ρ) log

1− ρ

1− p̂j
(3.22)

where di is the i-th dictionary atom and h
(L)
j is the j-th neuron of L-th en-

coder layer. Our objective is to minimise J with respect to the weight matri-

ces We and WD, the convolutional filters W1, W2, · · · , WL and bias vectors

b1, b2, · · · , bL, be. The first term imposes a penalty on the representation

error between the inputs and outputs of the autoencoder, measured using the ℓ2-

norm. The second term promotes unit ℓ2-norm for the dictionary atoms, preven-

ting situations where atoms have arbitrarily large norms while inducing sparse

codes to have small values. Lastly, the third term encourages sparsity at the

latent space.

The autoencoder model, depicted in Figure 3.15(c), with three convo-

lutional layers in the encoder achieved superior reconstruction performance. The

losses achieved by this model at various noise levels are compared in Figure 3.16.

Additionally, we illustrate a subset of the reconstructed images obtained from

this model in Figures 3.17 and 3.18.

All training images were normalised such that the pixel values range

from 0 to 1. The autoencoder was trained for 400 epochs using the Adam opti-

miser. The learning rate schedule was set to 0.001 for epochs ⩽ 250, 1×10−4 for
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(a) Loss function for encoder model with three

convolutional layers, σ = 0. (b) Loss function for encoder model with three
convolutional layers, σ = 0.05.
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(c) Loss function for encoder model with three

convolutional layers, σ = 0.1. (d) Loss function for encoder model with three
convolutional layers, σ = 0.15.

Figure 3.16 – Loss functions of the best encoder architecture.

epochs > 250 and ⩽ 350, and 1× 10−5 for epochs > 350 and ⩽ 400. The results

are presented in Figure 3.19, which demonstrates the influence of hyperparame-

ters t, α, and β on both the quality of fit, measured by reconstruction accuracy,

and density, measured by the number of nonzero elements. The compression den-

sity threshold (C = 1) is defined by Equation (3.15) with dlimit = 1024/3000.

To account for the stochastic nature of the experiment, the average accuracy

was computed over 10 independent realisations for a fixed σ, and the results are

shown in Figure 3.19.

Notably, while the results obtained from the autoencoder in terms of
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(a) Sparse reconstruction with σ = 0.
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(b) Sparse reconstruction with σ = 0.05.

Figure 3.17 – Reconstruction achieved by utilising sparse codes and dictionary obtained from
the best encoder model.
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(a) Sparse reconstruction with σ = 0.1.
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(b) Sparse reconstruction with σ = 0.15.

Figure 3.18 – Reconstruction achieved by utilising sparse codes and dictionary obtained from
the best encoder model.
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accuracy and density metrics have not yet surpassed the performance of the

LASSO approach (MAIRAL et al., 2009) described in Section 2.3.5, they have

achieved competitive performance for σ = 0. However, when dealing with noisy

conditions (σ > 0), the proposed approach outperformed the LASSO method,

as demonstrated in Figure 3.19(b). Furthermore, training the autoencoder to

address the problem of learning dictionaries and sparse codes proved to be highly

scalable for large datasets like CIFAR-10.

In our experiment, we chose the online LASSO approach using the

MiniBatchDictionaryLearning implementation from (PEDREGOSA et al.,

2011), which efficiently handles large datasets by processing subsets at a time.

However, running simulations for high-density levels proved challenging due

to time and memory constraints. Conversely, training convolutional and fully-

connected autoencoders are not affected by sparse regularisation or the Kullback-

Leibler threshold, assuming similar hardware and dataset size, making them

advantageous in terms of execution time.

In a second experiment with Resnet-56, we varied the values of σ ∈
[0, 0.05, 0.1, 0.15] and the threshold values t ∈ [0.01, 0.02, 0.03, 0.04, 0.05].

The accuracy of Yc is highly dependent on the noise ratio controlled by σ. While

the accuracy achieved for reconstructed images Ŷ with σ = 0 is lower than that

obtained with Yc and σ = 0, it is worth noting that for σ > 0, reconstructed

images Ŷ can achieve higher classification accuracy than those from Yc. This

suggests that training the classification network using the sparse reconstruction

Ŷ could potentially lead to higher accuracy and reduced sensitivity to noise

levels in the input images.

To evaluate the quality of image reconstruction, we utilised the peak

signal-to-noise ratio (PSNR) and classification accuracy metrics. Notably, our

approach involves an unsupervised cost function that does not explicitly incor-

porate labels to enforce discriminative power.



3.2. Convolutional Sparse Autoencoder for Dictionary Learning and Sparse Coding 81

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Density

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cl
as

sif
ica

tio
n 
Ac
cu
ra
cy

NO
 C
OM

PR
ES

SI
ON

CO
M
PR

ES
SI
ON

Accuracy Yc

σ=0

conv1, conv2, β=150, α=300
conv1, conv2, β=50, α=300
conv1, β=50, α=300
conv1, conv2, conv3, β=50, α=300
conv1, conv2, conv3, conv4, β=50, α=300
LASSO + OMP

0.1 0.2 0.3 0.4 0.5 0.6
Density

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cl
as

sif
ica

tio
n 
Ac

cu
ra
cy

NO
 C
OM

PR
ES

SI
ON

CO
M
PR

ES
SI
ON

Accuracy Yc

σ=0.05
conv1, conv2, conv3, conv4, β=50, α=300
conv1, conv2, conv3, β=50, α=300
conv1, β=50, α=300
conv1, conv2, β=50, α=300
conv1, conv2, β=150, α=300
LASSO + OMP

(a) Accuracy and density for σ = 0. (b) Accuracy and density for σ = 0.05.
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(c) Accuracy and density for σ = 0.1. (d) Accuracy and density for σ = 0.15.

Figure 3.19 – Classification accuracy and density obtained from different encoder models.

In this study, we have examined the impact of replacing fully-connected

layers with convolutional operations on the classification accuracy performance

and compression rate of an autoencoder. The empirical results suggest that

utilising convolutional operations to improve classification accuracy incurs a

trade-off with regards to compression rate. Additionally, we have observed that

deep encoder models perform less effectively than shallow models.

Our investigation has revealed that the distribution of sparse values

arising from convolutional architecture displays a lower variance compared to

fully-connected architecture. Figure 3.20 demonstrates that the values resulting

from convolutional encoders are more prone to being in proximity to ρ, leading

to a unimodal distribution. Conversely, values derived from fully-connected en-

coders manifest a bimodal distribution. The majority of values in one mode are
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close to ρ, while the other mode has a considerable variance.

Our findings indicate that minor changes in the threshold can signifi-

cantly affect the density and representation error specially in the convolutional

model. This observation is supported by Figure 3.21, which underscores this

relationship.
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(a) Density Distribution of values of the
sparse codes xi for the fully-connected en-
coder model.
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Figure 3.20 – Probability Density Distribution of the sparse code values for convolutional enco-
der and fully-connected encoder.
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Figure 3.21 – The thresholds t imposed afterwards convolutional autoencoder training and their
effects over density and the overall representation error ∥Y −DX∥2F.

The study involving the convolutional sparse autoencoders investiga-

ted the trade-off between sparsity and the quality of representation achieved

by the dictionary and the sparse codes. To this end we trained four different
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autoencoder models at four different levels of additive Gaussian noise, and then

compared their performance based on the image reconstruction provided by each

model and using the classification accuracy obtained with the ResNet-56.

3.2.1 Sparse Dictionary Learning using U-Net architecture: an exploratory study

Exploring different convolutional architectural designs can also lead to

improved performance to our end. One notable example of a promising architec-

ture to be further explored is the U-Net models, which was initially introduced

in a paper on biomedical image segmentation (RONNEBERGER et al., 2015).

This architecture consists of two paths: the encoder and decoder paths. The

encoder path incorporates convolutional and max-pooling layers to capture the

contextual information of the image. In contrast, the decoder path employs

transposed convolutions to enable precise localisation and incorporates skip-like

connections with the feature maps before the bottleneck layer. These connec-

tions facilitate the recovery of compressed data and enable concatenation with

previous states. The U-Net architecture has demonstrated superior performance

compared to previous methods in various segmentation tasks and possesses the

ability to achieve good results even with a small number of training images.

In the following, we present an exploratory study incorporating the

U-Net architecture and the sparse autoencoder. Our goal is to investigate an

autoencoder that utilises a U-Net-type network in the encoder side while main-

taining the decoder side as linear operations between a weight matrix and the

sparse codes from the latent space. To reduce the training cost associated with

the U-Net autoencoder architecture, we have downscaled the CIFAR-10 trai-

ning dataset to 33% of its original samples. The results obtained from training

the U-Net autoencoder are depicted in Figure 3.22, demonstrating a high ave-

rage density level. However, this can be controlled by adjusting the threshold

parameter t, as depicted in Figure 3.23.

While the U-Net architecture has shown promising results in previous
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(b) Sparse Reconstruction.

Figure 3.22 – The sparse reconstruction achieved for a selected subset of images from CIFAR-10
test dataset.
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Figure 3.23 – The thresholds t imposed after U-Net autoencoder training and their effects on
the average density levels and the overall representation error |Y −DX|2F.

studies (RONNEBERGER et al., 2015) (WANG et al., 2021), its effectiveness in

the context of sparse coding was not as successful in this exploratory study. We

found that the U-net based encoder did not achieve similar levels of accuracy

or sparsity as fully-connected and convolutional autoencoder architectures that

have been proposed previously. The average density level and the representation

error was higher than those achieved with previous autoencoder architectures.

When considering sparse coding, other proposed architectures such as

fully-connected and convolutional autoencoders may be more suitable. Further

research may be needed to investigate the limitations and potential benefits of

using the U-Net architecture for sparse coding in more depth.

3.3 Related Work

In this Section, we briefly review studies on sparse dictionary lear-

ning approaches using autoencoders. In the study by Ayinde et al. (AYINDE;

ZURADA, 2017), the output of the proposed model is given by

ŷ = fW,b(y) ≈ y (3.23)

where y is a normalised input vector, and W = {W1,W2} and b = {b1,b2}

represent the weight and biases of the network, respectively. The input data Y
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are first encoded through W1 into features h. Subsequently, the features h are

mapped back to the original input ŷ through W2 using the following equation

ŷ = σ(W2σ(W1y + b1) + b2), where σ() is the sigmoid function adopted for

activation. To determine the optimal parameters W and b, the average recons-

truction error serves as the optimisation objective function, given by

JAE(W,b) =
1

p

p∑
i=1

∥σ(W2σ(W1yi + b1) + b2)∥22 (3.24)

This term is also used to penalise representation error in the sparse dictionary

learning problem. To enforce the autoencoder to learn a sparse representation,

the output of h is bounded using the Kullback-Leibler (KL) divergence function.

The average activation of a particular neuron j, given the input yi, is denoted

by hj(xi) and is calculated as

p̂j =
1

p

p∑
i=1

hj(yi) (3.25)

The Kullback-Leibler divergence is a measure of the difference between two pro-

bability distributions, and is commonly used as a sparsity-inducing regulariser

in machine learning. The idea is to use KL divergence to encourage the model

to produce probability distributions that are closer to a sparse distribution than

to a dense distribution. To this end we can use a target distribution, such as

a uniform distribution or a Bernoulli distribution with a small probability of a

nonzero value. Then we minimise the KL divergence between the model’s out-

put distribution and the target distribution. The KL divergence is employed to

penalise the activation of the neuron units in the latent space of the autoencoder

p̂ = {p̂j} |
v
j=1, where v is the total number of neurons at the hidden layer. The

divergence is defined as follows

S(ρ||p̂) =

v∑
j

ρ log
ρ

p̂j
+ (1− ρ) log

(1− ρ)

(1− p̂j)
(3.26)

In addition to that, a weight decay term D is also added to the cost

function of the autoencoder in order to prevent overfitting. The cost function of
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the sparse autoencoder proposed in (AYINDE; ZURADA, 2017) is given by

JSAE = JAE(W,b) + βS(ρ||p̂) +D(W) (3.27)

where β controls the sparsity penalty term. The main contributions of this paper

are the introduction of the constrained autoencoder framework for dictionary

learning, and the demonstration of its effectiveness for classification tasks invol-

ving MNIST (DENG, 2012) dataset.

In (TARIYAL et al., 2016), the authors propose a deep dictionary lear-

ning approach in which, instead of learning a single dictionary, multiple levels of

dictionaries are learned using deep autoencoders. Learning all the dictionaries

simultaneously makes the problem highly nonconvex. Also, learning so many

parameters (atoms of many dictionaries) can easily lead this approach to over-

fitting.

The authors propose a deep learning approach for dictionary learning

that learns multiple levels of dictionaries using deep autoencoders. The appro-

ach learns the dictionaries in a greedy way to account for nonconvexity and

overfitting. The learned representations are encouraged to be sparse using a

constraint. The method is evaluated on classification and clustering tasks, and

obtained promising results.

The work presented in (MAKHZANI; FREY, 2013) is the one in which

we can find greater consistency with respect to the contributions brought in this

dissertation. The article explains how sparse autoencoders can be handled in the

context of sparse coding with incoherent matrices. This perspective helps us cla-

rifying why the sparse autoencoders can achieve good classification results. As

the presented sparse autoencoder achieves exact sparsity in the hidden repre-

sentation, we can use the resulting representation to achieve state-of-the-art

classification accuracies without using any other nonlinearity or regularisation.

A sparse autoencoder maps an input vector yi onto a hidden repre-

sentation hi = f(W1yi + b) where f is the activation function, e.g., linear,
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sigmoidal or ReLU, W1 is the weight matrix and b1 is the bias vector of the

encoder layer. The hidden representation is linearly mapped onto the output

using ŷi = W2hi + b2. The parameters {W1,W2,b1,b2} are expected to mini-

mise the mean squared error of ∥yi − ŷi∥22 over all training samples. Once the

k largest activities are selected in the hidden layer, the function computed by

the network is linear. So the only nonlinearity comes from the selection of the k

largest activities in the hidden layer. This selection step acts as a regularisation

that prevents the use of a large number of hidden units when reconstructing

the input. In addition, the authors imposed a tied weight restriction so that

W1 =W
T
2 .

Furthermore, instead of using only the k largest elements of W1yi +

b as the features, the authors have also observed slightly better performance

whether using the αk,α > 1 largest hidden units with α selected using the set

of validation data. The algorithm is summarised as follows.
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Pseudocode 3.1 Sparse Autoencoders:
Training

1. Perform the feedforward phase and compute

hi =W1yi + b1

2. Find the k largest activations of h and set the rest to zero

hi,Γ = 0 where Γ = sup
k

(hi)

3. Compute the output and the error using the sparsified h

ŷi =W2hi + b2

∥yi − ŷi∥22

4. Backpropagate the error through the k largest activations de-
fined by Γ and iterate.

Sparse Coding

1. Compute the features hi = W1yi + b1. Find its αk largest
activations and set the rest to zero

hi,Γ = 0 where Γ = sup
αk

(hi)

Dictionary Learning

D =WT
2

As shown in Chapter 2, the conventional approaches to obtain the

sparse codes usually rely on using the current dictionary D and a pursuit al-

gorithm to solve Equation (2.4). Convex relaxation methods such as ℓ1-norm

minimisation or greedy methods such as OMP are used to find suited sparse

codes. These sparse codes are then used to update the dictionary, using tech-

niques such as the Method of Optimal Directions (MOD) or K-SVD. As these

methods are computationally expensive - MOD requires inverting the data ma-
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trix at each step and K-SVD needs to compute a SVD in order to update every

column of the dictionary - the sparse autoencoder training ends up being a rela-

tively more efficient and faster way to achieve suitable representations specially

at large datasets.

3.3.1 Comparing Proposed Approach and Related Work

This session highlights the distinctions between the proposed approach

and other existing methods. The main difference between Hu et al. (HU; TAN,

2018) and the proposal introduced in Section 3.1 lies in the architecture and the

way the sparsity constraint is incorporated. In (HU; TAN, 2018), a nonlinear

autoencoder is used with a fixed sparse penalty parameter. The dictionary and

sparse codes are learned jointly using an iterative algorithm based on the Al-

ternating Direction Method of Multipliers (ADMM). Our proposal uses a more

flexible approach where the nonlinearity in the encoder can be chosen arbitrarily.

Moreover, in (HU; TAN, 2018), sparsity is enforced using a fixed pe-

nalty parameter, while in our proposal, sparsity is enforced using the Kullback-

Leibler (KL) divergence between the empirical distribution of the hidden layer

activations and a target distribution. This allows for more fine-grained control

over the sparsity level and can be adjusted to different settings and datasets.

Overall, both methods aim to learn a sparse representation of the input data

using an autoencoder architecture but differ in the specifics of the architecture

and the sparsity constraint.

In Ayinde et al (AYINDE; ZURADA, 2017), the cost function for the

autoencoder is defined as the average reconstruction error, which penalises the

difference between the input and output of the autoencoder using the squared

Euclidean distance. To induce sparsity, the KL divergence function is used to

bound the activation of the hidden layer neurons. The authors also incorporate

regularisation terms to avoid overfitting and to control the norm of the dictio-

nary atoms. They use the ℓ1-norm of the difference between the identity matrix
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and the outer product of the dictionary atom, which forces the norm of the

atoms to unity.

Overall, the difference between the approach in (AYINDE; ZURADA,

2017) and ours is in the adopted regularisation techniques used to induce sparsity

and impose certain properties on the learned dictionary. Our proposal combines

ℓ2-norm regularisation and KL divergence, while (AYINDE; ZURADA, 2017)

uses KL divergence to bound the hidden representation h and the ℓ1-norm to

bound the dictionary atoms.

3.4 Final considerations

In this chapter, we explored the performance of different encoder archi-

tectures, including the fully-connected encoder, the convolutional encoder, and

the U-Net architecture, from the perspective of image reconstruction quality

and achieved levels of sparsity. Through our investigations, important conclusi-

ons were drawn.

Firstly, the fully-connected encoder demonstrated its effectiveness in

solving the sparse dictionary learning problem, reconstructing the CIFAR-10

images employed to train the model, and achieving high reconstruction accu-

racy under sparse representations enforced in the latent space. Additionally,

we showed that decreasing image patch size increases the sparsity required for

compression and decreasing patch size lowers the accuracy obtained at the com-

pression conditions. In this case, the accuracy is inversely proportional to the

achieved reconstruction error.

Secondly, the convolutional encoder also exhibited reasonable perfor-

mance by leveraging its local connectivity and weight sharing. However, the

proposed fully-connected encoders outperformed the convolutional architectures

achieving higher sparsity levels under lower reconstruction errors on CIFAR-10.

Lastly, the U-Net architecture, which incorporates skip connections to
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establish direct connections between the encoder and decoder layers, showed

promising potential in image reconstruction tasks. However, in our exploratory

study, we found that its effectiveness in the context of sparse coding was not

as successful as the other proposed architectures. The U-Net-based encoder did

not achieve comparable levels of accuracy or sparsity as the fully-connected and

convolutional encoders.

Based on these findings, the next chapter will focus on leveraging the

strengths of the proposed autoencoder-based framework to investigate a novel

sparse dictionary learning compression scheme. We will delve into the details

of the proposed framework, its experimental setup, and the evaluation of its

compression performance while comparing it to other important methods used

in image compression.
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Chapter 4
Image Reconstruction Using Sparse

Autoencoder and Analytic Dictionaries

There are two types of image compression processes: lossy compression

and lossless compression. In lossless compression, we are able to perfectly retrieve

the details of the original image, while in lossy compression the image recovery is

not perfect and therefore only represents an approximation. PNG is an example

of file format that allows lossless image storage as it preserves all details of

the original image. JPEG, on the other hand, is an example of file format that

allows lossy image storage, as it is not able to perfectly retrieve the original

image details. Image compression is a very important process to reduce memory

size occupied while loading or storing images and videos.

The reason behind the adoption of sparsity-based modelling under

compression tasks is the fast decay of the sparse coefficients over each dicti-

onary atom. Early attempts for designing analytic dictionaries were based on

building a set of atoms that lead to several well-known transforms such as the

Fourier Transform and its discrete version, the Discrete Cosine Transform, Wa-

velet Transforms, Curvelets among others (RUBINSTEIN et al., 2010).

A different approach to the sparse modelling consists of learning a dic-

tionary from some training data samples since the customised dictionaries could
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more efficiently capture the underlying structures of such image patches as well

as generalise them to certain classes of signals. Finding appropriate dictionaries

with good reconstruction power of as many signals as possible, and high spar-

seness and compactness ability was the main target of the work presented in

Chapter 3.

In this chapter, we aim to investigate the limitations of traditional

analytic dictionaries in effectively capturing the diverse patterns present in ima-

ges. To this end, we explore Fourier and Wavelet transforms and compare their

results with those obtained from dictionary learning and sparse coding methods

based on autoencoders. Furthermore, we survey several research papers that

focus on dictionary learning and its applications in image compression, high-

lighting the fingerprint for further investigations in this field to develop more

effective compression methods. Finally, we present a dictionary-based image co-

ding framework that employs a combination of dictionary learning, quantisation,

and entropy coding to achieve efficient compression while preserving essential

image features.

4.1 Fourier and Wavelet Transforms

Dictionary learning aims to construct a mapping that simplifies data

representation into a new coordinate system, which is a common technique in

various domains such as data analysis and digital signal processing. Data trans-

formations and spectral decomposition are fundamental concepts in various sci-

entific fields, including data analysis and digital signal processing. For instance,

the singular value decomposition (SVD) and graph spectral decomposition are

examples of data transformations used in data analysis. Similarly, spectral de-

composition are commonly used in digital signal processing to analyse the fre-

quency content of signals and to simplify their representation in the frequency

domain.
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The Fourier basis, introduced in 1822 (FOURIER, 1822) to study the

theory of heat, describes a signal in terms of its frequency content, expressed as a

combination of orthogonal waveforms. The Fourier transform gained popularity

with the introduction of the Fast Fourier Transform (FFT) in 1965 (COOLEY;

TUKEY, 1965), which enabled efficient numerical computation of the transform

through a recursive approach and breaking down the DFT of composite sizes

into smaller DFTs. Consequently, the FFT has become a fundamental tool in

computational mathematics and engineering, facilitating real-time image and

audio compression, communication networks, advanced signal processing tech-

niques, and data analysis.

More complex problems and datasets have led to the development of

tailored bases such as data-driven dictionaries. In addition, wavelets have also

emerged as popular alternatives for advanced signal processing, denoising techni-

ques, and compression efforts (BRUNTON; KUTZ, 2019). Unlike Fourier-based

components (sine and cosine functions), wavelets are typically localised in both

time and frequency domains, making them more effective in capturing local fe-

atures of the signal. Fourier-based components have infinite support, meaning

that they are defined for all t ∈ R and are not zero within any finite interval

contained in R. As a result, the Fourier transform extends over the whole time

domain and the Fourier coefficients represent an average for the entire time

domain at each frequency considered by the transform.

The continuous wavelet transform is a method of decomposing signals

that involves dynamically scaling and shifting the analysis kernel to better loca-

lise features in time and frequency. The Heisenberg Uncertainty Principle states

that frequency spread and duration (temporal spread) cannot both be made ar-

bitrarily small. Wavelet transforms are designed to overcome this limitation. A

wavelet is a function that grows and decays in a limited and closed interval, being

zero outside of it. This is the compact support property which is satisfied by

the Daubechies wavelets (MALLAT, 1999). The wavelets can accurately identify
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low frequencies and also provide improved time localisation at high frequencies.

This is because wavelets have a limited and closed interval of support satisfying

the Heisenberg Uncertainty Principle, unlike the sine and cosine Fourier basis

functions that oscillate over the entire real domain.

While the FFT algorithm is generally preferred for computational ef-

ficiency, it is more instructive to begin with the fundamental formulation of

the Discrete Fourier Transform (DFT). The DFT is mathematically defined as

follows:

X[f] =

N−1∑
k=0

x[k]e−
j2πfk
N (4.1)

and the inverse discrete Fourier transform (IDFT) is given by:

x[k] =

N−1∑
f=0

X[f]e
j2πfk
N (4.2)

The Discrete Fourier Transform (DFT) is a linear operator represented by a ma-

trix that maps the discrete-time sequence of data points in x[k] onto the discrete

frequency domain X[f]. The DFT can be computed by matrix multiplication,

which can be expressed as

X[1]

X[2]

X[3]
...

X[N]


=



1 1 1 · · · 1

1 wN w2
N · · · w

(N−1)
N

1 w2
N w4

N · · · w2(N−1)
n

...
...

... . . . ...

1 w
(N−1)
N w

2(N−1)
N · · · w(N−1)2

N





x[1]

x[2]

x[3]
...

x[N]


(4.3)

with integer multiples of a fundamental frequency wN = e−
2πi
N , resulting in a

complex-valued matrix. As a result, the output X[f] has both magnitude and

phase components, which provide useful physical interpretations. Figure 4.1 dis-

plays the real part of the DFT matrix for an input size of N = 128.

The Fast Fourier Transform (FFT) is a computationally efficient al-

gorithm that exploits the fact that the Discrete Fourier Transform (DFT) can
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be implemented much more effectively when the number of data points N is a

power of 2. Specifically, when N = 1024 = 210, for example, the DFT matrix

F1024 can be expressed in a simplified form as follows:

F1024 =

[
I512 −D512

I512 −D512

][
F512 0

F512 0

]
(4.4)

where I512 is the 512× 512 identity matrix, and D512 is given by

D512 =



1 0 0 · · · 0

0 w 0 · · · 0

0 0 w2 · · · 0
...

...
... . . . ...

0 0 0 · · · w511


(4.5)

wherew is the fundamental frequencyw = e
2πi
N . The DFT can be thus calculated

as

X[f] = F1024

[
xeven

xodd

]
(4.6)

where xeven are the even index elements of x, and xodd are the odd index elements

of x. If N = 2p, the same process can be repeated, and F512 can be represented

by F256, which can then be represented by F128 → F64 → F32 · · · . If N ̸= 2p,

the vector can be padded with zeros until it reaches a power of 2. The FFT

then involves an efficient recurrence of even and odd indices of subvectors of x,

and the computation of several smaller 2× 2 DFT computations (BRUNTON;

KUTZ, 2019).

The two-dimensional FFT of a matrix Y ∈ Rm×p is obtained by first

applying the one-dimensional FFT to every row of the matrix, and then applying

the one-dimensional FFT to every column of the intermediate matrix. This

process of performing row-wise and column-wise Fourier transform is illustrated

in Figure 4.2. It is important to mention that the order of taking the Fourier

transform of rows and columns can be interchanged without affecting the final

result.
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Figure 4.1 – Real part of DFT matrix for N = 128

Wavelet transforms extend the concepts of Fourier transform to more

general orthogonal bases, and they partially overcome the uncertainty principle

mentioned earlier by relying on a multi-resolution decomposition. This approach

is particularly useful for decomposing complex signals arising from multi-scale

processes, such as images and audio signals. The basic idea behind wavelet

analysis is the mother wavelet function ψ(t), which can be used to generate a

family of scaled and translated versions of the function:

ψa,b(t) =
1√
a
ψ

(
t− b

a

)
(4.7)

The parameters a and b are responsible for scaling and translating the function

ψ(t), respectively. The scaling factor ensures that the energy of the wavelet is

conserved across different scales. The family of wavelets obtained by varying a

and b is known as the wavelet basis. By convolving a signal with each of the

wavelets in the wavelet basis and computing the inner products, we obtain the

wavelet coefficients that represent the signal at different scales and positions.

The wavelet coefficients provide a multi-resolution representation of the signal,

allowing us to capture both local and global features of the signal. Each segment

in Figure 4.3 is obtained by scaling and shifting the mother wavelet function

ψ(t) by appropriate values of a and b. These values are chosen to capture

different features of the signal at different scales and positions. If the family

of scaled and translated mother wavelets functions are orthogonal, then the
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Figure 4.2 – Schematic of 2D FFT. At the second column the FFT is taken at each row. At the
third column the FFT is taken at each column of the resulting transformed matrix.

resulting basis functions can be used for signal projection.

In the next section, we present our study on the Cars dataset (KRAUSE

et al., 2013) to build a data-driven dictionary for image coding. Our method in-

volves a sparse autoencoder with residual connection in the encoder side for
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Figure 4.3 – Illustration of single level discrete wavelet transform.

capturing more complex features and patterns in images while also avoiding

the problem of the vanishing gradient. We will compare the performance of our

approach with that of the Fourier and Wavelet transforms, which are classical

signal processing techniques commonly used for image compression.

4.2 Experiment and Results

In this section, we compare the visual quality of images obtained from

three different image processing techniques: Fourier transform, Wavelet trans-

form, and sparse representation from a data-driven dictionary. We evaluate the

image quality using the Peak Signal-to-Noise Ratio (PSNR) metric. The purpose

of this comparison is to demonstrate the effectiveness of the sparse representa-

tion approach in producing high-quality images and to assess its performance



4.2. Experiment and Results 101

Table 4.1 – Training Parameters.

Parameters Value
Epochs 250

Batch Size 100
Train dataset 6108

Validation dataset 2036
Test dataset 8041

Dictionary atoms 12100
α 300
β 250

ρ (KL) 0.01
Patch Size 4 x 4
W x H 256 x 256

against the more established Fourier and Wavelet transform techniques.

We use the Cars dataset (KRAUSE et al., 2013) containing 16, 185

colour images. The data-driven dictionary is constructed to be a general-purpose

dictionary applicable to the 196 classes available in the dataset. We train an

autoencoder with 8144 grayscale-converted images from the training set to learn

a sparse representation of the image data.

We obtained the dictionary and the sparse codes employed for the

image coding framework using an approach similar to that introduced in Chap-

ter 3. After converting the images to grayscale, we split them into patches to

feed the encoder side and the output of the model. The cost function adopted on

the model training is the same indicated in Equation (3.1). The regularisation

parameters and the hyperparameters are indicated in Table 4.1.

We implemented a convolutional autoencoder with residual connecti-

ons. Our intent was to convey the advantages of adding residual connection

into the model to improve results. As discussed in Section 3.1, a residual neural

network (ResNet) in known for skipping connections and creating shortcuts to

jump over some layers while mitigating the problem of the vanishing gradient.

To convert color images to grayscale, each pixel is typically represented
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by 8 bits, which correspond to the light intensity at that particular point. As

a result, the brightness values in such images can range from 0 (representing a

black pixel) to 255 (representing a white pixel).

For the Fourier and Wavelet transforms, we compressed images using

percentile-based methods applied to the coefficients obtained from the respec-

tive transforms. We performed an 8-level decomposition using the Daubechies

wavelets for the Wavelet transform, retaining only the largest 5%, 3%, and 0.2%

of the coefficients and setting the rest to zero. A similar approach was employed

for the Fourier transform.

In our proposed dictionary learning and sparse coding framework, we

adjusted the thresholds applied to the sparse codes to obtain compressed images

with a similar number of coefficients as the other methods.

Figures 4.4, 4.5, and 4.6 demonstrate the effectiveness of the Fourier,

Wavelet, and proposed dictionary learning frameworks in reconstructing images

at different compression rates. The compression rates are determined by the

chosen percentiles of coefficients used to reconstruct the images. Our proposed

framework achieves superior visual quality and the highest PSNR value at the

first two compression rates. However, at the highest compression rate, the visual

quality of the DL framework is inferior to that of the other transforms.

Based on the results obtained, it can be concluded that the sparse

autoencoder based framework for dictionary learning shows promising potential

for achieving higher compression rates while preserving the visual quality of

the image. This approach is a competitive alternative to traditional analytic

transforms like the Wavelets, as it can effectively exploit the specific statistical

properties of the signals of interest. In addition, the proposed DL framework also

has the potential to surpass the performance of other transforms in terms of the

quality of the reconstructed image. Therefore, it can be considered a promising

option for developing image codec frameworks to achieve high compression rates
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Figure 4.4 – Compressed images were obtained using percentiles of the coefficients. Fixed th-
resholds were set to keep 5%, 3% and 0.2% of the Fourier coefficients with the
largest magnitudes.

while maintaining the quality of the image.

4.3 Final Considerations

Reducing the cost of storing or transmitting image signals with low

degradation in quality is the key goal of any lossy image compression algorithm.

These algorithms seek to remove redundancies in the data, capturing most of the

image information. Typically, they encode the image into a transform domain

with only a few significant coefficients. For example, the JPEG (WALLACE,

1992) and JPEG2000 standards (SKODRAS et al., 2001) are both examples of

image file formats using the sparse representation achieved from analytic dicti-

onaries: the Discrete Cosine Transform (DCT) and Discrete Wavelet Transform
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Figure 4.5 – Compressed images were obtained using percentiles of the coefficients. Fixed th-
resholds were set to keep 5%, 3% and 0.2% of the Wavelet coefficients with the
largest magnitudes.

(DWT), respectively.

Dictionaries are essential tools for signal representation and analysis.

Analytic dictionaries, which are based on smooth or piecewise-smooth functions

like Fourier or Wavelet dictionaries, are commonly used due to their analytic

formulation and optimal proofs and error rate bounds. However, these dictio-

naries may fall short in representing the complex patterns present in natural

images that exhibit a variety of regularities, such as regular areas, edges, and

textures. As a consequence, they may not be efficient in representing a wide

range of regularities that are common in such images (AKBARI; TROCAN,

2019).

To address this limitation, a promising approach is to model sparse
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Figure 4.6 – Compressed images using Dictionary Learning and Sparse Coding Framework.

signals with a learned dictionary from the framework introduced earlier in this

chapter and also detailed in Chapter 3. This approach has the potential to yield

a compression framework that benefits from the sparse representation of images

over a dictionary designed for a certain class of images. Future investigations

can focus on exploring the potential of this approach in capturing the diverse re-

gularities present in natural images and developing more effective and adaptable

sparse signal models.

In the following subsections we will summarise a collection of image

and video compression methods utilising dictionary learning and sparse coding

techniques, and introduce our proposal of a new image compression framework

using the elements of the sparse convolutional residual autoencoder described

earlier in this chapter. We aim to explore the potential of this framework further

in the future and develop more effective models for sparse signal representation

in the context of image compression.
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4.3.1 Dictionary Learning and its applications in the field of image and video com-

pression

In (MAZAHERI et al., 2013), the authors introduce a new method

named Tree K-SVD. A set of dictionaries in a tree structure is trained. At each

tree level, a dictionary is learned from the image residual achieved in the previous

level, i.e., the residual is obtained from the difference between the original and

recovered images using the trained dictionary at the previous level of the tree.

Sparse coding is done by selecting the atoms from each dictionary at each tree

level. Once a first atom is selected in the first level, a choice is made between

staying at the same level, i.e., in the same dictionary to select another atom,

or going to the next tree level. For that, the two most correlated atoms to the

current residual vector are found, one at the same level and the other one at

the next level. The atom minimising the energy of the residuals is kept in the

representation, hence the sparsity per level is automatically adapted to decrease

the distortion.

Authors in (SUN et al., 2014b) introduce the multisample sparse re-

presentation online dictionary learning approach for image compression. Each

image patch is encoded with a certain sparsity level. The sparse vector can be

obtained through classical algorithms such as the basis pursuit algorithms and

matching pursuit techniques, among others. As these conventional approaches

consider constant sparsity levels for representing all the image patches with dif-

ferent patterns among each other, this may lead to a weakness in terms of image

distortion and compression results.

In (ZHANG et al., 2017), the dictionary is learned from a single image

that shares the most common similar content with another image from the target

set. The authors also suggest a dictionary reordering approach to improve the

compression performance further. The reordering is made by adjusting the order

of dictionary atoms according to their use frequency.
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4.3.2 Dictionary Learning Image Codec

In this section, we present a dictionary-based image coding framework.

Our proposed approach aims to leverage the benefits of dictionary learning in

achieving high-quality image compression.

The image coding framework depicted in Figure 4.7 consists of two pri-

mary stages: a dictionary learning stage and a second stage for quantisation and

entropy coding. To begin, the input image is partitioned into non-overlapping

patches, and the mean values of these patches (DC components) and the AC

components are encoded separately. The AC components are represented based

on the dictionary and the sparse codes learned with the autoencoder framework.

In contrast, the DC elements and sparse coefficients are subjected to entropy

coding using the Huffman encoding algorithm to achieve efficient compression.

Compressed Data

Encoding

Training

Decoding

Transmission

over the channel

Decoder (D)

NN Parameters

Encoder 

(W1, W2,..., b1, b2, ...)

NN Parameters

Figure 4.7 – Block diagram of the dictionary-based image coding framework.

In future investigations, we plan to compare the reconstruction quality

and compression rates achieved by our proposed framework with those obtained

from other commonly used methods, such as the Fourier transform, Wavelet
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transform, and other dictionary-based approaches for image and video compres-

sion introduced in Section 4.3.1. By conducting such comparisons, we can gain

deeper insights into the potential of our proposed approach and its effectiveness

in addressing the challenges of image compression in a variety of contexts.

To provide a more detailed comparison that considers these factors in

the future, we can gain a deeper understanding of the strengths and weaknesses

of each method by

1. Comparing the output images or videos generated by each method and mea-

suring their quality using additional objective metrics such as the Structural

Similarity Index (SSIM).

2. Evaluating the performance of each method on different types of images

or videos. For instance, some methods may work better on natural ima-

ges while others may be more suitable for compressing medical images or

surveillance footage.

3. Considering the computational complexity and memory requirements of

each method. Some methods may require more computational resources or

memory than others, which could impact their practical use in real-world

application.
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Chapter 5
Discriminative Dictionary Learning Algorithms

for SSVEP-BCIs

Brain-Computer Interface (BCI) is a computer-based system that has

the potential of allowing for a more direct connection between human and com-

puters. Typically, BCI systems employ electrical signals generated by the brain

to control specific devices according to the user’s intention. However, conver-

ting Electroencephalogram (EEG) signals into commands that computers can

understand is a complex problem. To do that, it is often necessary to jointly

optimise many system parameters, from signal preprocessing to classification.

In this chapter, we deal with EEG-based BCIs relying on Steady-State Visually

Evoked Potentials (SSVEP), which are generally considered a particularly ro-

bust setting for EEG-based BCI applications (PFURTSCHELLER et al., 2010).

An efficient SSVEP-based BCI system greatly depends on selecting

and tuning suitable algorithms at several intermediate steps, such as signal fil-

tering, artefact rejection, feature extraction, feature selection and classification.

But choosing and tuning the best algorithms and parameters of the BCI confi-

guration is a multi-objective parameter selection problem.

In (OIKONOMOU et al., 2016), the authors examined several algo-

rithms that are widely used in their respective domains as an effort to achieve
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the state-of-the-art framework for SSVEP signals collected in the context of a

research action named Multimodal Authoring using your Eyes and Mind (MA-

MEM) (BOSTANTJOPOULOU et al., 2020).

The final decision step in the SSVEP BCI system is performed by a

classification method. Support-Vector Machines (SVM) and Linear Discriminant

Analysis (LDA) are the most popular classifiers among the SSVEP community

and have been used in numerous works (CARVALHO et al., 2015) (SINGLA;

HASEENA, 2014). Furthermore, other methods, such as neural-networks (NN),

have also been widely used in the literature (PAN et al., 2023).

The state-of-the-art supervised discriminative dictionary learning methods

encourage the sparse representation coefficients to have a small within-class

dispersion, but a large between-class dispersion. As a result, the classification

performance is not impressive on datasets with many classes and high dimensi-

onality (SUN et al., 2014a) (HUANG; ZHANG, 2010) (LIN et al., 2018).

However, this criterion only partially addresses other essential cha-

racteristics of the signal of interest, limiting their classification performances.

Therefore, one should add more elements to the learning criteria to mitigate this

weakness, including class-shared, class-specific and disturbance components.

To overcome this drawback, in this chapter we propose a novel super-

vised discriminative dictionary learning and sparse coding method based on the

combination of two neural network models, both connected in the same cost

function. The first model is an autoencoder that learns how to sparsely encode

the inputs from a linear combination of dictionary atoms to minimise the repre-

sentation error. The second model is a classifier which uses the residual vector

from the sparse stage to classify the input signals. The framework encourages

distinguishable patterns at the residual vector calculated from sparse represen-

tations. The proposed approach spans into three main objectives including the

sparseness of the encoding, the minimisation of the representation error achie-
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ved from the learned dictionary, and the encouragement of discriminative power

achieved from the sparse representation.

Furthermore, traditional methods for SSVEP signal classification may

face challenges such as limited representation power or difficulties in handling

complex and high-dimensional data. Therefore, sparse coding and discriminative

dictionary learning may offer alternative approaches that can potentially address

these limitations and provide more robust and accurate classification results.

Although different signal categories are associated with class-specific

features, they often share some features. Unlike other state-of-the-art methods,

the proposed approach learns a set of shared and class-specific features without

explicit constraints to the dictionary structure or the sparse coefficients. The

framework is characterised as a gradient method for solving discriminative dic-

tionary learning and sparse coding problem through implicit differentiation and

backpropagation.

In the context of BCI, the essence of this study is to sparsely encode

the input samples from the EEG signals using a dictionary learned for represen-

ting these samples accurately while providing distinguishable residual patterns

from their sparse representation. In our case study, experimental results are de-

monstrated using the MAMEM database 1, which consists of the 256-channel

EEG signals of 11 subjects.

5.1 Introduction to EEG Signals

An EEG signal is an indirect measurement of currents generated by

the activity of groups of neurons in the cerebral cortex. When the brain cells

(neurons) are activated, the synaptic currents are produced and propagate th-

rough the dendrites. This current generates a magnetic field measurable by EMG

machines and a secondary electrical field over the scalp measurable by EEG sys-

tems (SANEI; CHAMBERS, 2021). The EEG signals are often collected using
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scalp electrodes on the surface of the head.

Although there are other ways of monitoring brain activity and functi-

onal monitoring, (e.g., through functional magnetic resonance imaging - fMRI-

or magnetoencephalography - MEG), EEG remains the main functional brain

scanning modality as it is cheap, portable, and widely available. It represents a

viable way for diagnosis of many neurological disorders and other abnormalities

in the human body. EEG signals may be used for investigation of various clinical

conditions (ADELMAN et al., 1987; TEPLAN et al., 2002).

The 10-20 EEG setting system is a widely used method to describe the

location of scalp electrodes in the context of an EEG experiment. It is recom-

mended by The International Federation of Societies for Electroencephalography

and Clinical Neurophysiology to a setting with 21 electrodes. This setting aims

to ensure reproducibility of different experiments performed on different sub-

jects, and it is based on the relationship between the locations of neighbour

electrodes and the underlying area of cerebral cortex. The 10 and 20 refer to

the distances between adjacent electrodes, which can be either 10% or 20% of

the total front-back or right-left distance of the skull.

The correlation between the EEG signal and the underlying brain area

depends on the accuracy of the electrodes placement. Each site has a letter to

identify the lobe and a number or another letter to identify the hemisphere

location. The notation is shown in Figure 5.1. The letters F, T, C, P, and

O stand for Frontal, Temporal, Central, Parietal and Occipital, respectively.

Although there is no central lobe in the brain, this notation is used to facilitate

identification and keep it intuitive. The even numbers (2, 4, 6, 8) refer to the

right hemisphere while the odd numbers (1, 3, 5, 7) refer to the left hemisphere.

The letter z refers to an electrode placed on the midline. The smaller the number

used on the identification of an electrode, the closer its position to the midline.

Upon different EEG recording setups where a larger number of elec-
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Figure 5.1 – A diagrammatic representation according to the international 10-20 electrode set-
ting system (94+ 3 locations).

trodes is available, the configuration of the sensors follows the 10-20 system

placing the additional electrodes equidistantly between the ones from conventi-

onal setup in Figure 5.1. An example of a setup with 256 electrodes is shown

in 5.2.

Traditionally, many brain disorders are diagnosed by visual inspection

of EEG signals. The clinical experts in the field are expected to be familiar with a

typical manifestation of brain rhythms in the EEGs. However, there are various

challenges in the interpretation of the signal which are mostly due to specificities

in its nature. In healthy adults, the amplitudes and frequencies of such signals

may change significantly from one human to human. The characteristics of the

waves also change with age. There are five major brain waves distinguished

by their different frequency ranges. These frequency bands from low to high

frequencies are called alpha (α), theta (θ), beta (β), delta (δ) and gamma (γ),

respectively.

Longer latency responses are related to higher cognitive functions such

as event-related potentials (ERPs). It is a measure of brain response that is the

direct result of a specific sensory, cognitive, or motor event, or any stereotyped

electrophysiological response to a stimulus (SANEI; CHAMBERS, 2021). ERPs

are useful diagnostic indicators in many applications to neurology as well as for
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BCI applications. These signals are characterised by their spatial, temporal, and

spectral locations, which are translated by their amplitudes, latencies, source

locations, and frequency contents. However, extraction and classification of these

signals usually require great expertise in the development of mathematical and

signal processing algorithms.

The SSVEP signals are examples of ERPs. They are a natural response

to visual stimulations at specific frequencies. When the retina is excited by

a visual stimulus ranging from 3.5 to 75Hz, the brain generates an electrical

activity at the same (or at multiples of the) frequency of the visual stimulus.

These manifestations are used for understanding which stimulus the subject is

looking at, in the case of stimuli with different flashing frequencies. The SSVEP

is one of the five categories of the electrical activities used in BCI: the α and β

rhythms, the P300 evoked potentials, the visual N100 and P200, and the SSVEP.
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Figure 5.2 – The positions of 256 EEG electrodes used for data acquisition are marked by black
dots. The place of the occipital channel Oz is highlighted in red.
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5.2 Problem Formulation

To formulate the problem, we can assume the protocol for SSVEP

acquisition is performed on N subjects, for which we can present Nv visual

stimuli with coloured light flickering at either one of the S different frequencies

F =
{
f1, · · · , fS

}
for a fixed time duration. This period is referred to as a trial

ti, i = 1, · · · , Nv. The EEG signals captured at each trial ti of each subject sj

are presented by E(ti, sj), j = 1, · · · , N. The label that we want to predict is

the frequency fk ∈ F presented in a certain trial. The prediction is based on the

signals E(ti, sj), captured during the corresponding time interval.

To this end, conventional BCI systems based on SSVEP usually start

with the preprocessing step, where it applies filtering and artefact removal

methods to the EEG signals. Afterwards, the signals are typically transformed

into the frequency domain from which a set of features X = {x1, · · · , xNd
} is ex-

tracted. The notation Nd represents the total number of trials for all subjects.

Optional steps may also include feature selection or dimensionality reduction

techniques that can be applied to these features.

After performing the aforementioned processing steps, we obtain a la-

beled dataset D = {xv, fv} , v = 1, · · · , Nd and fv ∈ F. The dataset is then

employed in the learning and testing phases of the classification model chosen

for the BCI system. In particular, the Leave-One-Subject-Out is employed here

as a cross-validation scheme from which the dataset D is split into train T , and

test set T ∗, such that ∥D∥ = ∥T∥+ ∥T ∗∥. For further details on the Leave-One-

Subject-Out, see Section 5.7.

Ultimately, given the labeled training set T = {xt, ft} , t = 1, · · · , Nt
where Nt = ∥T∥ , ft ∈ F, the main goal of the BCI system can be translated

as learning a model to estimate a score that indicates whether the stimulus

flickering at frequency fk ∈ F is the source of an EEG signal included in the test

set T ∗ = {x∗t , f
∗
t} , t

∗ = 1, · · · , N∗
t where N

∗
t = ∥T ∗∥ , f∗t ∈ F.
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5.3 Preprocessing

Several methods have been applied in the preprocessing stage of the

SSVEP-BCI systems. The main goal of this filtering is to attenuate the inter-

ference that is added to the EEG signal during the recording. These artefacts

compromise the quality of the signal and affect the BCI performance. Usually,

the first step of different preprocessing approaches involves a bandpass filter to

keep the desired parts of the EEG signal. For filtering the signal spectrum, we

can rely on either of two filtering categories: Finite Impulse Response (FIR)

filters and Infinite Impulse Response (IIR) filters. FIR filters have an impulse

response of finite duration, while IIR filters have an impulse response of infinite

duration. In the literature, we can find several works (YIN et al., 2020; AL-

MUHAMMADI et al., 2015) related to EEG filtering approaches with IIR and

FIR filter banks. FIR filters are stable and usually present linear phase, i.e.,

all frequency components of the EEG signal would be shifted in time (usually

delayed) by the same constant amount. On the other hand, IIR filters are not

always stable and present nonlinear phase characteristics. However, the latter

requires fewer coefficients than FIR filters, making it a more suitable choice spe-

cially when memory constraints are a critical aspect of the solution and when

some phase distortion is tolerable.

Aside from classical time-domain filtering approaches, the Common

Averaging Re-referencing (CAR) spatial filtering method is also employed in

many works (CARVALHO et al., 2015) to remove unwanted signal components

such as those from eye blinks, eyes movement, and other muscle activities. The

CAR method relies on a reference signal that should be optimally influenced by

the same noise as that from the channel of interest. When subtracting this refe-

rence from the channel of interest, this noise is subtracted as well. For picking up

consistent noise references, the channel(s) ultimately forming the new reference

should hence be located close enough to the region of interest. Unfortunately,
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there is no consensus on the optimal reference although two commonly employed

referencing schemes are (i) the average mastoids (the mean mastoids reference

signal has been modelled by the average of the TP9 and TP10 electrodes that

are located in the proximity of the mastoids), and (ii) the average of all scalp

channels, usually referred to as Common Average Reference (it is obtained from

the average electrical activity measured across all scalp channels).

The AMUSE (TONG et al., 1990) approach is a typical method ap-

plied to EEG signals in order to remove specific artefacts. It is a blind source

separation algorithm that has some similarities with standard Principal Compo-

nent Analysis (PCA). AMUSE consists of two separate steps based on second-

order statistics and spatio-temporal decorrelation algorithms. Let us denote

Y = [y1, · · · , yN] ∈ RM×N as the signal matrix captured from all N sen-

sor channels during a certain trial containingM samples in each sensor channel.

The vector y(j) ∈ RN is the j-th row of the matrix Y, containing the observations

from all sensor channels and j = 1, · · · , M. The covariance matrix of the ob-

servations is calculated as CY = E[YY
T ] ∈ RN×N. AMUSE aims at decomposing

the observation yj into uncorrelated sources z(j) ∈ RN, i.e., z(j) =Wy(j) ∈ RN

and W is the unmixing unknown matrix. As a result of that, the observations

can be then reproduced by linearly combining the uncorrelated sources, i.e.,

y(j) = Az(j) and A is the unknown mixing matrix.

To obtain such uncorrelated sources, the first step of AMUSE is to

perform the linear transformation known as whitening (ROMANO et al., 2018)

in order to transform the observations y(j), with known covariance matrix, into

a set of new variables z(j), whose covariance is the identity matrix meaning they

are uncorrelated and each has a unitary variance. Most commonly, the matrix

Q = C
− 1

2

Y is adopted for the whitening transformation given by z(j) = Qy(j).

The second step consists of applying Singular Value Decomposition

(SVD) to a time-delayed covariance matrix of the whitened data z(j), i.e.,
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E[ZZT ] = UΛV . The unmixing matrix is then estimated as W = UTQ and

the uncorrelated sources are then estimated as Ẑ = WY. The AMUSE allows

obtaining a rank of the uncorrelated components based on the singular values

from SVD. It is well established (CHOI et al., 2005) that typical sources of EEG

noise such as eye blinks usually lie in the few first and last components genera-

ted from AMUSE. As a matter of fact, these components can be rejected before

returning to the original signal space, such that eye blinks and other muscle

activities are eliminated from the signal.

Another category of methods for artefact removal relies on the use of

Independent Component Analysis (ICA). It assumes that each vector y(j) is

a linear mixture of K unknown sources, i.e., y(j) = Az(j), where the matrix

of mixing coefficients A is unknown. The goal in ICA is to find the sources

zk(j),k = 1, · · · , K and j = 1, · · · , N, that are as independent as possible

according to an information-theoretic cost function such as minima of Kullback-

Leibler divergence or maximisation of cumulants (CHOI et al., 2005). The mo-

tivation for such a criterion is that the independence of random variables is a

more general concept than decorrelation (used by AMUSE). The random varia-

bles zi and zj are said to be statistically independent if knowledge of the values

of zi provides no information about the values of zj. It should be noted that ICA

can perform blind source separation as it estimates the true sources only if they

are all statistically independent and there is a maximum of a single Gaussian

source.

The application of the ICA algorithm to EEG data processing is usually

performed in three steps: (i) the EEG data are decomposed into independent

components; (ii) by visual inspection some of these components are excluded

due to the artefacts, and finally (iii) the artefact-free EEG signals are obtained

by mixing and projecting back onto the original channels those ICA components

without artefacts.
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Finally, the Common Spatial Patterns (CSP) method is commonly re-

ported in the literature as a preprocessing technique applied to EEG signals.

Given a classification problem consisting of two different classes, the classical

CSP algorithm seeks an optimal projection direction (spatial filter) by maxi-

mising the variance of one class and simultaneously minimising the variance of

the other class. Raw EEG signals are then mapped to this direction (YU et al.,

2019) and the classification problem becomes easier to solve. The projection is

a spatial filtering process, which was initially designed for binary classification

problems. However, it has also been extended to multi-class problems (DOR-

NHEGE et al., 2004).

For the experimental results presented in this chapter, the prepro-

cessing module of the proposed SSVEP-based BCI system includes an IIR-

Chebyshev I bandpass filter. To evaluate the effects of the frequency and mag-

nitude specifications of the filter, an exhaustive search on various combinations

of stopband and passband parameters was performed while monitoring the clas-

sification accuracy achieved from an arbitrary BCI configuration.

The algorithms and corresponding parameters of such arbitrary confi-

guration result in specific levels of accuracy which serve as a comparison basis

to decide whether the preprocessing algorithm and corresponding parameters

introduce improvements to the BCI system. The feature extraction method and

the classification algorithm of the arbitrary configuration are the Welch Power

Spectrum Density estimation method and the Support Vector Machine, respec-

tively. For feature extraction, the power spectrum of Welch’s method is used

with the frequency range applied to the entire spectrum, the size of the FFT is

set to 512 samples, the frequency range is between 0 and 125Hz, the length of

each segment is set to 156, and the overlap is 78 samples. The SVM classifier

is configured with a linear kernel and the cost parameter C is set to 1, as re-

ported in (OIKONOMOU et al., 2016). In this case, a value of C = 1 implies

a balanced approach, where both margin maximisation and error minimisation
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are considered important.

After conducting an exhaustive search of various types of bandpass fil-

ters, including the FIR Least Squares, the IIR Chebyshev I, the IIR Chebyshev

II, and the IIR Butterworth, along with their respective frequency and magni-

tude specifications, it was determined that the IIR Chebyshev I filter outper-

forms the others and is therefore the chosen filtering method for integration into

the optimal configuration proposed in this chapter. The specifications of the fil-

ter are as follows: Stopband Frequency 1 = 3Hz, Passband Frequency 1 = 5Hz,

Passband Frequency 2 = 48Hz, Stopband Frequency 2 = 58Hz, Stopband At-

tenuation 1 = 50dB, Stopband Attenuation 2 = 50dB, and Passband Ripple

1 = 0.4dB.

Several experiments using AMUSE with the 256 EEG channels were

also performed in the artefact removal step. After different combinations, we

concluded that, although AMUSE resulted in an improvement of approximately

2% compared to the accuracy obtained from the BCI configuration with the

IIR Chebyshev I filter only, it significantly increased the total execution time

of the experiment. As our primary goal is to keep the preprocessing modules as

simple as possible and focus on the decision step involving the signal classifier,

the AMUSE was not incorporated into the adopted configuration.

5.4 Discriminative Dictionary Learning and Sparse Coding Methods

In this section, we introduce the state-of-the-art methods for discri-

minative dictionary learning and sparse coding. We describe some represen-

tative state-of-the-art methods such as the SRC (WRIGHT et al., 2008), the

DLSI (RAMIREZ et al., 2010), the COPAR (KONG; WANG, 2012), the Fisher

Discriminative Dictionary Learning (YANG et al., 2011) and the Low-rank sha-

red Dictionary Learning (VU; MONGA, 2016). In particular, we address their

formulations, strengths, weaknesses and constraints to encourage certain featu-
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res of the dictionaries.

In sparse representations, signals are expressed as a linear combina-

tion of the atoms taken from a dictionary. The sparse representation classifier

(SRC) (WRIGHT et al., 2008) was originally developed for face recognition. La-

ter on, it was adapted to various signal and image classification problems. The

central idea of the SRC is to represent a test sample as a linear combination of

samples from the available training samples set. Sparsity arises because most of

the nonzero coefficients in the linear combination correspond to the atoms that

are similar to the test sample. The SRC assumes that each sample lies in its

class subspace and that all class subspaces are non-overlapping.

Given C classes and a dictionary D = [D1, · · · , DC] with Dc corres-
ponding to the training samples from the class c, c = 1, ...,C, a new sample y

that belong to class c is expected to be represented as y ≈ Dcx. Expressing y

in terms of D results in y ≈ D1x1 + D2x2 + · · · + Dcxc + DCxC. However,

note that most of the active elements of x should be located in xc and thus, the

coefficient vector x becomes sparse.

In matrix form, assuming Y = [Y1, · · · , Yc, · · · , YC] is a set of samples

where Yc comprises those samples that belong to class c, the sparse matrix X

would be, in the best fit, a block diagonal matrix as shown in Figure 5.3 (VU;

MONGA, 2016). In general, learning a dictionary from specific training samples

instead of using all of them as a dictionary enhances the performance achieved

from SRC.

However, the assumption of non-overlapping subspaces between diffe-

rent classes in SRC is often unreal in most applications where many common

features are shared. This problem has been partially addressed by recent efforts

such as the DLSI and the COPAR methods.

In DLSI, the main objective is to learn a set of dictionaries that ef-

fectively represent each class. Unlike the standard SRC method where classes
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Y = [Y1 Yc YC... ... ] D = [D1 Dc DC... ... ]

X

x≃

X1 Xc XC

X1
c

X2
c

X3
c

Figure 5.3 – Typical structure of the dictionary and the sparse matrix in SRC framework.

can have intersecting subspaces, DLSI promotes incoherence between the dicti-

onaries of each class. This encourages independence between the bases of diffe-

rent classes by minimising coherence between cross-class bases. Although DLSI

does not explicitly learn shared features, it aims to enhance discriminability

by ensuring that the sub-dictionaries of each class capture distinct and non-

overlapping features. Therefore, DLSI is a more refined approach compared to

SRC, as it focuses on improving representation quality and encouraging struc-

tured incoherence among the learned dictionaries. The cost function J(D,X) in

DLSI is defined as:

J(D,X) =

C∑
c=1

∥Yc −DcXc∥2F + λ ∥X
c∥1 +

η

2

C∑
j=1, j ̸=c

∥∥DTjDc∥∥2F
 (5.1)

Each class-specific dictionary Dc is updated by fixing others and solving the

following equation

Dc = argmin
Dc

∥Yc −DcXc∥2F + η ∥ADc∥
2
F (5.2)

with A = [D0, · · · , Dc1,Dc+1, · · · , DC]. The solution for this problem updates
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each column dc,j of Dc one by one based on the following

u =
(∥∥xjc∥∥22 I+ ηATA)−1

Yc −∑
i̸=j

dc,ix
i
c

 xjc (5.3)

dc,j =
u

∥u∥22
(5.4)

To update sparse matrix X, in each iteration, DLSI solves C subproblems:

Xc = argmin
Xc

∥Yc −DcXc∥2F + λ ∥X
c∥1 (5.5)

On the other hand, the COPAR method can explicitly learn a shared

sub-dictionary DC+1 with a common pattern pool (the commonality) and class-

specific sub-dictionaries (the particularity) for classification. It is built under

the empirical observation that images from different categories usually share

some common patterns which are not helpful for classification but essential for

representation. Note that the subspace spanned by the columns of the shared

dictionary DC+1 must have a low rank. Otherwise, class-specific features would

be also represented by the shared dictionary. In the worst case, the shared

dictionary span would include all the features of each class and this would greatly

harm the classification accuracy (VU; MONGA, 2017).

In DLSI, as the bases of the common patterns (shared features) may

appear in several particularities (specific classes), the learned particularities may

become redundant and less discriminative. Therefore, COPAR drives the com-

mon patterns to the commonality set and preserves the class-specific features in

the particularity sets of the dictionary. To this end, it adds an incoherence term

Q(Di,Dj) =
∥∥DTiDj∥∥2F to its objective function. Although this penalty term has

been used among the class-specific sub-dictionaries in Equation (5.1) of DLSI,

COPAR method also deals with the incoherence of the commonality concerning

the particularities.

To define the objective function of COPAR, let us denote the dictionary

as D = [D1, · · · , Dc, · · · , DC+1] ∈ RM×N, in which N =
∑C+1

c=1 Nc, Dc ∈
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RM×Nc stands for the particularity of the c-th class and DC+1 ∈ RM×NC+1 is

the commonality. In addition, Qc = [q1
c, · · · , qjc, · · · , qNc

c ] ∈ RN×Nc is the

selection operator in which the j-th column ofQc is of the form (KONG; WANG,

2012)

qjc =

0, · · · , 0︸ ︷︷ ︸∑c−1
m=1Nm

, 0, · · · , 0, 1, 0, · · · , 0︸ ︷︷ ︸
Nc

, 0, · · · , 0︸ ︷︷ ︸∑C+1
m=c+1Nm


T

(5.6)

The operators

Q/c = [Q1, · · · , QCc−1
, Qc+1, · · · , QC,QC+1]

and

Q̃/c = [Q1, · · · , QCc−1
, Qc+1, · · · , QC]

are both included in the objective function to force the coefficients, except

that corresponding to the c-th particularity and those from commonality, to

be zero. Finally, note that Y = [Y1, · · · , Yc, · · · , YC] ∈ RM×P is the data-

set, wherein Yc ∈ RM×Pc, given P =
∑C

c=1 Pc, represents the data from the

c-th class. To encourage sparsity the term ϕ(Xc) =
∑Pc

i=1

∥∥xic∥∥1 is used, for

Xc = [x1c, · · · , xic, · · · , xPcc ] ∈ RN×Pc. COPAR’s notation framework can be

visualised in Figure 5.4. The objective function of COPAR method is given by

J(D,X) =

C∑
c=1

(
∥Yc −DXc∥2F +

∥∥∥Q̃T/cXc∥∥∥2
F
+
∥∥Yc −DQ̃cQTcXc∥∥2F + λϕ(Xc))+

η

C+1∑
c=1

C+1∑
j=1,j ̸=c

Q(Dc,Dj)

As a supervised Dictionary Learning method, the Fisher Discrimina-

tion Dictionary Learning (FDDL) method learns class-specific dictionaries for

each class and makes them most discriminative through Fisher criteria (YANG

et al., 2011). Let m, mc be the mean vector of X, Xc, respectively. Let Mc =

[mc, · · · , mc] ∈ RN×Pc, and M = [m, · · · , m], with number of columns, be
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Y = [Y1 Yc YC... ... ] D = [D1 Dc DC... ... ]DC+1

X

x≃

X1 Xc XC

X1
c

X2
c

X3
c

XC+1
c

Figure 5.4 – Typical structure and notation adopted in the COPAR framework. Brown items
indicate shared/common patterns whilst red, green and blue items from the dicti-
onary and the sparse codes indicate class-specific patterns.

the mean matrices. In particular, the discriminative dictionary D and the sparse

coefficient matrix X are learned based on minimising the following cost function

J(D,X) =
1

2

C∑
c=1

r(Yc,D,Xc) + λ1 ∥X∥1 +
λ2

2
f(X) (5.7)

where

r(Yc,D,Xc) = ∥Yc −DXc∥2F + ∥Yc −DcXcc∥
2
F +

∑
i̸=c

∥∥DiXic∥∥2F (5.8)

and
C∑
c=1

r(Yc,D,Xc) (5.9)

is the discriminative fidelity term. The dictionary D can be written as D =

[D1,D2, ...,DC], where Di is the sub-dictionary from the c-th class, and Xjc is the

coding coefficient of Yc over the sub-dictionary Di. The first term ∥Yc −DXc∥2F
indicates that the dictionary D must represent Yc accurately. The second term

∥Yc −DcXcc∥
2
F encourages the intra-class representation ability, that is, Yc should

be well represented by Dc but not by Dj, j ̸= c. Furthermore, Xcc should have
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some significant coefficients such that the representation error is minimised,

while Xic, i ̸= c should have nearly zero coefficients, such that the third term∑
i̸=c

∥∥DiXic∥∥2F is small. This denotes the inter-class discriminative performance.

The term λ1 ∥X∥1 encourages the sparsity of coefficients in X. Finally,

the term f(X) =
∑C

c=1(∥Xc −Mc∥2F − ∥Mc −M∥2F) in Equation (5.7) is the

Fisher-based discriminative regularisation. The first component,

C∑
c=1

(∥Xc −Mc∥2F − ∥Mc −M∥2F) (5.10)

calculates the Euclidean distances between the sparse codes Xc and their class

meansMc. This component encourages the sparse codes of the same class to be

close to their respective class means, promoting intra-class compactness. The

second component, ∥Mc −M∥2F, measures the distance between the class means

Mc and the overall mean M of the data. It encourages the class means to be

well separated, promoting inter-class separability.

The minimisation problem in Equation (5.7) is solved by alternatively

optimising each Xc or Dc while fixing the other variables. Detailed optimisation

procedures are presented in (YANG et al., 2011). This method leads to an

extremely slow convergence which is sometimes impractical for multi-class high-

dimension problems. A prediction label is obtained based on

L(y) = argmin
i

∥∥y−Diα
i
∥∥2
F
+ µ

∥∥αi −mi

∥∥2
2

(5.11)

where αi is the sparse coefficient vector associated with the i-th class. The

first term is the reconstruction error of class i, the second term is the distance

between the coefficient vector αi and the mean vector mi.

The Low-rank Shared Dictionary Learning (LRSDL) framework (VU;

MONGA, 2016) is a generalised version of the FDDL with the additional capa-

bility of capturing shared features, resulting in better classification performance.

With the additional shared dictionary DC+1, it is expected that Yc can be better
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represented in the collaboration with the class-specific dictionary Dc, as illus-

trated in Figure 5.4. In practice, the discriminative fidelity term r(Yc,D,Xc) in

Equation (5.7) can be extended to r̄(Yc, D̄, X̄c) defined as follows

r̄(Yc, D̄, X̄c) =
∥∥Yc − D̄X̄c∥∥2F+∥∥Yc − D̄cX̄cc − D̄C+1X̄

C+1
c

∥∥2
F
+
∑
i ̸=c

∥∥DiXic∥∥2F (5.12)

Similarly, the Fisher-based discriminative coefficient term f(X) is ex-

tended to f̄(X̄) defined as follows

f̄(X̄) = f(X) +
∥∥XC+1 −MC+1

∥∥2
F

(5.13)

where the term
∥∥XC+1 −MC+1

∥∥2
F
encourages the coefficients of X in all training

samples represented via the shared dictionary, DC+1, to be similar. Additionally,

for the shared dictionary, LRSDL constrains the rank (DC+1) to be small, using

the nuclear norm ∥DC+1∥∗. The reason for that is to avoid adding class-specific

features to the shared dictionary. The cost function J̄(D̄, X̄) of the LRSDL is

given by the following Equation

J̄(D̄, X̄) =
1

2

C∑
c=1

r̄(Yc, D̄, X̄c) + λ
∥∥X̄∥∥

1
+
λ2

2
f̄(X̄) + η ∥DC+1∥∗ (5.14)

Minimising J̄(D̄, X̄) jointly finds the appropriate dictionaries and sparse codes.

Table 5.1 provides a comprehensive comparison of various aspects of

the discriminative dictionary learning methods discussed in this section. It ex-

plores these methods based on the following factors:

• Intra-class Diversity: the atoms of a class-specific sub-dictionary should

have low inner-product.

• Inter-class Separability: the class-specific sub-dictionaries should have low

inner-product between their atoms.

• Shared and Class-Spec Sub-dictionaries Overlap: the atoms of the shared-

features and class-specific sub-dictionaries should have low inner-product.
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Table 5.1 – Comparing different aspects of the discriminative dictionary learning methods dis-
cussed in the section.

Method Shared Class-Specific Intra-Class Inter-Class Shared and Class-Spec.
Sub-dict. Sub-dict. Diversity Separability Sub-dict. Overlap

SRC No Yes No No N/A
DLSI No Yes No Yes N/A

COPAR Yes Yes Yes No Low
FDDL No Yes Yes Yes N/A
LRSDL Yes Yes Yes Yes Low

5.5 Proposed Discriminative Dictionary Learning Framework

In this section, we introduce the proposed Discriminative Dictionary

Learning Framework and how it can be applied to SSVEP-based BCI systems.

We present a Neural Network-based Discriminative Dictionary Learning and

Sparse Coding (NNDDL) framework for representing class-specific and shared

features of the signal and distinguishing their sparse representations accordingly.

We add no specific constraints to the dictionary structure. The rationale is to

encourage dictionary and sparse codes to produce distinguishable patterns of

the representation error that our classifier can learn.

Figure 5.5 illustrates the proposed scheme for EEG classification. After

the learning process we obtain D and the classifier model function f(ri) =

[C1, C2, C3, C4, C5], where ri is the signed residual vector of the i-th test

signal sample yi, i.e., ri = yi −Dxi and the associated sparse vector is xi. The

values indicated as Cj are the estimated probabilities of ri being the residual

vector from the i-th sample belonging to the j-th class, j = 1, · · · , 5. The class
identity of the sample yi is determined by L̂(yi) = argmax(f(ri)).

The encoder side of the proposed NNDDL framework is composed of

convolutional and 1D upsampling pooling layers with activation functions set

to the ReLU. The decoder side linearly reverses the sparse latent variables to

the data space without including biases and activation functions. The classifier

input is fed with Y−DX, processing the signed residual between the original data
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Figure 5.5 – Illustration of the proposed discriminative dictionary learning and sparse coding
framework.

space Y and the reconstruction from its sparse representation DX. It comprises

convolutional, 1D max-pooling and dense layers with activation functions set

to ReLU. The activation function of the classification layer is the Softmax.

The architecture of the proposed encoder is depicted in Figure 5.6. During the

training phase, dropout layers with rates between 0.1 and 0.4 were added after

the model convolutional and dense layers. It aims to regularise the weights and

prevent overfitting.

Most dictionary learning methods alternate between a sparse coding

stage and a dictionary update stage, each of which may consist of iterations

over a set of inner update steps. For instance, the ADMM method is a simple

yet powerful approach that decouples optimisation variables and optimises the

augmented Lagrangian in a primal-dual scheme. Despite ADMM advantages,

due to its closed-form update of all the parameters in the problem formulation,



5.5. Proposed Discriminative Dictionary Learning Framework 130

1254 4 x 626

3 x 1

4 x 1254 8 x 625

4 x 8

Convolution Upsampling Convolution

10 x 311

Convolution

4 x 10

3110

Reshape

1254

Dense

1254

Stride=2 Stride=2 Stride=2

10 x 1230

Convolution

Stride=1

10 x 614

Max-Pooling

Stride=2

25 x 10

...

...

5 x 600

Convolution

Stride=1

15 x 5

...

5 x 150

Max-Pooling

Stride=4

...

750

Reshape

300

Dense

5

Dense

Y-DX

XY

ReLU ReLU ReLU

ReLU ReLU ReLU Softmax

+
-
Σ

Figure 5.6 – Diagram illustrating the discriminative dictionary learning framework using neural
networks, specifically designed for SSVEP signal classification.

it can be complicated to further extend it into more complex problems and larger

datasets. The proposed framework learns a discriminative sparse representation

using combined models. It uses an autoencoder to learn the features in the

dictionary and the sparse codes, and a second model to classify the residual

vector calculated from the autoencoder output and input. The combined models

1. encourage the discriminative power of the classifier model fed with the

residuals from reconstruction,

2. implicitly encourage a dictionary with class-specific features to enhance the

discriminative power of the classifier, and

3. implicitly encourage a dictionary with shared features containing common

patterns that do not necessarily contribute to distinguishing signal classes
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but rather minimising the representation error at the output of the auto-

encoder network.

The cost function proposed to the network architecture illustrated in

Figure 5.5 is given as follows

J(D,X) = α1 ∥Y −DX∥2F + α2 ∥X∥1,1 + α3N(D) +

+ α4H(L(yi), L̂(yi)) + α5

V∑
j=1

θ2j

The proposed NNDDL method avoids explicit encouragement of pre-

structured or pre-designed features in the dictionary, D, and sparse matrix, X.

No prior structure is assumed or imposed on these matrices. The constraints

applied to J(D,X) do not aim to minimise the rank of sub-dictionaries with

shared features or promote incoherence between class-specific sub-dictionaries.

The first term α1 ∥Y −DX∥2F is the penalty related to the Euclidean

reconstruction error between the data samples Y and the decoded sparse features

DX at the output of the same network. The second term encourages the sparsity

at the latent space of the autoencoder using the mixed norm ℓ1,1, i.e., ∥X∥1,1 =(∑N
i=1

∑P
j=1 |xi,j|

1
) 1

1

. The third term is

N(D) =
1

N

N∑
i=1

|1− dTi di|, (5.15)

which enforces the unitary normalisation of each dictionary atom. The fourth

term stands for the error of the classification model. It represents the cross-

entropy function as follows

H(L(yi), L̂(yi)) = −
1

P

P∑
i=1

(
L(yi) log L̂(yi) + (1− L(yi)) log(1− L̂(yi))

)
(5.16)
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where the target vector L(yi) represents the probabilities for all the five classes

with respect to the i-th training sample. In particular, it is a one-hot vector,

meaning it has 1 on a single position and 0’s everywhere else. Similarly, the pre-

diction vector L̂(yi) represents the predicted probabilities of all classes, summing

up to 1.

Finally, the fifth term
∑V

j=1 θ
2
j is the ℓ2 regularisation term that takes

the sum of all the parameters of the neural network squared, except the ones

from the decoder layer of the autoencoder network, which actually correspond

to the already normalised dictionary atoms.

The following elements support the contributions of this chapter

1. The NNDDL requires gradient calculations to update the dictionary, the

sparse code and the classifier model throughout the backpropagation algo-

rithm. The state-of-the-art dictionary learning algorithms solve the same

joint optimisation problem through variants of the ADMM method, which

relies on decomposing the non-convex optimisation into two sub-problems

that are solved separately. The ADMM coordinates solutions to these sub-

problems to build the final solution back to the original problem. While

efficient, many of these ADMM-based algorithms need a scalable infras-

tructure to solve the problem in parallel for many training samples. This

work formulates the discriminative sparse coding and dictionary learning

problem as a feedforward neural network training process. It is performed

with an autoencoder and a classifier model connected to the sparse latent

space. As a result, one can take advantage of the parallelism offered by

GPUs to speed up learning and enhance classification results.

2. Decomposition-coordination methods, such as the ADMM, may not neces-

sarily converge to stationary points of the optimisation problem in many

situations (BOYD et al., 2011). Since only non-increment property is en-

sured, even the convergence to stationary points cannot be guaranteed. In
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these cases, the dictionary and the corresponding sparse codes may result in

a relatively poor representation and low-accuracy classifier. Therefore, we

propose an optimisation approach based on gradient descent for supervised

learning to overcome this issue. As a result, the proposed framework is gua-

ranteed to converge to stationary points in general, leading to high-quality

sparse representations and higher accuracy classifiers.

3. The FDDL method has extremely slow convergence, which is sometimes

impractical for multi-class high-dimension problems. The proposed method

simultaneously optimises the dictionary and the spare codes in batch mode,

resulting in a faster and accurate algorithm.

5.6 Dataset

The dataset includes EEG signals with 256 channels collected from

11 subjects executing an SSVEP-based experimental protocol. Five different

frequencies presented in isolation have been used for the visual stimulation:

6.66Hz, 7.50Hz, 8.57Hz, 10.00Hz and 12.00Hz. The EGI 300 Geodesic EEG Sys-

tem (GES 300), using a 256-channel HydroCel Geodesic Sensor Net (HCGSN)

and a sampling rate of 250Hz was used for collecting the signals. Further details

regarding the acquisition setup can be found in (OIKONOMOU et al., 2016).

To relate the dense net array of EEG signals from HCGSN back to the classic

EEG systems 10-20 or 10-10, you can refer to (LUU; FERREE, 2005), which

describes the equivalence between the electrode positions for the 256-channels

from HCGSN which are shown in Figure 5.2 and the classical 10-20 system.

The stimulus of the experiment was one violet box, presented on the

center of a monitor with black background color. This box could flicker in one

of the 5 aforementioned frequencies. The box flickering in a specific frequency

was presented for 5 seconds, denoted hereafter as a trial, followed by 5 seconds

without visual stimulation.
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The protocol undertaken by each subject is repeated to identical ses-

sions, as shown in Figure 5.7. Subjects S001, S003 and S008 participated in 3

sessions and S004 participated in 4 sessions. All the remaining subjects parti-

cipated in 5 sessions. Each session initiates with 100 seconds of resting period,

where the volunteer could look at the black screen of the monitor without being

involved in any activity. It follows with another 100 seconds of adaptation pe-

riod, which consisted in the presentation of the 5 selected frequencies randomly,

plus an additional time for resting and get prepared for the trials. At this part

of the protocol, the subject had the opportunity to familiarise with the visual

stimulation.
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Figure 5.7 – Experimental setup for the third session (c) collected from subject S001: the session
initiates with 100 seconds of resting and then follows to another 100 seconds of the
adaptation period. After the adaptation period, the remaining trials initiate in
t=200 s. Each subset of trials consists of presenting one of the five frequencies of
interest three times, with a resting period of 5 s between each trial. The subsets
are separated with a period of 30 s without visual stimulation.

In each session, the subset of trials consisted in presenting one of the 5

selected frequencies for 3 times. Each individual trial is separated by 5 seconds

without visual stimulation. After each subset of trials, a 30 seconds break is

added before the next subset of trials begins. In total, each session includes 23
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trials, with 8 of them being part of the adaptation period. MAMEM dataset is

downloadable without restrictions1.

5.7 Evaluation Protocol

We defined an evaluation protocol for assessing the performance and

comparing the results across the state-of-the-art discriminative dictionary lear-

ning algorithms introduced in Section 5.4, and the proposed method explained

in Section 5.5. The systematic comparison focuses on evaluating these approa-

ches regarding the SSVEP-based BCI system. We consider these methods should

not foresee any subject-specific training samples before their evaluation using

the same subject, which resulted in the adoption of the leave-one-subject-out

evaluation protocol.

Cross-Validation (CV) techniques are usually employed to ensure a fair

comparison between the different evaluated approaches. The CV relates to split-

ting the available dataset into two separated non-overlapping parts: the training

set and the test set. We run a specific dictionary learning framework using only

the samples from the training dataset. The performance of each framework is

then evaluated with the samples from the test dataset. The variations of the CV

framework are related to the way we choose to split the dataset and the metrics

used to quantify the performance of each configuration.

For the experiments from now on discussed, we employ a CV approach

where the splitting procedure is performed on the basis of subjects, and the

performance is evaluated according to the accuracy and Matthew’s Correlation

Coefficient (MCC) achieved with the classifiers. This CV approach is known

as the Leave-One-Subject-Out (LOSO). As the name indicates, the LOSO-CV

leaves the data from one specific subject out of the training phase and uses

them only in the test phase of the experiment. This splitting is often adopted
1 <https://doi.org/10.6084/m9.figshare.5231053>

https://doi.org/10.6084/m9.figshare.5231053
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for experiments involving physiological data since it measures the ability to

construct general-purpose systems.

An alternative CV approach could be performing the training proce-

dure and the test phase with the EEG data slices from all subjects. To this end,

we could use, for instance, a K-fold CV approach. In this case, different data

slices from the same subject are included in the training and the test dataset.

The expected variability of the results achieved by each subject would be lower

when compared to the ones obtained from the LOSO approach. Lower variabi-

lity happens because the knowledge of the test dataset leaks into the training

dataset, i.e., the classifier uses data samples from the same subject during the

training and test phases. Therefore, for evaluating a general, non-personalised

BCI system, the LOSO-CV approach is more suitable for observing performance

variability across different subjects and for avoiding data leakage.

5.8 Experimental Setup

In this section, we present an evaluation of the proposed discrimina-

tive dictionary learning algorithm and state-of-the-art methods described in

Section 5.4. We aim to compare the existing techniques from the literature in

terms of their classification performance within the context of SSVEP-based BCI

systems. To support this analysis, we adopt two distinct default BCI configurati-

ons, where we fix specific algorithms at each module, including filtering, artefact

removal, feature extraction, feature selection, and classification. With these de-

fault configurations, we can establish a performance baseline, which allows us to

determine whether a particular algorithm introduces significant improvements.

It is worth noting that our objective is not to optimise all the different

modules of the BCI system. Although performance depends on various stages,

multiple algorithms can implement them, and we only focus on the classifier

stage. In the first default configuration, we adopt the simplest choices at each
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Table 5.2 – First default configuration of the EEG-based BCI application.

Channel

The electrode channels usually selected in SSVEP classification tasks are O1, O2 and Oz. All
these electrodes are located at the visual cortex. The experiments reported hereinafter are
performed using channel Oz only. This channel is collected from the midline of the occipital
lobe, as shown in Figure 5.2.
Signal Filtering

The raw EEG signal is bandpass filtered between 5 and 48 Hz. An IIR-Chebyshev I filter
is used with the following configuration: Stopband Frequency 1 is set to 3 Hz, Stopband
Frequency 2 is set to 58 Hz, Passband Frequency 1 is set to 5 Hz, Passband Frequency 2 is set
to 48 Hz, Stopband Attenuation is set to 50 dB and Passband ripple is set to 0.4 dB. Filter
Response is shown in Figure 5.8
Artifact Rejection

No artifact rejection technique is added in this default configuration.
Feature Extraction

No feature extraction technique is added in this default configuration.
Feature Selection

No feature selection method is applied in this default configuration.
Classification

We apply the SVM classifier with a linear kernel and the cost parameter set to C = 1. We
used Scikit-Learn (PEDREGOSA et al., 2011), which internally uses libsvm (CHANG; LIN,
2011) and liblinear (FAN et al., 2008) libraries to handle all computations required to run
SVM algorithm.

stage of the system, as outlined in Table 5.2, which shows the algorithms em-

ployed at each stage and their corresponding internal parameters. We utilise the

SVM as the classifier method.

The magnitude and phase response of the IIR bandpass filter adopted

at the first stage of this first experiment are shown in Figure 5.8. Table 5.3 pre-

sents the classification accuracy and Matthew’s correlation coefficient achieved

for each subject using such a configuration. The confusion matrices obtained in

each experiment using LOSO-CV are shown in Figure 5.9.

In the second experiment of this section, we determine a second default

configuration with further enhancements at each stage of the BCI system. To

this end, we take similar approaches as those adopted in (OIKONOMOU et al.,
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Figure 5.8 – Magnitude and phase response of the IIR-Chebyshev I filter applied as a bandpass
filter to the raw EEG channels.

Table 5.3 – Performance achieved with the first default configuration.

Subject ID Accuracy Matthew’s Coefficient N. Trials

S001 1.000 1.000 69
S002 0.965 0.957 115
S003 0.420 0.282 69
S004 0.815 0.770 92
S005 0.356 0.192 115
S006 0.896 0.872 115
S007 0.765 0.707 115
S008 0.507 0.384 69
S009 0.991 0.989 115
S010 0.870 0.859 115
S011 0.991 0.989 115

Mean 0.780 0.727

2016). With a more robust configuration, the authors in (OIKONOMOU et al.,

2016) categorised the subjects into three different classes

• a) highly-accurate class, where the subjects present the accuracy over 90%.

In our experiment, the following subjects are included to this class: S001,

S002, S009, and S011;

• b) mid-accurate class, where the subjects present the accuracy between
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Figure 5.9 – Confusion matrices obtained with LOSO cross-validation method, using the first
default configuration.

60% and 90%. In our experiment, the following subjects are included to

this class: S004,S006 and S010, and

• c) poorly-accurate class:, where the subjects present the accuracy below

60%. In our experiment, the following subjects are included to this class:

S003,S005, S007 and S008.

According to (OIKONOMOU et al., 2016), all subjects in the highly-

accurate and mid-accurate classes have either short or regular hair (with the

only exception of S006), while the subjects in the poorly-accurate class appear

to have thick hair (with the only exception of S007). Another interesting remark

extracted from the same study indicates that the subject S007, from poorly-

accurate class, was observed to excessively blink during the execution of the

experiment. Finally, subject S005 is the only left-handed subject participating

in the same data collection. Table 5.4 is indicating the algorithms adopted at
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Table 5.4 – Second default configuration of the EEG-based BCI application.

Channel

The electrode channels usually selected in SSVEP classification tasks are O1, O2 and Oz. All
these electrodes are located at the visual cortex. The experiments reported hereinafter are
performed using channel Oz only. This channel is collected from the midline of the occipital
lobe, as shown in Figure 5.2.
Signal Filtering

The raw EEG signal is bandpass filtered between 5 and 48 Hz. An IIR-Chebyshev I filter
is used with the following configuration: Stopband Frequency 1 is set to 3 Hz, Stopband
Frequency 2 is set to 58 Hz, Passband Frequency 1 is set to 5 Hz, Passband Frequency 2 is set
to 48 Hz, Stopband Attenuation is set to 50 dB and Passband ripple is set to 0.4 dB. Filter
Response is shown in Figure 5.8
Artifact Rejection

No artifact rejection technique is added in the default configuration.
Feature Extraction

We estimate the power spectrum using Welch’s method using the following configuration: the
number of FFT points is set to 512, the segment length is set to 156 and the overlap is set to
78.
Feature Selection

No feature selection method is applied in the default configuration.
Classification

We apply the SVM classifier with a linear kernel and the cost parameter set to C = 1. We
used Scikit-Learn (PEDREGOSA et al., 2011), which internally uses libsvm (CHANG; LIN,
2011) and liblinear (FAN et al., 2008) libraries to handle all computations required to run
SVM algorithm.

each stage and their corresponding internal parameters at our second default

configuration.

Table 5.5 shows the performance achieved for each subject from the se-

cond default configuration. The confusion matrices obtained in each experiment

with LOSO-CV are shown in Figure 5.10.

The results of the proposed NNDDL approach were obtained by re-

placing the classifier in the second default configuration while maintaining the

same methods for the remaining stages. To evaluate its efficacy, we compared its

performance against several state-of-the-art methods, including the SRC, DLSI,

COPAR, FDDL, and LRSDL, by replacing the proposed method at the classifier
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Table 5.5 – Performance achieved with the second default configuration.

Subject ID Accuracy Matthew’s Coefficient N. Trials

S001 1.000 1.000 69
S002 0.904 0.882 115
S003 0.319 0.155 69
S004 0.802 0.753 92
S005 0.243 0.048 115
S006 0.609 0.557 115
S007 0.522 0.416 115
S008 0.246 0.051 69
S009 0.991 0.989 115
S010 0.791 0.742 115
S011 0.983 0.978 115

Mean 0.674 0.597
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Figure 5.10 – Confusion matrices obtained with LOSO cross-validation method, using the se-
cond default configuration.

stage. The achieved classification accuracy with each method is summarised in

Table 5.6. The experimental results indicate that the proposed NNDDL method

outperformed the SRC method on the MAMEM dataset. However, it was found
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to perform worse than other state-of-the-art techniques, such as DLSI, CO-

PAR, FDDL, and LRSDL. Notably, our baseline SVM method achieved higher

accuracy than the state-of-the-art discriminative dictionary learning methods

analysed in this experiment. These observations suggest that while the propo-

sed approach may be effective in some classification tasks, and even outperform

some contender methods, it may not be the optimal choice for all scenarios.

Further research is necessary to better understand the strengths and limitations

of this method in comparison to other approaches.

Additionally, the proposed approach demonstrated superiority by out-

performing all state-of-the-art methods when applied on subject 5, which is

known to present the highest difficulty in accurately classifying SSVEP signals.

The results highlighted in Table 5.7 clearly indicate the effectiveness of the pro-

posed approach in tackling the challenges associated with subject 5’s unique

SSVEP patterns. These findings not only validate the strength of our method

but also highlight its potential to significantly enhance SSVEP classification

performance, particularly in challenging scenarios.

5.9 Analysis of the Proposed Method

In the Sparse Representation Classifier (SRC) method, signals are as-

signed to specific classes based on smaller residuals that indicate lower recons-

truction error. Unlike the SRC method, the proposed Neural Network Dictio-

nary Learning (NNDDL) method does not impose any structure on the matrix

of atoms for each class. Therefore, both the dictionary matrix D and the sparse

code matrix X exhibit unstructured activation patterns for each class. To illus-

trate this, Figure 5.11 shows the coefficient distributions of each class in the

sparse code matrix X for the EEG signals. These patterns are visually challen-

ging to distinguish when compared to the typical patterns obtained from the

SRC method.
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Table 5.7 – Results achieved in Subject S005: the NNDDL method outperforms all state-of-the-
art methods.

NNDDL SRC DLSI COPAR FDDL LRSDL
Acc. M. Coef. Acc. M. Coef. Acc. M. Coef. Acc. M. Coef. Acc. M. Coef. Acc. M. Coef.

S005 0.296 0.118 0.183 -0.030 0.183 -0.026 0.209 0.005 0.226 0.024 0.287 0.116
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Figure 5.11 – The mean and standard deviation of coefficients in the sparse vectors of each class
exhibit statistical patterns that are not easily distinguishable.

To gain a better understanding of the class-specific unstructured sub-

dictionaries and the sub-dictionary with shared features, we used a modified ver-

sion of the unsupervised clustering algorithm, k-means (also known as Lloyd’s

method). In this experiment, we applied the ℓ1 norm as the similarity measure-

ment between each sparse vector of X. K-means is an iterative algorithm that

assigns samples to clusters to minimise the sum of distances from each sample

to its cluster centroid across all clusters. We set the number of clusters to k = 5

to match the number of classes, and initialised each cluster with the element-

wise mean of the sparse vectors of each class. After a few iterations of k-means,

we compared the class labels of each test sample to the clusters obtained from

k-means, and the results are presented in Figure 5.12.

Figure 5.12 illustrates that clustering the sparse codes yields results
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Figure 5.12 – Clustering of sparse vectors for Subject S001 using LOSO cross-validation. Each
horizontal line represents the actual signal class, and the inner circles annotate the
sample indices. The colors indicate the clusters obtained from adapted k-means.
The horizontal axis represents the test sample indices.

that are mostly consistent with the expected labels. However, there exist sparse

samples, namely those with i = 34, 9, 3, 11, 20, 33, 40, 44, 63, where the class label

and the cluster assignment do not match. This can be attributed to coefficients

in the sparse vectors xi that correspond to features dj shared among multiple

classes. These coefficients do not contribute to distinguishing samples, thus po-

tentially leading to erroneous cluster assignments. Moreover, clustering methods

rely solely on distance measures between sparse vectors and mean values of

neighbouring samples, which can result in sub-optimal signal classification. Our

experiment suggests that although we did not explicitly encourage incoherence

between sub-dictionaries associated with different classes, the proposed model

architecture intrinsically induces this behavior in the process of learning the

dictionary, sparse coding, and classification.

In the second experiment focused on class-specific and shared features,

we investigated the frequency of usage of each dictionary atom in reconstruc-

ting the test samples of each class. This analysis aimed to establish a corre-
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Table 5.8 – Distribution of dictionary atoms utilised as class-specific features (in bold) and as
shared features. The total number of dictionary atoms is 3110 and the sparsity th-
reshold is tested for two borderline cases where: (I) the atom is considered activated
if the coefficient |xi,j| > 0 and (II) the atom is considered activated if the coefficient
|xi,j| > 5.

C1C2C3C4C5

Threshold = 0
Number of Atoms

Threshold = 5
Number of Atoms

00000 13 2827
00001 20 58

00010 14 33

00011 29 1
00100 15 22

00101 34 1
00110 16 0
00111 64 0
01000 22 75

01001 38 3
01010 25 1
01011 88 0
01100 20 1
01101 75 0
01110 46 0
01111 180 0
10000 24 85

10001 43 1
10010 28 0
10011 59 0
10100 27 0
10101 65 0
10110 43 0
10111 210 0
11000 41 2
11001 114 0
11010 70 0
11011 290 0
11100 83 0
11101 270 0
11110 152 0
11111 892 0
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lation between the distribution of class-specific and shared features and the

sparsity threshold, which dictates the level of sparseness. Results were obtained

from Subject S001 using a leave-one-subject-out cross-validation method and

are presented in Table 5.8. Two extreme sparsity threshold values were exami-

ned: t = 0 and t = 5. In the former case, a dictionary atom was deemed active if

its corresponding sparse coefficient was non-zero, whereas in the latter, activa-

tion required a coefficient magnitude greater than 5. Our analysis revealed that

low sparsity thresholds produced sparse vectors that dispersed energy across

a wide range of shared-feature atoms, with little concentration on class-specific

atoms. Conversely, high thresholds resulted in sparse vectors that highly concen-

trated energy in the class-specific atoms. Notably, setting the sparsity threshold

too high resulted in unused dictionary atoms (C1C2C3C4C5 = 00000), increa-

sing residuals but possibly improving the classifier’s performance. Nevertheless,

this approach under utilises the dictionary’s capacity to represent the signals of

interest.
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Chapter 6
Conclusions

In this dissertation, we proposed a method based on sparse coding and

dictionary learning using sparse autoencoders. The method was tested in two

different practical contexts: image compression and brain-computer interfaces

(BCIs).

In Chapter 3, we started investigating sparsity in the pure reconstruc-

tive setting, which allowed us to understand the basics of sparse coding and

dictionary learning. The primary objective of this chapter was to evaluate the

ability to achieve optimal sparse levels while maintaining a low representation

error. We observed that the convolutional autoencoder model outperformed the

fully-connected and residual models in achieving higher sparsity levels with lower

reconstruction errors. Furthermore, we tested the impact of a different regula-

risation technique based on Kullback-Leibler divergence. The results of these

experiments indicate that the proposed framework of dictionary learning with

convolutional autoencoder models and KL regularisation can be a viable appro-

ach for sparse representation and efficient data compression. However, further

investigation is necessary to determine the effectiveness of this framework on

more complex datasets and tasks.

The ADMM consensus is considered as one of the fastest methods

implemented in parallel due to its separable structure. However, its usage on
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large sets of images is computationally restricted by the dictionary update stage.

On the other hand, the proposed autoencoder-based framework is a scalable

approach whose number of training patterns is not a drawback.

In Chapter 4, the sparse autoencoder-based framework for dictionary

learning has shown promising potential for achieving high compression rates

while preserving the visual quality of the image. Compared to traditional analy-

tic transforms like the Fourier and Wavelets, the proposed approach can effecti-

vely exploit the specific statistical properties of the signals of interest, and has

the potential to surpass the performance of other transforms in terms of the

quality of the reconstructed image. These results suggest that the proposed DL

framework can be considered a competitive and promising option for developing

image codec frameworks to achieve high compression rates while maintaining

the quality of the image. Further research is needed to validate these findings

on larger and more diverse datasets.

Our study shows that incorporating a convolutional autoencoder with

residual connections into the data-driven dictionary approach can enhance the

performance of image compression for the Cars dataset. This is demonstrated

by comparing the visual quality and peak signal-to-noise ratio (PSNR) of our

proposed framework with those of the Fourier and Wavelet transforms. We also

adjusted the thresholds applied to the sparse codes to obtain compressed images

with a similar number of coefficients as the other methods. The experimental

results indicate that our proposed framework achieves the best visual quality

and highest PSNR value at lower compression rates, but its visual quality is

comparatively lower than the other transforms at the highest compression rate.

Nevertheless, the proposed framework shows promise as an approach for data-

driven dictionary learning in image compression, especially at lower compression

rates.

In Chapter 5, the proposed discriminative dictionary learning method
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has shown promising results for SSVEP classification. Compared to the SRC

method, the proposed method achieved a better classification performance. Ad-

ditionally, our method achieved better results than all the competitor methods

on subject 5’s, being an interesting alternative for particularly challenging sce-

narios. However, when compared to DLSI, COPAR, FDDL, and LRSDL, the

proposed method performed worse, overall. It is our belief that with further stu-

dies and a finer hyperparameter tuning process, the performance achieved from

NNDDL can be improved.

One of the key advantages of the proposed discriminative dictionary

learning method is its ability to learn discriminative features that can improve

the separability of different SSVEP signals. This is achieved by incorporating a

discriminative term in the optimisation objective, which encourages the learned

features to have high discriminative power for classification. Additionally, the

proposed method can learn a dictionary that is tailored to the specific SSVEP

signals, which can improve the accuracy of the classification.

Future Directions

The present work has opened up new paths for further research in the

field of sparse coding and dictionary learning. Some possible directions for future

research are:

• Investigating the performance of the proposed dictionary learning framework

on larger and more complex datasets. This will help to validate the effecti-

veness of the framework for a wide range of applications.

• Performing a more thorough hyperparameter sensitivity analysis so as to

form a clearer view of the potential of the proposed methodology.

• Exploring the use of different types of autoencoders and regularisation te-

chniques for dictionary learning. This will help determine which models and
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techniques are most effective for different types of data and applications.

• Investigating the effectiveness of the proposed image compression framework

on different types of images and compare its performance with other state-

of-the-art compression methods.

• Extending the proposed framework to video compression and evaluate its

performance compared to existing video compression methods.

• Investigating the use of sparse autoencoders for dictionary learning and

sparse coding techniques for other signal processing tasks, such as denoising,

super-resolution, and image inpainting.

• Investigating the performance of the proposed discriminative dictionary

learning method on other types of BCI paradigms, such as motor imagery

and P300. This will help to determine whether the method can be applied

to other types of EEG signals and to evaluate its applicability to diverse

EEG signals.

Overall, the proposed frameworks and methods have the potential to

significantly advance the state-of-the-art in sparse coding and dictionary lear-

ning, and further research is necessary to fully realise this potential.
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