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Resumo

O estudo e a criação de esquemas de assinatura digital são uma subárea da Criptografia
que tem um papel importante nas comunicações digitais: eles possibilitam tanto a auten-
ticação quanto a verificação da integridade dos dados enviados. No entanto, os esquemas
criptográficos mais difundidos hoje em dia estão sob ataque, devido a um algoritmo quân-
tico capaz de resolver seus problemas matemáticos subjacentes em tempo polinomial [43]
e, com isso, minar sua segurança. Isso inclui todos os padrões clássicos de assinaturas
digitais: RSA, DSA e ECDSA. Portanto, esquemas baseados em problemas matemáti-
cos para os quais não se conhece, nem se espera encontrar, algoritmos quânticos capazes
de resolvê-los em tempo polinomial tem sido propostos, criando uma subárea chamada
“criptografia pós-quântica”.

Um destes esquemas é o esquema de assinaturas digitais pós-quântico baseado em
reticulados FALCON [22], recentemente padronizado pelo NIST [4]. FALCON é projetado
para minimizar o custo de comunicação do sistema; isto é, os tamanhos das chaves públicas
e das assinaturas, que são enviadas entre as partes. Mesmo assim, esquemas pós-quânticos
são, em geral, expressivamente mais lentos que suas contrapartes clássicas, e FALCON
não é uma exceção. Sem uma implementação cuidadosa, o custo de trocar um esquema
clássico por um pós-quântico pode ser inviável para algumas aplicações práticas.

Tendo isto em vista, nesta dissertação, apresentamos uma implementação otimizada
para o FALCON, tendo como alvo a arquitetura ARMv8-A. Esta arquitetura é muito
difundida entre dispositivos mobile e IoT, e sua fatia de mercado entre computadores
pessoais e servidores vem crescendo. Apesar de sua relevância, poucas implementações
do FALCON voltadas para ARMv8-A estão presentes na literatura, enquanto arquitetu-
ras como Intel ou ARMv8-M, o perfil voltado para microcontroladores da ARMv8, tem
recebido muito mais atenção.

Começamos nosso trabalho descrevendo os algoritmos e técnicas usado pelo FALCON
em detalhe, destacando os desafios de implementação e oportunidades de otimização que
as seguem. Então, usamos as várias ferramentas presentes na plataforma, como instruções
Single Input, Multiple Data (SIMD) e instruções criptográficas especializadas, e descreve-
mos diversas técnicas que aumentam a velocidade do esquema na arquitetura ARMv8-A.

Por fim, medimos o desempenho da nossa implementação em três plataformas dife-
rentes, focando em seus melhores núcleos disponíveis: Cortex-A57 para placas de de-
senvolvimento NVIDIA® Jetson Nano™; Cortex-X2 para dispositivos mobile Samsung
Galaxy S22; e Apple M1, o System-on-Chip presente nos modelos M1 da linha de lap-
tops MacBook® da Apple. Também comparamos nossos resultados com a implementação
de referência disponibilizada pelos autores do FALCON, alcançando velocidades até 79%
maiores para geração de assinaturas, e até 61% maiores para verificação das mesmas.



Abstract

The study and design of digital signature schemes is a subfield of cryptography that plays
an important role in digital communications: they provide means for both authentication
and integrity verification of exchanged data. However, the most widespread cryptographic
schemes nowadays are under attack, due to quantum algorithms capable of solving their
underlying mathematical problems in polynomial time [43], therefore undermining their
security. This includes all classical digital signature standards: RSA, DSA and ECDSA.
Thus, schemes based on mathematical problems for which no quantum algorithm is known
or expected to be able to solve efficiently have been proposed, creating a subfield called
“post-quantum cryptography”.

One such post-quantum scheme is the lattice-based digital signature scheme FAL-
CON [22], recently standardized by NIST [4]. FALCON is designed to minimize the
communication cost of the system; that is, the size of both public keys and signatures,
which are exchanged between parties. Even so, post-quantum schemes are, in general,
noticeably slower to compute than their classical counterparts, and FALCON is no ex-
ception. Without careful implementation, the cost of switching from a classical scheme
to a post-quantum one may not be viable for some practical applications.

Therefore, in this thesis, we present an optimized implementation of FALCON target-
ing the ARMv8-A architecture. This architecture is widespread among mobile and IoT
devices, and is rising in market share among personal computers and servers. Despite
its relevance, few implementations of FALCON targeting ARMv8-A are present in the
literature, while architectures such as Intel and ARMv8-M, the microcontroller-centric
profile of ARMv8, have received much more attention.

We begin our work describing the algorithms and techniques used by FALCON in
detail, highlighting the implementation challenges and optimization opportunities that
arise. Then, we leverage many tools present in the platform, such as Single Input, Multiple
Data (SIMD) instructions and specialized cryptographic instructions, and describe several
techniques to speed up the scheme in the ARMv8-A architecture.

Finally, we benchmark our results across three different platforms, focusing on their
best available core: Cortex-A57 for NVIDIA® Jetson Nano™ development boards; Cortex-
X2 for Samsung Galaxy S22 mobile devices; and Apple M1, the System-on-Chip featured
on M1 models of Apple’s MacBook® line of laptops. We also compare our results with
the published reference implementation by the authors of FALCON, achieving up to 79%
higher speeds for signature generation, and up to 61% higher for their verification.
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Chapter 1

Introduction

Cryptography is one of the cornerstones of modern digital communications. Most internet
applications we enjoy today would not be possible if not for a reliable way of communi-
cating through long distances without the risk of someone stealing or changing the data:
digital banking, public services, online shopping, streaming services, and even chat ap-
plications or social media. Furthermore, the recent trend of “internet of things” (IoT)
devices also relies on the collected data being securely stored and communicated without
intrusion, as is the case, for example, of smart medical devices.

Modern cryptography is split into two major fields: symmetric-key (or private-key)
cryptography, where the communicating parties use the same previously agreed upon key
to encrypt and decrypt their messages; and assymetric-key (or public-key) cryptography,
where each user has a key pair of private and public keys, the former kept secret from
everyone else, and the latter being distributed to their peers.

One of public-key cryptography’s most important contributions was the capability of
long distance communication without the need of using a secured channel beforehand
to agree on a symmetric key. Even more, this public-key communication may be used
to agree on a symmetric key for another, faster communication system, through which
future messages will be encrypted. Another equally important development of public-key
cryptography was a mean to establish trust over insecure channels, through what is called
digital signatures.

Similarly to handmade signatures, digital signatures allow us to verify the identity of
another party (authenticity), or the validity of a certain document (integrity), without
the need for direct communication. Signing a document is done by using a private key to
generate a solution of a computationally hard problem, which is linked to the document
through the scheme in use. Then, verifying the signature is done by using a public key,
and thus can be done by any party with access to it. The public and private keys are
linked in such a manner that, when someone uses the public key to verify a signature, they
are assured that only the holder of the private key could have generated that solution.
Any other party trying to falsify the signature, or recover the private key from the public
one, would need to solve a computationally hard problem that could not be solved in any
reasonable amount of time without secret information.

The most common problems used to base security nowadays are the discrete logarithm
problem and the factorization of large integers. Indeed, the digital signature algorithms
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standardized by the North American agency NIST (National Institute of Standards and
Technology) are: DSA, which is based on the discrete logarithm problem; RSA, which is
based on the factorization problem; and ECDSA, which is based on the discrete logarithm
over elliptic curves.

However, all of these schemes are currently under attack. In his seminal work in 1997,
Peter Shor [43] described a quantum algorithm – that is, one that makes use of essential
properties of a quantum computer – which is able to solve such problems in polynomial
time. This means that, from the moment a powerful enough quantum computer is built,
every following encrypted communication would be broken; moreover, every past commu-
nication would also be retroactively compromised. To deal with this threat, a new area
of cryptography has emerged: post-quantum cryptography.

1.1 Post-Quantum Cryptography

Post-quantum cryptography, abbreviated as “PQC”, is a subfield of cryptography that
focuses on cryptosystems based on mathematical problems for which no quantum algo-
rithm is likely to solve in polynomial time. The most prominent classes of such problems
are: those based on algebraic structures known as lattices; problems based on error-
correcting codes; problems based on solving systems of multivariate polynomial equations;
and problems regarding the security of hash functions. Of these, the most prominent is
lattice-based cryptography, as its derived schemes have shown the most resistance against
different attack scenarios and withstood the test of time with their assumptions, while
achieving comparable speed and complexity to classical algorithms. This claim will be
further backed later on, when we discuss standardization of PQC schemes.

The quest for new, reliable and fast algorithms is one with many facets. Algorithms
must be provably secure, which means having extensive care in elaborating mathematical
proofs of their underlying structures’ security and the (in)efficacy of known attacks against
them. They must also be fast, that is, have low computational cost, so that they can be
run repetitively without blocking communications on applications such as servers, and
also be able to be run on low-end devices and microcontrollers to ensure the security of
IoT data. They should also have small communication cost, to avoid clogging networks
due to increased sizes of transferred encrypted data. Finally, implementations of such
algorithms must take every advantage of the devices’ capabilities to improve performance
while making sure they are not vulnerable to side-channel attacks.

These characteristics mean that research on new algorithms is a long process, and
we also need to consider that it will take time for real-world operations to adapt to the
post-quantum reality. Some systems, such as OpenSSH, have already started securing
themselves against the quantum threat [21], but most are still completely dependent on
classical algorithms. Moreover, these changes must happen before a quantum computer
of sufficient capabilities is developed. Shor’s algorithm is able to factor an n-bit integer
using 2n+ 3 qubits [8], which means for current applications of, e.g., RSA-2048, it would
take 4099 qubits to break them. As of the time of this document’s writing, the largest
known quantum computer is IBM’s Osprey, featuring 433 qubits, with plans to achieve
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over 4000 qubits until 2025 [29].
In order to further develop the area and select PQC algorithms for applications to

adopt as soon as possible, as to avoid the quantum threat, NIST has opened a process
for standardizing post-quantum cryptographic algorithms, which we shall discuss in the
next section.

1.2 NIST PQC Standardization Process

The NIST PQC standardization process [39] started in 2016 and is currently in its fourth
round, having already selected one key-establishment mechanism and three digital sig-
nature schemes as new PQC standards. There were 82 initial candidates in the first
round [2], of which 28 were lattice-based, 24 code-based, 13 multivariate-based, 4 hash-
based, and 13 were based on other classes of problems. On the second round [3], out of 26
candidates approved to continue in the selection process, 12 were lattice-based, 6 code-
based, 4 multivariate-based, 2 hash-based, and 2 were based on other classes of problems.
Then, on the third and most recently concluded round [4], we had, among finalists and
alternative candidates, a total of 15 candidates: 7 were lattice-based, 3 code-based, 2
multivariate-based, 2 hash-based, and 1 was based on isogenies of elliptic curves.

These statistics show the prominence of lattice-based cryptography. As a matter of
fact, from the third to the fourth round, 4 algorithms were standardized: CRYSTALS-
Kyber [13], a lattice-based key-establishment mechanism; FALCON [22] and CRYSTALS-
Dilithium [16], both lattice-based digital signature schemes; and finally, SPHINCS+ [10],
a hash-based digital signature scheme that was the only one chosen amongst the alter-
native candidates, and the only one not lattice-based. In the fourth round, only 4 KEM
algorithms are still under evaluation, and none of them are lattice-based, as to avoid
problems should lattices be attacked in the future, which was also one of the arguments
for standardizing SPHINCS+.

CRYSTALS-Dilithium and FALCON are both lattice-based digital signature schemes,
but they serve different purposes: CRYSTALS-Dilithium is more easily understood and
implemented, and has very fast key generation times; FALCON, on the other hand, is
designed to minimize communication cost, at the expense of increased complexity and
key-generation times. While NIST recommends general applications to use CRYSTALS-
Dilithium, FALCON will serve an important role to applications where communication
cost is critical, such as certificate servers and network-intensive applications, as shown in
Tables 1.1 and 1.2.

Scheme Variant
Parameter size (in bytes)
Public Key Signature

FALCON-512 897 666
Dilithium1024x1024 1312 2420

Ratio 1.46× 3.63×

Table 1.1: Parameter size comparison between FALCON and CRYSTALS-Dilithium for
128-bit security
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Scheme Variant
Parameter size (in bytes)
Public Key Signature

FALCON-1024 1793 1280

Dilithium2048x1792 2592 4595

Ratio 1.45× 3.59×

Table 1.2: Parameter size comparison between FALCON and CRYSTALS-Dilithium for
256-bit security

1.3 Our Contributions

In this thesis, we present an optimized implementation of FALCON tailored for the
ARMv8 architecture [38], which is prominent in mobile computing and has recently been
used in more powerful applications, such as personal computing and cloud servers. We
focused on FALCON’s strengths and optimized both signature generation and verification
using a number of different methods, and were able to achieve up to 79% faster signature
generation and 61% faster verification over the reference implementation submitted to
NIST.

We also discuss the scheme itself, highlighting its main algorithms and their intrica-
cies, as well as the challenges of implementing them securely and optimized. Finally, we
provide experimental data for our implementation’s execution time improvements in three
different ARM processors: Cortex-A57, which is featured in the NVIDIA® Jetson Nano™
development board; Cortex-X2, which is featured on Samsung Galaxy S22 smartphones;
and the Apple M1 system-on-chip, featured on M1 versions of Apple’s MacBook® line of
laptops.

Related Works. While the literature regarding hardware implementations of FALCON
is rich, there are few works on software implementations. Post-quantum libraries such as
Open Quantum Safe’s liboqs [44] and PQCRYPTO’s pqm4 [30] provide only the reference
implementation submitted to NIST, pre-configured to run in specific environments (such
as the Cortex-M4). The reference implementation [22] itself provides an optimized version
of FALCON for AVX2, but no optimizations were made available for non-microcontroller
ARM devices, for which the authors provide an implementation that emulates floating-
point operations using integer registers and arithmetic.

On the other hand, literature on FALCON has presented many versions of the algo-
rithm, aiming to optimize it on an algorithmic level with little impact on the parame-
ters required for the security assumptions to be valid, and make it more robust against
side-channel attacks. One such version is Mitaka [19], which changes the integer sampling
method to avoid using floating-point operations, making it more parallelizable and suitable
to masking techniques. ModFalcon [14] is another version and relies on Module-NTRU
lattices, allowing it to provide intermediate levels of security, whereas FALCON only
provides 128-bit and 256-bit security. Another recent version, due to Espitau et al. [20],
reduces the modulus q, changes the spherical Gaussian distribution to an ellipsoidal one
and applies different codification techniques, allowing it to reduce signature sizes by up to
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40%. The last alternative version is Peregrine [42], which changes the Gaussian sampling
to sampling from a centered binomial distribution and avoids FFT operations by replac-
ing them with NTT with a residue number system, replacing floating-point operations
altogether and allowing for masking techniques to be applied.

As for that speed up portions of the algorithm, Sun et al. [46] reduce the memory con-
sumption and generation time of the FALCON Tree by exploring a symmetric structure,
and implement this technique on both Intel Core i7 and ARM Cortex-M4, generating the
tree up to 48% faster and saving up to 45% memory. In another work, Sun et al. [45]
propose a different integer sampling method that uses an exponential Bernoulli sampling
algorithm, speeding up signature generation by up to 14%.

1.4 Organization of this Thesis

In Section 2, we present the notation used throughout this document, as well as the
mathematical background necessary for understanding the algorithms. In Section 3, we
describe FALCON and its algorithms, highlighting the key elements that make FALCON
a robust scheme. In Section 4, we describe the ARMv8 architecture, discuss the challenges
of implementing the scheme in the C language, as well as describe our optimization tech-
niques. In Section 5, we present our results and discuss the impact of our optimizations.
Finally, in Section 6, we make our final remarks and discuss future lines of research that
could further improve our implementation.
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Chapter 2

Mathematical Foundation

In this section, we establish the notation used throughout this document, and enunci-
ate the necessary mathematical definitions so that we may understand FALCON and
techniques it applies.

Notations. We denote vectors as lowercase bold letters (e.g. b ∈ Kn, where K is a
field) and matrices as uppercase bold letters (e.g. B ∈ Matm×n(K), where K is a field).
Unless otherwise stated, we use row convention for vectors. Polynomials f ∈ Z[x] may be
written in terms of its coefficients as f(x) =

∑n−1
i=0 fix

i, fi ∈ Z. We say that the coefficient
vector of f , denoted by C(f), is the vector whose entries are the coefficients fi of f , i.e., the
vector C(f) = [f0 f1 · · · fn−1], C(f) ∈ Zn. ∥b∥ denotes the Euclidean norm of a vector
b. We also use the same notation for polynomials: ∥f∥ denotes the Euclidean norm of
the coefficient vector of f . For a two-element vector of polynomials, e.g. [f g] ∈ Z[x]2,
we take the norm ∥[f g]∥ as the norm of the concatenation of the coefficient vectors C(f)
and C(g). (a∥b) denotes concatenation of either bitstrings or bytestrings. Finally, a←↩ D
denotes sampling from a random variable that follows a probability distribution D.

2.1 Lattices

First, we define our main algebraic structure, namely lattices, as well as computationally
hard problems based on them and other necessary information for understanding the
FALCON scheme.

Definition 1 (Lattices). Given a set B of n linearly independent vectors

B = {b1,b2, . . . ,bn},bi ∈ Rm,

a lattice Λ is defined as the set of all integer linear combinations of vectors in B. The
integer n is called the dimension of Λ, the integer m is called the rank of Λ, and when
m = n, the lattice is said to be full-rank. B is the basis of the lattice, and can also be
described as an m× n matrix B containing the n vectors as columns. A lattice Λ can be
described, in terms of the matrix definition of its basis B, as the set

Λ = {Bz : z ∈ Zn} .
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In this document, we assume that all lattices are full-rank, and use the matrix defini-
tion when referring to a lattice basis.

Hard Problems. There are two major computationally hard problems regarding lat-
tices: the Shortest Vector Problem (SVP) and the Closest Vector Problem (CVP). These
problems form the basis of lattice-based security, and we define their search variants as
follows.

Definition 2 (Shortest Vector Problem (SVP)). Given a lattice Λ, find the nonzero vector
v ∈ Λ for which ∥v∥ = minx∈Λ ∥x∥.

Definition 3 (Closest Vector Problem (CVP)). Given a lattice Λ and a point c ∈ Rn,
find the lattice point closest to c; that is, find a lattice point v ∈ Λ that minimizes ∥t−v∥.

These are the exact versions of such problems, but often knowing approximate infor-
mation about the lattice is enough to prove security. A decisional, approximated version
of SVP, called GapSVPγ, parameterized by an approximation factor γ, asks us to deter-
mine whether a lattice has a vector shorter than a length d, or whether it has no vectors
shorter than γd. This problem is defined next.

Definition 4 (GapSVPγ). Given a lattice Λ, a length d and an approximation factor γ

polynomial in n, such that γ(n) ≥ 1, for λ = minx∈Λ ∥x∥, output YES if λ ≤ d or NO if
λ > γd.

Another relevant approximate problem is the Shortest Independent Vectors Problem
(SIVPγ), that asks to find n linearly independent vectors in Λ such that their length is at
most an approximation factor λ of the length of the n-th shortest vector in Λ.

Definition 5 (Shortest Independent Vectors Problem (SIVPγ)). Given a lattice Λ and an
approximation factor γ polynomial in n, such that γ(n) ≥ 1, and letting λ be the length
of the n-th shortest vector in Λ, output n linearly independent lattice vectors of length
at most γ(n) · λ.

These problems are all worst-case problems: they are only hard to solve for a subset
of instances. Modern lattice-based cryptography, instead, makes use of problems whose
average case can be reduced to such worst cases, a technique introduced by Ajtai in
1996 [1]. One of such problems is the Short Integer Solution (SIS) problem, which is an
average-case problem that is reducible to the worst-case decisional GapSVPγ. The SIS
problem is parameterized by n,m, q ∈ Z+ and β ∈ R+, and is defined as follows.

Definition 6 (Short Integer Solution (SISn,m,q,β). Given m uniformly random vectors
ai ∈ Zn

q , forming the columns of a matrix A ∈ Zn×m
q , find a nonzero integer vector

z ∈ Zm of norm ∥z∥ ≤ β such that

A · z =
∑
i

ai · zi = 0 ∈ Zn
q .

Reductions of SIS to GapSVPγ follow a template presented by Peikert [40], which we
enunciate next.
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Theorem 1 ([40], Theorem 4.1.2). For any m = poly(n) any β > 0 and any sufficiently
large q ≥ β · poly(n), solving SISn,q,β,m with non-negligible probability is at least as
hard as solving the decisional approximate shortest vector problem GapSVPγ and the
approximate shortest independent vectors problem SIVPγ (among others) on arbitrary
n-dimensional lattices (i.e., in the worst case) with overwhelming probability, for some
γ = β · poly(n).

This reduction is crucial for FALCON, as both the framework it is based on and itself
rely on the SIS problem to prove their security in both classic and quantum cases.

NTRU Lattices. We now define the class of lattices FALCON’s security proofs rely
on. First, we define a way of mapping polynomials into matrices, and then describe how
a set of polynomials can be used to define two different lattice bases for the same lattice.

Definition 7 (Anti-circulant Matrix). Let f ∈ Z[x]/(xn + 1), with coefficients fi such
that f(x) = f0 + f1x+ · · ·+ fn−1x

n−1. The anti-circulant matrix of f , denoted as A(f),
is defined as

A(f) =


f0 f1 f2 · · · fn−1

−fn−1 f0 f1 · · · fn−2

...
...

... . . . ...
−f1 −f2 −f3 · · · f0

 =


C(f)
C(x · f)

...
C(xn−1 · f)

 ,

where multiplication is done modulo xn + 1 and C(f) denotes the coefficient vector of f .

Definition 8 (NTRU Lattices). Let n ∈ Z be a power of two, q ∈ Z+, and f, g ∈
Z[x]/(xn + 1). Let h = g · f−1 mod q. The NTRU lattice Λh,q associated with h and q is

Λh,q =
{
(u, v) ∈ (Z[x]/(xn + 1))2 | u+ v · h = 0 mod q

}
.

Λh,q is full-rank in Z2n and is generated by the matrix

Ah,q =

[
−A(h) In
q · In 0n×n

]
,

where In denotes the n-dimensional identity matrix, and 0n×n denotes the n × n matrix
of zeroes. Furthermore, if there are F,G ∈ Z[x]/(xn + 1), such that

f ·G− g · F = q mod (xn + 1), (2.1)

called the NTRU equation, is satisfied, then the same lattice accepts another basis, namely

Bf,g =

[
A(g) −A(f)
A(G) −A(F )

]
.

This class of lattices has the advantage of being easily and compactly represented by
the polynomials f, g, F,G and h, making it particularly interesting when our aim is to
minimize communication cost.
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Finally, we describe some techniques that are both used as a part of FALCON and
also important to understand the cryptanalysis of lattice-based systems.

Basis Reduction. There are infinitely many bases for any lattice; as a matter of fact,
given a basis B and a unitary matrix U (i.e. det(U) = ±1), B′ = UB generates the same
lattice. Informally, the quality of a lattice basis is measured by how orthogonal and short

the basis vectors are. For example, both the basis B1 =

[
1 0

0 1

]
and the basis B2 =

[
1 1

2 1

]
generate the same lattice (Z2); however, as B1 has shorter and more orthogonal vectors,
it is considered a “better” basis. The quality of a basis is relevant when solving hard
problems such as SVP; in general, algorithms that estimate solutions yield more accurate
results the better the basis used as input is. Indeed, if the chosen basis consists of the
n shortest linearly independent vectors of a lattice, then solving SVP is trivial, as the
solution would be part of the basis itself. Therefore, algorithms that improve the quality
of a given basis are of particular interest in lattice-based cryptography, and the parameters
chosen for FALCON take them into account for security estimates. Next, we define one
of the most fundamental of such algorithms, which serves as the foundation for some of
the most used lattice reduction algorithms (such as LLL [34]), as well as an important
value that helps us determine the quality of a basis.

Definition 9 (Gram-Schmidt Orthogonalization). The Gram-Schmidt Orthogonalization
process (GSO) is a matrix decomposition process that takes as input a matrix B and
outputs two matrices, L and B̃, such that B = L · B̃, where L is unit lower triangular and
B̃ spans the same space as B. Then, if B is a lattice basis, B̃ defines the same lattice.
We calculate these matrices as follows.

Let b̃1 = b1. For every other integer k with 2 ≤ i ≤ n, the vector b̃i is iteratively
calculated as:

b̃i = bi −
i−1∑
k=1

⟨bi, b̃k⟩
∥b̃k∥2

b̃k.

Therefore, B̃ has its rows defined by the vectors b̃i, and the lower triangular matrix L is
defined as

L =



1 0 . . . 0 0 0 . . . 0 0
...

... . . . ...
...

... . . . ...
⟨bi,b̃1⟩
∥b̃1∥2

⟨bi,b̃2⟩
∥b̃2∥2

. . . ⟨bi,b̃i−1⟩
∥b̃i−1∥2

1 0 . . . 0 0
...

... . . . ...
...

... . . . ...
⟨bn,b̃1⟩
∥b̃1∥2

⟨bn,b̃2⟩
∥b̃2∥2

. . . ⟨bn,b̃i−1⟩
∥b̃i−1∥2

⟨bn,b̃i⟩
∥b̃i∥2

⟨bn,b̃i+1⟩
∥b̃i+1∥2

. . . ⟨bn,b̃n−1⟩
∥b̃n−1∥2

1


.

We call B̃ the Gram-Schmidt matrix of B, and if B is full-rank, then its Gram-Schmidt
matrix is unique.

Definition 10 (Gram-Schmidt Norm). The Gram-Schmidt Norm of a full-rank matrix,
denoted by ∥B∥GS, is defined by the norm of the longest vector of its Gram-Schmidt
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matrix. That is to say,
∥B∥GS = max

1≤i≤n
∥b̃i∥.

Even though the Gram-Schmidt orthogonalization process is the most well-known basis
reduction technique, other matrix decomposition techniques may also be useful. In the
following, we define an important algebraic tool that lets us find the same lower-triangular
matrix L through another decomposition method, which is used by FALCON instead.

Definition 11 (Hermitian Adjoint). Let ϕ ∈ R[x] be a monic polynomial with distinct

roots over C and a =
n−1∑
i=0

aix
i be an arbitrary element of the number field Q = Q[x]/(ϕ).

The (hermitian) adjoint of a, denoted by a∗, is the unique element of Q such that, for
any root ζ of ϕ, a∗(ζ) = a(ζ), where x denotes the complex conjugation of x over C. For
the particular case where ϕ(x) = xn + 1, a∗ can be expressed as

a∗ = a0 −
n−1∑
i=1

aix
n−i.

For a matrix B ∈ Qn×m (respectively, a vector b ∈ Qn), its adjoint B∗ (resp., b∗) is the
component-wise adjoint of the transpose of B (resp, b). For example, for an arbitrary
B ∈ Q2×2,

B =

[
a b

c d

]
⇔ B∗ =

[
a∗ c∗

b∗ d∗

]
If a∗ = a (resp., b∗ = b, and B∗ = B), then a (resp. b and B) is called self-adjoint.

Proposition 1. Any positive-definite, self-adjoint matrix G can be uniquely decomposed
as G = L ·D · L∗, through a method called LDL∗ decomposition. Furthermore, if G can
be written as G = B ·B∗, then

L · B̃ is the GSO of B ⇐⇒ L · (B̃ · B̃∗) · L∗ is the LDL∗ decomp. of (B ·B∗).

As we shall discuss in Section 3, the LDL∗ decomposition helps us accelerate FALCON
in lieu of traditional Gram-Schmidt orthogonalization.

2.2 Discrete Gaussian Sampling

Next, we define sampling from a discrete Gaussian distribution. Gaussian distributions
are usually defined over real numbers; however, we are interested in sampling only integers
according to it, which will then be used to introduce randomness and thwart attacks that
might attempt to recover the secret key through linear combinations of signatures.

Definition 12 (Discrete Gaussian distribution). For c, σ ∈ R, with σ > 0, the Gaussian
function ρσ,c, with standard deviation σ and centered at c, is defined as ρσ,c(x) = exp(−|x−
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c|2/2σ2), and the discrete Gaussian distribution DZ,σ,c over the integers is defined as

DZ,σ,c(x) =
ρσ,c(x)∑

z∈Z

ρσ,c(z)
.

We also define the Gaussian function for vectors in Rn. For σ ∈ R and c ∈ Rn, the
Gaussian function is defined as ρσ,c(x) = exp(−π∥x − c∥2/σ2). Finally, we define the
discrete Gaussian distribution over a lattice Λ as

DΛ,σ,c(x) =
ρσ,c(x)∑

z∈Λ

ρσ,c(z)
.

The center c (resp. c) may be omitted when equal to 0 (resp. 0).

2.3 FFT and NTT

Our next set of tools to be introduced is a pair of transforms that take our polynomials
in R[x] or Z[x] into other domains, where certain operations, such as polynomial mul-
tiplications, can be done faster. While these transforms do introduce some latency by
requiring additional mapping operations between domains, we may keep our polynomials
as long as possible in such representations to make full use of their advantages. These
transforms are the Fast Fourier Transform (FFT) and the Number Theoretic Transform
(NTT), defined as follows.

Definition 13 (Fast Fourier Transform). Let ϕ ∈ Q[x] be a monic polynomial of degree

n with distinct roots over C, such that ϕ(x) =
n∏

k=0

(x − ζk), ζk ∈ C. Let Ωϕ denote

the set of complex roots of ϕ. The Discrete Fourier Transform (DFT) of a polynomial
f ∈ Q[x]/(ϕ), with respect to ϕ, is denoted by the set of complex numbers f̂ ,

f̂ = (f(ζ))ζ∈Ωϕ
.

This transformation with respect to ϕ is a ring isomorphism Q[x]/(ϕ) ∼= Q[Ωϕ], and
therefore has an inverse. For the particular case where ϕ(x) = xn + 1, Ωϕ is the set of n
complex numbers

Ωϕ =

{
exp

(
iπ(2k + 1)

n

) ∣∣∣∣ 0 ≤ k < n

}
.

Finally, the Fast Fourier Transform[15] (FFT) is an algorithm that computes the DFT
(or its inverse) of a polynomial in O(n log n) operations. Since this algorithm is the most
common application of the Discrete Fourier Transform in cryptography, we will simply
refer to both the algorithm and the transform itself as FFT, and f̂ as FFT(f). We
also define FFT for a matrix B ∈ (Q[x]/(ϕ))ℓ×m as applying the FFT operator to every
element Bij.
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Definition 14 (Number Theoretic Transform). The Number Theoretic Transform (NTT)
is analog to the FFT, but maps a polynomial in Zp[x] to a set of evaluations in Zp instead,
for a prime p such that p = 1 mod 2n. In this particular case, Ωϕ represents the set of n
integer roots ωk of ϕ over Zp, and in a way similar to the FFT, a polynomial f ∈ Zp[x]/(ϕ)

can be represented by the set

NTTp(f) = (f(ω))ω∈Ωϕ
.

This operation also has an inverse, and both can be performed in O(n log n) operations.

Finally, we note that the domain of our polynomials in FALCON is mostly Q[x]/(xn+

1), where n = 2k for some k ∈ Z+. An interesting structure that arises from this choice
of field, using a power-of-two exponent, is

Q ⊆ Q[x]/(x2 + 1) ⊆ · · · ⊆ Q[x]/(xn/2 + 1) ⊆ Q[x]/(xn + 1).

This structure, called a tower of fields, enables us to use the following chain of isomor-
phisms:

Qn ∼= (Q[x]/(x2 + 1))n/2 ∼= · · · ∼= (Q[x]/(xn/2 + 1))2 ∼= Q[x]/(xn + 1). (2.2)

Going back and forth from different levels of this tower of fields structure lets us solve
problems such as sampling random polynomials according to a certain distribution, or
computing an extended greatest common divisor (GCD) between polynomials, in a more
familiar domain such as Q, and then lift the result back up through the isomorphism
chain to find a result in Q[x]/(xn + 1).

To make use of this structure, we define two operators, split and merge, to allow
us to traverse this chain, as well as a particular case of the field norm, that gives us an
alternative way of identifying polynomials with elements of subfields.

Definition 15 (Split and merge operators). Let n ∈ Z be a power of two, ϕ(x) = xn +1,

ϕ′(x) = xn/2+1 and f ∈ Q[x]/(ϕ), written as f(x) =
n−1∑
i=0

aix
i. We can uniquely decompose

f as f(x) = f0(x
2) + xf1(x

2), with f0, f1 ∈ Q[x]/(ϕ′); f0 and f1 can then be written, in
terms of the coefficients of f , i.e.,

f0 =
∑

0≤i<n/2

a2ix
i and f1 =

∑
0≤i<n/2

a2i+1x
i.

We define the split operator as split(f) = (f0, f1), and its inverse, named the merge
operator, as

merge(f0, f1) = f0(x
2) + xf1(x

2) ∈ Q[x]/(ϕ).

Definition 16 (Field Norm). The field norm NL/K is a map of elements of a field L onto
a subfield K. We define it for a particular case of interest. Let n ∈ Z be a power of two,
L = Q[x]/(xn + 1) and K = Q[x]/(xn/2 + 1). The field norm, for this case, is defined as

NL/K(f) = f 2
0 − xf 2

1 ,
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where (f0, f1) = split(f) ∈ K2. When L and K are such as this particular case requires,
we denote NL/K(f) simply as N (f). Finally, another equivalent formulation for NL/K(f)

is
NL/K(f)(x

2) = f(x) · f(−x) mod ϕ′,

which is more convenient when f is represented in either NTT or FFT.
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Chapter 3

The FALCON Scheme

3.1 Overview

FALCON [22] is a lattice-based digital signature scheme whose main objective is to mini-
mize communication cost, that is, the sum of both public key length and signature length.
It was designed by Foque et al., and submitted to the NIST PQC standardization process
in 2017, with its third iteration (v1.2) being chosen as a PQC digital signature standard,
along with CRYSTALS-Dilithium.

Although other schemes might have faster execution times for some algorithms, the
authors predict that communication cost will have a heavier impact during the transition
from classical cryptography to post-quantum cryptography, and therefore chose to focus
on minimizing the length of public data.

FALCON is based on a framework called the GPV Framework, named after its authors
Gentry, Peikert and Vaikuntanathan [23], that establish some core elements to achieve a
hash-and-sign signature scheme whose security is based on the SIS problem.

In general, the framework may be described as follows:

• The public key is a full-rank matrix A ∈ Zn×m
q that generates a q-ary (that is,

with coefficients in Zq) lattice Λ, and the private key is a matrix B ∈ Zm×m
q that

generates the lattice orthogonal to Λ, denoted by Λ⊥
q . That is, for any x ∈ Λ and

y ∈ Λ⊥
q , ⟨x,y⟩ = 0 mod q. Another way of defining this is saying that the rows of

A and B are pairwise orthogonal, that is, B ·At = 0.

• A signature for a message m is a short vector s ∈ Zm
q such that sAt = H(m), where

H(m) denotes a hash function applied to m. One may verify that a signature is
valid simply by checking that s is short enough and that sAt = H(m), using the
public key A.

• Computing the signature is done by computing a preimage c0 ∈ Zm
q that verifies

c0A
t = H(m), which may be done through standard linear algebra, as there are

no length requirements on c0. Then, using the public key B, we compute a vector
v ∈ Λ⊥

q close to c0, and then derive the signature s as the difference s = c0−v. Since
v ∈ Λ⊥

q , multiplying the previous equation by At, we have that sAt = c0A
t−vAt =

c0A
t−0 = H(m). The key element in the GPV framework is that v is not computed
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deterministically, but rather uses a randomized variant of Babai’s Nearest Plane
algorithm [6], due to Klein [33], to sample v over a spherical Gaussian distribution
over the lattice Λ⊥

q .

This framework is proven to be secure in the random oracle model under the SIS
assumption [23], and also in the quantum oracle model [12]. One limitation of this frame-
work is that two different signatures for the same hash H(m) cannot be published at the
same time, as that would break the system’s security proof [23]. Therefore, FALCON
chooses to randomize the hash by prepending a “salt” r ∈ {0, 1}k, for some large enough
integer k, sampled during the signature generation, and instead computes H(r||m).

FALCON instantiates the GPV framework using NTRU lattices, as defined on Defini-
tion 8. To do so, using the same notation for the elements of NTRU lattices, the scheme’s
public basis is A1×2 = [1 h∗], which is equivalent to knowing just h, and the secret basis
B2×2 is

B =

[
g −f
G −F

]
.

They are orthogonal, as required, since B ·A∗ = 0 mod q. Furthermore, the signature of a
message m and a “salt” r is a pair of polynomials (s1, s2) such that s1+s2h = H(r||m). We
may check this is valid by taking s = [s1 s2], as we’d have sA∗ = H(r||m), as required by
the framework. We separate s into s1 and s2 because we note that s1 may be recomputed
by knowing s2, m, r and h, as s1 = H(r||m) − s2h and, therefore, our signature may be
simply the pair (r, s2), saving communication cost.

Furthermore, FALCON accelerates the process of sampling v ∈ Λ⊥
q by using a sampler

due to Ducas and Prest [18], called “fast Fourier nearest plane”, that uses the tower-of-
fields structure and the split and merge operators from Definition 15, along with the
Fast Fourier Transform, to perform sampling efficiently.

3.2 Parameters and Keys

Parameters. FALCON is fundamentally parameterized by the choice of the exponent
n, with either n = 512, defining the “Falcon512” parameter set, which achieves NIST’s
Security Level I (or 128-bit security), or n = 1024, defining the “Falcon1024” parameter
set, which achieves NIST’s Security Level V (or 256-bit security). While FALCON may
be instantiated with a number of different parameters, we only consider these two sets,
as defined by the version standardized by NIST.

These two parameter sets achieve the values shown in Table 3.1. We also show, in
Table 3.2, a few derived parameters from each parameter set that help us understand the
algorithms we will enunciate next.
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Falcon512 Falcon1024
Security Level I V

Private Key Bytelength 1281 2305

Public Key Bytelength 897 1793

Signature Bytelength 666 1280

Table 3.1: Summary of FALCON’s parameter sets’ properties

Falcon512 Falcon1024
Modulus (q) 12289

Signature Standard Deviation (σsig) 165.736617183 168.388571447

Minimum Sampler Std. Dev. (σmin) 1.277833697 1.298280334

Maximum Sampler Std. Dev. (σmax) 1.8205

Table 3.2: Relevant parameters from each of FALCON’s parameter sets

Keys. A secret key in FALCON is composed of two elements: a matrix B ∈ (Q[x]/(xn+

1))2×2, and a FALCON tree T . B corresponds to the NTRU polynomials f, g, F,G ∈
Z[x]/(xn + 1)) disposed in the following form:

B =

[
g −f
G −F

]
.

However, since this matrix is composed of four polynomials, we may instead take the set
(f, g, F,G) as an equivalent key element. Finally, we note that G can be recalculated from
(f, g, F ), as

G = (q + g · F ) · f−1 mod (xn + 1),

and thus may not be explicitly stored in order to save storage space and/or bandwidth.
The other element, the FALCON tree T , is a binary tree defined through the following

induction:

• a FALCON tree T of height 0 is composed of a single node whose value Tval is
σ ∈ R+;

• a FALCON tree T of height k has a root node, whose value Tval is a polynomial
ℓ ∈ Q[x]/(x2k +1), and its left and right children Tleft and Tright are FALCON trees
of height k − 1.

This tree is derived from B so that it corresponds to the matrix L of its LDL∗ de-
composition, structured in such a way that the tower of fields Q ⊆ Q[x]/(x2 + 1) ⊆ · · · ⊆
Q[x]/(xn + 1) may be used to speed up the signature’s sampling process. This tree cor-
responds to the compact representation of L in the “fast Fourier LDL” algorithm of [18],
albeit instantiated in the field Q[x]/(xn+1) instead of the convolution ring Q[x]/(xn−1).
This tree may be preprocessed during key generation and included in the secret key, or
recomputed dynamically from B during the signing process. Our implementation chooses
the second approach, minimizing communication cost once again.
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The public key corresponding to this secret key is the polynomial h = g·f−1 mod (ϕ, q),
as per the definition of NTRU lattices.

In short, FALCON’s pair of secret (sk) and public (pk) keys, i.e., the tuple (sk, pk),
is defined as sk = (f, g, F ) and pk = h. These keys are encoded as bytestrings, starting
with a header byte, and followed by a concatenation of the polynomials’ coefficients.
For the public key, the header byte is 0000nnnn, where nnnn corresponds to the bit
(base-2) encoding of log(n), with either n = 512 or n = 1024 (depending on the chosen
parameter set), and each coefficient of h is encoded as a 14-bit sequence (as q = 12289

for both parameter sets). As for the private key, the header byte is instead 0101nnnn; the
coefficients of f and g are encoded as 6-bit sequences for n = 512 and 5-bit sequences for
n = 1024; and the coefficients of F are encoded using 8 bytes each.

3.3 Discrete Gaussian Sampling in FALCON

FALCON uses discrete Gaussian sampling techniques in both key generation and signa-
ture processes. While achieving a similar goal, the implementation of such techniques is
different for each process. We now highlight the similarities and differences in Gaussian
sampling in FALCON.

Both key generation and signing use discrete Gaussian sampling to sample integer
polynomials in Z[x]/(xn + 1). This is done by sampling each coefficient individually.
However, while key generation requires only that we sample these polynomials from an
n-dimensional Gaussian distribution over Zn with standard deviation σfg and centered
at 0 – that is, Dn

Z,σfg ,0
–, signing requires us to sample over the lattice Λ defined by the

key pair, with standard deviation σsig centered on a point c – that is, DΛ,σsig ,c, following
Definition 12.

This difference implies that, while key generation uses a single standard deviation σfg

for every coefficient, signature generation uses the idea introduced in [23] and requires a
different standard deviation σi for each i-th coefficient. Each σi is derived from σsig and
the norm of the vector b̃i of the Gram-Schmidt matrix of the basis B of Λ.

Despite their differences, both algorithms use the same type of probability look-up
table, called a Reverse Cumulative Distribution Table (RCDT). Given the probability
p(xi) of an integer xi being sampled, the RCDT, indexed as RCDT[i], is calculated as

RCDT[i] =

{∑
j>i p(xj) if i is positive, or∑
j<i p(xj) if i is negative.

(3.1)

Since we are dealing with a Gaussian distribution, we have that RCDT[−i] = RCDT[i].
One then may be tempted to discard every table entry for i < 0, in order to save storage
space and algorithm complexity, and instead just sample a sign bit b along with the
sampled integer z, and change its sign accordingly. However, applying this change skews
the output probability distribution in an undesirable way, as 0 may be sampled as either
+0 or −0, doubling the probability of it being sampled. This problem is dealt with in
different ways for each sampling routine.

We now describe the integer sampling algorithm for key generation, that samples from
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DZ,σfg ,0. Instead of using the RCDT described above, it uses the following probability
table (denoted, in this document, as KGPT, for KeyGen Probability Table):

KGPT[i] =

{
p(0) if i = 0,

p(x >= i+ 1 | x ̸= 0) otherwise.
(3.2)

By using this table instead of the RCDT, we may uniformly sample k bits to determine
whether we have sampled 0 and, if not, sample another k bits, along with a sign bit b to
determine what integer we have sampled. This technique is described in Algorithm 3.3.1.

Algorithm 3.3.1 KeygenSampler(σ)
Require: A standard deviation σ
Ensure: An integer z ←↩ DZ,σ,0
1: KGPT[]← Precomputed KGPT for σ with k bits of precision and length len(KGPT)
2: u←↩ {0, 1}k, uniformly, as an integer
3: if u < KGPT[0] then
4: z ← 0
5: else
6: u←↩ {0, 1}k, uniformly, as an integer
7: b←↩ {0, 1}1, uniformly, as an integer
8: z ← 1
9: for i from 1 to len(KGPT) do

10: if u < KGPT[i] then
11: z ← z + 1

12: z ← z · (−1)b

13: return z

As long as comparisons are done in constant-time, and the algorithm reads through
the whole table at every execution, this algorithm is constant-time. Building the KGPT
can be done following the Tailcut Lemma and Rényi divergence analysis provided in [41],
and for FALCON’s key generation, k is taken as k = 63.

The sampler used during signature generation, however, does integer sampling in three
steps: first, sample z ∈ Z from a “base integer sampler” that relies only on σmax, from
the parameter set; then, sample a sign bit b and rescale the sampled value to a corre-
sponding one for a discrete Gaussian with standard deviation σi; and finally, use rejection
sampling [35] to adjust the output probability to the one expected for DZ,σi,c.

The base sampler, described in Algorithm 3.3.2, uses the RCDT for the half-Gaussian
defined by DZ+,σmax,0. Since we do not have negative numbers in this distribution, sampling
is straightforward from the lookup table and easily implemented in constant time.

Rejection sampling is also done in constant time, using the approximation for exp(−x)
described in [48], as well as using ccs = σmin/σ

′ ∈ [0, 1] as inputs, so that the running
time is independent of σ′. This process is described in Algorithm 3.3.3.

Finally, we describe the integer sampler used for signature generation in Algorithm
3.3.4.

The parameters are chosen so that the Rényi divergence between the distribution of
outputs of BaseSampler and DZ+,σmax,0 are acceptable from the arguments of [41], and
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Algorithm 3.3.2 BaseSampler()
Require: -
Ensure: An integer z ←↩ DZ,σmax,0

1: RCDT[]← Precomputed RCDT for σmax with k bits of precision and length len(RCDT)
2: u←↩ {0, 1}k, uniformly, as an integer
3: z ← 0
4: for i from 0 to len(RCDT) do
5: if u < RCDT[i] then
6: z ← z + 1

7: return z

Algorithm 3.3.3 SampleRejection()
Require: Floating-point values x, css ≥ 0
Ensure: A single bit b, equal to 1 with probability ≈ ccs · exp(−x)
1: s← ⌊x/ ln(2)⌋
2: r ← x− s · ln(2) ▷ x = 2s · r, with r ∈ [0, ln(2)) and s ∈ Z+

3: s← min(s, 63) ▷ Saturate s to 63 to avoid invalid operations
4: z ← (264−s · ccs · exp(−r)) » s ▷ Approximated using [48]
5: i← 64
6: repeat
7: i← i− 8
8: j ←↩ {0, 1}8, uniformly, as an integer
9: w ← j − ((z » i) & 0xFF)

10: until (w ̸= 0) or (i ≤ 0)
11: if w < 0 then
12: b← 1
13: else
14: b← 0
15: return b

Algorithm 3.3.4 SignSampler(µ, σi)

Require: Floating-point values µ, σi ∈ R such that σi ∈ [σmin, σmax]
Ensure: An integer z ∈ Z sampled approximately close enough to DZ,µ,σi

1: r ← µ− ⌊µ⌋ ▷ r ∈ [0, 1)
2: ccs← σmin/σi ▷ This makes rejection sampling time-independent of σi

3: repeat
4: z0 ← BaseSampler()
5: b← {0, 1}1, uniformly
6: z ← b+ (2 · b− 1)z0

7: x← (z−r)2

2σ2
i
− z20

2σ2
max

8: if SampleRejection(x, ccs) = 1 then
9: return z + ⌊µ⌋

10: until forever
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the rejection sampling statistically approximates the distribution to DZ,σi,µ. For this
case, the precision k for the RCDT is taken as k = 72. This sampler is then used for the
“Fast Fourier sampler” to sample in the lattice Λ according to DΛ,σsig ,c, as required. This
procedure will be described later, in Algorithm 3.5.1.

3.4 Key Generation

Generating a new key pair is done in two separate steps: solving the NTRU equation
(Equation 2.1) and calculating the FALCON tree. As previously stated, our implemen-
tation does not compute the FALCON tree at key generation but, rather, during signing;
however, we follow the original Keygen algorithm for our description, as the FALCON
tree computation step may be separated into its own module inside the implementation
without losing correctness. We present the outline of the algorithm in Algorithm 3.4.1,
and discuss the subroutines that accomplish the aforementioned, NTRUGen and ffLDL∗,
respectively, steps later on.

Algorithm 3.4.1 Keygen(n, q)
Require: A power-of-two n ∈ Z, a modulus q ∈ Z.
Ensure: A key pair (sk, pk).
1: ϕ(x)← xn + 1
2: f, g, F,G← NTRUGen(ϕ, q) ▷ f, g, F,G ∈ Z[x]/(ϕ)

3: B←
[
g −f
G −F

]
▷ B ∈ (Z[x]/(ϕ))2×2

4: G← FFT(B) · FFT(B)∗ ▷ G ∈ FFT(Q[x]/(ϕ))2×2

5: T ← ffLDL∗(G) ▷ T is a FALCON tree with ∥b̃i∥2 as its leaves
6: for each leaf ℓi of T do
7: ℓi ← σsig/

√
ℓi ▷ Each ℓi is now the trapdoor sampler’s std. deviation σi

8: h← g · f−1 mod q ▷ h ∈ Zq[x]/(ϕ)
9: sk← (B, T ) ▷ Encoded as discussed in Section 3.2

10: pk← h
11: return (sk, pk)

3.4.1 Solving the NTRU equation

Generating the secret key polynomials requires sampling f, g ∈ Z[x]/(ϕ), with ϕ(x) = xn+

1, from an n-dimensional discrete Gaussian distribution, making sure that f is invertible
modulo q and that they are short enough to guarantee security, and then computing
F,G ∈ Z[x]/(ϕ) that solve the NTRU equation.

Sampling is done by using Algorithm 3.3.1 to sample n coefficients for f and g. After
sampling, we may easily check if f is invertible modulo q by looking at the coefficients
of NTTq(f): if NTTq(f) contains a zero coefficient, we will not be able to find any
polynomial f ′ for which NTTq(f) · NTTq(f

′) contains only ones, which is the case when
f · f ′ = 1 mod (ϕ, q). Furthermore, this is the only case where such a polynomial cannot
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be found, as q is prime and thus Z+
q is a field. Therefore, checking if NTTq(f) has a zero

coefficient is sufficient to check for invertibility modulo q.
The last check with regard to f, g is that ∥B∥GS is short enough. This can be done

by checking that

max

{
∥[g,−f ]∥,

∥∥∥∥[ qf ∗

ff ∗ + gg∗
,

qg∗

ff ∗ + gg∗

]∥∥∥∥} > 1.17
√
q,

as per Lemmas 2 and 3 of [17]. Then, we proceed with finding F and G through the
NTRUSolve subroutine, described in detail later on, and return (f, g, F,G. Algorithm 3.4.2
formalizes this process.

Algorithm 3.4.2 NTRUGen(ϕ, q)
Require: A monic polynomial ϕ ∈ Z[x] of degree n, a modulus q ∈ Z+.
Ensure: Polynomials f, g, F,G ∈ Z[x]/(ϕ) satisfying the NTRU equation.
1: σfg ← 1.17

√
q/2n ▷ Chosen so that E[∥(f, g)∥] = 1.17

√
q

2: for i from 0 to n− 1 do
3: fi ←↩ DZ,σfg ,0 ▷ Using Algorithm 3.3.1
4: gi ←↩ DZ,σfg ,0

5: (f, g)←

(
n−1∑
i=0

fix
i,

n−1∑
i=0

gix
i

)
6: if NTTq(f) contains a zero coefficient then ▷ Check for invertibility modulo q
7: restart
8: if either ∥[g,−f ]∥ > 1.17

√
q or

∥∥∥[ qf∗

ff∗+gg∗
, qg∗

ff∗+gg∗

]∥∥∥ > 1.17
√
q then

9: restart ▷ Check that ∥B∥GS is short
10: (F,G)← NTRUSolven,q(f, g) ▷ Calculate F,G that solve fG− gF = q mod ϕ
11: if (F,G) =⊥ then
12: restart
13: return (f, g, F,G)

Solving the NTRU equation requires us to find F,G ∈ Z[x]/(ϕ) such that fG− gF =

q mod ϕ. We can look at this problem as solving the extended GCD for f, g mod ϕ: if
we find polynomials u, v ∈ Z[x]/(ϕ) such that uf − vg = 1 mod ϕ, then we may trivially
assign (F,G) = (−vq, uq). Solving the GCD itself is less trivial, given that we are working
with polynomials modulo ϕ; however, the process may be made more efficient by exploring
the tower of fields structure (Equation 2.2) and the field norm, as defined in Definition
16, to map f and g from Z[x]/(ϕ) down to Z, where the extended GCD can be easily
solved. The solution is then lifted back up recursively, using the properties of the field
norm, until we recover F,G ∈ Z[x]/(ϕ).

Note, however, that the field norm operations do not perform reduction modulo q,
and therefore lead to small polynomials with large coefficients (up to thousands of bits
per coefficient in the deepest recursion level), which must be dealt with using arbitrary-
size integer arithmetic in the implementation. Furthermore, at every recursion level, we
control the coefficient size when mapping back to higher rings by performing a reduction
step. This reduction can be seen as a linear operation in the NTRU lattice basis Bf,g,
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as defined in Definition 8; by the properties of matrices and lattice bases, by finding a
polynomial k ∈ Z[x]/(ϕ), we may perform F = F −kf and G = G−kf and still generate
the same lattice. A suitable k may be found by calculating

k =

⌊
Ff ∗ +Gg∗

ff ∗ + gg∗

⌉
.

However, due to coefficient sizes being way larger than the average IEEE-754 floating
point can represent, this process may be done iteratively by taking only the most repre-
sentative bits of (f, g, F,G) and performing reductions until k = 0. This is described in
Algorithm 3.4.3.

Algorithm 3.4.3 NTRUSolven,q(f, g)
Require: f, g ∈ Z[x]/(xn + 1), where n is a power of two.
Ensure: Polynomials F,G ∈ Z[x]/(xn + 1) satisfying the NTRU equation.
1: if n = 1 then
2: (u, v, d)← xgcd(f, g) ▷ xgcd(f, g) finds u, v, d ∈ Z that solve uf + vg = d
3: if d ̸= 1 then
4: return ⊥
5: else
6: (F,G)← (−vq, uq)
7: return (F,G)

8: else
9: f ′ ← N (f) ▷ N (f) is the field norm, as per Definition 16,

10: g′ ← N (g) ▷ and thus f ′, g′ ∈ Z[x]/(xn/2 + 1)
11: (F ′, G′)← NTRUSolven/2,q(f ′, g′) ▷ F ′, G′ ∈ Z[x]/(xn/2 + 1)
12: F ← F ′(x2)g(−x)
13: G← G′(x2)f(−x) ▷ F,G ∈ Z[x]/(xn + 1)
14: repeat ▷ Reduction loop
15: k ←

⌊
Ff∗+Gg∗

ff∗+gg∗

⌉
▷ Ff∗+Gg∗

ff∗+gg∗
∈ Q[x]/(xn + 1), k ∈ Z[x]/(xn + 1)

16: F ← F − kf
17: G← G− kg
18: until k = 0
19: return (F,G)

3.4.2 Generating the FALCON tree

The second part of the secret key is a FALCON tree, generated from the lattice basis B,
that is used to perform sampling during the signature process. To create the FALCON
tree from a basis B, we decompose the matrix using the LDL∗ matrix decomposition
method. As stated in Proposition 1, given a matrix G, this method finds a triple of
matrices L,D,L∗ such that G = LDL∗, with L being a lower-triangular matrix with ones
on its principal diagonal, and D a diagonal matrix. By performing this procedure in the
FFT domain, and given that G ∈ FFT(Q[x]/(ϕ))2×2 (which matches our lattice basis’
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dimensions), the resulting L,D,L∗ matrices will be of the form:[
G00 G01

G10 G11

]
=

[
1 0

L10 1

]
·
[
D00 0

0 D11

]
·
[
1 L∗

10

0 1

]
The procedure to generate the FALCON tree is then as follows: perform LDL∗ reduc-

tion on G, and store the polynomial L10 at the root of the current subtree. Then, split
D00 and D11 into four new polynomials lying in the ring below using the split operator,
and create new matrices G0 and G1 using such polynomials (as described in the algorithm
below). Finally, recursively use this method with G0 and G1 to compute the left and right
children of the root node, respectively. In the case n = 2, the values of the left and right
leaves are assigned as D00 and D11, respectively. This is presented in Algorithm 3.4.4.

Algorithm 3.4.4 ffLDL∗(G)

Require: A full-rank, self-adjoint matrix G = (Gij) ∈ FFT(Q[x]/(xn + 1))2×2

Ensure: A FALCON tree T
1: D00 ← G00

2: L10 ← G10/G00

3: D11 ← G11 − L10 · L∗
10 ·G00

4: Tval ← L10

5: if n = 2 then
6: Tleft ← D00

7: Tright ← D11

8: else
9: d00, d01 ← splitfft(D00) ▷ dij ∈ FFT(Q[x]/(xn/2 + 1))

10: d10, d11 ← splitfft(D11)

11: (G0,G1)←
([

d00 d01
d∗01 d00

]
,

[
d10 d11
d∗11 d10

])
12: Tleft ← ffLDL∗(G0)
13: Tright ← ffLDL∗(G1)

14: return T

Both split and merge operations are calculated inside the FFT domain, following
Algorithms 3.4.5 and 3.4.6.

Algorithm 3.4.5 splitfft(FFT(f))

Require: FFT(f) = f(ζ) for f ∈ Q[x]/(ϕ) and ζ ∈ Ωϕ

Ensure: FFT(f0) = f0(ζ
′) and FFT(f1) = f1(ζ

′), where f0, f1 ∈ Q[x]/(ϕ′) and ζ ′ ∈ Ωϕ′

1: for ζ in Ωϕ do
2: ζ ′ ← ζ2

3: f0(ζ
′)← 1

2
(f(ζ) + f(−ζ))

4: f1(ζ
′)← 1

2ζ
(f(ζ)− f(−ζ))

5: return (FFT(f0),FFT(f1))
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Algorithm 3.4.6 mergefft(FFT(f))

Require: FFT(f0) = f0(ζ
′) and FFT(f1) = f1(ζ

′) for f0, f1 ∈ Q[x]/(ϕ′) and ζ ′ ∈ Ωϕ′

Ensure: FFT(f) = f(ζ), where f ∈ Q[x]/(ϕ) and ζ ∈ Ωϕ

1: for ζ in Ωϕ do
2: ζ ′ ← ζ2

3: f(ζ)← f0(ζ
′) + ζf1(ζ

′)

4: return FFT(f)

3.5 Signature Generation

Signing a message in FALCON is done in three different steps: generating a random salt,
hashing it along with the message to a point c ∈ Zq[x]/(ϕ); sampling a lattice point
zB ∈ (Z[x]/(ϕ))2 near the point tB ∈ (Z[x]/(ϕ))2, where t = (c, 0), calculating the short
vector s = tB − zB; and compressing this vector as a bytestring following a specified
format, as outlined by Algorithm 3.5.1. We detail the HashToPoint, ffSampling and
Compress subroutines later on.

Algorithm 3.5.1 Sign(m, sk, β)
Require: A message m, a secret key sk = (B, T ) and a norm bound β
Ensure: A signature sig of m
1: r ←↩ {0, 1}320, uniformly
2: c← HashToPoint(r||m, q, n)
3: t←

(
−1

q
FFT(c) · FFT(F ) , 1

q
FFT(c) · FFT(f)

)
▷ t = FFT((c, 0) ·B)

4: repeat
5: repeat
6: z← ffSamplingn(t, T )
7: s← (t− z) · FFT(B) ▷ s = FFT((s1, s2)) ∈ FFT(Z[x]/(ϕ))2
8: until ∥s∥2 ≤ β
9: (s1, s2)← FFT-1(s) ▷ s1 + s2h = c mod (ϕ, q)

10: s← Compress(s2, 8 · sbytelen− 328)
11: until s ̸=⊥
12: return sig = (r, s)

We hash a message to a polynomial by using SHAKE-256 to absorb the message, and
then output as many pseudo-random bits as necessary to derive n coefficients modulo q,
as described in Algorithm 3.5.2. We extract 16 bits (2 bytes) at a time from SHAKE-256,
and thus, to preserve the output distribution after modular reduction, only considering
valid elements that are below ⌊216/q⌋ = 5 times q.

Due to the fact that we may sample invalid values, making this process constant-time
is less trivial. The technique we employed in our implementation, as well as FALCON’s
authors did in their constant-time version of the algorithm, is oversampling : we continue
sampling beyond n coefficients, keeping a temporary buffer for the new samples, so that
the probability of not having n valid coefficients is below 2−256. Then, we check, in
constant-time, whether c has invalid coefficients, and swap them in constant time with
the temporary buffer coefficients.
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Algorithm 3.5.2 HashToPoint(m, q, n)
Require: A message string m, a modulus q ≤ 216 and a degree n ∈ Z+.
Ensure: A polynomial c ∈ Zq[x] correlated to m
1: state← SHAKE256-Init()
2: SHAKE256-Absorb(state, m)
3: SHAKE256-Finalize(state)
4: i← 0
5: while i < n do
6: t← SHAKE256-Squeeze(state, 2)
7: if t < 5q then
8: ci ← t mod q
9: i← i+ 1

10: c←
n−1∑
i=0

cix
i

11: return c

Sampling a lattice point near the point tB is done according to Algorithm 3.5.3,
using the Fast Fourier Nearest Plane algorithm described in [18], again instantiated in
Z[x]/(xn + 1). This algorithm is a variation of the randomized Babai’s Nearest Plane
algorithm [6], and makes use of both FFT and splitfft/mergefft to sample an integer
polynomial vector z ∈ (Z[x]/(xn+1))2 so that the lattice point zB is close enough to tB.
Sampling each coefficient according to σi is done using Algorithm 3.3.4.

Algorithm 3.5.3 ffSamplingn(t, T )
Require: t = (t0, t1) ∈ FFT(Z[x]/(xn + 1))2, a FALCON tree T
Ensure: z = (z0, z1) ∈ FFT(Z[x]/(xn + 1))2

1: if n = 1 then
2: σ′ ← Tval ▷ Tval stores each σi

3: z0 ←↩ DZ,σ′,t0 ▷ Using Algorithm 3.3.4
4: z1 ←↩ DZ,σ′,t1 ▷ No need to apply FFT-1 since FFT(a) = FFT-1(a) when n = 1
5: else
6: t1 ← splitfft(t1) ▷ t0, t1 ∈ FFT((Z[x]/(xn/2 + 1))2

7: z1 ← ffSamplingn/2(t1, Tright) ▷ z0, z1 ∈ FFT((Z[x]/(xn/2 + 1))2

8: z1 ← mergefft(z1)
9: t′0 ← t0 + (t1 − z1) · Tval

10: t0 ← splitfft(t′0)
11: z0 ← ffSamplingn/2(t0, Tleft)
12: z0 ← mergefft(z0)
13: return z = (z0, z1)

We note that s1 may be computed from the public key pk = h, the hashed polynomial
c and s2 by calculating s1 = c − s2h mod q. Since this process only uses s2 and public
information, it suffices to send s2 as the signature polynomial, along with the “salt” r.

Finally, we compress the signature to the format specified in FALCON’s documen-
tation through Algorithm 3.5.4. This format encompasses a header byte structured as
0cc1nnnn, where nnnn corresponds to log2 n in bit format, and cc is either 01 or 10, de-
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termining if the signature vector bytestring is compressed or not. In our implementation,
we opted to always compress the signature, and thus, the header byte is always 0011nnnn.
The 40-byte salt string r is then concatenated to the header as generated, without any
processing.

As for the polynomial s2 ∈ Z[x]/(ϕ), instead of using a fixed size bitstring for each
coefficient si, we follow FALCON’s compression algorithm, that encodes them as follows:

1. the first bit corresponds to si’s sign bit;

2. the next 7 bits correspond to the 7 least significant bits of si, from most to least
significant;

3. lastly, we encode the remaining, most significant bits of si using unary encoding.
That is, if the remaining bits equal a certain k = ⌊|si|/27⌋, then its encoding is equal
to k zeroes, followed by a 1. We denote this string as 0k1.

For example, the coefficient 45910 = 0001110010112 would be encoded as the bit-
string “010010110001”. Finally, the complete bytestring is appended with zeroes until the
maximum length slen is achieved.

Algorithm 3.5.4 Compress(s, slen)
Require: A polynomial s =

∑
six

i ∈ Z[x]/(xn + 1), a string bitlength slen
Ensure: A compressed representation str of s of bitlength slen, or ⊥
1: str← {}
2: for i from 0 to n− 1 do
3: str← (str||b), where b = 0 if si ≥ 0, or b = 1 if si < 0
4: str← (str||b6b5 . . . b0), where bj = (|si| » j) & 0x1
5: k ← |si| » 7
6: str← (str||0k1)
7: if |str| > slen then
8: str←⊥
9: else

10: str← (str||0slen−|str|)

11: return str

3.6 Signature Verification

Signature verification is relatively simpler than the other two algorithms. Given a signa-
ture in the form (r, s), we only need to decompress s back into s2, use r and the message
m to calculate the corresponding point c, and use them along with the public key pk = h

to recompute s2. Finally, we make sure that ∥(s1, s2)∥2 is within the expected bound β,
and, if so, we accept the signature. Decompression is described in Algorithm 3.6.1, and
verification in Algorithm 3.6.2.

Security is guaranteed by the fact that s1 can be recomputed from s2 and the public
key h, and that s = (s1, s2) is short enough. This implies that, for t = (c, 0), if we
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translate our lattice Λ by t so that t corresponds to the origin – say, Λ′ = (Λ− t) –, then
s is a “hard enough” solution to SVP for Λ′, meaning it must have been computed using
the corresponding secret key.

Algorithm 3.6.1 Decompress(str, slen)
Require: A bitstring str of bitlength slen
Ensure: A polynomial s =

∑
six

i ∈ Z[x]/(xn + 1), or ⊥
1: if |str| ≠ slen then
2: return ⊥
3: for i from 0 to n− 1 do
4: ℓ←

∑6
j=0 2

6−j · str[1 + j] ▷ Decode the lowest bits of |si|
5: k ← 0
6: while str[8 + k] = 0 do ▷ Decode the highest bits of |si|, in unary representation
7: k ← k + 1

8: si ← (−1)str[0] · (ℓ+ 27k) ▷ Compute |si| and apply the sign bit
9: if si = 0 and str[0] = 1 then ▷ Avoid “-0” encoding

10: return ⊥
11: str← str[9 + k...slen− 1] ▷ Update str, consuming the bits we have already

decoded
12: if str ̸= 0slen−|str| then ▷ Check for trailing 0 bits
13: return ⊥
14: return s =

∑n−1
i=0 six

i

Algorithm 3.6.2 Verify(m, sig, pk, β)
Require: A message m, a signature sig = (r, s), a secret key pk = h ∈ Zq[x]/(ϕ) and a

norm bound β
Ensure: Accept or Reject
1: c← HashToPoint(r||m, q, n)
2: s2 ← Decompress(s, 8 · sbytelen− 328)
3: if s2 =⊥ then
4: return Reject
5: s1 ← c− s2h mod q
6: if ∥[s1, s2]∥2 ≤ β then
7: return Accept
8: else
9: return Reject
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Chapter 4

Implementation and Optimization

4.1 The ARMv8 Platform

The ARM architecture is a reduced instruction set computer (RISC) architecture that
targets a wide range of applications. Its current version is ARMv9, officially launched
on March 30, 2021 [5]. However, due to its recent release, it is not as widespread as its
predecessor, ARMv8, which is the focus of this research. While ARMv9 introduces new
technologies for signal processing and machine learning, such as SVE (Scalable Vector
Extension), most of its general-purpose computing capabilities can be found in ARMv8,
with complete backwards compatibility. Therefore, optimizations that target ARMv8 also
improve performance on ARMv9, impacting devices now and in the near future.

The ARMv8 architecture has three different profiles: the Application profile (or A-
Profile), targeting most computation needs; the Microcontroller profile (M-Profile), that
specifically targets embedded systems with constrained power; and the Real-time profile
(R-Profile), that targets time-sensitive and safety-critical environments. We chose to work
with A-Profile architectures (ARMv8-A), as they are used in a variety of applications:
personal computers (e.g., Apple M1), servers (e.g., Ampere Altra), mobile devices (e.g.,
most Android devices) and higher-end IoT devices (e.g., Raspberry Pi).

ARMv8-A has two different execution modes: AArch64, which uses 64-bit wide regis-
ters and the A64 instruction set, introduced on its release, and AArch32, a 32-bit register
mode that uses the A32 instruction set, providing compatibility with ARMv7 and earlier
systems, as ARMv8 was the first to introduce 64-bit capabilities. In this document, we
assume and work only with the AArch64 execution mode. Furthermore, ARMv8-A does
not specify a paradigm for instruction execution, and processors may implement in-order
execution (such as Cortex-A72) or out-of-order execution (such as Apple M1). This may
imply a need for different optimizations depending on the target, as in-order processors
might benefit greatly from instruction ordering, while out-of-order processors may achieve
a similar performance by themselves, depending on the size of the look-ahead window.

ARMv8 and AArch64 capabilities. The AArch64 execution mode uses the A64
instruction set, which employs a load-store architecture. Its register bank includes 31
general-purpose, scalar, 64-bit wide registers, along with three special registers: a zero
register, a stack pointer register and the program counter register (which is not directly
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accessible). Alongside the scalar register bank, AArch64 also includes a NEON register
bank, used by a specialized Advanced SIMD (Single-Instruction, Multiple Data) ALU
that executes vectorized and floating-point operations. This register bank has 32 128-bit
wide register that may be interpreted as 16 bytes, 8 half-words (16-bit values), 4 words
(32-bit values), 2 doublewords (64-bit values) or a single 128-bit quadword. Loading
values into the NEON register bank introduces some latency, as values must either be
reloaded from memory or migrated from the scalar registers; however, the speed gain of
processing vectorized data, when compared to processing the same amount of data with
scalar operations, far outweighs its cost.

ARMv8 extensions. ARMv8 has multiple versions, ranging from ARMv8.1 to v8.6.
These versions introduce requirements for certain instruction set extensions; however,
manufacturers may include any number of extensions paired with earlier versions of the
architecture with no restriction. The most relevant extensions for this work are the
AES and SHA-3 cryptographic extensions, which include specialized instructions for these
algorithms that significantly speed up their execution.

Interesting instructions. We now highlight some instructions of interest for our op-
timizations:

• Multiple structure load/store: The LD1, LD2, LD3 and LD4 instructions can be
used to load values from a contiguous memory block into one to four different NEON
registers, in an interleaved pattern. For example, suppose our values in memory are
32-bit integers, ranging from 1 to 16. By using the LD1 instruction with four registers
r1, r2, r3, r4, our values would be loaded as r1 = (1, 5, 9, 13), r2 = (2, 6, 10, 14), r3 =

(3, 7, 11, 15), r4 = (4, 8, 12, 16). This type of loading is more efficient than performing
four different load operations, as long as the data supports this structure. Storing
from one to four registers into contiguous memory may similarly be done with the
ST1 to ST4 instructions.

• Bitwise Select: The bitwise select instruction BSL takes two source registers and
one destination register as input. It reads each bit from the destination register and
sets it as either the corresponding bit of the first source register, if the destination
register bit was 1, or the second source register, if it was 0. This is done in constant-
time by a series of logical micro-operations. This can be paired with comparison
operations that write an all zero value when the comparison is not met and all ones
when it is. This is particularly useful for Algorithms 3.3.1 and 3.3.2, as it speeds up
table comparisons during integer sampling.

• Zip and Unzip: Zip and unzip instructions (ZIP1, ZIP2, UZP1 and UZP2) are use-
ful instruments to reorder NEON vectors. Zip instructions interleave elements from
either the lower or upper half of two different vector registers into the destination
register, while unzip does the reverse operation. This is useful for reordering data,
but can also be useful when we only want the high or low bits of vector elements:
by reinterpreting, say, two 32×4 bit vector as 16×8 bit vectors and taking only
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the elements corresponding to the higher half of the original values, we are effec-
tively computing a 16-bit right shift operation along with a load operation into the
destination with a single instruction.

4.2 Implementation Challenges

As with any complex algorithm, going from theoretical descriptions to an implementation
may pose significant problems. Nuances on how to implement certain operations, how to
represent some data or how to create data structures and functions that conform to the
expected behavior become apparent only when we turn pseudocode into actual code. In
the following, we describe some of these challenges when implementing FALCON in C
language, or in assembly code for ARMv8.

Floating-point Arithmetic. One of such challenges is managing floating-point preci-
sion and rounding issues throughout the algorithm. FALCON only requires floating-point
numbers for specific operations, such as FFT and discrete Gaussian sampling. However,
due to the tower of fields structures exploited by Algorithms 3.4.5 and 3.4.6, rounding
errors and precision losses get propagated fast and impact the outcome of functions that
use them as subroutines. One such problem might arise from a compiler optimization flag
named FP_CONTRACT, which takes multiply instructions followed by additions and swaps
them with fused multiply-add instructions, if available. While this optimization does im-
prove running time, architectures such as ARMv8 may not round the intermediate value
(which does happen when using MUL and ADD separately), leading to different results.
This error is also intensified in recursive routines, such as NTRUSolve (Algorithm 3.4.3)
and ffSampling (Algorithm 3.5.3). This leads to different algorithm outputs, which are
incompatible with the provided test vectors and with the reference code. Disabling this
optimization in both GCC and Clang helps ensure interoperability and that probability
distributions follow the security proofs.

Arbitrary-sized Integer Arithmetic. As previously discussed, during the execution
of NTRUSolve (Algorithm 3.4.3), polynomial coefficient size can go up to thousands of bits,
which means we must have some way of representing them in memory and operating on
them. A naive representation would be to split such coefficients in 31-bit or 63-bit “limbs”
(leaving the most significant bit as zero, to keep track of carries during computations),
and implement arithmetic similar to what would be a “base 231” arithmetic.

However, FALCON’s authors implement a different technique, using the naive rep-
resentation only when absolutely necessary. The first thing we note is that using NTT
for representing polynomials leads not only to faster times in multiplications, but also
simplifies other operations, such as the field norm. From Definition 16, we may express

f ′(ω2) = N (f)(ω2) = f(ω)f(−ω),

which means we can easily calculate f ′ from f in NTT representation. Similarly, com-
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puting Lines 13 and 14 of Algorithm 3.4.3 may be done as

F (ω) = F ′(ω2)g(−ω)

in NTT representation. The problem would then be finding a prime p large enough to
fit even the largest coefficients, and operating inside Zp, in this case, could be poten-
tially slower than the alternative. However, we can split our “large” polynomials into a
residue number system (RNS). Namely, for a set of primes (p1, p2, ..., pj), we can split our
polynomial f(x) ∈ Z[x]/(ϕ) as

f(x) =


f1(x) mod p1

f2(x) mod p2
...

fj(x) mod pj

, (4.1)

which fits our polynomials as long as the bitsize of Πjpj is larger than our largest co-
efficient. Furthermore, if we have that ∀pj, pj = 1 mod 2n, we may apply NTTpj to
every fj(x) ∈ Zpj [x]/(ϕ), and make our calculations inside the NTT domains with smaller
primes, making full use of the benefits of the transform. Therefore, for most operations,
every polynomial f is expressed as the set of transformed polynomials

(NTTp1(f1),NTTp2(f2), . . . , NTTpj(fj)).

We also note that, when f is small enough to fit only some primes inside the RNS, every
subsequent fj(x) will be zero and does not need to be explicitly calculated or stored,
making this method adaptable to different sizes.

The only limitation of this technique is that some operations, such as finding the
Extended GCD and computing the polynomial reduction steps of Lines 15 to 19 of Al-
gorithm 3.4.3, cannot be done inside this domain. Therefore, we still need to implement
(although in a limited fashion) conversion to and from the naive representation, as well
as multiplication by a “small” polynomial k (Lines 17 and 18) and Extended GCD using
arbitrary-size integer arithmetic.

FFT and NTT. Implementing FFT and NTT may be done in many different ways:
FFT may be structured as decimation in time (DIT) or decimation in frequency (DIF);
both algorithms may be out-of-place or in-place; root values (ζ for FFT, ω for NTT, as per
Definitions 13 and 14, respectively) may be calculated during execution or pre-computed
and stored as a look-up table; and, if look-up tables are used, they may be ordered
sequentially by their i index, or in bit-reversal ordering. Each choice offers certain trade-
offs (execution time or memory usage, for example), and it is up to the programmer to
decide how to implement them.

Our FALCON implementation uses decimation in frequency for FFT, calculate values
in-place, and store pre-computed values in look-up tables following a bit-reversal ordering.
These choices allow for faster operations with little increase in memory cost. We also note
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that, since we have ϕ(x) = xn + 1 and n is a power-of-two, if ζ is a root of ϕ, then so
is ζ̄, and f(ζ̄) = f(ζ). A naive implementation would store n complex numbers, one for
each root ζ, which leads to 2n floating-point numbers. However, due to this property, we
may only store half the values, leading to n floating-point numbers, which may replace
the original n-th degree polynomial f in memory in-place, as long as it is converted to a
floating-point type before the function is called. Furthermore, we split our vector FFT(f)

such that real values are stored in the first n/2 coefficients, and imaginary values are
stored in the latter half of the vector. For example, noting v[i] as the i-th vector position,
Re(x) (resp. Im(x)) as the real (resp. imaginary) part of a complex number and rev(i)
as applying bit-reversal to an integer i, Re(f(ζi)) would be stored in position v[rev(i)/2],
but Im(f(ζi)) would be in position v[rev(i)/2 + n/2]. This method for implementing the
FFT is presented in Algorithm 4.2.1.

Algorithm 4.2.1 FFT(f, ZETAS)
Require: f =

∑n
i=0 fix

i ∈ Z[x]/(xn + 1), where n is a power of two, and ZETAS a table
containing n/2 complex numbers, corresponding to the complex roots of ϕ = xn + 1
in bit-reversal order.

Ensure: FFT(f), calculated in-place.
1: t← n/2
2: m← 2
3: for i from 1 to log(n) do
4: s← 0
5: for k from 0 to m/2 do
6: for j from s to s+ (t/2) do
7: x← (fj, fj+n/2) ▷ x ∈ C
8: y ← (fj+t/2, fj+t/2+n/2) ▷ y ∈ C
9: y ← y · ZETAS[m+ k] ▷ ZETAS[i] ∈ C

10: (fj, fj+n/2)← (Re(x+ y), Im(x+ y))
11: (fj+t/2, fj+t/2+n/2)← (Re(x− y), Im(x− y))

12: s← s+ t

13: t← t/2
14: m← m · 2
15: return f .

Finally, we note that, due to the bit-reversal ordering, the ZETAS table may be used
for both n = 512 and n = 1024. Applying FFT-1 follows the same structure, calculating
the inverse of the forward function. Our NTTq implementation follows the same basic
structure, and is described in Algorithm 4.2.2. Multiplication modulo q is done using
Montgomery modular multiplication [37]. NTT-1

q applies the inverse operation following
the same structure.

4.3 Side-Channel Attacks

Another challenge to overcome when implementing a cryptographic algorithm is securing
the implementation against side-channel attacks. We now review the attacks that target
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Algorithm 4.2.2 NTTq(f, OMEGAS)
Require: f =

∑n
i=0 fix

i ∈ Z[x]/(xn + 1), where n is a power of two, and OMEGAS a table
containing n integers, corresponding to the roots of ϕ = xn + 1 in Zq, in bit-reversal
order.

Ensure: NTTq(f), calculated in-place.
1: k ← 1
2: t← n/2
3: while t ≥ 1 do
4: s← 0
5: while s < n do
6: for j from s to s+ t do
7: m← fj+t · OMEGAS[k] mod q ▷ Using Montgomery multiplication
8: fj+t ← fj −m mod q
9: fj ← fj +m mod q

10: k ← k + 1
11: s← s+ 2t

12: t← t/2

13: return f .

FALCON and analyze their applicability to our implementation.
McCarthy et al. [36] proposed a fault attack and a timing attack against the second

round implementation of FALCON. The timing attack is no longer possible, as the third
round version of the algorithm has already implemented countermeasures against it. The
timing attack, however, can be done by interrupting a loop on the signature process – more
specifically, a loop that is part of the trapdoor sampling –, so that it forces the sampled
vector to have an arbitrary number of zeroes. These zeroes, then, create signatures that
depend only on a subset of the subjacent lattice basis; as such, by sampling enough
faulty signatures, an attacker may then run an SVP solver with small enough parameters
fast enough for the attack to be practical, recovering the key through smaller steps.
A simple countermeasure is checking the sampled vector for repeated zeroes, and our
implementation chooses this approach, as it has minimal impact on performance.

Karabulut and Aysu [31] propose a side-channel attack against FALCON through dif-
ferential electromagnetic analysis against floating-point operations. However, this analy-
sis relies on a particular mode of the reference implementation; namely, the one geared
towards architectures that do not have FPUs, in which floating-point operations are sim-
ulated using 64-bit integer variables. The attack focuses on floating-point FFT multipli-
cations, since the bitsize limitation on the variables calls for partial results, which can be
analyzed by a side-channel attacker and later expanded to the whole secret key. This at-
tack does not pose a challenge to our implementation, however, as our target architecture
does not possess such limitations, as it does indeed have an FPU available and does not
require partial results.

Guerreau et al. [26] present two new side-channel attacks on FALCON. The first attack
is an improved version of the one presented by Karabulut and Aysu [31], with lower
complexity and requiring less samples. By proving that values can be estimated through
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rounding and later corrected through lattice operations, the authors reduce the amount
of bits that need to be extracted from the partial results, and also make use of later
operations on the code to infer more data from the same samples. However, as stated
before, this attack is on a specific technique used by the reference implementation to
emulate floating point operations on devices that lack an FPU, which is not the case of
our target architecture.

Finally, Howe and Westerbaan [28] show timing leakages on floating-point operations
in Cortex-M7, as operations between numbers with the same exponent take less time
than when the exponents are largely different in this architecture. The authors also show
that, on Cortex-A53, the type casting between double and int64_t, which implies a
round-to-zero operation, leaks the sign bit due to variable timing. This problem arises
from LLVM’s non-constant time implementation of round-to-zero in a chip (A53) that
does not have a specific instruction for this operation. The authors do not mount an
attack on these leakages, but point out the importance of checking constant-timeness of
floating-point operations before real-world deployment.

4.4 Optimization

We focused on optimizing signature generation and verification over key generation, for
two reasons: first, they are the most frequently executed algorithms, as key generation
tends to be sporadic (the same keypair may be used for generating a large number of
signatures, which are in turn verified multiple times); second, since they share many
subroutines, optimizations for, say, HashToPoint (Algorithm 3.5.2), impact both routines
simultaneously, and offer a greater benefit for the scheme as a whole.

To guide our choice of which routines focused on, we profiled our initial C implemen-
tation to find bottlenecks and costly routines for each algorithm. Tables 4.1 and 4.2 show
the most expensive functions of each algorithm, including those shared by both Sign and
Verify. The list is not extensive, both for simplicity and because smaller functions have
been inlined by the compiler during optimization. These results have been obtained run-
ning the GNU Profiler tool [24] on an NVIDIA® Jetson Nano™ development board, which
features a Cortex-A57 processor. We note that other platforms present similar results,
and thus we do not list them for brevity.

Our optimizations focused mainly on fundamental algorithms shared across routines,
such as FFT/NTT operations, as they are executed many times across the whole scheme,
and the HashToPoint subroutine, which takes a noticeable amount of execution time in
both algorithms, as the profiling results show. Integer sampling inside signature generation
was another primary target, as it takes the largest portion of signature generation time.

We now discuss the different techniques used in each optimized routine, highlighting
the reasoning behind each optimization.

4.4.1 Loop vectorization

The first and most simple optimization is using SIMD instructions to vectorize iterative
functions. For simpler loops, the compiler is able to achieve this by itself; however, when
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Table 4.1: Profiling results ranking the most expensive functions of Falcon512.
Function Sign Verify
HashToPoint 9.67% 43.67%
NTTq(f) 6.47% 20.83%
NTT-1

q (f) 0.72% 16.67%
Decompress – 10.45%
Verify (inlined subroutines) – 8.35%
SampleInteger 36.07% –
ffSampling (with FFT subroutines) 13.97% –
ffLDL (with FFT subroutines) 9.25% –
Division modulo q 8.27% –
Sign (inlined subroutines) 2.52% –
Total 86.94% 99.97%

Table 4.2: Profiling results ranking the most expensive functions of Falcon1024.
Function Sign Verify
HashToPoint 7.53% 39.65%
NTTq(f) 7.61% 30.64%
NTT-1

q(f) 2.32% 8.17%
Decompress – 4.10%
Verify (inlined subroutines) – 17.42%
SampleInteger 36.71% –
ffSampling (with FFT subroutines) 12.98% –
ffLDL (with FFT subroutines) 9.13% –
Division modulo q 6.45% –
Sign (inlined subroutines) 6.53% –
Total 89.26% 99.98%

the values are, for example, complex numbers (as the roots and coefficients of FFT are),
this is not as straightforward. We detail each general case for this type of optimization
below.

Transforms with Look-up Tables. As shown in Algorithms 4.2.1 and 4.2.2, applying
transforms with look-up tables requires several iterative operations, which may be opti-
mized with SIMD instructions. For NTTq, during the loop in Algorithm 4.2.2, Line 6,
whenever t ≥ 8, we may load 8 16-bit elements into a 128-bit NEON register, replicate
OMEGAS[k] 8 times into another NEON register, and apply the operations simultaneously,
saving them as contiguous 8-element blocks. Special cases must be done for t = 4, t = 2

and t = 1; however, other strategies, such as loading multiple copies of different OMEGAS[k]
elements may be employed, such that the whole function benefits from SIMD instructions.
However, for NTT-1

q , while similar optimizations may be performed, the order in which
different OMEGAS[k] are applied is different, and SIMD instruction loads require contiguous
memory blocks. Therefore, by creating a new, reordered table, we may optimize NTT-1

q

similarly, at the cost of storing a new table in memory.
For FFT, our strategy is slightly different. We work with 64-bit floating-point numbers

and, therefore, may only load two at the same time in a NEON register. Furthermore,
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we may choose, instead, to load both the real and imaginary parts of a complex number
in one register, if they are contiguous in memory. As stated before, this is not the case
for the polynomial f ; however, we may organize our ZETAS table so that the ζ coefficients
are. Our optimization is then as thus: we load both Re(ζ) and Im(ζ) into a single NEON
register when loading ZETAS[m+k] in Line 9 of Algorithm 4.2.1; however, we instead load
two contiguous elements of f , say fi and fi+1, inside the for loop of Line 6, and apply the
complex number arithmetic operations for both simultaneously. Finally, for special cases
when log(n) is small enough not to allow such operations, we make use of more NEON
registers and load values with interleaving.

Coefficient-wise operations. Another interesting targets for loop vectorization are
coefficient-wise operations, such as polynomial addition/subtraction and operations in the
FFT and NTT domains. While the compiler may find opportunities to vectorize integer,
coefficient-wise operations, others, such as Montgomery multiplication, are less trivial.
We have applied a number of SIMD instructions such as widening vector multiplication,
multiply-add and zipping/unzipping (in place of shifts, as described earlier) to process 8
elements at a time, while keeping the algorithm constant-time. Furthermore, we make
use of multi-register loads such as LD4 to further minimize time spent on memory access.

Integer Sampling. Finally, we optimize Sign’s integer sampling, in particular Algo-
rithm 3.3.2, by using SIMD instructions to load values from the RCDT and compare
them to the sampled values. The first thing we note is that, since the RCDT requires
72-bit precision, we split it into a 64-bit table and an 8-bit table, with the smaller table
representing the most significant bits. Uniform bit sampling is also done in two steps:
one for 64 bits, and another for 8 bits. Both tables have a total of 19 entries.

With this, we were able to parallelize comparison in the following manner: We load
the first 16 64-bit entries in 8 different NEON registers, and duplicate our 64-bit ran-
dom sample into another one. We then compare them in pairs, overwriting the registers
containing table values. We then use zipping and unzipping instructions to gather these
results as 8-bit entries, since they are now either sequences of 1s or 0s, and their length
does not matter. This leaves us with a 16×8-bit register containing all 64-bit comparison
results. We load and compare the 8-bit segments using a single NEON register for each,
and then use constant time techniques to write the total comparison values. For the last
3 entries, they are treated as 8-bit literals due to their short length, and are computed in
constant time using scalar instructions.

4.4.2 Pseudorandom Number Generation Using AES

FALCON’s specification requires cryptographically secure pseudorandom number gener-
ation every time random bits are uniformly sampled. However, which algorithm is used
to derive random bits is left to the programmer. The reference implementation uses a
PRNG based on the ChaCha20 algorithm, keeping a buffer of 512 bytes and regenerating
random bits in 512-byte blocks whenever the buffer is emptied. This choice appears to
fit Intel architectures well, as the authors’ comments state that AVX2 can process up to
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eight ChaCha20 instances in parallel. However, this is not the case for ARMv8. While
this PRNG’s performance is not unacceptable in ARMv8, we may use specialized instruc-
tions from the cryptographic extensions to speed up random bit generation. Therefore,
we evaluated the performance of using SHAKE256 and AES as sources of randomness.

SHAKE256 is part of FALCON’s specification for message hashing, and is also used
to initialize PRNGs with a certain amount of random information, as its sponge function
may output variable-length bit sequences. However, as a PRNG, SHAKE256 is slower
than ChaCha20, even when using specialized instructions, due to its complexity. Even
so, we still achieved higher speeds for sampling by using ARM-specific instructions and
applying the SHAKE256 improvements that will be discussed in the next section.

AES, on the other hand, is able to achieve significantly higher speeds than its other
options. We chose to implement AES CTR-DRBG [7], a standardized version of deter-
ministic random bit generation using AES, using specialized ARMv8 instructions. We
were able to compute up to 20 times more bits in the same time frame as ChaCha20, and
also keep a buffer of 768 bytes without losing performance due to cache misses and other
memory issues. This led to significant improvements in signature and key generation, the
latter of which will be further elaborated in Section 4.4.4.

4.4.3 Improving SHAKE256

While this optimization is not of FALCON itself, SHAKE256 plays a big role in the
HashToPoint function, which is relevant for both Sign and Verify algorithms, as shown in
Tables 4.1 and 4.2. Another factor is that, as previously stated, ARMv8’s SHA3 extension
provides specialized instructions that speed up the algorithm through a straightforward
reimplementation. However, not all ARMv8 processors have these instructions and, so,
optimization strategies must change for such platforms.

We start by analyzing our gains using specialized instructions. While reimplementing
the algorithm using all specialized instructions is the simplest way of achieving better
performance, it is not always the best. An interesting discovery during development was
that even though powerful processors may include this extension, they may not be as
useful as expected. One such case is the Cortex-X2: in this platform, even though it has
4 SIMD execution pipelines (in which the extension instructions execute), only one of
them implements the SHA3 extension when it is available. While such instructions, taken
as single units, take less time than computing them with the A64 base instruction set,
only using them to compute a SHA3 round means we bottleneck our processing capacity
into a single pipeline, making the overall performance of using only SHA3 extensions on
Cortex-X2 worse than a scalar implementation.

For platforms without this extension, we explored a number of different techniques.
First, we employed techniques such as in-place computation [11] and lane-complementing [9]
to reduce the number of instructions required for computing each round of the algorithm.
These optimizations proved beneficial on almost every platform; however, in cases such
as the Apple M1, instructions that include implicit rotations take longer than regular
instructions. This means that lane-complementing techniques, which make use of such in-
structions, perform worse than its regular counterparts. However, Apple M1 implements
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the SHA3 extension, and therefore does not require these techniques.
Next, we noted that most platforms we experimented on that did not have this exten-

sion – namely, Cortex-A53, Cortex-A57 and Cortex-A72 – were in-order platforms. This
means that instruction scheduling plays a relevant part in optimization, queuing instruc-
tions of different latencies and data dependencies to make the most of the processors’
pipelines. Scheduling instructions by hand proved inefficient, as the balancing between
instruction types, latencies, data dependencies, decodification windows and many other
factors were hard to predict. Therefore, we implemented a combinatorial optimization
algorithm using Simulated Annealing [32] to reorder and swap instructions, then patch
the executable in memory and benchmark the algorithm running on hardware, until re-
orderings close to a theoretical optimal were found.

Therefore, for our final implementations, we use only SHA3 instructions for Apple
M1; we use an interleaved SIMD implementation using both regular and SHA3 instruc-
tions, balanced as to fill every pipeline properly, for Cortex-X2; and for Cortex-A57, we
have a tailored scalar implementation with heavy reordering and instruction swapping to
overcome the processor’s limitations.

4.4.4 Integer Sampling for Key Generation

Finally, our last optimization was regarding the integer sampling done by Algorithm
3.3.1, and therefore, exclusive to key generation. The two main differences, in terms of
implementation, from the signature sampling are that we use 63 bits of precision (and,
thus, a single 64-bit entry table), and that our table follows the distribution indicated
by the KGPT in Section 3.3. This means that comparisons are slightly different and the
sample for the value 0 must be treated differently.

The first optimization of note is that we are able to compute a batch of 2n 64-bit
samples right from the start, making better use of caches and using our AES-based PRNG
to its fullest, minimizing sampling time drastically. Since we must treat 0 as a different
distribution, we need 2 samples for each coefficient and, therefore, calculate 2n samples.

Next, we are able to load the whole KGPT into SIMD registers. For n = 512, the table
has 27 entries, but since the first one must be treated separately (since it represents the
probability of sampling zero), we use a total of 13 NEON registers to represent it. For
n = 1024, we have 37 entries, and similarly, we use a total of 18 NEON registers, leaving
the first entry as scalar. Differently from signature generation, we do not overwrite these
values; rather, we keep them in the register bank until we sample all n integers. This
means that, especially for n = 1024, we have to be careful about register allocation, to
avoid unnecessary spills. Our implementation uses a combination of comparison, regular
addition and pairwise addition for a total of 24 NEON registers when n = 1024, leaving
ample space to avoid spilling.

Unfortunately, due to development time and project structure limitations, we were
not able to include this optimization in our final version of Keygen, meaning our results
will not reflect this change. However, we include separate results comparing only the
reference implementation’s sampling technique (using ChaCha20) with ours in Section 5,
to quantify the improvement in performance.
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Chapter 5

Experimental Results

In this section, we describe and discuss our experiments and implementation results,
detailing the methodology used and how our techniques have improved the scheme as a
whole in different platforms.

Methodology. Performance was measured using the Google Benchmark [25] frame-
work. We used three devices to collect experimental results: a Samsung Galaxy S22
(Cortex-X2), a NVIDIA® Jetson Nano™ development board (Cortex-A57) and an Apple
MacBook Air® featuring the Apple M1 system-on-chip. Details on each platform are as
follows.

Jetson Nano contains four Cortex-A57 cores, and supports the AES cryptographic
instructions, but does not feature the SHA-3 extension.

Galaxy S22 has 8 cores, being four Cortex-A510, three Cortex-A710 and the perfor-
mance Cortex-X2 core, which was the one used for our experiments. It implements both
the AES and SHA-3 cryptographic extensions. Although this platform’s architecture is
ARMv9, rather than ARMv8, it has complete compatibility with ARMv8 implementa-
tions and no optimizations restricted to the ARMv9 platform were performed.

Finally, MacBook Air M1 features eight cores: four Icestorm units (high-efficiency
microarchitecture) and four Firestorm units (high-performance microarchitecture), and
we use the latter for our experiments. They implement the ARMv8.4-A instruction set,
and feature both AES and SHA-3 extensions.

Other processor specifications, such as clock frequencies and cache sizes, are presented
in Table 5.1

Processor Clock Frequency Cache Sizes Extensions
Min. Max. L1 L2 L3 AES SHA-3

Cortex-A57 102 MHz 1479 MHz 32K 48K 3M ✓ -
Cortex-X2 2840 MHz 3920 MHz 128K 1M 8M ✓ ✓

M1 Firestorm 600 MHz 3204 MHz 192+128K 12M - ✓ ✓

Table 5.1: Summary of specifications of processors used for experiments.

The binaries were compiled using the Clang compiler for all platforms, with the -O3
optimization flag enabled. For the benchmarks, the binaries were linked as a static library.
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AES instructions are available in all platforms, while only the Apple M1 and Galaxy S22
devices make use of SHA-3 cryptographic instructions.

Results. In Tables 5.2 and 5.3, we summarize the results of our measurements for
each parameter set. We compare the reference implementation [22] with our optimized
implementation, and calculate the improvement percentage as

Gain (%) =
Ref. Time−Our Time

Our Time
× 100

More detailed results, with concrete numbers, along with data on the most relevant sub-
algorithms can be found in Appendix A.

Falcon512
Algorithm Cortex-A57 Cortex-X2 Apple M1
Keygen 8% 3% 8%

Sign 44% 56% 79%
Verify 44% 33% 61%

Table 5.2: Summary of gains of our results comparing the C reference code with our
optimized ARMv8 implementation for Falcon512

Falcon1024
Algorithm Cortex-A57 Cortex-X2 Apple M1
Keygen 7% 3% 6%

Sign 36% 56% 78%
Verify 49% 32% 58%

Table 5.3: Summary of gains of our results comparing the C reference code with our
optimized ARMv8 implementation for Falcon1024

We also compare our optimized implementation using AES instructions for integer
sampling during key generation, which, as previously stated, we were not able to include
in the final key-generation code, and therefore serves as a separate result. Improvement
percentage is calculated in the same manner as before. Detailed results, including re-
sults for our SHAKE256-based implementation of integer sampling, can also be found in
Appendix A.

Parameter Set Cortex-A57 Cortex-X2 Apple M1
Falcon512 1179% 2058% 1746%

Falcon1024 655% 1283% 1145%

Table 5.4: Summary of gains of our results comparing the C reference code and our
optimized ARMv8 implementation for integer sampling in key generation

We note that these algorithms take around 20% of key generation time, and therefore
these optimizations are not only relevant but mean a gain of up to 14% to the algorithm
as a whole.
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Discussion. From our experimental results, we were able to see significant performance
improvements across all platforms on our primary targets, Sign and Verify. The M1
SoC was able to make the most of our optimizations due to its complete cryptographic
instruction set, accelerating both hashing and sampling, making this platform the best
performing for signature generation. Cortex-X2 lags behind the M1 chip on Sign due
to its pipeline issue with SHA-3 instructions, losing considerably in performance in the
HashToPoint algorithm. Cortex-A57 lacks SHA-3 instructions altogether, and is not able
to make the most of our optimized FFT instructions either, coming last in terms of
signature generation.

Verification, however, brought interesting results: Cortex-X2 was not able to perform
well with our optimizations for Decompress, and despite having a reasonable improvement
in NTT function timings, this improvement was less pronounced than it was on the other
platforms, and therefore had less accentuated gains. Finally, between the M1 SoC and
Cortex-A57, we once again notice the impact of SHA-3 instructions being available on
the former, increasing performance significantly more. We note that, since Verify is a
fast routine overall, small performance changes on its inner functions and sub-algorithms
have a great impact on the overall result.

Key generation makes use of our improvements for FFT and NTT functions, as well
as encoding and decoding; however, the bulk of the algorithm, namely solving the NTRU
equation, was not optimized, and therefore relied on the compiler’s capabilities of vector-
ization and using platform-specific instructions where appropriate.

Finally, our results regarding key generation’s integer sampling exemplify the power of
specialized instructions. We note that the reference results are similar for both parameter
sets since the authors use only a single RCDT, calculated using n = 1024, and sample
twice from it for n = 512, employing a result that states that the sum of two independent
values of standard deviation σ has a standard deviation σ

√
2, which is precisely the

standard deviation needed in the Falcon512 parameter set. Therefore, while the sampler
needs to sample half the values than it does for n = 1024, it samples twice for each value,
resulting in the same number of operations for both parameter sets.
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Chapter 6

Conclusion and Future Work

We have presented an optimized implementation of FALCON for the ARMv8-A architec-
ture that achieves up to 79% faster speeds for signature generation, and up to 61% faster
for verification. We have achieved this using techniques that leverage the platform’s capa-
bilities, such as loop vectorization using SIMD instructions, faster pseudorandom number
generation and hash computation using cryptographic instructions, among others.

We do note, however, that key generation still has a long way to go. We were not able
to implement new ideas for Keygen due to development time constraints, as well as not
being able to introduce our new AES-based sampling method into the final code. Even
so, we have prototyped and confirmed the viability of a few ideas, which we discuss next,
and leave as future work.

Vectorization. While FFT operations and similar sub-algorithms have been optimized,
there is still much that can be done in terms of vectorizing operations during key genera-
tion. When “small” polynomials are operated on (such as the NTT+RNS representation,
or when dealing with small coefficients), we might be able to improve performance through
SIMD instructions, in the same vein that was done for the two other main algorithms.

Arbitrary Precision Floating-Point Arithmetic. Another interesting idea would be
to use arbitrary precision floating-point arithmetic to compute the polynomial reduction
on Algorithm 3.4.3 (Lines 15 to 19) in a single step. We have prototyped this idea
using SageMath [47] and FLINT [27], and found out that when we are on the recursive
calls ranging from log n = 4 to log n = 1, the cost of using arbitrary precision becomes
noticeably smaller than the cost of computing k with double precision multiple times.
This may improve one of the most costly steps of key generation; however, it requires
either careful implementation or the usage of external libraries such as FLINT.

Tailoring RNS primes for ARMv8. A further optimization we propose is tailoring
the primes pj used by the Residue Number System to make full usage of the ARMv8
platform. The reference implementation uses a list of 521 32-bit primes to express the
polynomials, such that computations may be done even on lower-end chips and micro-
controllers, such as the Cortex-M4. However, we have prototyped a different prime list
using Sage, one that uses 150 64-bit primes and 225 32-bit primes, and guaranteed its
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correctness. The advantage of using this list is that we would be able to make full use of
both scalar and SIMD APUs: we can use SIMD to calculate 32x4-bit operations, while
scalar operations calculate values using 64-bit arithmetic. By parallelizing operations not
only through vectorization, but also making full use of the architecture’s capabilities by
using both APUs simultaneously, we believe NTT+RNS operations can be significantly
sped up.



55

Bibliography

[1] M. Ajtai. Generating hard instances of lattice problems (extended abstract). Proceed-
ings of the twenty-eighth annual ACM symposium on Theory of computing - STOC
’96, pages 99–108, 1996.

[2] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh Dang,
John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner,
Angela Robinson, and Daniel Smith-Tone. Status report on the first round of the
NIST post-quantum cryptography standardization process. Technical report, NIST,
2019.

[3] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh Dang,
John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner,
Angela Robinson, and Daniel Smith-Tone. Status report on the second round of the
NIST post-quantum cryptography standardization process. Technical report, NIST,
2020.

[4] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh Dang,
John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner,
Angela Robinson, and Daniel Smith-Tone. Status report on the third round of the
NIST post-quantum cryptography standardization process. Technical report, NIST,
2022.

[5] Arm. Arm’s solution to the future needs of ai, security and specialized computing is
v9. Arm Newsroom, 2021. https://www.arm.com/company/news/2021/03/arms-
answer-to-the-future-of-ai-armv9-architecture.

[6] L Babai. On lovász’ lattice reduction and the nearest lattice point problem. Combi-
natorica, 6:1–13, 1986.

[7] Elaine Barker and John Kelsey. Recommendation for Random Number Generation
Using Deterministic Random Bit Generators, 2015.

[8] Stephane Beauregard. Circuit for shor’s algorithm using 2n+3 qubits. arXiv, 2002.

[9] Daniel J. Bernstein and Tanja Lange (editors). eBACS: ECRYPT Benchmarking of
Cryptographic Systems, 2022.

[10] Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen, Joost Ri-
jneveld, and Peter Schwabe. The SPHINCS<sup>+</sup> signature framework.

https://www.arm.com/company/news/2021/03/arms-answer-to-the-future-of-ai-armv9-architecture
https://www.arm.com/company/news/2021/03/arms-answer-to-the-future-of-ai-armv9-architecture


56

In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’19, page 2129–2146, New York, NY, USA, 2019. Association
for Computing Machinery.

[11] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and Ronny Van
Keer. Keccak implementation overview, 2012.

[12] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and
Mark Zhandry. Random oracles in a quantum world. In Proceedings of the 17th Inter-
national Conference on The Theory and Application of Cryptology and Information
Security, ASIACRYPT’11, page 41–69, Berlin, Heidelberg, 2011. Springer-Verlag.

[13] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M.
Schanck, Peter Schwabe, and Damien Stehlé. CRYSTALS – Kyber: a CCA-secure
module-lattice-based KEM. In 2018 IEEE European Symposium on Security and
Privacy, EuroS&P 2018, pages 353–367. IEEE, 2018. http://cryptojedi.org/
papers/#kyber.

[14] Chitchanok Chuengsatiansup, Thomas Prest, Damien Stehlé, Alexandre Wallet, and
Keita Xagawa. Modfalcon: Compact signatures based on module-ntru lattices. Pro-
ceedings of the 15th ACM Asia Conference on Computer and Communications Secu-
rity, ASIA CCS 2020, pages 853–866, 10 2020.

[15] James W. Cooley and John W. Tukey. An algorithm for the machine calculation of
complex fourier series. Mathematics of Computation, 19:297–301, 1965.

[16] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gre-
gor Seiler, and Damien Stehlé. CRYSTALS – Dilithium: Digital signatures from
module lattices. Transactions on Cryptographic Hardware and Embedded Systems,
pages 238–268, 2018. http://cryptojedi.org/papers/#dilithium.

[17] Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. Efficient identity-based en-
cryption over ntru lattices. In Palash Sarkar and Tetsu Iwata, editors, Advances
in Cryptology – ASIACRYPT 2014, pages 22–41, Berlin, Heidelberg, 2014. Springer
Berlin Heidelberg.

[18] Léo Ducas and Thomas Prest. Fast fourier orthogonalization. In Proceedings of the
ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC
’16, page 191–198, New York, NY, USA, 2016. Association for Computing Machinery.

[19] Thomas Espitau, Pierre Alain Fouque, François Gérard, Mélissa Rossi, Akira Taka-
hashi, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu. Mitaka: A simpler, paral-
lelizable, maskable variant of falcon. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics), 13277 LNCS:222–253, 2022.

http://cryptojedi.org/papers/#kyber
http://cryptojedi.org/papers/#kyber
http://cryptojedi.org/papers/#dilithium


57

[20] Thomas Espitau, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu. Shorter hash-
and-sign lattice-based signatures. Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
13508 LNCS:245–275, 2022.

[21] OpenBSD Foundation. Openssh, dec 2021.

[22] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas
Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei
Zhang. Falcon: Fast-fourier lattice-based compact signatures over NTRU. Submission
to the NIST Post-Quantum Cryptography Standardization Project, 2020. https:
//falcon-sign.info/falcon-round3.zip.

[23] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Proceedings of the Fortieth Annual ACM
Symposium on Theory of Computing, STOC ’08, page 197–206, New York, NY, USA,
2008. Association for Computing Machinery.

[24] GNU. The gnu profiler, jan 2023.

[25] Google. Google benchmark, jan 2023.

[26] Morgane Guerreau, Ange Martinelli, Thomas Ricosset, and Mélissa Rossi. The hid-
den parallelepiped is back again: Power analysis attacks on falcon. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems, pages 141–164, 6 2022.

[27] W. B. Hart. Fast Library for Number Theory: An Introduction. In Proceedings of
the Third International Congress on Mathematical Software, ICMS’10, pages 88–91,
Berlin, Heidelberg, 2010. Springer-Verlag. https://flintlib.org.

[28] James Howe and Bas Westerbaan. Benchmarking and analysing the nist pqc finalist
lattice-based signature schemes on the arm cortex m7. Cryptology ePrint Archive,
2022.

[29] IBM. Ibm unveils new roadmap to practical quantum computing era; plans to deliver
4,000+ qubit system. IBM Newsroom, 2022. https://newsroom.ibm.com/2022-
05-10-IBM-Unveils-New-Roadmap-to-Practical-Quantum-Computing-Era-
Plans-to-Deliver-4,000-Qubit-System.

[30] Matthias J. Kannwischer, Richard Petri, Joost Rijneveld, Peter Schwabe, and
Ko Stoffelen. PQM4: Post-quantum crypto library for the ARM Cortex-M4.
https://github.com/mupq/pqm4.

[31] Emre Karabulut and Aydin Aysu. Falcon down: Breaking falcon post-quantum sig-
nature scheme through side-channel attacks. Proceedings - Design Automation Con-
ference, 2021-December:691–696, 12 2021.

[32] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671–680, 1983.

https://falcon-sign.info/falcon-round3.zip
https://falcon-sign.info/falcon-round3.zip
https://flintlib.org
https://newsroom.ibm.com/2022-05-10-IBM-Unveils-New-Roadmap-to-Practical-Quantum-Computing-Era-Plans-to-Deliver-4,000-Qubit-System
https://newsroom.ibm.com/2022-05-10-IBM-Unveils-New-Roadmap-to-Practical-Quantum-Computing-Era-Plans-to-Deliver-4,000-Qubit-System
https://newsroom.ibm.com/2022-05-10-IBM-Unveils-New-Roadmap-to-Practical-Quantum-Computing-Era-Plans-to-Deliver-4,000-Qubit-System
https://github.com/mupq/pqm4


58

[33] Philip Klein. Finding the closest lattice vector when it’s unusually close. In Proceed-
ings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’00, page 937–941, USA, 2000. Society for Industrial and Applied Mathematics.

[34] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational
coefficients. Mathematische Annalen, 261:515–534, 12 1982.

[35] Vadim Lyubashevsky. Fiat-shamir with aborts: Applications to lattice and factoring-
based signatures. In Mitsuru Matsui, editor, Advances in Cryptology – ASIACRYPT
2009, pages 598–616, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[36] Sarah McCarthy., James Howe., Neil Smyth., Séamus Brannigan., and Máire O’Neill.
Bearz attack falcon: Implementation attacks with countermeasures on the falcon
signature scheme. In Proceedings of the 16th International Joint Conference on e-
Business and Telecommunications - SECRYPT,, pages 61–71. INSTICC, SciTePress,
2019.

[37] Peter L. Montgomery. Modular multiplication without trial division. Mathematics
of Computation, 44:519–521, 1985.

[38] Arm Newsroom. Arm discloses technical details of the next version of the
arm architecture. https://web.archive.org/web/20111030002208/http:
//www.arm.com/about/newsroom/arm-discloses-technical-details-of-the-
next-version-of-the-arm-architecture.php, 2011. Accessed: 2023-02-23.

[39] National Institute of Standards and Technology - NIST. Post-Quantum Cryptog-
raphy, 2016. https://csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization.

[40] Chris Peikert. A decade of lattice cryptography. Foundations and Trends® in The-
oretical Computer Science, 10:283–424, 2016.

[41] Thomas Prest. Sharper bounds in lattice-based cryptography using the rényi diver-
gence. Advances in Cryptology – ASIACRYPT 2017, pages 347–374, 2017.

[42] Eun-Young Seo, Young-Sik Kim, Joon-Woo Lee, and Jong-Seon No. Peregrine: To-
ward fastest falcon based on gpv framework. Cryptology ePrint Archive, 2022.

[43] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing, 26:1484–1509, 10
1997.

[44] Douglas Stebila and Michele Mosca. Post-quantum key exchange for the internet and
the open quantum safe project. In Roberto Avanzi and Howard Heys, editors, Selected
Areas in Cryptography – SAC 2016, pages 14–37, Cham, 2017. Springer International
Publishing.

[45] Shuo Sun, Yongbin Zhou, Yunfeng Ji, Rui Zhang, and Yang Tao. Generic, efficient
and isochronous gaussian sampling over the integers. Cybersecurity, 5:10, 12 2022.

https://web.archive.org/web/20111030002208/http://www.arm.com/about/newsroom/arm-discloses-technical-details-of-the-next-version-of-the-arm-architecture.php
https://web.archive.org/web/20111030002208/http://www.arm.com/about/newsroom/arm-discloses-technical-details-of-the-next-version-of-the-arm-architecture.php
https://web.archive.org/web/20111030002208/http://www.arm.com/about/newsroom/arm-discloses-technical-details-of-the-next-version-of-the-arm-architecture.php
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization


59

[46] Shuo Sun, Yongbin Zhou, Rui Zhang, Yang Tao, Zehua Qiao, and Jingdian Ming.
Fast fourier orthogonalization over ntru lattices. Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 13407 LNCS:109–127, 2022.

[47] The Sage Developers. SageMath, the Sage Mathematics Software System.
https://www.sagemath.org.

[48] Raymond K. Zhao, Ron Steinfeld, and Amin Sakzad. Facct: Fast, compact, and
constant-time discrete gaussian sampler over integers. IEEE Transactions on Com-
puters, 69(1):126–137, 2020.



60

Appendix A

Experimental Data Tables

Falcon512

Algorithm
Cortex-A57 Cortex-X2 Apple M1

Ref. Ours Gain Ref. Ours Gain Ref. Ours Gain
Keygen 24872 22934 8% 5917 5733 3% 5669 5266 8%

Sign 1137 790 44% 223 143 56% 206 115 79%

Verify 147 102 44% 32.2 24.2 33% 27.3 17 61%

Table A.1: Benchmark results comparing the C reference code and our optimized ARMv8
implementation for the main algorithms of Falcon512. Timings are in µs.

Falcon1024

Algorithm
Cortex-A57 Cortex-X2 Apple M1

Ref. Ours Gain Ref. Ours Gain Ref. Ours Gain
Keygen 72035 67628 7% 18608 18056 3% 17283 16380 6%

Sign 2308 1695 36% 452 289 56% 414 233 78%

Verify 297 199 49% 66.3 50.2 32% 55 34.8 58%

Table A.2: Benchmark results comparing the C reference code and our optimized ARMv8
implementation for the main algorithms of Falcon1024. Timings are in µs.
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Falcon512

Sub-Algorithm
Cortex-A57 Cortex-X2 Apple M1

Ref. Ours Gain Ref. Ours Gain Ref. Ours Gain
FFT 9.884 7.424 33% 1.296 0.899 44% 0.924 0.635 46%

FFT−1 10.91 8.491 29% 1.275 0.930 37% 0.959 0.669 43%

ffSampling 622.9 395.5 58% 131.5 72.55 81% 132.2 72.63 82%

NTT 16.48 6.461 155% 3.044 1.284 137% 1.905 0.532 258%

NTT−1 15.89 6.531 143% 2.903 1.196 143% 1.847 0.567 226%

Montg. Mul. (NTT) 2.795 0.609 359% 0.640 0.107 498% 0.438 0.057 669%

HashToPoint 74.98 66.94 12% 19.55 18.11 8% 18.31 13.78 33%

Compress 6.211 6.169 1% 2.023 1.371 48% 1.278 0.973 31%

Decompress 7.858 8.301 −5% 1.461 1.518 −4% 1.409 1.100 28%

SignSampler 0.505 0.277 83% 0.103 0.052 96% 0.108 0.053 103%

Encode (Priv. Key) 4.113 2.215 86% 1.017 0.525 94% 0.876 0.312 181%

Decode (Priv. Key) 3.322 3.477 −4% 0.873 0.971 −10% 0.496 0.518 −4%
Encode (Pub. Key) 8.419 1.161 625% 1.413 0.276 413% 1.300 0.192 578%

Decode (Pub. Key) 4.089 1.236 231% 0.789 0.294 168% 0.489 0.209 134%

Table A.3: Sub-algorithm benchmark results comparing the C reference code and our
optimized ARMv8 implementation for Falcon512. Timings are in µs.

Falcon1024

Sub-Algorithm
Cortex-A57 Cortex-X2 Apple M1

Ref. Ours Gain Ref. Ours Gain Ref. Ours Gain
FFT 21.21 16.93 25% 2.777 1.990 40% 1.994 1.412 41%

FFT−1 23.44 19.06 23% 2.747 2.052 34% 2.052 1.496 37%

ffSampling 1248.6 802.0 56% 259.3 145.2 79% 261.9 142.4 84%

NTT 35.39 13.88 155% 6.528 2.799 133% 4.014 1.164 245%

NTT−1 33.74 13.91 143% 6.116 2.598 135% 3.864 1.235 213%

Montg. Mul. (NTT) 5.566 1.188 368% 1.272 0.213 497% 0.871 0.113 669%

HashToPoint 147.9 126.9 17% 38.32 36.90 4% 37.01 27.63 34%

Compress 11.89 11.48 4% 3.627 2.413 50% 2.284 1.679 36%

Decompress 20.87 13.33 57% 3.464 3.026 14% 3.224 2.197 47%

SignSampler 0.495 0.275 80% 0.101 0.051 97% 0.106 0.051 106%

Encode (Priv. Key) 9.128 4.226 116% 1.918 1.034 85% 1.274 0.617 106%

Decode (Priv. Key) 8.022 6.942 16% 1.680 1.897 −11% 0.975 1.013 −4%
Encode (Pub. Key) 16.83 2.275 640% 2.818 0.551 412% 1.711 0.360 375%

Decode (Pub. Key) 8.159 2.452 233% 1.581 0.586 170% 0.971 0.414 135%

Table A.4: Sub-algorithm benchmark results comparing the C reference code and our
optimized ARMv8 implementation for Falcon1024. Timings are in µs.



62

Algorithm
Cortex-A57 Cortex-X2 Apple M1

n = 512 n = 1024 n = 512 n = 1024 n = 512 n = 1024

Reference 348 348 96.7 97.7 53.0 53.4

Ours + SHAKE 127 242 37.6 72.3 18.2 35.3

Ours + AES 27.2 46.1 4.48 7.06 2.87 4.29

Gain (Ref. to AES) 1179% 655% 2058% 1283% 1746% 1145%

Table A.5: Benchmark results comparing the C reference code and our two optimized
ARMv8 implementations for integer sampling in key generation. Timings are in µs.
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