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Resumo

O desenvolvimento de programas paralelos é amplamente utilizado em aplicações cientí-
ficas, desde que esse tipo de aplicação demanda um processamento de alto desempenho.
OMPC é um runtime distribuído baseado em tarefas que permite o uso de um modelo
de programação de tarefas OpenMP para paralelizar o código. Ao contrário das tarefas
clássicas do OpenMP, o OMPC distribui a computação entre computadores heterogêneos,
permitindo explorar ambos os níveis de paralelismo na thread e no processador, lidando
com as comunicações MPI por conta própria. O desenvolvimento do código é mais fácil,
já que o usuário não precisa programar MPI. Pode ser desafiador depurar e entender o
código paralelo, pois a execução do código ocorre ao mesmo tempo em diferentes núcleos
do processador ou até mesmo diferentes computadores. As ferramentas de perfilamento de
código ajudam os usuários com essas questões, uma vez que fornecem informações sobre
gerenciamento de memória, transferências de dados e dos eventos executados. O usuário
pode usar os resultados de perfilamento para realizar possíveis melhorias de desempenho
ou detectar erros em aplicações paralelas. Entretanto, a maioria dessas ferramentas não é
projetada para atender a aplicativos baseados em tarefas, e os usuários destes runtimes,
como o OMPC, enfrentam mais dificuldades. A proposta deste trabalho foi desenvolver
uma ferramenta de perfilamento para atender às necessidades de runtimes baseados em
tarefas. Este estudo examinou quais métricas e funcionalidades já eram oferecidas pe-
las ferramentas existentes e quais poderiam ser utilizadas e aprimoradas para aplicativos
baseados em tarefas distribuídas.



Abstract

Parallel program development is widely used in scientific applications since this type of
application demands high-performance processing. OMPC is a task-based distributed
runtime that permits using an OpenMP task programming model to parallelize the code.
Unlike OpenMP classic tasks, OMPC distributes computation across heterogeneous com-
puters, permitting explore both parallelism levels at thread and processor, handling MPI
communications on its own. Code development is easier since the user does not need to
program MPI. Debugging and understanding parallel code can be challenging since the
execution of the code occurs at the same time in different cores or even computers. Profil-
ing tools help users address this as provide information about memory management, data
transfers, and executed events. The user can use the profile results to perform possible
parallel performance improvements or detect application errors. However, most profil-
ing tools are not designed to suit task-based applications, and users of runtimes such
as OMPC face more difficulties. The purpose of this work was to develop a profile tool
to attend to the needs of task-based runtimes. This study examined which metrics and
features were already offered by the existing profiling tools and which could be utilized
and improved for distributed task-based applications.



List of Figures

2.1 Task Graph Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Critical Path Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 OMPC Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Profiling Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Profiling Workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Call-graph and Flat Profile. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Steps to generate profile files. . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 OMPC Bench usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Visualization Tool components . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Developer timeline version . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5 User timeline version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.6 OMPC Events Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.7 OMPC Data Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.8 Arrows of user version timeline. . . . . . . . . . . . . . . . . . . . . . . . . 41
4.9 Profile symbol usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.10 Simple Task Graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.11 Scheduling Task Grap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.12 Computation and Parallel Time. . . . . . . . . . . . . . . . . . . . . . . . . 45
4.13 Communication Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.14 Graph Metric Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 Timeline SGEMM - All Events. . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Timeline SGEMM - First and Last Events. . . . . . . . . . . . . . . . . . . 51
5.3 Timeline SGEMM - Zoomed. . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4 Timeline SGEMM - Dependencies. . . . . . . . . . . . . . . . . . . . . . . 52
5.5 Timeline SGEMM - Head Process Begin. . . . . . . . . . . . . . . . . . . . 53
5.6 Timeline SGEMM - Head Process Execution. . . . . . . . . . . . . . . . . 54
5.7 Timeline SGEMM - Head Process End. . . . . . . . . . . . . . . . . . . . . 54
5.8 Random Spread Graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.9 Random Nearest Graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



List of Tables

3.1 Profiling Tools Overall Information. . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Profiling GUI Tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Profile Tools Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Profile Tools Task Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 SGEMM 32k - Time and Efficiency Metrics . . . . . . . . . . . . . . . . . . 50
5.2 SGEMM - Quantitative and Time Metrics . . . . . . . . . . . . . . . . . . 55
5.3 SGEMM - Efficiency Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4 SPOTRF - Quantitative and Time Metrics . . . . . . . . . . . . . . . . . . 56
5.5 SPOTRF - Efficiency Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.6 SPOTRF EXP 1 - Task Metrics . . . . . . . . . . . . . . . . . . . . . . . . 58
5.7 SPOTRF EXP 2 - Task Metrics . . . . . . . . . . . . . . . . . . . . . . . . 58
5.8 Graph Metric - Random Nearest. . . . . . . . . . . . . . . . . . . . . . . . 59
5.9 Graph Metric - Random Spread. . . . . . . . . . . . . . . . . . . . . . . . . 60



Contents

1 Introduction 12
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Parallel programming models 15
2.1 Parallelism Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Loop parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Task parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Implementation of Parallelism Models . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 OMPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Profiling 22
3.1 MPI+X Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Task Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Comparative analysis of profiling tools . . . . . . . . . . . . . . . . . . . . 26

4 OMPC Profiling tools 30
4.1 OMPC Profile Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Visualization Tool Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 OMPC Timelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.1 OMPC Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.2 OMPC Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.3 OMPC Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.4 OMPC Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.5 Profile Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Task Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5 Profile metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5.1 OMPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5.2 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5.3 Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Experiments 48
5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 OMPC Plasma - Timeline Analysis . . . . . . . . . . . . . . . . . . . . . . 49
5.3 OMPC Plasma - General Metrics . . . . . . . . . . . . . . . . . . . . . . . 53
5.4 OMPC Plasma - Task Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5 OMPC Task Bench - Graph Metrics . . . . . . . . . . . . . . . . . . . . . . 59



6 Conclusion 62
6.1 Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Bibliography 65



12

Chapter 1

Introduction

The development of parallel programs has increased significantly due to the high process-
ing demand of scientific applications. These applications perform massive computations
on large amounts of data and need efficient parallelization to execute in a timely manner.
Compute is distributed across multiple cores and computers, using heterogeneous hard-
ware and devices to accelerate processing. There are several parallelization paradigms
with two widely used libraries to address it: OpenMP [14] and MPI [17], compatible with
C, C++, and Fortran languages. The Message Passing Interface (MPI) defines the syn-
tax and semantics of library routines used to write programs that can communicate by
message-passing. It permits exploring the parallelism between processes through defined
routines. MPI is extensively used for programming distribution in computer clusters,
employing message passing to transfer data and computation among nodes. On the other
hand, OpenMP is an API for shared-memory parallel programming and allows distribut-
ing computation across threads. Despite these two libraries being designed for different
proposals, it is common to use a hybrid MPI+OpenMP implementation to explore both
levels of parallelism (by threads or processes).

Loop-based parallelism is a common parallelization approach that consists of divid-
ing loop iterations among computer threads. Although it is usually easier to program,
data dependencies across iterations can make it difficult to implement. In this case, a
more suitable approach is task parallelism since it permits defining pieces of code to be
executed in parallel, called tasks, with data dependencies between them. Regardless of
the limitation of being designed to work only at the thread level, OpenMP allows the
development of both methods of parallelization through a work-sharing loop construct
or a task construct. The work-sharing loop construct divides the iterations of an asso-
ciated loop across threads. Alternatively, the task construct distributed pieces of code
defined by a structured block among the computer threads and presents the possibility
of defining data dependencies between them. Despite providing a more flexible way to
parallelize the code, task construct adds more complexity to writing the code. OpenMP
provides pragmas1 to perform parallel operations in C and C++ programs. In particular,
programmers can describe the dependencies between tasks, permitting the use of more
complex parallelism patterns.

1Preprocessor instructions, also known as compiler directives.
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Indeed, a hybrid MPI+OpenMP implementation allows a full parallel exploration
through thread and process levels, but it increases the complexity of code development. In
such applications, users need to beware of communication between computers, choose the
best workload division, often with different hardware, and face problems with data access
and network. Furthermore, the design of a parallel system must attempt some problems
with data management, synchronization, load balancing, and race conditions, among
others. OpenMP Cluster [35] (OMPC) is a distributed task-based runtime developed to
address these issues. It permits the implementation of parallel programs with computation
distributed via OpenMP task directives. However, this runtime distributes tasks across
the computer nodes of clusters, not just in a single computer, like the classic OpenMP task
directive. Despite the programmer using only OpenMP to develop the code, the OMPC
runtime automatically handles the load-balancing and the communication between the
cluster nodes through MPI.

Debugging and improving parallel codes is difficult since each piece of code running in
parallel produces its own results and can share variables or memory with another process
or thread. Profiling tools provide a better understanding of code behavior, facilitating
the implementation of these programs and helping to debug the code, evaluate the perfor-
mance, detect bottlenecks and overheads, and others. These tools can provide a time and
memory analysis. Time analysis shows how much time is spent on each function of the
code or in memory transfers, how long the processes or threads were idled (without doing
computations while waiting to receive data, for example), and so on. As a complement,
memory analysis can provide the size of transferred messages, the total number of times
the user accesses such data or memory region, the percentage of cache hits and fails,
and others. Also, the profiling tool can present the results in several ways: a table with
profiling statistics, and a timeline with profiling events2 across the time, a call graph of
the execution, and so on. There are several types of profilers such as statistical profilers
(using operating system interrupts to sample the execution and usually do not need to
instrument the binary or source code) and instrumentation profilers (adding instructions
to the source code to perform some measurement).

The most used profiling tools by the industry focus on Hybrid MPI+X programs,
featuring process communication and thread duration, where X represents another parallel
library like OpenMP. Such tools do not supply features specific for task programming, in
most cases, even if there is a monitoring of the start and end of a task, they hardly show
their dependencies as well, for example. It is difficult to profile task-based applications
with these tools, so programmers would highly benefit if more specific task information
were provided.

During the development of the project, an article was published on the OMPC [35],
of which I was a co-author, and a poster with a short-paper called "Profiling Analysis for
a Distributed Task-Based Runtime" was accepted in the CARLA 2022 [4], of which I was
the main author.

2In profiling tools, events are relevant information that occurs at a certain moment of execution.
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1.1 Motivation

Due to the lack of analysis available in profiling tools focused on task programming,
the motivation of this study is to develop profile tool features to address the needs of
task-based runtimes, as metrics and additional information on the timeline. Despite the
chosen runtime is the OMPC, the developed concepts could be applied to other task-based
runtimes.

1.2 Objectives

This study aims to provide new profile features related to applications based on task
parallelism and running on HPC clusters, such as metrics and information on the time-
line. To achieve this goal, it was necessary to research the parallel code profiling needs of
distributed tasks-based programs and how to improve the existing tools. This work pro-
poses to answer the following research question: what metrics and features can be helpful
for programmers to understand the behavior of parallel applications based on tasks to
improve their performance? Metrics of parallel efficiency, such as load balance, commu-
nication, and computation efficiencies are offered by some tools and also can be helpful
to this type of application. Furthermore, the timeline view of events, commonly provided
by the existing profiling tools, can be improved by adding task-related events. Also, it is
possible to perform some analysis in the task graph to extract useful parallel information,
such as the critical path (i.e. the task execution path that takes longer to run).

1.3 Thesis Structure

This thesis is structured as follows: Chapter 1 presents an introduction and motivation
for carrying out the study; Chapter 2 describes the programming models as well as their
implementation with emphasis on the OMPC runtime. Chapter 3 provides an overview
of profiling and existing tools. In Chapter 4, the OMPC profiling tools developed during
the study are presented. In Chapter 5, the results of the profiling metrics developed are
presented. Finally, Chapter 6 concludes the study.
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Chapter 2

Parallel programming models

Developers face several difficulties to parallelize their applications, mainly related to which
programming model is more suitable to extract the best performance. The parallel pro-
gramming model defines the work distribution across different computers, devices, pro-
cesses, or threads. Typically, loops are well-known parallelization hotspots, however, the
decision about the workload division directly affects the performance. Commonly models
to divide the work are loop parallelism, task parallelism, or a combination of both, and it
is important to select the most appropriate combination of libraries and runtimes for the
chosen model. Section 2.1 describe these models and Section 2.2 presents some libraries
and runtimes used to implement them.

2.1 Parallelism Models

2.1.1 Loop parallelism

The loop parallelism consists in dividing the loop by sections of iterations and then dis-
tributing these sections among computer threads. For example, it is possible to define
that two threads will process the work, with one of them processing the odd iterations
and the other the remaining. Or, simply dividing equally the iterations across the avail-
able threads. The advantage of this approach is that it is usually simple to implement,
although its limitation is the work division if the iterations have data dependencies on
each other. For example, calculating matrix multiplication is a good application of this
method, since it is possible to build a loop in which the iterations do not depend on each
other. On the other hand, it is difficult to use it for a Fibonacci numbers generator,
since each iteration depends on two previous iterations. The OpenMP standard specifies
a compiler directive to easily parallelize loops and also permits users to choose how the it-
erations will be divided. Listing 2.1.1 shows an example of a square matrix multiplication
algorithm using the loop parallelism of OpenMP. Parallel for compiler directive created
the threads that consume and execute each iteration of the loop from line 2.

1 #pragma omp p a r a l l e l for
2 for ( int i =0; i<SIZE ; i++)
3 for ( int j =0; j<SIZE ; j++)
4 for ( int k=0; k<SIZE ; k++)



16

5 C[ i ] [ j ] += A[ i ] [ k ] ∗ B[ k ] [ j ] ;

Listing 2.1: Square matrix multiplication algorithm using the loop parallelism of OpenMP,
written in C language. The product of matrices A and B is stored in matrix C. The
directive divides the loop iterations across the computer threads. Iterations are not
dependent on each other.

2.1.2 Task parallelism

Task parallelism consists in defining pieces of codes, called tasks, that will be executed
in parallel. This approach is more flexible since it is possible to define dependencies
between different tasks and runtime can schedule tasks satisfying these dependencies.
The OpenMP standard specifies another compiler directive to define tasks with depen-
dencies on each other, regardless of the limitation that the execution of tasks is dis-
tributed only at the thread level. Listing 2.1.2 presents an example of calculating distance
in a binary tree using OpenMP tasks. The calculate_distance_from_root function
calls calculate_distance for the root node, with distance starting at 0. Parallel com-
piler directive created the threads that consume and execute each task generated in the
calculate_distance function.
1 void ca l cu l a t e_d i s t anc e ( node ∗ n , int parent_distance ) {
2 n−>di s t ance = parent_distance + 1 ;
3
4 i f (n−>l e f t != NULL)
5 #pragma omp task
6 ca l cu l a t e_d i s t anc e (n−>l e f t , n−>di s t ance ) ;
7 i f (n−>r i gh t != NULL)
8 #pragma omp task
9 ca l cu l a t e_d i s t anc e (n−>right , n−>di s t ance ) ;

10 }
11
12 void ca lculate_distace_from_root ( node ∗ root ) {
13 #pragma omp p a r a l l e l
14 #pragma omp s i n g l e
15 ca l cu l a t e_d i s t anc e ( root , 0) ;
16 }

Listing 2.2: Recursive function for calculating distance in binary tree using OpenMP task
parallelism, written in C language. The distance of the child nodes is calculated through
the task directive. In this case, it was not necessary to define any dependencies.

Due to difficulties in ensuring that dependencies are created properly and understand-
ing task execution, it is common to create a graph representation. Nodes represent tasks
and edges represent dependencies. Figure 2.1 shows an example of a task graph and how
it can be executed using two threads. Note that the order of execution must consider the
task’s graph dependencies, i.e. task 5 can only be executed after task 2 and task 1 must
be executed before tasks 3 and 4. As in this example, other information can be added to
the graph, such as task time or the size of the transferred data. In addition, it is possible
to extract useful information for code optimization, such as the critical path, described
in the following section.
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Figure 2.1: The top side of the Figure shows a task graph with its dependencies. An
example of a possible execution schedule for this graph is shown at the bottom, considering
one process running two threads. Note that the duration of tasks is the same in this
representation, which does not occur in real executions.

Critical path

The critical path is the most time-consuming path in a task graph, therefore it is the
path that dominates the parallel time consumption. Determining the critical path of a
task application is important because its reduction will also decrease the parallel time
and consequently optimize the application. However, it may not be possible to reduce
the critical path, indicating that it is impossible to improve the application performance.
In this case, increasing the number of computer cores will not lower the application time.
Moreover, even if the reduction is possible it may not affect application performance
significantly, since other paths may have similar times. Figure 2.2 presents an example
of critical path calculation from a graph obtained from the Task Bench [31] application
profiled using OmpTracing [28], a profiling tool for OpenMP programs developed in our
previous work.

This work [34] presents an algorithm that uses program activity graphs (PAGs) to
calculate the critical path of distributed programs. It uses the Charlotte distributed
operating system, in which the basic communication primitives are messages of send and
receive, and extract PAGs from the IPS performance measurement tool. Another similar
method is present in this study [12] that extracts performance indicators from a critical
path analysis of Scalasca’s parallel trace replay. Scalasca [16] is a performance analysis
tool that includes call-path profiling support. Both studies extract the critical path of
distributed programs and do not address task model programming.

The determination of the critical path in many studies focuses on calculating it before
its execution to schedule tasks or extract it from the program execution log. In this
dissertation, the critical path calculation is similar to this second approach, centering on
obtaining it from the task graph after the program has finished executing.
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Figure 2.2: A graph from the Task Bench application obtained through OmpTracing. The
graph shows the task’s duration, start, and end time. Tasks and dependencies highlighted
in blue correspond to the critical path. In this case, the critical path is calculated using
just the elapsed time.

2.2 Implementation of Parallelism Models

There are several libraries that can be used to implement the programming models de-
scribed. MPI is widely used combined with another library, which is typically represented
as an MPI+X implementation, where X is another parallel library like CUDA, OpenMP,
OpenCL, OpenACC, etc. These different libraries allow parallelism exploration on differ-
ent heterogeneous devices and computers.

Some runtimes propose their own implementation of the task-based parallelism model,
relying on different programming languages or libraries. As examples, there are Legion [8],
StarPU [7], Charm++ [18] and OMPC [35]. Legion is a C++ runtime that includes task
and data parallelism, organized around logical regions to perform computations. StarPU
is a runtime system for heterogeneous platforms with CUDA or OpenCL accelerators.
Charm++ is a task-based runtime that provides a separation between sequential and
parallel objects. OMPC is a runtime that allows the distribution of tasks using OpenMP
directives, hiding the MPI implementation complexity from the user. OMPC’s advantage
over these other runtimes is that it relies on the OpenMP standard, which is one of the
most popular parallel programming models. The following section further describes the
OMPC runtime.
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2.2.1 OMPC

OpenMP Cluster (OMPC) is a task-based distributed runtime that allows cluster pro-
gramming through OpenMP directives. It is built on top of LLVM [22] as a new device
plug-in built around the original OpenMP runtime. In a classic OpenMP implementation,
the directives are designed for shared memory programming, that is, at the thread level,
or for use with devices, such as GPUs. Applications that run in a distributed environment
commonly associate OpenMP with MPI, distributing the application on different devices
through MPI messages. However, the user has to program at a low level how the data
will be distributed and communicated: should program a matching reception message for
every send message and implement the load-balancing by hand. So, the code can end up
inefficient and error-prone, and writing it becomes much more complex when compared
to just using OpenMP directives. OMPC, on the other hand, allows distributed program-
ming by creating tasks using the OpenMP target directive, without having to deal with
scheduling and data communication. It uses an MPI-based event system that transfers
tasks and data to the nodes, and a HEFT-based[33] algorithm for scheduling tasks. In
addition, it has a fault tolerance mechanism.

In the classic OpenMP programming model, tasks are created by a control thread and
executed by the worker threads using a work-stealing algorithm to schedule tasks. When a
worker thread finishes executing all tasks that are attributed to him, it can steal tasks from
other worker threads. This approach is reasonable in multi-threaded applications since
the shared memory makes communication between threads fast. However, in applications
running in distributed environments, transferring data between nodes can be highly costly
causing large overheads that significantly impact application performance. On the other
hand, the OMPC schedule algorithm was developed in order to reduce the communication
between the nodes. It adopted the HEFT algorithm to static schedule tasks to worker
nodes, that is, tasks are dispatched to their worker nodes for execution only after the task
graph was entirely constructed. Hence, tasks can be allocated in such a way as to reduce
communications between nodes.

The way to program with OMPC is the same as the classic OpenMP target program-
ming which was introduced in the specification of OpenMP v4.0 to program accelerators,
especially GPUs. So the programming model is the same: target directives are used to
determine tasks and map clauses for sending and receiving data. The nowait clause elim-
inates the implicit barrier at the end of a target construct, permitting that a parent task
can continue its execution even if a target task is not yet finished. OMPC was designed
so that programmers can use a second level of parallelism in each cluster node with any
combination of OpenMP or CUDA. The Listing 2.2.1 presents an example of a matrix
multiplication function written with two parallelism levels. The first level of parallelism
divides the multiplication into blocks represented by the loops in lines 4, 5, and 7, with
the creation of the task in line 10. In this line, dependencies and data mapping are also
defined. In line 14, the second level of parallelism is defined, iterating over the blocks.
Alternatively, the multiplication of the inner blocks can be implemented using a call to
the BLAS [10] or cuBLAS [5] libraries for a more efficient implementation.

1 void BlockMatMul ( BlockMatrix &A, BlockMatrix &B, BlockMatrix &C) {
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2 #pragma omp p a r a l l e l
3 #pragma omp s i n g l e
4 for ( int i = 0 ; i < N / BS ; ++i )
5 for ( int j = 0 ; j < N / BS ; ++j ) {
6 f loat ∗BlockC = C. GetBlock ( i , j ) ;
7 for ( int k = 0 ; k < N / BS ; ++k) {
8 f loat ∗BlockA = A. GetBlock ( i , k ) ;
9 f loat ∗BlockB = B. GetBlock (k , j ) ;

10 #pragma omp ta rg e t depend ( in : ∗BlockA , ∗BlockB ) \
11 depend ( inout : ∗BlockC ) \
12 map( to : BlockA [ : BS∗BS ] , BlockB [ : BS∗BS ] ) \
13 map( tofrom : BlockC [ : BS∗BS ] ) nowait
14 #pragma omp p a r a l l e l for
15 for ( int l = 0 ; l < BS ; l++)
16 for ( int m = 0 ; m < BS ; m++)
17 for ( int n = 0 ; n < BS ; ++n)
18 BlockC [ l + m ∗ BS ] += BlockA [ l + n ∗ BS ] ∗ BlockB [ n + m ∗ BS ] ;
19 }
20 }
21 }

Listing 2.3: Example of a block matrix multiplication, extracted from the OMPC
documentation. Matrix A is multiplied by B and stored in C. N represents the matrix
size and BS represents the block size.

OMPC uses two types of processes: a head and several workers. Each process be-
longs to a cluster node and has its own set of threads. The head process is responsible
for offloading tasks and data, while worker processes execute these tasks, written with
OpenMP target directive. Figure 2.3 shows the relation between OpenMP code and pro-
cesses/nodes. The OpenMP program runs in the head process (1), which creates the tasks
graph (2) and defines which tasks are executed in each worker process, considering data
dependencies and order of execution. The OpenMP target map directive defines what
data is sent to the worker processes, for which the runtime creates MPI Send/Receive
messages. Tasks created by OpenMP’s target directive, or target nowait, are executed
in worker processes, created by the runtime in the head process via MPI. If the user has
defined a second level of parallelism in the tasks, it is possible to use GPU devices with
OpenCL or CUDA. The head process is responsible for coordinating all execution and
sending/receiving data from worker processes. Hence, after completing the computation
of the task, the head process receives the results through the MPI messages. In addi-
tion, it can also order the sending of data between workers (3), defined as the forward
operation. I.e., when a task depends on a result that was produced by a different worker
process.

The amount of threads that each process has is defined by the user through environ-
ment variables, and different amounts can be defined for different types of threads. The
head process creates a control thread and several worker threads, while the worker pro-
cess creates data and executes event handler threads and a gate thread. The differences
between these types of threads are described in Section 4.3.1. The runtime was designed
so that any OpenMP code was compatible. Due to its flexibility and ease of use, it is an
excellent alternative for exploring task scheduling and for studying metrics and profiling
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Chapter 3

Profiling

Understanding the behavior of a parallel application may not be an easy task, as the exe-
cution is divided across the computer’s cores. In distributed environments, it is even more
complicated because there is heterogeneity of resources, as hardware and clock differences.
It is difficult to verify the correctness of the code, what data each thread computes, and
how the memory is accessed. Profiling tools were developed to address these issues, help-
ing to debug the application, analyze performance, and detect bottlenecks and overheads.

There are several models of monitoring code, including event-based, statistical, or
instrumentation profiling. Event-based tools achieve profile information when certain
events start or end. The monitored events depend on how the application was written
and the runtime used. In this model, the order in which events occur is also monitored.
Statistical and instrumentation profiling, on the other hand, obtain information through
operating system interrupts and by adding profiling code to source code, respectively.
Note that a profile tool can implement more than one model. Figure 3.1 presents a
comparison of behavior between these three models. The event-based profile monitors
events that vary depending on the application and runtime. For example, common events
to be monitored are the start and end of parallel regions, the creation, and execution
of tasks, etc. Statistical profiles collect samples of the execution state at each periodic
operating system interrupt. The samples collect depend on the tool and the type of
operating system used. Instrumentation profiles add instructions to the program manually
(the user himself chooses the instrumentation points) or automatically.

Despite the behavioral differences, the profiling workflow is quite similar and consists
of: 1 - Writing the parallel code; 2 - Instrument the code (optionally, in profilers that
support it); 3 - Compile the code with support for the chosen profile tool (optionally, since
in entirely statistical profiles, this step is usually unnecessary); 4 - Execute the application
(in statistical profiles the application is executed through the tool); 5 - Collect profiling
results; 6 - Visualize and analyze these results in order to find optimization points (in this
step it is possible to use a tool to post-process the files); 7 - Modify the code to improve
performance; 8 - Go back to step 2 to check if there were improvements. Figure 3.2
summarizes this process in a diagram.

In addition, the tool can also have different levels of profiling, such as per process
(typically monitoring MPI calls), threads, or events/tasks. Due to these different types
and levels of analysis, the profile results can be really extensive and presented in many
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Figure 3.1: The behavior of each profiling model: event-based, statistical or instrumen-
tation profile. The event-base profile only presents examples of common events to be
monitored, as each tool will present its own set of events.

Figure 3.2: The profiling workflow.
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Figure 3.3: Call-graph and Flat profile obtained from GVProf documentation.

different ways. Some of the more common ones include a call graph or flat profile, both of
which show the cumulative time of function calls, a task graph (nodes represent tasks and
edges represent data dependencies), a timeline (events as colored bars, representing the
duration and moment that occurred), and statistical graphs. Figure 3.3 shows an example
of a call-graph and flat profile extracted from the documentation of the GVProf [36] tool.
The call graph shows the time spent on functions and their calls. On the other hand, a
flat profile only shows the time spent on each function. Figure 2.2 shows an example of a
task graph obtained through OmpTracing and in Section 4.3 there are several examples
of OMPC timelines.

Profiling tools can provide analysis of time, hardware (energy measurements, frequency
monitoring, etc), memory (total memory usage, memory leak, data redundancies, etc),
and metrics (load balance efficiency, communication efficiency, and others). This can lead
to another difficulty: how to interpret these results and modify the code to achieve a
performance gain. Also, monitoring a profiling tool adds overhead to the application and
can produce large traces, impacting post-analysis scalability. In the following sections,
some profiling tools and a comparative analysis of them are presented.

3.1 MPI+X Profiling

Due to the complexity of hybrid MPI+OpenMP programs, using multiple ways of per-
formance analysis is quite common. Several profiling tools are used to assist with this
analysis, each of them providing specific efficiency metrics. The Performance Optimi-
sation and Productivity (POP) Centre of Excellence in HPC [11] divides these metrics
into two categories: parallel efficiency and computation efficiency. The first one reflects
how well parallelized the code is, split into load balance efficiency and communication
efficiency. The second reflects how well the computation scales as the number of process-
es/threads increases, split into instruction scaling and instructions per cycle scaling. The
POP group developed PyPOP, a python package that calculates these and other metrics
from Extrae[26] traces, designed to be used with Jupyter notebooks.

Score-P [21] is a joint performance measurement infrastructure for Periscope [9],
Scalasca [16], TAU [30], and Vampir [20], intended to be used with C/C++ and For-
tran codes. It was designed to collect data such as times, communication metrics, or
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hardware counters, of OpenMP or MPI applications. The user needs to instrument the
application to collect measurement data, stored in the OTF2, CUBE4, or TAU snapshot
formats or queried via the online access interface. POP Metrics, present previously, can
be automatically calculated using Scalasca.

Extrae is a performance analysis tool that generates trace files for Paraver[27] tool. It
supports MPI, OpenMP, pthreads, OmpSs, and CUDA libraries. Extrae allows users to
manually instrument the application to extract information about a specific part of the
code or to use sampling mechanisms to achieve performance data. The monitors added by
Extrae provide performance and counter metrics of multiple components of the system,
collected using PAPI and the PMAPI interfaces, and accurately measure time through the
timestamp mechanism. Paraver is part of the CEPBA-Tools toolkit and provides a trace
view of performance data achieved with Extrae. It offers a wide set of time functions, a
filter module, and a mechanism to combine two timelines, displaying a large number of
metrics related to workload, application, task, and thread. Paraver provides two main
displays, a timeline that represents the application processes behavior over time, and a
statistics display with numerical analysis of the user-selected region. It shows information
about the system, node, and CPU, such as time-dependent values (semantic values) and
communication lines. Also, a set of building blocks (filter and semantic modules) are
available to be combined, permitting transform the trace in the visualization process.

HPCToolkit [6] is a very complete tool for profiling hybrid MPI+OpenMP that pro-
vides measurement, analysis, attribution, and presentation of application performance.
It provides two presentation tools to analyze the profiling results, the hpcviewer, and
hpctraceview. The hpcviewer presents some performance metrics mapped to a program’s
source code, such as the costs of an execution’s dynamic calling contexts, for example. On
the other hand, the hpctraceview presents a diagram that shows the parallel execution
over time. The programmer can use these analyses to detect bottlenecks and increase
parallel performance.

TAU [30] is another very complete and well-known profiling tool for performance
analysis in hybrid MPI+OpenMP programs. This tool provides several analysis metrics
and profiling variants such as callpath profiling (distribution of performance along the
event calling paths), calldepth profiling (distribution of performance across program parts
from a top-down hierarchical perspective), and phase profiling (performance data relative
to execution state). Also, it provides a tracing view of the events that characterize the
execution.

Timemory [25] is a modular performance analysis for HPC, written in C ++ 14. It
is a modular system that uses template metaprogramming for user-defined performance
measurements and analyses, available for code written in C, C++, Python, and Fortran.
Timemory supports interoperability with CUDA, MPI, UPC ++, and several forms of
multi-threading. It provides a common instrumentation interface that permits multiplex-
ing analysis tools and performance measurement. Timemory aims to supply the needs
for composite components, enabling the creation of a set of complementary features with
different capabilities that can be used in specific use-case scenarios. It allows several ways
of instrumentation profiling and the authors are currently developing statistical profiling.
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3.2 Task Profiling

Charm++ [18] is a task-based runtime, an portable parallel programming language based
on C++ that provides a separation between sequential and parallel objects. Projections[19]
is a very complete parallel performance analysis framework used to profile Charm++ ap-
plications. It has an event tracing component that allows the user to control the informa-
tion generated and a Java-based visualization and analysis component with several view
options. Projections is simple to use, the user only needs to link the application with the
trace generation module. The performance views available are quite diverse: graphs (data
breaking by intervals), a timeline of processors, usage profile (percentage-wise what each
processor spends its time), communication properties and time, histograms (to examine
performance property distribution), performance counters, animations, and others.

Legion [8] programming model is a C++ runtime that includes task and data paral-
lelism. This runtime is organized around logical regions to perform computations, with
independent data, tasks, and functions. Legion includes a task-level profiler called Legion
Prof, and it is compiled by default. Legion Prof provides logs in a compressed binary for-
mat using ZLIB and performance timelines. Each processor is related to one timeline that
shows operations performed. The timeline provides a utilization graph of the memories
and processors during the run and other additional information.

StarVZ [29] is a performance analysis tool for hybrid CPU/GPU task-based applica-
tions. It is designed to attend StarPU [7] applications, providing an in-depth performance
analysis to address problems of task dynamic scheduling and task irregularities. StarPU
is a runtime system for heterogeneous platforms with CUDA or OpenCL accelerators.
StarVZ Framework is publicly available as an R package and exploits the application
structure, runtime system, and hardware information. It provides original application-
oriented panels in two visualization groups, runtime-oriented and application-oriented
panels. The panel’s organization incorporates a space-time diagram with application
tasks and computing resource information. The relevant data is displayed by filtering and
aggregating the trace information, in addition to some statistics computation. Also, the
StarVZ workflow provides scalability support.

3.3 Comparative analysis of profiling tools

The profiling tools presented in Section 3.1 and Section 3.2 have some features in common
and they are utilized in different contexts according to user application characteristics.
Table 3.1 shows the libraries and programming languages supported by each of them,
the PT column is a name abbreviation for the tool used in the next tables. Tools with
a greater number of programming languages and supported libraries have the advantage
of being able to be used in several different contexts, however, they may have higher
overhead and not be suitable for more specific analyses. On the other hand, less versatile
tools can provide more detailed analysis for specific contexts.

Some profile tools just generate analysis files and use other extensions or tools to
visualize results. This is the case of Extrae, for example, which generates trace files
supported by the Paraver GUI tool. Moreover, some of them are built up using other
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Profile tool PT Libraries Supported Programming
Languages

PyPop PP - -

Score-P SP MPI, OpenMP, pthreads,
CUDA, OpenCL, OpenACC C, C++, Fortran

Extrae EX MPI, OpenMP, pthreads,
CUDA, OpenCL, OmpSs C, C++, Java, Python

HPCToolkit HT MPI, OpenMP, CUDA,
OpenCL C, C++, Fortran

TAU TAU MPI, OpenMP C, C++, Java, Python,
Fortran

Timemory TM MPI, OpenMP, CUDA,
UPC++

C, C++, Python,
Fortran

Projections PJ Charm++ C++
Legion Prof LP Legion C++

StarVZ SVZ StarPU, Cuda, OpenCL C++
OMPC Profile OMPC OpenMP, Cuda, OpenCL C, C++

Table 3.1: Libraries and programming languages supported by each profiling tool. The
PT column is the tool abbreviation name. PyPop analyzes traces of Extrae, so it does
not have to support libraries and programming languages.

ones, such as TAU, which uses Score-P, and it can use other tools to improve its analysis,
such as PyPop. All of this information is presented in Table 3.2.

PT GUI tools Other Tools
PP Jupyter no
SP Scalasca, TAU, Vampir, Cube, Extrae-P no
EX Paraver PyPOP
HT hpcviewer, hpctraceview no
TAU Paraprof no
TM timemory-plotter TAU, Caliper, etc
PJ no* no
LP Browser no
SVZ no* no

OMPC Chrome Trace OMPC Bench
Table 3.2: GUI tools used for each profiling tool and his additional analysis tools. In the
case of Projections and StarVZ the visualization is integrated in the tool itself.

Table 3.3 summarizes the profile metrics available for each tool. The metrics are di-
vided into four categories: time, communication, memory, and hardware. Time metrics
are related to the execution time of the whole application or some parts of them. Commu-
nication metrics are related to the communication between processes or threads. Memory
metrics give memory usage information of hardware components. Finally, Hardware met-
rics provide additional information such as hardware counters and frequency.

Table 3.4 shows the specific features for task analysis available for each profiling tool.
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PT Time
metrics

Communication
metrics

Memory
metrics

Hardware
metrics

PP
parallel efficiency,
global efficiency,

etc

communication
efficiency no

IPC scaling,
frequency scaling,

etc

SP execution time*
collective

communications,
P2P, etc

total
memory

PAPI, perf hardware
counters

EX timeline* number of
communications no PAPI

HT cputime, realtime,
wallclock, etc no

memory
leak,
IO

PAPI, perf hardware
counters

TAU cputime, realtime,
wallclock, etc

MPI
communication

matrix

memory
allocations,

IO
PAPI

TM cputime, realtime,
wallclock, etc no peak RSS,

IO, etc PAPI

PJ timeline*

communication
CPU overhead,

number of
messages sent,

etc

memory
usage no

LP timeline* no no no

SVZ timeline* communication
tasks

memory
usage no

OMPC
timeline, parallel
efficiency, task
duration, etc

communication
efficiency,

communication
tasks, etc

no no

Table 3.3: Profile metrics available for each tool. In the Time metrics column, the timeline
fields indicate that the tool only has the timeline and it does not allow change time
properties. Score-P does not provide a GUI tool for visualization by itself, so the execution
time is shown in numbers as the application result.

Legion Prof and StarVZ are specific for task-based runtimes and give more detailed in-
formation about task execution.

Compared to the other tools that offer task monitoring, the developed profiling tool not
only presents the tasks in the timeline with their dependencies and additional information,
but also offers specific metrics designed to improve the understanding of their behavior
and to help with code optimization. Details about the metrics and how they can be used
are described in Section4.5
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PT Task analysis
PP no
SP omp tasks on the timeline (using Vampir GUI tool)
EX execution time of omp tasks
HT no
TAU no
TM no
PJ execution time of Charm++ tasks

LP Legion tasks on the timeline: duration time, state of the task
(waiting or ready to be scheduled or executing), data dependencies

SVZ StarPU tasks on the timeline: duration time,
task dependencies, number of tasks

OMPC OMPC tasks on the timeline: duration time, task dependencies,
source location, task type and data. Task and Graph metrics

Table 3.4: Task analysis provided by each profiling tool
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Chapter 4

OMPC Profiling tools

OMPC provides an integrated monitoring feature that eliminates the need for additional
tools. Known as an OMPC Profile, this feature generates task graphs and trace files,
which provide valuable information about application behavior. Trace files can be viewed
as timelines organized into event-based sequences and segmented by processes and threads.
Each trace file represents a different process with one head process and the remaining as
worker processes. The graph files include the OMPC tasks (created via the OpenMP tar-
get directive), data tasks (representing the data operations generated from the OpenMP
map directive), and their dependencies. Together, these files provide a comprehensive
overview of application performance and allow for efficient debugging and optimization.

The OMPC events on timelines are as close as possible to the runtime source code.
Due to this, it can be difficult to understand for a user who is not very familiar with
the runtime. During the project, several post-processes have been developed to improve
the timeline view. Some of these features are merging and filtering traces to a new
user-friendly timeline view, and adding new useful information such as the dependencies
of task graphs. Improved timelines help users to better understand parallel code and
identify optimization points. However, the analysis is limited to user interpretation and
is more complicated in large applications with many tasks and threads. In this way, after
analyzing particular characteristics of the OMPC runtime, some metrics were developed
to guide optimizations, which are extracted from profile files. It is expected that through
the metrics and analysis of graphs and traces, users can understand the code and achieve
insights on how to improve it, increasing the parallel performance.

As processing these features during runtime would be costly, these functionalities
are performed after execution and by a separate library called OMPC Bench [23], a
command-line tool of OMPC project written in Python. In addition to the post-processing
functions of profiling files, OMPC Bench also allows benchmarking OMPC programs, but
this feature will not be detailed here as it is not relevant to this study. All traces from
the OMPC project can be viewed through the Chrome Trace [1] browser extension.

OMPC project also provides the OmpTracing [28] tool developed in our previous
work, if there is a need to extract specific information from the OpenMP runtime, such as
from tasks created with the task directive, or the duration of loops and parallel regions.
OmpTracing is a lightweight profiling tool for OpenMP programs and also generates traces
and task graph files, similar to the OMPC profile. It is possible to combine the traces of
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both of them using OMPC Bench.
This chapter describes the main contributions of this work: the development of spe-

cific profiling features and metrics for task-based applications. All metrics and timeline
operations were developed during this project, done exclusively by me with guidance and
advice from other project members. The following sections will present the functionalities
developed. Section 4.1 shows how to use OMPC profile and OMPC Bench, Section 4.2
describe features of the visualization tool, Section 4.3 and Section 4.4 presents, respec-
tively, components of OMPC timeline and task graph. Finally, Section 4.5 defines profile
metrics.

4.1 OMPC Profile Workflow

When running an OMPC program, the user can configure the runtime to generate trace
files or graph separately through environment variables1. If the application was compiled
with debugging symbols, the timeline will display variable names and source code infor-
mation such as file name, line, and column. The traces are saved in JSON format, while
task graphs are saved in DOT format. Two graph files are generated, one containing more
information about the scheduling algorithm. OMPC executes applications in a distributed
environment, so the traces are divided by process. Therefore, the number of timelines is
equal to the number of processes, with one timeline representing the head process and
the remains representing worker processes. Once profile files are generated, users can take
advantage of the OMPC Bench tool to carry out various operations such as:

• Merge traces: Used to merge traces from the same execution into a single one.
The user provides OMPC and optionally OmpTracing traces that are merged in a
single trace. It automatically synchronizes and creates a user version trace, however,
it is possible to generate a developer version trace instead. Since the application
runs distributedly, each trace’s timeline starts at a different time due to differences
in device clocks. Synchronization is crucial to ensure that all trace files start at the
same point. While this form of synchronization is a good approximation for current
tests, future studies should aim to develop more accurate synchronization methods.

• Improve timeline view: Used to generate a trace in a user-friendly view. The user
version trace provides a clearer understanding of the application by renaming events
for better comprehension and adding information about variables used, task identi-
fiers, and arrows between related events. Additionally, tasks are colored according
to their source code, and if task graph files are available, the task dependencies are
included in the timeline. This approach allows users to easily identify which points
on the timeline correspond to their source code and the execution order of tasks
based on their dependencies.

• Extract Metrics: Used to extract information from timelines and graphs, its goal is
to provide statistical insights into application behavior, allowing users to understand

1For more information see OMPC Profile Wiki

https://ompcluster.readthedocs.io/en/latest/profiling.html
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Figure 4.1: Steps to generate profile files. The first step (1) consists of setting OMPC
traces path and graph path environment variables, and optionally compiling the applica-
tion with debug symbols. The second step (2) is to execute the OMPC application. In
the final step (3) the generated files are collected: traces in JSON format and graphs in
DOT format.

the code’s performance and identify areas for improvement. The user provides the
OMPC timeline and chooses which metrics to extract: task metrics, graph metrics,
or OMPC metrics. These metrics are described in detail in Section 4.5, outlining
their functionalities and differences. Once chosen, the resulting metrics are displayed
in a table format as a CSV file. Users can also provide multiple applications to
compare metric results.

The workflow steps are summarized in Figure 4.1, which shows how to generate profile
files, and in Figure 4.2, which shows the use of OMPC Bench. The mentioned filter option
is the additional operation to improve the timeline described above. All generated trace
files can be viewed as timelines in the Chrome Trace browser extension.

4.2 Visualization Tool Overview

Chrome Trace [1] is a browser extension that loads a JSON file and provides a timeline
graphic visualization. It is easy to use and accessible since it can be used just by typing its
URL2 on a Chrome browser. All the traces provided by the OMPC profile, OmpTracing
tool, and OMPC Bench follows the Chrome Trace format. The timeline is visualized by
clicking to load in the top-left corner and then selecting the trace file or just dragging
and drop the file into the window. An example timeline is presented in Figure 4.3. The
choice to use this tool was due to not having to implement a new graphical interface.
Furthermore, it is very accessible as it only requires the installation of a Chrome browser,
which many computers already have installed. The tool’s JSON format is simple and
allows the addition of several pieces of information, as well as dependencies on the timeline.
Finally, since JSON is a well-known format, it is easy to find libraries to process and work
with it.

The timeline points indicated in Figure 4.3 by numbers represent as follows:
2chrome://tracing

chrome://tracing
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Figure 4.2: OMPC Bench usage. The merge/filter workflow is at the top side of the image
and the metrics workflow is at the bottom. The steps to get filtered or merged traces
are as follows: (1) Keep all JSON and DOT files of a single application separate in a
folder; (2) Run OMPC Bench merge passing the folder path with JSON files prefix. In
this step the user can enable the developer timeline option (i.e. no filter applied); (3) If
the developer option is disabled, the user trace is generated, otherwise a developer trace
is generated ; (4) It is possible to pass the developer trace to OMPC Bench filter and
obtain a user trace; (5) User trace generated.

Figure 4.3: Example of user timeline with Chrome Trace components indicated by red
numbers that represent: (1) Process separation; (2) Thread separation; (3) Event hiding
arrows; (4) Timeline events; (5) Relational arrows; (6) Event information; (7) Edge ar-
gument; (8) Flow events menu; (9) Search menu; (10) Select tool; (11) Move tool; (12)
Zoom tool; (13) Measure Tool; (14) Time indication.
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1. Process separation: All threads below belong to the referenced process. Each
process corresponds to an MPI process created by the OMPC runtime. Usually,
a single process is created per node but the user can eventually choose to map
them differently for specific cases (e.g. 1 process per socket or 1 process per GPU).
This process mapping can be controlled by the user when running OMPC programs
just like any other MPI-based programs (using the parameter of mpirun or the job
scheduler).

2. Thread separation: All events on the right belong to the referenced thread. The
number of threads created by the OMPC runtime can be controlled by the user
through environment variables, they are usually closely related to the number of
processor cores available on the machine.

3. Event hiding arrows: Used to decrease the height of the timeline, as events from
that thread are compressed vertically. It is useful when users need to analyze events
that are vertically distant on the timeline. The arrow next to the process name has
a similar function but completely hides the threads and events of that process. As
an example, all the events of the worker processes have a corresponding event in the
head process, so to analyze a certain work process it is possible to hide the other
processes and threads that are not related, making the visualization clearer.

4. Timeline events: The label indicates what it represents on OMPC. All the colors
are chosen by Chrome Trace except for the events named "Task XX", where events
of the same color have the same source location and XX is the task id. This event
visualization model is quite useful since events with the same name have the same
color. So, it is easier for the OMPC user to identify events of the same type.

5. Relational arrows: Indicate relations between different events. OMPC timelines
use three types of arrows, described in Section 4.3.4. Generally speaking, these
arrows help the user to find related events in the timeline (like the corresponding
events mentioned above).

6. Event information: When an event is selected, by clicking on it, this panel shows
some event information. The first lines are information provided by the Chrome
Trace tool (as event start, duration, and arrows) and the args section is specific
information about this event provided by OMPC. This information helps the user
discover the duration of the event and other information specific to the OMPC
runtime that if represented as events would make the timeline difficult to analyze.

7. Edge argument: Provides information about any arrow from or to this event. If
click on it, it will show the two events linked. It is very useful when it is necessary
to find the related event but it is far away in the timeline, or very small (common
in data communication events).

8. Flow events menu: If click on it, is possible to obtain a more clear view of the
timeline by hiding the events arrows. The OMPC timeline has many arrows, so
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leaving enabled only the category of arrows that will be analyzed at that moment
is very practical.

9. Search menu: Used to search for events by label or any of its arguments. It is
widely used in OMPC timeline analyses, as it is possible to find certain types of
events or find corresponding events through their arguments (such as an MPI Tag,
for example).

10. Select tool: Chrome Trace tool to select events. This feature must be enabled
to exhibit event info by clicking on it. Mainly used to display the arguments of a
certain event.

11. Move tool: Chrome Trace tool to move across the timeline. It is useful when the
timeline is zoomed in to a specific point.

12. Zoom tool: Chrome Trace tool to zoom the timeline. It is useful to analyze events
more precisely and see events that have a fine duration (like communication events).
It is possible to zoom a specific event by pressing ’f’ on the keyboard.

13. Measure Tool: Chrome Trace tool to measure the duration between two events on
the timeline. It is useful when the events are in different processes or threads and
the user wants to measure the elapsed time between them. For example, in data
communication, it is possible to use this tool to calculate its duration.

14. Time indication: Time measurement, indicates at what moment of the application
the events occurred.

4.3 OMPC Timelines

As mentioned in Section 4.1, the merge operation includes the filter operation by default,
however, it is possible to enable the developer option. The developer version timeline
simply synchronizes and merges all events from the original traces, generated by OMPC,
into a single trace. Figure 4.4 shows a developer timeline example: in this case, all
runtime events are preserved with their real names. This version may be useful if the
user is more familiar with the OMPC runtime. Figure 4.5 shows a user timeline example.
The events are renamed for a user-friendly view and some events are added or compressed
(if two events provide similar information it is merged into one with extra information
in the argument section). Also, the timeline provides extra information using arrows to
relate events. Both figures represent the same execution of the OMPC Plasma matrix
multiplication kernel, with 3 nodes (1 head process and 2 worker processes), in which
each worker process has 4 threads (1 Data Event Handler, 2 Execute Event Handler and
1 Gate Thread). The Sections 4.3.1, 4.3.2, 4.3.3, 4.3.4, and 4.3.5 describe the user timeline
components in detail, including the mentioned threads.
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Figure 4.4: Developer timeline version. The event names are related to OMPC runtime
code, and all events are displayed.

Figure 4.5: User timeline version. The timeline is cleaner as there are fewer events.
Arrows to relate events are presented only in the user version. The task events on worker
processes are displayed with their identifiers and the colors represent the source location.
In this timeline all tasks originate from the same source location, so all of them are
yellow-colored.
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4.3.1 OMPC Threads

The timeline threads are divided by processes. Each process is a head or worker and the
threads that compose them follow the description:

• Head Process:

– Control Thread: Responsible for the construction of the task graph.

– Worker Thread: Responsible for data communication and task offloading.
Once the control thread finishes building the graph, it helps the worker threads
with communication and offloading.

• Worker Processes:

– Data Event Handler: Handles data communication events (receiving and sub-
mitting data).

– Execute Event Handler: Handle the execution of tasks.

– Gate Thread: handle MPI event notifications from other processes.

4.3.2 OMPC Events

The OMPC Events of the user version indicated in Figure 4.6 represent as follows:

1. General Events:

(a) OMPC Runtime Execution: Total duration of application.

(b) Variable names: If the user compiles the application with debug symbols,
events that have variable names associated (e.g. Submit) will be nested to a
variable name event.

2. Target Events:

(a) Target Enter (Nowait): Represents a target enter data map (nowait) region
or an entrance in a target data map region (nowait). This region is for mapping
data to work processes.

(b) Target Exit (Nowait): Represents a target exit data map (nowait) region
or an exit in a target data map region (nowait). This region is for unmapping
data to work processes.

(c) Target (Nowait): Target (nowait) region, represents an execution task in the
head process. That is from the moment the head process finds a target region,
it offloads the task to a work process to execute it, until its finalization.

3. Task Events:

(a) Task XX: Total duration of task execution on work processes, where XX
represents the task id. The same colors mean the same source location.
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(b) Execute: Total duration of task execution on the head process. That is,
from the moment the head process orders execution in a work process until its
finalization.

4. Data Events:

(a) Alloc: When OMPC allocates data in the work processes. In the work pro-
cesses, this event is divided into a pair of Alloc / Begin and Alloc / End.

(b) Submit: In the head process, represents a data submission to work processes.
In the work processes, represent received data (from the head process through
Submit event or from another worker through the Forward event) except in the
developer version of the timeline (Forward events always have an associated
Submit event representing a data submission). In the work processes, this
event is divided into a pair of Submit / Begin and Submit / End.

(c) Delete: The data allocated on the work processes are freed. In the work
processes, this event is divided into a pair of Delete / Begin and Delete / End.

(d) Retrieve: Represents data received in the head process from a work process.
In the work processes, this event is divided into a pair of Retrieve / Begin and
Retrieve / End.

(e) Forward: Represents the head process sending a message to a worker to for-
ward data to another worker. That is one worker has data that another worker
needs, so the head process orders the forward between them. The work pro-
cess receives the data by the Submit event. In the work processes, this event
is divided into a pair of Forward / Begin and Forward / End.

Some events are divided into Begin and End, such as data events and execute events.
The runtime relies on asynchronous calls to the MPI libraries, so it is possible to run
multiple events concurrently using the same thread. Note that the events mentioned
throughout this dissertation are timeline events, not MPI events. OMPC uses MPI calls
in these events, but the user does not have access to such calls and they are not described
in the timeline. In timeline improvement, some of these events are merged into a single
event in the head process. However, on threads of the work processes, many of them
occur at the same time, so to clear the visualization, they remained separate. Most of
these events are on the Data Event Handler thread and if they were a single event, there
would be an overlap of events. Despite this, it is possible to easily find the corresponding
Begin or End event using the timeline dependencies. Figure 4.7 shows an example of how
these events are distributed, the arrows link the Begin events to their related End events.
The highlighted arrow in the figure shows that between the beginning and end of this
event, there is another event, which is common to occur. If all these events were merged,
it would make it difficult to visualize the timeline.

4.3.3 OMPC Arguments

Some of the arguments that can appear in OMPC events are listed below:
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Figure 4.6: OMPC Events Timeline. A user version timeline is zoomed in to show different
OMPC events. Two parts are zoomed in to display different events. OMPC events
indicated by red numbers represent (1) OMPC Runtime Execution; (2) Target Enter
(Nowait); (3) Target Exit (Nowait); (4) Target (Nowait); (5) Task XX; (6) Execute; (7)
Alloc; (8) Submit; (9) Delete; (10) Retrieve; (11) Forward; (12) Variable names. Event
(8) appears two times to show that this type of event is composed of two events (begin
and end) on the work processes and a single one on the head process.

Figure 4.7: OMPC Data Events. In the Data Event Handler thread, data events are
distributed in Begin/End pairs, and these pairs are connected by arrows. The highlighted
arrow in the image shows that between the start and end of a communication event, there
may be other communication events.
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• Origin: Identifier of the process where the event was created.

• Destination: Identifier of the process where the event was executed.

• Location: Data and execution events have a pair (origin and destination), and the
location indicates which of the pairs the event is on.

• mpi_tag: Event id that is the same for the origin and destination pair.

• task_id: The identifier of the task that corresponds to the task graph.

• source_location: The file, line, and column that the event was executed.

• identifier: In target events represents the function that executes the task.

For the origin and destination arguments, timeline identifiers are different from filename
identifiers, so 0 represents the head process, 1 represents the work process 0, and so on.

4.3.4 OMPC Dependencies

The OMPC timeline has dependencies (arrows) that indicate relations between different
events. These dependencies can be disabled to clear the timeline view. The category
numbers presented in the Figure 4.8 represents:

1. Communication: Dependencies between event communication pairs (Begin and
End) in the work processes.

2. Tasks: Data dependencies between tasks in the head process.

3. Worker Process X: Dependencies between Execute event in the head process and
Task events in the work process X, where X is the id of the work process.

The timeline dependencies are of great help to find related events on the timeline. For
example, if it is necessary to find the head process event that generated a worker event,
the user would need to search for the mpi tag in the menu and look through the various
events that would appear as a result which is the correct event. On the other hand, the
dependencies allow just clicking on the event to find all related events. Also, as the head
process has multiple threads, without the dependencies it is easier for the user to confuse
which event is correct.

4.3.5 Profile Symbols

As mentioned in Subsection 4.3.2, if the application was compiled with debug symbols, by
using -g flag in GCC/Clang, some events are displayed aligned to a variable name event
in the user version timeline. Also, other events present the source location as a timeline
argument (the display information when an event is selected). In both cases, the timeline
will present the filename, line, and column of the variable or event.

Figure 4.9 shows an example of a variable with its aligned event and how to extract
information from them. The A_send array was sent from the head process to a work
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Figure 4.8: Arrows of user version timeline. The Flow Event menu, indicated by the red
flag, shows the categories of user timeline arrows, and it is possible to choose which of
them are displayed. The red numbers represent arrows of (1) Communication; (2) Task
dependencies; (3) Link between head and work processes events.

process through the Submit event. When selecting the variable, it is possible to see in
which line, column, and source code file this array was sent through the source location
argument. Selecting Submit shows that the data was sent to work process 1 through the
destination argument (the indicated number is always the worker’s identifier added to 1)
and also provides its MPI Tag. Knowing the worker identifier and the MPI Tag, it is
possible to use the search tool to find the related Submit event, and thus know when the
worker received the data.

The timeline with profile symbols is useful to understand how and which data was
transferred their duration, and the start point. The user can use this information to
reorganize the data division and transfer, and consequently optimizing performance. The
source location helps the user link the events appearing in the timeline with its source
code.

4.4 Task Graph

OMPC profile creates two graph files after the execution of the application is finished,
with tasks represented as oval and octagonal (those that are root or leaf) nodes and data
tasks colored in gray. The task identifiers can be used to analyze task execution in the user
version timeline. One of those graphs provides more information about the scheduling
algorithm (HEFT [33]), with the size of the transferred data as the edge weights and edges
colored in blue and red representing, respectively, internode and intranode communication.
That is, in intranode communication, the OMPC does not need to transfer the data. Also,
in this version of the graph, the source location is added to the tasks. An example of these
two task graphs is shown in Figure 4.10 and Figure 4.11, with the mentioned components
indicated.

The task graph helps understand the order in which tasks are executed in the timeline,
as a task only executes after resolving all its dependencies, and permits critical path
analysis. Dependencies only appear in the graph, so to generate a user timeline with
them, the graph must be in the same folder as the timelines.
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Figure 4.9: Profile symbol usage. The variable event is the one named as A_send[:A.nb
* A.nb], which represents an A_send array of A.nb * A.nb dimensions, and the related
nested event is Submit. Information for Submit and Variable events is highlighted at the
bottom (Chrome Trace does not allow selecting two events at the same time, so the figure
has been edited to display both).

Figure 4.10: Simple Task Graph. This graph is useful when it is necessary to analyze the
dependencies pattern and task types. The red numbers indicate (1) Root and leaf nodes
as octagonal shape; (2) Non-root and non-leaf nodes as oval shape; (3) Data tasks colored
in gray; (4) Execution tasks colored in black.
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Figure 4.11: Scheduling Task Graph. This graph is useful when it is necessary to analyze
the HEFT scheduling algorithm. The red numbers indicate (1) Heft weights (data trans-
ferred); (2) Intranode communication; (3) Source location; (4) Internode communication.

4.5 Profile metrics

4.5.1 OMPC

OMPC metrics are created based on POP [11] metrics and other common profile metrics.
It was adapted to OMPC runtime and divided into three categories: quantitative met-
rics, time metrics, and efficiency metrics. The following items describe all of the OMPC
metrics, separated by these categories:

• Quantitative Metrics: Provide data inherent to the application and are expected
to remain the same as long as the same input parameters are maintained.

– Worker Process: The total number of work processes used in the application.

– Threads: The total number of threads used in the application.

– Number of tasks: The total number of tasks used in the application.

• Time Metrics: Provide data on the execution time of the program. Except for
Computation Time, the smaller the value the better.

– Total time [h:min:sec:ms]: Application duration time in HOUR:MINUTE:
SECOND:MILLISECOND format.

– Parallel Time [h:min:sec:ms]: Total accumulated parallel time, that is, the
sum of the time that each thread of the work processes spent computing tasks.

– Computation Time [%]: Percentage of parallel time in which the threads
were computing, that is, the closer to 100 the better.

• Efficiency Metrics: measure the efficiency of the program regarding a certain
parameter, with values ranging from 0 to 1. They are expected to be as close to
1 as possible, except for the Serial Region Efficiency metric. The Computa-
tion Parallel Efficiency, Communication Parallel Efficiency, and Process
Efficiency are combined metrics, that is, they are the product of two other metrics.
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– Computation Load Balance Efficiency: Represents how well distributed
the compute time of the tasks was to the compute threads

– Computation Efficiency: Represents how much time the thread with the
highest compute efficiency spent computing

– Computation Parallel Efficiency: Represents the balance between Com-
putation Load Balance Efficiency and Computation Load Balance Efficiency.
It is expected that both values are reasonable for the computation to be con-
sidered efficient because even if a thread is very efficient, poor load balancing
suggests that there is a lot of discrepancy between the most efficient and the
least efficient.

– Communication Load Balance Efficiency: Analogous to Computation
Load Balance Efficiency, but referring to communication threads.

– Communication Efficiency: Analogous to Computation Efficiency, but re-
ferring to communication threads

– Communication Parallel Efficiency: Analogous to Computation Parallel
Efficiency, but referring to communication threads

– Process Load Balance Efficiency: Analogous to Computation Load Bal-
ance Efficiency, but the comparison is between processes and not threads.

– Process Communication Efficiency: Analogous to Communication Effi-
ciency, but the comparison is between processes and not threads.

– Process Efficiency: Analogous to Computation Efficiency but referring to
processes.

– Serial Region Efficiency: Represents how much of the program time is spent
in serial regions, i.e. for parallel programs it is expected to be a low value

A combined metric is more relevant than the metrics used in its calculation, as it rep-
resents a balance between them. For example, the Computation Load Balance Efficiency
and Computation Efficiency are computed according to Equation 4.1 and Equation 4.2,
respectively.

CLBeff =
avg(tc)

max(tc)
(4.1)

Equation 4.1: Computation Load Balance Efficiency: tc is the computation time.

Ceff = max(
tc

tparallel
) (4.2)

Equation 4.2: Computation Efficiency: tc is the computation time and tparallel is the
parallel time.

The computation time is the sum of the duration of the target tasks, while the par-
allel time is the total computation duration on a certain thread. Figure 4.12 illustrates



45

Figure 4.12: Example of calculation of computation and parallel time. The computation
time of each thread is the accumulated value of the duration of the tasks. The parallel
time is the elapsed time between the start of the first task and the end of the last executed
task.

Figure 4.13: Example of calculation of communication time. As the tasks are very small,
the image was zoomed in, so only some events are shown. The communication time for a
thread is the sum of all time intervals, represented by the lines in red.

the difference between the two. That is, Computation Load Balance Efficiency does not
take thread idle time into account, while Computation Efficiency does not take into ac-
count the imbalance between different threads since it only considers the maximum. So
Communication Parallel Efficiency is more relevant as it considers both.

The calculation of the other metrics is similar. However, in the case of communication
time, the tasks are separated into Begin and End events. Then, the algorithm calculates
the time interval. This process is illustrated in Figure 4.13. Note that even time intervals
of communication tasks tend to have a short duration when compared to the total time:
Figure 4.13 is from the same application as Figure 4.12, but it is zoomed in to facilitate
visualization.

4.5.2 Task

Task metrics provide statistical information about the execution and data tasks in the
work processes of the OMPC application, described as follows:

• Task Location: The code location of the task in file-name:line:column format.

• Individual Metrics: They are computed using the individual duration of each
task. In the case of data tasks, which are divided into Begin and End events, the
duration is calculated as the time elapsed from the beginning of the Begin event to
the end of the End event (see Figure 4.7). This metric is given both in absolute value
(in the HOUR:MINUTE:SECOND:MILLISECOND format) and as a percentage of
the total accumulated time.
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– Avg: The average duration of the task.

– Max: The maximum duration of the task.

– Min: The minimum duration of the task.

• Count: The number of tasks with a specific type and code location.

• Sum: The accumulated time of tasks with a specific type and code location. This
metric is given both in absolute value (in the HOUR:MINUTE:SECOND:MIL-
LISECOND format) and as a percentage of the total accumulated time.

• Type: Task event type, in Section 4.3.2 there are details of the meaning of each
event. It can assume the following values according to its classification:

– Data Task: The types of data tasks that metrics handle are: Retrieve, Submit,
and Forward.

– Execution Task: There is only one type of execution task, which takes the
value "Execute".

4.5.3 Graph

The graph metric is calculated from the critical path of the application. It analyzes the
longest time from each root node to the leaf nodes and chooses the longest among them
as the critical path. The longest time is defined as the time spent on the task plus the
time spent on dependent nodes and dependencies. The critical path is then set to the
value 1.0 (100%) and the other longest paths as a percentage of that value. Figure 4.14
shows an example of calculating the critical path and longest times.

As the critical path dominates the parallel time, the objective of this metric is to
estimate how much it would be possible to optimize the parallel time if it was optimized.
Still, it is possible to use it to check imbalances in the task graph. In the example of
Figure 4.14, there are two critical paths, with the same time. Thus, to improve the code
it would be necessary to optimize both. If they were improved to the same time as the 0.8
metric path, then code time would be improved by 20%. On the other hand, it would be
possible to use the metrics to determine if it is possible to delay the execution of a task
that does not belong to the critical path, without delaying the execution of the program,
which would be useful for saving computational resources, such as saving energy.
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Figure 4.14: Example of a graph from the Task Bench application, with the kernel stencil,
with the critical path metrics. For each leaf node (in green) a longer time is calculated.
Among the longest times, the one that is greatest corresponds to the critical path, indi-
cated by the blue nodes and edges, with a value of 1.0. In the other nodes, the percentage
of this value is applied, converting to two decimal places. The edges in green indicate
which would be the longest time path from the other root nodes.
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Chapter 5

Experiments

This chapter presents the experiments conducted to evaluate the three sets of metric
results. The analysis considers the unique characteristics of each application to interpret
the data results. This chapter proposes to demonstrate how metrics can provide useful
insights to guide optimizations and reflect the achieved performance. Section 5.1 details
information about the applications and resources used. Section 5.2 provides an analysis
of the timeline, while Section 5.3, Section 5.4, and Section 5.5 present experiments on
general, task, and graph metrics, respectively.

5.1 Experimental setup

The experiments used applications from OMPC PLASMA and OMPC Task Bench in
C/C++ programming languages. PLASMA [15] is a parallel linear algebra library with
optimized routines for multicore architectures. Task Bench [31] is a parameterized bench-
mark, designed to explore the performance of parallel programming systems in various
application scenarios. OMPC PLASMA [13] and OMPC Task Bench [3] are extensions
of PLASMA and Task Bench libraries using OMPC, respectively.

OMPC PLASMA divides the matrix into blocks to parallelize the computation, with
its size and block size parameterizable. The application is decomposed in target nowait
tasks for each block that call BLAS functions to perform the computation. The Task
Bench is a configurable benchmark that measures the performance of several distributed
and parallel programming models, including OpenMP. It allows configuring different de-
pendency patterns, as well as the number of tasks, number of interactions, load balancing,
memory kernels, etc. OMPC Task Bench permits the use of all these functionalities with
the OMPC runtime. The granularity of both applications, OMPC Plasma and OMPC
Task Bench, is configurable, so they are suitable applications for performing experiments.

The experiments used Santos Dumont (SDumont) supercomputer [24]. SDumont is lo-
cated at the National Laboratory for Scientific Computing (LNCC) in Petrópolis - Brazil,
and, according to the TOP500 [32], it is among the most powerful supercomputers in the
world. SDumont has processing capacity in the order of 5.1 petaflops/s (5,1 x 1015 float-
point operations per second) with a total of 36,472 CPU cores, distributed across 1,134
computational nodes, mostly composed exclusively of CPUs with a multi-core architec-
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ture. However, there are heterogeneous nodes with accelerators that were not used in this
project. SDumont uses Xeon Gold 6252 24C 2.1GHz processor and Mellanox InfiniBand
EDR interconnection network between nodes. The nodes used for the experiments use
this interconnection with 384Gb of RAM and RedHat Linux 7.6 Operation System.

The experiments were run through Singularity containers from OMPC Docker Hub,
with Ubuntu 20.04 LTS Operation System. OMPC Task Bench uses runtime-dev and
OMPC Plasma uses plasma-exp containers. As OMPC uses the MPICH implementation
(version 4.0.2) with its UCX backend (version 1.8.0) was used. OMPC Plasma uses
OpenBlas (version 0.3.20).

5.2 OMPC Plasma - Timeline Analysis

This section shows, through the timelines obtained from the experiment, how to extract
useful information from these timelines and relate them to some metrics. The timeline
user version rearranges, adds, and selects information from the developer version. Details
about its events and characteristics are described in Section 4.3. It is common in a timeline
analysis to search for specific events and arguments using the search menu or select arrows
that link events.

An experiment was performed using the SGEMM kernel from OMPC Plasma to pro-
vide an analysis of the timeline. SGEMM is a block-based matrix multiplication of
floating-point values, with single precision. The experiment used a matrix size of 32768
and a block size of 1024, 3 nodes and 17 threads (1 Control Thread, 8 Worker Threads,
2 Data Event Handlers, 2 Gate Threads, and 4 Execute Event Handlers). The generated
user version timeline is shown in Figure 5.1.

Note that, without any zoom in the timeline, it is difficult to understand what is
happening. The colors can serve as a guide for the user to visualize the repetition of events
of the same type. For example, the Execute Event Handler threads of the work processes
execute only the same type of task, colored in yellow. In the case of this application,
this task represents matrix multiplication of the blocks. Between the execution of events,
whether in the head or the work process, there will always be a blank space, which
represents the idle time and depending on its duration can be relevant to the performance
of the application. Without zooming in, it is almost impossible to visualize these blank
spaces. However, even with zoom applied, it is difficult for the user to measure just by
looking at whether these spaces are relevant to the application since there are 32768 tasks.
The metrics help perform this analysis: Table 5.1 shows the time and efficiency metrics
extracted from this application. Not all efficiency metrics were displayed, only those most
relevant to the analysis. Through the Computation Time, we can infer that these blank
spaces, in the work processes, represent only 7.8% of the total application time, which is
a satisfactory result. The Computation Load Balance Efficiency is 0.9935, which can be
verified when zooming in on the beginning and end of the timeline, as shown in Figure 5.2,
the beginning and end times of the first and last tasks, in each thread, are very close. The
first tasks of each thread all start in the interval between 41 and 41.5 ms, that is, with a
time difference of less than 0.5 ms. The last tasks finish all with a difference smaller than
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Figure 5.1: Timeline of SGEMM kernel of OMPC Plasma application, with a matrix size
of 32768 and a block size of 1024. No zoom has been applied and all events are being
shown.

Table 5.1: Time and efficiency metrics results for SGEMM experiment from OMPC
Plasma, with a matrix size of 32768 and a block size of 1024.

Efficiency
Metrics

Total time
[h:min:sec:ms]

Parallel Time
[h:min:sec:ms]

Computation
Time [%]

0:3:56:554 0:13:0:323 92.2

Time
Metrics

Computation Load
Balance Efficiency

Communication Load
Balance Efficiency

Communication
Efficiency

0.9935 0.9987 0.0731

0.1 ms.
Regarding communication tasks, the analysis is different. In their case, it is expected

a high idle time since these tasks are really fast. If there is a low idle time, it may indicate
that there are delays in communication, which could delay the execution of tasks and affect
performance. Based on the communication metrics, it is possible to estimate that only 7%
of the time is spent in communication. This value is extracted from the Communication
Efficiency which is 0.0731, as an estimate for the time spent in communication. The
estimate is valid in this case since the communication threads present an excellent load
balance, with a Communication Load Balance Efficiency of 0.9987. Note that from the
non-zoomed view of the timeline, it is possible to infer that a large portion of the time
of the Data Event Handler threads is spent communicating. However, in the zoomed-
in Figure 5.3 a large amount of idle time in the communication threads is noticeable,
coinciding with the result of the metrics. The arrows between the communication events
are enabled, so between the blank spaces there is no communication taking place.
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Figure 5.2: Timeline SGEMM with zoom applied at the beginning and end of the appli-
cation. Where the left side represents the beginning time and the right side the end time,
separated by a black line.

Figure 5.3: Timeline SGEMM zoomed with task 6514 selected.
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Figure 5.4: Timeline SGEMM with some tasks selected to find dependencies, following
these steps: (1) select task 6514 and use edge arg to find corresponding execution event in
the head process; (2) select execution event and use edge arg to find dependent execution
event; (3) select dependent execution event and use edge arg to find corresponding task
in work process; (4) Task 6513 found.

When zooming the timeline, it is possible to see that in the execution threads, there
are disproportionately higher idle times compared to other timeline points that execute
the same tasks. Usually, these longer pauses are due to dependencies between tasks or
data communication. In cases of high idle time, identifying the cause can be important for
solving the problem. If related to task dependencies, it could come from task scheduling.
Also, if related to data communications, it could be a problem in how the data is being
transferred, in the connection between the nodes, or even a communication thread over-
load, requiring a greater number of Data Event Handler threads in each work process.
Figure 5.3 shows an example of a disproportionate idle time between tasks 38951 and
6514. Figure 5.4 shows the process to identify which are the dependencies of task 6514,
but this process can be applied to any task. After the inspection of the dependencies, it
is verified that task 6514 depends on task 6513 and that 6514 is executed immediately
after 6513 is finished, explaining the idle time.

Analyzing the head process helps to understand how the code behaves over time as
it has control events. For example, its execution events offload tasks to another process.
Figure 5.5 shows the disposition of the task events at the beginning of the application,
most of them are for allocation (Alloc) and sending data (Submit) to the work processes.
Figure 5.6 displays the behavior during most of the execution, in which there are many
execution events (Execute) and among them some data forwarding (Forward) and deletion
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Figure 5.5: Timeline SGEMM with head process begin events.

events (Delete). Finally, at the end of the execution, shown in Figure 5.7, there are still
many execution events, but with a greater amount of data deletion events.

From the analysis of the timeline, it is possible to understand the behavior of the code
and how the OMPC runtime creates the events. In addition, it is possible to identify
problems in the application and points that can be improved. With the extraction of
metrics, the analysis becomes even more detailed, making it possible to measure parallel
performance.

5.3 OMPC Plasma - General Metrics

The general metrics provide quantitative, timing, and efficiency information of the appli-
cation, described in Section 4.5.1. They were tested using the SGEMM (general matrix-
matrix multiplication) and SPOTRF (positive definite triangular factorization) kernels
of OMPC Plasma. These tests intend to relate better performance with better metric
results. The best values for each metric are also described in the Section 4.5.1. The ex-
periments were performed with 8 worker processes, that is 9 nodes, and 213 threads.The
matrix size was fixed and the block size varied for each experiment, therefore the number
of tasks and the time spent on each also varied and affect the metrics.

The SGEMM experiments use a matrix size of 120000 and vary the block size between
2000 (EXP 1), 5000 (EXP 2), and 10000 (EXP 3). Table 5.2 shows the quantitative
and time metrics, with EXP 2 performing best and having the best time metric results.
Table 5.3 shows efficiency metrics results, and despite some metrics being better in EXP
1 and EXP 2, the most relevant ones are better in EXP 2. For example, Computation
Load Balance Efficiency is about 0.1, 0.99 and 0.95 for EXP 1, 2, and 3, respectively. The
Computation Efficiency is about 0.86, 0.92 and 0.97 for EXP 1, 2, and 3, respectively.
Finally, Computation Parallel Efficiency is about 0.85, 0.86, and 0.8 for EXP 1, 2, and
3, respectively. That is, Computation Load Balance Efficiency is superior in EXP 1 and
Computation Efficiency in EXP 3, however, EXP 2 provides the best Computation Parallel
Efficiency that represents the balance between the other two metrics (ie. the combined
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Figure 5.6: SGEMM timeline with events for most of the head process execution. The
box in red shows the timeline events between two execution events.

Figure 5.7: Timeline SGEMM with head process end events.
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Table 5.2: Quantitative and time metrics results for SGEMM experiments from OMPC
Plasma. Highlighted fields represent the best results for each time metric across the three
experiments. There is no best result for quantitative metrics as they are fixed values
related to the configuration set.

METRIC EXP 1 EXP 2 EXP 3
Block Size 2000 5000 10000

Number of Tasks 216000 13824 1728
Total time [h:min:sec:ms] 0:9:21:831 0:8:57:910 0:10:26:250

Parallel Time [h:min:sec:ms] 12:14:16:591 12:10:37:452 13:46:21:961
Computation Time [%] 85.2 86 75

Table 5.3: Efficiency metrics results for SGEMM experiments from OMPC Plasma. High-
lighted fields represent the best results for each metric across the three experiments.

METRIC EXP 1 EXP 2 EXP 3
Computation Load Balance Efficiency 0.9867 0.9303 0.8244

Computation Efficiency 0.8657 0.9217 0.9666
Computation Parallel Efficiency 0.8542 0.8575 0.7969

Communication Load Balance Efficiency 0.9960 0.9899 0.9467
Communication Efficiency 0.2838 0.3227 0.1308

Communication Parallel Efficiency 0.2827 0.3194 0.1238
Process Load Balance Efficiency 0.9865 0.9843 0.9464

Process Communication Efficiency 0.9319 0.9704 0.9719
Process Efficiency 0.9193 0.9552 0.9198

Serial Region Efficiency 0.1016 0.1058 0.0935

metrics). As mentioned in Section 4.5.1, the combined metrics are more relevant that the
metrics that compose them. Communication Parallel Efficiency and Process Efficiency
have similar results. Serial Region Efficiency is better in Exp 3, though it is not too
relevant to this application, since the purpose of this metric is to measure the portion of
the execution that is serial, and most of the time is spent in the parallel region.

The SPOTRF experiments use a matrix size of 180000 and vary the block size between
2000 (EXP 1) and 5000 (EXP 2). Table 5.4 shows the quantitative and time metrics,
with EXP 1 performing best and having the best time metric results. Table 3.3 shows
efficiency metrics results, with EXP 1 performing better in most of them. Just like in
SGEMM experiments, the worst results are not too relevant since it performs better in
combined metrics and the Serial Region Efficiency is quite low.

In conclusion, the most relevant metrics performed better in the most efficient exper-
iment, both for the SGEMM kernel and for the SPOTRF kernel. However, for SGEMM,
the best block size choice was the one with intermediate granularity. As for SPOTRF,
it was the case with finer granularity, and therefore with more tasks. This demonstrates
that the choice of granularity directly affects performance and that its ideal value will
vary according to the application’s own characteristics. In addition, it is possible to verify
that the application is already highly optimized. Except for the communication and serial
metrics, where smaller values are expected, all other metrics have values greater than 0.8.
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Table 5.4: Quantitative and time metrics results for SPOTRF experiments from OMPC
Plasma. Highlighted fields represent the best results for each time metric across the two
experiments. There is no best result for quantitative metrics as they are fixed values
related to the configuration set.

METRIC EXP 1 EXP 2
Block size 2000 5000

Number of Tasks 125580 8436
Total time [h:min:sec:ms] 0:6:47:282 0:7:22:430

Parallel Time [h:min:sec:ms] 6:52:12:538 7:40:58:537
Computation Time [%] 86.4 76.6

Table 5.5: Efficiency metrics results for SPOTRF experiments from OMPC Plasma. High-
lighted fields represent the best results for each metric across the two experiments.

METRIC EXP 1 EXP 2
Computation Load Balance Efficiency 0.9769 0.9151

Computation Efficiency 0.8843 0.8336
Computation Parallel Efficiency 0.8639 0.7628

Communication Load Balance Efficiency 0.9905 0.8959
Communication Efficiency 0.2486 0.2614

Communication Parallel Efficiency 0.2462 0.2342
Process Load Balance Efficiency 0.9933 0.9490

Process Communication Efficiency 0.9555 0.9757
Process Efficiency 0.9491 0.9259

Serial Region Efficiency 0.3162 0.2735
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5.4 OMPC Plasma - Task Metrics

The task metrics are described in Section 4.5.2 and provide statistical information about
execute and data tasks. The task metrics were tested using the SPOTRF kernel of OMPC
Plasma. With 8 worker processes and 213 threads, the matrix size was fixed at 180000,
and the block size varied between 2000 (EXP 1) and 5000 (EXP 2), therefore, the number
of tasks and the time spent on each also varied. The intention of these tests is to evaluate
how changing the input data, generating different amounts of task, changes the time of
each task individually.

The results present the tasks separated by their source location, with average, maxi-
mum, minimum, and accumulated time expressed in percentages. Table 5.6 and Table 5.7
show the task metric results of EXP 1 and EXP 2, respectively. The most costly execution
task is core_sgemm.c:144:8 for both cases and takes a significant amount of application
time, about 83% for EXP 1 and 72% for EXP 2. Despite having a significantly larger
amount of this task, even individually it is a costly task, also having the highest average,
maximum, and minimum time values. Therefore, optimizing this task could generate
significant performance gains. Although in this case, it is a call to the highly optimized
GEMM kernel of the BLAS library. Also, when the block size changes from 2000 to 5000,
there is an increase in the time spent on that task, which is to be expected. The variation
of the block size values affects the application granularity, that is, the smaller the block
size, the smaller the granularity, and consequently the greater the number of tasks. A
finer granularity can provide a more parallelizable application, however, each task will
generate an additional overhead that can be significant in the total application time. As
in EXP 2, there are fewer tasks to perform the computation with the same matrix size the
tasks take more time individually. Despite this, EXP 2 performs better, as its cumulative
time is lower (ie, the sum of the time of all tasks), about 5 hours and 44 minutes for
EXP 1 and 5 hours and 23 minutes for EXP 2. That is, the overhead generated by the
largest number of tasks (EXP 1 has 110340 more core_sgemm.c:144:8 tasks than EXP 2)
is relevant for this case.

The analysis of communication tasks is different from execution tasks. As shown in
Figure 4.12, when a thread is executing an execution task, no other tasks are performed
at the same time. However, as shown in Figure 4.13, several communication tasks are
executed simultaneously, so the accumulated time does not reflect the time spent in the
communication thread. Since, in the case of task metrics, the accumulation of times is
considered individually, not the interval as in the OMPC metrics. So, it is better to analyze
the time spent individually to estimate how much is being spent on data communication
or to analyze the general communication metrics. In both experiments, the individual
metrics (i.e. average, maximum, and minimum time) are substantially less than the time
spent on executing tasks, at least 10 times smaller. Still, the results are well balanced,
having little variation in the values for EXP 1 and a slightly greater variation in EXP 2,
but still not relevant since the communication tasks are at least 10 times smaller for both
EXP 1 and EXP 2. As in the execution tasks, EXP 2 also features longer communication
tasks, which is to be expected as the data sent is larger due to its greater granularity.
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Table 5.6: Task metrics for EXP 1 with a block size of 2000. The highlighted value
represents the most costly execution task. The field names were abbreviated. SUM and
COUNT represent, respectively, the accumulated task time and the number of tasks.

Task location AVG
[m:ms]

AVG
[104] %

MAX
[103] %

MIN
[104] %

SUM
[h:m:s:ms] SUM % COUNT TYPE

core_ssyrk.c:111:9 0:300 0.0963 0.1094 0.0518 0:00:20:887 00.07 7666 Forward
core_sgemm.c:144:8 0:200 0.0862 0.1365 0.0509 0:08:09:663 01.73 200896 Forward
core_strsm.c:127:9 0:300 0.0895 0.1130 0.0518 0:00:16:671 00.06 6582 Forward
core_spotrf.c:85:9 0:200 0.0746 0.0113 0.0600 0:00:00:232 00.00 110 Forward
spotrf.c:276:13 0:200 0.0749 0.0949 0.0480 0:00:17:362 00.06 8190 Retrieve
spotrf.c:261:13 0:210 0.7452 0.2447 0.0659 0:02:52:624 00.61 8190 Submit
core_sgemm.c:144:8 0:176 7.1038 1.5522 6.4061 5:43:40:938 83.46 117480 Execute
core_strsm.c:127:9 0:900 3.6383 1.1634 3.2083 0:06:00:460 01.46 4005 Execute
core_ssyrk.c:111:9 0:920 3.7210 1.1756 3.3202 0:06:08:229 01.49 4005 Execute
core_spotrf.c:85:9 0:370 1.4960 0.3931 1.2213 0:00:03:327 00.01 90 Execute

Table 5.7: Task metrics for EXP 2 with a block size of 5000. The highlighted value
represents the most costly execution task. The field names were abbreviated. SUM and
COUNT represent, respectively, the accumulated task time and the number of tasks.

Task location AVG
[m:ms]

AVG
[102] %

MAX
[102] %

MIN
[102] %

SUM
[h:m:s:ms] SUM % COUNT TYPE

core_sgemm.c:144:8 0:440 0.0140 0.0747 0.0088 0:08:21:955 1.6045 11486 Forward
core_ssyrk.c:111:9 0:450 0.0143 0.0516 0.0092 0:00:47:779 0.1527 1070 Forward
core_strsm.c:127:9 0:390 0.0125 0.0377 0.0092 0:00:34:500 0.1088 868 Forward
core_spotrf.c:85:9 0:370 0.0117 0.0170 0.0093 0:00:00:585 0.0019 16 Forward
spotrf.c:276:13 0:130 0.0042 0.0188 0.0027 0:00:17:696 0.0566 1332 Retrieve
spotrf.c:261:13 0:203 0.0650 0.1080 0.0103 0:04:30:667 0.8652 1332 Submit
core_sgemm.c:144:8 2:718 1.0117 1.1696 0.9321 5:23:26:959 72.2380 7140 Execute
core_ssyrk.c:111:9 1:392 0.5181 0.6119 0.4762 0:14:36:812 3.2637 630 Execute
core_strsm.c:127:9 1:372 0.5105 0.6480 0.4699 0:14:24:940 3.2164 630 Execute
core_spotrf.c:85:9 0:479 0.1784 0.2068 0.1533 0:00:17:257 0.0642 36 Execute
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Table 5.8: Graph metrics of the random nearest kernel from Task Bench. The base case
corresponds to EXP 1, highlighted in the table. The number in front of the critical path
time, max critical path metric, and min critical metrics path metric represents how many
times the same metric value appeared.

EXP dependencies radix period fraction critical path
time [ms]

max critical
path metric

min critical
path metric average median

1 576 1 3 0.25 1 x 25553.43 1 x 0.92 1 x 0.23 0.56 0.66
2 696 2 3 0.25 1 x 22606.70 3 x 0.82 1 x 0.31 0.57 0.51
3 880 2 3 0.50 1 x 21604.24 4 x 0.98 1 x 0.80 0.92 0.93
4 1048 2 3 0.80 1 x 23859.01 2 x 0.96 4 x 0.79 0.89 0.91
5 698 2 16 0.25 3 x 19108.32 4 x 0.98 1 x 0.65 0.87 0.85
6 840 2 16 0.50 1 x 21211.92 3 x 0.97 2 x 0.82 0.89 0.86
7 1032 2 16 0.80 1 x 45840.89 1 x 0.97 4 x 0.48 0.76 0.82
8 701 2 24 0.25 1 x 18608.63 4 x 0.99 1 x 0.74 0.93 0.94
9 846 2 24 0.50 1 x 28903.79 1 x 0.98 1 x 0.56 0.78 0.76
10 1027 2 24 0.80 1 x 22574.53 4 x 0.99 1 x 0.91 0.97 0.98

5.5 OMPC Task Bench - Graph Metrics

Graph metrics tests used the Task Bench application since there are several parameters to
be configured that change how the dependencies are generated. The type of dependency
used was random nearest and spread since they generate random dependency patterns
and graphs that are more different from each other by varying the parameters. The varied
parameters were the radix, which changes the number of dependencies per task, the period
of dependency pattern, and the fraction of connected dependencies. The experiments were
executed using 4 worker processes and 23 threads.

Table 5.8 shows the results obtained for the random nearest dependency pattern,
divided by experiments numbered from 1 to 10. For these tests, radix 1 was used as the
base case, and radix 2 was used to change the fraction and period parameters since they
showed changes in the graph for radix greater than 1. Changing the parameters generated
graphs with the same number of tasks (576), but with different numbers of dependencies.
In total, each experiment had about 24 root nodes. so with also 24 longest times

In the base case, one dependency is generated per task. This is also the case where
there is a greater imbalance between tasks, with a min and max critical path metric of
0.23 and 0.92, respectively, with the median value greater than the average indicating
that there is a greater proportion of close values. to max. The greatest imbalance, in this
case, is expected, since as the radix increases the number of dependencies increases, and
as the number of tasks remains the same, the paths end up getting longer.

This decrease in unbalance is also observed for the other experiments when the fraction
value increases since it also increases the number of dependencies. This can be seen in
EXP 2, 3, and 4, for example, where EXP 2 has a greater imbalance with a fraction of
0.25, and EXP 3 and EXP 4, with a fraction of 0.5 and 0.8, respectively, are much more
balanced, with similar values of min, max, mean and median.

Increasing the period does not significantly change the number of dependencies. From
EXP 2 to EXP 5 for example, the period increased from 3 to 16, but the dependencies
only increased by 2 units. But the longer the period, the more balanced the graph. This
can be verified by analyzing EXP 2, 5, and 8. In which the min, max, average, and median
measures all increased with larger period values.
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Table 5.9: Graph metrics of the random spread kernel from Task Bench. The number
in front of the critical path time, max critical path metric, and min critical metrics path
metric represents how many times the same metric value appeared.

EXP dependencies radix critical path
time [ms]

max critical
path metric

min critical
path metric average median

1 576 1 1 x 11193.90 1 x 0.94 1 x 0.66 0.81 0.82
2 1152 2 1 x 26619.37 8 x 0.99 2 x 0.90 0.96 0.95
3 2304 4 1 x 43269.38 1 x 0.99 6 x 0.96 0.97 0.97

Critical path optimization would not be very useful in experiments where the max
critical path metric is greater than or equal to 0.96, as its optimization could reduce up
to 4% of the time. One of the worst cases to optimize for is EXP 5, which has 3 longest
times in proportion to the critical path (note that the values are rounded, so it doesn’t
mean that there are three paths with the same measure of time, but that the values are
very similar). Also, there are 4 max critical paths in the value of 0.98, even if it were
possible to optimize the 3 critical paths, the application time would reduce at most by
2%. EXP 1 would benefit the most from a critical path reduction, as it could reduce
application time by up to 8%.

Table 5.9 shows the results obtained for the random spread dependency pattern, di-
vided by experiments numbered from 1 to 3. For these tests, the objective was to analyze
how changing the radix affected the critical path, so the fraction and period were fixed
at values of 0.25 and 3, respectively, default values used by Task Bench. The number of
tasks are also a fixed value of 576.

Compared to the nearest kernel, in kernel spread raising the radix significantly in-
creases the number of dependencies. The same configuration is used in EXP 2 of nearest
and spread, but in the nearest kernel, the dependencies grew to 696, while for the spread
it grew to 1152. Furthermore, in the kernel spread the dependencies were increased pro-
portionally to the radix number. In EXP 2 they doubled and in EXP 3 they quadrupled,
with a radix of 2 and 4 respectively.

The graphs generated by the kernel spread experiment are also much more balanced,
with very similar average and median values for each experiment, which vary at most
by 0.01. In addition, these metrics also increase with a growing radix, further improving
balance. Because the graph is well balanced, optimizing the critical path leads to little
performance gain. Only EXP 1 could have a more significant gain, with a max critical
path metric of 0.94. EXP 2 is the worst case where there are 8 paths of value 0.98.

The graphs are very large and difficult to visualize. Figure 5.8 and Figure 5.9 show
the graph using kernel spread and nearest with 72 and 48 dependencies, respectively. For
both cases, the number of tasks is 36, with a radix of 2, a period of 3, and a fraction
of 0.25. As expected, as it has a greater number of dependencies, the spread graph
appears more connected. The graphs are difficult to analyze and are quite smaller than
the tested examples. In such cases, the graph metrics can help the user to extract relevant
information from the application’s graphs.
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0 
Begin: 303986.88 
End: 312671.43  

Elapsed Time: 8684.55

37 
Begin: 316352.88 
End: 317396.81  

Elapsed Time: 1043.93

38 
Begin: 317455.42 
End: 317718.13  

Elapsed Time: 262.71

39 
Begin: 316502.33 
End: 317527.06  

Elapsed Time: 1024.73

40 
Begin: 318057.91 
End: 318964.73  

Elapsed Time: 906.82

41 
Begin: 317630.98 
End: 317925.39  

Elapsed Time: 294.41

42 
Begin: 317741.39 
End: 317976.47  

Elapsed Time: 235.07

43 
Begin: 318267.66 
End: 320151.51  

Elapsed Time: 1883.85

44 
Begin: 318586.46 
End: 319780.48  

Elapsed Time: 1194.02

45 
Begin: 317844.75 
End: 318713.58  

Elapsed Time: 868.83

46 
Begin: 319441.95 
End: 319646.86  

Elapsed Time: 204.91

47 
Begin: 320305.65 
End: 321131.17  

Elapsed Time: 825.53

48 
Begin: 323267.65 
End: 323486.14  

Elapsed Time: 218.49

49 
Begin: 324763.71 
End: 325806.10  

Elapsed Time: 1042.39

50 
Begin: 320507.30 
End: 320720.06  

Elapsed Time: 212.76

51 
Begin: 321176.29 
End: 321376.08  

Elapsed Time: 199.79

52 
Begin: 321868.82 
End: 322382.55  

Elapsed Time: 513.73

53 
Begin: 324301.46 
End: 324516.22  

Elapsed Time: 214.76

54 
Begin: 324648.43 
End: 324939.73  

Elapsed Time: 291.30

55 
Begin: 326353.85 
End: 326553.34  

Elapsed Time: 199.49

56 
Begin: 325287.65 
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Elapsed Time: 9215.73

57 
Begin: 325251.15 
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Elapsed Time: 216.19

58 
Begin: 326336.47 
End: 326513.76  
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59 
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Elapsed Time: 541.64

61 
Begin: 326599.60 
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Elapsed Time: 481.81

62 
Begin: 335286.50 
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Elapsed Time: 283.46

63 
Begin: 326577.12 
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Elapsed Time: 171.21

64 
Begin: 336307.72 
End: 336504.50  

Elapsed Time: 196.78

65 
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Elapsed Time: 218.96

66 
Begin: 332397.68 
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Elapsed Time: 549.42

67 
Begin: 333259.49 
End: 333440.54  

Elapsed Time: 181.05

68 
Begin: 336075.75 
End: 336307.63  

Elapsed Time: 231.88

69 
Begin: 336362.96 
End: 336527.65  

Elapsed Time: 164.69

70 
Begin: 336574.11 
End: 336851.16  

Elapsed Time: 277.06

71 
Begin: 336560.53 
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Elapsed Time: 677.66

72 
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End: 333666.69  

Elapsed Time: 175.66
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Begin: 359672.07 
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Elapsed Time: 183.50

73 
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1 
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Elapsed Time: 7001.74

74 
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Elapsed Time: 6742.58

2 
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Figure 5.8: Random Spread Graph.
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Figure 5.9: Random Nearest Graph.
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Chapter 6

Conclusion

This work proposed the study and development of new specific profile features for appli-
cations based on task parallelism and running on HPC clusters. It aimed to meet the
demands of such applications due to the lack of these features in current profiling tools.
OMPC is a runtime that allows the implementation of applications with tasks distributed
across computer nodes of clusters and was chosen to test the new profile features devel-
oped. This runtime permits simple code writing through OpenMP directives and was a
suitable choice for development work as it provides task-related profiling data. This data
was used as a basis for the creation of profile features with specific information for task
programming.

The new features consisted of improving the timeline view and the implementation
of profile metrics. The improved timeline, called user version timeline, has task depen-
dencies, variable and source code information, and event links to help user analysis. The
profile metrics were divided into three categories: general, task, and graph; providing
statistics about program execution, specific task information, and critical path analysis,
respectively.

The experiments carried out aimed to check the validity of the metrics and promote
insights on how to use them to guide possible code optimizations. The general metrics
experiments were tested using SGEMM and SPOTRF kernels of the OMPC Plasma ap-
plication. It was verified that the best metrics results coincided with better performance
results and that the metrics can help with overhead analysis generated by choice of gran-
ularity. The task metrics experiments were tested using the SPOTRF kernel and showed
how they can be useful to identify possible optimization points in the program. Also, we
described how to analyze execution and communication tasks. The graph experiments are
performed with OMPC Task Bench and showed that the analysis of the critical path and
the other longest time paths can help the user understand whether improving the critical
path would bring significant performance gains. Timeline analysis allows to understand
the behavior of the code and how events are executed, in addition to being able to help
detect possible problems in the application. The analysis performed in conjunction with
the metrics permits to evaluate the performance of the code.

The intent of metrics is for the programmer to use them to optimize the code. That
is, after writing the parallel code, executing it, and obtaining the profile data, the user
would then extract the metrics, identifying possible improvements to later verify if these
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actually reduced the application time. However, to carry out tests of this type it would
be necessary to develop a new application, but due to lack of time, it was not possible
to perform such experiments. Despite this, the analyzes realized in existing applications
can serve as a guide for other applications. Metrics and improvements in the timeline
provided more detailed information about the execution of tasks, fulfilling the research
objective.

6.1 Lessons learned

As explained in Section 4.2, OMPC traces are generated in JSON format, due to its
simplicity and compatibility with the Chrome Trace visualization tool. However, this
decision also comes with limitations and complications. For applications with large data
sizes that generate a significant number of tasks and events, the resulting trace size can be
in the order of GB, which presents scalability challenges, especially in HPC applications.

Large traces also lead to long post-processing times for metrics extraction, trace merg-
ing, and trace improvement. Even a simple merge operation into a developer version trace
that involves reading the trace, synchronizing it, and writing a new file can take several
hours. Although synchronization is a simple process that involves iterating over events
twice to find the lowest time and subtracting it from all event times, more complex op-
erations such as trace improvement or metric extraction that require additional event
iterations can significantly increase post-processing times. Several attempts were made to
optimize this process by using different libraries for handling JSON or by implementing
alternative versions of code using Python’s Pandas library, but none of these solutions
proved to be highly effective.

Although the Chrome Trace visualization tool was useful for avoiding the need to de-
velop a new graphical interface, it also has limitations in terms of adding new information
and visualization formats to the timelines.

6.2 Future works

As future works, the two most important points are: to carry out experiments with a new
application and then use the metrics to optimize it; improve metrics extraction time, and
trace improvement and merge. For the second point, two approaches were thought that
can be performed concomitantly. The first is to use parallelism to perform operations
that require iterating over events, since many functions of metric extraction and timeline
improvement are independent. However, this approach would not solve the problem of
long trace reading time. During the project, there were tests with several libraries for
reading JSON, but even the most efficient library tested still took a very long time to
read. So, the second approach would be to change the trace format to one that reads
faster. We are studying the possibility to use the Perfetto Tracing SDK [2] in the future,
a library in which it is possible to generate traces in a binary format. It contains its own
graphics tool, called Perfetto UI, accessible via the web site, which has a visualization
very similar to our current timeline model. The trace format generated by this library
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can be converted into the format read by the Chrome Trace visualization tool, as well
as other tools. We expect that with traces in binary format, reading is much faster and
improves the scalability of our profiling tools.
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