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Abstract
The Scaled Boundary Finite Element Method (SBFEM) is a finite element technique
where the approximation space is composed of semi-analytical shape functions. These
functions are obtained by approximating a homogeneous partial differential equation
(PDE) by a Ricatti ordinary differential equation (ODE) whose analytical solution is
known. The SBFEM is applied mainly in singularity problems, infinite domains, and
simulations using complex meshes. This thesis aims to extend the SBFEM to simulate
mechanical problems where the divergence-free condition is an essential characteristic of
the numerical method, such as in incompressible fluid simulation. For that, this work
is divided into three steps. First, it is demonstrated that the SBFEM approximation
space is a subspace of Duffy’s tensorial functions, which are based on the geometry of
collapsed elements. Moreover, it is shown that the SBFEM space has intrinsic orthog-
onality in the energy semi-norm; such property is applied in the proof of a priori error
estimates. In the sequence, the second part of the thesis addresses the construction of
an SBFEM bubble function space for approximating non-homogeneous PDEs. A priori
error estimates demonstrate that the proposed approximation leads to optimal conver-
gence rates. Finally, a locally conservative SBFEM formulation is proposed, based on
applying the mixed hybridization technique in a finite-element cell of infinitesimal width,
in such a way as to obtain the SBFEM coefficient matrices that represent the Ricatti
ODE. All formulations proposed in this thesis were implemented in an object-oriented
finite element library. Numerical examples of a Darcy flow in a two-dimensional domain
tested the accuracy of the technique. The tests included domains with square-root sin-
gularities, depicting the capacity of the method to simulate a flow in a fractured porous
media. Optimal convergence rates were observed, including for the flow and high-order
approximations.

Keywords: Finite Element Method, Darcy Flow, Numerical analysis, Object-Oriented
Programming.



Resumo
O Método dos Elementos Finitos de Contorno Escalado, ou Escalonado no Contorno,
(SBFEM) é uma técnica de elementos finitos na qual o espaço de aproximação é com-
posto por funções de forma semi-analíticas. Essas funções são obtidas pela aproximação de
uma equação diferencial parcial (EDP) homogênea por uma equação diferencial ordinária
(EDO) de Ricatti, cuja a solução analítica é conhecida. O SBFEM é aplicado principal-
mente em problemas com singularidades, domínios infinitos e simulações usando malhas
complexas. Essa tese visa estender o SBFEM para simular problemas mecânicos onde a
condição de divergente nulo é uma característica essencial do método numérico, como em
simulação de fluidos incompressíveis. Para isso, esse trabalho é dividido em três etapas.
Primeiro, é demonstrado que o espaço de aproximação SBFEM é um subespaço do espaço
das funções tensoriais de Duffy, que são baseadas na geometria de elementos colapsados.
Além disso, é mostrado que o espaço de aproximação SBFEM tem uma ortogonalidade
intrínseca na semi-norma de energia; tal propriedade é usada na prova da estimação de
erro a priori. Na sequência, a segunda parte da tese aborda a construção de um espaço
de funções bolha SBFEM para aproximar EDPs não-homogêneas. Estimadores de erro
a priori demonstram que a aproximação proposta leva a ótimas taxas de convergência.
Finalmente, uma formulação SBFEM localmente conservativa é proposta, baseada na
aplicação da técnica de hibridização mista em uma célula de elemento finito de espessura
infinitesimal, de forma a obter as matrizes de coeficiente SBFEM que representam a EDO
de Ricatti. Todas formulações propostas nessa tese são implementadas em uma biblioteca
de elementos finitos orientada à objeto. Exemplos numéricos de um fluxo de Darcy em um
domínio bi-dimensional testaram a acurácia da técnica. Os testes incluíram domínio com
singularidade do tipo raiz-quadrada, retratando a capacidade do método para simular um
fluxo em um meio poroso fraturado. Ótimas taxas de convergência foram observadas,
incluindo para o fluxo e para aproximações de alta ordem.

Palavras-chave: Método dos Elementos Finitos, fluxo de Darcy, análise numérica, pro-
gramação orientada a objetos.
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List of Symbols

In this section the main mathematical symbols, operators and variables are described. In
general, the variables and symbols are represented as:

• Scalars: in italic 𝐴;

• Vectors: using a underline 𝐴;

• Matrices: using two underlines 𝐴.

Functions or variables with a hat symbol are described in the parametric space (𝜉, 𝜂) for
2D or (𝜉, 𝜂1, 𝜂2) for 3D. Omitted cases are described over the thesis.

Chapter 2

Operators
𝜕

𝜕𝑥𝑖
Derivative in 𝑥𝑖-direction.

∇𝑥̂ Gradient operator in the master coordinates.

∇𝑥 or ∇ Gradient operator in the deformed coordinates.

∇× Curl operator.

∇· Divergence operator.

Δ Laplace operator, ∇ · (∇·).

|·| Determinant of a matrix.

⟨·, ·⟩ or ⟨·, ·⟩𝐿2 𝐿2 inner-product.

⟨·, ·⟩𝐻1 𝐻1 inner-product.

⟨·, ·⟩𝑑𝑖𝑣 𝐻(𝑑𝑖𝑣) inner-product.

⟨·, ·⟩𝐻1/2(Γℎ)×𝐻−1/2(Γℎ) Duality between 𝐻1/2(Γℎ) and 𝐻−1/2(Γℎ).

||·|| or ||·||𝐿2 𝐿2 norm.

||·||𝐻1 𝐻1 norm.

||·||𝑑𝑖𝑣 𝐻(𝑑𝑖𝑣) norm.

𝛾 Trace operator in 𝐻1 space.

𝛾𝑑𝑖𝑣 Trace operator in 𝐻(𝑑𝑖𝑣) space.



Πℎ 𝐿2 projection-based operator.

Πℎ
𝐻1 𝐻1 projection-based operator.

Πℎ
𝑑𝑖𝑣 𝐻(𝑑𝑖𝑣) projection-based operator.

J𝜎K 𝜎 · 𝑛 on Γℎ and 𝜎+ · 𝑛+ + 𝜎− · 𝑛− on Γℎ.

Function spaces
P𝑘 Space of polynomials of degree ≤ 𝑘.

𝐿2 Lebesgue space.

𝐻1 Hilbert space.

𝐻1/2 The 𝐻1 trace function space.

𝐻(𝑑𝑖𝑣) Space of square-integrable divergence.

𝐻−1/2 The 𝐻(𝑑𝑖𝑣) trace function space.

𝒱ℎ Finite-dimensional 𝐻1 subspace.

ℳℎ Finite-dimensional space for the Lagrange multipliers 𝐿2(ℰℎ).

𝒵ℎ Finite-dimensional 𝐿2 subspace.

𝒵ℎ Vector-valued finite-dimensional 𝐿2 subspace.

𝒬ℎ Finite-dimensional 𝐻(𝑑𝑖𝑣) subspace.

Geometry
R𝑑 Euclidean space.

𝑑 Dimension.

𝑥 Geometric coordinates in 𝒦.

𝑥̂ Parametric coordinates in 𝐾̂ composed of (𝜉, 𝜂) for 2D or (𝜉, 𝜂1, 𝜂2) for 3D domains.

𝒦 Bounded domain in R𝑑 (or geometric element).

𝜕𝒦 Boundary of 𝒦.

𝐾̂ Master element.

Ω Domain in R𝑑 with sufficiently regular boundary.

𝒯 ℎ Partition of the domain Ω into subdomains/elements.

Γ Boundary of Ω.

Γℎ Set of boundary edges or facets over Γ.

𝑒𝑖𝑗 Interface between the elements 𝒦𝑖 and 𝒦𝑗.

ℰℎ Skeleton mesh.

𝐹 Geometric affine transformation.



𝑃 Piola transformation.

𝐽 Jacobian matrix for a geometric map 𝐹 .

𝑛 Outward normal vector.

ℎ Characteristic mesh size.

𝐼 Interval [−1, 1].

𝑃𝑟 Prism described by {0 ≤ 𝜉 ≤ 1, 0 ≤ 𝜉 + 𝜂1 ≤ 1, 0 ≤ 𝜂2 ≤ 1}.

𝑃𝑦 Parametric pyramid described by {−1 ≤ 𝜉 − 𝜂2 ≤ 1,−1 ≤ 𝜂1 − 𝜂2 ≤ 1, 0 ≤ 𝜂2 ≤ 1}.

𝐻𝑒 Parametric hexahedron described by −1 ≤ 𝜉, 𝜂1, 𝜂2 ≤ 1.

𝑄̂ Parametric quadrilateral −1 ≤ 𝜉, 𝜂 ≤ 1.

𝑇 Parametric triangle described by {0 ≤ 𝜉 ≤ 1, 0 ≤ 𝜉 + 𝜂1 ≤ 1}.

𝑇𝑒 Parametric tetrahedron described by {0 ≤ 𝜉 ≤ 1, 0 ≤ 𝜉+ 𝜂1 ≤ 1, 0 ≤ 𝜉+ 𝜂1 + 𝜂2 ≤ 1}.

Finite elements and functions
ℱ Finite element.

𝐿𝑖 DOF (elements of Σ).

Σ Set of linear forms for a basis of P.

𝜑 Shape function in 𝒱ℎ(𝐾̂) ⊂ 𝐻1(𝐾̂).

𝑓𝑛 Chebyshev polynomial of 𝑛-th order.

𝜓̂ Shape function in 𝒬ℎ(𝐾̂) ⊂ 𝐻(𝑑𝑖𝑣; 𝐾̂).

Scalars, vectors and matrices
𝑢 State variable.

𝜎 Flux variable.

𝜁 Lagrange multiplier.

𝑢𝐷 Dirichlet value for the state variable.

𝑓 Source term of a non-homogeneous PDE.

𝑁𝑃 Dimension of P𝑘 space.

𝐾 Stiffness matrix.

𝑆 Vector composed of the multiplier coefficients for 𝜎ℎ ∈ 𝒬ℎ.

𝑈 Vector composed of the coefficients for 𝑢ℎ ∈ 𝒵ℎ using the Mixed FEM.

𝒮 Vector composed of the multiplier coefficients for 𝜎ℎ ∈ 𝒵ℎ.

𝒰 Vector composed of the multiplier coefficients for 𝑢ℎ ∈ 𝒵ℎ using the Hybridized-Mixed
FEM.



𝐺 Vector composed of −⟨𝑢𝐷, 𝑞
ℎ · 𝑛⟩𝐻1/2(Γℎ)×𝐻−1/2(Γℎ).

𝐹 Vector composed of −⟨𝑓, 𝑣ℎ⟩.

𝒢 Vector composed of −
∫︀

Γℎ 𝑢𝐷J𝑞ℎK𝑑𝑠.

ℱ Vector composed of −⟨𝑓, 𝑧ℎ⟩.

ℒ Vector composed of the multiplier coefficients for 𝜁ℎ ∈ ℳℎ.

H Condensed force vector for the hybridized-mixed method.

𝐴 Matrix composed of the bilinear form 𝑎 : 𝒬ℎ × 𝒬ℎ → R.

𝐵 Matrix composed of the bilinear form 𝑏 : 𝒵ℎ × 𝒬ℎ → R.

A Hybrid matrix composed of the bilinear form 𝑎 : 𝒵ℎ × 𝒵ℎ → R.

B Hybrid matrix composed of the bilinear form 𝑏 : 𝒵ℎ × 𝒵ℎ → R.

C Hybrid matrix composed of the bilinear form 𝑐 : ℳℎ × 𝒵ℎ → R.

E Condensed stiffness matrix for the hybridized-mixed method.

Chapter 3

Operators
∇𝜂 Gradient operator over the mapped surface 𝐿̂.

𝐿 Differential operator.

||𝐻𝑠 𝐻𝑠 semi-norm.

⟨𝜑, 𝜓⟩∇,𝑆 The inner product between ∇𝜑 and ∇𝜓.

⟨𝜑, 𝜓⟩ℰ,𝑆 The inner product between 𝐷𝜖(𝜑) and 𝜖(𝜓).
∇
⊕ Gradient inner product orthogonality.

ℐℎ
𝑘 Trace interpolant operator 𝐻𝑠(Γℎ) → Λ𝑘(Γℎ).

ℱℎ,Δ
𝑘 Harmonic virtual interpolant operator 𝐻𝑠(Γℎ) → 𝒱ℎ,Δ

𝑘 (Γℎ).

𝑎(·, ·) Bilinear form S𝑘 × S𝑘 → R.

𝑎𝐸(·, ·) Bilinear form S𝑘 × S𝑘 → R.

Function spaces
𝐶(Γ𝑆) Continuous space in Γ𝑆.

𝐶(Γ𝑆,R𝑑) Continuous space for vector-valued functions in Γ𝑆.

𝒟𝑘 Duffy’s space.

𝒟0
𝑘(𝑆) Duffy’s bubble function space in 𝑆.



𝒟𝑘 Duffy’s space of vector-valued functions.

𝐻𝑠 General Sobolev space, 𝑠 ≥ 1.

𝐻1
0 Sobolev space of all functions that vanish at Γ.

ℋ(𝑆) Space of harmonic functions in 𝑆.

Dℎ
𝑘(𝑆) Finite-dimensional Duffy’s polynomial space.

D0,ℎ
𝑘 (𝑆) Finite-dimensional Duffy’s polynomial bubble space.

Q𝑘,𝑘 Polynomial space of total degree 𝑘 order in 𝜂1 and 𝜂2 direction.

𝒱ℎ
𝑘 Polynomial finite-dimensional 𝐻1 subspace up to 𝑘−-th order.

𝒱ℎ,𝐹 𝐸
𝑘 Polynomial finite-dimensional 𝐻1 subspace for a conglomerate mesh 𝒫ℎ.

𝒱ℎ,Δ
𝑘 Harmonic virtual space.

S𝑘 SBFEM space for Harmonic problems.

S𝑘 SBFEM space for Elasticity problems with null body loads.

Sℎ,0
𝑘 SBFEM space of functions that vanish at 𝜕Ω.

Λ𝑘 Trace FE space composed of scalar functions 𝑁𝑆
𝑘 (𝑥).

Λ𝑘 Trace FE space composed of vector-valued functions 𝑁𝑆
𝑘 (𝑥).

Geometry
𝑥𝑏 Surface coordinate over 𝐿 ⊂ 𝐾.

𝜉 Radial coordinate.

a𝑖 Vertices of 𝐾.

a0 Collapsed vertex in 𝐾.

𝜂 Mapped surface coordinate over 𝐿̂ ⊂ 𝐾̂ composed of (𝜂1, 𝜂2).

𝑆 Star-shaped element or 𝑆-element.

𝜕𝑆 Boundary of a 𝑆-element.

O Scaling center of a 𝑆-element.

𝐾 Duffy element (also collapsed element).

𝜕𝐾 Boundary of 𝐾.

𝐹𝐾 Duffy’s geometric transformation.

𝐹𝐿 Geometric transformation from 𝐿̂ to 𝐿.

𝐽
𝐾

Jacobian matrix of Duffy’s transformation 𝐹𝐾 .

𝐿 Facet opposed to the collapsed side of 𝐾.

𝐿̂ Facet in 𝐾̂ mapped from 𝐿 in a Duffy element.

𝑁Γ𝑆 Number of facets of a 𝑆-element.



𝒫ℎ Conglomerate mesh of triangles, tetrahedrons, or pyramids that compose 𝒯 ℎ.

𝒯 ℎ,𝑆 Partition of a 𝑆-element into Duffy’s elements.

Finite elements and functions
𝒩 𝑆 Dimension of S𝑘 space.

𝜑 SBFEM shape function given by 𝜑 = 𝜌(𝜉)𝛼̂(𝜂).

𝜓 Duffy test function in 𝒟𝑘(𝐾̂) ⊂ 𝐻1(𝐾̂).

𝑞𝑖(𝑥) SBFEM function associated to 𝑄̂(𝜉).

Γℎ,𝑆 Scaled boundary finite element.

𝛼̂(𝜂) Surface function for 𝜑 in 𝒱𝑘(𝐿̂).

𝛼̂(𝜂) Vector-valued surface function for 𝜑 in 𝒱𝑘(𝐿̂).

𝛽(𝜂) Surface function for 𝜓 in 𝐿̂.

𝜌(𝜉) Radial function for 𝜑.

𝜏(𝜉) Radial function for 𝜓.

𝐸ℎ
𝐿2 𝐿2 error ‖𝑢− 𝑢ℎ‖𝐿2(Ω).

𝐸ℎ
𝐻1 𝐻1 error |𝑢− 𝑢ℎ|𝐻1(Ω).

𝜖(𝜑) SBFEM strain vector approximation.

𝑁̂ 𝑙
𝑘(𝜂) Shape functions in 𝒱𝑘(𝐿̂).

𝑁̂
𝑙

𝑘(𝜂) Vector-valued shape functions in 𝒱𝑘(𝐿̂;R𝑑).

𝑁𝑆
𝑘 (𝑥𝑏) Vector composed of the scalar shape functions 𝑁𝑛,𝑆

𝑘 (𝑥𝑏) ∈ Λ𝑘(Γ𝑆).

𝑁𝑆
𝑘
(𝑥𝑏) Matrix composed of the vector-valued shape functions 𝑁𝑛,𝑆

𝑘 (𝑥𝑏) ∈ Λ𝑘(Γ𝑆).

Φ̂(𝜉) Product 𝑎𝑇𝜌(𝜉).

Ψ̂(𝜉) Product 𝑏𝑇 𝜏(𝜉).

𝐵1(𝜂) Column matrix composed of the product of [𝐽−1
𝐾

(1, 𝜂)]−𝑇 and the vector composed
of the shape functions.

𝐵2(𝜂) Column matrix composed of the product of [𝐽−1
𝐾

(1, 𝜂)]−𝑇 and the vector composed
of the gradient of shape functions.

𝐵1(𝜂) Matrix composed of the product of 𝑏1 and 𝑁̂
𝑆

𝑘
(𝜂).

𝐵2(𝜂) Matrix composed of the product of [𝑏2 𝑏3] and ∇𝜂𝑁̂
𝑆

𝑘
(𝜂).

𝑋(𝜉) Solution of the SBFEM eigenvalue problem.

Φ̂(𝜉) Matrix composed of Φ̂𝑖(𝜉) = 𝐴+,𝑖𝜉
𝜆+,𝑖 .

𝑄̂(𝜉) Matrix composed of 𝑄̂
𝑖
(𝜉) = 𝐴𝑞

+,𝑖𝜉
𝜆+,𝑖 .



Scalars, vectors and matrices
𝐸 Young modulus.

𝜈 Poisson coefficient.

𝑎 Vector composed of the multiplier coefficients of 𝑁̂𝑆
𝑘 composing 𝛼̂.

𝑏 Vector composed of the multiplier coefficients of 𝑁̂𝑆
𝑘 composing 𝛽(𝜂).

b
𝑖

Matrix composed by multiplying 𝐿 and the i-th line of [𝐽−1
𝐾

(1, 𝜂)]−𝑇 .

𝑢 Displacement.

𝑢𝐷 Prescribed displacement in Γ.

𝜆 Vector composed of the SBFEM eigenvalues for the Poisson problem.

𝜆+ Vector composed of only the positive part of 𝜆.

𝑐 Vector composed of the SBFEM multiplier coefficients, given by 𝐴−1𝑢𝑆.

𝑓 Force vector.

𝑢𝑆 Values for 𝑢(𝜉 = 1).

𝐴 Matrix composed of the SBFEM eigenvectors associated to Φ̂(𝜉) and 𝜆.

𝐴+ Matrix composed of the SBFEM eigenvectors 𝐴 associated to 𝜆+.

𝐴𝑞 Matrix composed of the SBFEM eigenvectors associated to 𝑄̂(𝜉) and 𝜆.

𝐷 Second-order constitutive tensor for Elasticity.

𝐼 Identity matrix.

𝐸0 SBFEM coefficient matrix composed of 𝐵𝑇
1𝐵1 product for the Poisson problem;

𝐸1 SBFEM coefficient matrix composed of 𝐵𝑇
2𝐵1 product for the Poisson problem;

𝐸2 SBFEM coefficient matrix composed of 𝐵𝑇
2𝐵2 product for the Poisson problem;

𝐾𝑆 SBFEM stiffness matrix.

𝑍 SBFEM Hamiltonian matrix composed of the SBFEM coefficient matrices for the Pois-
son problem.

Note: For the Elasticity problem, the SBFEM matrices and functions have a superscript
𝑒, for instance: 𝑎𝑒, 𝑏𝑒, 𝜌(𝜉)𝑒, 𝜏(𝜉)𝑒, Φ̂𝑒, Φ̂𝑒, 𝐴𝑒, 𝜆𝑒, 𝐸𝑒

0, 𝐸
𝑒
1, 𝐸

𝑒
2, 𝑍

𝑒.

Chapter 4

Operators
⊕ Direct sum of function spaces.



Function spaces
𝒟0

𝑘,𝑚 Space of Duffy polynomial bubbles of degree ≤ 𝑘 in 𝜂 and ≤ 𝑚 in 𝜉-direction.

𝒟0
𝑘,𝑚 Space of Duffy polynomial bubbles of degree ≤ 𝑘 in 𝜂 and 𝜉-direction.

B𝑘 SBFEM bubble space for the Poisson problem.

B𝑘 SBFEM bubble space for the Elasticity problem.

V𝑘 SBFEM space for scalar functions composed of B𝑘 ⊕ S𝑘.

V𝑘 SBFEM space for vector-valued functions composed of B𝑘 ⊕ V𝑘.

V0,ℎ
𝑘 Global SBFEM space of scalar functions that vanish at Γ.

V0,ℎ
𝑘 Global SBFEM space of vector-valued functions that vanish at Γ.

Geometry
𝒫𝑆 Conglomerate mesh of triangles, tetrahedrons, or pyramids that compose 𝒯 ℎ,𝑆.

Finite elements and functions
𝜙𝑚,𝑛(𝑥) Duffy polynomial bubble of degree ≤ 𝑘 for 𝜂 and ≤ 𝑚 for 𝜉-direction.

𝜙𝑖(𝑥) Duffy bubble function composed of the pair of eigenvalues and eigenvectors 𝜆𝑖 and
𝐴𝑖.

𝜙
𝑚,𝑛

(𝑥) Vector-valued Duffy polynomial bubble of degree ≤ 𝑘 for 𝜂 and ≤ 𝑚 for 𝜉-
direction.

𝜙
𝑖
(𝑥) Vector-valued Duffy bubble function composed of the pair of eigenvalues and eigen-

vectors 𝜆𝑒
𝑖 and 𝐴𝑒

𝑖 .

𝜌𝑏
𝑖(𝜉) Radial component of 𝜙𝑖(𝑥).

𝜌𝑏
𝑚(𝜉) Radial component of 𝜙𝑚,𝑛(𝑥).

𝜌𝑏

𝑖
(𝜉) Vector composed of 𝜉𝑘 and 𝜉𝜆𝑖 .

𝜌𝑏

𝑚
(𝜉) Vector composed of 𝜉𝑚 and 𝜉𝑚−1.

𝜌(𝜉) Diagonal matrix diag(𝜉𝜆−0.5(𝑑−2)).

𝜌𝑏(𝜉) Matrix that gathers 𝜌𝑏

𝑚
(𝜉) and 𝜌𝑏

𝑖
(𝜉).

𝜑(𝑥) Vector composed of the SBFEM basis function 𝜑𝑖(𝑥) for the Poisson problem.

Φ̂(𝜉) Vector composed of 𝜑 𝐴−𝑇 .

Φ̂
𝑏(𝜉) Vector composed of 𝜙 𝑇 𝑇 .

Note: For the Elasticity problem, the SBFEM functions have a superscript 𝑒, for instance:
𝜌𝑏,𝑒(𝜉), Φ̂𝑒(𝜉), Φ̂𝑏,𝑒(𝜉).



Scalars, vectors and matrices
𝐹 Force vector for the SBFEM approximations in V𝑘 or V𝑘.

𝐹 𝜕 Force vector for the SBFEM approximations in S𝑘 or S𝑘.

𝐹 𝑏 Force vector for the SBFEM approximations in V𝑘 or V𝑘.

𝐾𝜕 Usual stiffness matrix for the SBFEM approximations.

𝐾𝑏 Stiffness matrix composed of only SBFEM bubble approximations.

𝑇 Matrix that gathers 𝑡.

Chapter 5

Operators

Function spaces
P1,𝑘 Space of polynomials of degree ≤ 1 in 𝜉-direction and ≤ 𝑘 in 𝜂-direction.

Geometry
𝛿 Infinitesimal dimensionless width of the FE cell.

𝐶 Subpartition of a FE cell.

𝑆 FE cell.

𝐿𝑒 Exterior facet of a FE cell.

𝐿𝑖 Fictitions interface facet of a FE cell.

𝐹𝐶 Geometric map from 𝐾̂ to 𝐶.

𝐹𝐿𝑒(𝜂) Geometric map of the exterior facet 𝐿𝑒 of a FE cell.

𝐹𝐿𝑖
(𝜂) Geometric map of the fictitious interface facet 𝐿𝑖 of a FE cell.

𝐹𝐿𝑖𝑛𝑡
(𝜂) Geometric map of the interior facet 𝐿𝑖𝑛𝑡 of a FE cell.

𝑃𝐶 Piola transformation for 𝐶.

𝐶
𝛿

Diagonal matrix composed of 𝛿 and 𝜉 components of 𝐽
𝐶

𝐽
𝐶

Jacobian matrix of the geometric transformation 𝐹𝐶 .

𝒯 𝑆 Partition of the domain Ω into FE cells 𝑆.

𝑛𝑆 Number of exterior facets of 𝑆.

Finite elements and functions
𝜑𝑖

𝑖 Shape functions related to the fictitious interface DOF 𝑢𝑖.

𝜑𝑒
𝑖 Shape functions related to the external DOF 𝑢𝑒.



𝜙𝑖
𝑖 Shape functions related to the infinitesimal differential pressure.

𝜙𝑒
𝑖 Shape functions related to the average infinitesimal pressure.

𝜙 Vector composed of the functions 𝜙𝑖
𝑖 and 𝜙𝑒

𝑖 .

𝜓𝑖𝑛𝑡 Vector-valued shape functions to approximate the internal flux

𝜓𝑖, 𝜓𝑒 Vector-valued shape functions to approximate the exterior flux.

Scalars, vectors and matrices
𝑢̄ Infinitesimal average pressure of a FE cell.

𝑑𝑢̄ Infinitesimal "differential pressure" of a FE cell.

𝑢𝑒 Pressure in 𝐿𝑒.

𝑢𝑖 Pressure in 𝐿𝑖.

ℒ𝑖 Lagrange multiplier DOF related to the differential external pressure.

ℒ𝑒 Internal Lagrange multiplier DOF related to the external pressure.

𝐾𝑖𝑖 Stiffness matrix computed using 𝜙𝑖.

𝐾𝑖𝑒 Stiffness matrix computed using 𝜙𝑖 and 𝜙𝑒.

𝐾𝑒𝑒 Stiffness matrix computed using 𝜙𝑒.

𝐸𝑑𝑖𝑣
0 , 𝐸𝑑𝑖𝑣

1 , 𝐸𝑑𝑖𝑣
2 SBFEM coefficient matrices using the hybridized-mixed approach.

𝑍𝑑𝑖𝑣 SBFEM Hamiltonian matrix for the Darcy flow using a hybridized-mixed approach.

𝒳 (𝜉) Matrix composed of 𝑢𝑒
𝑖 (𝜉) and 𝑞

𝑖
(𝜉).

A𝑖𝑛𝑡,𝑖𝑛𝑡 Submatrix of A using internal vector-valued functions.

A𝑖𝑛𝑡,𝑒 Submatrix of A using internal and external vector-valued functions.

A𝑒,𝑒 Submatrix of A using external vector-valued functions.

B𝑝𝑖,𝑖𝑛𝑡 Submatrix of B using internal scalar and vector-valued functions.

B𝑝𝑖,𝑒 Submatrix of B using internal scalar functions and external vector-valued functions.

C𝑖,𝑖 Submatrix of C using internal functions.

C𝑒,𝑒 Submatrix of C using external functions.
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Chapter 1

Introduction

1.1 Motivation
Many physical problems are described through partial differential equations (PDEs) with
divergence-free constraints (for instance, for a flux ∇ · 𝜎 = 0), such as incompressible
Darcy flows, Navier-Stokes equations, and Maxwell equations (MASUD; HUGHES, 2002;
COCKBURN; LI; SHU, 2004; XU; ZHANG, 2010; CARVALHO; DEVLOO; GOMES,
2020). For the first two problems, the divergence-free condition is explicitly an essential
term of the equation. Neglecting this fact leads to numerical defects (COCKBURN; LI;
SHU, 2004), such as nonphysical oscillations and instabilities (JO; KWAK; LEE, 2021).
On the other hand, it is impracticable to impose divergence-free conditions employing the
usual 𝐻1 finite element (FE) approximations since it leads to non-local conservation flux
(ARNOLD, 1990). Moreover, a combined system of transport and elliptic equations often
describes these mechanical problems; so, most of the time, predicting the dual variable,
such as the velocity or flux, is as important as approximating the primal variable, for
instance the pressure.

Several techniques have been developed in the scope of the Finite Element Method (FEM)
to compute locally conservative fluxes, such as Mixed FEM (BOFFI; BREZZI; FORTIN,
2013; ARNOLD, 1990), Hybridized-Mixed FEM (COCKBURN; GOPALAKRISHNAN,
2004), Continuous and Discontinuous Galerkin combined with additional post-processing
techniques, to name a few (HUGHES et al., 2000; COCKBURN; LI; SHU, 2004; COCK-
BURN; GOPALAKRISHNAN; WANG, 2007). Among these methods, the Mixed FEM
stands out because the divergence-free condition is imposed directly by the approximation
space. Moreover, it leads to a straightforward variational formulation that approximates
primal and dual variables with optimal convergence rates.

Although the Mixed FEM effectively establishes a locally conservative flux, numerical
issues still arise in approximating divergence-free conditions in domains with singularities,
such as crack tips, V-notches, re-entrant corners, or dissimilar materials. Performing flow
simulations with divergence-free conditions and singularities over the domain is a current
area of active research due to the numerical difficulties that emerge in this problem. Some
strategies have been developed in the literature in recent years to solve locally conservative
problems with singularities. For instance, the Mixed FEM was coupled to the smooth
domain method by Belhachmi, Sac-Epée and Sokolowski (2005) for the simulation of
cracks in elastic domains. To model dissimilar materials, Devloo et al. (2021) applied the
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Multiscale Hybrid Method using Mixed formulations (MHM-𝐻(𝑑𝑖𝑣)) in a heterogeneous
media case.

For fluid mechanics, Devloo et al. (2019a) also applied the MHM-𝐻(𝑑𝑖𝑣) in two-dimensional
fracture networks; and Berre et al. (2021) tested several strategies for simulating a single-
phase flow in a three-dimensional fractured porous media, including Mixed FEM. De-
spite the mentioned advances, the formulations often lead to very complex approxima-
tions, high DOF, large computational costs, and remeshing techniques. On the other
hand, the SBFEM approximates problems with square-root singularities with great ac-
curacy, optimal rates of convergence, low DOFs, and no remeshing techniques are re-
quired (CHIONG et al., 2014; SONG; OOI; NATARAJAN, 2018; GUO et al., 2019b;
ANKIT, 2021; COELHO; DEVLOO; GOMES, 2021). Thus, developing an SBFEM
𝐻(𝑑𝑖𝑣)-compatible space would couple the advantages of SBFEM and Mixed FEM to
target the aforementioned problems.

1.2 Justification
FEM is widely used to approximate PDEs due to its robustness and generality. Nonethe-
less, intrinsic constraints impose obstacles to simulating certain sorts of problems. For
instance, FEM has limitations in accurately approximating analytical solutions having
square-root singularities and infinite domains. Yet, the meshing procedure uses only sim-
ple convex polytopes, such as tetrahedra, pyramids, and hexahedra (3D) or triangles and
quadrilaterals (2D).

Different techniques have been introduced in the literature to overcome these issues, such
as the Extended Finite Element Method (XFEM), Smoothed Finite Element Methods
(SFEM), and Virtual Element Methods (VEM) (NATARAJAN et al., 2014; VEIGA et
al., 2013). The XFEM contributes to solving fracture problems but without improving the
mesh flexibility. Although SFEM and VEM allow using meshes of generic polyhedra, they
struggle to approximate square-root singularities. In a different direction, the Boundary
Element Method (BEM) targets both issues and reduces the spatial dimension by one
(ALIABADI, 2002), though it leads to a non-symmetric stiffness matrix and demands a
fundamental solution often complicated.

As detailed in Table 1.1, the BEM and the SBFEM only require boundary discretization,
reducing the spatial dimension for the solution by one and allowing a flexible mesh gen-
eration. But differently from BEM, SBFEM does not require any fundamental solution.
In the SBFEM, the interior solution is almost analytical based on the interpolated ap-
proximation over the element’s skeleton. The construction of the semi-analytical shape
functions is performed through a simple eigenvalue problem. Although the goal of this
thesis is not the simulation of unbounded media, SBFEM can be used to simulate infinite
or semi-infinite domains, such as soil-structure interaction. For SBFEM and BEM, the
radial condition at infinity is satisfied.

On the other hand, as well as the FEM, the SBFEM leads to sparse symmetric stiffness
matrices that are easily invertible. Additionally, the computation of the Stress Intensity
Factors (SIF) using SBFEM is straightforward since it is directly based on the approxi-

1Based on Mohasseb, S.: Accessed in: https://ethz.ch/content/dam/ethz/special-
interest/baug/ibk/structural-mechanics-dam/education/femII/SBFEM1.pdf at Sep 24 2021
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Table 1.1: Comparison of advantages and disadvantages of FEM, BEM, and SBFEM.1

FEM BEM SBFEM
Only the surface is discretized
(Reduction of the spatial dimension by 1) X X

No fundamental solution is required X X
Interior solution computed analytically
using the surface approximation X

Radiation condition at infinity satisfied
for simulation of unbounded media X X

No discretization of free and fixed boundaries
and interfaces between different materials X

Straightforward calculation of stress concentrations
and intensity factors based on their definition X

Symmetric sparse stiffness matrix X X
Straightforward coupling of bounded and unbounded media X X
Straightforward three-dimensional fracture simulation X

mated solution. Recently, the SBFEM has been expanded to several applications, such
as

• Crack propagation under themo-mechanical loads (IQBAL et al., 2021), cohesive
crack propagation (ANKIT, 2021), concrete cracking due to corrosion (DAI; LONG;
WANG, 2021) and three-dimensional fracture in brittle materials (ASSAF et al.,
2022);

• Contact problems (YA et al., 2021; PRAMOD et al., 2021; WIJESINGHE et al.,
2022);

• Image-based mesh generation (EISENTRÄGER et al., 2020; SAPUTRA et al.,
2020);

• High-performance computing (HPC) (ZHANG et al., 2022);

• Fluid mechanics (PFEIL et al., 2021), to name a few.

Further details on applications will be addressed in Section 1.5, where a brief literature
review is presented.

Despite the aforementioned recent advances in numerical applications, fluid simulations
using the SBFEM are still incipient in the literature. Pfeil et al. (2021) simulate only the
pressure using the Reynolds equation. In such study, convergence curves are not plotted
for velocity and flow analysis is not performed. To the best of our knowledge, convergence
analysis for Darcy, Stokes, and Navier-Stokes fluid simulations using the SBFEM is not
available in the literature. On the other hand, several other FE techniques approximate
compressible and incompressible fluids, such as Mixed FEM, Hybridized Mixed FEM, and
Stabilized Methods. Emphasis is given in this thesis to the Mixed and the Hybridized
Mixed FEM.

Whereas the classical FEM approximation approximates the Darcy flow in its primal form,
which is a second-order PDE, the Mixed FEM involves approximating both pressure and
flux through a system of first-order equations. The advantages of using mixed formula-
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tions are depicted by Arnold (1990) and Boffi, Brezzi and Fortin (2013). The main asset
is that mixed formulations allow imposing the divergence-free condition directly in the
approximation space. Hence, the technique is appropriate for incompressible fluid sim-
ulation and conservative velocity fields, making it suitable to solve transport equations.
For instance, for Stokes problems, methods based on approximating the primal form are
usually impractical. The Mixed FEM becomes, therefore, a more straightforward and
widely used alternative. In addition, higher accuracy of the primal variable is reported
by Castro et al. (2016b), as well as for the dual variable approximation is reported by
Castro et al. (2016b) and Arnold (1990).

However, a noticeable disadvantage of the Mixed FEM is that it leads to a saddle point
problem; thus, the stiffness matrix is not positive definite. The Hybridized Mixed FEM, as
detailed by Cockburn and Gopalakrishnan (2004), was conceived to overcome this issue.
The hybridization consists in including Lagrange multipliers to impose the continuity
restrictions between the finite elements in a weak form. It leads to a positive symmetric
definite matrix, and the DOF can be reduced through a static condensation procedure.

Given the robust mathematical theory for error analysis (BOFFI; BREZZI; FORTIN,
2013; ARNOLD; BREZZI, 1985; ERN; GUERMOND, 2013), the framework of mixed and
hybridized-mixed FE can be applied to the SBFEM, in order to obtain locally conservative
subspaces. Among other applications, it is expected that the SBFEM-𝐻(𝑑𝑖𝑣)-compatible
spaces lower computational cost for fluid simulations in fractured media. Yet, one can
take advantage of the flexibility in mesh generation to simulate velocity fields, especially
in solid-fluid interaction. Although the SBFEM developments will provide a framework
to tackle these mechanical problems, this thesis focuses on the theoretical background of
the method, as addressed in the following section.

1.3 Objectives
This thesis aims to develop a locally conservative formulation for the Scaled Boundary
Finite Element Method (SBFEM). The proposed formulation is based on approximating
a flow in a porous media using a Darcy flow formulation through the Mixed-SBFEM
technique. An 𝐻(𝑑𝑖𝑣) compatible function space is constructed to approximate the flux,
whereas a discontinuous SBFEM space is applied for the pressure.

The following milestones were accomplished to achieve this goal:

1. To define the SBFEM as a type of tensorial Duffy’s approximation space;

2. To prove the mathematical convergence of the SBFEM;

3. To develop an approximation to solve non-homogeneous PDEs using a bubble func-
tion approach;

4. To construct an 𝐻(div) function space for the SBFEM;

5. To implement the mathematical formulations in a C++ library, the NeoPZ, and
perform numerical tests to analyze the convergence rates.
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1.4 Outline of the thesis
The remainder of this thesis is organized into five additional chapters. First, introductory
FEM concepts are presented. The contributions of this thesis are described from Chapter
3 to Chapter 5. In each chapter, numerical tests were included to verify the convergence
rates numerically. Namely, each chapter refers to:

• Chapter 2: Presents the introductory concepts of FEM, such as the partition of
the domain and geometry, function spaces, and variational statements of different
approaches: Galerkin FEM, Mixed FEM, and Hybridized-Mixed FEM.

• Chapter 3: Presents the classical SBFEM formulation under the framework of
Duffy’s approximation. Some mathematical properties of the SBFEM spaces are
discussed and applied to prove the optimal rates of convergence.

• Chapter 4: Proposes a bubble function space for SBFEM to approximate non-
homogeneous PDEs in two and three-dimensional domains. The advantages of the
approach are discussed: optimal rates of convergence, good computational cost, and
the ease to construct the bubbles.

• Chapter 5: Describes the Mixed-SBFEM formulation and defines the construction
process of the SBFEM-𝐻(𝑑𝑖𝑣) function spaces to compute the flux numerically. It
also presents and discusses examples of multiphysics simulation for a Darcy flow for
2D problems, including a problem with square-root singularity.

• Chapter 6: Summarizes the main conclusions of this thesis, as well as the novel con-
tributions this thesis to the SBFEM research field. Suggestions for future research
and topics for further investigation are briefly discussed.

1.5 A brief literature review

1.5.1 The Scaled Boundary Finite Element Method
The origin of the SBFEM remounts the method called "the consistent infinitesimal finite-
element cell method" in the 1990s (WOLF; SONG, 1996). Initially, the method was
conceived to simulate unbounded media and applied in the numerical simulation of soil-
structure interaction. Wolf and Song’s idea was to discretize only the structure-medium
interface and obtain an analytical expression in the radial direction through the limit of
an infinitesimal finite-element cell (WOLF; SONG, 1995a; WOLF; SONG, 1995b; SONG;
WOLF, 1995).

Later, the Song and Wolf (1997) generalized the method using a Galerkin weighted resid-
ual technique to approximate a PDE by an ODE. Such an ODE, named the scaled bound-
ary finite element equation in displacement, has the radial component as the independent
variable. This equation is a well-known ODE, the Ricatti equation, in which the ana-
lytical solution is known and easy to compute through an eigenvalue problem. In such
a work, the name "Scaled Boundary Finite Element method" was used for the first time.
Indeed, the method is a FE technique where the discretization occurs only at the ele-
ment’s boundary. The interpolated solution over the element’s skeleton is scaled into the
domain, which can be either bounded or unbounded.
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After these pioneer studies, the SBFEM has been applied to a wide range of applications.
For instance, due to the SBFEM intrinsic features, the dynamic analysis of soil-structure
interactions is straightforward (WOLF; SONG, 1998). Late in the 1990s, specifically in
1999, Song and Wolf (1999b) applied the SBFEM for a diffusion problem in a bi-material
circular plate, where the analytical solution exhibits a singularity at the interface between
the two materials. This paper showed that the method is relevant not only for unbounded
domains but also to simulate problems that exhibit singularities in the analytic solution,
such as cracks, V-notches, and re-entrant corners.

Initially, only problems with null body loads were under the scope of the numerical ap-
plications since the technique applied in SBFEM formulations leads to an ODE with a
null source term, which is easier to obtain the analytical solution. Later, in 1999, Song
and Wolf (1999a) proposed a procedure to compute the approximated solution of a non-
homogeneous PDE by solving the resulting non-homogeneous ODE using the technique
of variation of parameters. This strategy was applied by Song (2006) to the stress field
analysis in multi-material domains under thermal loads and further extended to com-
pute scaled boundary bubble functions (OOI; SONG; NATARAJAN, 2016; OOI; SONG;
NATARAJAN, 2017). More recently, mathematical developments have shown the high-
order completeness of scaled boundary approximated solution composed of the shape
functions of the homogeneous equation and the bubble shape functions (JIA et al., 2020).

After Song and Wolf’s publication on SBFEM with body loads (SONG; WOLF, 1999a),
several papers focused on applying the method to the numerical analysis of a wide range
of mechanical problems with body loads. Wolf and Song (2001) performed the analysis of
benchmark problems of elastodynamics analysis, emphasizing that the body loads formu-
lation does not need domain discretization. To simulate fracture mechanics benchmarks,
Song and Wolf (2002) evaluated orthotropic materials with a crack and compared the
results to reference solutions.

Approximating the SBFEM to the FEM users, Deeks and Wolf (2002a) deduced the
Ricatti ODE through the virtual work technique. In addition, the authors verified that the
ODE’s eigenvalue and eigenvector pairs represent basic displacement modes. The SBFEM
eigenvalues are always obtained in conjugate pairs (𝜆𝑖,−𝜆𝑖), 𝑖 = 1, ..., 𝑛 where 𝑛 is the
number of modes. The negative eigenvalues and their respective eigenvectors represent
displacement modes for unbounded domains, and the positive eigenvalues describe modes
for bounded domains.

Still, in the early 2000s, Deeks and Cheng (2003) applied the SBFEM to potential flow
simulations using the 2D Laplace equation for bounded and unbounded domains. For
domains with singularities, square cylinders were considered as well as practical exam-
ples, such as the SBFEM as applied to compute the tangential velocity of a flow over
a symmetric NACA 0012 wing. Expanding the range of applications, Song and Wolf
(2002) analyzed stress singularities in anisotropic multi-material domains and Ekevid and
Wiberg (2002) used SBFEM to simulate the effects of wave propagation due to high-speed
trains. The innovation in this period involved not only practical engineering applications
but also applying FE techniques to the SBFEM, such as adaptativity (DEEKS; WOLF,
2002b) and a posteriori error estimates (DEEKS; WOLF, 2002c).

From the mid-2000s onwards, the applications of the SBFEM in fracture mechanics had a
noticeable increment. Chidgzey and Deeks (2005) showed that the scaled boundary finite
element approximated solution converges to the Williams expansion of the asymptotic
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field of crack tip in linear elastic. In other words, it means that the stress intensity factor
(SIF) and the stress field can be directly represented using the SBFEM shape functions.
The SIF and 𝑇 -stresses are also computed for dynamic cases by Song and Vrcelj (2008),
for transient dynamic cases by Yang, Deeks and Hao (2007) and for multi-material cracks
and corners by Song (2005). Because of the similarities of the mesh generation in SBFEM
and BEM, Yang (2006), Yang and Deeks (2007) and Ooi and Yang (2009) developed fully-
automatic modeling of crack propagation combining an efficient remeshing procedure with
a propagation criterion for linear and cohesive crack growth.

In addition to the aforementioned research, the modal interpretation of the SBFEM basis
functions allowed applications of this method in a wider range of dynamic problems.
Gravenkamp, Song and Prager (2012) performed the SBFEM in the dispersion and modal
analysis of guided waves in plate structures, with application in structural monitoring.
Just a year later, the formulation was extended for 3D waveguides in elastic problems
(GRAVENKAMP et al., 2013), and subsequently, the 2D analysis was performed for plates
with defects (GRAVENKAMP; BIRK; SONG, 2015). The wave propagation modeling
using SBFEM was explored by Birk and Behnke (2012), Chen, Birk and Song (2015) in
3D layered soils considering damping and unbounded domains.

By the end of the 2010s, the flexibility of the SBFEM mesh generation was further explored
through quadtree (2D) and octree (3D) meshes. The advantage of using the SBFEM in
these cases is that no additional treatment is required due to the hanging nodes. To name
a few applications in two-dimensional problems, Guo et al. (2019a) used image-based
quadtree meshes to perform concrete fracture modeling at the mesoscale, whilst Pramod
et al. (2019) used quadtree meshes to model phase-field brittle fractures. Yet, in 2D
problems, the quadtree meshes were also applied to simulate nonlocal damage problems
(ZHANG et al., 2019) and transient wave scattering (BAZYAR; SONG, 2017). For 3D
cases, Liu et al. (2019) performed 3D image-based analysis using complex octree meshes
and Zhang et al. (2018) applied octree meshes to perform 3D damage analysis using the
SBFEM.

From 2020 to now: SBFEM as a general FE technique and further develop-
ments in numerical applications

Most recent papers further explore octree analysis through adaptative mesh generation,
parallel computing, elastoplastic analysis, and composite materials. In addition to the
application papers, theoretical studies show that SBFEM can be seen as a FE technique
owning a very particular way to compute the shape functions.

Regarding mesh generation and octree meshes, several advances to perform the SBFEM
analysis in more efficient ways have been addressed in the literature. An adaptive refine-
ment technique allowed to locally refine octree meshes accordingly to an error indicator
(ZHANG et al., 2020b). To take advantage of the growing CPU capacity of clusters, Zhang
et al. (2021) developed a parallel explicit solver using MPI (Message Passing Interface) to
perform explicit dynamic simulations using octree meshes and SBFEM approximations,
obtaining good scalability to problems over a billion DOF. Automatic octree mesh gener-
ation was also applied in elastoplastic materials for static and dynamic cases (LIU et al.,
2020).

Recent studies in composite materials also explore a wide range of applications. For in-
stance, Dölling et al. (2020) examined the interlaminar failure in composite laminates.
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Since these failures are usually triggered by stress concentrations, the SBFEM showed
good agreement with experimental results in the literature. Liu et al. (2021) investi-
gated transient dynamic behaviors of functionally graded material sandwich plates using
the SBFEM due to the high efficacy and accuracy of the method. The advantages of
SBFEM were explored by Zhang et al. (2020a) to simulate the mechanical behavior of
fiber-reinforced composite materials, such as 3D specimens of concrete with fibers.

Recent mathematical studies about the SBFEM convergence were explored numerically
by Gravenkamp, Saputra and Duczek (2021), theoretically by Jia et al. (2020), Bertrand,
Boffi and Diego (2021), and both numerically and theoretically by Coelho, Devloo and
Gomes (2021). Gravenkamp, Saputra and Duczek (2021) performed a numerical analysis
involving the accuracy and convergence of the SBFEM, comparing different interpolants
for the trace space. Lagrange polynomials, hierarchical shape functions, NURBS (Non-
Uniform Rational B-Splines), and Fourier shape functions were applied to interpolate the
solution at the element’s skeleton. The authors observed no significant difference between
Lagrange polynomials and hierarchical shape functions, whilst NURBS interpolation only
showed relevance in isogeometric analysis. Jia et al. (2020) proved the high-order com-
pleteness of the SBFEM function space for two and three-dimensional problems, including
curved boundaries and solution of PDEs with a source term. The key to the demonstra-
tion was to prove that the SBFEM space has the complete polynomial FE space, i.e.
polynomial bases can be always obtained regardless of the shape of the scaled boundary
FE.

The convergence analysis was explored by Bertrand, Boffi and Diego (2021), Coelho,
Devloo and Gomes (2021) for the Laplace equation. Bertrand, Boffi and Diego (2021)
focused their analysis on defining the SBFEM as a space of semi-discrete functions and
constructing an interpolation operator onto this space. Likewise, Coelho, Devloo and
Gomes (2021) proved the convergence through the definition of the SBFEM space, but
the authors analyzed the properties of the SBFEM space in more detail. For instance,
Coelho, Devloo and Gomes (2021) verified that the SBFEM basis function is a generic
type of Duffy’s function - a type of function known in applied mathematics and utilized
in spectral methods. Furthermore, these spaces have interesting properties, such as the
gradient-orthogonality of these functions and Duffy’s bubble functions. This property was
useful to prove the convergence and to show that the SBFEM has lower error values than
traditional FEM.

As it can be seen, recent studies showed that the SBFEM is a FE technique in which
the basis functions that compose the finite space are constructed in a particular way. It
means that a wide range of mathematical demonstrations, a priori, and a posteriori error
analysis, and application of this technique in other FE frameworks, such as multiscale
methods, and De Rham sequences are still future research to be explored. This thesis
aims to contribute to the SBFEM research by developing the method for the application
in Mixed and Hibridized-Mixed FEM.

1.5.2 Mixed Finite Element Method
Although this thesis focuses on the SBFEM, it is valuable to highlight later developments
and applications of the Mixed FEM. This topic does not intend to be exhaustive, but a
summary of relevant research for this thesis is presented.
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The Mixed method was initially conceived by engineers. The main focus was to solve
incompressible elasticity or any other problem where there is a constraint like ∇ · 𝜎 =
0. The idea of writing the variational statement using a different approach is an old
subject in the literature, dating from the 1950s (REISSNER, 1953). The author writes
the variational statement for the elasticity problem by approximating both displacement
and stress through a system of two equations. However, the term "Mixed methods" was
only used in the 1960s (ARNOLD, 1990) to describe these sorts of methods where the
displacement and the stress variables are approximated as primary variables.

So, in a generic concept, the Mixed FEM is a method to approximate the solution of
PDEs by converting the problem from a second-order PDE into a system of first-order
equations. It means that instead of approximating only one variable, known as the primal
variable (such as pressure or displacement), the Mixed FEM approximates both primal
and dual variables (velocity and stress, for instance) using compatible function spaces.
For example, in Elasticity analysis, the classical FEM uses the 𝐻1 space to approximate
the displacement variable. These shape functions have the continuity property, described
mathematically by having a square-integrable gradient. However, to approximate the
stress variable using mixed methods, the appropriate choice of the function space for the
stress variable is often the 𝐻(𝑑𝑖𝑣) space. Such a space has the feature of the normal
vector continuity, mathematically described by basis functions owning square-integrable
divergence.

To ease the understanding and focus on the purpose of this study, from this part onwards,
the thesis will restrict the analysis of Mixed FEM as the procedure to approximate the
dual variable using 𝐻(𝑑𝑖𝑣) spaces. Mathematical details about the formulation can be
found in Chapter 5.

The Mixed Galerkin FEM can be applied for several engineering applications, for instance,
in the simulation of incompressible elastic materials, Darcy flows, Kirchhoff-Love plate
model and the Stokes Flow (ARNOLD, 1990). The latter is rarely used in its primal
form, once it involves the inversion of the differential operator div(𝐶 ℰ(𝑣⃗)), where ℰ is
the symmetric part of ∇𝑣⃗, with 𝑣⃗ denoting the velocity.

Due to the simplicity of the Darcy flow formulation and its applications in civil, geotechni-
cal, and petroleum engineering, the Mixed FEM has been widely applied in these sorts of
simulations. The advantages highlighted in these studies are mainly to overcome the loss
of accuracy regarding the flux variable and the difficulties to impose mass conservation
when using primal methods. Some other alternatives to tackle both problems (accuracy
and mass conservation) can be found in the literature, such as additional post-processing
of the velocity proposed by Malta, Loula and Garcia (2000). However, the simplicity of the
mixed variational formulation made this method popular in conservative fluid simulations
(MASUD; HUGHES, 2002).

To cite a few applications for the Darcy flow, in civil engineering one can find the Mixed
FEM to simulate the diffusion of CO2 in reinforced concrete structures (RADU et al.,
2013). In the geotechnical area, Mixed methods have been applied to poroelasticity prob-
lems, in which the Darcy flow is coupled to the elasticity problem (TCHONKOVA; PE-
TERS; STURE, 2008). Still based on Darcy flow and Mixed methods, Li, Liu and Lewis
(2005) performed a coupled thermo-hydro-mechanical analysis in unsaturated porous me-
dia, through a poroplasticity model.
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In Petroleum engineering, the simulation of Darcy flows has been performed through
mixed methods with application in reservoir simulations. Arbogast and Wheeler (1995)
applied the Mixed FEM to the simulation of the Darcy flow equation coupled to the
advection-diffusion equation. Still, in the oil & gas area, BERGAMASCHI; MANTICA;
MANZINI applied the mixed methods to simulate the black oil model - a compressible
model of a reservoir, in which three independent components (oil, gas, and water) com-
pose a three-phase flow (liquid, vapor, and aqua, respectively). Other noteworthy works
on the simulation of the black oil model using the Mixed FEM can be found on the liter-
ature (WHEELER; WHEELER; YOTOV, 2002; SINGH; WHEELER, 2016; CORREA;
MURAD, 2018).

Recently, multiscale methods based on the Mixed FEM have been applied to simulate
Darcy flow in heterogeneous media. For instance, He et al. (2021) developed a technique
named GMsFEM (Generalized Multiscale Finite Element Method) to simulate a single-
phase flow in a 2D fractured porous media. Similarly, Devloo et al. (2019a) analyzed a
flow in a 2D discrete fractured network in a porous using the MHM-𝐻(𝑑𝑖𝑣) (Multiscale
Hybrid Method for 𝐻(𝑑𝑖𝑣) compatible spaces). Later, Duran et al. (2021) applied the
same method for two-phase flow in 3D domains. It is worth mentioning that the multiscale
mixed methods can be also applied to elasticity problems, as it can be found in the studies
of Devloo et al. (2021), Gomes, Pereira and Valentin (2020).

Hybridized Mixed Finite Element Method

From a generic point of view, hybrid FEM is any FE technique where Lagrange multi-
pliers are applied to overcome troublesome constraints. Accordingly to Pian (1978), the
name "Hybrid Model" was stated in 1968 to describe an alternative procedure to compute
the stiffness matrix, based on the Stress Method (PIAN, 1964). Instead of assuming con-
tinuous displacement functions, the displacement is imposed as a boundary condition at
the element’s interface. So, in summary, the variational statement is rewritten to: given
prescribed boundary displacements, find the stress distribution over the element. A few
years later, in 1970, the hybrid model was applied to generically name the sort of meth-
ods in which the variational statement is modified to relax the inter-element continuity
constraint (TONG, 1970).

Although hybridization is not a technique recently discovered, this strategy was not
fully explored in the early developments. One considerable disadvantage in that period
was that weakening the continuity expressively increased the DOF. However, Cockburn
and Gopalakrishnan re-addressed the idea at the beginning of the 2000s for two rea-
sons (COCKBURN; GOPALAKRISHNAN, 2004; COCKBURN; GOPALAKRISHNAN;
LAZAROV, 2009). First, the surge of computers and increased capacity to compute large
problems. Second, they proposed the DOFs reduction just by performing a simple static
condensation.

Since the hybridization technique is very generic, it can be applied to any method that re-
quires inter-element continuity. For instance, this technique has been applied in classical
FEM (COCKBURN; GOPALAKRISHNAN; WANG, 2007) and Mixed FEM (COCK-
BURN; GOPALAKRISHNAN, 2004), to name a few. Since this thesis performs a hy-
bridization process in Mixed FEM, the studies presented are restricted to this method.

Cockburn and Gopalakrishnan (2004) list the benefits of hybridizing the Mixed FEM.
The main advantage arises in the difficulty to invert the stiffness matrix resulting from
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the mixed formulation. The Mixed variational statement leads to a saddle point prob-
lem, in which the resulting stiffness matrix is not positive definite; therefore, it requires
considerable computational efforts to compute its inverse. Cockburn and Gopalakrishnan
(2004) and Arnold and Brezzi (1985) summarized these points as follows:

1. The resulting stiffness matrix is positive definite, which means it is invertible using
simple algorithms, such as the conjugate gradient method;

2. By performing a static condensation, the Hybridized Mixed FEM leads to a consid-
erably smaller number of DOF;

3. The Lagrange multipliers can be also applied to provide a posteriori error estimates
for Mixed and nonconforming methods.

Researches from the Computational Mechanics Laboratory

The Computational Mechanics Laboratory (LabMeC), headed by Prof. Devloo, has been
developing research in Mixed and Hybrid FE techniques since 2010, when Siqueira, Devloo
and Gomes (2010), Siqueira, Devloo and Gomes (2013) proposed a systematic procedure
to construct high-order 𝐻(𝑑𝑖𝑣) and 𝐻(𝑐𝑢𝑟𝑙) shape functions, based on hierarchical 𝐻1

shape functions, initially for 2D problems. Later, in 2016, the 3D hierarchical shape
functions were also developed by Castro et al. (2016b). Still, in 2016, Castro et al. (2016a)
improved the procedure to compute the hierarchical high-order 𝐻(𝑑𝑖𝑣) shape functions.
The authors proposed a procedure to compute the vector functions in the master element,
mapped to the deformed element through the Piola transformation, either for linear or
curved elements.

In the following years, several studies in 𝐻(𝑑𝑖𝑣) spaces were performed. Farias et al.
(2017) proved that enriched versions of the BDFM (Brezzi-Douglas-Fortin-Marini) and RT
(Raviart-Thomas) spaces increase the rates of convergence of Mixed FE approximations.
Devloo et al. (2018a) applied the enriched spaces for elliptic problems in curved meshes
conducted by the fact that the image of the flux space by the divergence operator coincides
with the potential space in the master element. Exact sequences based on the De Rham
diagram were constructed by Devloo et al. (2019b) for 3D meshes, including pyramids.
The accuracy of the 𝐻(𝑑𝑖𝑣) functions in non-affine meshes was the goal of Devloo et al.
(2020).

The aforementioned contributions were implemented in the NeoPZ environment, a C++
object-oriented finite element library. The NeoPZ was developed by Prof. Devloo and his
co-workers from the Computational Mechanics Laboratory (LabMeC) (DEVLOO, 1997).
The library’s structure reflects the LabMeC’s developments in novel FE techniques for
simulating PDEs using a variety of functional spaces such as 𝐻1(Ω), 𝐻(𝑑𝑖𝑣), discontin-
uous or 𝐻(𝑐𝑢𝑟𝑙), and several procedures such as adaptativity, Mixed FE, Hybrid FE,
Multiscale, and SBFEM.

Using the NeoPZ library, Forti et al. (2016) compared numerically continuous and dis-
continuous Galerkin, Mixed and Hybrid FEM in problem with smooth solutions, and
another exhibiting a square-root singularity in 2D examples, whilst Devloo et al. (2018b)
performed a similar analysis for 3D problems. As expected, the mixed formulation using
𝐻(𝑑𝑖𝑣) functions produced a better approximation of the dual variable for the smooth
solution. However, 3D Mixed and hybrid problems exhibited, especially the enhanced ver-
sion, increased the computational cost. For the singular solution, the local conservation
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of the 𝐻(𝑑𝑖𝑣) space did not improve the solution. To improve the accuracy, the authors
used quarter-point elements and ℎ𝑝-adaptativity, increasing the computational cost.

Due to the high level of abstraction of NeoPZ classes and blocks, the FE techniques can
be coupled and used together to simulate a variety of problems. For instance, Devloo
et al. (2016b), Devloo et al. (2016a) analyzed 2D elliptic PDEs with singular analytical
solution through the combination of ℎ𝑝 adapted mesh and 𝐻(𝑑𝑖𝑣) function spaces, while
Devloo et al. (2018a) performed a similar analysis for 3D problems. The Multiscale Hy-
brid Method for Mixed FEM (MHM-𝐻(𝑑𝑖𝑣)) was also implemented in NeoPZ, combining
the framework already existing in the library with upscaling and downscaling algebraic
operations for Darcy flows (DURAN et al., 2019).

The NeoPZ is also applied in the simulation of a wide range of engineering problems.
The applications mainly involved the oil and gas industry, such as reservoir and wellbore
simulations. For instance, Duran et al. (2021) simulated a two-phase flow inside a 3D
synthetic reservoir in a heterogeneous porous media using the MHM-𝐻(𝑑𝑖𝑣). Verification
benchmarks also emphasized the accuracy of the NeoPZ in the simulation of a single phase
flow in 3D fractured porous media in Berre et al. (2021) studies. Elastoplastic models for
petroleum geomechanics analysis were addressed by Duran et al. (2020), Sanei, Forti and
Santos (2020), also with application in reservoir simulation.

Yet, in the geomechanics area, a numerical scheme for elastoplasticity was proposed to
improve the integration algorithm, with special attention to the modified Cam-Clay cri-
terion. For the wellbore simulation, it is worth mentioning the studies of Cecílio et al.
(2019) that perform a stability analysis of excavated wells using an elastoplastic formu-
lation based on the DiMaggio-Sandler model. Uncertainties regarding the heterogeneous
media were incorporated into this analysis by Batalha et al. (2020), leading to a robust
reliability model based on elastoplastic constitutive laws for vertical and inclined well-
bores.

In recent applications, Carvalho, Devloo and Gomes (2020) applied the mixed FEM in
computational fluid mechanical problems, namely Brinkman, coupled Stokes-Darcy, and
Stokes flow. Still, in fluid mechanics (DEVLOO et al., 2019a), the MHM-𝐻(𝑑𝑖𝑣) imple-
mented in NeoPZ was applied in 2D flow simulations in fractured porous media. Elec-
tromagnetic problems were addressed by Orlandini et al. (2018), Orlandini et al. (2019)
making use of the 𝐻(𝑐𝑢𝑟𝑙) function spaces to improve the accuracy of waveguide simu-
lations. The adaptative mesh refinement techniques available in NeoPZ were applied to
the simulation of marine ice sheet stability, useful to predict the evolution of ice sheets in
a changing climate (SANTOS et al., 2019).

As can be seen through the literature review, the LabMeC expertise in Mixed FEM
supports the development of the SBFEM for Mixed FE formulations. Although this
thesis focuses on theoretical and convergence studies, the SBFEM-𝐻(𝑑𝑖𝑣) formulation
can be explored for complex simulation, for instance, in conservative flows in domains
with singularities, such as discrete fracture networks.
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Chapter 2

Introductory Concepts of Finite
Element

A classical definition of a finite element was established by Ciarlet (2002) as a triad
ℱ = (𝒦,P,Σ) where

1. 𝒦 denotes a bounded domain in the Euclidean space R𝑑, where 𝑑 is the dimension
that can be either 𝑑 = 0 a point, 𝑑 = 1 a line, 𝑑 = 2 a triangle or quadrilateral, and
𝑑 = 3 a tetrahedron, a prism, or an hexahedron;

2. P denotes a space of polynomials on 𝒦 of finite dimension 𝑑𝑖𝑚(P) = 𝑁𝑃 ;

3. Σ denotes a set of linear forms for a basis of P, i.e. Σ = {𝐿1, 𝐿2, ..., 𝐿𝑁𝑃
}, such that

𝐿𝑖 : P → R, 𝑖 = 1, 2, ..., 𝑁𝑃 ,

𝐿𝑖 the elements of Σ are often called DOF.

Each component of the triple is explored briefly in the sequence of this chapter.

2.1 Geometry
As mentioned in the triad definition, the geometry of a FE is defined as a bounded domain
in a Euclidean space 𝒦 ⊂ R𝑑 that can be either:

• 𝑑 = 0: a point;

• 𝑑 = 1: a line;

• 𝑑 = 2: a triangle or a quadrilateral;

• 𝑑 = 3: a tetrahedron, a hexahedron, a pyramid, or a prism.

The most classical family of FE is the affine FEs. For those elements, an affine transfor-
mation 𝐹 : 𝑥 → 𝑥̂ maps from the coordinates 𝑥̂ ∈ 𝐾̂ in the master element, to coordinates
in the deformed element 𝑥 ∈ 𝒦 (see Fig. 2.1 (a)). A most general case, but also clas-
sic, are the isoparametric elements, in which the geometric transformation can map from
the master element to a deformed element with curved boundaries. Both families are
illustrated in Fig. 2.1.
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𝐾̂

𝐾̂

𝒦

𝒦

Figure 2.1: Affine and isoparametric map from a master element 𝐾̂ in the parametric space (𝜉, 𝜂) to a
deformed element 𝒦 in Cartesian coordinates (𝑥, 𝑦).

Let us consider the parametric coordinates 𝑥̂ ∈ R2 =
(︁
𝜉, 𝜂

)︁
and 𝑥̂ ∈ R3 =

(︁
𝜉, 𝜂1, 𝜂2

)︁
.The

master element 𝐾̂ is the choice of the designer. Therefore, these bounds are commonly
used bounds as opposed to “necessary” bounds:

• 𝑑 = 1: a line defined by the interval 𝐼 = {𝜉 ∈ R|−1 ≤ 𝜉 ≤ 1};

• 𝑑 = 2:

– a triangle 𝑇 = {(𝜉, 𝜂) ∈ R2|0 ≤ 𝜉 ≤ 1, 0 ≤ 𝜉 + 𝜂 ≤ 1}, or

– a quadrilateral 𝑄̂ = {(𝜉, 𝜂) ∈ R2
⃒⃒⃒
− 1 ≤ 𝜉, 𝜂 ≤ 1};

• 𝑑 = 3:

– a tetrahedron 𝑇𝑒 = {(𝜉, 𝜂1, 𝜂2) ∈ R3
⃒⃒⃒
0 ≤ 𝜉 ≤ 1, 0 ≤ 𝜉+𝜂1 ≤ 1, 0 ≤ 𝜉+𝜂1+𝜂2 ≤

1},

– a pyramid 𝑃𝑦 = {(𝜉, 𝜂1, 𝜂2) ∈ R3
⃒⃒⃒
− 1 ≤ 𝜉− 𝜂2 ≤ 1,−1 ≤ 𝜂1 − 𝜂2 ≤ 1, 0 ≤ 𝜂2 ≤

1},

– a prism 𝑃𝑟 = {(𝜉, 𝜂1, 𝜂2) ∈ R3
⃒⃒⃒
0 ≤ 𝜉 ≤ 1, 0 ≤ 𝜉 + 𝜂2 ≤ 1, 0 ≤ 𝜂2 ≤ 1}, or

– a hexahedron 𝐻𝑒 = {(𝜉, 𝜂1, 𝜂2) ∈ R3
⃒⃒⃒
− 1 ≤ 𝜉, 𝜂1, 𝜂2 ≤ 1}.

Some properties related to the change of variables are useful for the FE formulations, such
as the Jacobian matrix, given by

𝐽 := ∇𝑥̂𝐹 (𝑥̂). (2.1.0)

The gradient of 𝑥 in 𝒦 can be computed using the geometric map 𝐹 through the rela-
tionship

∇𝑥𝑣(𝑥) = 𝐽 ∇𝑥̂𝑣(𝑥̂). (2.1.0)
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This property is especially helpful in 𝐻1 finite element computations since it is easier to
compute the gradient in a regular element 𝐾̂ than in the deformed element 𝒦. Another
practical relationship is ∫︁

𝒦
𝑣 𝑑𝒦 =

∫︁
𝐾̂
𝑣|𝐽 | 𝑑𝐾̂,

where |𝐽 | is the determinant of the Jacobian matrix.

For vector-valued functions, the map from a parametric function 𝑞(𝐾̂) ∈
[︁
𝐿2(𝐾̂)

]︁𝑑
to

𝑞(𝒦) ∈ [𝐿2(𝒦)]𝑑 is defined by Piola transformation 𝑃 : [𝐿2(𝐾̂)]𝑑 → [𝐿2(𝒦)]𝑑, given by
Boffi, Brezzi and Fortin (2013)

𝑞(𝑥) = 𝑃 (𝑞̂(𝑥)) := 𝐽

|𝐽 |
𝑞̂(𝑥̂). (2.1.0)

Applying the divergent operator leads to,

∇ · 𝑞(𝑥) = 1
|𝐽 |

∇ · 𝑞̂(𝑥̂). (2.1.0)

Eq. (2.1) shows that it is possible to perform computations in vector-valued functions
using only the Jacobian matrix and the vector-valued function 𝑞 in the master element 𝐾̂.
As a consequence, the following relationship applies (BOFFI; BREZZI; FORTIN, 2013)∫︁

𝒦
𝑞∇ · 𝑣 𝑑𝒦 =

∫︁
𝐾̂
𝑞̂∇ · 𝑣 𝑑𝐾̂,∫︁

𝒦
𝑣
(︁
∇ · 𝑞

)︁
𝑑𝒦 =

∫︁
𝐾̂
𝑣
(︁
∇ · 𝑞̂

)︁
𝑑𝐾̂,∫︁

𝜕𝒦
𝑞 · 𝑛𝑣 𝑑𝑠 =

∫︁
𝜕𝐾̂
𝑞̂ · 𝑛𝑣 𝑑𝑠,

where 𝑛 is the outward normal unit vector over the surface.

2.2 Function spaces
Consider Ω ⊂ R𝑑 a domain with a sufficiently regular boundary. The function spaces are
defined as follows:

Lebesgue spaces - 𝐿2(Ω)

The 𝐿2(Ω) function space, also known as the space of the square-integrable functions is
defined as

𝐿2(Ω) =
{︂
𝑧

⃒⃒⃒⃒∫︁
Ω
𝑧2 𝑑Ω < +∞

}︂
. (2.2.0)

This space has the associated inner product

⟨𝑧, 𝑣⟩𝐿2 ≡ ⟨𝑧, 𝑣⟩ :=
∫︁

Ω
𝑧𝑣 𝑑Ω, (2.2.0)

and the norm
||𝑧||𝐿2≡ ||𝑧||:=

√︁
⟨𝑧, 𝑧⟩. (2.2.0)

A property of interest regarding the 𝐿2 space in FE analysis is that functions in this space
do not need to be continuous inter-element.
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Hilbert spaces - 𝐻1(Ω)

The Hilbert space 𝐻1(Ω) is a type of Lebesgue space of square-integrable first derivatives,
i.e.

𝐻1(Ω) :=
{︃
𝑣 ∈ 𝐿2(Ω)

⃒⃒⃒⃒
⃒ 𝜕𝑣𝜕𝑥𝑖

∈ 𝐿2(Ω), 1 ≤ 𝑖 ≤ 𝑑, 𝑥𝑖 ∈ Ω
}︃
, (2.2.0)

The 𝐻1 inner product is expressed as

⟨𝑢, 𝑣⟩𝐻1 = ⟨𝑢, 𝑣⟩ + ⟨∇𝑢,∇𝑣⟩. (2.2.0)

and its norm is given by

||𝑣||𝐻1=
√︁

⟨𝑣, 𝑣⟩𝐻1 =
√︁

||𝑣||2+||∇𝑣||2. (2.2.0)

Another important space is the 𝐻1(Ω) trace functions space, defined as 𝐻1/2(Γ). A trace
function is defined as 𝛾𝑣 = 𝑣|Γ where Γ = 𝜕Ω is the boundary of Ω and 𝛾 is the trace
operator such that 𝐻1/2(Γ) = 𝛾(𝐻1(Ω)).

𝐻(𝑑𝑖𝑣; Ω) space

Another function space of interest is the 𝐻(𝑑𝑖𝑣; Ω), denoted as

𝐻(𝑑𝑖𝑣; Ω) :=
{︂
𝑞 ∈

[︁
𝐿2(Ω)

]︁𝑑
| ∇ · 𝑞 ∈ 𝐿2(Ω), 𝑑 = 2, 3

}︂
, (2.2.0)

where ∇· is the divergent operator, i.e. this space is composed of vector-valued functions
with square-integrable divergence. Such a space has the inner product

⟨𝑞, 𝑣⟩𝑑𝑖𝑣 := ⟨𝑞, 𝑣⟩ + ⟨∇ · 𝑞,∇ · 𝑣⟩, (2.2.0)

and 𝐻(𝑑𝑖𝑣; Ω)-norm is computed as

||𝑞||𝑑𝑖𝑣=
√︁

⟨𝑞, 𝑞⟩𝑑𝑖𝑣 =
√︁

||𝑞||2 + ||∇ · 𝑞||2. (2.2.0)

Similarly to 𝐻1(Ω) space, there is a trace space for the 𝐻(𝑑𝑖𝑣; Ω) functions, the 𝐻−1/2(Γ),
such that 𝐻−1/2(Γ) = 𝛾𝑑𝑖𝑣(𝐻(𝑑𝑖𝑣; Ω)). The 𝐻(𝑑𝑖𝑣; Ω) trace operator is so as, for a vector-
valued function 𝑞, 𝛾𝑑𝑖𝑣(𝑞) = 𝑞 · 𝑛.

The 𝐻(𝑑𝑖𝑣,Ω) space is applied in approximating engineering problems where the local
conservation property is required, such as for incompressible fluids. This thesis aims to
define scaled boundary 𝐻(𝑑𝑖𝑣,Ω) subspaces to be applied in the multiphysics simulation
of Darcy flows. More details of this subspace are described in Chapter 5.

Properties relative to a partition of Ω

Partitioning the domain Ω into subdomains, more known as elements, is an essential
feature of the FEM. Denote Ω = 𝒯 ℎ = ∪𝑛

𝑒=1𝒦𝑒 a partition of the domain in 𝒦𝑒 elements
that can assume one of the aforementioned geometric entities: triangles or quadrilaterals
for 2D domains; and hexahedra, prism or pyramids for 3D ones. The interface of the
elements is defined as

𝑒𝑖𝑗 = 𝜕𝒦𝑖 ∩ 𝜕𝒦𝑗
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and
ℰℎ =

⋃︁
𝑖𝑗

𝑒𝑖𝑗

⋃︁
Γℎ =

⋃︁
𝒦
𝜕𝒦, (2.2.0)

where Γℎ is the set of boundary edges or facets over Γ = 𝜕Ω and the index ℎ denotes
the characteristic mesh size. The geometric entities Γℎ and 𝑒𝑖𝑗 are illustrated in Fig. 2.2,
respectively in blue and in red.

𝒦𝑖 𝒦𝑗

𝑒𝑖𝑗

Γℎ

Figure 2.2: Skeleton mesh: Γℎ (in blue) is the discretization over Γ, and 𝑒𝑖𝑗 is the interface between the
finite elements 𝒦𝑖 and 𝒦𝑗 .

For the partition 𝒯 ℎ, the following subspaces apply

𝒱ℎ = {𝑣 : 𝑣 ∈ 𝐻1(Ω), 𝑣|𝒦𝑒∈ 𝒱ℎ(𝒦𝑒), 𝒦𝑒 ∈ 𝒯 ℎ},
𝒬ℎ = {𝑞 : 𝑞 ∈ 𝐻(𝑑𝑖𝑣; Ω), 𝑞|𝒦𝑒∈ 𝒬ℎ(𝒦𝑒), 𝒦𝑒 ∈ 𝒯 ℎ},
𝒵ℎ = {𝑧 : 𝑧 ∈ 𝐿2(Ω), 𝑧|𝒦𝑒∈ 𝒵ℎ(𝒦𝑒), 𝒦𝑒 ∈ 𝒯 ℎ}.

Also, the following conformity requirements apply for 𝒱ℎ ⊂ 𝐻1(Ω) and 𝒬ℎ ⊂ 𝐻(𝑑𝑖𝑣; Ω):

• The trace of 𝑣|𝒦𝑖
and 𝑣|𝒦𝑗

is the same for each common face 𝑒𝑖𝑗;

• The trace of the normal component 𝑛 · 𝑞|𝒦𝑖
and 𝑛 · 𝑞|𝒦𝑗

is the same for each common
face 𝑒𝑖𝑗, where 𝑛 is a unique outward normal vector to 𝑒𝑖𝑗;

• 𝑞|𝒦𝑖
∈ [𝐻1(𝒦𝑒)]𝑑 for each 𝒦𝑒 ∈ 𝒯 ℎ.

For 𝒵ℎ, there are no continuity requirements.

De Rham diagram

The De Rham diagram relates the aforementioned function spaces 𝐿2(Ω), 𝐻1(Ω), 𝐻(𝑑𝑖𝑣; Ω)
and its respective finite-dimensional spaces 𝒵ℎ, 𝒱ℎ, and 𝒬ℎ employing differential opera-
tors. For two-dimensional cases, this diagram is written as

𝐻1(Ω) ∇×−−→ 𝐻(𝑑𝑖𝑣; Ω) ∇·−−−→ 𝐿2(Ω)⎮⎮⌄Πℎ
𝐻1

⎮⎮⌄Πℎ
𝑑𝑖𝑣

⎮⎮⌄Πℎ

𝒱ℎ ∇×−−→ 𝒬ℎ ∇·−→ 𝒵ℎ
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where ∇× is the curl operator, ∇· is the divergence operator and the projection-based
operators define the finite-dimensional subspaces

Πℎ
𝐻1 : 𝐻1(Ω) → 𝒱ℎ(Ω), Πℎ

𝑑𝑖𝑣 : 𝐻(𝑑𝑖𝑣,Ω) → 𝒬ℎ(Ω), Πℎ : 𝐿2(Ω) → 𝒵ℎ(Ω).

where 𝑘 is the polynomial order. The De Rham diagram is a useful tool to create
finite-dimensional approximation spaces that lead to formulations with stability prop-
erties (SOLIN; SEGETH; DOLEZEL, 2003a). For example for a function in the 𝐻(𝑑𝑖𝑣)
space, 𝑞 ∈ 𝒬ℎ (ROBERTS; THOMAS, 1991),

∇ ·
(︁
Πℎ

𝑑𝑖𝑣,𝑘𝑞
)︁

= Πℎ
𝑘−1

(︁
∇ · 𝑞

)︁
.

Moreover, as highlighted by Solin, Segeth and Dolezel (2003b) and proved in Gurtin
(1982), the operation ∇ · (∇ × 𝑢) = 0.

Demkowicz et al. (2000) point out that the De Rham diagram provides the mathematical
basis to prove stability and convergence for the Mixed Methods. These topics will be
further addressed in Chapter 4. Moreover, the FE interpreted in a more general sense
can be as sequences of scalar and vector-valued elements. Another practical application
is that SBFEM-𝐻(𝑑𝑖𝑣) spaces, or even the full De Rham sequence for two and three-
dimensional problems, can be constructed by applying the curl or divergence operator.
Since the scope of this thesis is to perform multiphysics simulations in 2D domains only,
the author refers to Boffi, Brezzi and Fortin (2013) and Solin, Segeth and Dolezel (2003b)
for the three-dimensional diagram.

2.2.1 Shape functions
The subspaces of local basis functions for 𝐻1(𝒦𝑒) and 𝐻(𝑑𝑖𝑣; 𝒦𝑒) spaces are constructed
in the master element 𝐾̂𝑒 and mapped to 𝒦𝑒 using the geometric map for scalar functions
or the Piola transformation for vector-valued functions.

𝐻1(𝐾̂)-conforming approximations

The construction of FE of 𝐻1 approximations is well-known in the literature, with several
options of Lagrangian and hierarchical shape functions, such as the ones presented by
Solin, Segeth and Dolezel (2003a) and the references cited therein. This thesis uses the
basis functions conceived by Devloo and co-authors and further detailed in Devloo, Bravo
and Rylo (2009). These functions are implemented in NeoPZ and defined for topologies
of one, two, and three dimensions in the master element 𝐾̂ as defined in Section 2.1.

Let us consider 𝒱ℎ(𝐾̂) = span
{︁
𝜑𝑖

}︁
⊂ 𝐻1(𝐾̂). For instance, for a quadrilateral element,

the shape functions 𝜑𝑖 are defined as:

1. 4 vertex functions:

• 𝜑𝑣0(𝜉, 𝜂) = 1 − 𝜉

2
1 − 𝜂

2

• 𝜑𝑣1(𝜉, 𝜂) = 1 + 𝜉

2
1 − 𝜂

2

• 𝜑𝑣2(𝜉, 𝜂) = 1 + 𝜉

2
1 + 𝜂

2
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• 𝜑𝑣3(𝜉, 𝜂) = 1 − 𝜉

2
1 + 𝜂

2
2. 4(𝑘 − 1) edge functions:

• 𝜑𝑒0
𝑛 (𝜉, 𝜂) = 𝜑𝑣0(𝜉, 𝜂)

[︁
𝜑𝑣1(𝜉, 𝜂) + 𝜑𝑣2(𝜉, 𝜂)

]︁
𝑓𝑛(𝜉)

• 𝜑𝑒1
𝑛 (𝜉, 𝜂) = 𝜑𝑣1(𝜉, 𝜂)

[︁
𝜑𝑣2(𝜉, 𝜂) + 𝜑𝑣3(𝜉, 𝜂)

]︁
𝑓𝑛(𝜂)

• 𝜑𝑒2
𝑛 (𝜉, 𝜂) = 𝜑𝑣2(𝜉, 𝜂)

[︁
𝜑𝑣3(𝜉, 𝜂) + 𝜑𝑣0(𝜉, 𝜂)

]︁
𝑓𝑛(−𝜉)

• 𝜑𝑒3
𝑛 (𝜉, 𝜂) = 𝜑𝑣3(𝜉, 𝜂)

[︁
𝜑𝑣0(𝜉, 𝜂) + 𝜑𝑣1(𝜉, 𝜂)

]︁
𝑓𝑛(−𝜂)

3. (𝑘 − 1)2 internal bubble functions:

• 𝜑𝑏
𝑛0,𝑛1(𝜉, 𝜂) = 𝜑𝑣0(𝜉, 𝜂)𝜑𝑣2(𝜉, 𝜂)𝑓𝑛0(𝜉)𝑓𝑛1(𝜂), where 0 ≤ 𝑛0, 𝑛1 ≤ 𝑘 − 2.

𝐻(𝑑𝑖𝑣, 𝐾̂) shape functions

The 𝐻(𝑑𝑖𝑣, 𝐾̂) shape functions applied in this thesis followed the methodology presented
by Siqueira, Devloo and Gomes (2013). Define the normal vectors 𝑛0 = (0,−1), 𝑛1 =
(1, 0), 𝑛2 = (0, 1), 𝑛3 = (−1, 0) for the edges 0 to 3. The approximation space the
𝒬ℎ(𝐾̂) = span{𝜓

𝑖
} ⊂ 𝐻(𝑑𝑖𝑣; 𝐾̂) is summarized below for a quadrilateral master element.

1. 4(𝑘 + 1) edge functions;

• Edge 0: 𝜓𝑒0

0 (𝜉, 𝜂) = 𝜑𝑣0(𝜉, 𝜂) 𝑛0, 𝜓
𝑒0

1 (𝜉, 𝜂) = 𝜑𝑣1(𝜉, 𝜂) 𝑛0;

• Edge 1: 𝜓𝑒1

0 (𝜉, 𝜂) = 𝜑𝑣1(𝜉, 𝜂) 𝑛1, 𝜓
𝑒1

1 (𝜉, 𝜂) = 𝜑𝑣2(𝜉, 𝜂) 𝑛1;

• Edge 2: 𝜓𝑒2

0 (𝜉, 𝜂) = 𝜑𝑣0(𝜉, 𝜂) 𝑛2, 𝜓
𝑒2

1 (𝜉, 𝜂) = 𝜑𝑣1(𝜉, 𝜂) 𝑛2;

• Edge 3: 𝜓𝑒3

0 (𝜉, 𝜂) = 𝜑𝑣0(𝜉, 𝜂) 𝑛3, 𝜓
𝑒3

1 (𝜉, 𝜂) = 𝜑𝑣1(𝜉, 𝜂) 𝑛3;

2. 2(𝑘 − 1)2 internal functions;

• 𝜓
𝑏1

𝑛0,𝑛1
(𝜉, 𝜂) = 𝜑𝑏

𝑛0,𝑛1(𝜉, 𝜂) 𝑛2, 𝜓
𝑏2

𝑛0,𝑛1
(𝜉, 𝜂) = 𝜑𝑏

𝑛0,𝑛1(𝜉, 𝜂) 𝑛3

𝜓
𝑏𝑛

𝑛,𝑖
(𝜉, 𝜂) = 𝜑𝑒𝑖

𝑛 (𝜉, 𝜂) 𝑛𝑖+1

Two edge functions and two internal 𝐻(𝑑𝑖𝑣; 𝐾̂) functions are plotted in Fig. 2.3 for 𝑘 = 2,
illustrating the basis functions already implemented in NeoPZ.

2.3 Variational Statement
Consider as the model problem the Poisson equation, for a given force term 𝑓 ∈ 𝐿2(Ω),
given by

Δ𝑢 = 𝑓

𝑢|Γ = 𝑢𝐷

where Δ𝑢 = ∇ · (∇𝑢) is the Laplace operator, 𝑢𝐷 ∈ 𝐻1/2(Γ) and 𝛾 the aforementioned
trace operator and 𝑢𝐷 smooth. The variational statement for this problem is written using
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Figure 2.3: Edge and internal 𝐻(𝑑𝑖𝑣) shape functions 𝜓 ∈ 𝒬ℎ ⊂ 𝐻(𝑑𝑖𝑣, 𝐾̂) defined in a parametric
quadrilateral element 𝐾̂ = 𝑄̂.

three techniques, namely: the usual Galerkin method, and the Mixed and Hybridized
Mixed techniques.

2.3.1 Galerkin Finite Elements
For the Galerkin method, (2.3) is multiplied by a test function 𝑣 ∈ 𝐻1(Ω), and integrated
over Ω. Integrating by parts

∫︀
Ω(Δ𝑢)𝑣 𝑑Ω the variational formulation is given by: Find

𝑢 ∈ 𝐻1(Ω) such that, ∫︁
Ω

∇𝑢 · ∇𝑣 =
∫︁

Ω
𝑓𝑣 𝑑Ω, ∀ 𝑣 ∈ 𝐻1

0 (Ω)

𝑢|Γ = 𝑢𝐷.
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Consider a general partition 𝒯 ℎ = {𝒦} composed of a conglomerate of Ω = ⋃︀
𝒦 𝒦, and

let 𝒱ℎ be a finite-dimensional subspace of 𝐻1(Ω), such that

𝒱ℎ = {𝑣ℎ ∈ 𝐻1(Ω) : ∀𝒦 ∈ 𝒯 ℎ, 𝑣ℎ|𝒦∈ 𝒱ℎ(𝒦)}

with 𝒱ℎ(𝒦) defined in .

For 𝑢ℎ, 𝑣ℎ ∈ 𝒱ℎ and for all 𝒦 ∈ 𝒯 ℎ,∫︁
Ω

∇𝑢ℎ · ∇𝑣ℎ 𝑑Ω = ⟨𝑓, 𝑣ℎ⟩ (2.3.0)

where ⟨𝑓, 𝑣ℎ⟩ is the 𝐿2 inner product
∫︁

Ω
𝑓𝑣ℎ 𝑑Ω.

2.3.2 Mixed Finite Elements
Mixed FEM was first introduced in the literature in 1967 by Herrmann (1967) for the
plate elasticity problem. Generally speaking, a mixed method involves the simultane-
ous approximation of two or more fields defined in the physical problem (ROBERTS;
THOMAS, 1991). More specifically, this thesis focus on the Mixed Dual FEM.

Introducing the vector field flux 𝜎 = ∇𝑢, Eq. (2.3) can be written as a system of equations

𝜎 = ∇𝑢
∇ · 𝜎 = 𝑓

𝑢|Γ = 𝑢𝐷.

An intuitive consequence of the mixed formulation is that each variable 𝜎 and 𝑢 is ap-
proximated using two different finite element spaces. To have a convergent method, the
approximation spaces must be chosen in such a way that 𝜎 ∈ 𝐻(𝑑𝑖𝑣; Ω) and 𝑢 ∈ 𝐿2(Ω).
More details are addressed in Boffi, Brezzi and Fortin (2013).

To obtain the variational formulation, (2.3.2) is multiplied by a test function 𝑧 ∈ 𝐿2(Ω).
Yet, (2.3.2) is multiplied by a test function 𝑞 ∈ 𝐻(𝑑𝑖𝑣; Ω) and the divergence theorem is
applied, leading to ∫︁

Ω
𝜎 · 𝑞 𝑑Ω −

∫︁
Ω
𝑢
(︁
∇ · 𝑞

)︁
𝑑Ω = −

∫︁
Γ
𝑢𝐷(𝑞 · 𝑛) 𝑑Γ,

−
∫︁

Ω
(∇ · 𝜎) 𝑧 𝑑Ω = −

∫︁
Ω
𝑓𝑧 𝑑Ω.

Consider again a general partition 𝒯 ℎ = {𝒦}. Let 𝒵ℎ = span{𝜑𝑖} be a finite-dimensional
subspace 𝐿2(Ω) such that 𝑢ℎ, 𝑧ℎ ∈ 𝒵ℎ, 𝑢|𝒦∈ 𝒵ℎ(𝒦) and 𝑧ℎ|𝒦∈ 𝒵ℎ(𝒦). Also, consider
𝒬ℎ = span{𝜓

𝑗
} ⊂ 𝐻(𝑑𝑖𝑣; Ω) a finite-dimensional space such that 𝜎ℎ, 𝑞ℎ ∈ 𝒬ℎ, 𝜎ℎ|𝒦∈

𝒬ℎ(𝒦) and 𝑞ℎ|𝒦∈ 𝒬ℎ(𝒦). The discrete form of the variational mixed dual formulation is
given by: Find (𝜎ℎ, 𝑢ℎ) ∈ 𝒬ℎ × 𝒵ℎ

𝑎(𝜎ℎ, 𝑞ℎ) + 𝑏(𝑞ℎ, 𝑢ℎ) = −⟨𝑢𝐷, 𝑞
ℎ · 𝑛⟩𝐻1/2(Γℎ)×𝐻−1/2(Γℎ), ∀ 𝑞ℎ ∈ 𝒬ℎ,

𝑏(𝜎ℎ, 𝑧ℎ) = −⟨𝑓, 𝑧ℎ⟩, ∀ 𝑧ℎ ∈ 𝒵ℎ,
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where 𝑎 : 𝒬ℎ × 𝒬ℎ → R and 𝑏 : 𝒵ℎ × 𝒬ℎ → R are bilinear forms given by, respectively,

𝑎(𝜎ℎ, 𝑞ℎ) =
∫︁

Ω
𝜎ℎ · 𝑞ℎ 𝑑Ω,

𝑏(𝑢ℎ, 𝑞ℎ) =
∫︁

Ω
𝑢ℎ
(︁
∇ · 𝑞ℎ

)︁
𝑑Ω.

⟨𝑓, 𝑣ℎ⟩ is the 𝐿2 inner product and

⟨𝑢𝐷, 𝑞
ℎ · 𝑛⟩𝐻1/2(Γℎ)×𝐻−1/2(Γℎ) =

∫︁
Γℎ
𝑢𝐷(𝑞ℎ · 𝑛) 𝑑Γ

is the duality between 𝐻1/2(Γℎ) and 𝐻−1/2(Γℎ). The finite element approximation leads
to a matrix problem given by (︃

𝐴 𝐵𝑇

𝐵 0

)︃{︃
𝑆
𝑈

}︃
=
{︃
𝐺
𝐹

}︃
(2.3.0)

The stiffness matrix
𝐾 =

(︃
𝐴 𝐵𝑇

𝐵 0

)︃
(2.3.0)

is 𝐴 and 𝐵 are respectively an 𝑛×𝑛 matrix and an 𝑚×𝑛 matrix, 𝑆 and 𝑈 are 𝑛× 1 and
𝑚 × 1 vectors, respectively, composed of the coefficients 𝜎ℎ and 𝑢ℎ. Last, 𝐺 and 𝐹 are
also 𝑛 × 1 and 𝑚 × 1 vectors composed of the linear forms previously described. Boffi,
Brezzi and Fortin (2013) prove the solvability and stability of the system (2.3.2).

The inf-sup condition imposed in the mixed formulation leads to a saddle point problem.
It implies that the stiffness matrix (2.3.2) is computationally hard to invert since the
system is indefinite. A first possibility is to use a direct solver applying Pivot strategies.
The second possibility is to eliminate 𝑆 from the equations, which requires inverting 𝐴.
However, 𝐴−1 is a dense matrix, and the computational cost of inverting this matrix is
prohibitive. A strategy to overcome this issue is to hybridize the mixed method, leading
us to the next topic.

2.3.3 Hybridized-Mixed Finite Elements
The idea of Hybrid methods in general is to relax regularity requirements by introducing
a Lagrange multiplier. As shown by Cockburn and Gopalakrishnan (2004), to hybridize
the dual mixed formulation, the continuity of the normal flux required by the definition of
𝐻(𝑑𝑖𝑣; Ω) is relaxed and imposed by using a Lagrange multiplier. Consider the following
function spaces

𝒵ℎ =
{︁
𝑧ℎ ∈ 𝐿2(Ω) × 𝐿2(Ω) : 𝑧ℎ|𝒦∈ P𝑘(𝒦) × P𝑘(𝒦) + 𝑥P𝑘(𝒦), ∀𝒦 ∈ 𝒯 ℎ

}︁
ℳℎ =

{︁
𝜇 ∈ 𝐿2(ℰℎ) : 𝜇𝑒 ∈ P𝑘(𝑒), ∀ 𝑒 ∈ ℰℎ

}︁
where ℰℎ is the skeleton mesh, already defined in (2.2). Thus, instead of defining the
variational statement as finding (𝜎ℎ, 𝑢ℎ) ∈ 𝒬ℎ × 𝒵ℎ, the hybridized-mixed method
seeks (𝜎ℎ, 𝑢ℎ, 𝜁ℎ) ∈ 𝒵ℎ × 𝒵ℎ × ℳℎ, where 𝜁ℎ are Lagrange multipliers that impose the
normal flux continuity in weak form. The hybridized-mixed variational statement of the
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model problem is given by: Find (𝜎ℎ, 𝑢ℎ, 𝜁ℎ) ∈ 𝒵ℎ × 𝒵ℎ × ℳℎ such that∫︁
Ω
𝜎ℎ · 𝑞ℎ 𝑑Ω −

∑︁
𝒦∈𝒯 ℎ

∫︁
𝒦
𝑢ℎ
(︁
∇ · 𝑞ℎ

)︁
𝑑Ω +

∑︁
𝑒∈ℰℎ

∫︁
𝑒
𝜁ℎJ𝑞ℎK 𝑑𝑠 = −

∫︁
Γℎ
𝑢𝐷J𝑞ℎK 𝑑𝑠,

−
∑︁

𝒦∈𝒯 ℎ

∫︁
𝒦
𝑣ℎ∇ · 𝜎ℎ 𝑑Ω = −

∫︁
Ω
𝑓𝑣ℎ 𝑑Ω,

∑︁
𝑒∈ℰℎ

∫︁
𝑒
𝜇ℎJ𝜎ℎK = 0,

for all (𝑞ℎ, 𝑣ℎ, 𝜇ℎ) ∈ 𝒵ℎ × 𝒵ℎ × ℳℎ where J𝜎ℎK = 𝜎ℎ · 𝑛 on 𝑠 ∈ Γℎ and J𝜎ℎK = 𝜎ℎ+
𝑒 ·

𝑛+
𝑒 + 𝜎ℎ−

𝑒 · 𝑛−
𝑒 on 𝑒 ∈ ℰℎ. It means that the continuity of the normal flux is weakened

and imposed by Lagrange multipliers that represent the trace of 𝑢ℎ over the element’s
skeleton. Written in matricial form, (2.3.3) to (2.3.3) lead to the system⎛⎜⎝A B𝑇 C𝑇

B 0 0
C 0 0

⎞⎟⎠
⎧⎪⎨⎪⎩

𝒮
𝒰
ℒ

⎫⎪⎬⎪⎭ =

⎧⎪⎨⎪⎩
𝒢
ℱ
0

⎫⎪⎬⎪⎭ . (2.3.0)

where ℒ groups the multiplier coefficients for the Lagrange multiplier approximation. The
approximations for 𝜎ℎ and 𝑢ℎ are the same as in the Mixed FEM, which means that 𝒮
and 𝒰 remains being the coefficients of 𝜎ℎ and 𝑢ℎ, respectively. A, B and C in which the
components are respectively given by the bilinear forms 𝑎 : 𝒵ℎ×𝒵ℎ → R, 𝑏 : 𝒵ℎ×𝒵ℎ → R
and 𝑐 : ℳℎ × 𝒵ℎ → R.

Although the system of equations increases considerably, the greatest advantage is that A
is sparse, block diagonal, symmetric, and positive-definite. It is computationally cheaper,
then, to compute the inverse A−1 and condense the DOF 𝒮 and 𝒰 , leading to the system

E ℒ = H (2.3.0)

where

E = C A−1
(︂
A − B𝑇

(︁
B A−1B𝑇

)︁−1
B
)︂
A−1C𝑇

H = H𝑔 + H𝑓

H𝑔 = −C A−1
(︁
A − B𝑇

(︁
B A−1B𝑇

)︁
B
)︁
A−1𝒢

H𝑓 = −C A−1B𝑇
(︁
B A−1B𝑇

)︁
ℱ

The local condensed stiffness matrix and nodal force vector are assembled and a smaller
global stiffness matrix is obtained. This technique is applied in Chapter 5 to obtain a
locally conservative SBFEM approximation.
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Chapter 3

The Scaled Boundary Finite Element
Method

This chapter introduces the SBFEM in a slightly different way compared to the classical
SBFEM literature. From a geometric point of view, the scaled boundary element is a
conglomerate of Duffy’s elements; thus, from a computational point of view, the SBFEM
approximation is a type of Duffy’s approximation constructed using a semi-analytical
approach instead of using only polynomials. The SBFEM shape functions are semi-
analytical because the construction process of the local space involves solving analytically
an ODE based on approximating a homogeneous PDE using a trace FE space. Further
in this chapter, it is proven that the basis functions of SBFEM are Duffy’s functions
constructed imposing a gradient-orthogonality constraint. Such a property is important
to prove the optimal rate of convergence of SBFEM approximations.

The SBFEM generalizes the FE geometry and the function space. Analogously to Ciarlet,
the Scaled Boundary FE is a triple Γ𝑆 =

(︁
𝑆,S𝑘,Σ𝑆

)︁
such that,

1. 𝑆 denotes a bounded domain in the Euclidean space R𝑑, where 𝑑 = 2, 3 is the
dimension, but the geometry requirements are relaxed: 𝑆 is a star-shaped element,
also known as 𝑆-element, enclosing an arbitrary number of facets and vertices, in
which the only requirement is that a point inside the 𝑆-element, named scaling
center, can be seen over the boundary of 𝑆, i.e. 𝜕𝑆;

2. S𝑘 denotes a space of general functions on 𝜕𝑆 of finite dimension dim(S𝑘) = 𝒩 𝑆.
The function space S𝑘 is composed of the tensorial product of polynomial functions
defined as a trace space over the boundary of 𝑆 and radial functions that can have
any exponent;

3. Σ𝑆 = {𝐿1, 𝐿2, ..., 𝐿𝒩 𝑆 } denotes a set of linear forms, such that

𝐿𝑖 : S𝑘 → R, 𝑖 = 1, 2, ...,𝒩 𝑆.

The 𝐿𝑖 elements of Σ𝑆 are called DOFs. Notice that the DOFs are defined only at
𝜕𝑆.

The function space S𝑘, in SBFEM, depends on the variational statement. Thus, the
SBFEM is a finite element technique that belongs to the class of operator-adapted meth-
ods. One can interpret the SBFEM shape functions as semi-analytical functions that
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mimic the analytic solution properties inside the element. Two features distinguish
SBFEM from the other operator-adapted methods. The first one is related to the par-
tition of the domain, or the geometry of the SBFEM elements. The second attribute
remounts the construction process of the SBFEM basis functions.

Regarding the geometric aspects, the SBFEM approximation is based on partitions of the
domain Ω into general polygonal/polyhedral subregions 𝑆, also called 𝑆- elements. These
elements obey the star-shaped requirement, which means that any point at 𝜕𝑆 is directly
visible from a center point, also named scaling center O ∈ 𝑆. A generic partition of the
domain, 𝒯 = {𝑆}, is illustrated in Fig. 3.1.

Figure 3.1: A 3D domain partitioned into polyhedral 𝑆-elements.

Although the facets shown in Fig. 3.1 are linear planes, curved boundaries can be con-
sidered in a blend and b-splines geometries. Moreover, there is no requirement for 𝑆 to
be bounded. It means that 𝑆 can be an open domain, as illustrated in Fig. 3.2. To ease
the demonstrations, this chapter considers only closed affine elements.

Figure 3.2: General two-dimensional open 𝑆-elements.

The second feature is associated with the construction of the approximation space, i.e.
the basis functions that will compose the approximated solution. Based on the 𝑆-elements
geometry, the SBFEM approximation space has two components:

1. A piecewise polynomial space over 𝜕𝑆: trace finite element (FE) space;

2. A radial extension from the approximation in 𝜕𝑆 into 𝑆: a radial function obtained
by the local solution of an ordinary differential equation (ODE) eigenvalue problem.

Using tensorial Duffy’s basis functions as defined above, the variational statement is
written as an ODE eigenvalue problem, whose analytical solution is obtained using the
separation of variables technique. Then, the second-order ODE is constructed by rewriting
a homogeneous PDE as a function only of the radial function, having the radial variable,
𝜉 as the independent variable.
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The first part of this chapter defines Duffy’s geometric map. Then, the SBFEM approx-
imation spaces for Poisson problems and Elasticity problems are formally defined. Such
a definition allows for highlighting relevant properties of the method. Last, the mathe-
matical properties are applied to define error estimates for the SBFEM and prove that
it reaches optimal convergence rates. Numerical tests illustrate the optimal convergence
properties of the method to approximate harmonic functions.

The results of this chapter were published in the paper:

COELHO, K. O.; DEVLOO, P. R. B.; GOMES, S. M. Error estimates for the scaled
boundary finite element method. Computer Methods in Applied Mechanics and Engineer-
ing, v. 379, p. 113765, 2021.

3.1 Duffy’s Approximation Space

3.1.1 Collapsed element
Duffy’s geometric transformations (DUFFY, 1982) are invertible maps of a rectangle, a
hexahedron, or a prism to, respectively, a triangle, a pyramid, or a tetrahedron. This ge-
ometric map was originally introduced by Duffy to ease the computation of integrals over
pyramids with a vertex singularity. In such a map, a facet of the master element (a rect-
angle, a hexahedron, or a prism) is collapsed to a point - for this reason, this map is also
known as a collapsed coordinate system (KARNIADAKIS; SHERWIN, 1999). Applica-
tions of Duffy’s transformation can be found to define integration quadrature formulae in
triangles (LYNESS; COOLS, 1994; BLYTH; POZRIKIDIS, 2006), in the Extended Finite
Element Method (XFEM) (MOUSAVI; SUKUMAR, 2010), and the construction of spec-
tral methods on simplices (triangles, tetrahedra) (KARNIADAKIS; SHERWIN, 1999).
Collapsed isoparametric elements parametrized by Duffy’s transformations also have ap-
plications in crack problems (WU, 1993; PU; HUSSAIN; LORENSEN, 1978; RAJU, 1987).

The key aspect of Duffy’s transformations is to collapse one facet in 𝐾̂ on a single vertex
of the deformed element 𝐾. In the geometric map, described as 𝐹𝐾 : 𝐾̂ → 𝐾, the master
element has the general form 𝐾̂ = [0, 1] × 𝐿̂ ⊂ R𝑑, where 𝐿̂ ⊂ R𝑑−1, 𝑑 = 2, 3. In the
parametric coordinates 𝑥̂ = (𝜉, 𝜂) ∈ 𝐾̂, 𝜉 is a radial variable, whilst 𝜂 plays the role of
surface coordinates.

The geometry of the master elements may be one of the following kinds:

• Case 1: Rectangle 𝐾̂, where 𝐿̂ = 𝐼 is the interval 𝐼 = [−1, 1].

• Case 2: Hexahedron 𝐾̂, where 𝐿̂ = 𝑄̂ is the quadrilateral 𝑄̂ = [−1, 1] × [−1, 1].

• Case 3: Prism 𝐾̂, where 𝐿̂ = 𝑇 is the triangle 𝑇 = {𝜂 = (𝜂1, 𝜂2); 0 ≤ 𝜂𝑖 ≤ 1, 𝜂1+𝜂2 ≤
1}.

Cases 1 to 3 are detailed in the following.

Case 1: From a quadrilateral 𝐾̂ to triangular 𝐾

Let 𝐾̂ be the rectangular master element with vertices listed in Table 3.1. Also, consider
the general triangular element illustrated in Figure 3.3, with vertices a0 = 𝐹𝐾(â0), a1 =
𝐹𝐾(â1), and a2 = 𝐹𝐾(â2). Duffy’s geometric map collapses the edge [â0, â3] onto the
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vertex a0 = 𝐹𝐾(â0) ∈ 𝐾, whilst a1 and a2 are the vertices of the opposite edge 𝐿 =
𝐹𝐾(1, 𝜂) = 𝐹𝐿(𝜂).

Table 3.1: Vertices of the quadrilateral master element 𝐾̂ = [0, 1] × [−1, 1].

â0 â1 â2 â3
(0,−1) (1,−1) (1, 1) (0, 1)

Figure 3.3: Geometric illustration of the transformation 𝐹𝐿 as well as Duffy’s transformation 𝐹𝐾 from a
rectangle to a triangle.

Case 2: From a hexahedral 𝐾̂ to pyramidal 𝐾

For the hexahedral master element 𝐾̂ whose vertices are listed in Table 3.2, Duffy’s trans-
formation maps the hexahedron 𝐾̂ to a pyramid, as illustrated in Fig. 3.4, with vertices
a𝑖 = 𝐹𝐾(â𝑖), 𝑖 = 0, · · · 4, where a0 is the collapsed vertex opposite to the quadrilateral
face 𝐿 = [a1, a2, a3, a4].

Table 3.2: Vertices of the hexahedral master element 𝐾̂ = [0, 1] × 𝑄̂, where 𝑄̂ = [−1, 1] × [−1, 1].

â0 â1 â2 â3 â4 â5 â6 â7
(0,−1,−1) (1,−1,−1) (1, 1,−1) (1, 1, 1) (1,−1, 1) (0,−1, 1) (0, 1, 1) (0, 1,−1)

Figure 3.4: Geometric illustration of Duffy’s transformation from a hexahedron to a pyramid.

From Fig. 3.4, observe that:

1. The rectangular face [â0, â5, â6, â7] collapses onto a0;

2. The face [â0, â1, â4, â5] is mapped to the triangle [a0, â1, â4];
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3. The face [â0, â1, â2, â7] is mapped to the triangle [a0, â1, â2];

4. The face [â2, â3, â6, â7] is mapped to the triangle [a0, â2, â3];

5. The face [â3, â6, â5, â4] is mapped to the triangle [a0, â4, â3].

Case 3: From a prismatic 𝐾̂ to tetrahedral 𝐾

The last case is a prismatic master element 𝐾̂ whose vertices are listed in Table 3.3. Fig.
3.5 shows the tetrahedron, whose vertices are 𝑎𝑖 = 𝐹𝐾(â𝑖), 𝑖 = 0, · · · 3, with a0 being the
collapsed vertex opposed to the face 𝐿 = [a1, a2, a3].

Table 3.3: Vertices of the prismatic master element 𝐾̂ = [0, 1] × 𝑇 , where 𝑇 = {𝜂 = (𝜂1, 𝜂2); 0 ≤ 𝜂1 ≤
1, 𝜂1 + 𝜂2 ≤ 1}.

â0 â1 â2 â3 â4 â5
(0, 0, 0) (1, 1, 0) (0, 1, 0) (0, 1, 1) (1, 0, 0) (0, 0, 1)

Figure 3.5: Geometric illustration of Duffy’s transformation over a prism to a tetrahedron.

Note that:

1. The triangular face [â0, â4, â5] collapses onto the vertex 𝑎0;

2. The quadrilateral face [â0, â4, â2, â3] collapses onto the triangle [a0, a2, a3];

3. The quadrilateral face [â0, â3, â1, â5] collapses onto the triangle [a0, a1, a3];

4. The quadrilateral face [â1, â2, â4, â5] collapses onto the triangle [a0, a1, a2].

Recall that the tetrahedron Duffy’s element can also be derived in two steps: first from
a hexahedron to a prism, and then from the prism to tetrahedron (KARNIADAKIS;
SHERWIN, 1999).

Generic Duffy’s transformation

If 𝑥 = 𝐹𝐾(𝜉, 𝜂) denotes the Cartesian coordinate in 𝐾, the mapped points for the three
cases are generically defined by

𝐹𝐾(𝜉, 𝜂) = 𝜉
(︁
𝐹𝐿(𝜂) − a0

)︁
+ a0, (3.1.0)
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where a0 is the collapsed vertex in 𝐾, and 𝐿 ⊂ 𝜕𝐾 is the opposite facet to a0, which is
mapped by the geometric transformation 𝐹𝐿 : 𝐿̂ → 𝐿.

Since the whole facet {(0, 𝜂), 𝜂 ∈ 𝐿̂} ⊂ 𝐾̂ is collapsed over the vertex a0 ∈ 𝐾, Duffy’s
element 𝐾 can be regarded as a quadrilateral with two identical vertices, a hexahedron
with four equal vertices, or a prism with three identical vertices. From another perspective,
the mapping 𝐹𝐾 can be seen as a scaling from 𝐹𝐿(𝜂) ∈ 𝐿 to the vertex a0.

The Jacobian matrix 𝐽
𝐾

= ∇𝑥𝐹𝐾 of the Duffy’s transformation (3.1.1) is

𝐽
𝐾

(𝜉, 𝜂) =
[︁
𝐹𝐿(𝜂) − a0 𝜉∇𝜂𝐹𝐿(𝜂)

]︁
= 𝐽

𝐾
(1, 𝜂)

[︃
1 0
0 𝜉𝐼

𝑑−1

]︃
, (3.1.0)

where 𝐼
𝑑−1 is the 𝑑− 1 × 𝑑− 1 identity matrix, and 𝐽

𝐾
(1, 𝜂) =

[︁
𝐹𝐿(𝜂) − a0 ∇𝜂𝐹𝐿(𝜂)

]︁
is

the Jacobian matrix at 𝐹𝐾(1, 𝜂) = 𝐹𝐿(𝜂). Thus, its inverse is given by

𝐽−1
𝐾

=
(︃

1 0
0 1

𝜉
𝐼

𝑑−1

)︃
𝐽−1

𝐾
(1, 𝜂).

3.1.2 Duffy’s approximations
The Duffy’s approximation space is composed of basis function 𝜑(𝑥) = 𝜑(𝜉, 𝜂) referring
to functions 𝜑 = F𝐾(𝜑) defined for 𝑥 = 𝐹𝐾(𝜉, 𝜂) ∈ 𝐾, where 𝜑(𝜉, 𝜂) is defined in 𝐾̂.
Namely, the focus of this thesis is on functions 𝜑 obtained by separating variables in
𝜑(𝜉, 𝜂) = 𝜌(𝜉)𝛼̂(𝜂), where 𝜌(𝜉) is called the radial component and 𝛼̂(𝜂) is the surface
component. Generally, the Duffy’s approximation space refers to 𝒟𝑘(𝐾) = F𝐾(𝒟𝑘(𝐾̂))
such that

𝒟𝑘(𝐾̂) =
{︁
𝜑 = 𝜌(𝜉)𝛼̂(𝜂); 𝛼̂(𝜂) ∈ 𝒱𝑘(𝐿̂)

}︁
(3.1.0)

where 𝒱𝑘(𝐿̂) can be either,

1. Case 1: 𝐿̂ = 𝐼 = [−1, 1]: 𝒱𝑘(𝐿̂) = P𝑘(𝐿̂) is the space of the polynomials of total
degree not greater than 𝑘;

2. Case 2: 𝐿̂ = 𝑄̂ = [−1, 1] × [−1, 1]: 𝒱𝑘(𝐿̂) = Q𝑘,𝑘(𝐿̂) is the space of the polynomials
of total degree not greater than 𝑘 on each coordinate 𝜂1, 𝜂2, or;

3. Case 3: 𝐿̂ = 𝑇 = {𝜂 = (𝜂1, 𝜂2); 0 ≤ 𝜂𝑖 ≤ 1, 𝜂1 + 𝜂2 ≤ 1}: 𝒱𝑘(𝐿̂) = P𝑘(𝐿̂) is the space
of the polynomials of total degree not greater than 𝑘.

For each case, the surface components 𝛼̂(𝜂) ∈ 𝒱𝑘(𝐿̂), used to define FE approximation
spaces 𝒱𝑘(𝐿) = F𝐿(𝒱𝑘(𝐿̂)), are finite-dimensional polynomial spaces 𝒱𝑘(𝐿̂).

Gradient operation in 𝒟𝑘(𝐾)

The gradient operator using Duffy’s geometric map is given by

∇𝑥 = [𝐽
𝐾

(1, 𝜂)]−𝑇

{︃
𝜕
𝜕𝜉

1
𝜉
∇𝜂

}︃
.
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where ∇𝜂 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜕

𝜕𝜂1
𝜕

𝜕𝜂2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
If

𝐽−1
𝐾

(1, 𝜂) =

⎛⎜⎝𝑗11 𝑗12 𝑗13
𝑗21 𝑗22 𝑗23
𝑗31 𝑗32 𝑗33

⎞⎟⎠ ,
the gradient ∇𝑥 can be also written as (SONG, 2018)

⎧⎪⎨⎪⎩
𝜕

𝜕𝑥1
𝜕

𝜕𝑥2
𝜕

𝜕𝑥3

⎫⎪⎬⎪⎭ =

⎧⎪⎨⎪⎩
𝑗11
𝑗21
𝑗31

⎫⎪⎬⎪⎭ 𝜕

𝜕𝜉
+ 1
𝜉

⎛⎜⎝
⎧⎪⎨⎪⎩
𝑗12
𝑗22
𝑗32

⎫⎪⎬⎪⎭ 𝜕

𝜕𝜂1
+

⎧⎪⎨⎪⎩
𝑗13
𝑗23
𝑗33

⎫⎪⎬⎪⎭ 𝜕

𝜕𝜂2

⎞⎟⎠ .

Restricting the study to mapped spaces 𝒟𝑘(𝐾) = F𝐾(𝒟𝑘(𝐾̂)) ⊂ 𝐻1(𝐾), where 𝐻1(𝐾) is
the local Sobolev space, the chain rule implies that

∇𝑥𝜑(𝑥) = [𝐽
𝐾

(1, 𝜂)]−𝑇

[︃
1 0
0 1

𝜉 𝐼𝑑−1

]︃ [︃
𝜌′(𝜉)𝛼̂(𝜂)
𝜌(𝜉)∇𝜂𝛼̂(𝜂)

]︃

= [𝐽
𝐾

(1, 𝜂)]−𝑇

[︃
𝜌′(𝜉)𝛼̂(𝜂)

1
𝜉𝜌(𝜉)∇𝜂𝛼̂(𝜂)

]︃

= [𝐽
𝐾

(1, 𝜂)]−𝑇

[︃
𝛼̂(𝜂) 0

0 ∇𝜂𝛼̂(𝜂)

]︃ [︃
𝜌′(𝜉)
1
𝜉𝜌(𝜉)

]︃
.

If 𝒱𝑘(𝐿̂) = span{𝑁̂ 𝑙
𝑘} and 𝛼̂(𝜂) = ∑︀

𝑙 𝑎
𝑙𝑁̂ 𝑙

𝑘(𝜂) is a linear combination of FE shape functions
𝑁̂ 𝑙

𝑘(𝜂), then (3.1.2) can be grouped as

∇𝑥𝜑(𝑥) =
∑︁

𝑙

[︁
𝐵1𝑙(𝜂) 𝐵2𝑙(𝜂)

]︁ [︃ 𝑎𝑙𝜌′(𝜉)
1
𝜉
𝑎𝑙𝜌(𝜉)

]︃
, (3.1.-2)

where

𝐵1𝑙(𝜂) = [𝐽
𝐾

(1, 𝜂)]−𝑇

[︃
𝑁̂ 𝑙

𝑘(𝜂)
0

]︃
, and 𝐵2𝑙(𝜂) = [𝐽

𝐾
(1, 𝜂)]−𝑇

[︃
0

∇𝜂𝑁̂
𝑙
𝑘(𝜂)

]︃
.

In the following, Eq. (3.1.2) is applied to deduce the SBFEM approximation space.

3.2 SBFEM approximation spaces

3.2.1 Star-shaped element
The SBFEM considers partitions 𝒯 = {𝑆} of the domain Ω ⊂ R𝑑 by 𝑆-elements that
verify the star-shaped geometric requirement (see Fig. 3.6). Star-like scaling requirement
imposes that any point on 𝜕𝑆 should be directly visible from a point O ∈ 𝑆, called the
scaling center. This chapter shall be restricted to convex polytopal 𝑆-elements (polygonal
or polyhedral with flat facets 𝐿𝑒 ⊂ 𝜕𝑆). The set 𝜕𝑆 = Γℎ,𝑆 = ∪𝑒𝐿

𝑒, 𝑒 = 1, · · · , 𝑁Γ𝑆 is
known as the scaled boundary element, where 𝑁Γ𝑆 is the number of facets in 𝑆.
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Figure 3.6: Illustration of macro partitions 𝒯 = {𝑆}, with focus on a sector 𝐾 ∈ 𝒯 ℎ,𝑆 , with corresponding
Duffy’s transformation, for triangular, pyramidal and tetrahedral 𝐾.

The 𝑆-element is a conformal sub-partition 𝒯 ℎ,𝑆 = {𝐾𝑒} formed by sectors 𝐾𝑒 sharing the
scaling center O as one of their vertices. The scaled boundary element Γℎ,𝑆 is composed
of facets 𝐿𝑒 opposed to the scaling center. As illustrated in Fig. 3.6, the sectors 𝐾𝑒

have different geometries according to 𝑆: triangular in 2D, pyramidal, or tetrahedral in
3D. The scaled boundary element is a conglomerate of facets 𝐿𝑒 being a line segment,
a quadrilateral, or a triangular element. Although a generic 3D 𝑆-element may also be
partitioned by hybrid tetrahedral-pyramidal meshes, this chapter restricts the analysis to
partitions 𝒯 ℎ,𝑆 where all elements 𝐾𝑒 have the same geometry.

The geometry of the 𝑆-element implies that the points 𝑥 ∈ 𝑆 can be uniquely represented
by a radial coordinate 0 ≤ 𝜉 ≤ 1 and a surface coordinate 𝑥𝑏 ∈ Γℎ,𝑆. The radial coordinate
points from the scaling center (𝜉 = 0) to a point 𝑥𝑏 ∈ Γℎ,𝑆 (where 𝜉 = 1). The 𝑆-
element may also be defined in each sector 𝐾𝑒 ∈ 𝒯 ℎ,𝑆 using Duffy’s geometric map
𝐹𝐾𝑒 : 𝐾̂ → 𝐾𝑒, as described in the previous section. 𝐾𝑒 is a collapsed quadrilateral,
hexahedral or prismatic geometric element in which the facet 𝐹𝐾𝑒(0, 𝜂) is collapsed to the
scaling center Γℎ,𝑆. The points 𝑥𝑏 in the opposed facet 𝐿𝑒 are given by 𝐹𝐾𝑒(1, 𝜂) = 𝐹𝐿𝑒(𝜂),
𝜂 ∈ 𝐿̂. These maps are also illustrated in Fig. 3.6.
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3.2.2 Duffy’s spaces in 𝑆-elements
Duffy’s space for scalar functions

Since 𝑆-elements are a conglomerate of Duffy’s elements sharing the same collapsed vertex,
the approximation space in 𝑆 can be described using the definitions established in Section
3.1.1. The construction of functions 𝜑(𝑥) ∈ 𝒟𝑘(𝑆) ∈ 𝐻1(𝑆) follows three stages described
in the sequence:

1) Define local parametrizations 𝐾𝑒 ⊂ 𝑆 and 𝐿𝑒 ⊂ Γℎ,𝑆, such that 𝑥 = 𝐹𝐾𝑒(𝜉, 𝜂) ∈ 𝐾𝑒

and 𝑥𝑏 ∈ 𝐹𝐿𝑒(𝜂) ∈ 𝐿𝑒.

2) Define a trace FE space over Γℎ,𝑆, given by

Λ𝑘(Γ𝑆) = span{𝑁𝑛,𝑆
𝑘 ⊂ 𝐶(Γ𝑆)} (3.2.0)

where 𝑁𝑛,𝑆
𝑘 is the assembly of local shape functions 𝑁 ℓ

𝑘(𝑥) = 𝑁̂ ℓ
𝑘(𝜂), 𝑥𝑏 ∈ 𝐿𝑒. Using

vector notation, define
𝛼(𝑥𝑏) = 𝑁𝑆

𝑘 · 𝑎 ∈ Λ𝑘(Γ𝑆) (3.2.0)

as the polynomial approximation over Γ𝑆.

3) Radial extensions of 𝛼(𝑥𝑏) ∈ Λ𝑘(Γℎ,𝑆) to points 𝑥 = 𝐹𝐾𝑒(𝜉, 𝜂) ∈ 𝑆 using the radial
function 𝜌(𝜉) to be defined. Notice that for both cases, 𝜌(𝜉) is a scalar function that
has the same radial component applied to all 𝐾𝑒 ∈ 𝑆.

In summary, for a 𝑆-element,

𝒟𝑘(𝑆) =
{︁
𝜑(𝑥) ∈ 𝐻1(𝑆); 𝑠.𝑡. 𝜑|Γℎ,𝑆 = 𝛼(𝑥𝑏) ∈ Λ𝑘(Γℎ,𝑆) and 𝜑(𝜉, 𝜂) = 𝛼̂(𝜂)𝜌(𝜉)

}︁
,

(3.2.0)
and 𝒟0

𝑘(𝑆) ⊂ 𝒟𝑘(𝑆) is the space of bubble functions, i.e. 𝜑|Γℎ,𝑆 = 0.

The global space for Ω is defined as follows. Let 𝒯 ℎ = {𝑆} be a partition composed of
a family of conformal polytopal 𝑆-elements, where ℎ is the characteristic size of the 𝑆
facets. Moreover, define the mesh skeleton Γℎ as the assembly of the S-element’s facets
Γℎ,𝑆. Then, Duffy’s space is defined as

𝒟ℎ
𝑘 = {𝑤 ∈ 𝐻1(Ω); 𝑤|𝑆∈ 𝒟𝑘(𝑆), 𝑆 ∈ 𝒯 ℎ}.

The first stage is typical of FE contexts, but for specific scaled 𝑆-elements the extension
to the interior can be performed in the radial direction.

Gradient in 𝒟𝑘(𝑆)

Let 𝜑(𝑥), 𝜓(𝑥) ∈ 𝒟𝑘(𝑆) ⊂ 𝐻1(𝑆) be approximations given by

𝜑(𝑥) = 𝜑(𝜉, 𝜂) = 𝛼̂𝑆(𝜂)𝜌(𝜉)

=
(︂
𝑁̂

𝑆

𝑘 (𝜂) · 𝑎
)︂
𝜌(𝜉)

𝜓(𝑥) = 𝜓(𝜉, 𝜂) = 𝛽𝑆(𝜂)𝜏(𝜉)

=
(︂
𝑁̂

𝑆

𝑘 (𝜂) · 𝑏
)︂
𝜏(𝜉)
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Applying the expression for the gradient obtained for 𝐾 in Eq. (3.1.2) for the 𝑆-element
leads to

∇𝜑(𝑥) =
[︁
𝐵1(𝜂) 𝐵2(𝜂)

]︁ [︃ 𝑎𝑇𝜌′(𝜉)
1
𝜉
𝑎𝑇𝜌(𝜉)

]︃
, and ∇𝜓(𝑥) =

[︁
𝐵1(𝜂) 𝐵2(𝜂)

]︁ [︃ 𝑏𝑇 𝜏 ′(𝜉)
1
𝜉
𝑏𝑇 𝜏(𝜉)

]︃
(3.2.-2)

𝐵1(𝜂) = [𝐽
𝐾

(1, 𝜂)]−𝑇

[︃
𝑁̂

𝑆

𝑘 (𝜂)
0

]︃
, and 𝐵2(𝜂) = [𝐽

𝐾
(1, 𝜂)]−𝑇

⎡⎣ 0
∇𝜂𝑁̂

𝑆

𝑘 (𝜂)

⎤⎦ .

Moreover, consider

Φ̂(𝜉) = 𝑎𝑇𝜌(𝜉)
Ψ̂(𝜉) = 𝑏𝑇 𝜏(𝜉)

Then Eq. (3.2.2) is simplified to

∇𝜑(𝑥) =
[︁
𝐵1(𝜂) 𝐵2(𝜂)

]︁ ⎡⎣ Φ̂′(𝜉)
1
𝜉
Φ̂(𝜉)

⎤⎦ , and ∇𝜓(𝑥) =
[︁
𝐵1(𝜂) 𝐵2(𝜂)

]︁ ⎡⎣ Ψ̂′(𝜉)
1
𝜉
Ψ̂(𝜉)

⎤⎦
(3.2.-2)

Duffy’s space for vector-valued functions

The three stages for constructing Duffy’s approximation space for scalar functions 𝒟𝑘(𝑆)
can be applied to construct a space of Duffy’s vector-valued functions 𝒟𝑘. In such a case,
the radial component of Duffy’s basis function 𝜌(𝜉) remains scalar to all 𝐾𝑒 ∈ 𝑆. On the
other hand, the surface component is a vector-valued function 𝛼̂(𝜂) ∈ 𝒱𝑘(𝐿̂;R𝑑), 𝑑 = 2, 3.
In short, for vector-valued Duffy’s functions,

𝒟𝑘(𝑆) =
{︁
𝜑(𝑥) ∈ 𝐻1(𝑆,R𝑑); 𝑠.𝑡. 𝜑|Γℎ,𝑆 = 𝛼(𝑥𝑏) ∈ Λ𝑘(Γℎ,𝑆) and 𝜑(𝜉, 𝜂) = 𝛼̂(𝜂)𝜌(𝜉)

}︁
.

(3.2.-2)
where Λ𝑘(Γℎ,𝑆) is a vector-valued version of Λ𝑘(Γℎ,𝑆), written, analogously to Eq. (3.2.2),
as

Λ𝑘(Γℎ,𝑆) = span{𝑁𝑛,𝑆
𝑘 ⊂ 𝐶(Γℎ,𝑆,R𝑑)}, 𝑑 = 2, 3. (3.2.-2)

leading to vector-valued surface functions expressed as

𝛼(𝑥𝑏) = 𝑁𝑆
𝑘
𝑎 (3.2.-2)

where 𝑁𝑆
𝑘

=
[︁
𝑁0,𝑆

𝑘 𝑁1,𝑆
𝑘 . . . 𝑁𝒩 𝑆 ,𝑆

𝑘

]︁
.

Finally, similarly to Eq. 3.2.2, the global space 𝒟ℎ
𝑘 for Ω, where Ω is partitioned into a

family of conformal polytopal 𝑆-elements 𝒯 ℎ = {𝑆}, is given by

𝒟ℎ
𝑘 = {𝑤 ∈ 𝐻1(Ω,R𝑑); 𝑤|𝑆∈ 𝒟𝑘(𝑆), 𝑆 ∈ 𝒯 ℎ}.
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3.2.3 SBFEM approximations for the Poisson problem
First, the SBFEM space is constructed for a Poisson problem with a null source term,
also known as the harmonic problem, written in strong form as

Δ𝑢 = 0, 𝑢 ∈ Ω
𝑢|𝜕Ω = 𝑢𝐷

where 𝑢𝐷 are prescribed Dirichlet boundary conditions. The variational statement is
obtained through the Galerkin method, considering an approximation for u in 𝐻1(Ω),
multiplying Eq. (3.2.3) by a test function 𝑣 ∈ 𝐻1(Ω) and integrating it by parts.

In its discrete form, let Ω be partitioned into 𝑆-elements, 𝒯 ℎ = {𝑆}, where ℎ is the
characteristic size of the 𝑆-element’s facets. The variational statement can be written as:
Find 𝑢ℎ(𝑥) ∈ Sℎ

𝑘 ⊂ 𝐻1(Ω) such that∫︁
Ω

∇𝑢ℎ · ∇𝑣 𝑑Ω = 0, ∀𝑣 ∈ Sℎ,0
𝑘 ⊂ 𝐻1

0 (Ω)

𝑢ℎ|𝜕Ω = 𝑢𝐷,

where 𝐻1
0 (Ω) ⊂ 𝐻1(Ω) is the Sobolev space of all functions that vanish at 𝜕Ω, and

Sℎ
𝑘 ∈ 𝒟ℎ

𝑘(𝑆) is the SBFEM space for harmonic problems, given by

Sℎ
𝑘 =

{︁
𝑤 ∈ 𝐻1(Ω); 𝑤|𝑆∈ Sℎ

𝑘(𝑆), 𝑆 ∈ 𝑇 ℎ
}︁
, (3.2.-2)

and

S𝑘(𝑆) =
{︂
𝜑 ∈ 𝒟𝑘(𝑆);

∫︁
𝑆

∇𝜑 · ∇𝜓 𝑑𝑆 = 0,∀𝜓 ∈ 𝒟0
𝑘(𝑆), 𝜓(O) = 0

}︂
. (3.2.-2)

It means that the SBFEM seeks an approximated function that imposes weakly the prop-
erty of harmonic functions directly in the approximation space. Knowing that the gradi-
ents ∇𝜑 and ∇𝜓 were given by Eq. (3.2.2), the SBFEM basis functions will be obtained
by expressing

∫︀
𝑆 ∇𝜑 · ∇𝜓 𝑑𝑆 ad an ODE as follows.

∫︁
𝑆

∇𝜑(𝑥) · ∇𝜓(𝑥)d𝑆 =
∫︁ 1

0

∫︁ 1

−1

[︁
𝐵1(𝜂) 𝐵2(𝜂)

]︁ [︃ Φ̂′(𝜉)
1
𝜉 Φ̂(𝜉)

]︃
·
[︁
𝐵1(𝜂) 𝐵2(𝜂)

]︁ [︃ Ψ̂
′
(𝜉)

1
𝜉 Ψ̂(𝜉)

]︃
𝜉𝑑−1|𝐽

𝐾
(1, 𝜂)| 𝑑𝜂𝑑𝜉

=
∫︁ 1

0

∫︁ 1

−1

[︁
Φ̂′(𝜉) 1

𝜉 Φ̂(𝜉)
]︁

·
(︃[︃
𝐵𝑇

1
𝐵𝑇

2

]︃ [︁
𝐵1 𝐵2

]︁
|𝐽

𝐾
(1, 𝜂)|

)︃[︃
Ψ̂

′
(𝜉)

1
𝜉 Ψ̂(𝜉)

]︃
𝜉𝑑−1 𝑑𝜂𝑑𝜉

=
∫︁ 1

0

[︁
Φ̂′(𝜉) 1

𝜉 Φ̂(𝜉)
]︁

·
[︃
𝐸0 𝐸𝑇

1
𝐸1 𝐸2

]︃ [︃
Ψ̂

′
(𝜉)

1
𝜉 Ψ̂(𝜉)

]︃
𝜉𝑑−1𝑑𝜉,

where 𝐸
𝑖
, 𝑖 = 0, 1, 2 are the SBFEM coefficient matrices (SONG, 2018)

𝐸0 =
∫︁ 1

−1
𝐵𝑇

1𝐵1|𝐽𝐾
(1, 𝜂)| d𝜂

𝐸1 =
∫︁ 1

−1
𝐵𝑇

2𝐵1|𝐽𝐾
(1, 𝜂)| d𝜂

𝐸2 =
∫︁ 1

−1
𝐵𝑇

2𝐵2|𝐽𝐾
(1, 𝜂)|d𝜂.
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Recall that𝐵1 is related to𝑁𝑆
𝑘 (𝜂) and𝐵2 to the gradient ∇𝑁𝑆

𝑘 (𝜂). The SBFEM coefficient
matrices are arranged in such a way that 𝐸0 is related to the components of the derivative
in 𝜉 and constant in 𝜂, 𝐸2 is composed of the gradients ∇𝑁𝑆

𝑘 (𝜂). Finally, 𝐸1 is composed
of both 𝑁𝑆

𝑘 (𝜂) and its gradient ∇𝑁𝑆
𝑘 (𝜂).

The gradient-inner product (3.2.3) is now only an expression of 𝜉, that can be expanded
as ∫︁

𝑆
∇𝜑(𝑥) · ∇𝜓(𝑥), d𝑆 =

∫︁ 1

0
Ψ̂

′

(𝜉) ·
[︁
𝜉𝑑−1𝐸0Φ̂

′(𝜉) + 𝜉𝑑−2𝐸1Φ̂(𝜉)
]︁

+

Ψ̂(𝜉) ·
[︁
𝜉𝑑−2𝐸𝑇

1 Φ̂′(𝜉) + 𝜉𝑑−3𝐸2Φ̂(𝜉)
]︁
𝑑𝜉.

Consider
𝑄̂(𝜉) = 𝜉𝑑−1𝐸0Φ̂

′(𝜉) + 𝜉𝑑−2𝐸1Φ̂(𝜉) (3.2.-5)
and apply integration by parts in 𝜉, one obtains∫︁ 1

0
Ψ̂

′

(𝜉) · 𝑄̂(𝜉)𝑑𝜉 = Ψ̂ · 𝑄̂
]︁1

0
−
∫︁ 1

0
Ψ̂(𝜉) · 𝑄̂

′(𝜉) 𝑑𝜉.

where

𝑄̂
′(𝜉) = 𝐸0

(︁
𝜉𝑑−1Φ̂′′(𝜉) + (𝑑− 1)𝜉𝑑−2Φ̂′(𝜉)

)︁
+𝐸1

(︁
𝜉𝑑−2Φ̂′(𝜉) + (𝑑− 2)𝜉𝑑−3Φ̂(𝜉)

)︁
. (3.2.-5)

Substituting Eq (3.2.3) in (3.2.3) yields∫︁
𝑆

∇Φ(𝑥) · ∇Ψ(𝑥)d𝑆 = Ψ̂(𝜉) · 𝑄̂
𝑖

⃒⃒⃒1
0

−
∫︁ 1

0
Ψ̂(𝜉)·

[︁
𝜉𝑑−1𝐸0Φ̂

′′(𝜉) +
[︁
(𝑑− 1)𝐸0 − 𝐸𝑇

1 + 𝐸1

]︁
𝜉𝑑−2Φ̂′(𝜉)

+
[︁
(𝑑− 2)𝐸1 − 𝐸2

]︁
𝜉𝑑−3Φ̂(𝜉)

]︁
𝑑𝜉.

If Ψ̂(𝜉) zeroes the Ricatti equation, orthogonality property
∫︀

𝑆 ∇𝜑(𝑥) · ∇𝜓(𝑥)d𝑆 = 0
holds. In other words, for all functions 𝜓 ∈ 𝒟0

𝑘(𝑆) and 𝜓(O) = 0, i.e., vanishing on Γ𝑆,
𝜓(𝜉 = 1) = 0, but also vanishing on the scaling center, 𝜓(𝜉 = 1) = 0, Eq. (3.2.3) zeroes.
These constraints on 𝜓 cancel the boundary term in (3.2.3). On the other hand, the
condition for vanishing the integral term in (3.2.3) for all 𝜓̂(𝜉) is equivalent to say that
𝜑̂(𝜉) must solve the following equation

𝜉𝑑−1𝐸0Φ̂
′′(𝜉) +

[︁
(𝑑− 1)𝐸0 − 𝐸𝑇

1 + 𝐸1

]︁
𝜉𝑑−2Φ̂′(𝜉) +

[︁
(𝑑− 2)𝐸1 − 𝐸2

]︁
𝜉𝑑−3Φ̂(𝜉) = 0.

(3.2.-6)
Notice that this is the usual scaled boundary equation for the SBFEM shape functions,
as documented in Song and Wolf (1997), Wolf (2003) and Song (2018) and other classical
SBFEM references. The resolution of (3.2.3) is well documented in the SBFEM literature,
and it involves an auxiliary eigenvalue problem for an ODE system in terms of both Φ̂(𝜉)
and 𝑄̂(𝜉).

The second-order ODE problem (3.2.3) can be solved using standard methods through
a system of first-order differential equations directly from Eqs. (3.2.3) and (3.2.3) as
described by Song (2018). By isolating 𝜉Φ′(𝜉) from (3.2.3), the first equation of the
system is written as,

𝜉Φ̂′(𝜉) =
(︁
−𝐸−1

0 𝐸1 + 0.5(𝑑− 2)𝐼
)︁

Φ̂(𝜉) + 𝐸−1
0 𝑄̂(𝜉). (3.2.-6)
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The second equation is obtained from Eq. (3.2.3) by eliminating 𝜉Φ̂′(𝜉):

𝜉𝑄̂
′(𝜉) =

(︁
−𝐸1𝐸

−1
0 𝐸𝑇

1 + 𝐸2

)︁
Φ̂(𝜉) +

(︁
𝐸0𝐸

−1
1 − 0.5(𝑑− 2)𝐼

)︁
𝑄̂(𝜉).

The ODE system formed by (3.2.3) and (3.2.3) can be grouped in a matrix form as

𝜉𝑋 ′(𝜉) = −𝑍 𝑋(𝜉), (3.2.-6)

where 𝑋(𝜉) =
[︃
Φ̂(𝜉)
𝑄̂(𝜉)

]︃
and 𝑍 is the matrix,

𝑍 =
⎡⎣(︁𝐸−1

0 𝐸𝑇
1 − 0.5(𝑑− 2)𝐼

)︁
−𝐸−1

0
−𝐸2 + 𝐸𝑇

1𝐸
−1
0 𝐸1

(︁
−𝐸1𝐸

−1
0 + 0.5(𝑑− 2)𝐼

)︁⎤⎦ . (3.2.-6)

Notice that Eq. (3.2.3) is an eigenvalue problem. If
[︃
𝐴
𝐴𝑞

]︃
are the linearly independent

eigenvectors of 𝑍, and 𝜆 the respective eigenvalues, then the function 𝑋(𝜉) =
[︃
𝐴
𝐴𝑞

]︃
𝜉𝜆

solves (3.2.3).

One property of the matrix 𝑍 is that it is a Hamiltonian matrix, which means that (SONG,
2018)

𝑍𝑇

(︃
0 𝐼

−𝐼 0

)︃𝑇

=
(︃

0 𝐼
−𝐼 0

)︃
𝑍. (3.2.-6)

𝐼 being the Identity tensor of dimension 𝑛×𝑛. For these type of matrices, the eigenvalues
occur in pairs (+𝜆𝑖, −𝜆𝑖) and the complex eigenvalues occur in conjugate pairs (Re(𝜆𝑖) +
Im(𝜆𝑖),Re(𝜆𝑖) − Im(𝜆𝑖)).

The functions 𝜉𝜆 corresponding to eigenvalues having negative real parts are unbounded
for 𝜉 → 0, and are unsuited to describe solutions at the interior of the 𝑆-element. Indeed,
the SBFEM can be also applied to the simulation of unbounded domains. In the origin
of SBFEM, the method was often applied for the dynamic simulation of soil-structure
problems (WOLF; SONG, 2002). Therefore, the eigenvalues can be grouped as follows:

1. 𝒩 𝑆 − 1 eigenvalues with positive real parts - Re(𝜆𝑖 > 0): 𝜉𝜆𝑖−0.5(𝑑−2) = 0 applies for
𝜉 = 0.

2. 1 eigenvalue such that Re(𝜆𝑖 − 0.5(𝑑 − 2)) = 0: 𝜉𝜆𝑖 = 1 apply. This eigenvalue
represents the translational rigid motion. The corresponding 𝐴𝑞

𝑖 is a null vector
since rigid motions do not produce forces.

3. 1 eigenvalue such that Re(𝜆𝑖 +0.5(𝑑−2)) = 0: 𝜉𝜆𝑖 = 1 apply. This eigenvalue repre-
sents the translational rigid motion for an unbounded domain. The corresponding
𝐴𝑞

𝑖 is also a null vector.

4. 𝒩 𝑆−1 eigenvalues with negative real parts - Re(𝜆𝑖 < 0): in this group, 𝜉𝜆𝑖+0.5(𝑑−2) →
∞, for 𝜉 = 0. These eigenvalues apply to unbounded domains.

Since the scope of this thesis is only bounded domains, only positive real parts of 𝜆,
jointly with the null eigenvalue, are taken as the solution. Thus, the desired solutions of
the system (3.2.3)-(3.2.3) are taken as

Φ̂(𝜉) = 𝐴+diag(𝜉𝜆+), 𝑄̂(𝜉) = 𝐴𝑞
+diag(𝜉𝜆+),
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where 𝜆+ ∈ R𝑁 represents the positive real part of 𝜆, 𝐴+ = [𝐴+𝑖] and 𝐴𝑞
+ = [𝐴𝑞

+𝑖] are the
associated eigenvector components. For simplicity, the index + is dropped in the sequence
of this thesis.

Finally, the SBFEM basis functions are then composed of pairs of eigenvalues and eigen-

vectors 𝜆𝑖, 𝐴 =
[︃
𝐴𝑖

𝐴𝑞
𝑖

]︃
, respectively, expressed as (SONG, 2018)

𝜑𝑖(𝑥) = 𝜑𝑖(𝜉, 𝜂) = 𝜉𝜆𝑖−0.5(𝑑−2)∑︁
𝑙

𝐴𝑙
𝑖𝑁̂

𝑆,𝑙
𝑘 (𝜂),

𝑞𝑖(𝑥) = 𝑞𝑖(𝜉, 𝜂) = 𝜉𝜆𝑖+0.5(𝑑−2)∑︁
𝑙

𝐴𝑞,𝑙
𝑖 𝑁̂

𝑆,𝑙
𝑘 (𝜂).

For a quadratic element (𝑘 = 2) considering a Poisson problem, the SBFEM basis function
𝜑𝑖 are plotted in Fig. 3.7. For this example, the positive eigenvalues are equal to

𝜆 = {0, 1, 1, 2, 2, 3.26599, 3.26599, 4.3589}.

𝜆 = 1 𝜆 = 1 𝜆 = 2 𝜆 = 2

𝜆 = 3.26599 𝜆 = 3.26599 𝜆 = 4.3589

Figure 3.7: Illustrations of some SBFEM basis functions 𝜑𝑖 in S2(𝑆) for a quadrilateral Γℎ,𝑆 .
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The SBFEM space is formed by span{𝜑𝑖}. Grouping the functions in vectorial form and
composing the solutions 𝑢 and 𝑞 locally for a 𝑆-element leads to

𝑢(𝑥) = 𝜑(𝜉, 𝜂) · 𝑐 = diag
(︁
𝜉𝜆+−0.5(𝑑−2)

)︁
𝐴𝑁̂

𝑆

𝑘 (𝜂) · 𝑐,

𝑞(𝑥) = 𝑞(𝜉, 𝜂) · 𝑐 = diag
(︁
𝜉𝜆+−0.5(𝑑−2)

)︁
𝐴𝑞𝑁̂

𝑆

𝑘 (𝜂) · 𝑐.

where 𝜑 and 𝑞 are vectors composed of span{𝜑𝑖} and span{𝑞𝑖}, respectively, 𝑖 = 1, ...,𝒩 𝑆,
𝒩 𝑆 the DOF for an element. Isolating 𝑐 from (3.2.3) and replacing in (3.2.3) leads to

𝐴𝑞 𝐴−1𝑢(𝜉) = 𝑞(𝜉). (3.2.-6)

For 𝜉 = 1, (3.2.3) is written as
𝐾𝑆𝑢𝑆 = 𝑓. (3.2.-6)

where 𝐾𝑆 is the stiffness matrix given by

𝐾𝑆 = 𝐴𝑞𝐴−1. (3.2.-6)

and 𝑢𝑆 is the Dirichlet data in Γℎ,𝑆 and 𝑓 is the force vector.

The solution is composed by the linear combination of the SBFEM basis functions 𝑢0(𝑥) =
𝑢̂0(𝜉, 𝜂) = 𝜑

𝑙
(𝜉, 𝜂) · 𝑐, where 𝑐 = 𝐴−1𝑢𝑆. For instance, for a polygonal element, one can

construct functions as in Fig. 3.8 by setting 1 on a DOF and null in the others, for
example.

Figure 3.8: SBFEM functions composed by setting 𝑢𝑆
𝑖 = 1 and the other inputs equal to zero.

3.2.4 SBFEM approximations for the Elasticity problem
For linear elasticity, consider a simple static problem with isotropic material and null
body loads, in which the weak statement in matricial form is given by: Find 𝑢ℎ ∈ Sℎ

𝑘 such
that ∫︁

Ω
𝐷𝜖(𝑢ℎ) · 𝜖(𝑣) 𝑑Ω = 0, ∀𝑣 ∈ S0,ℎ

𝑘

𝑢ℎ|𝜕Ω = 𝑢𝐷.

where 𝐷 is the constitutive tensor, and 𝜖 is the strain vector, respectively given by, for
3D problems,

𝐷 = 𝐸

(1 + 𝜈)(1 − 2𝜈)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − 𝜈 𝜈 𝜈 0 0 0
𝜈 1 − 𝜈 𝜈 0 0 0
𝜈 𝜈 1 − 𝜈 0 0 0
0 0 0 1−2𝜈

2 0 0
0 0 0 0 1−2𝜈

2 0
0 0 0 0 0 1−2𝜈

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝜖 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜖11
𝜖22
𝜖33
2𝜖12
2𝜖23
2𝜖13

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.
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where 𝐸 and 𝜈 are respectively the Young modulus and the Poisson coefficient and,

𝜖𝑖𝑗 = 1
2

(︃
𝜕𝑢𝑖

𝜕𝑥𝑗

+ 𝜕𝑢𝑗

𝜕𝑥𝑖

)︃
.

Recall the vector-valued Duffy’s space 𝐷𝑘(𝑆) defined in (3.2.2). The SBFEM space for
Elasticity Sℎ

𝑘 ∈ 𝐷ℎ
𝑘(𝑆) is given by

Sℎ
𝑘 =

{︁
𝑤 ∈ 𝐻1(Ω;R𝑑); 𝑤|𝑆∈ Sℎ

𝑘(𝑆), 𝑆 ∈ 𝒯 ℎ
}︁

(3.2.-6)

where,

S𝑘(𝑆) =
{︂
𝜑 ∈ 𝒟𝑘(𝑆);

∫︁
𝑆
𝐷 𝜖(𝜑) · 𝜖(𝜓) 𝑑𝑆 = 0,∀𝜓 ∈ 𝒟0

𝑘(𝑆), 𝜓(O) = 0
}︂
. (3.2.-6)

Notice that now 𝜑, 𝜓 are vectors with 𝑑 components, written as

𝜑(𝑥) = 𝜑(𝜉, 𝜂) = 𝛼̂(𝜂)𝜌(𝜉)

=
(︂
𝑁̂

𝑆

𝑘
(𝜂)𝑎𝑒

)︂
𝜌𝑒(𝜉)

𝜓(𝑥) = 𝜓(𝜉, 𝜂) = 𝛽(𝜂)𝜏(𝜉)

=
(︂
𝑁̂

𝑆

𝑘
(𝜂)𝑏𝑒

)︂
𝜏 𝑒(𝜉).

To obtain the Ricatti equation, first write the strain vector as 𝜖(𝜑) as (SONG, 2018)

𝜖(𝜑) = 𝐿 𝜑 (3.2.-6)

where 𝐿 is the differential operator, given by

𝐿 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜕
𝜕𝑥1

0 0
0 𝜕

𝜕𝑥2
0

0 0 𝜕
𝜕𝑥3

0 𝜕
𝜕𝑥3

𝜕
𝜕𝑥2

𝜕
𝜕𝑥3

0 𝜕
𝜕𝑥1

𝜕
𝜕𝑥2

𝜕
𝜕𝑥1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Based on Wolf (2003), the strain vector 𝜖 is written as a function of 𝐵1 and 𝐵2 in order to
write the Riccati ODE for the Elasticity problem using a similar procedure as performed
for the Poisson problem. Using Duffy’s geometric map, recall that the derivatives are
given by ⎧⎪⎨⎪⎩

𝜕
𝜕𝑥1
𝜕

𝜕𝑥2
𝜕

𝜕𝑥3

⎫⎪⎬⎪⎭ =

⎧⎪⎨⎪⎩
𝑗11
𝑗21
𝑗31

⎫⎪⎬⎪⎭ 𝜕

𝜕𝜉
+ 1
𝜉

⎛⎜⎝
⎧⎪⎨⎪⎩
𝑗12
𝑗22
𝑗32

⎫⎪⎬⎪⎭ 𝜕

𝜕𝜂1
+

⎧⎪⎨⎪⎩
𝑗13
𝑗23
𝑗33

⎫⎪⎬⎪⎭ 𝜕

𝜕𝜂2

⎞⎟⎠ .
Then, 𝐿 is rewritten as (WOLF, 2003),

𝐿 =
(︁
b1 b2 b3

)︁⎧⎪⎪⎨⎪⎪⎩
𝜕
𝜕𝜉

1
𝜉

𝜕
𝜕𝜂1

1
𝜉

𝜕
𝜕𝜂2

⎫⎪⎪⎬⎪⎪⎭
= b1

𝜕

𝜕𝜉
+ 1
𝜉

(︃
b2

𝜕

𝜕𝜂1
+ b3

𝜕

𝜕𝜂2

)︃
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where

b1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑗11 0 0
0 𝑗21 0
0 0 𝑗31
0 𝑗31 𝑗21
𝑗31 0 𝑗11
𝑗21 𝑗11 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, b2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑗12 0 0
0 𝑗22 0
0 0 𝑗32
0 𝑗32 𝑗22
𝑗32 0 𝑗12
𝑗22 𝑗12 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, b3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑗13 0 0
0 𝑗23 0
0 0 𝑗33
0 𝑗33 𝑗23
𝑗13 0 𝑗13
𝑗23 𝑗33 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then, the strain 𝜖(𝜑) = 𝐿 𝜑 is written as

𝜖 = b1𝑁
𝑆
𝑘
(𝜂)𝑎𝑒𝜌𝑒′(𝜉) + 1

𝜉

(︃
b2
𝜕𝑁𝑆

𝑘
(𝜂)

𝜕𝜂1
𝑎𝑒𝜌𝑒(𝜉) + b3

𝜕𝑁𝑆
𝑘
(𝜂)

𝜕𝜂2
𝑎𝑒𝜌𝑒(𝜉)

)︃

Consider Φ̂𝑒(𝜉) = 𝑎𝑒𝜌𝑒(𝜉), Eq. (3.2.4) is rearranged as

𝜖 =
(︃

b1𝑁
𝑆
𝑘
(𝜂) b2

𝜕𝑁𝑆
𝑘
(𝜂)

𝜕𝜂1
+ b3

𝜕𝑁𝑆
𝑘
(𝜂)

𝜕𝜂2

)︃⎧⎨⎩ Φ̂𝑒′
(𝜉)

(1/𝜉)Φ̂𝑒(𝜉)

⎫⎬⎭
The 𝐵1 and 𝐵2 matrices are introduced as follows

𝐵1 = b1𝑁̂
𝑆

𝑘
(𝜂)

𝐵2 =
[︁
b2 b3

]︁ [︂
∇𝜂𝑁̂

𝑆

𝑘
(𝜂)
]︂𝑇

,

where ∇𝜂𝑁̂
𝑆

𝑘
(𝜂) is the gradient of 𝑁̂𝑆

𝑘
in the parametric surface coordinates 𝜂 = (𝜂1, 𝜂2),

of dimension 6 × 𝒩 𝑆. Performing the multiplications in (3.2.4) and (3.2.4), it is verified
that 𝐵1 and 𝐵2 matrices have dimensions 6 × 𝒩 𝑆. Thus, the strain vector is simplified to

𝜖(𝜑) =
[︁
𝐵1 𝐵2

]︁ [︃ Φ𝑒′(𝜉)
(1/𝜉)Φ𝑒(𝜉)

]︃
(3.2.-6)

Analogously, 𝜖(𝜓) is given by

𝜖(𝜓) =
[︁
𝐵1 𝐵2

]︁ [︃ Ψ𝑒′(𝜉)
(1/𝜉)Ψ𝑒(𝜉)

]︃
(3.2.-6)

Table 3.4 shows that there is a similarity between the expressions of the gradient ∇𝜑
for the Poisson problem and the strain 𝜖(𝜑) for the Elasticity problem, as well as the
approximation space condition. In both cases, the approximation space is constructed
based on the semi-norm of the energy for a homogeneous PDE.

Poisson problem Elasticity problem

∇𝜑 ∇𝜑 =
[︁
𝐵1 𝐵2

]︁⎡⎣ Φ′(𝜉)

(1/𝜉)Φ(𝜉)

⎤⎦ 𝜖(𝜑) 𝜖(𝜑) =
[︁
𝐵1 𝐵2

]︁⎡⎣ Φ𝑒′(𝜉)

(1/𝜉)Φ𝑒(𝜉)

⎤⎦
Condition

imposed for S𝑘

∇𝜑 · ∇𝜓 = 0
Condition

imposed for S𝑘

𝐷 𝜖(𝜑) · 𝜖(𝜓) = 0

Table 3.4: Comparison between expressions using the SBFEM
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It means that one can write the internal dot product 𝐷𝜖(𝜑) · 𝜖(𝜓) as∫︁
𝑆
𝐷𝜖(𝜑) · 𝜖(𝜓) 𝑑𝑆 =

∫︁ 1

0
Ψ̂𝑒′

(𝜉) ·
[︂
𝜉𝑑−1𝐸𝑒

0Φ̂
𝑒′

(𝜉) + 𝜉𝑑−2𝐸𝑒
1Φ̂

𝑒(𝜉)
]︂

+ Ψ̂𝑒(𝜉) ·
[︂
𝜉𝑑−2𝐸𝑒

1
𝑇 Φ̂𝑒′

(𝜉) + 𝜉𝑑−3𝐸𝑒
2Φ̂

𝑒(𝜉)
]︂
𝑑𝜉.

where the SBFEM coefficient matrices are given by

𝐸𝑒
0 =

∫︁
𝜕𝑆
𝐵𝑇

1𝐷𝐵1|𝐽𝐾
(1, 𝜂)|𝑑𝜂, (3.2.-7)

𝐸𝑒
1 =

∫︁
𝜕𝑆
𝐵𝑇

2𝐷𝐵1|𝐽𝐾
(1, 𝜂)|𝑑𝜂, (3.2.-7)

𝐸𝑒
2 =

∫︁
𝜕𝑆
𝐵𝑇

2𝐷𝐵2|𝐽𝐾
(1, 𝜂)|𝑑𝜂. (3.2.-7)

The same procedure described by Coelho, Devloo and Gomes (2021) to deduce the Riccati
equation is also applied here, leading to a very similar ODE

𝜉𝑑−1𝐸0Φ̂
𝑒′′

(𝜉) + 𝜉𝑑−2
[︁
(𝑑− 1)𝐸𝑒

0 − [𝐸𝑒
1]

𝑇 + 𝐸1

]︁
Φ̂𝑒′

(𝜉) + 𝜉𝑑−3
[︁
(𝑑− 2)𝐸1 − 𝐸2

]︁
Φ̂𝑒(𝜉) = 0.

(3.2.-7)
where the solution is analogously expressed as

𝜑
𝑖
(𝑥) = 𝜑

𝑖
(𝜉, 𝜂) = 𝜉𝜆𝑒

𝑖 −0.5(𝑑−2)∑︁
𝑙

𝐴𝑒,𝑙
𝑖 𝑁̂

𝑆,𝑙

𝑘 (𝜂), ∀𝜑
𝑖

∈ Sℎ
𝑘(𝑆)

𝑞
𝑖
(𝑥) = 𝜑

𝑖
(𝜉, 𝜂) = 𝜉𝜆𝑒

𝑖 −0.5(𝑑−2)∑︁
𝑙

𝐴𝑒,𝑞,𝑙
𝑖 𝑁̂

𝑆,𝑙

𝑘 (𝜂), ∀𝑞
𝑖

∈ Sℎ
𝑘(𝑆).

where 𝜆𝑒
𝑖 is the eigenvalue for the Elasticity problem and 𝐴𝑒

𝑖 and 𝐴𝑒,𝑞
𝑖 are the eigenvectors

corresponding to the displacement and force modes. The pairs of eigenvalues/eigenvectors
are obtained through the solution of the eigenvalue problem using the same procedure
already described previously for the Poisson problem.

3.3 A priori error estimates
Based on the FE theory of Duffy’s spaces and the gradient-orthogonality property inherent
to the SBFEM spaces, it is proven in this section that the SBFEM approximation spaces
have convergence rate of order 𝑘, where 𝑘 is the polynomial approximation for the energy
semi-norm. Moreover, for the SBFEM approximations, the rate of convergence is governed
by the trace approximation, which means that optimal convergence rates are obtained even
for problems with square root singularity.

A priori error estimates for SBFEM in the H1 norm are demonstrated using the or-
thogonality property shown in definition of the SBFEM space (Section 3.2) followed by
traditional FEM interpolation results. Finally, the error analysis for the Galerkin SBFEM
approximations is presented. All analyses in this section are based on the harmonic prob-
lem, but they can be extended for Elasticity problems as well.

3.3.1 Orthogonality properties of the SBFEM spaces
The SBFEM approximation spaces hold an orthogonality property, subdivided in this
thesis into two types: intrinsic and extended orthogonality.
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Intrinsic orthogonality property for the SBFEM local spaces

The construction of SBFEM shape functions is based on the determination of analytic
eigenfunctions for the SBFEM equation - (3.2.3) for the Poisson problem and (3.2.4) for
the Elasticity problem. The resulting ODE for both mechanical problems is constructed
by imposing an orthogonal condition that is not well recognized in the SBFEM literature.
For instance, taking the Poisson problem as a reference: for a function 𝜑 ∈ S𝑘(𝑆) ⊂ 𝒟𝑘(𝑆)
the gradient orthogonality constraint

⟨𝜑, 𝜓⟩∇,𝑆 = ⟨∇𝜑,∇𝜓⟩𝐿2(𝑆) =
∫︁

𝑆
∇𝜑(𝑥) · ∇𝜓(𝑥) 𝑑𝑆 = 0 (3.3.0)

holds for all 𝜓 ∈ 𝒟0
𝑘(𝑆), with 𝜓(O) = 0. In such case, then 𝜑 solves equation (3.2.3). No-

tice that this orthogonal condition is imposed directly in the construction of the SBFEM
space in (3.2.3). Analogous reasoning can be established in the SBFEM space for Elas-
ticity problems as

⟨𝜑, 𝜓⟩ℰ,𝑆 = ⟨𝐷 𝜖(𝜑(𝑥)), 𝜖(𝜓(𝑥))⟩𝐿2(𝑆) =
∫︁

𝑆
𝐷 𝜖(𝜑(𝑥)) · 𝜖(𝜓(𝑥)) 𝑑𝑆 = 0 (3.3.0)

for all 𝜑 ∈ S𝑘(𝑆) and 𝜓 ∈ 𝒟0
𝑘(𝑆) with 𝜓(O) = 0.

Extended orthogonality property for the SBFEM local spaces

The SBFEM orthogonality resulting from the approximation space definition, described
in Eq. (3.3.1) for the Poisson problem, is now extended to a wider space for 𝜓. Let ℋ(𝑆)
denote the space of harmonic functions in 𝑆. Then, ⟨𝜑, 𝜓⟩∇,𝑆 = 0 for all 𝜑 ∈ ℋ(𝑆) and
𝜓 ∈ 𝐻1

0 (𝑆), giving the decomposition

𝐻1(𝑆) = ℋ(𝑆)
∇
⊕𝐻1

0 (𝑆), (3.3.0)

where the symbol
∇
⊕ denotes the orthogonality relation with respect to the gradient inner

product ⟨·, ·⟩∇,𝑆. In other words, the 𝐻1(𝑆) can be decomposed in ℋ(𝑆) and 𝐻1
0 (𝑆) with

respect to their gradients.

A similar relation to (3.3.1) for Duffy’s spaces 𝒟𝑘(𝑆) ⊂ 𝐻1(𝑆), S𝑘(𝑆) playing the role of
the harmonic functions. For that, the gradient orthogonality property (3.3.1) is extended
to functions 𝜓 ∈ 𝒟0

𝑘(𝑆).

Define the finite-dimensional Duffy’s space as

Dℎ
𝑘(𝑆) = span{𝑁𝑆

𝑚(𝜂)𝜉𝑛} ⊂ 𝒟𝑘(𝑆) (3.3.0)

A finite-dimensional Duffy’s bubble space D0,ℎ
𝑘 (𝑆) ⊂ 𝒟𝑘(𝑆) can be constructed as

D0,ℎ
𝑘 (𝑆) = span{𝑁𝑆

𝑚(𝜂)(𝜉𝑛−1 − 𝜉𝑛)} ⊂ 𝒟0
𝑘(𝑆). (3.3.0)

Proposition 3.3.1. The orthogonality property

⟨𝜑, 𝜓⟩∇,𝑆 = 0, ∀𝜑 ∈ S𝑘(𝑆) and 𝜓 ∈ D0
𝑘(𝑆) (3.3.0)

is valid. Thus,
D𝑘(𝑆) = S𝑘(𝑆)

∇
⊕ D0

𝑘(𝑆). (3.3.0)
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Proof. A crucial step in the derivation of the SBFEM ODE (3.2.3) is the formula for the
gradient inner product ⟨𝜑, 𝜓⟩∇,𝑆 given in (3.2.3) and replaced here to ease the understand-
ing ∫︁ 1

0
Ψ̂

′

(𝜉) · 𝑄̂(𝜉)𝑑𝜉 = Ψ̂ · 𝑄̂
]︁1

0
−
∫︁ 1

0
Ψ̂(𝜉) · 𝑄̂

′(𝜉) 𝑑𝜉.

Two terms enter into play: a boundary term Ψ̂ · 𝑄̂
]︁1

0
where

𝑄̂(𝜉) = 𝜉𝑑−1𝐸0Φ̂
′(𝜉) + 𝜉𝑑−2𝐸1Φ̂(𝜉)

and an integral term
∫︀ 1

0 Ψ̂(𝜉) · 𝑄̂
′(𝜉) 𝑑𝜉. The constraints 𝜓 ∈ 𝒟0

𝑘(𝑆) and Ψ(O) = 0
make the boundary term to be zero, and the second-order ODE equation (3.2.3) derives
from the assumption (3.3.1). It means that the orthogonality remains for any function
𝜓 ∈ span{𝑁𝑆

𝑚(𝜂)(𝜉𝑛−1 − 𝜉𝑛)} ⊂ 𝒟0
𝑘(𝑆), 𝑛 = 2, ..., 𝑘.. The demonstration lacks proving

the orthogonality for the linear bubble function 𝜓 = 1 − 𝜉, known as a hat function.

The property ⟨𝜑, 𝜓⟩∇,𝑆 = 0 holds for 𝜑 ≡ 1 (i.e. 𝜆𝑖 = 0) because in such a case 𝑄̂(𝜉) =
𝜉𝑑−1𝐸0Φ̂

′(𝜉) + 𝜉𝑑−2𝐸1Φ̂(𝜉) = 0 since

𝐸1 =
∫︁ +1

−1
𝐵𝑇

2𝐵1|𝐽𝐾
(1, 𝜂)| 𝑑𝜂 = 0 (3.3.0)

because

𝐵2(𝜂) =
[︁
𝐽

𝐾
(1, 𝜂)

]︁−𝑇

⎡⎣ 0
∇𝜂𝑁̂

𝑆

𝑘 (𝜂)

⎤⎦ = 0 (3.3.0)

for ∇𝜂𝑁̂
𝑆

𝑘 (𝜂) = 0 for a constant function.

Thus, it is sufficient to verify it for all shape functions 𝜑 = 𝜑𝑖 associated with eigenvalues
𝜆1 = 1, or, more generically 𝜆𝑖 ̸= 0.

The desired orthogonality property (3.3.1) is valid for 𝜓(𝑥) ∈ 𝒟0
𝑘(𝑆), with 𝜓(𝑥) =

𝜓(𝜉, 𝜂) = 𝐶𝜎̂(𝜉), if and only if it holds for functions 𝜙 = 𝜓(𝜉) − 𝐶𝜎̂(1) ∈ 𝒟0
0(𝑆), i.e., for

the cases where
𝜙(𝜉) = 𝐶(𝜎̂(𝜉) − 𝜎̂(1)),

with 𝜙(1) = 0. For them, apply equation (3.2.3), valid for all shape functions 𝜑𝑖 ∈ S𝑘(𝑆),
to reduce the equation (3.3.1) to

⟨𝜑𝑖, 𝜙⟩∇,𝑆 = 𝜙(1)
∑︁

𝑛

𝑄̂
𝑖𝑛

(1) − 𝜙(0)
∑︁

𝑛

𝑄̂
𝑖𝑛

(0).

Thus, since 𝜙(1) = 0 and 𝑄̂
𝑖𝑛

(0) = 0, the orthogonality property is obtained (3.3.1).

3.3.2 Interpolants
When a Galerkin method is used to approximate a boundary value problem, one of the
most important choices is the family of approximation spaces. For elliptic problems, the
achievable approximation error is equal to the error obtained by approximating the so-
lution of the partial differential equation directly from the trial space. The accuracy is
accessed a priori by bounds computed in terms of interpolant errors using the approxima-
tion space. In the context of piecewise-defined approximations over subregions (elements)
of the computational domain, as is the case of FE methods, the interpolants usually show
the following characteristics:
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• Locality: in each subregion, a polynomial trace interpolant over the boundary is
extended to the interior (a process also called lifting).

• Global conformity: it follows directly from the hypothesis that the trace interpolants
depend exclusively on the function restriction over subregion boundaries.

• Optimality: optimal interpolation error estimates are achieved with respect to the
discretization parameters: mesh width and polynomial order.

In this direction, the plan is to construct interpolants in Duffy trial spaces and explore
them to evaluate the potential of SBFEM approximations. Firstly, new notation and
auxiliary results already known in other contexts are introduced in the following.

Define:

1. Conformal polytopal partitions 𝒯 ℎ = {𝑆}: partition of Ω by 𝑆-elements as already
described in Section 3.2.1.

2. Mesh skeleton Γℎ = ∪𝐿∈ℰℎ𝐿: the assembly of all facets (edges of faces) in ℰℎ =
{𝐿 ⊂ Γℎ,𝑆, 𝑆 ∈ 𝒯 ℎ}. The parameter ℎ refers to the characteristic size of the facets
in Γℎ.

3. Conglomerate partitions 𝒫ℎ = ∪𝑆∈𝒯 ℎ𝒯 ℎ,𝑆 of Ω. Recall that the elements 𝐾 ∈ 𝒯 ℎ,𝑆

may be affine triangles, pyramids, or tetrahedra inheriting the conformal property
from 𝒯 ℎ. In principle, the shape regularity of 𝒫ℎ is not a granted property.

Based on the partitions Γℎ, 𝒯 ℎ or 𝒫ℎ, consider the following approximation spaces.

• FE trace spaces: Λ𝑘(Γℎ) = 𝐶(Γℎ)∩∏︀𝐿∈ℰℎ 𝒱𝑘(𝐿), piecewise polynomial spaces, where
𝒱𝑘(𝐿) = P𝑘(𝐿), for 1D edges and triangular facets 𝐿, and 𝒱𝑘(𝐿) = Q𝑘,𝑘(𝐿), for
quadrilateral facets 𝐿.

• Duffy’s spaces 𝒟ℎ
𝑘 ⊂ 𝐻1(Ω): given the local Duffy’s spaces 𝒟ℎ

𝑘(𝑆), 𝑆 ∈ 𝒯 ℎ defined
in Section 3.1.2, set

𝒟ℎ
𝑘 = {𝑤 ∈ 𝐻1(Ω);𝑤|𝑆∈ 𝒟ℎ

𝑘(𝑆), 𝑆 ∈ 𝒯 ℎ},
𝒟0,ℎ

𝑘 = {𝑤 ∈ 𝐻1(Ω);𝑤|𝑆∈ 𝒟0
𝑘(𝑆), 𝑆 ∈ 𝒯 ℎ}

Notice that 𝒟0,ℎ
𝑘 ⊂ 𝒟ℎ

𝑘 ,∀𝑘 ≥ 0.

• SBFEM spaces Sℎ
𝑘 ⊂ 𝐻1(Ω): given local SBFEM spaces Sℎ

𝑘(𝑆) ⊂ 𝒟ℎ
𝑘(𝑆), 𝑆 ∈ 𝒯 ℎ,

described in Section 3.2.3, define

Sℎ
𝑘 = {𝑤 ∈ 𝐻1(Ω);𝑤|𝑆∈ Sℎ

𝑘(𝑆), 𝑆 ∈ 𝒯 ℎ},

and set Sℎ
𝑘,0 = Sℎ

𝑘 ∩𝐻1
0 (Ω).

• FE spaces 𝒱ℎ,𝐹 𝐸
𝑘 ⊂ 𝐻1(Ω): Consider the following FE spaces based on the conglom-

erated meshes 𝒫ℎ.

1. Triangular (2D) and tetrahedral (3D) meshes 𝒫ℎ:

𝒱ℎ,𝐹 𝐸
𝑘 := P𝑘(𝒫ℎ) ∩𝐻1(Ω), (3.3.0)

where P𝑘(𝒫ℎ) stands for functions piecewise-defined by polynomials in P𝑘(𝐾),
𝐾 ∈ 𝒫ℎ, of degree not greater than 𝑘.
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2. Pyramidal (3D) meshes 𝒫ℎ: let us consider

𝒱ℎ,𝐹 𝐸
𝑘 := 𝒰 (0),𝑘(𝒯 ℎ) ∩𝐻1(Ω), (3.3.0)

piecewise-defined by a class of rational polynomials 𝒰 (0),𝑘(𝐾), for 𝐾 ∈ 𝒫ℎ

(NIGAM; PHILLIPS, 2012). Traces of functions in 𝒰 (0),𝑘(𝐾) are in P𝑘(𝐿)
for triangular faces, and in Q𝑘,𝑘(𝐿) if 𝐿 is quadrilateral. Moreover, P𝑘(𝐾) ⊂
𝒰 (0),𝑘(𝐾).

Proposition 3.3.2. For the mesh skeleton Γℎ and the conglomerate partition 𝒫ℎ, the
following inclusions are valid:

i) For a function in a FE space 𝑤 ∈ 𝒱ℎ,𝐹 𝐸
𝑘 (Eqs. (1) and (2)), its trace is included in

the FE trace space of Γℎ, i.e. 𝑤|Γℎ∈ Λ𝑘(Γℎ).

ii) A polynomial space in 𝒫ℎ is included in the FE space of 𝒫ℎ, which is included in
the polynomial Duffy’s space - i.e. P𝑘(𝒫ℎ) ⊂ 𝒱ℎ,𝐹 𝐸

𝑘 ⊂ 𝒟ℎ
𝑘 .

Proof. The trace property (i) is already known, as discussed in Boffi, Brezzi and Fortin
(2013, Page 5 - Eq. (1.2.7.)). Also, for a partition Ω = 𝒫ℎ, the polynomial inclusion (ii)
P𝑘(𝒫ℎ) ⊂ 𝒱ℎ,𝐹 𝐸

𝑘 comes from the definition of 𝒱ℎ,𝐹 𝐸
𝑘 and from the definition of 𝐻1(𝒫ℎ).

Since P𝑘(𝒫ℎ) ⊂ 𝐻1(𝒫ℎ), from Eqs. (1) and (2), P𝑘(𝒫ℎ) ⊂ 𝒱ℎ,𝐹 𝐸
𝑘 .

To prove the second embedding property in (ii) 𝒱ℎ,𝐹 𝐸
𝑘 ⊂ 𝒟ℎ

𝑘 , start by considering three
particular collapsed triangular, pyramidal, and tetrahedral reference elements.

• A triangular reference element 𝐾:

Let 𝐾 be the reference triangle, with collapsed vertex a0 = (0, 0), and the opposed
edge 𝐿 = [a1, a2], where a1 = (1, 0) and a2 = (1, 1), as shown in Fig. 3.9.

Figure 3.9: The triangular reference element for the proof of Proposition 3.3.2.

Taking the mapping 𝐹𝐿 : 𝐿̂ → 𝐿, defined as 𝐹𝐿(𝜂) =
(︁1+𝜂

2 ,
1−𝜂

2

)︁
, Duffy’s transfor-

mation from 𝐾̂ over 𝐾 becomes 𝑥 = 𝜉
2(1 + 𝜂), 𝑦 = 𝜉

2(1 − 𝜂), whose inversion is
𝜉 = 𝑥+ 𝑦, 𝜂 = 𝑥−𝑦

𝑥+𝑦
.
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Let 𝜓 ∈ 𝒟𝑘(𝐾) be the pullback of functions F𝐾(𝜓) ∈ 𝒟𝑘(𝐾̂), where 𝜓(𝜉, 𝜂) =
𝜉𝑘𝛼̂(𝜂), so that 𝜓(𝑥, 𝑦) = (𝑥+ 𝑦)𝑘𝛼̂(𝑥−𝑦

𝑥+𝑦
). By varying 𝛼̂ ∈ P𝑘(𝐿̂), the rational term

𝑥−𝑦
𝑥+𝑦

cancels with (𝑥+ 𝑦)𝑘. Thus, all functions 𝜓(𝑥, 𝑦) ∈ P𝑘(𝐾) can be recovered in
𝒟𝑘(𝐾).

• A tetrahedral reference element 𝐾:

Suppose 𝐾 is the reference tetrahedron with collapsed vertex a0 = (0, 0, 0), and
opposed triangular face 𝐿 = [a1, a2, a3], with a1 = (1, 0, 1), a2 = (1, 0, 0) and
a3 = (1, 1, 0), as shown in Fig. 3.10.

Figure 3.10: The tetrahedral reference element for the proof of Proposition 3.3.2.

Notice that 𝐿 can be mapped by 𝑥 = 𝐹𝐿(𝜂), where 𝑥 = 1 − 𝜂1 − 𝜂2, 𝑦 = 𝜂1, and
𝑧 = 𝜂2. Then, the Duffy’s transformation is 𝐹𝐾(𝜉, 𝜂) = 𝜉𝐹𝐿(𝜂), whose inverse is
𝜉 = 𝑥+ 𝑦 + 𝑧, 𝜂1 = 𝑦

𝑥+𝑦+𝑧
, 𝜂2 = 𝑧

𝑥+𝑦+𝑧

Let 𝜓 = F𝐾(𝜓) ∈ 𝒟𝑘(𝐾), with 𝜓(𝜉, 𝜂) = 𝜉𝑘𝛼̂(𝜂), and 𝛼̂ ∈ P𝑘(𝐿̂). Thus, the
functions 𝜓(𝑥, 𝑦, 𝑧) = (𝑥 + 𝑦 + 𝑧)𝑘𝛼̂( 𝑦

𝑥+𝑦+𝑧
, 𝑧

𝑥+𝑦+𝑧
) recover all functions in P𝑘(𝐾)

because all rational components are canceled by (𝑥 + 𝑦 + 𝑧)𝑘. Thus, all functions
𝜓(𝑥, 𝑦, 𝑧) ∈ P𝑘(𝐾) can be recovered in 𝒟𝑘(𝐾).

• A pyramidal reference element:

To prove that 𝒱ℎ,𝐹 𝐸
𝑘 is included in Duffy’s approximation space, is not as straight-

forward as for the tetrahedron and the triangle cases. For this example, it is used
the proof demonstrated in Nigam and Phillips (2012).

Suppose𝐾 is a pyramid with vertex a0 = (0, 0, 1), and opposed face 𝐿 = [a1, a2, a3, a4],
with vertices a1 = (0, 0, 0), a2 = (1, 0, 0), a3 = (1, 1, 0), and a4 = (0, 1, 0). The
FE space 𝒰 (0),𝑘(𝐾) ⊂ 𝐻1(𝐾) proposed in Nigam and Phillips (2012), by Nigam
and Phillips, is the first space of an exact sequence 𝒰 (𝑠),𝑘(𝐾) verifying the De
Rham commuting property. Their definition considers the geometric transforma-
tion 𝑆∞ : 𝐾∞ → 𝐾 of the "infinite pyramid" 𝐾∞ = {(𝑥, 𝑦, 𝑧) ∈ R3;𝑥, 𝑦, 𝑧 ≥ 0, 𝑥 ≤
1, 𝑦 ≤ 1} ∪ {∞}, given by 𝑆∞(𝑥, 𝑦, 𝑧) =

(︁
𝑥

1+𝑧
, 𝑦

1+𝑧
, 𝑧

1+𝑧

)︁
, 𝑆∞(∞) = a0. The func-

tions 𝑤 ∈ 𝒰 (0),𝑘(𝐾) are obtained by the pullback S∞(𝑢) of functions 𝑢 in a properly
chosen subspace of the rational functions 𝑄𝑘,𝑘,𝑘

𝑘 (𝐾̂∞) = { 𝑞
1+𝑧

; 𝑞 ∈ Q𝑘,𝑘,𝑘(𝐾∞)}.
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Using an analogous idea, the goal is to show that 𝒰 (0),𝑘(𝐾) can also be interpreted
in the context of Duffy’s space 𝒟𝑘(𝐾). For that, consider the hexahedron 𝐻 =
[0, 1]×[0, 1]×[0, 1], with the coordinate system (𝜇1, 𝜇2, 𝜉), with (𝜇1, 𝜇2) ∈ [0, 1]×[0, 1]
and 0 ≤ 𝜉 ≤ 1. Observe that the geometric transformation 𝐹∞ : 𝐻 → 𝐾∞,
𝐹∞(𝜇1, 𝜇2, 𝜉) = (𝜇1, 𝜇2,

𝜉
1−𝜉

) collapses the face 𝜉 = 1 in 𝐻 onto ∞, leading to the
same "infinite pyramid" as in Nigam and Phillips (2012).

Figure 3.11: The pyramidal reference element for the proof of Proposition 3.3.2.

Moreover, 𝑄𝑘,𝑘,𝑘
𝑘 (𝐾̂∞) = F∞(Q𝑘,𝑘,𝑘(𝐻)). Consequently,

𝒰 (0),𝑘(𝐾) ⊂ S∞(𝑄𝑘,𝑘,𝑘
𝑘 (𝐾̂∞)) = S∞(F∞(Q𝑘,𝑘,𝑘(𝐻)). (3.3.0)

On the other hand, the transformation 𝐹𝐾 : 𝐻 → 𝐾, defined by the composition 𝑥 =
𝐹𝐾(𝜂1, 𝜂2, 𝜉) = 𝑆∞(𝐹∞(𝜂1, 𝜂2, 𝜉)) results to be a Duffy’s transformation collapsing
the face 𝜉 = 1 in 𝐻 on top of the vertex a0 ∈ 𝐾. Consequently, F𝐾(Q𝑘,𝑘,𝑘(𝐻)) ⊂
𝒟𝑘(𝐾). Thus, using (3.3.2) results in 𝒰 (0),𝑘(𝐾) ⊂ 𝒟𝑘(𝐾) - which means that all
functions 𝜓(𝑥, 𝑦, 𝑧) ∈ P𝑘(𝐾) can be recovered in 𝒟𝑘(𝐾).

Now consider a general element 𝐾𝑒 ∈ 𝒫ℎ, with collapsed vertex O, and opposed face 𝐿𝑒

with vertices a𝑒
𝑙 . Notice that 𝐾𝑒 can be seen as a geometric affine transformation of one

of the reference elements 𝐾 described above, i.e., 𝐾𝑒 = 𝑇 𝑒(𝐾), such that O = 𝑇 𝑒(a0),
a𝑒

𝑙 = 𝑇 𝑒(a𝑙), and thus 𝐿𝑒 = 𝑇 𝑒(𝐿)). Since the polynomials P𝑘(𝐾), for triangles and
tetrahedra, and rational polynomials 𝒰 (0),𝑘(𝐾)), for pyramids, are preserved by affine
transformations, concluding that 𝒱ℎ,𝐹 𝐸

𝑘 ⊂ 𝒟ℎ
𝑘 .

3.3.3 FE interpolants
Interpolant operators ℱℎ,𝐹 𝐸

𝑘 : 𝐻𝑠(Ω) → 𝒱ℎ,𝐹 𝐸
𝑘 have being designed as useful tools for

functions in general Sobolev spaces 𝐻𝑠(Ω), 𝑠 ≥ 1. As already mentioned, they are con-
structed by first defining a piecewise polynomial trace interpolant over the facets 𝐿 ⊂ 𝜕𝐾
of each element 𝐾 ∈ 𝒫ℎ, and then by extending this trace interpolant to the interior
of 𝐾. Recall some examples and error estimates already available in the literature. For
them, assume the affine conglomerate triangular, pyramidal, or tetrahedral partitions 𝒫ℎ

are regular (e.g. quasi-uniform and shape regular, with parameters independent of ℎ).
Under these circumstances, the following estimates hold.

• There are interpolants ℱℎ,𝐹 𝐸
𝑘 𝑤 over FE spaces 𝒱ℎ,𝐹 𝐸

𝑘 = P𝑘(𝒫ℎ) ∩ 𝐻1(Ω) defined
in Babuška and Suri (1987) for triangles and in Muñoz-Sola (1997) for tetrahedra.
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Suppose 𝑤 ∈ 𝐻𝑠(Ω), 𝑠 > 3
2 in 2D, and 𝑠 > 2 in 3D, then the estimate

|𝑤 − ℱℎ,𝐹 𝐸
𝑘 𝑤|𝐻1(Ω).

ℎ𝜇−1

𝑘𝑑−2 ‖𝑤‖𝐻𝑠(Ω)

holds for 𝜇 = min(𝑘+ 1, 𝑠), where the leading constant on the right side is indepen-
dent of 𝑤, ℎ, and 𝑘 (but depends on 𝑠 and regularity parameters of 𝒫ℎ).

• There are also the projection-based interpolants, proposed by L. Demkowicz and
coworkers, as expounded in Demkowicz (2008) and Demkowicz et al. (2007). They
admit a general form, without requiring any specific geometric aspect, and have the
flexibility to treat general local spaces, not necessarily polynomials. Note that such
constructions may require additional regularity assumptions beyond the minimal
𝐻1-conformity. Indeed, the trace interpolants may require interpolation at element
vertices, requiring the regularity 𝐻1+𝑠 with 𝑠 > 1/2 in 3D FE settings. For FE
spaces 𝒱ℎ,𝐹 𝐸

𝑘 = P𝑘(𝒫ℎ) ∩ 𝐻1(Ω) based on tetrahedra, the error estimates stated
in Demkowicz et al. (2007, Theorem 2.2) for projection-based interpolants ℱℎ,𝐹 𝐸

𝑘 𝑤
have the non-optimal form

|𝑤 − ℱℎ,𝐹 𝐸
𝑘 𝑤|𝐻1(Ω) . (ln 𝑘)2

(︃
ℎ

𝑘

)︃𝑑−2

|𝑤|𝐻𝑠 , 𝑠 > 3/2.

The suboptimal logarithmic factor appearing in (3.3.3) can be dropped in the 𝑘-
version under the more stringent regularity assumption 𝑠 ≥ 2 (MELENK; ROJIK,
2020, Corollary 2.12).

• For pyramidal partitions 𝒫ℎ, projection-based interpolants ℱℎ,𝐹 𝐸
𝑘 𝑤 over the FE

spaces 𝒰 (0),𝑘(𝒯 ℎ) are defined in Nigam and Phillips (2012). However, to the best of
our knowledge, error estimates are still missing for them, but optimal ℎ-convergence
rates have been observed in numerical experiments presented in Bergot, Cohen and
Duriflé (2010).

SBFEM interpolant

As for the cases of FE spaces, construct interpolant operators Πℎ
𝑘 : 𝐻𝑠(Ω) → Sℎ

𝑘, for
sufficiently smooth functions 𝑤 ∈ 𝐻𝑠(Ω), following three steps: a trace interpolant ℐℎ

𝑘 :
𝐻𝑠(Γℎ) → Λ𝑘(Γℎ), local projections Πℎ,𝑆

𝑘 : 𝐻𝑠(𝑆) → S𝑘(𝑆) extending trace functions to
the interior of the element, and assembly of local interpolants.

1. Trace interpolant ℐℎ
𝑘 : 𝐻𝑠(Ω) → Λ𝑘(Γℎ) - it is piecewise defined on the facets 𝐿 ∈ ℰℎ,

following any of the interpolation strategies used so far for the FE spaces 𝒱ℎ,𝐹 𝐸
𝑘 .

2. Local projections Πℎ,𝑆
𝑘 : 𝐻𝑘+1(𝑆) → S𝑘(𝑆): Πℎ,𝑆

𝑘 𝑤 ∈ 𝒟ℎ,𝑆
𝑘 solves the problem

⟨Πℎ,𝑆
𝑘 𝑤, 𝑣⟩∇,𝑆 = 0 ∀𝑣 ∈ 𝒟0

0(𝑆),
Πℎ,𝑆

𝑘 𝑤|Γ𝑆 = ℐℎ
𝑘 𝑤|Γ𝑆 .

Notice that equation (2) ensures that Πℎ,𝑆
𝑘 𝑤 ∈ S𝑘(𝑆) and the relation (2) enforces

the trace constraint matching Πℎ,𝑆
𝑘 𝑤 to the trace interpolant of 𝑤. It is clear from

these equations the interpretation of Πℎ,𝑆
𝑘 as "radial harmonic extension" of the trace

interpolant ℐℎ
𝑘 𝑤 to the interior of 𝑆.
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Let 𝜔𝑆 be the coefficients in the expansion ℐℎ
𝑘 𝑤(𝑥𝑏) = ∑︀𝒩 𝑆

𝑛=1 𝜔
𝑛,𝑆𝑁𝑛,𝑆

𝑘 (𝑥𝑏), 𝑥𝑏 ∈ Γ𝑆.
We seek for coefficients 𝑐 = [𝑐𝑖] such that Πℎ,𝑆

𝑘 𝑤 = ∑︀
𝑖 𝑐𝑖𝜑

𝑆
𝑖 ∈ Sℎ

𝑘(𝑆). According to
the definition of the local spaces Sℎ

𝑘(𝑆), the solution is 𝑐 = 𝐴−1𝜔𝑆, where 𝐴 = 𝐴𝑆 is
the eigenvector matrix associated to the traces of the SBFEM shape-functions 𝜑𝑆

𝑖

over Γ𝑆.

3. Assembly - Define Πℎ
𝑘 𝑤 by assembling the local contributions Πℎ

𝑘 𝑤|𝑆= Πℎ,𝑆
𝑘 𝑤. It is

clear that Πℎ,𝑆
𝑘 𝑤|𝐿= Πℎ,𝑆

𝑘 𝑤|𝐿 over an interface 𝐿 = 𝑆∩𝑆 ′ shared by two S-elements.
Thus, the conformity property Πℎ

𝑘 𝑤 ∈ 𝐻1(Ω) holds.

Notice that an analogous procedure can be applied to define the SBFEM interpolants for
the Elasticity problem.

Remarks

(1) In the same manner as FE interpolants ℱℎ,𝐹 𝐸
𝑘 𝑤, the SBFEM interpolant Πℎ

𝑘 satisfies
the two fundamental properties: locality and global conformity. However, they differ
in the way the trace interpolant is extended to the interior of the 𝑆-elements by
their local projections. Recall that the ”radial harmonic extension” adopted in the
SBFEM context is possible due to the particular scaled geometry of the 𝑆-elements.
Moreover, when the SBFEM interpolant shares the trace interpolant of ℱℎ,𝐹 𝐸

𝑘 𝑤,
then it is clear that

Πℎ
𝑘 𝑤 = Πℎ

𝑘 ℱℎ,𝐹 𝐸
𝑘 𝑤. (3.3.0)

(2) Since ℐℎ
𝑘 𝑤 = 𝑤|Γℎ for functions 𝑤 ∈ 𝒟ℎ

𝑘 , the trace constraint (2) means that 𝑤 −
Πℎ

𝑘 𝑤 ∈ 𝒟0,ℎ
𝑘 for all functions 𝑤 in the Duffy’s space 𝒟ℎ

𝑘 . Consequently, Proposition
3.3.1 implies the orthogonality property

⟨𝑤 − Πℎ
𝑘 𝑤, 𝑣⟩∇ =

∑︁
𝑆∈𝒯 ℎ

⟨𝑤 − Πℎ,𝑆
𝑘 𝑤, 𝑣⟩∇,𝑆 = 0, ∀𝑤 ∈ 𝒟ℎ

𝑘 , ∀𝑣 ∈ Sℎ
𝑘. (3.3.0)

SBFEM interpolation errors

Unlike general-purpose FE techniques, SBFEM approximations are constructed to be
applied to a specific type of problem. Thus, for Laplace’s model, there is no interest
in accessing the accuracy of SBFEM interpolants Πℎ

𝑘 𝑤 when applied to other than for
harmonic functions 𝑤 ∈ ℋ(Ω). For them, the sources of SBFEM interpolation errors are
two-fold:

(i) the polynomial discretization of traces 𝑤|Γℎ≈ ℐℎ
𝑘 𝑤 ∈ Λℎ

𝑘.

(ii) the deviation of Πℎ,𝑆
𝑘 𝑤 ∈ Sℎ

𝑘 of being an harmonic function.

For Elasticity problems, the traces are vector-valued functions 𝑤|Γℎ≈ ℐℎ
𝑘 𝑤 ∈ Λℎ

𝑘, whilst
(ii) measures the deviation of the radial extension in 𝜉 direction of a Elastic problem with
null body loads.

For the harmonic problem, consider the subspace

𝒱ℎ,Δ
𝑘 = {𝑤 ∈ ℋ(Ω);𝑤|Γℎ∈ Λ𝑘(Γℎ)},

where only trace discretization takes place. Denoted by harmonic virtual spaces, they have
been used in the context of the operator-adapted virtual FE method proposed in Chernov
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and Mascotto (2019), and designed to solve two-dimensional harmonic problems. The
term “virtual” emphasizes that functions in 𝒱ℎ,Δ

𝑘 are not known explicitly in the interior
of each subregion 𝑆 ∈ 𝒯 ℎ.

The finite-dimensional spaces 𝒱ℎ,Δ
𝑘 have close similarities with the SBFEM spaces Sℎ

𝑘. In
both cases, the trace functions are in Λ𝑘(Γℎ), which are extended to the interior of the
𝑆-elements by solving local Dirichlet Laplace’s problems: whilst the functions in the local
spaces 𝑉 Δ

𝑘 (𝑆) = 𝒱ℎ,Δ
𝑘 |𝑆 are strongly harmonic in 𝑆, the ones in S𝑘(𝑆) are harmonic in a

weaker sense. However, unlike for the harmonic subspaces 𝑉 Δ
𝑘 (𝑆), it is possible to explore

the radial Duffy’s structure of Sℎ
𝑘(𝑆) to explicitly compute shape functions for them, as

described in the previous section.

Consider the harmonic virtual interpolant ℱℎ,Δ
𝑘 : 𝐻𝑠(Ω) → 𝒱ℎ,Δ

𝑘 by solving the local
Laplace’s problems

⟨ℱℎ,Δ
𝑘 𝑤, 𝑣⟩∇,𝑆 = 0 ∀𝑣 ∈ 𝐻1

0 (𝑆),
ℱℎ,Δ

𝑘 𝑤|Γ𝑆 = ℐℎ
𝑘 𝑤|Γ𝑆 ,

where the trace interpolant ℐℎ
𝑘 𝑤 is the one adopted in Πℎ

𝑘 𝑤. Note that this is an analytic
recovery problem for it is not directly accessible for computation, whilst the SBFEM
interpolant Πℎ

𝑘 𝑤 is a computable recovery problem.

For an harmonic function 𝑢 ∈ ℋ(Ω), consider the decomposition

𝑢− Πℎ
𝑘 𝑢 = (𝑢− ℱℎ,Δ

𝑘 𝑢) + (ℱℎ,Δ
𝑘 𝑢− Πℎ

𝑘 𝑢) = (𝑖) + (𝑖𝑖).

The first term (𝑖) = 𝑢−ℱℎ,Δ
𝑘 𝑢 compares two harmonic functions differing on the skeleton

Γℎ by the trace interpolation error 𝑢−ℐℎ
𝑘 𝑢, meaning that only the interface errors require

to be estimated. In fact, the application of Neumann trace inequality ((SCHWAB, 1998,
Theorem A.33)) in each 𝑆-element 𝑆 ∈ 𝒯 ℎ gives

|𝑢− ℱℎ,Δ
𝑘 𝑢|𝐻1(𝑆). ‖𝑢− ℐℎ

𝑘𝑢‖
𝐻

1
2 (𝜕𝑆)

.

We refer to Chernov and Mascotto (2019, Lemma 4.4, Lemma 4.5) for estimates of (3.3.3)
in the particular Gauss-Lobatto trace interpolation case, and under some specific graded
polygonal mesh circumstances.

On the other hand, since
Πℎ

𝑘 𝑢 = Πℎ
𝑘 ℱℎ,𝐹 𝐸

𝑘 𝑢, (3.3.0)
the second term becomes (𝑖𝑖) = ℱℎ,Δ

𝑘 𝑢 − Πℎ
𝑘 𝑢 = ℱℎ,Δ

𝑘 𝑢 − Πℎ
𝑘 ℱℎ,Δ

𝑘 𝑢, representing the
SBFEM interpolation error for the harmonic virtual function ℱℎ,Δ

𝑘 𝑢 ∈ 𝒱ℎ,Δ
𝑘 . Conse-

quently, according to (2) and (3.3.3),

⟨ℱℎ,Δ
𝑘 𝑢− Πℎ

𝑘 ℱℎ,Δ
𝑘 𝑢, 𝑣⟩∇,𝑆 =

∑︁
𝑆∈𝒯 ℎ

⟨ℱℎ,Δ
𝑘 𝑢− Πℎ

𝑘 ℱℎ,Δ
𝑘 𝑢, 𝑣⟩∇,𝑆 = 0, ∀𝑣 ∈ 𝒟0,ℎ

𝑘 .

In other words, the second term (𝑖𝑖) = ℱℎ,Δ
𝑘 𝑢− Πℎ

𝑘 𝑢, which vanishes in Γℎ, is orthogonal
to 𝒟0,ℎ

𝑘 with respect to the gradient inner product. Thus its energy norm is a measure of
the deviation of Πℎ

𝑘 ℱℎ,Δ
𝑘 𝑢 of being a harmonic function. Since P𝑚(𝒯 𝑆)∩𝐻1

0 (𝑆) ⊂ 𝒟0
𝑘(𝑆),

for polynomials of arbitrary degree 𝑚 ≥ 1, the energy norm of the second term (ii) is
expected to decay exponentially, and it is eventually dominated by the energy norm of
the trace interpolation error represented by the first term (i).
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3.3.4 Galerkin SBFEM approximations
Poisson problem

Consider the Poisson model problem

Δ𝑢 = 0, in Ω,
𝛾0(𝑢) = 𝑢𝐷, on Γ,

where 𝑢𝐷 ∈ 𝐻1/2(Γ), and 𝛾 : 𝐻1(Ω) → 𝐻1/2(Γ) is the usual trace operator. We assume
that 𝑢𝐷 is sufficiently smooth for the definition of the trace interpolant.

Let Sℎ
𝑘 be the trial SBFEM approximation spaces based on geometric partitions 𝒯 ℎ = {𝑆}

of Ω by 𝑆-elements, Πℎ
𝑘 : 𝐻𝑠(Ω) → Sℎ

𝑘 being the corresponding interpolant operators,
as defined in the previous section. The Galerkin SBFEM for problem (3.3.4) searches
approximate solutions 𝑢ℎ ∈ Sℎ

𝑘 satisfying:

𝑎(𝑢ℎ, 𝑣) = 0 ∀𝑣 ∈ Sℎ
𝑘,0,

𝑢ℎ|Γ = ℐℎ
𝑘 𝑢𝐷|Γ,

where 𝑎(𝑤, 𝑣) :=
∫︀

Ω ∇𝑢 · ∇𝑣 dΩ is the usual bounded symmetric bilinear form for 𝑢,𝑤 ∈
𝐻1(Ω). The bilinear form 𝑎 is well known to be coercive, meaning there exists 𝜈 > 0
such that 𝑎(𝑣, 𝑣) ≥ 𝜈‖𝑣‖2

𝐻1 , ∀𝑣 ∈ 𝐻1
0 (Ω). Thus, problem (3.3.4)-(3.3.4) is well-posed (see

Ern and Guermond (2013, Proposition 3.26)). Well-posedness is a property relative to
the engineering expectation that a unique solution to a problem must exist and changes
slightly if the initial conditions are slightly changed.

Elasticity problem

Consider the Elasticity model problem, with null body loads given by

𝐷 𝜖(𝑢) = 0, in Ω,
𝛾0(𝑢) = 𝑢𝐷, on Γ,

where 𝑢𝐷 ∈ 𝐻1/2(Γ,R𝑑), and 𝛾 : 𝐻1(Ω,R𝑑) → 𝐻1/2(Γ,R𝑑) is the usual trace operator
for vector-valued functions. The Dirichlet displacement 𝑢𝐷 is sufficiently smooth for the
definition of the trace interpolant.

Again, let Sℎ
𝑘 be the trial vector-valued SBFEM approximation spaces for Elastic prob-

lems with null body loads, based on geometric partitions 𝒯 ℎ = {𝑆} of Ω by 𝑆-elements.
The corresponding interpolant operator is given by Πℎ

𝑘 : 𝐻𝑠(Ω,R𝑑) → Sℎ
𝑘, as aforemen-

tioned defined in (3.2.4). The Galerkin SBFEM for problem (3.3.4) is expressed as: Seek
approximate solutions 𝑢ℎ ∈ Sℎ

𝑘 satisfying:

𝑎𝐸(𝑢ℎ, 𝑣) = 0 ∀𝑣 ∈ Sℎ
𝑘,0,

𝑢ℎ|Γ = ℐℎ
𝑘 𝑢𝐷|Γ,

where 𝑎𝑒(𝑢, 𝑣) :=
∫︀

Ω 𝐷 𝜖(𝑢) · 𝜖(𝑣) dΩ is the usual bounded symmetric bilinear form for
𝑢,𝑤 ∈ 𝐻1(Ω,R𝑑). As well as for the Poisson problem, the bilinear form 𝑎𝐸 for the
Elasticity problem is also well known to be coercive. Therefore, problem (3.3.4)-(3.3.4) is
well-posed as demonstrated in Romano, Rosati and Diaco (1999, Definition 3.1.).
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Error analysis for the SBFEM

For the error analysis of the Galerkin SBFEM discretization (3.3.4)-(3.3.4) and (3.3.4)-
(3.3.4) for the Poisson and the Elasticity problem, respectively, the purpose is to explore
the properties of orthogonality (3.3.3) and interpolation (3.3.3) to estimate energy errors
|𝑢−𝑢ℎ|𝐻1 in approximating the harmonic exact solution 𝑢 from the projection errors |𝑢−
ℱℎ,𝐹 𝐸

𝑘 𝑢|𝐻1 on the FE spaces 𝒱ℎ,𝐹 𝐸
𝑘 , or |𝑢−ℱℎ,∇

𝑘 𝑢|𝐻1 on the virtual harmonic spaces 𝒱ℎ,Δ
𝑘 .

Recall that the FE interpolant errors are available in Babuška and Suri (1987), Muñoz-
Sola (1997), Demkowicz et al. (2007), Melenk and Rojik (2020) for general functions
in Sobolev spaces, whilst interpolant errors |𝑢 − ℱℎ,Δ

𝑘 𝑢|𝐻1 are accessed in Chernov and
Mascotto (2019) for harmonic functions for general the virtual harmonic spaces.

Theorem 3.3.1. Let 𝒯 ℎ = {𝑆} be a family of polytopal 𝑆-elements partitions of Ω, Sℎ
𝑘

be the SBFEM space based on 𝒯 ℎ, and 𝒱ℎ,𝐹 𝐸
𝑘 the FE spaces based on the conglomerate

meshes 𝒫ℎ. Suppose the same trace interpolant is used in the definitions of Πℎ
𝑘 and ℱℎ,Δ

𝑘 ,
and the exact solution 𝑢 ∈ 𝐻1 of the model problem (3.3.4) is sufficiently regular for them
to make sense. If 𝑢ℎ ∈ Sℎ

𝑘 is the associated Galerkin SBFEM approximation, then

|𝑢− 𝑢ℎ|𝐻1(Ω) ≤ |𝑢− ℱℎ,𝐹 𝐸
𝑘 𝑢|𝐻1(Ω).

Proof. Firstly, observe two orthogonality relations.

1. As for any Galerkin approximation, the SBFEM solution verifies the orthogonality
property 𝑎(𝑢 − 𝑢ℎ, 𝑣) = 0 ∀𝑣 ∈ Sℎ

𝑘,0, which is paramount for error estimates for
such methods.

2. Proposition 3.3.2 (i.e., ℱℎ,𝐹 𝐸
𝑘 𝑢 ∈ 𝒱ℎ,𝐹 𝐸

𝑘 ⊂ 𝒟ℎ
𝑘), combined with properties (3.3.3)

and (3.3.3), implies that

𝑎(𝑢ℎ,Πℎ
𝑘 𝑢− ℱℎ,𝐹 𝐸

𝑘 𝑢) = 0. (3.3.-2)

These two orthogonality relations imply the Pythagorean equality

|𝑢− ℱℎ,𝐹 𝐸
𝑘 𝑢|2𝐻1(Ω) = |𝑢− 𝑢ℎ|2𝐻1+|𝑢ℎ − ℱℎ,𝐹 𝐸

𝑘 𝑢|2𝐻1(Ω).

Consequently, the estimate (3.3.1) holds.

Theorem 3.3.2. Consider again a partition of polytopal 𝑆-elements partitions of Ω, 𝒯 ℎ =
{𝑆}. Let Sℎ

𝑘 is be the SBFEM space for the Elasticity problem with null body loads based
on 𝒯 ℎ, and 𝒱ℎ,𝐹 𝐸

𝑘 is the FE space based on the conglomerate meshes 𝒫ℎ for vector-valued
functions. Moreover, define the same trace interpolant in the definitions of Πℎ

𝑘 and ℱℎ,Δ
𝑘 .

If the exact solution 𝑢 ∈ 𝐻1(Ω;R𝑑) of the model problem (3.3.4) is sufficiently regular
and the Galerkin SBFEM approximation 𝑢ℎ ∈ Sℎ

𝑘 is the associated Galerkin SBFEM
approximation, then

|𝑢− 𝑢ℎ|𝐻1(Ω) ≤ |𝑢− ℱℎ,𝐹 𝐸
𝑘 𝑢|𝐻1(Ω).

Proof. The proof of (3.3.2) is analogous to the previous theorem.

Theorems 3.3.1 and 3.3.2 show that the SBFEM has a lower error value than the Virtual
Element Method, which, in turn, has lower errors compared to traditional FEM. This fact
was already expected since the SBFEM computes the approximation "analytically" inside
a 𝑆-element.
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Theorem 3.3.3. Let 𝒯 ℎ = {𝑆} be a family of polytopal 𝑆-elements partitions of Ω, Sℎ
𝑘 and

𝒱ℎ,Δ
𝑘 be the SBFEM and virtual spaces based on 𝒯 ℎ. Suppose the same trace interpolant

is used in the definitions of Πℎ
𝑘 and ℱℎ,Δ

𝑘 , and the exact solution 𝑢 ∈ 𝐻1 of the model
problem (3.3.4) is sufficiently regular for them to make sense. If 𝑢ℎ ∈ Sℎ

𝑘 is the associated
Galerkin SBFEM approximation, then

|𝑢− 𝑢ℎ|𝐻1(Ω) ≤ |𝑢− ℱℎ,Δ
𝑘 𝑢|𝐻1(Ω)+|ℱℎ,Δ

𝑘 𝑢− Πℎ
𝑘 ℱℎ,Δ

𝑘 𝑢|𝐻1(Ω).

Proof. The result is a consequence of Galerkin orthogonality property

|𝑢− 𝑢ℎ|𝐻1(Ω)= inf
𝑣∈Sℎ

𝑘

|𝑢− 𝑣|𝐻1(Ω)≤ |𝑢− Πℎ
𝑘 𝑢|𝐻1(Ω),

the error decomposition (3.3.3), and the property Πℎ
𝑘 𝑢 = Πℎ

𝑘 ℱℎ,Δ
𝑘 𝑢 remarked in (3.3.3).

Knowing that the error component |𝑢−ℱℎ,Δ
𝑘 𝑢|𝐻1(Ω) is higher than |ℱℎ,Δ

𝑘 𝑢−Πℎ
𝑘 ℱℎ,Δ

𝑘 𝑢|𝐻1(Ω),
and the first one has rate of convergence 𝑘, the convergence in the semi-energy norm is
bounded by 𝑘. Intuitive analysis of the SBFEM convergence rates is that they are bounded
by the approximation convergence rates of the trace approximation since the interior is
"almost" analytical. The tests presented in the following section explore these aspects
from a numerical point of view.

3.4 Numerical tests
In this section, selected tests for Poisson and Elasticity problems numerically verify the
predicted theoretical convergence results. The tests include two and three-dimensional
problems. Mesh discretizations for 2D examples are based on quadrilateral or polygonal
𝑆-elements, each one subdivided into collapsed triangles. Next, three-dimensional tests
explore SBFEM approximations based on uniform hexahedral and polyhedral 𝑆-elements,
both subdivided into pyramids. Irregular partitions are also considered in the context
of polyhedral 𝑆-elements subdivided by collapsed tetrahedra. For comparison, results
obtained by 𝐻1-conforming FEM based on the meshes of the corresponding triangles,
pyramids, and tetrahedra partitions of the 𝑆-elements are also presented.

To evaluate the SBFEM performance in problems with a point-singularity, simulations of
pure SBFEM mesh and a coupled FEM+SBFEM formulation are applied for a harmonic
singular function. For the FEM-SBFEM mesh, a traditional finite element formulation is
modified by a scaled boundary element in the vicinity of the singularity. For a Steklov
problem, the convergence is evaluated for high-order approximations. A plane crack is
also analyzed using the SBFEM for a linear elastic problem. In addition to the optimal
convergence rates, the stress intensity factors (SIF) are directly obtained from the SBFEM
approximations.

The contribution of this chapter is the mathematical analysis of the SBFEM errors. The
computational code for the numerical simulations of homogeneous problems using the
SBFEM was already implemented in the computational framework NeoPZ1. The NeoPZ,
the computational tool applied in the following simulations, is an open-source FE library

1NeoPZ open-source platform: http://github.com/labmec/neopz
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that facilitates the development of innovative technology in FEM simulations (DEVLOO,
1997). For general FEM simulations, the NeoPZ allows using a varied class of element
geometries, mesh refinements, and high-order approximations. Moreover, the FE library
allows approximating PDEs using different function spaces - 𝐻1, 𝐻(div), 𝐻(curl) and
discontinuous -, as well as mixed and hybrid finite elements and multiscale simulations.
Since the NeoPZ uses object-oriented concepts, such as abstract classes, templates, and
small blocks, it is possible to implement a general coding of SBFEM simulations by taking
advantage of pre-implemented FEM code. Moreover, the concept of element neighbors
associated with geometric entities was useful for constructing Duffy’s elements and the
definition of the 𝑆-elements.

3.4.1 Poisson problem

Example 1 - Smooth solution in 2D - Single 𝑆-element

In the region Ω = 𝑆 = [−1, 1] × [−1, 1] consider the harmonic function

𝑢(𝑥, 𝑦) = exp (𝜋𝑥) sin (𝜋𝑦), (3.4.0)

and interpret 𝑆 as regions of 4𝑛 facets, 𝑛 = 2, 4 and 8, as illustrated in Fig. 3.12. In
other words, only a single element was used, whilst the refinement was performed at the
element’s skeleton two times.



84

ℎ = 1 ℎ = 1
2 ℎ = 1

4

Figure 3.12: Example 1 - Harmonic function 𝑢(𝑥, 𝑦) and meshes of a single S-element of width ℎ = 2
𝑛 ,

𝑛 = 2, 4 and 8, composed of triangular partitions with facets: central scaling centers (top) and dislocated
scaling centers and distorted sub-partitions (bottom).

The scaled boundary elements Γℎ,𝑆 are obtained by subdividing each side of 𝜕𝑆 into 𝑛
subintervals of width ℎ = 2

𝑛
. In other words, 𝑆 is formed by 4𝑛 triangles 𝐾𝑒 sharing the

scaling center point as a vertex and having one edge in Γℎ,𝑆 as an opposite facet. The
triangles 𝐾𝑒 are mapped by Duffy’s geometric transformations described in Section 3.1.1.
Two different partitions are analyzed. The first one is a regular uniform partition of col-
lapsed triangles, in which the scaling center is located at the center of the 𝑆-element. The
second family of meshes is composed of distorted sub-partitions, where the scaling center
was dislocated to a region close to the 𝑆-boundary, namely with coordinates (−0.8,−0.8).
Both cases share the same scaled boundary elements Γℎ,𝑆.
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Two-dimensional single 𝑆-element
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Figure 3.13: Example 1 - Energy and 𝐿2 SBFEM errors versus ℎ: case 1 - uniform (solid lines) subpar-
titions of 𝑆, and case 2 - distorted (dashed lines) subpartitions based on Fig. 2.6, and approximation of
degree 𝑘 = 1, · · · , 6.

For the scaled geometry illustrated in Fig. 3.12, it is considered the SBFEM space Sℎ,𝑆
𝑘

varying the polynomial approximation 𝑘 = 1, . . . , 6 and computing the interpolants Πℎ,𝑆
𝑘 𝑢.

The corresponding error histories versus the scaled boundary mesh width ℎ are plotted
in Figure 3.13, reflecting the usual convergence behavior governed by the FE trace dis-
cretizations ℐℎ

𝑘 𝑢 over 𝜕𝑆, of order 𝑘 in the energy norm, and order 𝑘+ 1 in the 𝐿2-norm.
The convergence data is summarized in Table A.1 in Appendix A.

The same convergence behavior for the distorted sub-partitions, up to 𝑘 = 4 (see Fig.
3.13). When increasing the polynomial order, the numerical solution starts to diverge at
the most refined level (ℎ = 1

4), for the size of the eigenvalue problem increases significantly
and then some numerical difficulties to extend the boundary solution to the domain in
very narrow and distorted elements appear. When the scaling center is moved far from
the center of the polygon, the conditioning of the problem corresponding to the scaled
ODE system (3.2.3) gets worse, affecting the precision of the eigenvalues and eigenvectors.

Example 2 - Smooth solution in 2D - Quadrilateral and polygonal mesh refining
the domain

The analytical solution (3.4.1) for Laplace’s equation is approximated on the same domain
Ω = [−1; 1] × [−1; 1]; but instead of partitioning the skeleton, the domain is partitioned
into meshes of quadrilateral and polygonal elements, as illustrated in Fig. 3.14.
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Quadrilateral 𝑆-elements
Case 1 Case 2

Polygonal 𝑆-elements
Case 3 Case 4

Figure 3.14: Example 2 - Uniform quadrilateral and polygonal partitions 𝒯 ℎ, ℎ = 1
4 : 𝑆-element distin-

guished by different colors and subdivided into scaled triangles.

Eq. (3.4.1) is approximated using the Galerkin SBFEM in sequences of partitions 𝒯 ℎ of
𝑆-elements, with refinement levels ℎ = 2−ℓ, ℓ = 1, · · · 4, where ℎ is the characteristic width
given by the higher distance between two vertices of 𝜕𝑆. The solutions are searched in
SBFEM space Sℎ

𝑘, using polynomial orders 1 ≤ 𝑘 ≤ 6, which are based on uniform quadri-
lateral 𝑆-elements (with uniform or distorted sub-partitions) and two cases of polygonal
𝑆-elements. Figure 3.14 illustrates the particular partitions for ℎ = 1

4 .

The adopted partitions follow one of the cases:

Case 1. Uniform 𝑛 × 𝑛 - quadrilateral 𝑆-elements, 𝑛 = 2ℓ+1, each one having Γ𝑆 formed
by its 4 edges, and uniform collapsed triangular sub-partitions, with scaling center
coinciding with the 𝑆-element’s centroid;

Case 2. The same uniform 𝑛×𝑛-quadrilateral 𝑆-elements, but with distorted sub-partitions
resulted from moving the scaling centers closer to the scaled boundary elements (fol-
lowing the same pattern of the previous example, the scaling center is (−0.8, 0.8));

Case 3. Polygons with 8 edges (case 1) obtained from uniform quadrilaterals whose sides
are subdivided once, and

Case 4. Unstructured irregular polygonal 𝑆-elements (case 2) constructed using the mesh
generator software PolyMesher (TALISCHI et al., 2012), by giving as input the
number of elements in 𝑥 and 𝑦 axes. For this sequence, the scaled boundaries have
average characteristic width close to the adopted in the uniform contexts.

The numerical results described in Table A.2 and the convergence curves plotted in Fig.
3.15 for Cases 1 and 2 are following the predicted rates of order 𝑘 for energy errors.
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Optimal rates of order 𝑘 + 1 are also observed for the errors measured by the 𝐿2-norm.
These optimal rates of convergence occur even for sub-partitions of distorted triangular
Duffy’s elements. Indeed, the error values for this configuration are virtually similar to the
ones obtained using uniform Duffy’s triangular elements. In this direction, Theorem 5.2
appears to be useful to guide the error analysis in the presence of deformed Duffy’s sub-
elements occurring when the scaling centers are dislocated towards the scaled boundary
elements while keeping a regular partition of the scaled boundary Γℎ,𝑆. The same behavior
is observed for Case 3 (regular polygons) in Fig. 3.16.

Quadrilateral 𝑆-elements: Uniform (Case 1) and Distorted (Case 2) subpartitions

0.50.250.125
10−10

10−7

10−4

10−1

102

1.0

2.0

3.0

4.0

5.0

6.0

ℎ

𝐻
1

Er
ro

r

0.50.250.125
10−13

10−10

10−7

10−4

10−1 2.0

3.0

4.0
5.0

6.0

7.0

ℎ

𝐿
2

Er
ro

r

𝑘 = 1 case 1
𝑘 = 1 case 2
𝑘 = 2 case 1
𝑘 = 2 case 2
𝑘 = 3 case 1
𝑘 = 3 case 2
𝑘 = 4 case 1
𝑘 = 4 case 2
𝑘 = 5 case 1
𝑘 = 5 case 2
𝑘 = 6 case 1
𝑘 = 6 case 2

Figure 3.15: Example 2 - Energy and 𝐿2 SBFEM interpolation errors versus ℎ: Case 1 - uniform (solid
lines) subpartitions of 𝑆, and Case 2 - distorted (dashed lines) subpartitions based on Fig. 3.14, and
approximation degree 𝑘 = 1, · · · , 6.

Polygonal 𝑆-elements with uniform subpartitions (Case 3)
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Figure 3.16: Example 2 - Energy and 𝐿2 SBFEM interpolation errors versus ℎ: Case 3 - uniform subpar-
titions of a polygonal mesh based on Fig. 3.14, and approximation degree 𝑘 = 1, · · · , 6.

In Figure 3.17, the energy and 𝐿2 errors are plotted versus the number of DOF for Galerkin
SBFEM solutions in Sℎ

𝑘 based on the irregular polygonal meshes of Case 4 (Fig. 3.14) and
polynomial approximation order of 𝑘 = 2, 4, and 6. For comparison, the Galerkin FEM
method was applied and solutions are also shown. These solutions were constructed using
𝒱ℎ,𝐹 𝐸

𝑘 for the FEM mesh using the conglomerate partition 𝒫ℎ composed of the triangular
elements that form each 𝑆-element. The error comparison reveals comparable accuracy
in both methods, but with less DOF in SBFEM simulations.
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Polygonal 𝑆-elements - case 4
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Figure 3.17: Example 2 - Energy and 𝐿2 errors versus DOF for the Galerkin SBFEM solutions in Sℎ
𝑘 ,

based on the irregular polygonal 𝑆-elements of case 4, and for the Galerkin FE solutions in 𝒱ℎ,𝐹 𝐸
𝑘 based

on the associated conglomerate triangular partitions 𝒫ℎ, for 𝑘 = 2, 4 and 6.

Recall that SBFEM shape functions are determined by the traces over scaled boundary
elements, whilst FE spaces are also populated with shape functions connected with trian-
gular DOF other than the edge ones opposed to the scaling center. One also observes that
their error curves approach the possible optimal slopes −𝑘 and −(𝑘 + 1) when measured
by energy or 𝐿2 norms. This experiment illustrates the SBFEM flexibility with respect
to mesh generation for numerical simulations without convergence deterioration. More
details of the error values are compiled in Table A.4, in Appendix A.

Plots illustrating SBFEM 𝑘-convergence histories in the energy norm versus the square
root of the DOF are shown in Figs. 3.18 and 3.19, with 𝑘 = 1, · · · , 6, and for 𝑆-elements
with fixed boundary mesh size ℎ = 1

4 . The plots on Fig. 3.18 are for the SBFEM interpo-
lation in the single 𝑆-element (see Example 1 - Fig. 3.12) and for the Galerkin SBFEM
experiment for the uniform quadrilateral partition 𝒯 ℎ of Figure 3.14. For both cases,
the error decay as 𝑘 increases shows a typical exponential convergence, but the interpola-
tion experiment, by just refining the boundary of a single element, requires less DOF for
a given accuracy threshold. Additionally, for comparison, 𝑘-convergence plots for three
𝐻1-conforming FE methods are also included in Fig. 3.18: using P𝑘(𝐾) polynomials in
the triangles 𝐾 of the conglomerate partitions 𝒫ℎ (FE-triangles), Q𝑘,𝑘(𝐾) polynomials in
the quadrilateral 𝑆-elements (FE-quadrilaterals), and for Duffy’s spaces 𝒟ℎ

𝑘,𝑘(𝑆) (Duffy’s
FE).

Notice that for the lowest order case 𝑘 = 1 and this particular case of quadrilateral
𝑆-elements, SBFEM and FEM coincide. Errors for SBFEM and Duffy’s spaces are com-
parable, but the latter has much more equations to be solved. With respect to the results
of the usual FE methods for triangles and quadrilaterals, both having comparable ac-
curacy, their errors are superior in magnitude to the ones provided by SBFEM. For the
FEM based on the conglomerate triangular mesh, this comparison is in accordance with
the prediction by Theorem 3.3.1 because the energy FE errors are bounded by FE interpo-
lation errors. Moreover, the most noticeable aspect of these plots is that SBFEM requires
less DOF to reach a given accuracy than these FE methods, the key property expected
to be held for an operator-adapted method, as the SBFEM. It is worth mentioning that
this notable reduction in the DOF for the SBFEM has the cost of solving an eigenvalue
problem. And for the single 𝑆-element, the matrix for the eigenvalue problem grows,
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increasing the challenge of solving it numerically, as already discussed in Example 1.

Quadrilateral 𝑆-elements - ℎ = 1
4 .
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Figure 3.18: Example 2 - 𝑘-convergence histories versus the number of DOF, for 𝑘 = 1, · · · , 6 - Experiment
based on uniform quadrilateral 𝑆-elements: Single 𝑆-element based on the scaled partition of Fig. 3.12,
Galerkin SBFEM refining the domain for Sℎ

𝑘 , Duffy’s FE for 𝒟ℎ
𝑘,𝑘, both based on the uniform quadrilateral

partition 𝒯 ℎ of 𝑆-elements of Figure 3.14, and FE method for 𝒱ℎ,𝐹 𝐸
𝑘 based on the associated conglomerate

triangular partition 𝒫ℎ, as well as for polynomials Q𝑘,𝑘(𝑆), 𝑆 ∈ 𝒯 ℎ.
.

Comparing the 𝑘-convergence properties in Fig. 3.19 of the Galerkin SBFEM for spaces
based on 𝒯 ℎ of the uniform quadrilateral and irregular polygonal 𝑆-elements (Case 1 and
Case 3, respectively) of Fig. 3.14, it is observed the uniform polygonal mesh of Case 3
requires fewer equations to be solved for a given target error. On the other hand, similarly
to the observations in Fig. 3.18, a bigger eigenvalue system has to be solved for each 𝑆-
element. This kind of polygonal mesh can be seen as a combination of refining both the
boundary and inside the subdomains. Due to this flexibility, the SBFEM can generate
octree (3D) or quadtree (2D) meshes (CHEN et al., 2018; SAPUTRA et al., 2020), giving
high accuracy, without any additional techniques.

Quadrilateral versus polygonal 𝑆-elements
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Figure 3.19: Example 2 - 𝑘-convergence histories versus the number of DOF, for 𝑘 = 1, · · · , 6 - Galerkin
SBFEM solutions in Sℎ

𝑘 using the uniform blue quadrilateral 𝑆-elements (Case 1), and polygonal 𝑆-
elements (Case 3), shown in Fig. 3.14. All cases are for ℎ = 1

4 , and uniform triangular sub-partitions.
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Example 3 - Smooth solution in 3D - Single 𝑆-element

The third example is the three-dimensional harmonic function

𝑢(𝑥, 𝑦, 𝑧) = 4
(︂

exp
(︂
𝜋𝑥

4

)︂
sin

(︂
𝜋𝑦

4

)︂
+ exp

(︂
𝜋𝑦

4

)︂
sin

(︂
𝜋𝑧

4

)︂)︂
defined in the region Ω = [0, 1] × [0, 1] × [0, 1].

ℎ = 1 ℎ = 1
2 ℎ = 1

4

Figure 3.20: Example 3 - Scaled pyramidal partitions 𝒯 ℎ,𝑆 of 𝑆 = [0, 1] × [0, 1] × [0, 1] with scaled
boundary Γℎ,𝑆 formed by 6𝑛2 uniform quadrilateral facets of characteristic width ℎ = 1

𝑛 , 𝑛 = 1, 2 and 4.

The mesh is composed of a single 𝑆-element Ω = 𝑆, where a boundary refinement is
performed. The mesh refinement leads to a polyhedral region with 6𝑛2 facets, as illustrated
in Fig. 3.22. In summary, the scaled boundaries Γℎ,𝑆 are formed by subdividing each face
in 𝜕𝑆 into 𝑛 × 𝑛 quadrilaterals, with characteristic size ℎ = 1

𝑛
. Thus, the partitions

𝒯 ℎ,𝑆 are composed of 6𝑛2 pyramids 𝐾𝑒 sharing the scaling center point as a vertex. The
pyramids are mapped by Duffy’s geometric transformations of the reference hexahedron,
as described in Section 3.1.1.

The analytical solution 𝑢 (3.4.1) is approximated by the SBFEM interpolants Πℎ,𝑆
𝑘 𝑢 for

𝑘 = 1, ..., 4, and the interpolation error curves are plotted in Fig. 3.21 , revealing the
typical optimal convergence rates of order 𝑘 in energy norm, and order 𝑘 + 1 in the
𝐿2 norm of the trace interpolant as well as already observed for a single element two-
dimensional example. The convergence rates are summarized in Appendix A - Table
A.5.

Three-dimensional single 𝑆-element
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Figure 3.21: Example 3 - Energy and 𝐿2 SBFEM interpolation errors versus ℎ: Sℎ
𝑘(𝑆) based on the scaled

pyramidal partitions 𝒯 ℎ,𝑆 of Figure 3.20, and trace spaces Λℎ,𝑆
𝑘 of degree 𝑘 = 1, · · · , 4.
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Example 4 - Smooth solution in a 3D domain - Hexahedral and polytopal
mesh

The fourth example refers to approximating the analytical solution of the previous exam-
ple (3.4.1) for Laplace’s equation on a 3D domain Ω = [0, 1] × [0, 1] × [0, 1], but refining
the domain instead. Three types of geometry for 𝒯 ℎ are considered, each one with refine-
ment levels ℎ = 2−ℓ, ℓ = 1, 2, and 3. The illustrations in Fig. 3.22 are for ℎ = 1

4 for the
following cases

Case 1. 𝑛×𝑛×𝑛 uniform hexahedral partitions, 𝑛 = 2ℓ, where each 𝑆-element is decomposed
into six pyramids.

Case 2. Polygons constructed by subdividing once each square face of uniform hexahedral
partitions (Case 1) into four uniform squares (for this configuration, each 𝑆-element
is a polyhedron with 24 quadrilateral facets, and composed by 24 scaled pyramids).

Case 3. General polyhedral partitions constructed by the software package Neper (QUEY;
DAWSON; BARBE, 2011), by giving the number 𝑛 of 𝑆-elements in 𝑥, 𝑦, and 𝑧
directions. For each 𝑆 ∈ 𝒯 ℎ, the finite element mesh generator gmsh (GEUZAINE;
REMACLE, 2009) is applied for the construction of the internal tetrahedral sub-
partitions 𝒯 ℎ,𝑆.

The average edge characteristic sizes of the scaled boundary elements of the irregular
partitions resulted to be comparable to the parameter ℎ of the uniform contexts. The
pyramids and tetrahedra forming 𝑆 are mapped by Duffy’s transformations from the
reference hexahedron or prism, respectively.
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Case 1 - Hexahedral 𝑆-elements

Case 2 - Polygonal 𝑆-elements

Case 3 - Polygonal 𝑆-elements

Figure 3.22: Example 4 - Hexahedral and polyhedral partitions 𝒯 ℎ, ℎ = 1
4 : 𝒯 ℎ,𝑆 composed by scaled

pyramids (top), and by scaled tetrahedra (bottom).

The results for the Galerkin SBFEM solutions in Sℎ
𝑘 are plotted in Fig. 3.23 and doc-

umented in Appendix A - Table A.6 for the mesh based on the uniform hexahedral 𝑆-
elements subdivided into regular pyramids (Case 1 - see Fig. 3.22). For this example,
the polynomial trace approximation adopted is 𝑘 = 1, · · · , 4. Optimal accuracy of order
𝑘 for energy norm and 𝑘+ 1 for the 𝐿2-norm occur. Similar results were obtained for the
regular polyhedral mesh described in Case 2, where error values have the same magnitude
as the errors obtained in Case 1. As detailed in Appendix A - Table A.6, the error for
both 𝐿2 and energy norms are slightly lower, but in Case 2, lower DOF are required.
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Hexahedral 𝑆-element - Case 1
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Regular polyhedral 𝑆-elements - Case 2
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Figure 3.23: Example 4 - Energy and 𝐿2 SBFEM interpolation errors versus ℎ: Sℎ
𝑘(𝑆) based on the scaled

pyramidal partitions 𝒯 ℎ,𝑆 of Figure 3.20, and trace spaces Λℎ,𝑆
𝑘 of degree 𝑘 = 1, · · · , 4.

Energy and 𝐿2 errors obtained with the irregular polyhedral partitions of case 3 versus
the DOF are plotted in Fig. 3.24. For comparison, the Galerkin FE solutions in the space
𝒱ℎ,𝐹 𝐸

𝑘 based on the associated scaled tetrahedral partitions 𝒫ℎ are also shown. Similar
conclusions hold as for the experiment in Example 2 that compares FEM and SBFEM
approximated solutions based on triangular and scaled boundary partitions, respectively
(see Fig. 3.17). One can also observe that both Galerkin SBFEM and FE approximation
errors have similar magnitude, but with less DOF in the SBFEM systems. Their error
curves measured with energy and 𝐿2 norms also approach the possible optimal slopes
−𝑘 and −(𝑘 + 1), respectively. It is worth mentioning that the reduction of DOF in the
SBFEM is at the expense of solving local ODEs. The error values for both SBFEM and
FEM approximations are summarized in Table A.6.
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Irregular polyhedral mesh

5 10 20 40 70
10−8

10−6

10−4

10−2

100

1.0

2.0

3.0

4.0

𝐷𝑂𝐹 1/2

𝐻
1

Er
ro

r

5 10 20 40 70
10−10

10−8

10−6

10−4

10−2

2.0

3.0

4.0

5.0

𝐷𝑂𝐹 1/2

𝐿
2

Er
ro

r

𝑘 = 1 SBFEM
𝑘 = 1 FEM
𝑘 = 2 SBFEM
𝑘 = 2 FEM
𝑘 = 3 SBFEM
𝑘 = 3 FEM
𝑘 = 4 SBFEM
𝑘 = 4 FEM

Figure 3.24: Example 4 - Energy and 𝐿2 errors versus DOF for the Galerkin SBFEM solution in Sℎ
𝑘 , for

𝑘 = 1, · · · , 4, based on the irregular polyhedral 𝑆-elements of Case 3.

Fig. 3.25 compares the SBFEM 𝑘-convergence using the fixed uniform hexahedral par-
tition at the refinement level ℎ = 1

4 , shown in Fig. 3.22, with equivalent results for the
FE method using the spaces 𝒱ℎ,𝐹 𝐸

𝑘 ⊂ 𝐻1(Ω) based on the associated pyramidal partition
𝒫ℎ. FE results for the hexahedral partition are also plotted, recalling that for 𝑘 = 1
this corresponds to SBFEM. Notice that both FE simulations have comparable accuracy,
but with less DOF when the mesh is hexahedral. The approximations by SBFEM lead
to lower error values as compared with the FE methods and using linear systems with a
reduced number of equations. For the case of FE simulations based on the conglomer-
ate pyramidal mesh, this is a result predicted by Theorem 3.3.1. The error curve of the
interpolation experiment illustrated in Figure 3.21 is also included.
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5 10 15 20
10−6

10−5

10−4

10−3

10−2

10−1

100

𝐷𝑂𝐹 1/3

𝐻
1

Er
ro

r

SBFEM
SBFEM single element

FEM hexahedral element
FEM pyramidal element

Figure 3.25: Example 4 - 𝑘-convergence histories as function of the DOF, for 𝑘 = 1, · · · , 4: SBFEM
using a single 𝑆-element (see Fig. 3.20), Galerkin SBFEM based on uniform hexahedral partition 𝒯 ℎ, FE
method for 𝒱ℎ,𝐹 𝐸

𝑘 based on the conglomerated pyramidal partition 𝒫ℎ, and FE spaces Q𝑘,𝑘,𝑘(𝑆), 𝑆 ∈ 𝒯 ℎ.
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SBFEM - Hexahedral vs. Polyhedral 𝑆-elements
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Figure 3.26: Example 4 - Galerkin SBFEM for Sℎ
𝑘 based on hexahedral and polyhedral 𝑆-elements of case

1. In all the experiments, ℎ = 1
4 .

The plots on Fig. 3.26 compare the the 𝑘-convergence of the two SBFEM solutions in
Sℎ

𝑘 based on the uniform hexahedral partition illustrated in Fig. 3.22 - Case 1, and on
the polyhedral partition of Case 2, also shown in Fig. 3.22, both with ℎ = 1

4 . Similarly
to the comparison experiment of the previous example, shown in Fig. 3.19 for the two-
dimensional example (see Example 2), these convergence histories also show that the use
of polygonal mesh requires fewer equations to be solved for a given target error, but
reminding that it requires bigger eigenvalue systems to be solved for the computation of
SBFEM shape functions in the 𝑆-elements.

Example 5 - Singular harmonic function - Single 𝑆-element

In the region 𝑆 = [−1, 1] × [0, 1] define the harmonic function

𝑢(𝑥, 𝑦) = 2−1/4
√︂
𝑥+

√︁
𝑥2 + 𝑦2 = 21/4√𝑟 cos(𝜃2), (3.4.0)

shown in Fig. 3.27, with a radial square root singularity at the boundary point O = (0, 0)
(𝑟 = 0), caused by boundary condition change from Dirichlet 𝑢(𝑥, 0) = 0, for 𝑥 < 0, to
Neumann 𝜕𝑢/𝜕𝑦(𝑥, 0) = 0, for 𝑥 > 0. This function belongs to 𝐻 3

2 −𝜖(Ω), for all 𝜖 > 0.

𝑢(𝑥, 𝑦)

Figure 3.27: Example 5 - Singular harmonic function 𝑢(𝑥, 𝑦) (3.4.1) in a domain 𝑆 = [−1, 1] × [0, 1].

The scaling center is located at the origin and the 𝑆-element is taken as an open scaled
boundary Γℎ,𝑆 over the two vertical and the top horizontal sides of 𝑆, which are uniformly
subdivided: 𝑛 uniform intervals for the vertical edges, and 2𝑛 for the top edge, for 𝑛 = 1, 2
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and 4. This way, in each refinement level, 𝑆 is composed of internal triangular partition
𝒯 ℎ,𝑆 formed by 4𝑛 triangles sharing the scaling center as collapsed vertex, and opposite
facet width ℎ = 1

𝑛
.

ℎ = 1 ℎ = 1
2

ℎ = 1
4 ℎ = 1

8

Figure 3.28: Example 5 - Singular harmonic function 𝑢(𝑥, 𝑦) and scaled triangular partitions 𝒯 ℎ,𝑆 of
𝑆 = [−1, 1] × [0, 1], with open scaled boundary Γℎ,𝑆 , with 4𝑛 uniform facets, ℎ = 1

𝑛 , 𝑛 = 1, 2, 4 and 8.

SBFEM interpolation errors for this singular example are plotted in Figure 3.29 and
detailed in Appendix A - Table A.7, revealing usual optimal convergence rates known
for trace interpolations by piecewise polynomials, even using in only one element. These
results reflect the role of the SBFEM error decomposition in two terms as highlighted in
Section 3.3.3, Eq. (3.3.3) and rewritten as follow to ease the reading

𝑢− Πℎ
𝑘 𝑢 = (𝑢− ℱℎ,Δ

𝑘 𝑢) + (ℱℎ,Δ
𝑘 𝑢− Πℎ

𝑘 𝑢) = (𝑖) + (𝑖𝑖). (3.4.0)

In this case, the dominant contribution is expected to come from the virtual interpolant
error, determined exclusively by the trace interpolant (term (i)), which is not affected by
eventual function singularity not interacting with the scaled boundary Γℎ,𝑆.
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Figure 3.29: Example 5 - Energy and 𝐿2 SBFEM errors versus ℎ for the singular equation (3.4.1) based
on the scaled triangular partitions 𝒯 ℎ,𝑆 of Figure 3.27, and trace spaces Λℎ,𝑆

𝑘 of degree 𝑘 = 1, · · · , 4.
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Because Γℎ,𝑆 is not a closed curve, some care had to be taken in the construction of the
SBFEM space Sℎ

𝑘(𝑆) in order to incorporate boundary data for 𝑢 on the bottom boundary
side of 𝑆. This is accomplished by enforcing in the second order SBFEM ODE system a
vanishing Dirichlet boundary condition on one side (associated with vanishing trace value
at 𝑥𝑏 = (−1, 0)), whilst a vanishing Neumann condition is assumed on the opposite side
(associated with vanishing normal trace at 𝑥𝑏 = (1, 0)). These boundary data are radially
extended over the sectors [−1, 0) and [0, 1].

Enforcing Dirichlet boundary condition on (𝑥, 0), 𝑥 < 0, and Neumann boundary con-
dition elsewhere. Due to the lack of regularity of 𝑢 ∈ 𝐻

3
2 −𝜖(Ω), the error estimates of

Theorem 3.3.1 in terms of FE interpolant error based on regular partitions are restricted
in theory to order ℎ 1

2 −𝜖. This problem was considered by Siqueira et al. (2020) to evaluate
the efficiency of the mixed FE method when quarter-point elements are used in the vicin-
ity of the origin O = (0, 0) (singular point), showing dramatic accuracy improvement.
Recall that the specific 6-noded quarter-point element is also of Duffy’s type, obtained by
collapsing a reference quadrilateral element on triangles.

Example 6 - Singular harmonic function - Coupled mesh FEM/SBFEM

The last Poisson example is a formulation composed of SBFEM approximations in a single
element 𝑆 = [−0.5, 0.5] × [0, 0.5] and FE approximations elsewhere, in the region where
the solution is smooth. Similarly to the previous interpolation experiment the space Sℎ

𝑘(𝑆)
is conceived in such a way that the scaling center is located on the singularity point, which
means that an open scaled boundary element is applied. The vertical and top-horizontal
edges of 𝑆 are uniformly subdivided to form an interface partition Γℎ,𝑆. Elsewhere, a
uniform quadrilateral mesh matching Γℎ,𝑆 is adopted, as illustrated in Fig 3.30 for ℎ = 1

2
and ℎ = 1

16 . The coupling between FE and SBFEM approximations is straightforward
since SBFEM uses compatible FE spaces at the interface. Four mesh sizes ℎ = 2−ℓ,
ℓ = 1, · · · , 4, and polynomials of degree 𝑘 = 1, · · · , 4 are performed.

ℎ = 1
2 ℎ = 1

16

Figure 3.30: Example 5 - Meshes for the coupled FE-SBFEM formulation: FE (blue) in the smooth
region and SBFEM (magenta) close to the singularity point.

The corresponding results are documented in Appendix A - Table A.8 and plotted in
Fig. 3.31. As for regular problems with smooth solutions, optimal rates of convergence
of order 𝑘 and 𝑘+ 1 for energy and 𝐿2 errors hold for this singular problem, without any
adaptivity, i.e. uniform degree 𝑘 is used over the domain and no ℎ-adaptivity is applied
as well.
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Figure 3.31: Example 5 - Energy and 𝐿2 SBFEM interpolation errors versus ℎ: Sℎ
𝑘(𝑆) based on the scaled

triangular partitions 𝒯 ℎ,𝑆 of Figure 3.27, and trace spaces Λℎ,𝑆
𝑘 of degree 𝑘 = 1, · · · , 4.

For comparison, two 𝑘-convergence histories as a function of the number of DOF are shown
in Fig. 3.32 for fixed partitions of the domain Ω: one for the SBFEM interpolation errors
computed in Example 5 and the other for the combined Galerkin FE-SBFEM method.
The partitions used in these experiments are illustrated in Figure 3.32, noticing that they
coincide within the region 𝑆 around the singularity, but the FE partition in the smooth
region is more refined. Whilst SBFEM interpolation in the single element Ω requires
much less DOF, both experiments reach very close error values, because the error in
this problem is governed by the singularity, modeled using SBFEM in both experiments.
However, the results of Fig 3.32 could be deceiving. It should be emphasized that global
SBFEM interpolation in the whole domain Ω was feasible in this particular test problem,
but this is not the case in practical singular problems, for which coupled FE+SBFEM
simulations reveal to be a simple and efficient option.

SBFEM interpolation

FE-SBFEM
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Figure 3.32: Example 6 - Partitions and 𝑘-convergence histories versus the number of DOF, with 𝑘 =
1, · · · , 4, of Example 5 and Galerkin FE-SBFEM solutions.

3.4.2 Elasticity problem
The last set of examples is regarding the convergence analysis of two and three-dimensional
Elasticity problems. In the last example, a single crack in a plate is analyzed using
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a coupled mesh SBFEM+FEM, showing numerically the error analysis demonstrated
theoretically that the error is bounded by the trace interpolation approximation.

Example 7 - Two-dimensional loaded beam

The first Elasticity example is a 2D beam in Ω = [−1; −1] × [1; 1], under plane stress
mode, subjected to a bending moment at its extremity and with the analytical solution

𝑢(𝑥, 𝑦) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
5
(︃
𝑦

2𝐺 + 𝑥2𝑦

2𝐸 − 𝑦3

6𝐺 + 𝜈𝑦3

6𝐸

)︃

5
(︃

− 𝑥3

6𝐸 + 𝜈𝑥𝑦2

2𝐸

)︃
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , (3.4.0)

where

𝐺 = 𝐸

2(1 + 𝜈) ,

and 𝐸 = 10𝐺𝑃𝑎 and 𝜈 = 0.3 are, respectively, the Young Modulus and the Poisson
coefficient. Notice that the analytical solution is obtained considering a 𝑘 = 3, showing
that the SBFEM approximation contains the full polynomial space up to the order 𝑘.

It considered the same uniform mesh refinement with quadrilateral 𝑆-elements as in Ex-
ample 1, illustrated in Fig. 3.12, for the case of a single 𝑆-element and skeleton refine-
ment; Example 2, shown in Fig. 3.14 - Case 1 for the domain refinement. In both cases,
the scaling center is positioned at the centroid of the quadrilateral 𝑆-element, and the
quadrilateral is subdivided into uniform four triangles. For the skeleton refinement, the
𝑆-element’s skeleton is refined two times, as already shown in Fig. 3.14, where the char-
acteristic size is given by ℎ = 2ℓ−1, ℓ = 0, 1, 2. For the domain’s refinement, one more
refinement is performed, leading to a characteristic size of ℎ = 2ℓ−1, ℓ = 0, ..., 3. As well
as the previous examples, the characteristic size is given by the skeleton’s width. The
post-processed solution for the stress in 𝑥-direction 𝜎𝑥 is plotted in Fig. 3.33 at the left
side, and the shear 𝜏𝑥𝑦 in the same Figure at the right side, for 𝑘 = 3, that gives the
analytical solution.
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Configuration of the 2D beam example.

Tensions 𝜎𝑥𝑥 (left) and 𝜎𝑥𝑦 (right).

Figure 3.33: Example 7 - Beam with a bending moment applied at the extremity.

The convergence curves for the skeleton and domain refinement are plotted, respectively,
in Figure 3.34 and 3.35 for 𝑘 = 1, 2, and 3. Notice that 𝑘 = 3 is numerically equal to
the analytical solution, whilst for 𝑘 = 1 and 2 the rates of convergence are equal to 𝑘+ 1
for the 𝐿2 norm and 𝑘 for the energy norm. Details of the error values can be seen in
Appendix A - Table A.9.
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Figure 3.34: Example 7 - Energy and 𝐿2 errors for the two-dimensional Elasticity problem using a single
𝑆-element, for 𝑘 = 1, 2, 3 and ℎ = 21−ℓ, ℓ = 0, 1, 2.
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Figure 3.35: Example 7 - Energy and 𝐿2 errors for the two-dimensional Elasticity problem using 𝑛 × 𝑛
𝑆-elements, for 𝑘 = 1, 2, 3 and ℎ = 2/𝑛, 𝑛 = 2ℓ and ℓ = 0, ..., 3.

Example 8 - Three-dimensional cantilever beam

This example is a cantilever beam subjected to an end-shear force 𝐹 . The beam configu-
ration is shown in Fig. 3.36, in which 𝑎 = 0.5, 𝑏 = 0.5, 𝐿 = 5. The analytical solution is
given by Bishop (2014) for a beam that is oriented in the 𝑧 direction and loaded in the
negative 𝑦 direction. As well as in Bishop (2014), it is considered a force 𝐹 = 1, and an
isotropic material with Young modulus of 𝐸 = 1 and Poisson coefficient 𝜈 = 0.3.

Figure 3.36: Example 8 - Configuration of the 3D cantilever beam.

The mesh is composed of hexahedral 𝑆-elements, where each 𝑆-element is subpartitioned
into six pyramids, as well as in the uniform mesh of the 3D example in Section 3.4.1 (Fig.
3.22 - Hehahedral 𝑆-elements). The coarsest mesh (ℎ = 1) and the most refined mesh
(ℎ = 0.0625) are shown in Fig 3.37. A total of four refinement steps are applied, in which
the characteristic size of each mesh is ℎ = 2−ℓ, ℓ = 0, ..., 4.
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ℎ = 1 ℎ = 0.0625

Figure 3.37: Example 2 - 3D cantilever beam: coarsest mesh for ℎ = 1 (left), refined mesh with ℎ = 0.0625
and four refinement steps (right).

The post-processed displacement solution, for the most refined mesh (ℎ = 0.0625) and
considering a trace FE approximation of 𝑘 = 4, is plotted in Fig. 3.38 in the beam’s
deformed configuration.

Displacement

Figure 3.38: Example 2 - 3D cantilever beam: post-processed stress (left) and displacement (right) for
𝑘 = 4 and ℎ = 0.0625.

According to Bishop (2014), the stress state of the beam is equal to:

𝜎𝑥𝑥 = 𝜎𝑦𝑥 = 𝜎𝑦𝑦 = 0

𝜎𝑧𝑧 = 𝐹

𝐼
𝑦𝑧

𝜎𝑧𝑥 = 𝐹

𝐼

2𝑎2

𝜋2
𝜈

1 + 𝜈
Σ∞

𝑛=1
(−1)𝑛

𝑛2 sin (𝑛𝜋𝑥) sinh(𝑛𝜋𝑦)
cosh(𝑛𝜋)

𝜎𝑧𝑦 = 𝐹

𝐼

𝑏2 − 𝑦2

2 + 𝐹

𝐼

𝜈

1 + 𝜈

[︃
3𝑥2 − 𝑎2

6 − 2𝑎2

𝜋2 Σ∞
𝑛=1

(−1)𝑛

𝑛2 cos(𝑛𝜋𝑥/𝑎)cosh(𝑛𝜋𝑦/𝑎)
cosh(𝑛𝜋𝑏/𝑎)

]︃

and the corresponding displacement field is equal to:

𝑢𝑥 = −𝐹𝜈
𝐸𝐼

𝑥𝑦𝑧

𝑢𝑦 = 𝐹

𝐸𝐼

[︂
𝜈

2(𝑥2 − 𝑦2)𝑧 − 1
6𝑧

3
]︂

𝑢𝑧 = 𝐹

𝐸𝐼

[︂1
2𝑦(𝜈𝑥2 + 𝑧2) + 1

6𝜈𝑦
3 + (1 + 𝜈)(𝑏2𝑦 − 1

3𝑦
3) − 1

3𝑎
2𝜈𝑦

−4𝑎3𝜈

𝜋3 Σ∞
𝑛=1

(−1)𝑛

𝑛3 cos(𝑛𝜋𝑥/𝑎)sinh(𝑛𝜋𝑦/𝑎)
cosh(𝑛𝜋𝑏/𝑎)

]︃



103

For this experiment, the series is bounded for 𝑛 = 5.

In the convergence analysis, as already predicted theoretically and numerically observed in
the previous examples, the SBFEM approximation leads to optimal rates of convergence
- 𝑘 + 1 for the 𝐿2 norm and 𝑘 for the energy norm. The curves are plotted in Fig. 3.39
and summarized in Table A.10 in Appendix 1. The error values for 𝑘 = 5 were computed
although not plotted because the error for ℎ = 0.0625 could not be computed due to the
lack of RAM memory - this configuration results in a system of 3 million DOF.
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Figure 3.39: Example 1 - Energy and 𝐿2 errors for the three-dimensional Elasticity problem using 𝑛 ×
𝑛× 5𝑛 𝑆-elements, for 𝑘 = 1, ..., 4 and ℎ = 2/𝑛, 𝑛 = 2ℓ and ℓ = 0, ..., 4.

Example 9 - Lateral crack

In this example, a isotropic plate under plane stress conditions of dimensions Ω =
[−1; −1] × [1; 1], with a lateral crack, is evaluated. The analytical solution is given by,

𝑢(𝑥, 𝑦) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐾𝐼

2𝐺

√︂
𝑟

2𝜋 cos 𝜃2

(︃
𝜅− 1 + 2 sin2 𝜃

2

)︃
𝐾𝐼

2𝐺

√︂
𝑟

2𝜋 sin 𝜃2

(︃
𝜅+ 1 − 2 cos2 𝜃

2

)︃
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (3.4.-1)

where
𝐺 = 𝐸

2(1 + 𝜈) , 𝜅 = 3 − 𝜈

1 + 𝜈
,

and 𝐸 is the Young Modulus and 𝜈 the Poisson coefficient, equal to 10 GPa and 0.3,
respectively, and the stress intensity factor 𝐾𝐼 = 1. Chiong et al. (2014) and Song (2018)
show that the SIF can be obtained directly from the SBFEM approximated solution
through the expression{︃

𝐾𝐼

𝐾𝐼𝐼

}︃
= 𝐺

𝜅+ 1

√︃
2𝜋
𝑟0

{︃
𝑢𝐴𝑦(𝜉 = 1) − 𝑢𝐵𝑦(𝜉 = 1)
𝑢𝐴𝑥(𝜉 = 1) − 𝑢𝐵𝑥(𝜉 = 1)

}︃
(3.4.-1)

where 𝑢𝐴 and 𝑢𝐵 are the displacement values at the points 𝐴 and 𝐵 shown in Fig. 3.40
and 𝑟0 is the crack length. Notice that, in this example, to approximate the singularity,
the scaling center must be positioned at the crack tip.

First, a mesh composed of a single polygonal 𝑆-element is considered. The 𝑆-element
is a open polygon refined three times, leading to characteristic mesh width of ℎ = 2−ℓ,
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Figure 3.40: Mesh configuration with DOFs for 𝑘 = 2 and a single polygon 𝑆-element, with scaling center
in 𝑂 and open in 𝐴, 𝐵 - left: master element configuration, right: deformed element.

ℓ = 0, ..., 3 the subpartitions illustrated in Fig. 3.41. The post-processed solution for
𝑘 = 4 and ℎ = 1

8 is plotted in Fig. 3.42. In such a configuration, the error values for the
displacement and for the stress are respectively 8.32E-10 and 1.52E-07.

ℎ = 1 ℎ = 1
2 ℎ = 1

4 ℎ = 1
8

Figure 3.41: Example 9 - Single 𝑆-element refined two times for the lateral crack problem.

Displacement Stress

Figure 3.42: Example 9 - SBFEM approximation for displacement magnitude (left) and stress in 𝑥-
direction for a single 𝑆-element and ℎ = 1

8 (see Fig. 3.41).

Next, a coupled mesh SBFEM+FEM is considered, as shown in Fig. 3.43. As well as
the previous mesh configuration, the singularity at the crack tip is approximated using a
single 𝑆-element, but the smooth part of the solution is approximated with regular FE.
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For this configuration, two mesh refinements are performed leading to the characteristic
mesh width ℎ = 2−ℓ, ℓ = 1, 2, 3, as illustrated in Fig. 3.43. The 𝑆-element is an open
polygon embedded in the FEM mesh. For the FEM mesh, the FE elements along the
crack are disconnected in the mesh generation process.

ℎ = 1
2 ℎ = 1

4 ℎ = 1
8

Figure 3.43: Combined FEM+SBFEM mesh: FE - dark blue elements around the crack tip; and Scaled
Boundary FE - single element in the middle.

Optimal rates of convergence were obtained, namely 𝑘+ 1 for the 𝐿2 norm, and 𝑘 for the
semi-norm of energy. The numerical results are summarized in Appendix A - Table A.11.
Therefore, for FEM meshes, in which the computation of the solution near the singularity
can be computationally demanding, using only one scaled boundary element recovers
optimal rates of convergence. Coupled meshes SBFEM+FEM for fracture mechanics is
not a novel topic, but it was explored by Yang and Deeks (2007) and Ooi and Yang (2010).
Yet, the numerical results emphasize the novel theoretical results proven in this chapter.

SBFEM mesh and SBFEM+FEM convergence
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𝑘 = 2 - SBFEM
𝑘 = 2 - SBFEM+FEM

𝑘 = 3 - SBFEM
𝑘 = 3 - SBFEM+FEM

𝑘 = 4 - SBFEM
𝑘 = 4 - SBFEM+FEM

Figure 3.44: Example 5 - Energy and 𝐿2 errors for the SBFEM mesh.

Higher error values were obtained for the coupled mesh SBFEM+FEM. Yet, using SBFEM
in the crack tips of a FE mesh recovers the optimal rates of convergence for FEM simu-
lations. It is worth mentioning that the couple between the SBFEM and FEM meshes is
straightforward since the SBFEM boundary approximation is a FE trace approximation.
It means that the scaled boundary element is seen by the FEM mesh as a FE boundary
element, which is usual in FE simulations to impose boundary conditions. It is worth
mentioning that the SIF can be computed directly from the SBFEM solution using the
procedure presented by Chiong et al. (2014).

The approximated values for SIFs using the SBFEM were computed through Eq. 3.4.2.
The summary of the values for 𝐾𝐼 and the error values are displayed in Table 3.5. The
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lowest error value for 𝐾𝐼 was achieved for 𝑘 = 3, of order ≈ 10−7, using the two more re-
fined meshes, showing that not only the SBFEM provides an easier procedure to compute
the SIF but also accurate value. It is worth mentioning that, for the load configuration
displayed in Fig. 3.40, the mode 𝐾𝐼𝐼 = 0.

Table 3.5: SBFEM approximation for the SIF and error values ||𝐾𝑆𝐵
𝐼 −𝐾𝐼 || where 𝐾𝑆𝐵

𝐼 is the SBFEM
approximation for the SIF 𝐾𝐼 = 1, characteristic width of ℎ = 2/2ℓ, ℓ = 0, ..., 3, and 𝑘 = 1, ..., 4.

𝑘 = 1 𝑘 = 2
ℓ 𝐾𝑆𝐵

𝐼 Error 𝐾𝑆𝐵
𝐼 Error

0 0.995106 4.8936E-3 1.00288 2.8831E-3
1 1.00187 1.8742E-3 1.00031 3.1391E-4
2 1.00041 4.1411E-4 1.00003 3.1908E-5
3 1.0001 1.0082E-4 1.000001 5.3291E-7

𝑘 = 3 𝑘 = 4
ℓ 𝐾𝑆𝐵

𝐼 Error 𝐾𝑆𝐵
𝐼 Error

0 1.00026 2.5751E-4 0.999894 1.060E-4
1 0.999969 3.0749E-5 0.999994 5.7238E-6
2 0.999994 5.7236E-6 1.0000005 5.3266E-7
3 1.000001 5.3291E-7 1.0000005 5.3266E-7

3.5 Concluding remarks
This chapter introduces the SBFEM approximations as a subspace of a conglomerate
Duffy’s approximation space. The mathematical description of the SBFEM space allowed
the definition of a priori error estimates for the SBFEM for the energy norm. The ap-
proximation error using the SBFEM is divided into two portions: the error regarding the
trace approximation and due to the radial extension of the trace data into the interior
of a 𝑆-element. It is observed that even for problems with square root singularities, the
SBFEM reaches optimal rates of convergence since the SBFEM error is bounded by the
error of the FE trace space over the scaled boundary element Γℎ,𝑆.

The formal definition of the SBFEM local space, interpreted as a type of Duffy’s ap-
proximation space as well as the error estimation are outstanding topics in the literature,
contribution of this thesis and published in the paper: COELHO, K. O.; DEVLOO,
P. R. B.; GOMES, S. M. Error estimates for the scaled boundary finite element method.
Computer Methods in Applied Mechanics and Engineering, v. 379, p. 113765, 2021.

As it is going to be developed in this thesis, the definition of the SBFEM space subspace
of Duffy’s approximation space allows using the mathematical apparatus already existing
in the literature to extend the SBFEM formulation to approximate a variety of problems.
For instance, such a definition is the key to solving non-homogeneous PDEs with optimal
rates of convergence, as it is going to be explored in Chapter 4.
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Chapter 4

A bubble function approach to
approximate non-homogeneous PDE
with the SBFEM

As highlighted in the previous chapter, in the SBFEM, the polynomial approximation
exists only at 𝜕𝑆. The approximation inside 𝑆 is constructed by solving local Dirichlet
problems with vanishing force terms. Since the approximated solution is obtained through
the analytical solution of a homogeneous ODE computed based on the Dirichlet data and
a trace polynomial space, the SBFEM is considered a semi-analytical approach (SONG;
WOLF, 1997; SONG; WOLF, 1998; WOLF; SONG, 2000). For instance, as demonstrated
in the previous chapter for Laplace’s equation, the SBFEM approach approximates the
analytical solution inside S-elements by radial harmonic extensions of surface components
(COELHO; DEVLOO; GOMES, 2021).

Constructing the SBFEM space under a framework of homogeneous PDEs imposes lim-
itations to approximate equations with a force term. To overcome this issue, strategies
to solve non-homogeneous PDEs using SBFEM are available in the literature. The ear-
liest SBFEM formulation derived the approximation using the variation of parameters
technique (SONG; WOLF, 1999a). Next, Song (2006) applied the framework described
in Song and Wolf (1999a) to represent the particular solution of thermal analysis, using
the SBFEM, as a power function of the radial coordinate. Later, Ooi and co-authors
(see Ooi, Song and Natarajan (2017) and Ooi, Song and Natarajan (2016)) developed
a procedure to solve the non-homogeneous term through the addition of bubbles to the
standard SBFEM functions. However, the construction of these bubbles is complex and
increases the computational cost of simulation considerably. Moreover, the authors did
not verify the convergence for 3D simulations. Recently, Gravenkamp, Song and Zhang
(2020) applied a very simple quadratic bubble and obtained similar results as the previous
authors. However, in this paper considered only a simple force term. For complex body
loads, poor rates of convergence are expected.

This chapter proposes a novel procedure to approximate non-homogeneous PDEs using an
SBFEM-bubble function approach. This enrichment allows recovering the optimal rates of
convergence for non-homogeneous PDEs using SBFEM. Some improvements as compared
to the already existing bubble function formulation are addressed. First, in this paper,
the convergence analysis of bubble functions is extended to 3D domains, in contrast to the
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data in the literature that include only 2D problems (OOI; SONG; NATARAJAN, 2016;
OOI; SONG; NATARAJAN, 2017). Second, the advantage of the orthogonality property
proven in Coelho, Devloo and Gomes (2021), in which the SBFEM space is orthogonal to
a generic bubble approximation space in 𝑆, is explored to define a priori error estimates.

In addition, the orthogonality allows the partition of the SBFEM stiffness matrix for static
problems into submatrices associated with the boundary functions and internal functions,
thus reducing the computational cost. This construction process of the bubbles is straight-
forward since it is a simple linear combination of the SBFEM basis functions. The in-
tegration of stiffness associated with the bubble functions can be done semi-analytically
similarly to the stiffness matrix associated with the boundary shape functions. The ap-
proach presented also demonstrates that SBFEM computations lead to optimal boundary
values and that internal functions can be computed selectively, in regions of interest.

As already proven in the previous chapter, the SBFEM reaches optimal rates of conver-
gence for homogeneous PDEs, even for problems with square-root singularity. However,
the mathematical description of physical problems often leads to the presence of a force
term. In this case, using SBFEM without any enrichment or modification leads to a loss of
convergence since SBFEM is an operator-adapted method that constructs basis functions
without considering the force term, as previously shown in this thesis. The numerical
results showing the loss of convergence are illustrated in Section 4.5 - Numerical tests,
Example 1.

4.1 Model problem: Composing the full SBFEM space
As well as in the previous chapter, two model problems are presented, namely: the Poisson
equation and the Elasticity problem. Later, the full approximation space is composed by
adding bubble functions. Before introducing the problem, some definitions are useful.

Let a domain Ω ⊂ R𝑑, 𝑑 = 2, 3 be partitioned into geometric 𝑆-elements 𝒯 ℎ = {𝑆}. If ℎ
is the characteristic mesh size, given by the size of the Γℎ,𝑆 facets. Again, the 𝑆-element
can have an arbitrary number of facets, and each 𝑆-element is subdivided into Duffy’s
elements (see Chapter 3 - Fig. 3.6). For such a geometric partition, define:

• B𝑘(𝑆): local scalar SBFEM bubble function space for a Poisson problem. This
approximation space is a subspace of the scalar Duffy’s bubble space 𝒟0

𝑘(𝑆) = {𝑤 ∈
𝒟𝑘(𝑆) 𝑠.𝑡. 𝑤|𝜕𝑆= 0, 𝑆 ∈ 𝒯 ℎ}, and

Bℎ
𝑘 = {𝑤 ∈ 𝐻1(Ω); 𝑤|𝑆∈ Bℎ

𝑘(𝑆), 𝑆 ∈ 𝒯 ℎ};

• B𝑘(𝑆): local vector-valued SBFEM bubble function space for an Elasticity prob-
lem. B𝑘(𝑆) is a subspace of the scalar Duffy’s bubble space 𝒟0

𝑘(𝑆) = {𝑤 ∈
𝒟𝑘(𝑆) 𝑠.𝑡. 𝑤|𝜕𝑆= 0, 𝑆 ∈ 𝒯 ℎ} and

Bℎ
𝑘 = {𝑤 ∈ 𝐻1(Ω,R𝑑); 𝑤|𝑆∈ Bℎ

𝑘(𝑆), 𝑆 ∈ 𝒯 ℎ};

• V𝑘(𝑆): scalar SBFEM function space for a Poisson problem, composed of the direct
sum of the bubble-free and bubble function spaces, i.e. S𝑘(𝑆) ⊕B𝑘(𝑆), where S𝑘(𝑆)
is the bubble-free SBFEM space for harmonic problems, defined in Chapter 3 -
(3.2.3) and

Vℎ
𝑘 = {𝑣 ∈ 𝐻1(Ω); 𝑣|𝑆∈ Vℎ

𝑘(𝑆), 𝑆 ∈ 𝒯 ℎ};
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• V𝑘(𝑆): vector-valued SBFEM function space for Elasticity, composed of the direct
sum of vector-valued bubble-free and bubble approximation spaces S𝑘(𝑆) ⊕ B𝑘(𝑆),
where S𝑘(𝑆) is the vector-valued bubble-free SBFEM space for Elasticity defined in
Chapter 3 - (3.2.4) and

Vℎ
𝑘 = {𝑤 ∈ 𝐻1(Ω;R𝑑); 𝑤|𝑆∈ Vℎ

𝑘(𝑆), 𝑆 ∈ 𝒯 ℎ}.

These spaces will be formally defined in this chapter.

A brief overview of Vℎ
𝑘 and Vℎ

𝑘 properties

The components of the bubble-enriched scalar Vℎ
𝑘 and vector-valued Vℎ

𝑘 SBFEM approx-
imation spaces has an intrinsic orthogonality, explored in Chapter 3 (Proposition 3.3.1).
Namely, Vℎ

𝑘 and Vℎ
𝑘 has energy-orthogonality properties: Bℎ

𝑘 is orthogonal to Sℎ
𝑘 and Bℎ

𝑘

is orthogonal to Sℎ
𝑘, both in the energy norm. As shall be clarified later, these properties

are crucial and have two main advantages

1. Recovery of optimal convergence rates measured with energy-norm, as proved for
SBFEM solutions of harmonic and Elastic problems (respectively Theorem 3.3.1
and 3.3.2) in Chapter 3. This proof is extended to both models with non-vanishing
force terms in this chapter.

2. It is possible to decouple the problems into two kinds of approximations: of skeleton
type, for bubble-free shape functions, and of interior type, otherwise. Namely, the
stiffness matrix can be generically written as

𝐾 =
(︃
𝐾𝜕 0
0 𝐾𝑏

)︃
. (4.1.0)

In other words, any static stiffness matrix using Vℎ
𝑘 and Vℎ

𝑘 has a block decomposi-
tion, where 𝐾𝜕 refers to the usual stiffness matrix for the SBFEM approximations
((3.2.3) - Chapter 3) computed using Sℎ

𝑘 for the Poisson and Sℎ
𝑘 for Elasticity prob-

lems. The block matrix 𝐾𝑏 is computed through the extra bubble functions in the
spaces Bℎ

𝑘 for Poisson and Bℎ
𝑘 for Elasticity problems.

4.1.1 Poisson problem
Let a Poisson problem be written as

Δ𝑢 = 𝑓, 𝑢 ∈ Ω
𝛾(𝑢) = 𝑢𝐷, on 𝜕Ω

where 𝑓 is the source term, 𝑢𝐷 ∈ 𝐻1/2(𝜕Ω) is the Dirichlet boundary conditions and
𝛾 : 𝐻1(Ω) → 𝐻1/2(𝜕Ω) is the usual trace operator. The variational formulation is written
in an analogous procedure to Chapter 3 and defines the discrete form as the following.

The variational statement is expressed as: find 𝑢ℎ(𝑥) ∈ Vℎ
𝑘 ∈ 𝐻1(Ω).∫︁

Ω
∇𝑢ℎ · ∇𝑣ℎ 𝑑Ω =

∫︁
Ω
𝑓𝑣ℎ 𝑑Ω, ∀ 𝑣ℎ ∈ Vℎ,0

𝑘

𝑢ℎ|𝜕Ω = ℐℎ
𝑘𝑢𝐷

where Vℎ,0
𝑘 = Vℎ

𝑘 ∩𝐻1
0 (Ω).
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4.1.2 Elasticity problem
Considering an isotropic material, the symmetry of the stress and strain tensor, the second
model problem is the elasticity problem given by

−∇ · 𝜎 = 𝑓, in Ω
𝜎 = 𝐷 𝜖(𝑢), in Ω

𝛾(𝑢) = 𝑢𝐷, on Γ.

where 𝐷 is the second-order constitutive tensor, 𝜎 and 𝜖(𝑢) are the usual stress and strain
tensors defining the constitutive equation, 𝑓 ∈ [𝐿2(Ω)]2 is the body force, 𝑢𝐷 ∈

[︁
𝐻1/2(Γ)

]︁𝑑
is the Dirichlet boundary input, and 𝛾(𝑢) stating for the vector version of the trace
operator in [𝐻1(Ω)]𝑑. Moreover, 𝑢𝐷 is assumed to be sufficiently smooth for the definition
of the trace interpolant ℐℎ

𝑘𝑢𝐷.

The strain vector is given by 𝜖 = {𝜖11, 𝜖22, 𝜖33, 2𝜖12, 2𝜖23, 2𝜖13}𝑇 where

𝜖𝑖𝑗 = 1
2

(︃
𝜕𝑢𝑖

𝜕𝑥𝑗

+ 𝜕𝑢𝑗

𝜕𝑥𝑖

)︃
, 𝑖, 𝑗 = 1, ..., 3

and´

𝐷 = 𝐸(1 + 𝜈)(1 − 2𝜈)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − 𝜈 𝜈 𝜈 0 0 0
𝜈 1 − 𝜈 𝜈 0 0 0
𝜈 𝜈 1 − 𝜈 0 0 0
0 0 0 1−2𝜈

2 0 0
0 0 0 0 1−2𝜈

2 0
0 0 0 0 0 1−2𝜈

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

For simplicity, only Dirichlet boundary conditions 𝑢|Γ= 𝑢𝐷 are considered. The weak
statement is obtained by replacing (4.1.2) in (4.1.2), multiplying it by a test function 𝑣,
and applying the Divergence theorem. Thus, the variational statement is written as: Find
𝑢ℎ ∈ Vℎ

𝑘 such that ∫︁
Ω
𝐷 𝜖(𝑢ℎ) · 𝜖(𝑣ℎ) 𝑑Ω =

∫︁
Ω
𝑓 𝑣ℎ 𝑑Ω, ∀ 𝑣 ∈ V0,ℎ

𝑘

𝑢|Γ = ℐℎ
𝑘𝑢𝐷

where V0,ℎ
𝑘 = Vℎ

𝑘 ∩𝐻1
0 (Ω,R𝑑).

4.2 SBFEM bubble spaces

4.2.1 Scalar bubble function space Bℎ𝑘(𝑆)
As remarked in the previous chapter, Duffy’s functions 𝜑 ∈ 𝒟𝑘(𝑆) are represented by the
expression

𝜑(𝑥) = 𝜌(𝜉)𝑁𝑆
𝑘 (𝑥𝑏) · 𝑎, (4.2.0)

in each sector 𝐾 ∈ 𝒫𝑆, where 𝒫𝑆 = ∪𝐾∈𝒯 𝑆 is the conglomerate partitions 𝒯 𝑆 of 𝑆.
These functions are represented in terms the local parametrizations 𝑥𝑏 = 𝐹𝐿(𝜂) ∈ 𝐿, and
𝑥 = 𝐹𝐾(𝜉, 𝜂) ∈ 𝐾.
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Bubble functions in 𝒟0
𝑘(𝑆) occur by taking radial components verifying 𝜌(𝜉 = 1) = 0.

For the current thesis, define subspaces Bℎ
𝑘(𝑆) ⊂ 𝒟0

𝑘(𝑆) by taking the following bubble
functions:

1. Bubble shape functions 𝜙𝑚,𝑛 ∈ 𝒟0,ℎ
𝑘,𝑚(𝑆)

𝜙𝑚,𝑛(𝑥) = 𝜌𝑏
𝑚(𝜉)𝑁̂𝑛,𝑆

𝑘 (𝜂) (4.2.0)

with polynomial radial components

𝜌𝑏
𝑚(𝜉) = 𝜉𝑚−1 − 𝜉𝑚. (4.2.0)

The space 𝒟0,ℎ
𝑘,𝑚(𝑆) is a finite-dimensional subspace of bubble functions in 𝒟ℎ

𝑘,𝑘(𝑆)
(i.e. 𝒟0,ℎ

𝑘,𝑚(𝑆) ⊂ 𝒟ℎ
𝑘,𝑘(𝑆)). Thus, we have a finite-dimensional subspace

span{𝜙𝑚,𝑛; 0 ≤ 𝑛 < 𝒩 𝑆, 1 ≤ 𝑚 ≤ 𝑘} for all 𝑘 > 1 (4.2.0)

For 𝑘 = 1 the bubble function is a simple hat function given by 𝜙1,0 = (1 − 𝜉) ∈
𝒟0,ℎ

𝑘,𝑚(𝑆).

Examples: Some examples of bubble functions in 𝒟0,ℎ
𝑘,𝑚(𝑆) using polynomial radial

components are illustrated in Fig. 4.1 for a square S-element subdivided into four
triangles meeting at the center. The plots are for different polynomial degrees (𝑏, 𝑟)
used over the scaled boundary 𝑏 ≤ 2 and for the radial component 0 ≤ 𝑟 ≤ 2 are
indicated.

(0, 1) (1, 2) (2, 2)

Figure 4.1: Quadrilateral 𝑆-element subdivided into four triangles meeting at the center: illustrations
of bubble functions in Bℎ

2 (𝑆) with polynomial radial components; (𝑏, 𝑟) indicates the polynomial degrees
used over the scaled boundary 𝑏 and for the radial component 𝑟.

2. Bubble shape functions 𝜙𝑖 ∈ 𝒟0,ℎ
𝑘 (𝑆):

𝜙𝑏
𝑖(𝑥) = 𝜌𝑏

𝑖(𝜉)𝑁̂
𝑆

𝑘 (𝜂) · 𝐴𝑖, (4.2.0)

where
𝜌𝑏

𝑖(𝜉) =
(︁
𝜉𝑘 − 𝜉𝜆𝑖−0.5(𝑑−2)

)︁
, (4.2.0)
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𝜆𝑖, 𝐴𝑖 being pairs of eigenvalues and eigenvectors associated to the bubble-free
SBFEM shape functions 𝜑𝑖 ∈ Sℎ

𝑘(𝑆), for non-integer 𝜆𝑖 − 0.5(𝑑 − 2) exponents
and integer exponents such that 𝜆𝑖 − 0.5(𝑑− 2) > 𝑘.

The idea is to add bubble shape functions in which the exponents 𝜉𝜆𝑖 are not included
in 𝒟0,ℎ

𝑘,𝑘(𝑆), and then compose the full approximation space.

Examples: Again, for the same square S-element subdivided into four triangles meeting
at the center, bubble functions in Bℎ

2(𝑆) associated to the non-integer eigenvalues 𝜆 =
3.26599 and 𝜆 = 4.3589 are plotted in Fig. 4.2. The associated SBFEM basis function in
Sℎ

𝑘(𝑆) were plotted in Chapter 3 - Fig. 3.8.

𝜆 = 3.26599 𝜆 = 3.26599 𝜆 = 4.3589

Figure 4.2: Quadrilateral 𝑆-element subdivided into four triangles: illustrations of some bubble scaling
functions in B2(𝑆) associated to the non-integer eigenvalues 𝜆 = 3.26599 and 𝜆 = 4.3589.

4.2.2 Vector-valued bubble function space Bℎ𝑘(𝑆)
Similar definitions hold for the vector-valued bubble spaces Bℎ

𝑘(𝑆), recalling that now the
boundary components should be spanned by vector-valued trace shape functions 𝑁𝑆

𝑘
(𝑥𝑏).

As highlighted in the previous chapter, vector-valued Duffy’s functions 𝜑 ∈ 𝒟𝑘(𝑆) are
such that

𝜑(𝑥) = 𝜌(𝜉)𝑁̂𝑆

𝑘
(𝜂) · 𝑎𝑒

We keep in Bℎ
𝑘(𝑆) the functions in 𝒟0

𝑘(𝑆) with the radial polynomial components 𝜌𝑚 as
shown in Eqs. (1) and (2). So the following bubble functions 𝜙 ∈ Bℎ

𝑘 ⊂ 𝒟𝑘(𝑆) apply:

1. Bubble shape functions 𝜙
𝑚,𝑛

∈ 𝒟0,ℎ
𝑘,𝑚(𝑆)

𝜙
𝑚,𝑛

(𝑥) = 𝜌𝑏
𝑚(𝜉)𝑁̂𝑛,𝑆

𝑘 (𝜂) (4.2.0)

with polynomial radial components where 𝜌𝑏
𝑚(𝜉) = 𝜉𝑚−1 − 𝜉𝑚 is the same of Eq. 2.

Analogously to Eq. (1), we have a finite dimensional subspace span{𝜙
𝑚,𝑛

; 0 ≤ 𝑛 <

𝒩 𝑆𝑒
, 1 ≤ 𝑚 ≤ 𝑘} for 𝑘 > 1. For 𝑘 = 1 the bubble function is a hat function given

by 𝜙1,0 = (1 − 𝜉)𝑁̂𝑆

0 (𝜂) ∈ 𝒟0,ℎ
𝑘,𝑚(𝑆).
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2. Bubble shape functions 𝜙
𝑖

∈ 𝒟0,ℎ
𝑘 (𝑆):

𝜙
𝑖
(𝑥) = 𝜌𝑒,𝑏

𝑖 (𝜉)𝑁𝑆
𝑘
(𝑥𝑏) · 𝐴𝑒

𝑖 , (4.2.0)

where
𝜌𝑒,𝑏

𝑖 (𝜉) =
(︁
𝜉𝑘 − 𝜉𝜆𝑒

𝑖 −0.5(𝑑−2)
)︁
, (4.2.0)

𝜆𝑒
𝑖 , 𝐴

𝑒
𝑖 being pairs of eigenvalues and eigenvectors associated to the bubble-free

SBFEM shape functions 𝜑𝑖 ∈ Sℎ
𝑘(𝑆), for non-integer 𝜆𝑒

𝑖 − 0.5(𝑑 − 2) exponents
and integer exponents such that 𝜆𝑒

𝑖 − 0.5(𝑑 − 2) > 𝑘. It is important to highlight
that now the eigenvalues and eigenvectors 𝜆𝑒

𝑖 , 𝐴
𝑒
𝑖 refer to those obtained for the

construction of vector-valued SBFEM shape functions of Sℎ
𝑘(𝑆) used for elasticity

problems.

4.3 Convergence analysis
The proof the optimal convergence rates of the proposed approximation is based on the
premises:

i) 𝒟𝑘,𝑘(𝑆) is convergent;

ii) Duffy polynomial space 𝒟𝑘,𝑘(𝑆) is included in V𝑘(𝑆).

Thus, V𝑘(𝑆) is also convergent.

Premise i) is already proven in Chapter 3 - Proposition 3.3.2. This Chapter, it remains
to prove the inclusion of premise ii).

Proposition 4.3.1. Duffy’s finite-dimensional space of scalar functions is included in
the full SBFEM space Vℎ

𝑘(𝑆). In other words, 𝒟ℎ
𝑘,𝑘(𝑆) ⊂ Vℎ

𝑘(𝑆), where Vℎ
𝑘(𝑆) = Bℎ

𝑘(𝑆) ⊕
Sℎ

𝑘(𝑆).

Proof. It is clear that 𝒟ℎ
𝑘,𝑘(𝑆) = 𝒟𝜕,ℎ

𝑘,𝑘 (𝑆) ⊕ 𝒟0,ℎ
𝑘,𝑘(𝑆), where 𝒟𝜕,ℎ

𝑘,𝑘 (𝑆) ⊂ 𝒟ℎ
𝑘,𝑘(𝑆) denotes

the subspace with non-vanishing traces over the scaled boundary 𝜕𝑆. As aforementioned
𝒟0,ℎ

𝑘,𝑘(𝑆) = span {𝜙𝑚,𝑛; 1 ≤ 𝑛 ≤ 𝒩 𝑆, 0 ≤ 𝑚 ≤ 𝑘} ⊂ Vℎ
𝑘(𝑆). Thus, it remains to show

that 𝒟𝜕,ℎ
𝑘,𝑘 (𝑆) ⊂ Vℎ

𝑘(𝑆) as well. In fact, since the eigenvectors 𝐴𝑖 form a set of 𝒩 𝑆 linearly
independent vectors, then

𝒟𝜕,ℎ
𝑘,𝑘 (𝑆) = span {𝜓𝑚,𝑖; 1 ≤ 𝑖 ≤ 𝒩 𝑆, 0 ≤ 𝑚 ≤ 𝑘},

with basis functions of the form 𝜓𝑚,𝑖 = 𝜉𝑚 𝐴𝑖 · 𝑁𝑆
𝑘 (𝑥𝑏). Let 𝜑𝑖 ∈ Sℎ

𝑘(𝑆) be a bubble-free
shape function associated to a pair of eigenvalues and eigenvectors 𝜆𝑖 and 𝐴𝑖 such that
𝜆𝑖 − 0.5(𝑑− 2) ≤ 𝑘 is non-integer or 𝜆𝑖 − 0.5(𝑑− 2) > 𝑘. Thus, 𝜓𝑚,𝑖 is represented in the
form

𝜓𝑚,𝑖 = (𝜉𝑚 − 𝜉𝑘)𝐴𝑖 ·𝑁𝑆
𝑘 (𝑥𝑏) + 𝜑𝑖 − 𝜑𝑖

=
[︁
(𝜉𝑚 − 𝜉𝑘)𝐴𝑖 ·𝑁𝑆

𝑘 (𝑥𝑏) + 𝜑𝑖

]︁
+ (𝜉𝑘 − 𝜉𝜆𝑖−0.5(𝑑−2))𝐴𝑖 ·𝑁𝑆

𝑘 (𝑥𝑏)

=
[︁
(𝜉𝑚 − 𝜉𝑘)𝐴𝑖 ·𝑁𝑆

𝑘 (𝑥𝑏) + 𝜑𝑖

]︁
+ 𝜙𝑖.

Consequently, 𝜓𝑚,𝑖 ∈
[︁
𝒟0,ℎ

𝑘,𝑘(𝑆) + Sℎ
𝑘(𝑆)

]︁
+ Bℎ

𝑘(𝑆) ⊂ Vℎ
𝑘(𝑆).
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Proposition 4.3.2. The finite-dimensional Duffy’s space 𝒟ℎ
𝑘,𝑘(𝑆) is included in the SBFEM

space Vℎ
𝑘(𝑆). In other words, 𝒟ℎ

𝑘,𝑘(𝑆) ⊂ Vℎ
𝑘(𝑆), where Vℎ

𝑘(𝑆) = Bℎ
𝑘(𝑆) ⊕ Sℎ

𝑘(𝑆).

Proof. The proof is analogous to Proposition 4.3.1.

Theorem 4.3.1. Let 𝒯 ℎ = {𝑆} be a family of polytopal 𝑆-elements partitions of Ω, Vℎ
𝑘

and 𝒟ℎ
𝑘,𝑘 be the SBFEM and Duffy’s polynomial spaces based on 𝒯 ℎ. Also, consider the

projection-based interpolant Π1
𝑘 : 𝐻1(𝑆) → 𝒟ℎ

𝑘,𝑘. Suppose the same trace interpolant is
used in the definitions of 𝑢ℎ ∈ Vℎ

𝑘 and Π1
𝑘(𝑢) ∈ 𝒟ℎ

𝑘,𝑘, and the exact solution 𝑢 ∈ 𝐻1 of
the model problem (4.1.1) is sufficiently regular for them to make sense. If 𝑢ℎ ∈ Vℎ

𝑘 is the
associated Galerkin SBFEM approximation, then

||𝑢− 𝑢ℎ||𝐻1(Ω) ≤ ||𝑢− Π1
𝑘(𝑢)||𝐻1(Ω)≤ 𝑐ℎ𝑘|𝑢|𝐻2 ,

||𝑢− 𝑢ℎ||𝐿2(Ω) ≤ ||𝑢− Π1
𝑘(𝑢)||𝐿2(Ω)≤ 𝑐ℎ𝑘+1|𝑢|𝐻2 .

Proof. Chapter 3 - Proposition 3.3.2, P𝑘,𝑘(𝒫ℎ) ⊂ 𝒟ℎ
𝑘,𝑘(𝒫ℎ) ⊂ 𝐻1(𝒫ℎ). From Ern and

Guermond (2013, Proposition 1.134), there exists a constant 𝑐 such that

||𝑢− Π1
𝑘(𝑢)||𝐻1≤ 𝑐ℎ𝑘|𝑢|𝐻2 ,

For the 𝐿2-estimate, (ERN; GUERMOND, 2013, Theorem 3.18),

||𝑢− Π1
𝑘(𝑢)||≤ 𝑐ℎ𝑘+1|𝑢|𝐻2 .

Using Propositions 4.3.1 and 4.3.2, i.e. 𝒟ℎ
𝑘,𝑘 ⊂ Vℎ

𝑘, and Galerkin orthogonality,

||𝑢− 𝑢ℎ||𝐻1(Ω) ≤ ||𝑢− Π1
𝑘(𝑢)||𝐻1(Ω),

||𝑢− 𝑢ℎ||𝐿2(Ω) ≤ ||𝑢− Π1
𝑘(𝑢)||𝐿2(Ω),

leading to (4.3.1) and (4.3.1).

4.4 Computational implementation aspects
The algorithm to approximate PDEs using bubble functions requires just a small addition
compared to a usual SBFEM code, such as the algorithm provided by Song (2018). The
stiffness matrix related to the bubble functions, 𝐾𝑏 should be computed only if the source
term does not vanish (see Algorithm 1) and its respective additional term 𝑢𝑏 be considered
in the post-processed solution. It means that the code structure does not need to be
modified and the bubbles are incorporated in a separate method. This section shows how
𝐾𝑏 and 𝐹 are computed.

Algorithm 1 SBFEM local problem
1: for all 𝑆 in 𝒯 ℎ do
2: Compute 𝐸0, 𝐸1, 𝐸2 and solve the eigenvalue problem;
3: Compute 𝐾𝜕 = 𝑄 𝐴−1;
4: if 𝑓 ̸= 0 then

Compute 𝐾𝑏 and 𝐹 ;
5: end if
6: end for
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The methods to compute 𝐾𝑏 and 𝐹 , as well as the post-processing was implemented in an
open-source finite element library, NeoPZ1 (DEVLOO, 1997). The high abstraction and
its implementation in small blocks allowed reusability through inheritance and templates.
NeoPZ was already performing simulations to approximate homogeneous PDEs using
SBFEM. The code was extended to include the bubble functions without any modification
of the "standard" code. Since the code is scalable due to the orthogonality, parallelization
techniques can be implemented. For this thesis, local static condensations per element
are performed to reduce the global DOF.

4.4.1 Stiffness matrix and force vector
Poisson Problem

Although the stiffness matrix for the SBFEM approximation is usually computed as 𝐾𝜕 =
𝑄 𝐴−1, Chiong (2014) presents a different procedure to compute it. Let 𝜑𝑖 ∈ Sℎ

𝑘(𝑆) be
the SBFEM shape functions for a harmonic problem as defined in (4.2.1) and grouped in
the vector form 𝜑 = [𝜑𝑖] such that

𝜑 = 𝑁̂
𝑆

𝑘 (𝜂)𝐴 diag(𝜉𝜆−0.5(𝑑−2)),

in which 𝜆 = [𝜆𝑖] and diag(𝜉𝜆−0.5(𝑑−2)) is a diagonal matrix. If 𝑢𝑆 is the Dirichlet values
of 𝑢 over Γℎ,𝑆, the approximate solution for a Poisson problem with null source term is
given by 𝑢 = 𝜑 · 𝑐, where 𝑐 = 𝑢𝑆𝐴−1, then

𝑢 = 𝑁̂
𝑆

𝑘 (𝜂)𝐴 diag(𝜉𝜆−0.5(𝑑−2))𝐴−𝑇 · 𝑢𝑆

or also 𝑢 = Φ · 𝑢𝑆, where

Φ̂ = 𝑁̂
𝑆

𝑘 (𝜂)𝐴 diag(𝜉𝜆−0.5(𝑑−2))𝐴−𝑇 (4.4.0)

The stiffness matrix of a Poisson problem is computed through the relationship

𝐾𝜕 =
∫︁

𝑆
∇Φ̂

𝑇

𝑖 ∇Φ̂𝑗 𝑑𝑆 (4.4.0)

Chiong (2014) expanded the integral above, obtaining a relationship for 𝐾𝜕 as

𝐾𝜕 = 𝐴−1𝐾𝜕,0𝐴−𝑇
𝑗

(4.4.0)

where

𝐾𝜕,0 =
∫︁ 1

0
𝜉𝑑−1𝜌′(𝜉)𝐴𝑇𝐸0 𝐴 𝜌′(𝜉) + 𝜉𝑑−2𝜌′(𝜉)𝐴𝑇𝐸1 𝐴 𝜌(𝜉)

+ 𝜉𝑑−2𝜌(𝜉)𝐴𝑇𝐸𝑇
1𝐴 𝜌′(𝜉) + 𝜉𝑑−3𝜌(𝜉)𝐴𝑇𝐸2 𝐴 𝜌(𝜉) 𝑑𝜉.

and 𝜌(𝜉) = diag(𝜉𝜆−0.5(𝑑−2)). Our goal is to write an equation to compute the stiffness
matrix for the bubble function, 𝐾𝑏

𝑖𝑗, similar to (3.2.3).

1https://github.com/labmec/neopz
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The bubble functions can be written in a similar way to the usual SBFEM basis functions
𝜑(𝑥) = 𝜌(𝜉)𝑁𝑆

𝑘 (𝑥𝑏) · 𝐴𝑖, as follows

𝜙(𝑥) = 𝑁̂
𝑆

𝑘 (𝜂)𝜌𝑏(𝜉) · 𝐴𝑏

where 𝜌𝑏(𝜉) can be either

𝜌𝑏
𝑚(𝜉) = 𝜉𝑚 − 𝜉𝑚−1, ∀ 1 < 𝑚 ≤ 𝑘, or,
𝜌𝑏

𝑖(𝜉) = 𝜉𝑘 − 𝜉𝜆𝑖−0.5(𝑑−2),

for all non-integer 𝜆𝑖 − 0.5(𝑑− 2) or integer exponents such that 𝜆𝑖 − 0.5(𝑑− 2) > 𝑘. 𝐴𝑏

is a vector of multiplier coefficients of 𝑁̂𝑆

𝑘 (𝜂) such that 𝜙 can be either Eqs. (1) or (2).
In other words, 𝐴𝑏 = 𝐴𝑖 when 𝜌𝑏(𝜉) = 𝜌𝑏

𝑖(𝜉) and 𝐴𝑏 is such that 𝐴𝑏 · 𝑁̂
𝑆

𝑘 (𝜂) = 𝑁̂𝑆
𝑘,𝑖(𝜂) for

𝜌𝑏(𝜉) = 𝜌𝑏
𝑚(𝜉).

Notice that 𝜌𝑏(𝜉) can be written as an inner product of two vectors as

𝜌𝑏
𝑚(𝜉) =

(︁
𝜉𝑚 𝜉𝑚−1

)︁(︃ 1
−1

)︃
, 𝜌𝑏

𝑖(𝜉) =
(︁
𝜉𝑘 𝜉𝜆𝑖−0.5(𝑑−2)

)︁(︃ 1
−1

)︃
,

Finally, grouping all bubble functions in a vector leads to

Φ̂
𝑏(𝜉) = 𝑁̂

𝑆

𝑘 (𝜂)𝐴𝑏 𝜌𝑏(𝜉) 𝑇 𝑇 , (4.4.-1)

where 𝐴𝑏, 𝜌𝑏(𝜉), and 𝑇 gathers respectively 𝐴𝑏, 𝜌𝑏(𝜉), and 𝑡.

Similarly to Eq. (3.2.3), the components of the matrix 𝐾𝑏 for a 𝑆-element through the
relationship are computed

𝐾𝑏 =
∫︁

𝑆
∇Φ𝑏

𝑖

𝑇 ∇Φ𝑏
𝑗 𝑑𝑆.

Taking advantage of the similarity between the SBFEM basis functions Eq. (3.2.3) and
the bubble functions, one can write

𝐾𝑏 = 𝑇 𝐾𝑏
0 𝑇

𝑇

where

𝐾𝑏
0 =

∫︁ 1

0
𝜉𝑑−1𝜌𝑏′(𝜉)𝐴𝑇

𝑏
𝐸0 𝐴𝑏

𝜌𝑏′(𝜉) + 𝜉𝑑−2𝜌𝑏′(𝜉)𝐴𝑇
𝑏
𝐸1 𝐴𝑏

𝜌𝑏(𝜉)

+ 𝜉𝑑−2𝜌𝑏(𝜉)𝐴𝑇
𝑏
𝐸𝑇

1𝐴𝑏
𝜌𝑏′(𝜉) + 𝜉𝑑−3𝜌𝑏(𝜉)𝐴𝑇

𝑏
𝐸2 𝐴𝑏

𝜌𝑏(𝜉) 𝑑𝜉.

Instead of performing integration by parts, the integral Eq. (3.2.3) is solved analytically.

The force vector is computed numerically accordingly to the expression

𝐹 𝜕 =
∫︁

𝑆
𝑓Φ𝑖 𝑑𝑆, 𝐹 𝑏 =

∫︁
𝑆
𝑓Φ𝑏

𝑖 𝑑𝑆,

where 𝐹 𝜕 is the contribution of the SBFEM basis functions and 𝐹 𝑏 is composed of the
bubble functions, then,

𝐹 =
{︃
𝐹 𝜕

𝐹 𝑏

}︃
. (4.4.-2)
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Elasticity

This procedure can be easily extended for Elasticity problems since similar equations are
obtained. The approximated solution for null body loads is given by

𝑢𝜕 = Φ𝑒 · 𝑢𝑆 (4.4.-2)

where
Φ̂

𝑒 = 𝑁̂
𝑆

𝑘
(𝜂)𝐴𝑒diag(𝜉𝜆𝑒−0.5(𝑑−2))𝐴−𝑇 (4.4.-2)

and the component of the approximation involving the bubble function

𝑢𝑏 = Φ𝑏,𝑒 · 𝑢𝑆 (4.4.-2)

where
Φ̂

𝑏,𝑒 = 𝑁̂
𝑆

𝑘
(𝜂)𝐴𝑏,𝑒𝜌𝑏,𝑒(𝜉)𝑇 𝑒−𝑇 (4.4.-2)

The main differences between Φ𝑏,𝑒 and Φ𝑏 (Eqs. (3.2.3) and (3.2.3)) is the eigenvalues
and eigenvectors utilized to compose the bubbles and the dimension of the function space.

Knowing that the stiffness matrix for the isotropic Elastic problem is given by

𝐾𝜕 =
∫︁

𝑆

[︁
𝐷𝜖(Φ𝑒

𝑖
)
]︁𝑇
𝜖(Φ𝑒

𝑗
) 𝑑𝑆

𝐾𝑏 =
∫︁

𝑆

[︁
𝐷𝜖(Φ𝑏,𝑒

𝑖
)
]︁𝑇
𝜖(Φ𝑏,𝑒

𝑗
) 𝑑𝑆

Taking advantage of the similarities between the expressions for 𝜖(Φ𝑒
𝑖
) and ∇Φ𝑖 (see Table

3.4 in Chapter 3), the stiffness matrix can be written in an analogous way to (3.2.3) as

𝐾𝑏,𝑒 = 𝑇 𝑒𝐾𝑏,𝑒
0 𝑇 𝑒𝑇 (4.4.-2)

where

𝐾𝑏,𝑒
0 =

∫︁ 1

0
𝜉𝑑−1𝜌𝑏′(𝜉)𝐴𝑒

𝑏
𝑇𝐸𝑒

0 𝐴
𝑒
𝑏
𝜌𝑏′(𝜉) + 𝜉𝑑−2𝜌𝑏′(𝜉)𝐴𝑒

𝑏
𝑇𝐸𝑒

1 𝐴
𝑒
𝑏
𝜌𝑏(𝜉)

+ 𝜉𝑑−2𝜌𝑏(𝜉)𝐴𝑒
𝑏
𝑇𝐸𝑒

1
𝑇𝐴𝑒

𝑏
𝜌𝑏′(𝜉) + 𝜉𝑑−3𝜌𝑏(𝜉)𝐴𝑒

𝑏
𝑇𝐸2 𝐴

𝑒
𝑏
𝜌𝑏(𝜉) 𝑑𝜉.

The force vector is computed numerically accordingly to the expression

𝐹 𝜕 =
∫︁

𝑆
Φ𝑒

𝑖
𝑓 𝑑𝑆, 𝐹 𝑏 =

∫︁
𝑆

Φ𝑏𝑏,𝑒

𝑖
𝑓 𝑑𝑆,

where 𝐹 𝜕 is the contribution of the SBFEM basis functions and 𝐹 𝑏 is composed of the
bubble functions, then,

𝐹 =
{︃
𝐹 𝜕

𝐹 𝑏

}︃
. (4.4.-3)

4.4.2 Remark: High-order problems
In a few situations, the eigenvalue decomposition shown in Chapter 3, Section 3.2.2.,
imposes numerical challenges. As already documented by Song (2018), the eigenvalue
decomposition will lead to loss of precision when repeated eigenvalues and nearly parallel
eigenvectors exist, and the matrix is not diagonalizable. In practical cases, this issue
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happens when the number of DOF of an 𝑆-element is large, such as in high-order analysis
or 3D examples.

As an alternative to overcome this issue, Song (2018) suggests using Schur decomposition
to write the SBFEM basis functions. However, this chapter presents a different approach.
For high-order 2D analysis and 3D analysis in Galerkin SBFEM approximations, very
small imaginary parts of eigenvalues (≈ 10−12) are observed, and for these cases, the
following procedure can be applied.

Proposition 4.4.1. Denote 𝐴𝑖 + 𝑖𝐴𝑖,𝐼 as the complex eigenvector and 𝜆𝑖 = 𝛾 + 𝑖𝜁 as the
complex eigenvalue, and consider also its conjugate pair (𝐴𝑖 − 𝑖𝐴𝑖,𝐼 and 𝛾 − 𝑖𝜁). If 𝜁 is
sufficiently small (abs(𝜁) ≤ 10−12), the bubble functions are written as

𝜓0 = (𝜉𝛾 − 𝜉𝑘)𝐴𝑖

𝜓1 = (𝜉𝛾 − 𝜉𝑘)𝐴𝑖,𝐼 .

Proof. The basis function for this eigenvalue can be written as(︁
𝐴𝑖 + 𝑖𝐴𝑖,𝐼

)︁
𝜉𝛾+𝑖𝜁 =

(︁
𝑣𝑖 + 𝑖𝐴𝑖,𝐼

)︁
𝜉𝛾𝜉𝑖𝜁

= (𝐴𝑖 + 𝑖𝐴𝑖,𝐼)𝜉𝛾𝑒𝑖𝜁 ln 𝜉

= (𝐴𝑖 + 𝑖𝐴𝑖,𝐼)𝜉𝛾(cos(𝜁 ln 𝜉) + 𝑖 sin(𝜁 ln 𝜉))
= 𝜉𝛾(𝐴𝑖 cos(𝜁 ln 𝜉) − 𝐴𝑖,𝐼 sin(𝜁 ln 𝜉)) + 𝑖𝜉𝛾(𝐴𝑖 sin(𝜁 ln 𝜉) + 𝐴𝑖,𝐼 cos(𝜁 ln 𝜉))

Analogously,(︁
𝐴𝑖 − 𝑖𝐴𝑖,𝐼

)︁
𝜉𝛾−𝑖𝜁 = 𝜉𝛾(𝐴𝑖 cos(𝜁 ln 𝜉) − 𝐴𝑖,𝐼 sin(𝜁 ln 𝜉)) − 𝑖𝜉𝛾(𝐴𝑖 sin(𝜁 ln 𝜉) + 𝐴𝑖,𝐼 cos(𝜁 ln 𝜉))

If we want to match both vectors to real vector-values on the boundary (i.e. 𝜉 ≡ 1) and
imaginary values sufficiently small (i.e. 𝜁 ≈ 0), it follows that the real basis functions are
𝜉𝛾(𝐴𝑖 cos(𝛽 ln 𝜉) − 𝐴𝑖,𝐼 sin(𝛽 ln 𝜉)) = 𝐴𝑖 and 𝜉𝛾(𝐴𝑖 sin 𝜁 + 𝐴𝑖,𝐼 cos 𝜁) = 𝐴𝑖,𝐼 .

4.5 Numerical tests
In this section, four numerical tests illustrate numerically the optimal rates of convergence
obtained using the enrichment proposed in this paper. The first numerical example is a
verification test in a 2D domain, followed by the simulation of a heat flow and a 3D
Poisson problem. The last two examples are Elasticity problems - 2D and 3D.

4.5.1 Poisson problem
Example 1 - Two-dimensional single element

The first test is a 2D Poisson problem given by

Δ𝑢 = 2𝑥+ 2𝑥2 + 20𝑥3 + 2𝑦 + 2𝑦2 + 20𝑦3

with Dirichlet boundary conditions in a domain Ω = [−1, 1] × [−1, 1]. The analytical
solution is expressed as

𝑢(𝑥) = 𝑥5 + 𝑦5 + 𝑥2𝑦2 + 𝑥2𝑦 + 𝑥𝑦2 + 1, (4.5.0)
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For a polynomial source term, it would be intuitive to enrich the bubble-free space Sℎ
𝑘 with

only polynomial bubbles. The goal of this test is to show that if only functions of Duffy’s
bubble subspace enrich the bubble-free space Sℎ

𝑘, suboptimal rates of convergence are
obtained. Additionally, knowing that the solution can be divided into a boundary term
and a domain term, this test aims to verify the influence of each error component (the
error related to the boundary approximation and the error associated with the bubbles
functions) and analyze how they affect the rate of convergence.

To illustrate numerically the lack of convergence when the SBFEM bubble-free space is
enriched with only polynomial bubbles, two approximations are compared:

1. Using polynomial bubble enrichment: Sℎ
𝑘 + 𝒟0,ℎ

𝑘,𝑘(𝑆)

2. Using the full bubble space: Sℎ
𝑘 + Bℎ

𝑘(𝑆)

For this first example, only a skeleton refinement is performed over a single 𝑆-element
(see Fig. 4.3 (i)). The domain is composed of a single element 𝑆-element refined three
times over Γℎ,𝑆, dividing the skeleton into 𝑛 = 2ℓ, ℓ = 0, ..., 3 elements of characteristic
width ℎ = 2/2ℓ.

Figure 4.3: Example 1: Partition of the domain using a single 𝑆-element - 𝒯 ℎ = {𝑆}, and a skeleton
refinement for ℎ = 2/2𝑛, 𝑛 = 2.

The first sequence of plots considers an enrichment using only polynomial bubbles Sℎ
𝑘(𝑆)⊕

𝒟0
𝑘,𝑘𝑏

(𝑆). The trace polynomial order varies from 𝑘 = 1 to 𝑘 = 5. For each trace
approximation, two internal polynomial orders were adopted, namely 𝑘𝑏 = 5, 6. Fig.
4.4 illustrates graphically the energy and 𝐿2 error histories for the Sℎ

𝑘(𝑆) ⊕ 𝒟0,ℎ
𝑘𝑏

(𝑆), for
𝑘𝑏 = 5, 6, versus ℎ = 2/2ℓ, ℓ = 0, ..., 3, where ℓ is the refinement level at the element’s
skeleton. For an internal approximation order equal to the order of the analytical solution
𝑢(𝑥), i.e. 𝑘𝑏 = 5, no convergence was found and the analytical solution was not recovered
for 𝑘 = 𝑘𝑏 = 5. The lack of convergence occurs because the eigenvalue bubbles are required
to compensate the radial extensions 𝜉𝜆𝑖 from the SBFEM bubble-free approximation and
then compose a polynomial approximation. Even increasing the internal polynomial order
to 𝑘𝑏 = 6, there is no improvement in the error values. In both cases, the approximation
error stagnates at only 1.3E-1 for the energy and 5.9E-3 for the 𝐿2-norm.
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Single 𝑆-element - Only polynomial bubbles
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Figure 4.4: Verification Test - Energy and 𝐿2 SBFEM interpolation errors based in a single 𝑆-element
for 𝒟0,ℎ

𝑘,𝑘𝑏
(𝑆), 𝑘 = 1, ..., 5, and 𝑘𝑏 = 5 (top) and 𝑘𝑏 = 6 (bottom) versus ℎ = 2/2𝑛, 𝑛 = 0, ..., 3.

In the next sequence of plots, shown in Fig. 4.5, the SBFEM bubble space Bℎ
𝑘𝑏

(𝑆) ap-
proximates the analytical solution using for three different bubble polynomial orders
𝑘𝑏 = 4, 5, 6. Recall that not only polynomial bubbles up to 𝑘𝑏 = 6 are applied but
also the bubbles based on the eigenvalues and eigenvectors of the harmonic problem. No
convergence is found for 𝑘𝑏 = 4, whilst optimal rates of convergence and the analytical
solution are recovered for 𝑘𝑏 = 5, 6, and , as illustrated in Fig 4.5. It means that the error
is bounded by the bubble interpolation when a poor internal approximation is used, i.e.
lower than the approximation of the analytical solution. In this case, the error stagnates
in 3.8E-2 and 2.8E-3 for the energy and 𝐿2-norm, respectively - just a little lower than
the previous test using only polynomial bubbles.

The optimal rates of convergence are recovered if the internal polynomial order is kept at
least equal to the polynomial order of the analytical solution. Notice that, even increasing
the internal polynomial order to 𝑘𝑏 = 6, the numerical result does not change. In these
cases, the error is bounded by the skeleton’s trace space, which has FE convergence prop-
erties. For 𝑘 = 5 and either 𝑘𝑏 = 5 or 6, the last two points present numerical instabilities
due to the growth of the eigenvalue problem, which leads to complex eigenvalues that
start to affect the approximated solution with bubbles. Song (2018) documented these
numerical issues and suggests using the Schur decomposition instead of the usual eigen-
value decomposition to recover only real pairs of eigenvalues/eigenvectors. These graphs
show that, for a single element, the bubble function approximation must be chosen as
high as necessary to make the error be bounded by the skeleton’s approximation.
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Single 𝑆-element - Full bubble space
𝑘𝑏 = 4
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Figure 4.5: Verification Test - Energy and 𝐿2 SBFEM interpolation errors based in a single 𝑆 element
for the full SBFEM bubble space Bℎ

𝑘𝑏
(𝑆) considering 𝑘𝑏 = 4, 5, and 6, and a trace space Λℎ,𝑆

𝑘 , for
ℎ = 2/2ℓ, ℓ = 0, 1, 2 and 𝑘 = 1, ..., 5.

Example 2: Two-dimensional domain refinement

The analytical solution of the previous two-dimensional Poisson problem (Eq. (1)) is
approximated, but now a domain refinement is performed instead, as illustrated in Fig.
4.6. The domain Ω = [−1, 1] × [−1, 1] is discretized with 𝑛 × 𝑛 𝑆-elements, 𝑛 = 2/2ℓ,
refined three times, i.e. ℓ = 0, ..., 3. The approximated solution is composed of shape
functions in the following approximation spaces:

1. Sℎ
𝑘(𝑆) ⊕ 𝒟0,ℎ

𝑘𝑏
(𝑆), for 𝑘 = 𝑘𝑏 = 1, ..., 5, and

2. Sℎ
𝑘(𝑆) ⊕ Bℎ

𝑘(𝑆), for 𝑘 = 𝑘𝑏 = 1, ..., 5.
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Figure 4.6: Example 1: Partition of the domain using a 𝑛 × 𝑛 𝑆-element and characteristic width
ℎ = 2/2𝑛, 𝑛 = 2.

The energy and 𝐿2 errors are plotted versus the characteristic size ℎ, in Fig. 4.7, for
the Galerkin SBFEM solutions using 𝒟0,ℎ

𝑘,𝑘(𝑆) and B𝑘
ℎ(𝑆). As already expected, using

only the polynomial Duffy bubble functions, the resulting approximation space leads to
sub-optimal rates of convergence - equal to 1 for the energy norm and 2 for the 𝐿2 one,
regardless of the approximation order considered. On the other hand, using the SBFEM
bubble space, optimal rates of convergence are obtained as predicted theoretically, and
numerically null error values are achieved for 𝑘 = 5, the same polynomial order of the
analytical solution. Notice that, using the SBFEM Galerkin approximation, optimal rates
of convergence are recovered just by keeping the internal polynomial order equal to the
external one instead of fixing 𝑘𝑏 = 5. Moreover, instead of solving one big eigenvalue
system, as in the skeleton’s refinement, several small eigenvalue problems are solved,
avoiding numerical instabilities.

Domain refinement
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Figure 4.7: Verification test - Energy and 𝐿2 errors versus ℎ = 2/2ℓ, ℓ = 0, ..., 4 for 𝑘 = 𝑘𝑏 = 1, ..., 5
using the uniform mesh of square S-elements 2ℓ × 2ℓ, ℓ = 0, ..., 4 for 𝒟0,ℎ

𝑘,𝑘(𝑆) and Bℎ
𝑘 .
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Example 3: A heat flow

Consider a parabolic PDE, for instance a heat flow, in a domain Ω = [−1, 1] × [−1, 1]
with null Dirichlet boundary conditions, given by

𝜕𝑢

𝜕𝑡
− Δ𝑢 = 0 𝑥 ∈ Ω

𝑢(𝑥, 𝑡 = 0) = sin(𝜋𝑥1) sin(𝜋𝑥2)
𝑢(𝑥 = s, 𝑡) = 0, s ∈ 𝜕Ω,

The analytical solution of this equation is given by:

𝑢(𝑥, 𝑡) = sin(𝜋𝑥1) sin(𝜋𝑥2)𝑒−2𝜋2𝑡.

We perform this simulation using a very small timestep, Δ𝑡 = 10−4 from 𝑡 = 0𝑠 to
𝑡 = 1𝑠, and evaluate three configurations, namely: without bubbles Sℎ

𝑘, with polynomial
bubbles Sℎ

𝑘 ⊕ 𝒟0,ℎ
𝑘 , and with the full bubble space Sℎ

𝑘 + Bℎ
𝑘. For the simulation without

bubbles, the mass matrix is computed and updated for each time step. The domain is
partitioned in uniform meshes of quadrilateral 𝑆-elements with four refinement levels and
ℎ = 2−ℓ, ℓ = 1, ..., 4 as well as in Example 2 (see Fig. 4.6), using polynomial orders
1 ≤ 𝑘 ≤ 3.

Without bubbles With polynomial bubbles With all bubbles

(a) ℎ = 1

(b) ℎ = 0.5

(c) ℎ = 0.25

Figure 4.8: Example 3 - Post-processing comparison between Garlekin SBFEM approximations: without
bubbles (left), with polynomial bubbles (middle), and with the full bubble space (right) - in uniform
partitions 𝒯 ℎ,𝑆 = {𝑆} of quadrilateral S-elements using three refinement steps: ℎ = 21−ℓ, ℓ = 1, 2, 3, for
𝑘 = 𝑘𝑏 = 3 and 𝑡 = 0.5𝑠.
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a) Without bubbles
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Figure 4.9: Example 3 - Energy and 𝐿2 errors versus ℎ = 21−ℓ, ℓ = 0, ..., 3 using uniform partitions of
quadrilateral 𝑆-elements for the Galerkin-SBFEM: a) without bubbles (top), b) with polynomial bubbles
(middle), c) with all bubble functions (bottom); for 𝑘 = 𝑘𝑏 = 1, 2, 3.

Comparing the post-processing of the three schemes, it can be seen that SBFEM without
any bubble leads to an inaccurate solution for coarse meshes. As already mentioned
in the theory, this fact is related to the definition of the SBFEM approximate spaces,
constructed to approximate homogeneous PDEs. Virtually, the approximations with the
polynomial and the full bubble space (integer and non-integer bubble functions) are very
similar. However, as observed in Fig. 4.9, the absence of the non-integer bubble functions
leads to suboptimal rates of convergence.

The convergence curves for 𝑡 = 0.5𝑠 and the rates of convergence are presented in Fig.
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4.9. Optimal rates of convergence of 𝑘 + 1 for 𝐿2-norm and predicted rates of 𝑘 for the
energy norm only occur when the full bubble function space is considered. On the other
hand, if only polynomial bubbles are applied to approximate the force term, the rate of
convergence does not improve when the polynomial order 𝑘 increases, although the error
values decrease. More details of the error values for each point is summarized in Table
A.16 in A.

Example 4: Three-dimensional single element

The three-dimensional Poisson example is defined in the region Ω = [−1, 1] × [−1, 1] ×
[−1, 1] with the analytical solution given by

𝑢(𝑥) = cos
(︂
𝜋

2𝑥
)︂

cos
(︂
𝜋

2 𝑦
)︂

cos
(︂
𝜋

2 𝑧
)︂
. (4.5.-2)

such that 𝑢𝐷 = 0 and source term 𝑓 = −3𝜋2

4 cos 𝜋𝑥
2 cos 𝜋𝑦

2 cos 𝜋𝑧
2 . Approximate solutions

are constructed for a single 𝑆-element, 𝑆 = Ω, whose boundary facets are subdivided two
times. Consequently, subpartitions of 𝑆 are composed of 6𝑛2 pyramids, where 𝑛 = 1, 2, 3
(see Fig. 4.10). In this example, two different configurations for the bubble space are
tested:

1. The internal polynomial order is equal to the external one (i.e. 𝑘𝑏 = 𝑘);

2. The internal polynomial order increases with the skeleton’s refinement (i.e. 𝑘𝑏 =
𝑘 + ℓ).

ℎ=2 ℎ=1 ℎ=0.5

Figure 4.10: Example 4 - collapsed Duffy’s partitions 𝑇ℎ,𝑆 of 𝑆 = [−1, 1] × [−1, 1] × [−1, 1] composed of
6𝑛2, 𝑛 = 1, 2, 3 uniform pyramids of characteristic width ℎ = 2/2ℓ, ℓ = 0, 1, 2.

In the second mesh configuration, the size of the eigenvalue problem increases consid-
erably. For instance, for the cubic approximation, the size of the eigenvalue problem
increases from a 209 × 209 matrix to a 3349 × 3349 one - 16 times greater. For this
specific configuration, when the scaled boundary and internal approximation are equal,
suboptimal rates of convergence are obtained. The optimal rates of convergence are recov-
ered by increasing the internal polynomial order according to the skeleton’s refinement.
However, the increment in the boundary and internal DOF imposes numerical challenges.
For 𝑘 = 2, the rate of convergence in the 𝐿2-norm was 2.6, instead of the expected rate of
3. These results are illustrated in the convergence curves in Fig. 4.11, and summarized
in Table A.17.
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Figure 4.11: Example 4 - Energy and 𝐿2 errors versus ℎ = 2/2ℓ, ℓ = 0, 1, 2 for 𝑘 = 1, 2, 3 for a single
𝑆-element, refining the boundary (see Fig. 4.10), and the approximations: (a) dashed line - 𝑘𝑏 = 𝑘; (b)
solid line - 𝑘𝑏 = 𝑘 + ℓ.

Example 5: Three-dimensional uniform refinement by hexahedral 𝑆-elements

The last Poisson example consists in approximating the previous equation, Eq. (4),
using partitions 𝒯 ℎ of Ω of uniform hexahedral 𝑆-elements, each one subdivided into six
pyramids, as visualized in Fig. 4.12. Four refinement levels are taken, with 𝑛 × 𝑛 × 𝑛
hexahedra, 𝑛 = 2ℓ, ℓ = 0, ..., 3, having facet mesh sizes ℎ = 2/𝑛. The approximations
correspond to trace spaces of degree 𝑘 = 1, ..., 3.

ℎ=2 ℎ=1 ℎ=0.5 ℎ=0.25

Figure 4.12: Example 5 - Partitions of the 3D domain Ω into uniform hexahedral S-elements, subdivided
into regular pyramids of characteristic facet width ℎ = 2/2ℓ, ℓ = 0, ..., 3.

The Galerkin-SBFEM convergence results for these space configurations are graphically
visualized in Fig. 4.13. Optimal rates of convergence are obtained of order 𝑘 + 1 for 𝐿2-
norm and order 𝑘 for the energy semi-norm. It is worth mentioning that the polynomial
order for the internal and the boundary approximations are the same. To reduce the com-
putational cost, the internal DOFs were condensed into the external ones for each element
leading to a reduced size of the global stiffness matrix and improving the computational
cost. The details regarding the error values are summarized in Table A.18.

4.5.2 Elasticity
Example 6: Elasticity problem in 2D

The two-dimensional Elasticity test is a plane strain state (i.e. 𝑢𝑧 = 0) in a domain
Ω = [−1, 1] × [−1, 1], with Young Modulus 𝐸 = 10 GPa and Poisson coefficient 𝜈 = 0.3.
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Figure 4.13: Example 5 - Energy and 𝐿2 errors versus ℎ = 2/2ℓ, ℓ = 0, ..., 3, for 𝑘 = 𝑘𝑏 = 1, 2, 3 using
the uniform hexahedral partitions (see Fig. 4.12).

The body load is

𝑓 =
{︃

4𝜋2(𝜆+ 2𝜇) cos𝜋𝑥 sin 𝜋𝑦
4𝜋2(𝜆+ 2𝜇) sin 𝜋𝑥 cos𝜋𝑦

}︃
,

and 𝑢𝐷 = 0, such that the analytical solution, visualized in Fig. 4.14, is

𝑢 =
{︃

2 cos𝜋𝑥 sin 𝜋𝑦
2 sin 𝜋𝑥 cos𝜋𝑦

}︃
. (4.5.-2)

The domain is partitioned by 𝒯 ℎ formed by uniform quadrilateral 𝑆-elements, each one
subdivided into four triangles, with ℎ = 1/2−ℓ, ℓ = 0, ..., 3. Figure 4.6 illustrates this mesh
configuration for ℎ = 1

2 . The trace polynomial degrees are for 1 ≤ 𝑘 ≤ 7, and the internal
degree is 𝑘𝑏 = 𝑘.

𝑥-direction 𝑦-direction magnitude

Figure 4.14: Example 6 - Displacement 𝑢𝑥, 𝑢𝑦, and ||𝑢|| for ℎ = 1/4 and 𝑘 = 7.

The motivation of this example is to verify the convergence properties of the bubble
functions using high-order approximations in Elasticity problems. Optimal rates of con-
vergence are observed in Fig. 4.15, reaching 𝑘 + 1 for the 𝐿2-norm and 𝑘 for the energy
norm. The error values are documented in Table A.19.
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Figure 4.15: Example 6 - Energy and 𝐿2 errors versus ℎ = 2/2ℓ, ℓ = 0, ..., 3, using the Galerkin SBFEM
with bubbles in uniform partitions of quadrilateral S-elements for 𝑘 = 𝑘𝑏 = 1, ..., 7.

Example 7 - Elasticity problem in 3D

The last example refers to a 3D Elasticity problem in a domain Ω = [0, 1] × [0, 1] × [0, 1],
for a Young modulus of 𝐸 = 1 GPa, Poisson coefficient of 𝜈 = 0.2, and body loads vector
is given by

𝑓 =

⎧⎪⎨⎪⎩
3𝜋(𝜆+ 2𝜇) cos (𝜋𝑥) cos (𝜋𝑦) sin (𝜋𝑧)
3𝜋(𝜆+ 2𝜇) cos (𝜋𝑥) sin (𝜋𝑦) cos (𝜋𝑧)
3𝜋(𝜆+ 2𝜇) sin (𝜋𝑥) cos (𝜋𝑦) cos (𝜋𝑧)

⎫⎪⎬⎪⎭ , (4.5.-2)

and the analytical solution expressed by

𝑢 =

⎧⎪⎨⎪⎩
2 cos (𝜋𝑥) cos (𝜋𝑦) sin (𝜋𝑧)
2 cos (𝜋𝑥) sin (𝜋𝑦) cos (𝜋𝑧)
2 sin (𝜋𝑥) cos (𝜋𝑦) cos (𝜋𝑧)

⎫⎪⎬⎪⎭ , (4.5.-2)

and illustrated in Fig. 4.16 for a mesh refined four times, composed of tetrahedrons, with
ℎ = 1/8 (see Fig. 4.19) and polynomial order 𝑘 = 2.

Figure 4.16: Example 7 - Post-processed solution of ||𝑢|| using a partition 𝒯 ℎ of hexahedral S-elements
subpartitioned into regular tetrahedrons of characteristic width ℎ = 1/8 (see Fig. 4.17), 𝑘 = 2 and 𝑘𝑏 = 3.

The domain is partitioned into hexagonal S-elements using two configurations for the
𝑆-elements’ subpartition. First, the S-elements are subdivided into pyramids, similar to
Example 2 - Poisson 3D mesh (Fig. 4.12). Further, each facet is refined only one time but
instead of using pyramids, the subpartition is composed of tetrahedrons, as illustrated
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in Fig. 4.17. The simulations include linear and quadratic polynomial order. The same
mesh increasing the internal polynomial order by one is tested, likewise the numerical
example in Example 2, where the boundary of a 𝑆-element is refined.

Figure 4.17: Example 7 - Partition of the 3D domain into hexahedra S-elements, subpartitioned into
regular tetrahedrons for ℎ = 1/2ℓ, where ℓ = 0, ..., 3.
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Figure 4.18: Example 7 - Energy and 𝐿2 errors versus ℎ = 1/2ℓ, ℓ = 0, ..., 3 using uniform partitions of
pyramids, as illustrated in Fig. 4.12, for 𝑘 = 𝑘𝑏 = 1, 2.
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Figure 4.19: Example 7 - Energy and 𝐿2 errors versus ℎ = 1/2ℓ, ℓ = 0, ..., 3 using uniform partitions of
tetrahedrons, as illustrated in Fig. 4.17, for 𝑘 = 1, 2 and 𝑘𝑏 = 𝑘 (dashed lines) and 𝑘𝑏 = 𝑘 + 1 (solid
lines).

The convergence curves for the three approximations are displayed in Fig. 4.18, for the
pyramid subpartition, and in Fig 4.19, for the tetrahedral one. For the pyramidal mesh,
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optimal rates of convergence were obtained, as already predicted theoretically, and verified
numerically for the 3D scalar problem Example 2 - 3D Poisson problem. However, the
boundary is refined, obtaining tetrahedral subpartitions for each 𝑆-element, and a loss of
convergence for 𝑘𝑏 = 𝑘 is observed, recovered only by increasing the internal polynomial
order by one (i.e. 𝑘𝑏 = 𝑘 + 1). This result is similar to the obtained in the 3D Poisson
experiment of refining only the boundary in Example 4. It means that for a boundary
refinement Γ𝑆, a good alternative would be to increase the internal polynomial order 𝑘𝑏

according to the number of refinement steps.

4.6 Conclusions
This chapter provides a new straightforward procedure to approximate non-homogeneous
PDE using the SBFEM, based on the enrichment of usual SBFEM spaces with a bubble
function space.

The bubble function space is constructed with the sum of the polynomial Duffy’s bub-
ble subspace 𝒟0,ℎ

𝑘𝑘 (𝑆) enriched with bubbles composed of non-integer eigenvalues of the
SBFEM approximation and eigenvalues higher than the 𝑘. The proposed SBFEM space
Vℎ

𝐾 is composed of the direct sum of the bubble-free Sℎ
𝑘 and bubble subspaces Bℎ

𝑘. Also,
it is proved that Vℎ

𝑘(𝑆) contains the finite-dimensional Duffy’s approximation subspace
𝒟0,ℎ

𝑘𝑘 (𝑆). Since 𝒟0,ℎ
𝑘𝑘 (𝑆) converges, proving the SBFEM convergence is a straightforward

procedure, as presented in this chapter. Moreover, a procedure to avoid complex functions
is proposed. Taking advantage of the orthogonal property of SBFEM approximations the
resulting stiffness matrix in static problems have a reduced number of DOF.

Mathematical demonstrations prove the optimal rates of convergence of this procedure,
and numerical experiments illustrate these proofs and elliptic non-homogeneous PDEs in
2D and 3D examples, considering Poisson and Elasticity problems. High-order simulations
for 2D meshes and different mesh configurations for 3D problems are performed: refining
the domain, the boundary, and both domain and boundary, using different subpartitions
for the 𝑆-elements, such as triangles, tetrahedrons, and pyramids.
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Chapter 5

Locally conservative SBFEM
approximations

This chapter presents the multiphysics SBFEM formulation based on locally conservative
approximation spaces. The mixed and hybridized mixed FEM theory, already introduced
in Chapter 2, is further explored to apply it to the SBFEM concepts. The deductions
are based on the early developments of the SBFEM for 𝐻1 spaces, when the method was
named Consistent Finite Element Cell method (WOLF; SONG, 1996).

First, the SBFEM coefficient matrices using 𝐻1-compatible spaces are obtained, for a
Darcy Flow, through the discretization of a FE into strips. This amounts to a different
point of view of the SBFEM-𝐻1 formulation. The technique applied in this Chapter,
known as the ballooning process, was explored by Wolf and Song (1996) but considering
infinitesimal strips. In summary, the SBFEM-𝐻1 formulation can be also obtained by a
ballooning process in which the strip has infinitesimal width. Exploring this fact is crucial
to develop the Hybridized-Mixed formulation for the SBFEM since the 𝐻(𝑑𝑖𝑣) spaces for
the SBFEM formulation are proposed by approximating the infinitesimal strips using the
hybridized-mixed FEM.

The proposed formulation was implemented in NeoPZ 1 as a new feature for simulating
mechanical problems using the SBFEM. Numerical tests for two-dimensional Darcy flows
illustrate the optimal convergence rates for 𝐿2 of flux and pressure of 𝑘 + 1, where 𝑘
is the polynomial order. Since the scope of this thesis is two-dimensional problems and
convergence results, future studies will address three-dimensional problems and complex
applications. It is worth mentioning that the SBFEM can be applied in any other FE
technique that allows discretizing the FE into infinitesimal strips. It means that the
SBFEM can be seen as a generic technique that can be applied in other FE methods such
as (Hybrid High-Order) HHO methods, Discontinuous Galerkin, and 𝐻(𝑐𝑢𝑟𝑙), to name a
few.

1The code is open-source and can be downloaded in <https://github.com/labmec/neopz/tree/
develop>

https://github.com/labmec/neopz/tree/develop
https://github.com/labmec/neopz/tree/develop
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5.1 SBFEM as a ballooning process
An intuitive approach to understanding the SBFEM is to interpret the method as a
ballooning process, a technique already explored by Lowther, Rajanathan and Silvester
(1978) in open boundary electric and magnetic field problems. Ballooning means divid-
ing a finite element into several slices and performing recurrent static condensations, by
condensing "interior" DOF in "exterior" DOF. This process is based on observing that the
stiffness matrix of FEM does not depend on the width of the slice or even the position.
For instance, in Fig. 5.1 the stiffness matrix of the finite element cell 1 is the same matrix
of cell 2, even if the width is different.

Element 1

Element 2

𝐾1 = 𝐾2

Figure 5.1: Comparison between two FE cells: The stiffness matrix of the element 1 and element 2 are
equal.

In Fig. 5.2, one can see similarities between the FE cell and the Scaled Boundary FE.
As highlighted by Lowther, Rajanathan and Silvester (1978), the FE cell can have an
arbitrary number of facets. The authors named as star center the point inside the FE cell
that can be seen by the whole facets. Such a point is similar to the scaling center definition
presented in Chapter 3. Thus, the Scaled Boundary FE is a FE cell with infinitesimal
width.

Star point

a) FE cell

Scaling center

b) Scaled Boundary FE

Figure 5.2: Comparison between a) FE cell as presented by Lowther and co-workers: the scaling center
is named by "star point" by Lowther, Rajanathan and Silvester (1978); and b) scaled boundary FE.

Indeed, early developments of the SBFEM, when the method was known as the Infinites-
imal Finite Element Cell Method, applied ballooning process concepts. To perform a
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numerical simulation of semi-infinite domains, such as soil-structure interaction, Wolf
and Song (1996) discretized the domain into infinitesimal finite element layers (see Fig.
5.3). The concept behind the method is that, if one considers an infinitesimal dimension-
less cell, it is possible to compute the limit analytically as a function of the boundary
discretization (i.e. the structure-medium interface).

Figure 5.3: Consistent infinitesimal finite-element cell method. Image from Wolf and Song (1996)

Although Wolf and Song (1996) applied the ballooning technique in semi-infinite domains,
it can be also applied to bounded domains in an analogous procedure. As can be seen
in Fig. 5.4(a), the FE cell can be discretized into several layers. If the number of layers
tends to infinity, the FE can be seen as a Scaled Boundary FE, as shown in Fig. 5.4.
This case is equivalent to performing recurrent static condensations until the FE cell’s
DOF is only composed of the external ones. This point of view was the inspiration for
understanding the orthogonality properties of the SBFEM approximations.
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(a) SBFEM as a ballooning process

(b) Obtaining SBFEM through an infinitesimal dimensionless FE cell

Figure 5.4: SBFEM viewed as a condensation of an infinite number of infinitesimal layers: (a) SBFEM can
be seen as a condensed infinite number of layers, (b) the SBFEM matrices can be obtained by performing
the analytical limit of a FE cell.

To ease the computation of the stiffness matrix, similarly to the Consistent Infinitesimal
FE Cell Method (WOLF; SONG, 1996), the approximation can be computed considering
a fictitious interior interface for a cell with infinitesimal dimensionless width (see Fig.
5.4(b)). To obtain the SBFEM approximation, the internal approximation is written by
the external one and the infinitesimal width. Thus, the limit is performed analytically.
Intuitive reasoning is that the limit of an infinite number of infinitesimal layers leads to an
analytical solution in the radial direction - i.e., the SBFEM can be seen as a ballooning
process where the number of layers goes to the infinite. The process of obtaining the
approximated solution using the Finite Element Cell method is related to computing
the stiffness matrix using an infinitesimal layer, taking the analytical limit of the radial
direction. This idea is first presented for classical FE 𝐻1 formulation and then extended
for a hybridized-mixed FE cell.

5.2 A Consistent Finite Element Cell Method
This section shows that it is possible to obtain the SBFEM coefficient matrices, 𝐸0, 𝐸1,
and 𝐸2, by computing the stiffness matrix of an infinitesimal dimensionless FE cell.

5.2.1 Geometry of a Finite Element Cell
First, let us define the geometric map for a FE cell. As shown in Fig. 5.5, the mappings
𝐹𝐿𝑒 : 𝐿̂𝑒 → 𝐿𝑒 and 𝐹𝐿𝑖 : 𝐿̂𝑖 → 𝐿𝑖 correspond to the geometric maps of the interior
and exterior facets in each partition of 𝑆, where 𝑆 is divided into subpartitions of finite
element cells 𝐶. The geometric maps 𝐹𝐿𝑖(𝜂) and 𝐹𝐿𝑒(𝜂) corresponds to the mapping
from the facets (𝜉 = −1, 𝜂) and (𝜉 = 1, 𝜂), respectively to 𝑥𝑖(−1, 𝜂) and 𝑥𝑒(1, 𝜂). The
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assembling of the subpartitions leads to the finite element cell, as illustrated in Fig. 5.5.
The interior facet, displayed in dashed lines in Fig. 5.5, is named by Wolf and Song (1996)
as "fictitious interface".

Let 𝛿 be the infinitesimal dimensionless width given by

𝛿 = 𝐹𝐿𝑒(𝜂) − 𝐹𝐿𝑖(𝜂)
𝐹𝐿𝑒(𝜂) .

The internal geometric map 𝐹𝐿𝑖(𝜂) is written as a function of the external 𝐹𝐿𝑒(𝜂) and 𝛿
as,

𝐹𝐿𝑖(𝜂) = (1 − 𝛿)𝐹𝐿𝑒(𝜂). (5.2.0)

where 𝐹𝐿𝑒(𝜂) = 𝐹𝐾(𝜉 = 1, 𝜂), i.e. the external boundary of a 𝑆-element.

𝑥𝑖(𝜉, 𝜂)
𝑥𝑒(𝜉, 𝜂)

𝛿

𝐹𝐿𝑒(𝜂)

𝐹𝐿𝑖(𝜂)
𝜉 = −1

𝐶

𝐾̂

𝜉 = 1

Figure 5.5: Geometric map of a FE element cell.

Using (5.2.1), the geometric map 𝐹𝐶 : 𝐾̂ → 𝐶 can be written as

𝐹𝐶(𝜉, 𝜂) = 𝐹𝐿𝑖(𝜂) + 𝜉𝛿𝐹𝐿𝑒(𝜂)

= 1
2(2 + 𝛿(𝜉 − 1))𝐹𝐿𝑒(𝜂).

Notice that 𝐹𝐶(𝜉 = −1, 𝜂) = (1 − 𝛿)𝐹𝐿𝑒(𝜂) and 𝐹𝐶(𝜉 = 1, 𝜂) = 𝐹𝐿𝑒(𝜂).

If 𝑥 = 𝐹𝐶(𝜉, 𝜂), the Jacobian matrix is 𝐽
𝐶

= ∇𝑥. Similarly to the Chapter 3, the Jacobian
matrix 𝐽

𝐶
(𝜉, 𝜂) of the subpartition of a FE cell 𝐶 can be divided into two terms: a skeleton

term, function of only 𝜂, 𝐽
𝐾

(1, 𝜂), and a term with the 𝜉 variable 𝐶
𝛿
(𝜉)

𝐽
𝐶

(𝜉, 𝜂) = 𝐽
𝐾

(1, 𝜂)𝐶
𝛿
(𝜉),

where 𝐽
𝐾

(1, 𝜂) is the same Jacobian matrix defined in Chapter 3, written as

𝐽
𝐾

(1, 𝜂) =
[︁
𝐹𝐿(𝜂) ∇𝜂𝐹𝐿(𝜂)

]︁
(5.2.-1)

where 𝜂 = 𝜂 and 𝐹𝐿(𝜂) = 𝐹𝐿𝑒(𝜂) and 𝐶
𝛿
(𝜉) is a diagonal matrix given by

𝐶
𝛿

=
(︃

𝛿
2 0
0 1+𝛿(𝜉−1)

2

)︃
. (5.2.-1)
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Its inverse is written as
𝐽

𝐶
(𝜉, 𝜂)−1 = 𝐶

𝛿
(𝜉)−1𝐽−1

𝐾
(1, 𝜂) (5.2.-1)

where
𝐶−1

𝛿
(𝜉) =

[︃2
𝛿

0
0 2

2+𝛿(𝜉−1)

]︃
. (5.2.-1)

Also, recall that, whilst scalar functions the following relationship applies
𝜑(𝑥) = 𝜑(𝑥̂), 𝑓𝑜𝑟 𝑥 = 𝐹𝐶(𝑥̂), (5.2.-1)

for vector-valued functions, we employ the Piola transformation F𝐶 : 𝑞(𝑥̂) → 𝑞(𝑥) as
follows

𝑞(𝑥) =
𝐽

𝐶

|𝐽
𝐶

|
𝑞̂(𝑥̂). (5.2.-1)

5.2.2 Obtaining the SBFEM coefficient matrices using 𝐻1 ap-
proximations

Consider as the model problem the Poisson equation with null source term as already
defined in Chapter 3. Such a formulation, known also as the harmonic problem, is written
in strong form as

Δ𝑢 = 0, 𝑢 ∈ Ω
𝑢|𝜕Ω = 𝑢𝐷

where 𝑢𝐷 are prescribed Dirichlet boundary conditions and Δ𝑢 = ∇·(∇𝑢) is the Laplacian
operator applied in 𝑢. The variational statement is: Find 𝑢 ∈ 𝐻1(Ω) such that∫︁

Ω
∇𝑢 · ∇𝑣 𝑑Ω = 0, ∀ 𝑣 ∈ 𝐻1

0 (Ω)

𝑢|𝜕Ω = 𝑢𝐷.

Let Ω be partitioned into FE cells of infinitesimal width, such that Ω = 𝒯 ℎ = {𝑆} where
ℎ is the characteristic size of the 𝑆-element’s facets. Each cell is a conglomerate of finite
element strips 𝐶 mapped to the master element 𝐾̂, 𝐹𝐶 : 𝐾̂ → 𝐶 using Eq. (5.2.1).

Figure 5.6: Partition of the domain Ω = 𝒯ℎ = {𝑆} into finite element cells 𝑆. Each cell 𝑆 is a conglomerate
of strips 𝐶.
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For this discretization, a finite-dimensional subspace is defined locally as 𝒱ℎ(𝑆) ⊂ 𝐻1(Ω),
such that 𝑢ℎ = ∑︀

𝑖 𝜑𝑖𝑢𝑖 ∈ 𝒱ℎ(𝑆) and 𝑣ℎ = ∑︀
𝑗 𝜑𝑗𝑣𝑗 ∈ 𝒱ℎ

0(𝑆) ⊂ 𝐻1
0 (Ω). The stiffness

matrix of the FE cell is written as

𝐾𝑖𝑗 =
∫︁

Ω
∇𝜑𝑖 · ∇𝜑𝑗 𝑑𝑆, (5.2.-1)

The exterior boundary of the FE cell 𝜕𝑆 coincides with the 𝑆-elements’ boundary 𝜕𝑆.
The interior boundary of 𝜕𝑆 is named fictitious interface. Consider 𝑢𝑒 the nodal values
of the exterior DOF and 𝑢𝑖 the nodal values of the interior DOF (over the fictitious
interface). To obtain the SBFEM coefficient matrices (𝐸0, 𝐸1, 𝐸2), we manipulate the
DOF in order to write it as

• Infinitesimal average pressure, given by

𝑢̄ = 𝑢𝑒 + 𝑢𝑖

2 (5.2.-1)

• Infinitesimal "differential pressure", resulting in

𝑑𝑢̄ = 1
𝜉

𝑢𝑒 − 𝑢𝑖

𝛿
(5.2.-1)

Notice that, when the FE cell width tends to zero (𝛿 → 0), 𝑢
𝑒 + 𝑢𝑖

2 → 𝑢|𝜕𝑆 and 𝑢𝑒 − 𝑢𝑖

𝛿𝜉
→

1
𝜉

𝜕𝑢

𝜕𝜉
.

Manipulating the DOF means that the shape functions slightly change. First, consider
a space 𝒱ℎ = P1,𝑘, i.e. linear in 𝜉-direction and up to order 𝑘 in 𝜂-direction. The
linear approximation order is considered for 𝜉-direction for simplicity since the width
in this direction is infinitesimal, then, higher order terms are negligible. For such an
arrangement, the shape functions can be grouped into two groups:

• Shape functions related to the internal DOF 𝑢𝑖:

𝜑
𝑖 = 𝜉 − 1

2 𝑁̂𝑘(𝜂)

• Shape functions related to the external DOF 𝑢𝑒:

𝜑
𝑒 = 𝜉 + 1

2 𝑁̂𝑘(𝜂)

The shape functions for 𝑢̄ and 𝑑𝑢̄ are given by the sum and the difference between the
two groups of shape functions 𝜑𝑖 and 𝜑

𝑒 as below:

• Shape functions related to the infinitesimal differential pressure:

𝜙̂𝑖 = 𝛿

⎛⎝𝜉 − 1
2 𝑁̂𝑘(𝜂) + 𝜉 + 1

2 𝑁̂𝑘(𝜂)
⎞⎠ = 𝜉𝛿

2 𝑁̂𝑘(𝜂). (5.2.-1)



138

• Shape functions related to the infinitesimal average pressure:

𝜙̂𝑒 = 𝜉 + 1
2 𝑁̂𝑘(𝜂) − 𝜉 − 1

2 𝑁̂𝑘(𝜂) = 𝑁̂𝑘(𝜂). (5.2.-1)

Using the geometric map described in Section 5.2.1, the gradient ∇𝜙 = 𝐽−1
𝐶

(𝜉, 𝜂)∇𝜉,𝜂𝜙 is
computed for the two group of functions as

∇𝜙𝑖 = 𝐶−1
𝛿

(𝜉)𝐽−𝑇
𝐾

(1, 𝜂)

⎡⎢⎢⎣
𝛿

2𝑁̂(𝜂)
𝜉𝛿

2 ∇𝜂𝑁̂(𝜂)

⎤⎥⎥⎦
∇𝜙𝑒 = 𝐶−1

𝛿
(𝜉)𝐽−𝑇

𝐾
(1, 𝜂)

[︃
0

∇𝜂𝑁̂(𝜂)

]︃

From Eqs. (5.2.2) and (5.2.2) one can identify the 𝐵1 and 𝐵2 matrices, respectively, from
Chapter 3 (see Eq. (3.2.2)), by taking the limit of 𝛿 → 0 as

lim
𝛿→0

∇𝜙𝑖 = 𝐽−𝑇
𝐾

(1, 𝜂)
[︃
𝑁̂(𝜂)

0

]︃
= 𝐵1,

lim
𝛿→0

∇𝜙𝑒 = 𝐽−𝑇
𝐾

(1, 𝜂)
[︃

0
∇𝜂𝑁̂(𝜂)

]︃
= 𝐵2.

Thus, the local stiffness matrix of a FE cell 𝑆 is the assemble of the matrices related to
the strips of 𝐶

𝐾 =
∑︁

𝑙

1
𝛿

∫︁
𝐶𝑙

∇𝜙𝑇 ∇𝜙 𝑑𝐶𝑙

= 1
𝛿

∑︁
𝑙

∫︁
𝐾̂

∇𝜙𝑇 ∇𝜙
𝛿
(︁
2 + 𝛿(𝜉 − 1)

)︁
4 |𝐽

𝐾𝑙
(1, 𝜂)|𝑑𝐾̂

where ∑︀𝑙 represents the assemble of 𝑆 = 𝒯 𝑆 = {𝐶𝑙}, where 𝑙 = 1, ..., 𝑛𝑆, 𝑛𝑆 is the number
of exterior facets of the 𝑆 and

𝜙 =
{︁
𝜙𝑖 𝜙𝑒

}︁
.

and 𝜙𝑖 and 𝜙𝑒 are given by Eqs. (5.2.2) and (5.2.2) respectively. Notice that we include
the factor 1

𝛿
to avoid the indeterminacy resulting from the determinant of the Jacobian

|𝐽
𝐶𝑙

(𝜉, 𝜂)|= 𝛿(2 + 𝛿(𝜉 − 1))
4 |𝐽

𝐾𝑙
(1, 𝜂)|→ ∞ when 𝛿 → 0.

Considering the two groups of shape functions, 𝜙𝑖 and 𝜙𝑒, the stiffness matrix of a FE
cell is written as a block-matrix composed of

𝐾 =
[︃
𝐾𝑖𝑖 𝐾𝑖𝑒

𝐾𝑒𝑖 𝐾𝑒𝑒

]︃
.
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where

𝐾𝑖𝑖 =
∑︁

𝑙

lim
𝛿→0

1
𝛿

∫︁ +1

−1

∫︁ +1

−1
𝐵𝑇

1𝐵1 |𝐽
𝐾𝑙

(1, 𝜂)|𝑑𝜂𝑑𝜉 =
∫︁ +1

−1

∑︁
𝑙

𝐸0𝑙
𝑑𝜉

𝐾𝑖𝑒 =
∑︁

𝑙

lim
𝛿→0

1
𝛿

∫︁ +1

−1

∫︁ +1

−1
𝐵𝑇

1𝐵2 |𝐽
𝐾𝑙

(1, 𝜂)|𝑑𝜂𝑑𝜉 =
∫︁ +1

−1

∑︁
𝑙

𝐸1
𝑇

𝑙
𝑑𝜉

𝐾𝑒𝑖 =
∑︁

𝑙

lim
𝛿→0

1
𝛿

∫︁ +1

−1

∫︁ +1

−1
𝐵𝑇

2𝐵1 |𝐽
𝐾𝑙

(1, 𝜂)|𝑑𝜂𝑑𝜉 =
∫︁ +1

−1

∑︁
𝑙

𝐸1𝑙
𝑑𝜉

𝐾𝑒𝑒 =
∑︁

𝑙

lim
𝛿→0

1
𝛿

∫︁ +1

−1

∫︁ +1

−1
𝐵𝑇

2𝐵2 |𝐽
𝐾𝑙

(1, 𝜂)|𝑑𝜂𝑑𝜉 =
∫︁ +1

−1

∑︁
𝑙

𝐸2𝑙
𝑑𝜉.

Therefore,

𝐾 =
∫︁ +1

−1

[︃
𝐸0 𝐸1

𝑇

𝐸1 𝐸2

]︃
𝑑𝜉. (5.2.-1)

It means that the stiffness matrix of an FE cell of infinitesimal width is a block matrix
composed of the SBFEM coefficient matrices. The matrices 𝐸0, 𝐸1, 𝐸2 are applied to
the Ricatti ODE in order to obtain the SBFEM shape functions. Such a procedure was
already described in Chapter 3.

5.2.3 Obtaining SBFEM coefficient matrices using hybridized-
mixed approximations

An analogous procedure to the previous section is performed to obtain the SBFEM coeffi-
cient matrices for using a locally conservative approximation. First, the hybridized-mixed
approach is written for a generic 𝑆-element. Then, the case of a hybridized-mixed FE cell
of infinitesimal width is analyzed in detail.

Let us rewrite the model problem (the Poisson equation) using the mixed method. The
strong formulation is written as: Find 𝑢 ∈ 𝐿2(Ω) and 𝜎 ∈ 𝐻(𝑑𝑖𝑣,Ω)

𝜎 = ∇𝑢, 𝑖𝑛 Ω
∇ · 𝜎 = 0, 𝑖𝑛 Ω
𝑢|Γ = 𝑢𝐷, 𝑖𝑛 𝜕Ω = Γ.

The variational statement, as deduced in Chapter 2, is written as: Find 𝜎 ∈ 𝐻(𝑑𝑖𝑣,Ω)
and 𝑢 ∈ 𝐿2(Ω) such as∫︁

Ω
𝜎 · 𝑞 𝑑Ω −

∫︁
Ω
𝑢
(︁
∇ · 𝑞

)︁
𝑑Ω = −

∫︁
Γ
𝑢𝐷(𝑞 · 𝑛) 𝑑Γ, ∀ 𝑞 ∈ 𝐻(𝑑𝑖𝑣; Ω)

−
∫︁

Ω
(∇ · 𝜎) 𝑣 𝑑Ω = 0, ∀ 𝑣 ∈ 𝐿2(Ω)

Consider that Ω = 𝒯 ℎ = {𝑆} is partitioned into 𝑆-elements. Also, consider the finite-
dimensional subspaces

𝒵ℎ =
{︁
𝑣 ∈ 𝐿2(Ω) : 𝑣|𝑆∈ P1,𝑘(𝐾)

}︁
𝒬ℎ =

{︁
𝑞 ∈ 𝐻(𝑑𝑖𝑣; Ω) : 𝑞|𝑆∈ P𝑘+1,1(𝐾) × P𝑘+1,1(𝐾)

}︁
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As already highlighted in Chapter 2, 𝒬ℎ has the property of continuity of the normal
flux between the FE cells. It means that the continuity is imposed directly in the func-
tion space. Another approach is to enforce such continuity in the variational statement,
through Lagrange multipliers.

Now, consider the skeleton mesh ℰℎ = ⋃︀
𝑖𝑗 𝑒𝑖𝑗

⋃︀Γℎ where 𝑒𝑖𝑗 = 𝜕𝑆𝑖 ∩ 𝜕𝑆𝑗, as shown in Fig.
5.7, where 𝑒𝑖𝑗 is shown in red lines and Γℎ is in blue.

Figure 5.7: Partition of the domain into 𝑆-elements (𝒯 ℎ = {𝑆}) in write and skeleton mesh (ℰℎ = {𝑒})
in red and blue.

.

The finite-dimensional subspaces for 𝑆 ∈ 𝒯 ℎ = Ω and 𝑒 ∈ ℰℎ are given by

𝒵ℎ =
{︁
𝑧ℎ ∈ 𝐿2(Ω) × 𝐿2(Ω), 𝑧ℎ|𝑆∈ 𝒟𝑘+1,𝑘(𝑆) × 𝒟𝑘,𝑘+1(𝑆), ∀𝑆 ∈ 𝒯 ℎ

}︁
,

𝒵ℎ =
{︁
𝑣ℎ ∈ 𝐿2(Ω) : 𝑣ℎ|𝑆∈ P𝑘,𝑘(𝑆), ∀ 𝑆 ∈ 𝒯 ℎ

}︁
,

ℳℎ =
{︁
𝜇𝑒 ∈ 𝐿2(ℰℎ) : 𝜇𝑒 ∈ P𝑘(𝑒), ∀ 𝑒 ∈ ℰℎ

}︁
.

Thus, the variational statement for the hybridized-mixed formulation is: find (𝜎ℎ, 𝑢ℎ, 𝜆ℎ) ∈
𝒵ℎ × 𝒵ℎ × ℳℎ such that∑︁

𝑆∈𝒯ℎ

∫︁
𝑆
𝜎ℎ · 𝑞

ℎ
𝑑𝑆 −

∑︁
𝑆∈𝒯ℎ

∫︁
𝑆
𝑢ℎ

(︁
∇ · 𝑞

ℎ

)︁
𝑑𝑆 +

∑︁
𝑒∈ℰℎ

∫︁
𝑒
𝜆ℎJ𝑞ℎ

K 𝑑𝑒 = −
∫︁

Γℎ

𝑢𝐷

(︁
𝑞

ℎ
· 𝑛
)︁
𝑑Γℎ

∑︁
𝑆∈𝒯ℎ

∫︁
𝑆
𝑣 (∇ · 𝜎ℎ) 𝑑𝑆 = 0

∑︁
𝑒∈ℰℎ

∫︁
𝑒
𝜇ℎJ𝜎ℎK𝑑𝑒 = 0.

where J𝑞
ℎ𝑒

K = 𝑞
ℎ

·
𝑒
𝑛+

𝑒 + 𝑞
ℎ

−
𝑒

· 𝑛−
𝑒 for all 𝑒 ∈ ℰℎ, and 𝑛+

𝑒 = −𝑛−
𝑒 is the outward vector.

In matricial form, Eqs. 5.2.3 to 5.2.3 lead to

𝐾 =

⎛⎜⎝A −B𝑇 −C𝑇

B 0 0
C 0 0

⎞⎟⎠ (5.2.-1)

where A, B and C are bilinear forms as presented in Chapter 2.
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Stiffness matrix for a hybridized FE cell

As well as in the 𝐻1 case, the stiffness matrix of a hybridized FE does not depend on the
scale or position. It means that, for instance, two FE cells with different positions and
scales as in Fig. 5.8 have the same stiffness matrix.

𝐾
𝐴

= 𝐾
𝐵

A B

Figure 5.8: Two hybrid cells 𝐴 and 𝐵 with different scales and positions. The stiffness matrix of both
elements is the same.

The hybrid FE cell, as shown in Fig. 5.8, is composed of 𝑑 − 1-dimensional elements for
the internal pressure (shown in blue lines) and 𝑑−1-dimensional elements for the exterior
pressure (external average pressure and differential pressure). The FE cell is described by
the geometric map from a quadrilateral master element 𝐾̂ to a deformed element 𝐶 using
the Eq. (5.2.1). The geometric map related to the external elements in red corresponds to
the maps 𝐹𝐿𝑖

and 𝐹𝐿𝑒 , for the element over the fictitious interface and the exterior element
relatively to 𝜕𝑆, respectively. The map 𝐹𝐿𝑒 is such that 𝐹𝐿𝑒 = 𝐹𝐶(1, 𝜂) = 𝐹𝐾(1, 𝜂). There
is also a map 𝐹 𝑖𝑛𝑡

𝐿 for the geometric element associated with the internal pressure (in blue).
For an infinitesimal element, i.e. the width 𝛿 → 0, 𝐹𝐿𝑖

= 𝐹 𝑖𝑛𝑡
𝐿 = 𝐹𝐿𝑒 . The assembly of

these geometric elements composes the hybrid FE cell.

𝐾̂ 𝐶

𝐹𝐶

𝐹𝐿𝑖

𝐹𝐿𝑒

𝐹 𝑖𝑛𝑡
𝐿

FE cell

Figure 5.9: Geometric map of a hybridized FE cell.

The basis functions for the pressure approximation, either internal or external DOF, in a
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hybrid infinitesimal FE cell, are 𝑑− 1 polynomials 𝑁̂𝑘(𝜂) ∈ P𝑘(𝐿̂). Namely, the DOF for
the pressure are:

• Internal pressure 𝑢𝑖𝑛𝑡,

• Infinitesimal differential pressure (Lagrange multiplier): 1
𝜉

𝑢𝑒 − 𝑢𝑖

𝛿

• Infinitesimal average pressure (Lagrange multiplier): 𝑢
𝑒 + 𝑢𝑖

2
For 𝛿 → 0

• Internal pressure = 𝑢𝑖𝑛𝑡,

• Infinitesimal differential pressure (Lagrange multiplier) = 1
𝜉

𝑑𝑢𝑒

𝑑𝜉

• Infinitesimal average pressure (Lagrange multiplier) = 𝑢𝑒

The flux is associated with the 𝑑-dimensional element in gray. Fig. 5.10 illustrated the
DOF related to the flux for a FE strip and approximation order 𝑘 = 1. Notice that, as
already mentioned in Chapter 2, instead of using the geometric transformation 𝐹𝐶 , for
vector-valued functions it is applied the Piola transformation 𝑃𝐶 : 𝜓̂ → 𝜓. Moreover,
since the width is infinitesimal and it is only a part of the FE cell, the number of DOF is
reduced. For instance, the internal flux in 𝜉-direction is negligible.

𝑃𝐶

𝜓
𝑒

0 𝜓
𝑒

1

𝜓
𝑒

2𝜓
𝑒

3

𝜓
𝑖

0

𝜓
𝑖

2

𝜓
𝑖

1

𝜓𝑒
0

𝜓𝑒

1

𝜓𝑒

2
𝜓𝑒

3

𝜓𝑖

0

𝜓𝑖

2

𝜓𝑖
1

Figure 5.10: Flux components of a finite element strip mapped from the master element 𝐾 to the deformed
element 𝐾̂ using the Piola transformation 𝑃𝐶 .

The shape functions for the flux are gathered in three groups:

1. Internal flux 𝜎𝑖𝑛𝑡
ℎ : 𝜓𝑖𝑛𝑡

𝑖
=
{︁
0, 𝑁̂𝑖(𝜂)

}︁
, 𝑖 = 0, ..., 𝑘

2. Exterior flux - internal facet 𝜎𝑖
ℎ: 𝜓𝑖

𝑗
=
⎧⎨⎩1 − 𝜉

2 𝑁̂𝑗(𝜂), 0
⎫⎬⎭ , 𝑗 = 0, ..., 𝑘

3. Exterior flux 𝜎𝑒
ℎ: 𝜓𝑒

𝑙
=
⎧⎨⎩1 + 𝜉

2 𝑁̂𝑙(𝜂), 0
⎫⎬⎭ , 𝑙 = 0, ..., 𝑘
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Notice that the internal flux is an enriched space 𝑘 + 1 accordingly to the theory of the
Raviart-Thomas space (ROBERTS; THOMAS, 1991).

Fig. 5.11 represents a mesh composed of quadrilateral hybrid FE cells. The 𝑑-dimensional
elements in gray are the infinitesimal cells in which the flux is considered. The 𝑑 − 1-
dimensional blue elements represent the internal pressure, whilst the red elements are the
exterior pressure, composed of the DOF related to the Lagrange multipliers (average in-
finitesimal pressure and differential pressure). Lastly, the green elements are the elements
related to the boundary condition. In these elements, Dirichlet values for the pressure are
imposed.

Figure 5.11: Partition of the domain Ω into quadrilateral hybrid FE cells: the skeleton mesh in red,
internal elements in blue, and boundary elements in green.

Consider the partition shown in Fig. 5.11 and the finite element spaces

𝒵ℎ =
{︁
𝑧ℎ ∈ 𝐿2(Ω) × 𝐿2(Ω), 𝑧ℎ|𝑆∈ 𝒟𝑘+1(𝑆) × 𝒟𝑘(𝑆)

}︁
𝒵ℎ =

{︁
𝑧ℎ ∈ 𝐿2(Ω), 𝑧ℎ|𝑆∈ 𝒟𝑘(𝑆)

}︁
and keep the same approximation space for the Lagrange multipliers ℳℎ as defined in
Eq. (5.2.3).

For a hybridized-mixed FE cell of infinitesimal width, the local problem is also written
as: Find (𝜎ℎ, 𝑢ℎ, 𝜆ℎ) ∈ 𝒵ℎ(𝑆) × 𝒵ℎ(𝑆) × ℳℎ(𝑆)⎛⎜⎝A −B𝑇 −C𝑇

B 0 0
C 0 0

⎞⎟⎠
⎧⎪⎨⎪⎩

𝒮
𝒰
ℒ

⎫⎪⎬⎪⎭ =

⎧⎪⎨⎪⎩
0
0
0

⎫⎪⎬⎪⎭ .
A static condensation can be performed in order to eliminate 𝑢ℎ and 𝜎ℎ from the local
system, leading to a smaller local and global system of equations

E ℒ = 0, (5.2.-1)
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where
E = C A−1

(︂
A − B𝑇

(︁
B A−1B𝑇

)︁−1
B
)︂
A−1C𝑇 (5.2.-1)

As already highlighted in Chapter 2, the matrix E has the property of being symmetric and
positive definite, as well as in classical FEM, and less DOF than Mixed FEM. Moreover,
since the hybridized-mixed variational statement reflects exactly the same problem as the
𝐻1 approximation, which means that we can observe

lim
𝛿→0

E =
(︃
𝐸𝑑𝑖𝑣

0 𝐸𝑑𝑖𝑣
1

𝑇

𝐸𝑑𝑖𝑣
1 𝐸𝑑𝑖𝑣

2

)︃
. (5.2.-1)

The 𝐸𝑑𝑖𝑣
0 , 𝐸𝑑𝑖𝑣

1 and 𝐸𝑑𝑖𝑣
2 matrices are the SBFEM coefficient matrices from the Ricatti

eigenvalue problem given by
𝜉𝒳 ′(𝜉) = −𝑍𝑑𝑖𝑣 𝒳 (𝜉) (5.2.-1)

where

𝑍𝑑𝑖𝑣 =

⎡⎢⎢⎣
(︂[︁
𝐸𝑑𝑖𝑣

0

]︁−1 [︁
𝐸𝑑𝑖𝑣

1

]︁𝑇
− 0.5(𝑑− 2)𝐼

)︂
−
[︁
𝐸𝑑𝑖𝑣

0

]︁−1(︂
−𝐸𝑑𝑖𝑣

2 +
[︁
𝐸𝑑𝑖𝑣

1

]︁𝑇 [︁
𝐸𝑑𝑖𝑣

0

]︁−1
𝐸𝑑𝑖𝑣

1

)︂ (︂
−𝐸𝑑𝑖𝑣

1

[︁
𝐸𝑑𝑖𝑣

0

]︁−1
+ 0.5(𝑑− 2)𝐼

)︂
⎤⎥⎥⎦ and

𝒳 (𝜉) =
{︃
𝑢𝑒(𝜉)
𝑞(𝜉)

}︃

If
[︃
𝐴𝑑𝑖𝑣

𝐴𝑑𝑖𝑣,𝑞

]︃
are the linearly independent eigenvectors and 𝜆𝑑𝑖𝑣 are the respective eigenvalues,

𝒳 (𝜉) =
[︃
𝐴
𝐴𝑞

]︃
diag

(︁
𝜉𝜆
)︁

(5.2.-1)

For a bounded domain, only the positive eigenvalues and the respective eigenvectors apply
(see Chapter 3 for more details). Thus, the local stiffness matrix is given by

𝐾𝑆 = 𝐴𝑑𝑖𝑣,𝑞
+ 𝐴𝑑𝑖𝑣

+
−1 (5.2.-1)

and the local system for a hybridized-mixed 𝑆-element

𝐾𝑆𝑢𝑆 = 0. (5.2.-1)

Notice that, to construct 𝐾𝑆 it was considered a quadrilateral element −1 ≤ 𝜉, 𝜂 ≤ 1,
whilst in SBFEM Ricatti equation, 0 ≤ 𝜉 ≤ 1. It means that 𝜉 ̸= 𝜉 since 𝜉 represents
the radial variable in the SBFEM geometric map; but 𝜂 = 𝜂 is the parametric surface
variable. To obtain 𝜉 = 𝜉, the geometric map of the FE cell described in Section 5.2.1.
must change. If a master element 𝐾̂ = [0,−1] × [0, 1] is considered, 𝜉 = 𝜉 but multiplier
factors would appear in E. In summary, there are two steps:

1. Compute E of a FE cell and obtain 𝐸𝑑𝑖𝑣
0 , 𝐸𝑑𝑖𝑣

1 , 𝐸𝑑𝑖𝑣
2 . For this step, the geometric

map is Eq. (5.2.1)

2. Compute the SBFEM approximations through the Ricatti equation. For this step,
the geometric map is the usual SBFEM map, described in Chapter 3.
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Yet, no source term is considered in the PDE approximated using the locally conserva-
tive SBFEM formulation. To approximate non-homogeneous PDEs, the formulation in
Chapter 4 must be extended for the Hybridized-Mixed approach. For the assembly of
the global problem, 𝑑− 1-dimensional boundary elements impose the boundary condition
using the Dirichlet approach.

Post-processing

Since the DOF related to the flux and internal pressure are condensed into the DOF
regarding the Lagrange multipliers, the global problem provides the nodal values for the
average infinitesimal pressure approximation. As observed previously, when 𝛿 → 0, the
average infinitesimal pressure converges to the pressure over 𝜕𝑆. Consequently, the post-
processing of this variable is performed similarly to the usual 𝐻1-approximations and is
given by

𝑢̂𝑒(𝜉) = 𝐴𝑑𝑖𝑣
+ diag(𝜉𝜆𝑑𝑖𝑣)𝐴−1

+
𝑑𝑖𝑣
𝑢𝑆. (5.2.-1)

and
𝑢𝑒(𝑥) = 𝑁𝑆

𝑘 (𝜂) · 𝑢̂𝑒(𝜉) (5.2.-1)
Recall that the local problem in matricial reduced form is given by

E ℒ = 0, (5.2.-1)

where

ℒ =
{︃

ℒ𝑖

ℒ𝑒

}︃
=

⎧⎪⎨⎪⎩
1
𝜉

𝑑𝑢𝑒(𝜉)
𝑑𝜉

𝑢𝑒(𝜉)

⎫⎪⎬⎪⎭ . (5.2.-1)

The flux and internal pressure are obtained simply by undoing locally the static conden-
sation, leading to {︃

𝒮
𝒰

}︃
=
(︃
A −B𝑇

B 0

)︃(︃
−C𝑇

0

)︃{︁
ℒ
}︁

Finally, the internal product between 𝒮(𝜉), 𝒰(𝜉) and the vectorial and scalar FE space,
respectively, leads to the flux and internal pressure reconstruction

𝜎ℎ =
∑︁

𝑖

𝒮𝑖(𝜉)𝜓

𝑢𝑖𝑛𝑡,ℎ =
∑︁

𝑗

𝒰𝑗(𝜉)𝜑𝑗.

In the procedure shown, the approximation functions that multiply the coefficients have
terms like 𝛿, because of the geometric map, and 𝜉. For an SBFEM approximation though,
the shape functions must be based on the tensorial product between functions in a FE
trace space 𝛼̂(𝜂) ∈ Λ𝑘 and radial functions 𝜌(𝜉). These aspects are addressed in the
following topic.

5.3 Computational Implementation
The formulation shown in this chapter was implemented in NeoPZ2, an open-source finite-
element library maintained by the Computational Mechanics Laboratory. The library

2https://github.com/labmec/neopz/tree/develop
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has already several features to simulate mechanical problems using 𝐻(𝑑𝑖𝑣)-spaces, Mixed
and Hybridized-Mixed formulations for the Darcy Flow, and SBFEM-𝐻1 approximations.
Moreover, the code is based on object-oriented C++, using small blocks, parallelism, ab-
stract classes, and templates. Such features facilitate the computational implementation
of the proposed formulation.

5.3.1 Stiffness matrix computation
To implement the formulation, the volumetric integrals over the infinitesimal width were
written as integrals over 𝑑 − 1-dimensional domains. The first step was to split the
formulation into external and internal DOF following the procedure

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

A𝑖𝑛𝑡,𝑖𝑛𝑡 A𝑖𝑛𝑡,𝑖 A𝑖𝑛𝑡,𝑒 −B𝑖𝑝,𝑖𝑛𝑡 0 0
A𝑖,𝑖𝑛𝑡 A𝑖,𝑖 A𝑖,𝑒 −B𝑖𝑝,𝑖 −C𝑖,𝑖 0
A𝑒,𝑖𝑛𝑡 A𝑒,𝑖 A𝑒,𝑒 −B𝑖𝑝,𝑒 0 −C𝑒,𝑒

B𝑖𝑝,𝑖𝑛𝑡 B𝑖𝑝,𝑖 B𝑖𝑝,𝑒 0 0 0
0 C𝑖,𝑖 0 0 0 0
0 0 C𝑒,𝑒 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝒮 𝑖𝑛𝑡

𝒮 𝑖

𝒮𝑒

𝒰 𝑖𝑝

ℒ𝑖

ℒ𝑒

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0
0
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.3.0)

where 𝒮 𝑖𝑛𝑡, 𝒮 𝑖, 𝒮𝑒 are the DOF related to the internal flux, differential flux and external
flux, respectively; 𝒰 𝑖𝑝 is the DOF related to the internal pressure; and ℒ𝑖 and ℒ𝑒 are the
differential pressure and exterior pressure, respectively.

Notice that the interior pressure 𝜎𝑖𝑛𝑡
ℎ is totally decoupled from the Lagrange multiplier

approximation, leading to null block matrices in C𝑖𝑛𝑡,𝑖, C𝑖𝑛𝑡,𝑒, and the respective trans-
posed. Moreover, since there are hybrid 𝑑− 1-dimensional elements only over the exterior
facet 𝜕𝑆 and the interface facet, C𝑖,𝑒 and C𝑒,𝑖 are null block matrices as well.

Each block matrix was analyzed using the software Mathematica to determine boundary
integrals to implement. In other words, the mathematical expression was computed sym-
bolically by taking the limit when 𝛿 → 0 using Mathematica. So then, let us take a look
at each block matrix separately.

A matrix

The A matrix is subdivided into nine block matrices as

A =

⎛⎜⎝A
𝑖𝑛𝑡,𝑖𝑛𝑡 A𝑖𝑛𝑡,𝑖 A𝑖𝑛𝑡,𝑒

A𝑖,𝑖𝑛𝑡 A𝑖,𝑖 A𝑖,𝑒

A𝑒,𝑖𝑛𝑡 A𝑒,𝑖 A𝑒,𝑒

⎞⎟⎠ (5.3.0)

Each block matrix has the following expressions:

A𝑖𝑛𝑡,𝑖𝑛𝑡
𝑖,𝑗 = lim

𝛿→0

1
𝛿

∫︁ +1

−1

∫︁ +1

−1
𝜓

𝑖𝑛𝑡

𝑖
· 𝜓

𝑖𝑛𝑡

𝑗

⃒⃒⃒⃒
⃒⃒𝛿(2 + 𝛿(𝜉 − 1))

4 𝐽
𝐾

(1, 𝜂)
⃒⃒⃒⃒
⃒⃒ 𝑑𝜂

=
∫︁ +1

−1
𝜓

𝑖𝑛𝑡

𝑖
(𝜂) · 𝜓

𝑖𝑛𝑡

𝑗
(𝜂)|𝐽

𝐾
(1, 𝜂)|𝑑𝜂,
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where 𝜓𝑖𝑛𝑡

𝑖
= {0, 𝑁̂𝑖(𝜂)}, 𝜓𝑖𝑛𝑡

𝑗
= {0, 𝑁̂𝑗(𝜂)}, 𝑖, 𝑗 = 0, ..., 𝑘 + 1.

A𝑖𝑛𝑡,𝑖
𝑖,𝑙

= lim
𝛿→0

1
𝛿

∫︁ +1

−1

∫︁ +1

−1
𝜓

𝑖𝑛𝑡

𝑖
· 𝜓

𝑖

𝑙

⃒⃒⃒⃒
⃒⃒𝛿(2 + 𝛿(𝜉 − 1))

4 𝐽
𝐾

(1, 𝜂)
⃒⃒⃒⃒
⃒⃒ 𝑑𝜂

= 0.

where 𝜓𝑖
𝑙

= {𝛿𝜉𝑁̂𝑗(𝜂), 0}, 𝑗 = 0, ..., 𝑘. Similarly, the other block matrices with 𝜓
𝑖 compo-

nents are null, i.e. A𝑖,𝑖 = A𝑖,𝑒 = 0.

A𝑖𝑛𝑡,𝑒
𝑖,𝑙 = lim

𝛿→0

1
𝛿

∫︁ +1

−1

∫︁ +1

−1
𝜓

𝑖𝑛𝑡

𝑖
· 𝜓

𝑒

𝑙

⃒⃒⃒⃒
⃒⃒𝛿(2 + 𝛿(𝜉 − 1))

4 𝐽
𝐾

(1, 𝜂)
⃒⃒⃒⃒
⃒⃒ 𝑑𝜂

=
∫︁ +1

−1
𝜓

𝑖𝑛𝑡

𝑖
(𝜂) · 𝜓

𝑒

𝑙
(𝜂)

⃒⃒⃒
𝐽

𝐾
(1, 𝜂)

⃒⃒⃒
𝑑𝜂,

where 𝜓𝑒

𝑙
= {𝑁̂𝑙(𝜂), 0}, 𝑙 = 0, ..., 𝑘.

A𝑒,𝑒
𝑚,𝑙 = lim

𝛿→0

1
𝛿

∫︁ +1

−1

∫︁ +1

−1
𝜓

𝑒

𝑚
· 𝜓

𝑒

𝑙

⃒⃒⃒⃒
⃒⃒𝛿(2 + 𝛿(𝜉 − 1))

4 𝐽
𝐾

(1, 𝜂)
⃒⃒⃒⃒
⃒⃒ 𝑑𝜂

=
∫︁ +1

−1
𝜓

𝑒

𝑚
(𝜂) · 𝜓

𝑒

𝑙
(𝜂)

⃒⃒⃒
𝐽

𝐾
(1, 𝜂)

⃒⃒⃒
𝑑𝜂,

where 𝜓𝑒

𝑚
= {𝑁̂𝑚(𝜂), 0}, 𝑙 = 0, ..., 𝑘. Also, A𝑒,𝑖𝑛𝑡 = [A𝑖𝑛𝑡,𝑒]𝑇 . Thus,

A =

⎛⎜⎝ A𝑖𝑛𝑡,𝑖𝑛𝑡 0 A𝑖𝑛𝑡,𝑒

0 0 0
[A𝑖𝑛𝑡,𝑒]𝑇 0 A𝑒,𝑒

⎞⎟⎠ (5.3.-4)

B matrix

The B matrix is subdivided into three block matrices, resulting in

B =
(︁
B𝑖𝑝,𝑖𝑛𝑡 B𝑝𝑖,𝑖 B𝑝𝑖,𝑒

)︁
(5.3.-4)

where the superscript 𝑖𝑝 is related to the internal pressure and the superscript 𝑖𝑛𝑡, 𝑖, and
𝑒 are related to the internal flux and exterior flux in the fictitious interface and exterior
𝜕𝑆.

For the B𝑖𝑝,𝑖𝑛𝑡, the integrals are

B𝑖𝑝,𝑖𝑛𝑡
𝑖,𝑗 = lim

𝛿→0

1
𝛿

∫︁ +1

−1

∫︁ +1

−1

(︂
∇ · 𝜓̂

𝑖𝑝

𝑖

)︂
𝜑𝑗

⃒⃒⃒⃒
⃒⃒𝛿
(︁
2 + 𝛿(𝜉 − 1)

)︁
4 𝐽

𝐾
(1, 𝜂)

⃒⃒⃒⃒
⃒⃒ 𝑑𝜂𝑑𝜉

=
∫︁ +1

−1

(︂
∇ · 𝜓

𝑖𝑝

𝑖
(𝜂)
)︂
𝜑𝑗(𝜂)|𝐽

𝐾
(1, 𝜂)|𝑑𝜂,

where 𝜑𝑗 = 𝑁̂𝑗(𝜂) and 𝜓̂
𝑖𝑝

𝑖
= {0, 𝑁̂𝑖(𝜂)}. Also,

B𝑖𝑝,𝑖
𝑖,𝑗 = lim

𝛿→0

1
𝛿

∫︁ +1

−1

∫︁ +1

−1

(︁
∇ · 𝜓̂

𝑒

𝑖

)︁
𝜑𝑗

⃒⃒⃒⃒
⃒⃒𝛿
(︁
2 + 𝛿(𝜉 − 1)

)︁
4 𝐽

𝐾
(1, 𝜂)

⃒⃒⃒⃒
⃒⃒ 𝑑𝜂𝑑𝜉

= 0,
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where 𝜓̂𝑖

𝑖
= {𝛿𝜉𝑁̂𝑖(𝜂), 0}. Last,

B𝑖𝑝,𝑒
𝑖,𝑗 = lim

𝛿→0

1
𝛿

∫︁ +1

−1

∫︁ +1

−1

(︂
∇ · 𝜓̂

𝑖

𝑖

)︂
𝜑𝑗

⃒⃒⃒⃒
⃒⃒𝛿
(︁
2 + 𝛿(𝜉 − 1)

)︁
4 𝐽

𝐾
(1, 𝜂)

⃒⃒⃒⃒
⃒⃒ 𝑑𝜂𝑑𝜉

=
∫︁ +1

−1
𝑁̂𝑖(𝜂)𝜑𝑗(𝜂)

⃒⃒⃒
𝐽

𝐾
(1, 𝜂)

⃒⃒⃒
𝑑𝜂,

where 𝜓̂𝑒

𝑖
= {𝑁̂𝑖(𝜂), 0}. Thus, B matrix is written as

B =
(︁
B𝑖𝑝,𝑖𝑛𝑡 0 B𝑖𝑝,𝑒

)︁
. (5.3.-4)

Last, C𝑖,𝑖 and C𝑒,𝑒 are already 𝑑 − 1 integrals over the skeleton mesh ℰℎ given by Eq.
(5.2.3).

Stiffness matrix of a hybridized-mixed Scaled Boundary FE

The local matrix for the 𝑆-element is given by⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

A𝑖𝑛𝑡,𝑖𝑛𝑡 0 A𝑖𝑛𝑡,𝑒 B𝑖𝑝,𝑖𝑛𝑡 0 0
0 0 0 0 C𝑖,𝑖 0

A𝑒,𝑖𝑛𝑡 0 A𝑒,𝑒 B𝑝𝑖,𝑒 0 C𝑒,𝑒

B𝑖𝑝,𝑖𝑛𝑡 0 B𝑖𝑝,𝑒 0 0 0
0 C𝑖,𝑖 0 0 0 0
0 0 C𝑒,𝑒 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝒮 𝑖𝑛𝑡

𝒮 𝑖

𝒮𝑒

𝒰 𝑖𝑝

ℒ𝑖

ℒ𝑒

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0
0
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.3.-4)

A static condensation is performed locally, condensing the DOF related to 𝒮 𝑖𝑛𝑡, 𝒮 𝑖, 𝒮𝑒

and 𝒰 𝑖𝑝 into ℒ𝑖 and ℒ𝑒,

E =
(︃

0 C𝑖,𝑖 0
0 0 C𝑒,𝑒

)︃⎛⎜⎜⎜⎝
A𝑖𝑛𝑡,𝑖𝑛𝑡 0 A𝑖𝑛𝑡,𝑒 −B𝑖𝑝,𝑖𝑛𝑡

0 0 0 −0
A𝑒,𝑖𝑛𝑡 0 A𝑒,𝑒 −B𝑝𝑖,𝑒

B𝑖𝑝,𝑖𝑛𝑡 0 B𝑝𝑖,𝑒 0

⎞⎟⎟⎟⎠
−1⎛⎜⎝ 0 0

C𝑖,𝑖 0
0 C𝑒,𝑒

⎞⎟⎠ (5.3.-4)

Recall that the condensed system is written as E ℒ = 0 (Eq. 5.2.3) and E is written in
terms of the SBFEM coefficient matrices (Eq. (5.2.3)). Thus, the local system leads to(︃

𝐸𝑑𝑖𝑣
0 𝐸𝑑𝑖𝑣

1
𝑇

𝐸𝑑𝑖𝑣
1 𝐸𝑑𝑖𝑣

2

)︃{︃
ℒ𝑖

ℒ𝑒

}︃
=
{︃

0
0

}︃
. (5.3.-4)

The solution for the flux and for the internal pressure is obtained by undoing the static
condensation locally per 𝑆-element as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝒮 𝑖𝑛𝑡(𝜉)
𝒮 𝑖(𝜉)
𝒮𝑒(𝜉)
𝒰 𝑖𝑝(𝜉)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = −

⎛⎜⎜⎜⎜⎜⎜⎝
A𝑖𝑛𝑡,𝑖𝑛𝑡 0 A𝑖𝑛𝑡,𝑒 B𝑖𝑝,𝑖𝑛𝑡

0 0 0 0
A𝑖𝑛𝑡,𝑖𝑛𝑡 0 A𝑖𝑛𝑡,𝑒 B𝑖𝑛𝑡,𝑖𝑛𝑡

A𝑒,𝑖𝑛𝑡 0 A𝑒,𝑒 B𝑖𝑝,𝑒

B𝑖𝑝,𝑖𝑛𝑡 0 B𝑖𝑝,𝑒 0

⎞⎟⎟⎟⎟⎟⎟⎠

−1⎛⎜⎜⎜⎝
0 0
C𝑖,𝑖 0
0 C𝑒,𝑒

0 0

⎞⎟⎟⎟⎠
{︃

ℒ𝑖(𝜉)
ℒ𝑒(𝜉)

}︃
. (5.3.-4)

leading to
𝜎ℎ(𝑥) =

∑︁
𝑖

𝜓𝑖𝑛𝑡

𝑖
(𝜂)𝒮 𝑖𝑛𝑡

𝑖 (𝜉) +
∑︁

𝑗

𝜓𝑖

𝑗
(𝜂)𝒮 𝑖

𝑗(𝜉) +
∑︁

𝑙

𝜓𝑒

𝑙
(𝜂)𝒮𝑒

𝑙 (𝜉)

𝑢𝑖𝑛𝑡
ℎ (𝑥) = 𝜑(𝜂) · 𝒰 𝑖𝑝(𝜉).

Last, since 𝑢𝑒 = 𝑢𝑖 = 𝑢𝑖𝑛𝑡 when 𝛿 → 0, 𝑢𝑖𝑛𝑡
ℎ (𝑥) = 𝑢𝑒(𝑥) necessarily.
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5.3.2 Class structure
The code follows an object-oriented philosophy using class structure to couple overlapping
meshes. The classes and methods implemented can be grouped according to the tasks
involved in a FE simulation:

• Geometric and Computational Meshes;

• Approximation spaces;

• Weak formulations;

• Post-processing.

The idea of implementing Hybridized SBFEM approximation in NeoPZ is to use the
classes and algorithm structure already existing in NeoPZ for the FEM multiphysics
simulation. An overview of the tasks involved in an SBFEM simulation using NeoPZ is
summarized as follows:

1. Create a geometric mesh with the skeleton mesh or the volumetric elements (a
classical FE mesh). From such a mesh, create Duffy’s geometric elements and set a
volumetric material identification (material id).

2. Create a computational SBFEM mesh for the pressure. Three material ids are
related to the pressure: the skeleton material id for the skeleton mesh, composed
of the external pressure; the internal pressure, and the differential pressure. The
volumetric elements do not have approximation space associated since the SBFEM
approximates only the boundary of 𝜕𝑆 and the trace approximation is extended in
an analytical procedure inside Duffy’s elements.

3. Create a computational SBFEM mesh for the flux.

4. Create a multiphysics computational SBFEM mesh composed of the pressure and
flux meshes.

(a) Create SBFEM multiphysics elements.

(b) Define the DOF to be condensed.

5. Initialize the analysis, in which the SBFEM stiffness matrices are computed based
on the SBFEM-𝐻(𝑑𝑖𝑣) coefficient matrices.

(a) For each Scaled Boundary FE, perform the static condensation and compute
the eigenvalues and eigenvectors.

(b) Compute the local SBFEM stiffness matrix using the eigenvectors.

6. Post-process error and solution visualization using Paraview for the SBFEM shape
functions.

(a) For each Scaled Boundary FE, undo the static condensation to obtain the nodal
solution for the flux and the pressure.

(b) Post-process solution for each Duffy’s element.

The code insertions in NeoPZ focused on implementing classes to build the SBFEM mul-
tiphysics computational mesh, computing the stiffness matrix based on the eigenvalue
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problem, and post-processing the solution for each Scaled Boundary FE. The classes im-
plemented are described in sequence.

TPZBuildSBFemMultiphysics: The goal of this class is to implement the hybridized-
mixed SBFEM mesh. For that, two steps are performed.

1. Build the geometric SBFEM mesh: In this step, Duffy’s elements are created fol-
lowing one of the configurations

(a) Input mesh is a geometric FE mesh (such as a usual mesh from a gmsh file):
create Duffy’s elements considering the geometric centroid as the scaling center,
and each facet is the side 𝐿 of Duffy’s elements. Create the 𝑑− 1 elements for
pressure and flux.

(b) Input mesh is a skeleton mesh: In this case, the user must also pass as input
the partitions in which each skeleton element belongs and the scaling center.
Based on this data, the method builds Duffy’s elements and the geometric
elements related to the flux.

2. Build the computational SBFEM mesh: based on the geometric mesh, the following
computational elements are created:

(a) 𝑑− 1 computational elements for flux and pressure approximations;

(b) Volumetric computational elements: these elements have no DOF associated
due to their definition of the Scaled Boundary FE;

(c) Multiphysics elements that couples flux and pressure approximation.

.

The 𝑑−1 computational pressure elements are simply 𝐿2 elements. Since the NeoPZ does
have a computational implementation for discontinuous elements, no additional code was
required for the trace approximation for the pressure. However, the 𝐻(𝑑𝑖𝑣) trace space for
the SBFEM is unusual since the direction of the normal vector is defined by the geometric
Duffy’s element, and fewer shape functions are required to compose the finite-dimensional
space (see Fig. 5.10).

TPZCompElHDivSBFem: This class implements the computational element related
to the SBFEM-𝐻(𝑑𝑖𝑣) space.

TPZSBFemMultiphysicsElGroup: This class implements hybridized-mixed scaled
boundary FEs and computes the SBFEM coefficient matrices, the pair of eigenvalues and
eigenvectors related to the locally conservative SBFEM problem and the local stiffness
matrix. Such a class is composed of:

1. 𝑑− 1 flux, pressure, and multiphysics computational SBFEM elements;

2. SBFEM volumetric elements.
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The computational volumetric elements are responsible for post-processing the SBFEM
skeleton solution. In other words, these classes extend the trace approximation to the
interior of Duffy’s element.

TPZSBFemVolumeL2: Computational Duffy’s element that performs integral compu-
tations for state variables in the 𝐿2-space;

TPZSBFemVolumeHdiv: Computational Duffy’s element that performs integral com-
putations for variable in the SBFEM-𝐻(𝑑𝑖𝑣) space;

TPZSBFemVolumeMultiphysics: Computational multiphysics Duffy’s element that
couples the TPZSBFemVolumeL2 and TPZSBFemVolumeHdiv elements.

5.4 Numerical tests

5.4.1 Example 1: 2D Polynomial Darcy Flow

The first numerical test is a polynomial Darcy Flow given by

∇ · 𝜎 = 0

𝜎 = −𝐾∇𝑢 = −
{︃

6𝑥5 − 60𝑥3𝑦2 + 30𝑥𝑦4

−30𝑥4𝑦 + 60𝑥2𝑦3 − 6𝑦5

}︃

in a 2D domain Ω = [−1,−1] × [1, 1]. The analytical pressure is expressed as

𝑢 = −15𝑥4𝑦2 + 15𝑥2𝑦4 + 𝑥6 − 𝑦6. (5.4.0)

Dirichlet boundary conditions for the pressure over 𝜕Ω are considered.

Two mesh configurations are tested for polynomial trace approximations 𝑘 = 1, ..., 6,
namely

• Case 1: Partition 𝒯 ℎ = {𝑆} composed of a single 𝑆-element. Skeleton refinement is
performed. Namely, each side of 𝜕𝑆 is subdivided into 𝑛 subintervals. The scaling
center is positioned in the center (𝑥, 𝑦) = (0, 0), which means that the 𝑆-element is
composed of 4𝑛 uniform triangles.

• Case 2: Uniform partition 𝒯 ℎ composed of a dense mesh with 𝑛 × 𝑛 quadrilateral
𝑆-elements. Each 𝑆-element is composed of four uniforms Duffy’s elements with a
scaling center positioned at the element’s centroid.

Both meshes are refined three times, leading to characteristic width of ℎ = 21−ℓ, ℓ =
0, ..., 3. Figure 5.12 shows case 1 and 2 meshes for ℓ = 3 and ℎ = 0.25.
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Case 1: Single 𝑆-element Case 2: Dense mesh

Figure 5.12: Example 1: Geometric SBFEM mesh refinement for ℎ = 0.25: Case 1 - Dense mesh and
Case 2 - Single 𝑆-element mesh.

The convergence solution for a single 𝑆-element refining the skeleton is shown in Fig.
5.13. Optimal rates of convergence are obtained for the flux 𝐿2 error. Yet, the analytical
solution is recovered for 𝑘 = 4 even though the solution is a 5th-order polynomial. This
fact occurs because the𝐻(𝑑𝑖𝑣) space is enriched with 𝑘+1 internal functions in 𝜂-direction,
which were enough to recover the analytical solution for 𝑘 = 4. Still, in Fig. 5.13, optimal
rates of convergence were obtained for the pressure approximation and the analytical
solution recovered for 𝑘 = 6. Analogous results were obtained for the dense mesh case,
as shown in Fig. 5.14. For both curves, the last refinement step (i.e. characteristic size
ℎ = 0.25) for 𝑘 = 6 presented small disturbances similarly to what was verified in 𝐻1

examples in Chapters 3 and 4. Such disturbances occurs when the size of the eigenvalue
problem increases, leading to an ill-conditioned matrix, pairs of eigenvalues/eigenvectors
composed of complex numbers and numerical issues. Song (2018) already documented
this problem and suggests using the Schur decomposition instead of the usual eigenvalue
decomposition.

Single 𝑆-element - Skeleton refinement
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Figure 5.13: Example 1 - Case 1 - Energy and 𝐿2 errors versus ℎ = 2/2ℓ, ℓ = 0, ..., 3, using the SBFEM
in uniform skeleton partitions of a single S-elements for 𝑘 = 1, ..., 6.

For the dense mesh configuration, similar results were obtained with similar error values,
as shown in Fig. 5.14. Optimal convergence rates were obtained for the 𝐿2 norm of the
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flux and pressure. The analytical result for the flux was recovered from 𝑘 = 4. Numerical
instabilities were also found in the analytical solution of the flux. Yet, the maximum
numerical magnitude order for the error was ≈ 10−11.

Dense mesh - domain refinement
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Figure 5.14: Example 1 - Case 2 - Energy and 𝐿2 errors versus ℎ = 2/2ℓ, ℓ = 0, ..., 3, using the SBFEM-
𝐻(𝑑𝑖𝑣) formulation in uniform partitions of quadrilateral S-elements for 𝑘 = 1, ..., 6.

5.4.2 Example 2: 2D Darcy Flow
The second numerical test is a two-dimensional Darcy Flow expressed as

∇ · 𝜎 = 0,

𝜎 = −𝐾∇𝑢 =
{︃

exp 𝜋𝑥𝜋 sin 𝜋𝑦
exp 𝜋𝑥𝜋 cos𝜋𝑦

}︃
,

defined in a domain Ω = [−1,−1] × [1, 1], for 𝐾 = 1. The analytical solution for the
pressure and the flux vector field is plotted in Fig. 5.15. The SBFEM approximation was
based on trace approximation space from 𝑘 = 1 to 𝑘 = 7, using a uniform mesh of 𝑛× 𝑛
𝑆-elements where 𝑛 = 2−ℓ+1, ℓ = 0, .., 3 (see Fig. 5.12 - Dense mesh).

Pressure Flux

Figure 5.15: Example 2: Analytical solution for the pressure 𝑢 and the flux 𝜎.

In this example, the SBFEM-𝐻(𝑑𝑖𝑣) formulation developed in this chapter is compared
to the SBFEM-𝐻1 approximation presented in Chapter 3. For that, a dense mesh of 𝑛×𝑛
elements is considered, where 𝑛 = 2−ℓ+1, ℓ = 0, .., 3 (see Fig. 5.12 - Dense mesh).
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Dense mesh - domain refinement
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Figure 5.16: Example 2 - Energy and 𝐿2 errors versus ℎ = 2/2ℓ, ℓ = 0, ..., 3, using the Galerkin SBFEM
with bubbles in uniform partitions of quadrilateral S-elements for 𝑘 = 1, ..., 7.

5.4.3 2D single crack

The last numerical example refers to a Darcy Flow in which the analytical solution has a
square-root singularity, given by

∇ · 𝜎 = 0,

𝜎 = −𝐾∇𝑢 =
{︃

2−3/4𝑟−1/2 cos 𝜃/2
−2−3/4𝑟−1/2 sin 𝜃/2

}︃

defined in a two-dimensional domain Ω = [−1,−1] × [1, 1]. The analytical solution for
the pressure and the flux is shown in Fig. 5.18 and 5.17.

Flux magnitude
Vector field

Figure 5.17: Example 2: Analytical solution for flux 𝜎: (a) flux magnitude, (b) vector field (only direc-
tion).
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Pressure magnitude

Scalar field

Figure 5.18: Example 2: Analytical solution for flux 𝑢: (a) pressure magnitude, (b) pressure field (only
direction).

For this example, the numerical simulation is performed considering a mesh partition of
a single 𝑆-element, 𝒯 ℎ = {𝑆} refined only at the element’s skeleton. For the fracture
example, the scaling center must be positioned at the crack’s tip, which is located at
(0, 0). The most refined mesh is similar to the first example, as illustrated in Fig. 5.12
- Case 1: Single 𝑆-element. Polynomial trace approximation up to the fourth order was
considered. Figure 5.19 shows that optimal convergence rates were obtained for the 𝐿2

norm of the flux and the pressure.

Skeleton refinement
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Figure 5.19: Example 3 - Energy and 𝐿2 errors versus ℎ = 2/2ℓ, ℓ = 0, 1, 2, using a single S-element for
𝑘 = 1, ..., 4.

5.5 Conclusions
This chapter shows that locally conservative approximations for the SBFEM can be ob-
tained by applying the ballooning technique in a hybridized-mixed FE cell of infinitesimal
width. The limit of the width tending to zero leads to an almost analytical solution in
the radial component, similarly to the SBFEM for 𝐻1 approximations. Optimal con-
vergence rates for the 𝐿2 norm of the flux and the pressure were obtained, considering
either skeleton refinement or a dense mesh. Although simple examples were addressed in
this thesis, yet, the numerical experiments prove that the formulation leads to optimal
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convergence rates even for problems with square-root singularities. Although only two-
dimensional examples were considered, the formulation is generic and the computational
algorithm can be extended to three-dimensional problems. The major advantage is the
local conservation of mass imposed directly in the approximation space.

Further studies must address the extension of the proposed formulation to more complex
applications. First and more intuitive is the extension of the SBFEM-𝐻(𝑑𝑖𝑣) compu-
tational code to three-dimensional problems. Also, a useful application is simulating a
fractured porous media, such as in Discrete Fracture Networks, as already explored by
Devloo et al. (2019a) and Berre et al. (2021) for two and three-dimensional problems us-
ing Mixed FEM. Finally, another application is in numerical simulations using multiscale
methods, for instance, to improve the Multiscale Hybrid Mixed method (MHM-𝐻(𝑑𝑖𝑣)).
Also, a posteriori error estimates can be developed using the studies of Batistela et al.
(2022) and the references cited therein as the basis.
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Chapter 6

Conclusion and future research

As developed over this thesis, the SBFEM can be seen from two different points of view.
First, the SBFEM was presented as a type of Duffy’s approximation space. Also, the
SBFEM can be seen as a general ballooning technique applied in a generic star-shaped
geometric element (but also using Duffy geometric maps), considering an infinite number
of layers.

Chapters 3 and 4 explored the fact of SBFEM being a subspace of general Duffy’s approx-
imation space. The SBFEM approximation is based on partitions of the computational
domain by polygonal/polyhedral subregions, where the shape functions approximate lo-
cal Dirichlet problems with piecewise polynomial trace data. These basis functions are
constructed using a semi-analytical approach, using this operator adaptation approach.
By imposing a starlike scaling requirement on the subregions, the representation of local
SBFEM shape functions in radial and surface directions are obtained from eigenvalues
and eigenvectors solution of an ODE system, whose coefficients are determined by the
element geometry and the trace polynomial spaces. Duffy’s framework is the key to un-
derstanding and proving the SBFEM convergence, as explored to define a priori error
estimates in Chapter 3. Yet, Duffy’s approximation space was applied to construct a
bubble enrichment for approximating two and three-dimensional elliptic and parabolic
problems using the SBFEM, as developed in Chapter 4.

The second point of view is to understand the SBFEM as applying the ballooning tech-
nique in a FE considering an infinite number of layers. Ballooning means dividing a FE
into several slices and then performing recurrent static condensations. This technique is
based on observing that the stiffness matrix in the FEM does not vary according to the
width of the layer or even the position. The limit of this operation tending to infinity
leads to the analytical solution over the radial direction. In other words, when the limit
of the infinitesimal layer width tends to zero, the approximated solution tends to be the
analytical solution in the radial direction. In Chapter 5, the ballooning technique was the
key to developing a hybridized-mixed SBFEM formulation.

SBFEM as Duffy’s space

Using Duffy’s FE theory, a priori error estimates for SBFEM’s solutions of harmonic test
problems was provided in Chapter 3 and a bubble enrichment was proposed to approxi-
mate the solution of non-homogeneous PDEs in Chapter 4.
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The SBFEM space is a subspace of Duffy’s approximations in which a gradient-orthogonality
constraint is imposed. Scaled boundary functions being gradient-orthogonal to any func-
tion in Duffy’s spaces vanishing at the mesh skeleton is a consequence of the function
space definition. This orthogonality property is applied to provide a priori SBFEM error
estimates in terms of known finite element interpolant errors of the exact solution. Sim-
ilarities with virtual harmonic approximations are also explored to understand SBFEM
convergence properties. Numerical experiments with 2D and 3D polytopal meshes confirm
optimal SBFEM convergence rates for two test problems with smooth solutions. Attention
is also paid to the approximation of a point singular solution by using SBFEM close to
the singularity and finite element approximations elsewhere, revealing optimal accuracy
rates of standard regular contexts.

SBFEM approximation errors come from two sources: one is due to the trace of approx-
imated functions over the facets of 𝜕𝑆, and the other is related to the deviation of the
radial extensions inside 𝑆. The fact that the first source of error is the dominant one is
favorable for applications for singular problems, where the singularity may be isolated,
without interaction with the 𝑆-element facets. For this class of problems, the solution
away from the singularity is regular. If the convergence rate is dominated by the ap-
proximation on the boundary of 𝑆, then this explains regular convergence rates even for
singular problems, as illustrated by the verification simulations. Due to the method’s fea-
tures, and the problems with square-root singularities, the scaling center must be located
at the singularity point.

This thesis also proposed a polynomial bubble enrichment based on tensorial Duffy’s
functions. These spaces have optimal rates for approximating two and three-dimensional
non-homogeneous PDEs. The proof is based on the convergence of Duffy’s polynomial
approximation spaces. Since the polynomial Duffy’s space is a FE approximation space
that converges with optimal convergence rates and is a subspace of the SBFEM enriched
space, and the first converges with optimal convergence rates, the proposed SBFEM space
converges as well. Numerical examples of Poisson and Elasticity problems for two and
three-dimensional domains emphasize the theoretical results. Yet, it is shown that the
bubble enrichment is orthogonal in the energy norm to the SBFEM approximation for
homogeneous PDEs. This fact implies a decoupled skeleton and interior approximation
for static simulations. In other words, adding bubble Duffy functions to the SBFEM space
does not modify the skeleton solution. Thus, the SBFEM solution already provides the
best approximation for the skeleton.

SBFEM as a balooning process

The second point of view, regarding the SBFEM as a ballooning process, is suitable to
extend the SBFEM formulation as a general technique applied to improve FE approxima-
tions. This strategy was applied to obtain locally conservative SBFEM approximations
using a hybridized-mixed approach in Chapter 5.

First, this thesis shows that the SBFEM coefficient matrices for 𝐻1 approximations can
be obtained through an infinitesimal FE cell. The same technique was applied for a
Darcy Flow described by a hybridized-mixed variational statement. Static condensation
is performed to reduce the DOF and write the problem as a function of the pressure. The
DOF is slightly modified to write the DOF as the infinitesimal average and differential
pressure, instead of usual nodal pressure values. From the condensed stiffness matrix, the
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SBFEM coefficient matrices are obtained. The flux is constructed locally per element by
undoing the static condensation. Numerical examples of 2D Darcy Flows illustrate the
optimal convergence rates for the 𝐿2 norm of flux and pressure.

It is worth mentioning that the technique to obtain the SBFEM coefficient matrices using
an infinitesimal FE cell can be applied to any method in which the ballooning process can
be utilized. From such a point of view, the SBFEM can be seen as a general technique
that can be applied in other FE formulations beyond classical FEM and hybridized-mixed
FEM.

Highlights

To summarize, the novel topics addressed in this thesis were:

1. A priori error estimates for the energy norm for homogeneous PDEs;

2. A bubble enrichment for the SBFEM to approximate three-dimensional elliptic
PDEs;

3. A priori error estimates for both energy and 𝐿2 norm for non-homogeneous PDEs;

4. Locally conservative SBFEM formulations for two-dimensional Darcy Flows, based
on hybridized-mixed FEM.

6.1 Future works
In this thesis, the convergence was proven only for the energy norm. Additional efforts
may be dedicated to proving the optimal convergence rate for the 𝐿2 norm. Yet, only a
priori error estimates were addressed in this Chapter 3. Further studies might address a
posteriori error estimates as well. Recent studies from the Computational Mechanics Lab-
oratory derive a posteriori error estimations for enriched mixed methods (BATISTELA;
SIQUEIRA; DEVLOO, 2020) for Poisson problems. Such studies may be extended to
derive a general methodology, based on potential and flux reconstruction, for the SBFEM
for 𝐻1 and 𝐻(𝑑𝑖𝑣) formulation.

Lack of convergence is observed in high-order SBFEM approximations for 3D problems
using bubble enrichment. This fact occurs because, in such approximations, the SBFEM
eigenvalues lead to complex values and numerical instabilities. An alternative to over-
come this issue for homogeneous problems is addressed by Song in (SONG, 2018). In
his book, Song suggests using the Schur Decomposition instead of traditional eigenvalue
decomposition to avoid complex numbers and numerical instabilities. Therefore, future
work might be to apply the same decomposition for the non-homogeneous problems to
recover optimal convergence rates for high-order 3D problems.

The thesis involves locally conservative approximations in two-dimensional domains and
Darcy Flows only. The algorithms presented in this thesis can be also extended for three-
dimensional Darcy Flows. In this case, there is no difference between two and three-
dimensional mathematical formulations. The dissimilarities that arise are only from a
numerical implementation point of view. Other mechanical problems can be also the focus
of studies, such as Elasticity for incompressible materials and Stokes flow. Although the
variational statement using hybridized-mixed FEM for these problems is widely known
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in the literature, applying the scaled boundary technique in these cases might add some
advantages such as optimal convergence rates for problems with point singularities, and
flexible mesh generation.

Another topic of further study is to apply the SBFEM in multiscale simulations. The FE
library utilized in this thesis, the NeoPZ, already has the framework to solve multiscale
problems using a mixed-hybrid approach, but only for FEM. This method, known as Mul-
tiscale Hybrid Mixed (MHM) method already exists for 𝐻1 and 𝐻(𝑑𝑖𝑣) approximations.
For these cases, the 𝑆-elements in the SBFEM can be used as the macro-elements of the
coarse mesh.

Finally, topics about the generalization of SBFEM can be addressed in further studies,
such as constructing complete De Rham sequences. Also, since the SBFEM is can be seen
as a ballooning technique, it means that it can be applied in any FE technique that allows
subdividing the FE into an infinite number of slices. Such an approach allows generalizing
the SBFEM and applying it together with other FE methods, such as Hybrid High Order
methods (HHO).
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Appendix A

Tables - Convergence Results

A.1 Chapter 3 - The Scaled Boundary Finite Ele-
ment Method

A.1.1 Poisson problems
Example 1 - Smooth solution in 2D - Single 𝑆-element

Table A.1: Example 1 - SBFEM errors 𝐸ℎ
𝐿2 = ‖𝑢 − 𝑢ℎ‖𝐿2(Ω) and 𝐸ℎ

𝐻1 = |𝑢 − 𝑢ℎ|𝐻1(Ω) for partitions
𝒯 ℎ = {𝑆} of a single 𝑆-element, with the skeleton subdivided into ℎ = 2−ℓ scaled boundary elements
using uniform and distorted subpartitions.

Uniform sub-partitions

ℓ
𝑘=1 𝑘=2 𝑘 = 3
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 8 6.33E0 3.85E1 16 3.32E-1 3.86E0 12 2.26E-1 2.99E0
1 16 9.34E-1 1.45E1 32 1.07E-1 2.23E0 24 1.04E-2 3.11E-1
2 32 2.06E-1 6.81E0 64 1.60E-2 5.57E-1 48 6.75E-4 3.79E-2

Rate 2.18 1.09 Rate 2.74 2.00 Rate 3.95 3.04

ℓ
𝑘 = 4 𝑘 = 5 𝑘 = 6
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 32 5.88E-3 1.18E-1 40 3.96E-3 8.28E-2 48 6.05E-5 1.76E-3
1 64 7.09E-4 2.54E-2 80 4.72E-5 2.14E-3 96 2.34E-6 1.20E-4
2 128 2.42E-5 1.58E-3 160 7.61E-7 6.47E-5 192 1.95E-8 1.85E-6

Rate 4.87 4.01 Rate 5.96 5.05 Rate 6.91 6.02

Distorted sub-partitions

ℓ
𝑘 = 1 𝑘 = 2 𝑘 = 3
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 8 7.06E0 3.92E1 16 4.05E-1 4.47E0 24 2.63E-1 3.23E0
1 16 1.08E0 1.51E1 32 1.27E-1 2.49E0 48 1.24E-2 3.45E-1
2 32 2.41E-1 7.15E0 64 1.88E-2 6.24E-1 96 8.01E-4 4.25E-2

Rate 2.16 1.08 Rate 2.76 2.00 Rate 3.95 3.02

ℓ
𝑘 = 4 𝑘 = 5 𝑘 = 6
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 32 8.41E-3 1.61E-1 40 4.67E-3 9.42E-2 48 9.48E-5 2.55E-3
1 64 8.67E-4 2.95E-2 80 5.71E-5 2.45E-3 96 2.91E-6 1.42E-4
2 128 2.92E-5 1.83E-3 160 2.47E-5 3.63E-4 192 4.96E-6 2.81E-4

Rate 4.89 4.01 Rate 1.21 2.76 Rate -0.77 -0.99
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Example 2 - Smooth solution in 2D - Quadrilateral and polygonal mesh refining
the domain

Table A.2: Example 2 - Galerkin SBFEM errors 𝐸ℎ
𝐿2 = ‖𝑢 − 𝑢ℎ‖𝐿2(Ω) and 𝐸ℎ

𝐻1 = |𝑢 − 𝑢ℎ|𝐻1(Ω) for
partitions 𝒯 ℎ, ℎ = 2−ℓ, with uniform quadrilateral 𝑆-elements, subdivided in uniform and distorted
triangles.

Uniform quadrilateral 𝑆-elements - uniform sub-partitions

ℓ
𝑘 = 1 𝑘 = 2 𝑘 = 3
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

1 25 1.80E0 1.99E1 65 1.31E-1 2.56E0 105 7.78E-3 2.28E-1
2 81 4.50E-1 9.50E0 225 1.68E-2 5.92E-1 369 4.68E-4 2.62E-2
3 289 1.13E-1 4.68E0 833 2.12E-3 1.42E-1 1377 2.95E-5 3.19E-3
4 1089 2.82E-2 2.33E0 3201 2.65E-4 3.50E-2 5313 1.86E-6 3.96E-4

Rate 2.00 1.01 Rate 3.00 2.02 Rate 3.99 3.01

ℓ
𝑘 = 4 𝑘 = 5 𝑘 = 6
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

1 145 5.87E-4 2.09E-2 185 3.89E-5 1.77E-3 225 1.96E-6 1.03E-4
2 513 1.99E-5 1.29E-3 657 6.04E-7 5.22E-5 801 1.53E-8 1.47E-6
3 1921 6.42E-7 8.14E-5 2465 9.47E-9 1.57E-6 3009 1.23E-10 2.21E-8
4 7425 2.03E-8 5.11E-6 9537 1.48E-10 4.81E-8 11649 9.46E-13 3.42E-10

Rate 4.98 3.99 Rate 6.00 5.03 Rate 6.99 6.02

Uniform quadrilateral 𝑆-elements - distorted sub-partitions

ℓ
𝑘 = 1 𝑘 = 2 𝑘 = 3
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

1 25 1.81E0 2.00E1 65 1.38E-1 2.66E0 105 9.25E-3 2.59E-1
2 81 4.51E-1 9.51E0 225 1.80E-2 6.20E-1 369 5.52E-4 3.02E-2
3 289 1.13E-1 4.68E0 833 2.26E-3 1.49E-1 1377 3.43E-5 3.66E-3
4 1089 2.81E-2 2.33E0 3201 2.83E-4 3.68E-2 5313 2.15E-6 4.51E-4

Rate 2.00 1.07 Rate 2.94 2.10 Rate 4.07 3.10

ℓ
𝑘 = 4 𝑘 = 5 𝑘 = 6
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

1 145 6.86E-4 2.36E-2 185 4.33E-5 1.94E-3 225 2.23E-6 1.15E-4
2 513 2.21E-5 1.42E-3 657 6.48E-7 5.65E-5 801 1.69E-8 1.61E-6
3 1921 6.93E-7 8.79E-5 2465 9.96E-9 1.68E-6 3009 1.32E-10 2.40E-8
4 7425 2.16E-8 5.47E-6 9537 1.57E-10 5.09E-8 11649 1.68E-12 6.55E-10

Rate 4.96 4.06 Rate 6.06 5.10 Rate 7.04 6.16
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Table A.3: Example 2 - Galerkin SBFEM errors 𝐸ℎ
𝐿2 = ‖𝑢 − 𝑢ℎ‖𝐿2(Ω) and 𝐸ℎ

𝐻1 = |𝑢 − 𝑢ℎ|𝐻1(Ω) for
partitions 𝒯 ℎ, ℎ = 2−ℓ, with uniform quadrilateral 𝑆-elements, subdivided in polygonal 𝑆-elements with
uniform sub-partitions (case 3).

Uniform polygonal 𝑆-elements - Case 3

ℓ
𝑘 = 1 𝑘 = 2 𝑘 = 3
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

1 21 8.06E-1 1.23E1 45 8.77E-2 1.95E0 69 8.09E-3 2.53E-1
2 65 2.86E-1 6.66E0 145 1.55E-2 5.30E-1 225 4.98E-4 2.79E-2
3 225 1.54E-2 3.08E0 513 1.87E-3 1.22E-1 801 3.05E-5 3.24E-3
4 833 3.74E-3 1.50E0 1921 2.30E-4 2.97E-2 3009 1.92E-6 3.94E-4

Rate 2.08 1.04 Rate 3.02 2.04 Rate 3.99 3.02

ℓ
𝑘 = 4 𝑘 = 5 𝑘 = 6
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

1 93 5.49E-4 2.09E-2 117 3.59E-5 1.70E-3 141 1.78E-6 9.68E-5
2 305 1.98E-5 1.26E-3 385 5.76E-7 4.95E-5 465 1.53E-8 1.44E-6
3 1089 5.99E-7 7.40E-5 1377 8.65E-9 1.41E-6 1665 1.17E-10 2.05E-8
4 4097 1.86E-8 4.54E-6 5185 1.37E-10 4.21E-8 6273 9.03E-13 3.10E-10

Rate 5.01 4.03 Rate 5.98 5.06 Rate 7.02 6.05

Table A.4: Example 2 - Galerkin SBFEM errors 𝐸ℎ
𝐿2 = ‖𝑢 − 𝑢ℎ‖𝐿2(Ω) and 𝐸ℎ

𝐻1 = |𝑢 − 𝑢ℎ|𝐻1(Ω) for
partitions 𝒯 ℎ, ℎ = 2−ℓ, with irregular 𝑆-elements (Case 4) and the Galerkin FEM errors for a mesh
composed the respective conglomerate triangles 𝒫ℎ.

Irregular polygonal 𝑆-elements - Case 4

ℓ
𝑘 = 2 𝑘 = 4 𝑘 = 6
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

1 81 8.27E-2 1.61E0 178 7.01E-4 2.02E-2 273 2.40E-6 1.00E-4
2 321 1.53E-2 5.33E-1 705 2.51E-5 1.55E-3 1089 2.54E-8 2.31E-6
3 1275 1.49E-3 1.06E-1 2805 5.35E-7 6.68E-5 4335 1.25E-10 2.26E-8
4 5099 1.61E-4 2.30E-2 11221 1.48E-8 3.56E-6 17343 1.02E-12 3.14E-10

Rate 3.21 2.21 Rate 5.18 4.22 Rate 6.94 6.17

FE triangular conglomerate mesh

ℓ
𝑘 = 2 𝑘 = 4 𝑘 = 6
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

1 177 1.62E-1 3.59E0 673 1.49E-3 5.26E-2 1489 7.07E-6 3.41E-4
2 739 2.26E-2 1.00E0 2893 4.57E-5 3.40E-3 6463 5.44E-8 5.53E-6
3 3000 2.34E-3 2.18E-1 11875 9.51E-7 1.53E-4 26626 2.38E-10 5.18E-8
4 12121 2.69E-4 5.11E-2 48233 2.72E-8 8.72E-6 108337 1.72E-12 7.33E-10

Rate 3.10 2.08 Rate 5.07 4.09 Rate 7.04 6.08
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Example 3 - Smooth solution in 3D - Single 𝑆-element

Table A.5: Example 3 - SBFEM errors 𝐸ℎ
𝐿2 = ‖𝑢− 𝑢ℎ‖𝐿2(Ω) and 𝐸ℎ

𝐻1 = |𝑢− 𝑢ℎ|𝐻1(Ω) for 𝒯 ℎ a partition
composed of a 3D single 𝑆-element refined over the boundary, with ℎ = 2−ℓ.

Uniform hexahedral 𝑆-elements

ℓ
𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 8 8.66E-2 6.98E-1 26 8.97E-3 9.88E-2 56 2.84E-4 4.06E-3 98 1.82E-5 3.37E-4
1 26 1.94E-2 2.96E-1 98 1.25E-3 2.21E-2 218 1.76E-5 5.30E-4 386 5.83E-7 1.92E-5
2 98 4.29E-3 1.41E-1 386 1.59E-4 5.28E-3 866 1.16E-6 6.85E-5 1538 1.83E-8 1.18E-6

Rate 2.18 1.07 Rate 2.98 2.07 Rate 3.92 2.95 Rate 4.99 4.02

Example 4 - Smooth solution in a 3D domain - Hexahedral and polytopal
mesh

Table A.6: Example 4 - Galerkin SBFEM errors 𝐸ℎ
𝐿2 = ‖𝑢−𝑢ℎ‖𝐿2(Ω) and 𝐸ℎ

𝐻1 = |𝑢−𝑢ℎ|𝐻1(Ω) for uniform
partitions 𝒯 ℎ of hexahedral (Case 1) and polyhedral (Case 2) regular 𝑆-elements, irregular polyhedral
𝑆-elements (Case 3), and the its conglomerate mesh of tetrahedral FEs, with ℎ = 2−ℓ.

Uniform hexahedral 𝑆-elements - Case 1

ℓ
𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

1 27 3.17E-2 3.85E-1 117 1.41E-3 2.40E-2 279 1.92E-5 5.22E-4 513 6.46E-7 2.09E-5
2 127 7.85E-3 1.87E-1 665 1.93E-4 6.02E-3 1685 1.25E-6 6.49E-5 3185 2.12E-8 1.31E-6
3 729 1.93E-3 9.20E-2 4401 2.48E-5 1.51E-3 11529 7.99E-8 8.07E-6 22113 6.75E-10 8.16E-8

Rate 2.02 1.02 Rate 2.96 2.00 Rate 3.97 3.01 Rate 4.98 4.00

Uniform polyhedral 𝑆-elements - Case 2

ℓ
𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

1 26 1.94E-2 2.96E-1 98 1.25E-3 2.21E-2 218 1.76E-5 5.30E-4 386 5.83E-7 1.92E-5
2 117 5.24E-3 1.42E-1 513 1.68E-4 5.34E-3 1197 1.19E-6 6.45E-5 2169 1.91E-8 1.18E-6
3 665 1.35E-3 7.00E-2 3185 2.14E-5 1.33E-3 7625 7.79E-8 7.92E-6 13985 6.08E-10 7.32E-8

Rate 1.96 1.02 Rate 2.97 2.01 Rate 3.93 3.03 Rate 4.97 4.01

Irregular polyhedral 𝑆-elements - Case 3

ℓ
𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

1 63 2.04E-2 4.56E-1 261 5.94E-4 2.04E-2 603 1.43E-5 5.85E-4 1089 2.25E-7 1.19E-5
2 595 5.24E-3 2.11E-1 2693 6.51E-5 3.95E-3 6359 6.35E-7 5.20E-5 11593 5.43E-9 5.49E-7
3 5349 1.07E-3 9.28E-2 24653 5.70E-6 7.39E-4 58425 2.72E-8 4.60E-6 106665 1.12E-10 2.34E-8

Rate 2.17 1.12 Rate 3.30 2.00 Rate 4.26 3.28 Rate 5.25 4.27

Tetrahedral FEs - Case 3

ℓ
𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

1 63 3.01E-2 7.01E-1 365 8.27E-4 2.97E-2 1099 1.93E-5 8.29E-4 386 2.78E-7 1.61E-5
2 605 8.89E-3 3.82E-1 4406 1.21E-4 7.34E-3 14330 1.24E-6 1.01E-4 2169 9.83E-9 1.04E-6
3 5500 2.01E-3 1.80E-1 43486 1.28E-5 1.58E-3 145313 6.34E-8 1.06E-5 13985 2.61E-10 5.48E-8

Rate 2.02 1.02 Rate 2.95 2.02 Rate 3.85 2.92 Rate 4.67 3.79
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Example 5 - Singular harmonic function - Single 𝑆-element

Table A.7: Errors 𝐸ℎ
𝐿2 = ‖𝑢−𝑢ℎ‖𝐿2(Ω) and 𝐸ℎ

𝐻1 = |𝑢−𝑢ℎ|𝐻1(Ω), ℎ = 2−ℓ for the SBFEM approximation,
using a single 𝑆-element, for 𝑘 = 1, .., 4.

ℓ
𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 5 1.29E-2 1.16E-1 9 1.31E-3 1.90E-2 13 1.86E-4 3.50E-3 17 2.65E-5 6.77E-4
1 9 2.70E-3 5.77E-2 17 1.90E-4 4.90E-3 25 1.26E-5 4.71E-4 33 9.94E-7 4.75E-5
2 17 6.46E-4 2.86E-2 33 2.48E-5 1.23E-3 49 8.09E-7 5.96E-5 65 3.25E-8 3.03E-6
3 33 1.60E-4 1.43E-2 65 3.13E-6 3.09E-4 97 5.15E-8 7.46E-6 129 1.19E-9 1.91E-7

Rate 2.01 1.01 Rate 2.99 2.00 Rate 3.96 3.00 Rate 4.96 3.99

Example 6 - Singular harmonic function - Coupled mesh FEM/SBFEM

Table A.8: Errors 𝐸ℎ
𝐿2 = ‖𝑢−𝑢ℎ‖𝐿2(Ω) and 𝐸ℎ

𝐻1 = |𝑢−𝑢ℎ|𝐻1(Ω), ℎ = 2−ℓ, using the combined FE-SBFEM
mesh, for 𝑘 = 1, ..., 4.

ℓ
𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

1 14 8.44E-4 1.11E-1 26 7.87E-4 1.94E-2 76 9.17E-5 2.82E-3 125 1.19E-5 5.25E-4
2 39 2.02E-3 5.54E-2 117 1.12E-4 4.23E-3 259 6.35E-6 3.83E-4 441 4.59E-7 3.72E-5
3 125 4.95E-4 2.73E-2 665 1.45E-5 1.06E-3 949 4.16E-7 4.87E-5 1649 1.54E-8 2.39E-6
4 441 1.23E-4 1.36E-2 4401 1.84E-6 2.66E-4 3625 2.67E-8 6.10E-6 6369 4.97E-10 1.50E-7

Rate 2.01 1.01 Rate 2.99 2.00 Rate 3.96 3.00 Rate 4.96 3.99

A.1.2 Elasticity problems

Example 7 - Two-dimensional loaded beam

Table A.9: Example 7 - Interpolation errors 𝐸ℎ
𝐿2 = ‖𝑢− 𝑢ℎ‖𝐿2(Ω) and 𝐸ℎ

𝐻1 = |𝑢− 𝑢ℎ|𝐻1(Ω) for uniform
partitions 𝒯 ℎ of a single quadrilateral 𝑆-element and of a dense mesh of quadrilateral 𝑆-elements, with
ℎ = 2/2−ℓ.

Single quadrilateral 𝑆-element

ℓ
𝑘 = 1 𝑘 = 2 𝑘 = 3
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 8 1.16E-1 1.38E0 16 4.13E-2 4.80E-1 24 1.44E-15 1.57E-14
1 16 5.17E-2 7.89E-1 32 5.55E-3 1.07E-1 48 2.27E-15 2.84E-14
2 32 9.83E-3 3.85E-1 64 6.68E-4 2.61E-2 96 2.26E-15 5.22E-14

Rate 2.39 1.04 Rate 3.05 2.04 Rate - -

Uniform dense mesh of quadrilateral 𝑆-elements

ℓ
𝑘 = 1 𝑘 = 2 𝑘 = 3
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 8 1.16E-1 1.38E0 16 4.13E-2 4.80E-1 24 1.44E-15 1.57E-14
1 18 1.04E-1 1.06E0 42 7.46E-3 1.32E-1 66 1.00E-15 1.80E-14
2 50 2.42E-2 5.16E-1 130 1.05E-3 3.46E-2 210 8.10E-15 2.04E-14
3 162 5.88E-3 2.52E-1 450 1.35E-4 8.75E-3 738 1.83E-15 4.36E-14

Rate 2.04 1.03 Rate 2.96 1.98 Rate - -
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Example 8 - Three-dimensional cantilever beam

Table A.10: Example 8 - Galerkin SBFEM errors 𝐸ℎ
𝐿2 = ‖𝑢 − 𝑢ℎ‖𝐿2(Ω) and 𝐸ℎ

𝐻1 = |𝑢 − 𝑢ℎ|𝐻1(Ω) for
uniform partitions 𝒯 ℎ of hexahedral regular 𝑆-elements, with ℎ = 2−ℓ.

ℓ
𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 72 3.12E-1 2.08E0 282 2.18E-2 1.71E-1 648 6.21E-4 1.08E-2 1170 1.12E-4 3.25E-3
1 297 8.84E-2 1.08E0 1455 3.07E-3 4.44E-2 3597 7.50E-5 2.83E-3 6723 2.62E-5 1.11E-3
2 1575 2.15E-2 5.31E-1 9003 4.06E-4 1.14E-2 23247 9.30E-6 6.01E-4 44307 1.96E-6 1.46E-4
3 9963 5.30E-3 2.64E-1 62547 5.15E-5 2.80E-3 165435 7.13E-7 7.06E-5 318627 9.77E-8 1.42E-5
4 70227 1.32E-3 1.32E-1 464547 6.51E-6 6.99E-4 1244403 5.22E-8 1.03E-5 2409795 2.99E-9 7.39E-7

Rate 2.01 1.00 Rate 2.98 2.00 Rate 3.77 2.78 Rate 5.03 4.26

ℓ
𝑘 = 5
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 1848 5.47E-5 1.84E-3
1 10833 1.06E-5 5.81E-4
2 72183 6.11E-7 5.89E-5
3 522123 6.63E-9 1.08E-6

Rate 6.53 5.78

Example 9 - Lateral crack

Table A.11: Example 9 - Galerkin SBFEM errors 𝐸ℎ
𝐿2 = ‖𝑢 − 𝑢ℎ‖𝐿2(Ω) and 𝐸ℎ

𝐻1 = |𝑢 − 𝑢ℎ|𝐻1(Ω)
for a lateral crack approximated using only the SBFEM for a single 𝑆-element and a coupled mesh
SBFEM+FEM mesh, for ℎ = 2−ℓ.

SBFEM mesh

ℓ
𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 18 4.24E-3 3.75E-2 34 6.06E-4 8.96E-3 50 1.13E-4 2.12E-3 66 2.00E-5 5.05E-4
1 34 9.76E-4 1.90E-2 66 8.95E-5 2.34E-3 98 8.06E-6 2.97-4 130 7.91E-7 3.77E-5
2 66 2.39E-4 9.47E-3 130 1.19E-5 5.88E-4 194 5.17E-7 3.78E-5 258 2.62E-8 2.42E-6
3 130 5.97E-5 4.73E-3 258 1.51E-5 1.47E-4 386 3.30E-8 4.74E-6 514 8.32E-10 1.52E-7

Rate 2.00 1.00 Rate 2.98 2.00 Rate 3.97 3.00 Rate 4.98 3.99

SBFEM+FEM mesh

ℓ
𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

1 52 2.60E-3 3.38E-2 150 3.41E-4 7.18E-3 296 4.98E-5 1.63E-3 490 8.57E-6 3.77E-4
2 150 7.17E-4 1.70E-2 490 4.54E-5 1.89E-3 1022 3.57E-6 2.28E-4 1746 3.31E-7 2.82E-5
3 490 1.86E-4 8.46E-2 1746 5.73E-6 4.77E-4 3770 2.29E-7 2.92E-5 6562 1.07E-8 1.83E-6

Rate 1.95 1.00 Rate 2.99 1.99 Rate 3.96 2.97 Rate 4.95 3.95
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A.2 Chapter 4 - A bubble function approach to ap-
proximate non-homogeneous PDE with the SBFEM

A.2.1 Poisson problems

Example 1: Two-dimensional single element

Table A.12: Example 1 - SBFEM errors 𝐸ℎ
𝐿2 = ‖𝑢−𝑢ℎ‖𝐿2(Ω) and 𝐸ℎ

𝐻1 = |𝑢−𝑢ℎ|𝐻1(Ω) for ℎ = 2/2ℓ, ℓ =
0, ..., 3, using only polynomial bubbles of internal order 𝑘𝑏 = 5 and trace approximation 𝑘 = 1, ..., 5.

Polynomial bubbles - 𝑘𝑏 = 5

ℓ
𝑘 = 1 𝑘 = 2 𝑘 = 3
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 4 5.69E-1 2.48E0 8 2.56E-1 1.69E0 12 4.78E-2 4.66E-1
1 8 2.66E-1 1.85E0 16 7.95E-2 7.70E-1 24 1.66E-2 2.22E-1
2 16 9.25E-2 1.19E0 32 1.43E-2 2.75E-1 48 6.03E-3 1.27E-1
3 32 2.46E-2 6.76E-1 64 6.16E-3 1.41E-1 96 5.91E-3 1.30E-1

Rate 1.91 0.82 Rate 1.22 0.96 Rate - -

ℓ
𝑘 = 4 𝑘 = 5
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 16 4.73E-2 4.43E-1 20 5.38E-3 1.06E-1
1 32 6.09E-3 1.22E-1 40 6.09E-3 1.28E-1
2 64 5.96E-3 1.30E0-1 80 5.89E-3 1.31E-1
3 128 5.88E-3 1.31E-1 160 5.88E-3 1.31E-1

Rate - - Rate - -

Table A.13: Example 1 - SBFEM errors 𝐸ℎ
𝐿2 = ‖𝑢−𝑢ℎ‖𝐿2(Ω) and 𝐸ℎ

𝐻1 = |𝑢−𝑢ℎ|𝐻1(Ω) for ℎ = 2/2𝑛, 𝑛 =
0, ..., 3, using only polynomial bubbles of internal order 𝑘𝑏 = 6 and trace approximation 𝑘 = 1, ..., 5.

Polynomial bubbles - 𝑘𝑏 = 6

ℓ
𝑘 = 1 𝑘 = 2 𝑘 = 3
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 4 5.69E-1 2.48E0 8 2.56E-1 1.69E0 12 4.78E-2 4.66E-1
1 8 2.66E-1 1.85E0 16 7.94E-2 7.70E-1 24 1.60E-2 2.08E-1
2 16 9.25E-2 1.19E0 32 1.34E-2 2.62E-1 48 2.61E-3 6.41E-2
3 32 2.46E-2 6.72E-1 64 3.01E-3 9.02E-2 96 2.48E-3 6.58E-2

Rate 1.91 0.82 Rate 2.15 1.54 Rate - -

ℓ
𝑘 = 4 𝑘 = 5
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 16 4.71E-2 4.40E-1 20 1.59E-3 3.69E-2
1 32 2.69E-3 5.65E-2 40 2.53E-3 6.22E-2
2 64 2.51E-3 6.50E0-2 80 2.47E-3 6.65E-2
3 128 2.46E-3 6.67E-2 160 2.45E-3 6.68E-2

Rate - - Rate - -

Note: The number of equations do not change with the increment of the internal poly-
nomial order due to the local static condensation of the internal DOF per element.
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Table A.14: Example 1 - SBFEM errors 𝐸ℎ
𝐿2 = ‖𝑢−𝑢ℎ‖𝐿2(Ω) and 𝐸ℎ

𝐻1 = |𝑢−𝑢ℎ|𝐻1(Ω) for ℎ = 2/2𝑛, 𝑛 =
0, ..., 3, using the SBFEM bubbles of internal order 𝑘𝑏 = 4, 5, 6 and trace approximation 𝑘 = 1, ..., 5.

SBFEM bubble space up to 𝑘𝑏 = 4

ℓ
𝑘 = 1 𝑘 = 2 𝑘 = 3
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 4 5.69E-1 2.48E0 8 2.56E-1 1.69E0 12 4.77E-2 4.66E-1
1 8 2.66E-1 1.85E0 16 7.94E-2 7.71E-1 24 1.62E-2 2.10E-1
2 16 9.24E-2 1.19E0 32 1.36E-2 2.64E-1 48 3.02E-3 4.84E-2
3 32 2.41E-2 6.72E-1 64 3.40E-3 8.03E-2 96 2.83E-3 3.78E-2

Rate 1.94 0.82 Rate 2.00 1.72 Rate 0.09 0.36

ℓ
𝑘 = 4 𝑘 = 5
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 16 4.71E-2 4.42E-1 20 2.84E-3 3.77E-2
1 32 3.23E-3 4.52E-2 40 2.583E-3 3.76E-2
2 64 2.83E-3 3.77E-2 80 2.83E-3 3.76E-2
3 128 2.83E-3 3.76E-2 160 2.83E-3 3.76E-2

Rate - - Rate - -
SBFEM bubble space up to 𝑘𝑏 = 5

ℓ
𝑘 = 1 𝑘 = 2 𝑘 = 3
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 4 5.69E-1 2.48E0 8 2.56E-1 1.69E0 12 4.78E-2 4.66E-1
1 8 2.66E-1 1.85E0 16 7.94E-2 7.70E-1 24 1.59E-2 2.07E-1
2 16 9.24E-2 1.19E0 32 1.33E-2 2.61E-1 48 1.03E-3 3.04E-2
3 32 2.41E-2 6.73E-1 64 1.87E-3 7.10E-2 96 6.74E-5 3.93E-3

Rate 1.94 0.82 Rate 2.83 1.88 Rate 3.93 2.95

ℓ
𝑘 = 4 𝑘 = 5
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 16 4.70E-2 4.40E-1 20 7.54E-12 1.88E-11
1 32 1.50E-3 2.51E-2 40 7.53E-12 1.98E-11
2 64 4.72E-5 1.55E-3 80 7.78E-6 2.65E-4
3 128 1.53E-6 9.80E-5 160 1.80E-7 1.12E-5

Rate 4.95 3.98 Rate - -
SBFEM bubble space up to 𝑘𝑏 = 6

ℓ
𝑘 = 1 𝑘 = 2 𝑘 = 3
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 4 5.69E-1 2.48E0 8 2.56E-1 1.69E0 12 4.77E-2 4.66E-1
1 8 2.66E-1 1.85E0 16 7.94E-2 7.70E-1 24 1.59E-2 2.07E-1
2 16 9.25E-2 1.19E0 32 1.33E-2 2.61E-1 48 1.03E-3 3.04E-2
3 32 2.40E-2 6.72E-1 64 1.87E-3 7.10E-2 96 6.74E-5 3.93E-3

Rate 1.95 0.82 Rate 2.83 1.88 Rate 3.93 2.95

ℓ
𝑘 = 4 𝑘 = 5
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 16 4.70E-2 4.40E-1 20 7.71E-12 3.76E-11
1 32 1.50E-3 2.51E-2 40 7.68E-12 3.91E-11
2 64 4.71E-5 1.54E-3 80 3.70E-6 1.41E-4
3 128 1.50E-6 9.71E-5 160 1.24E-7 8.16E-6

Rate 4.97 3.99 Rate - -



181

Example 2: Two-dimensional domain refinement

Table A.15: Example 2 - SBFEM errors 𝐸ℎ
𝐿2 = ‖𝑢−𝑢ℎ‖𝐿2(Ω) and 𝐸ℎ

𝐻1 = |𝑢−𝑢ℎ|𝐻1(Ω) for ℎ = 2/2ℓ, ℓ =
0, ..., 4, using Duffy polynomial space and SBFEM bubble space enriching the SBFEM bubble-free space
considering internal polynomial order equal to the trace polynomial order, i.e. 𝑘 = 𝑘𝑏 = 1, ..., 5.

SBFEM bubble-free space enriched with Duffy polynomial bubbles

ℓ
𝑘 = 1 𝑘 = 2 𝑘 = 3
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 4 1.25E0 4.51E0 8 3.28E-1 2.26E0 12 5.50E-2 6.60E-1
1 9 6.14E-1 3.24E0 21 1.19E-1 1.22E0 33 2.13E-2 3.42E-1
2 25 2.36E-1 2.13E0 65 2.43E-2 5.47E-1 105 2.26E-3 1.04E-1
3 81 6.75E-2 1.17E0 225 4.71E-3 2.44E-1 369 4.45E-4 4.37E-2
4 289 1.74E-2 5.94E-1 833 1.03E-3 1.17E-1 1377 1.07E-4 2.09E-2

Rate 1.96 0.98 Rate 2.19 1.06 Rate 2.06 1.06

ℓ
𝑘 = 4 𝑘 = 5
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 16 4.82E-2 4.72E-1 20 5.38E-3 1.06E-1
1 45 3.34E-3 9.61E-2 57 9.20E-4 3.58E-2
2 145 5.60E-4 3.48E-2 185 1.64E-4 1.28E-2
3 513 1.18E-4 1.47E-2 657 3.35E-5 5.20E-3
4 1921 2.77E-5 6.92E-3 2465 7.77E-6 2.42E-3

Rate 2.09 1.09 Rate 2.11 1.10
SBFEM bubble-free space enriched with SBFEM bubbles

ℓ
𝑘 = 1 𝑘 = 2 𝑘 = 3
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 4 1.25E0 4.51E0 8 3.35E-1 2.25E0 12 5.97E-2 5.82E-1
1 9 6.14E-1 3.24E0 21 1.17E-1 1.16E0 33 2.04E-2 2.67E-1
2 25 2.36E-1 2.13E0 65 2.15E-2 3.82E-1 105 1.38E-3 3.66E-2
3 81 6.75E-2 1.17E0 225 3.07E-3 1.04E-1 369 8.72E-5 4.61E-3
4 289 1.74E-2 5.94E-1 833 4.01E-4 2.68E-2 1377 5.42E-6 5.74E-4

Rate 1.96 0.98 Rate 2.94 1.96 Rate 4.01 3.01

ℓ
𝑘 = 4 𝑘 = 5
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 16 4.71E-2 4.42E-1 20 7.54E-12 1.88E-11
1 45 1.70E-3 2.82E-2 57 7.54E-12 1.99E-11
2 145 5.56E-5 1.78E-3 185 7.54E-12 2.10E-11
3 513 1.76E-6 1.12E-4 657 7.54E-12 2.23E-11
4 1921 5.54E-8 6.98E-6 2465 7.54E-12 2.35E-11

Rate 4.99 4.00 Rate - -
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Example 3: A heat flow

Table A.16: Example 3 - SBFEM errors 𝐸ℎ
𝐿2 = ‖𝑢−𝑢ℎ‖𝐿2(Ω) and 𝐸ℎ

𝐻1 = |𝑢−𝑢ℎ|𝐻1(Ω) for ℎ = 2/2𝑛, 𝑛 =
0, ..., 3, using Duffy polynomial space and SBFEM bubble space enriching the SBFEM bubble-free space
considering internal polynomial order equal to the trace polynomial order, i.e. 𝑘 = 𝑘𝑏 = 1, ..., 3.

SBFEM bubble-free space

ℓ
𝑘 = 1 𝑘 = 2 𝑘 = 3
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 4 5.17E-5 2.30E-4 8 5.17E-5 2.30E-4 12 5.17E-5 2.30E-4
1 9 5.17E-5 2.30E-4 21 5.17E-5 2.30E-4 33 5.17E-5 2.30E-4
2 25 4.67E-5 2.08E-4 65 4.31E-5 1.92E-4 105 4.30E-5 1.92E-4
3 81 2.23E-5 1.04E-4 225 1.92E-5 9.05E-5 369 1.92E-5 9.03E-5

Rate 1.07 1.00 Rate 1.17 1.09 Rate 1.16 1.09
SBFEM bubble-free space enriched with Duffy’s polynomial bubble space

ℓ
𝑘 = 1 𝑘 = 2 𝑘 = 3
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 4 1.25E0 2.16E-4 8 2.22E-5 5.07E-5 12 9.16E-6 8.07E-5
1 9 1.04E-5 9.76E-5 21 4.05E-6 5.30E-5 33 2.70E-7 4.87E-6
2 25 5.94E-6 7.01E-5 65 9.35E-7 2.17E-5 105 1.21E-7 4.91E-6
3 81 1.14E-6 3.14E-5 833 1.91E-7 9.91E-6 369 2.05E-8 1.90E-6

Rate 2.38 1.16 Rate 2.29 1.13 Rate 2.56 1.37
SBFEM bubble-free space enriched with the SBFEM bubble space

ℓ
𝑘 = 1 𝑘 = 2 𝑘 = 3
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 4 5.07E-5 2.16E-4 8 2.22E-5 1.44E-4 12 5.59E-6 5.27E-5
1 9 1.04E-5 9.76E-5 21 1.79E-6 2.75E-5 33 2.70E-7 4.87E-6
2 25 5.94E-6 7.01E-5 65 6.62E-7 1.27E-5 105 5.09E-8 1.42E-6
3 81 1.14E-6 3.14E-5 225 9.52E-8 3.40E-6 369 3.00E-9 1.73E-7

Rate 2.38 1.16 Rate 2.78 1.90 Rate 4.09 3.04
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Example 4: Three-dimensional single element

Table A.17: Example 4 - SBFEM errors 𝐸ℎ
𝐿2 = ‖𝑢 − 𝑢ℎ‖𝐿2(Ω) and 𝐸ℎ

𝐻1 = |𝑢 − 𝑢ℎ|𝐻1(Ω) for a partition
composed of 3D single 𝑆-element, refining the skeleton, with ℎ = 2/2𝑛, 𝑛 = 0, 1, 2, using SBFEM bubble
space enriching the SBFEM bubble-free space for 𝑘 = 𝑘𝑏 = 1, ..., 3 and 𝑘𝑏 = 𝑘 + ℓ.

Bubble approximation: 𝑘𝑏 = 𝑘

ℓ
𝑘 = 1 𝑘 = 2 𝑘 = 3
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 24 6.66E-1 2.43E0 78 4.03E-2 3.14E-1 168 2.49E-2 1.91E-1
1 78 1.93E-1 1.24E0 294 3.20E-2 2.83E-1 654 1.73E-3 2.36E-2
2 294 5.93E-2 5.82E-1 1158 2.88E-2 2.52E-1 2598 1.24E-3 1.55E-2

Rate 1.70 1.09 Rate 0.15 0.17 Rate 0.48 0.61
Bubble approximation: 𝑘𝑏 = 𝑘 + ℓ

ℓ
𝑘 = 1 𝑘 = 2 𝑘 = 3
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 27 6.66E-1 2.43E0 78 4.03E-2 3.14E-1 168 2.49E-2 1.91E-1
1 78 1.34E-1 1.04E0 294 1.12E-2 1.32E-1 254 1.37E-3 2.09E-2
2 294 2.67E-2 4.75E-1 1158 1.90E-3 3.58E-2 2598 7.57E-5 2.17E-3

Rate 2.33 1.13 Rate 2.56 1.88 Rate 4.18 3.27

Example 5: Three-dimensional uniform refinement by hexahedral 𝑆-elements

Table A.18: Example 2 - Errors 𝐸ℎ
𝐿2 = ‖𝑢−𝑢ℎ‖𝐿2(Ω) and 𝐸ℎ

𝐻1 = |𝑢−𝑢ℎ|𝐻1(Ω), for ℎ = 2/2ℓ, ℓ = 0, ..., 3,
using the Galerkin SBFEM approximation for uniform meshes of hexahedral S-elements (see Fig. 4.12).

ℓ
𝑘 = 1 𝑘 = 2 𝑘 = 3
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 24 6.663E-1 2.433E0 60 4.032E-2 3.144E-1 96 2.493E-2 1.911E-1
1 81 1.925E-1 1.238E0 243 2.097E-2 1.996E-1 405 1.770E-3 2.516E-2
2 375 4.309E-2 5.796E-1 1275 3.236E-3 5.324E-2 2175 1.115E-4 3.099E-3
3 2187 1.038E-2 2.837E-1 8019 4.342E-4 1.361E-2 13851 7.032E-6 3.827E-4

Rate 2.05 1.03 Rate 2.90 1.97 Rate 3.99 3.02
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A.2.2 Elasticity

Example 6 - Elasticity problem in 2D

Table A.19: Example 6 - Errors 𝐸ℎ
𝐿2 = ‖𝑢− 𝑢ℎ‖𝐿2(Ω) and 𝐸ℎ

𝐻1 = |𝑢− 𝑢ℎ|𝐻1(Ω), for ℎ = 2/2ℓ, ℓ = 0, ..., 3
and 𝑘 = 𝑘𝑏 = 1, ..., 7, using the Galerkin SBFEM with bubbles in an uniform partition of quadrilateral
S-elements.

ℓ
𝑘=1 𝑘=2 𝑘=3 𝑘=4
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 8 2.94E0 1.26E1 16 1.76E0 1.05E1 24 3.48E-1 3.29E0 32 1.85E-1 1.84E0
1 18 2.37E0 1.16E1 42 1.07E-1 1.56E0 66 7.96E-2 1.08E0 90 1.90E-3 4.26E-2
2 50 3.41E-1 4.46E1 130 4.01E-2 8.75E-1 210 2.85E-3 9.13E-2 290 2.08E-4 8.02E-3
3 162 6.82E-2 2.17E0 450 5.88E-3 2.38E-1 738 1.66E-4 1.08E-2 1026 7.16E-6 5.27E-4

Rate 2.32 1.19 Rate 2.77 1.93 Rate 4.10 3.07 Rate 3.94 4.86

ℓ
𝑘=5 𝑘=6 𝑘=7
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 40 1.97E-2 2.73E-1 48 1.03E-2 1.45E-1 56 6.59E-4 1.18E-2
1 114 1.17E-3 2.47E-2 138 1.96E-5 5.80E-4 162 1.09E-5 3.15E-4
2 370 1.23E-5 5.76E-4 450 6.50E-7 3.53E-5 530 2.97E-8 1.85E-6
3 1314 1.90E-7 1.78E-5 1602 5.46E-9 5.71E-7 1890 1.19E-10 1.43E-8

Rate 6.01 5.02 Rate 5.95 6.90 Rate 7.96 7.03

Example 7 - Elasticity problem in 3D

Table A.20: Example 6 - Errors 𝐸ℎ
𝐿2 = ‖𝑢− 𝑢ℎ‖𝐿2(Ω) and 𝐸ℎ

𝐻1 = |𝑢− 𝑢ℎ|𝐻1(Ω), for ℎ = 2/2ℓ, ℓ = 0, ..., 3
and 𝑘 = 𝑘𝑏 = 1, ..., 7, using the Galerkin SBFEM with bubbles in an uniform partition of quadrilateral
S-elements.

Tetrahedral subpartition

ℓ
𝑘 = 𝑘𝑏 = 1 𝑘 = 𝑘𝑏 = 2 𝑘 = 1 and 𝑘𝑏 = 2 𝑘 = 2 and 𝑘𝑏 = 3
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 12 5.19E-1 4.48E0 40 7.94E-2 1.58E0 84 1.53E-1 2.61E0 114 7.45E-2 1.52E0
1 34 1.69E-1 2.73E0 138 1.52E-2 4.63E-1 306 1.05E-1 2.17E0 538 1.18E-2 3.53E-1
2 114 3.53E-2 1.26E0 514 2.56E-3 1.62E-1 1170 2.64E-2 1.06E0 2082 1.88E-3 1.01E-1
3 418 7.96E-3 6.01E-1 1986 4.33E-4 6.63E-2 4578 6.46E-3 5.22E-1 8194 2.67E-4 3.16E-2

Rate 2.32 1.19 Rate 2.77 1.93 Rate 4.10 3.07 Rate 3.94 4.86
Hexahedral subpartition

ℓ
𝑘 = 𝑘𝑏 = 1 𝑘 = 𝑘𝑏 = 2
DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1 DOF 𝐸ℎ

𝐿2 𝐸ℎ
𝐻1

0 220 8.82E-1 6.15E0 312 5.68E-2 8.49E-1
1 834 2.20E-1 2.64E0 1194 2.32E-2 5.25E-1
2 3250 4.31E-2 1.19E0 4674 3.68E-3 1.41E-1
3 12834 9.88E-3 5.72E-1 18498 5.10E-4 4.06E-2

Rate 6.01 5.02 Rate 5.95 6.90
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A.3 Chapter 5 - Locally conservative SBFEM ap-
proximation

Example 1: 2D Polynomial Darcy Flow

Table A.21: Example 3 - 𝐿2 errors for the flux and the pressure, using the Galerkin SBFEM a single
𝑆-element with skeleton refinement, for ℎ = 2/2ℓ, ℓ = 0, ..., 3 and 𝑘 = 1, ..., 6.

ℓ
𝑘 = 1 𝑘 = 2 𝑘 = 3
DOF 𝐸𝐻

𝐿2 - 𝑢 𝐸𝐻
𝐿2 - 𝜎 DOF 𝐸𝐻

𝐿2 - 𝑢 𝐸𝐻
𝐿2 - 𝜎 DOF 𝐸𝐻

𝐿2 - 𝑢 𝐸𝐻
𝐿2 - 𝜎

1 8 1.196E0 1.142E1 12 7.931E-1 2.205E0 16 7.931E-1 2.205E0
2 24 6.261E-1 1.515E0 36 3.238E-1 9.477E-1 48 3.191E-2 1.086E-1
3 80 2.510E-1 9.575E-1 120 3.201E-2 1.115E-1 160 1.757E-3 6.282E-3
4 288 6.291E-2 2.546E-1 432 3.606E-3 1.360E-2 576 1.064E-4 3.857E-4

Rate 2.00 1.91 Rate 3.15 3.04 Rate 4.045 4.03

ℓ
𝑘 = 4 𝑘 = 5 𝑘 = 6
DOF 𝐸𝐻

𝐿2 - 𝑢 𝐸𝐻
𝐿2 - 𝜎 DOF 𝐸𝐻

𝐿2 - 𝑢 𝐸𝐻
𝐿2 - 𝜎 DOF 𝐸𝐻

𝐿2 - 𝑢 𝐸𝐻
𝐿2 - 𝜎

1 20 1.452E-2 1.993E-13 24 1.452E-2 5.504E-13 28 6.507E-14 6.161E-13
2 60 2.940E-3 2.777E-13 72 2.269E-4 5.775E-13 84 1.645E-13 1.349E-12
3 200 1.025E-4 5.016E-13 240 3.545E-6 1.755E-12 280 2.967E-13 3.951E-12
4 720 3.279E-6 1.396E-12 864 5.540E-8 5.654E-12 1008 2.589E-13 1.697E-11

Rate 4.97 - Rate 6.00 - Rate - -

Example 2: 2D Darcy Flow

Table A.22: Example 3 - 𝐿2 errors for the flux and the pressure, using the Galerkin SBFEM a single
𝑆-element with skeleton refinement, for ℎ = 2/2ℓ, ℓ = 0, ..., 3 and 𝑘 = 1, ..., 7.

ℓ
𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4
DOF 𝐸𝐻

𝐿2 - 𝑢 𝐸𝐻
𝐿2 - 𝜎 DOF 𝐸𝐻

𝐿2 - 𝑢 𝐸𝐻
𝐿2 - 𝜎 DOF 𝐸𝐻

𝐿2 - 𝑢 𝐸𝐻
𝐿2 - 𝜎 DOF 𝐸𝐻

𝐿2 - 𝑢 𝐸𝐻
𝐿2 - 𝜎

1 8 4.935E0 2.505E1 12 4.576E0 2.073E1 16 5.530E-1 2.428E0 20 5.440E-1 2.292E0
2 24 2.716E0 1.426E1 36 1.330E-1 1.090E0 48 1.143E-1 4.814E-1 60 2.436E-3 2.833E-2
3 80 5.068E-1 2.441E0 120 5.837E-2 2.262E-1 160 5.207E-3 2.078E-2 200 3.775E-4 1.611E-3
4 288 1.237E-1 5.664E-1 432 7.112E-3 2.602E-2 576 3.158E-4 1.293E-3 720 1.140E-5 4.874E-5

Rate 2.03 2.11 Rate 3.04 3.12 Rate 4.04 4.01 Rate 5.05 5.05

ℓ
𝑘 = 5 𝑘 = 6 𝑘 = 7
DOF 𝐸𝐻

𝐿2 - 𝑢 𝐸𝐻
𝐿2 - 𝜎 DOF 𝐸𝐻

𝐿2 - 𝑢 𝐸𝐻
𝐿2 - 𝜎 DOF 𝐸𝐻

𝐿2 - 𝑢 𝐸𝐻
𝐿2 - 𝜎

1 24 3.168E-2 1.549E-1 28 3.111E-2 1.305E-1 32 1.041E-3 4.858E-3
2 72 2.109E-3 9.411E-3 84 2.410E-5 3.302E-4 96 2.121E-5 8.873E-5
3 240 2.306E-5 9.582E-5 280 1.217E-6 4.764E-6 320 5.661E-8 2.238E-7
4 864 3.468E-7 1.420E-6 1008 9.132E-9 3.490E-8 1152 2.123E-10 8.943E-10

Rate 6.06 6.08 Rate 7.06 7.09 Rate 8.06 7.97
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Example 3: 2D single crack

Table A.23: Example 3 - 𝐿2 errors for the flux and the pressure, using the Galerkin SBFEM a single
𝑆-element with skeleton refinement, for ℎ = 2/2ℓ, ℓ = 0, ..., 3 and 𝑘 = 1, ..., 4.

ℓ
𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4
DOF 𝐸𝐻

𝐿2 - 𝑢 𝐸𝐻
𝐿2 - 𝜎 DOF 𝐸𝐻

𝐿2 - 𝑢 𝐸𝐻
𝐿2 - 𝜎 DOF 𝐸𝐻

𝐿2 - 𝑢 𝐸𝐻
𝐿2 - 𝜎 DOF 𝐸𝐻

𝐿2 - 𝑢 𝐸𝐻
𝐿2 - 𝜎

1 32 4.935E0 2.505E1 48 4.576E0 2.073E1 64 5.530E-1 2.428E0 80 5.440E-1 2.292E0
2 64 2.716E0 1.426E1 96 1.330E-1 1.090E0 128 1.143E-1 4.814E-1 160 2.436E-3 2.833E-2
3 128 5.068E-1 2.441E0 192 5.837E-2 2.262E-1 256 5.207E-3 2.078E-2 320 3.775E-4 1.611E-3
4 256 1.237E-1 5.664E-1 384 7.112E-3 2.602E-2 512 3.158E-4 1.293E-3 640 1.140E-5 4.874E-5

Rate 2.03 2.11 Rate 3.04 3.12 Rate 4.04 4.01 Rate 5.05 5.05
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