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Resumo 

 

 

TOLEDO, Gabriela Pereira. Modelagem para a Velocidade de Propagação de Ondas de Pressão 

em Escoamentos Padrão Golfadas. Campinas: Faculdade de Engenharia Mecânica, 

Universidade Estadual de Campinas. 2023. 123p. Dissertação (Mestrado). 

 

O padrão golfadas está presente em diversas situações industriais como no segmento de petróleo 

e químico. Devido à sua ampla aplicação, é necessário aprimorar constantemente o 

entendimento deste padrão. A mudança das condições operacionais induz um transiente no 

escoamento, gerando o fenômeno de propagação de ondas de pressão. Portanto, é essencial 

conhecer as características da onda de pressão para o projeto e operação dos sistemas, visto que 

grandes ondas de pressão podem causar a falha de equipamentos. Modelos simplificados não 

conseguem capturar a propagação da onda de pressão em escoamento padrão golfadas. 

Recentemente o modelo de dois fluidos vem sendo utilizado para preencher esta lacuna, 

apresentando bons resultados. No entanto, esses trabalhos não apresentaram como determinar 

a frequência, que é um parâmetro de entrada importante nesses modelos. Este estudo utiliza o 

modelo de seguimento de pistões para obter essa frequência de oscilação por meio de uma 

análise dos sinais de pressão e velocidade de translação da bolha ao longo do tempo usando a 

Transformada Discreta de Fourier (TDF). A frequência foi comparada com correlações para a 

frequência de passagem disponíveis na literatura. Além disso, a velocidade da onda de pressão 

estimada pelo modelo de dois fluidos com a frequência mencionada acima, foi comparada com 

os dados experimentais de Maria e Rosa (2016). O modelo de dois fluidos estimou a velocidade 

da onda de pressão com um desvio médio de 17% e com desvio menor que 30% para todos os 

casos usando o resultado de frequência da análise da TDF. Utilizando as correlações de 

frequência de passagem é obtido um desvio médio semelhante. O método proposto para 

determinar a frequência de oscilação se mostrou apropriado para o modelo de dois fluidos 

capturar a velocidade de propagação de ondas em padrão golfadas.    

 

Palavras-chave: onda de pressão, velocidade da onda, frequência de oscilação, escoamento 

bifásico, escoamento intermitente, transiente, modelo de dois fluidos 

 

 



 
 

 

Abstract 

 

 

TOLEDO, Gabriela Pereira. Modeling for Pressure Waves Propagation Velocity in Slug Flow. 

Campinas: School of Mechanical Engineering, University of Campinas. 2023. 123p. 

Dissertation (Master). 

 

The slug flow pattern occurs in many industrial situations, such as in the petroleum and 

chemical sectors. Because of the wide occurrence of this pattern, a constant improvement in 

understanding the slug flow behavior is necessary. Changes in the operational conditions induce 

a flow transient, generating the pressure wave propagation phenomenon. Therefore, knowing 

the pressure propagation characteristics is essential for designing and managing the systems 

since great pressure waves may cause equipment failure. Simple models cannot capture the 

pressure wave propagation in slug flow. The Two-Fluid Model (TFM) has been used to fill this 

gap with good results; however, these works did not present how to set up the frequency, an 

important input parameter in these models. This study uses the slug tracking model to assess 

this frequency, using signal analysis of pressure and bubble nose velocity over time using the 

Discrete Fourier Transform (DFT). The frequency is compared to the correlations for the 

frequency of passage. Moreover, the pressure propagation velocity using the TFM with the 

frequency mentioned above is compared with the experimental campaign of Maria and Rosa 

(2016). Using the frequency from the DFT analysis, the two-fluid model could predict the 

experimental pressure wave velocity with a mean deviation of 17% and less than 30% deviation 

for all cases. In addition, using the frequency correlations, a similar mean deviation was 

obtained. The proposed method to determine the oscillation frequency proved appropriate for 

the two-fluid model to capture the pressure wave propagation velocity in slug flow. 

 

Keywords: pressure wave, wave velocity, oscillation frequency, two-phase flow, slug flow, 

transient, two-fluid model 
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Latin Letters 

 

A – cross-section            [m2] 

aG – sound velocity propagation in the gas phase      [m/s] 

aL – sound velocity propagation in the liquid phase                 [m/s] 
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h – height          [m] 

H – harmonic         [Hz] 

J – superficial velocity                [m.s-1] 

k – spring stiffness              [N. m-1] 

K – Bulk modulus       [kPa] 

L – length          [m] 

m – mass         [kg] 

m – mass flow rate              [kg.s-1] 

N – number of samples            [-] 

P – pressure       [kPa] 

Q  – volumetric flow rate               [m3.s-1] 

Rb – bubble radius          [m] 



 
 

 

S – wetted perimeter          [m] 

t – time            [s] 

T – time window            [s] 

u – absolute velocity                                                                                                           [m.s-1] 

UT – Taylor bubble nose velocity                                                                                       [m.s-1] 

v – relative velocity using a reference moving with the bubble nose velocity (UT)           [m.s-1] 

V – phase in situ velocity                        [m.s-1] 

x – tail position of the elongated gas bubble         [m] 

y – nose position of the elongated gas bubble          [m] 

z – axial position          [m] 

Z – generic variable          [m] 

 

Greek Letters 

 

α – void fraction            [-] 

β – intermittence factor            [-] 

γ – polytropic constant             [-] 

∆ - interval           [-] 
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κ – wave number                   [rad.m-1] 

θ – pipe inclination        [rad] 

μ – dynamic viscosity      [Pa.s] 

ξ – represents the center of pressure coordinate            [-] 

ρ – density              [kg.m-3] 

σ – relative deviation            [-] 

τ – shear stress               [N.m-2] 

ω – angular frequency              [rad.s-1] 

 

Subscripts 

 

b – dispersed bubbles 

d – drift 

D – drag 



 
 

 

f – liquid film region 

G – gas phase 

GL – gas-liquid interface 

i – gas-liquid interface 

j – cell index 

k - phase 

L – liquid phase 

M –gas-liquid mixture in the liquid slug 

S – liquid slug 

U – unit cell 

vm – virtual mass 

WG – wall-gas interface 

WL – wall-liquid interface 
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MPT – Mud Pulse Telemetry 
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1 INTRODUCTION 

 

 

 The feature of the multiphase flow is the presence of two or more phases. These phases 

may be immiscible liquids, pure substances, or a combination of miscible substances at the 

saturation point. Phase is any substance portion separated from the surrounding fluid by a tiny 

layer resulting from the interfacial tension. In the two-phase flow, the phases can be gas-liquid, 

liquid-liquid, or solid-liquid mixtures. A two-phase air-water flow is the focus of this study.  

 When two fluids flow in a pipe, the phases can arrange themselves in different flow 

patterns. These flow patterns depend on the fluids’ superficial velocities and the pipe 

configuration, such as internal diameter and inclination. Understanding the flow patterns and 

their characteristics is essential for developing two-phase flow models since each flow pattern 

has its particular hydrodynamics. 

 Identifying a pattern is challenging because it relies on the observer’s subjective 

judgment. That is why the number of flow patterns and their transition boundaries may differ 

among the authors. Nonetheless, some patterns are a consensus between them. Flow maps are 

used for pattern classification based on the proposed criteria. There are flow maps for 

horizontal, inclined, and vertical pipe orientation to help to identify the flow pattern for each 

pair of superficial velocities. Taitel and Dukler (1976) are one of the most accepted maps for 

horizontal flow, and Taitel et al. (1980) for vertical flow. 

 The main patterns for horizontal gas-liquid flows are bubbly, stratified, slug, and annular 

(BERTOLA, 2003; SHOHAM, 2006). Figure 1.1 shows the spatial configuration for the 

horizontal flow patterns. In addition, the following paragraphs describe each horizontal pattern 

shown in Fig. 1.1 from top to bottom:  

 Bubbly flow is featured by tiny spherical gas bubbles dispersed in the liquid. In the case 

of horizontal flow, these bubbles tend to concentrate in the upper part of the pipe due to 

buoyancy and may or may not coalesce. In this flow pattern, there is no slip between the phases 

and flow is considered homogenous.  

 Stratified flow is featured by the gas phase flowing above the liquid, showing a complete 

detachment between the two phases. This pattern occurs at low gas and liquid flow rates. 

 Slug flow is characterized by an alternated sequence of elongated bubbles and liquid 

slugs both in time and space. For the horizontal flows, the long bubble is eccentric and located 
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in the upper part of the pipe due to buoyancy. In this case, the aeration in the liquid slug is slight 

and can be neglected in most cases.  

 Annular flow corresponds to a gas core and a liquid film around the pipe wall. 

Furthermore, some liquid can flow as droplets in the gas core. This flow pattern occurs at high 

gas flow rates. 

 

 

Figure 1.1. Flow patterns for horizontal gas-liquid flows. From top to bottom: bubbly, 

stratified, slug, and annular. 

  

 For vertical gas-liquid flow, the consensual patterns among the researchers are bubbly, 

slug, churn, and annular (HEWITT; HALL-TAYLOR, 1970; TAITEL et al., 1980). Figure 1.2 

shows the patterns’ spatial configurations for vertical flow. Moreover, the following paragraphs 

describe each vertical flow pattern in Fig. 1.2 from left to right:  

 Bubbly flow in vertical sections is featured by spherical gas bubbles evenly dispersed 

in the liquid or tending to concentrate in the center of the pipe.  
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 Slug flow in an upward vertical orientation is characterized by an elongated bubble that 

carries most of the gas mass in the cell. This long bubble has a bullet shape known as the Taylor 

bubble. This Taylor bubble is concentric, and its diameter is almost equal to the pipe diameter. 

Unlike the horizontal case, the effects of the liquid slug aeration and the gas expansion are 

important.  

 Churn flow occurs when the superficial gas velocity increases, and the elongated gas 

bubbles deform, assuming an amorphous shape. This pattern is usually avoided in practical 

applications due to its complex hydrodynamics. 

 Annular flow in vertical inclinations is similar to the horizontal case. 

 

 

Figure 1.2. Flow patterns for vertical gas-liquid flow. From left to right: bubbly, slug, churn, 

and annular. 

  

 Among all these patterns, the slug flow plays an essential role in industry due to its 

occurrence in the petroleum, chemical, nuclear, and space industries (FERNANDES et al., 

1983; SAIDJ et al., 2018; SHOHAM, 2006). As shown in Figs. 1.1 and 1.2, the slug flow 

contains all the other patterns. It consists of an alternated sequence of elongated bubbles and 

liquid slugs in time and space.  

 Wallis (1969) introduced the concept of a unit cell to describe the slug flow 

characteristics. A unit cell consists of an elongated bubble and an aerated liquid slug. Besides, 

it considers that all cells have the same properties along the pipe. Thus, this modeling assumes 
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that the slug flow has a periodic nature. Figure 1.3 shows a slug flow unit cell and its main 

structures. 

 

 

Figure 1.3. Representation of the elongated bubble and liquid slug in a unit cell. 

  

 Many authors employed this definition to develop their models for horizontal, slightly 

inclined, and vertical flows (ANDREUSSI et al., 1993; COOK; BEHNIA, 1997; DUKLER; 

HUBBARD, 1975; FERNANDES et al., 1983; ORELL; REMBRAND, 1986; SYLVESTER, 

1987; KOKAL; STANISLAV, 1989; NICHOLSON et al., 1978; TAITEL; BARNEA, 1990). 

These models focus on predicting the slug flow behavior in a steady-state regime.   

 Transient operations frequently occur in the petroleum industry, such as the startup and 

shutdown of pipelines, gas kicks while well-drilling, pipeline rupture detection, and pigging, 

among other issues. Because of the industry’s vast applications, studying the slug flow in 

transient regimes is necessary. According to Shoham (2006), a transient slug flow occurs when 

the inlet (as gas and liquid flow rates) or outlet conditions (as pressure) change. Fabre et al. 

(1995) showed that the flow properties, as pressure and void fractions, propagate as waves when 

the inlet or outlet conditions change abruptly. According to Xu and Gong (2008), the 

propagation of great pressure waves can cause failure in the entire pipe system. In addition, 

they suggested that predicting the pressure pulse propagation in long piping systems is 

challenging due to gas compressibility, flow pattern change, and energy and mass transfers.  

 The pressure propagation velocity is a crucial parameter in petroleum operations, such 

as mud pulse telemetry (MPT), gas influx detection, and well-dynamic control response (LI et 

al., 2016). Many authors have focused their studies on pressure propagation velocity prediction 

using the mixture’s models since the ’70s (AKAGAWA et al., 1982; CAUSSADE et al., 1989; 

FABRE et al., 1995; SAMUEL MARTIN; PADMANABHAN, 1979; WALLIS, 1969). 

However, the mixture models suppose the gas phase is evenly distributed into the liquid. 

Therefore, these models do not capture the property changes due to the elongated bubble.  

 The two-fluid model has been recently used to predict the pressure propagation velocity 

and attenuation coefficient (LI et al., 2022a, 2012, 2016; LI et al., 2022b; LIN et al., 2013). 
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Their models need frequency, void fraction, and superficial velocities of the phases as input 

variables. Superficial velocities are operational conditions, and the void fraction is a known 

variable from the drift relationship; however, there is no information about how to obtain the 

frequency. For example, they used a frequency bigger than the slug flow oscillation frequency 

as input for all void fractions. The present research was motivated by this gap. We aim to obtain 

a method to determine the oscillation frequency in slug flow to use as an input parameter in the 

two-fluid model. We suggest using the slug tracking model to assess the slug flow oscillation 

frequency. Therefore, this research analyzes the oscillation frequency in slug flow and obtains 

the pressure wave propagation velocity in a two-phase air-water horizontal flow. The numerical 

results are compared with the experimental outcomes in Maria and Rosa (2016) of a horizontal 

test section of 26 mm ID and 1,009D long. 

 

 

1.1 Objectives 

 

 

 This work aims at developing a straightforward method to obtain the pressure 

propagation velocity in slug flow. The focus will be on the oscillation frequency analysis and 

its use in the two-fluid model. The following specific objectives must be accomplished to 

achieve the fundamental goal:  

• Assess the signals of the nose bubble velocity and pressure through time using slug 

tracking simulations; 

• Determine the oscillation frequency of slug flow by analyzing the signals using the 

discrete Fourier transform (DFT); 

• Compare the oscillation frequency with different frequencies of passage correlations; 

• Calculate the pressure wave propagation velocity and attenuation coefficient using 

the two-fluid model; 

• Compare the numerical results with the experimental campaign of Maria and Rosa 

(2016) and previous models of pressure pulse velocity. 
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1.2 Research outline 

 

 

 This study is organized into six chapters. The first one introduced the study theme: the 

definition of multiphase flow, the flow patterns, the modeling in steady-state and transient 

regimes, the research motivation, and the objectives. The following five chapters are described 

next. 

 Chapter 2 - Literature review: This chapter reviews the multiphase flow variables, the 

slug flow models, including the slug tracking model, and the previous research in the transient 

slug focusing on those investigating the pressure wave velocity. 

 Chapter 3 - Mathematical model: This chapter describes the considerations and the 

mathematical formulations of the two-fluid and slug tracking models. This chapter also presents 

the pressure wave velocity equation and the numerical solution method.  

 Chapter 4 – Simulations and frequency analysis: This chapter describes the experimental 

setup from Maria and Rosa (2016) and the boundary conditions of the numerical simulations 

performed by Gonçalves and Mazza (2022). In addition, it presents the signal features and the 

methods to determine the frequency using the Discrete Fourier Transform (DFT). Finally, it 

presents nine literature correlations to predict the frequency of passage. 

 Chapter 5 – Results: This chapter shows the model sensitivity for different frequency 

values. In addition, it presents the frequency analysis and its results and discusses a more 

straightforward closure to the two-fluid model. It also shows the results for the pressure wave 

propagation and the comparison with the experimental data from Maria and Rosa (2016). 

Furthermore, a parametric analysis of the influence of the liquid’s superficial velocity on the 

model is performed for the experimental point that presented the biggest RMS. This chapter 

presents the attenuation coefficient prediction for the experimental tests of Maria and Rosa 

(2016). 

 Chapter 6 – Conclusions: This chapter contains the conclusion of this research and 

suggestions for future studies. 
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2 LITERATURE REVIEW 

 

 

 This chapter contains four sections reviewing the features of the two-phase slug flow. 

Section 2.1 presents the main variables and notations in multiphase flow studies. Then, Section 

2.2 examines the mixture and separated-phase models. In addition, it shows the unit cell 

definition and the slug tracking model. Section 2.3 reviews the transient modeling in two-phase 

flow, focusing on experimental and numerical works of pressure wave propagation. Section 2.4 

treats the previous modeling of pressure propagation using the two-fluid model. Finally, Section 

2.5. discusses the main works mentioned in this chapter, pointing out the main weaknesses of 

each one. 

  

 

2.1 Multiphase flow variables 

 

 

 We first need to review notations and multiphase flow variables used in this work. The 

mass flow rate is the only property conserved in these types of flows. It is defined as the amount 

of mass flowing through a pipe’s cross-sectional area per unity of time, according to Eq. (2.1):  

 

 k
k

m
m =

t
, (2.1) 

 

where the subscript k indicates the phase. The total mass flow rate is the sum of the mass flow 

rate of each phase, as shown in Eq. (2.2): 

 

 km = m . (2.2) 

 

 The volumetric flow rate is the volume of fluid k flowing through a cross-sectional area 

per unit of time, as shown in Eq. (2.3): 

 

 k
kQ

t


=


, (2.3) 
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where k  is the phase k volume. Likewise, in the case of the mass flow rate, the total volumetric 

flow rate is the sum of the volumetric flow rate of each phase, according to Eq. (2.4): 

 

 kQ = Q . (2.4) 

 

 Another important variable in multiphase flow is superficial velocity. The superficial 

velocity is the ratio of the volumetric flow rate of each phase to the pipe’s cross-sectional area, 

as in Eq. (2.5):  

 

 k
k

Q
J =

A
, (2.5) 

 

where A is the pipe cross-sectional area. Equation (2.6) gives the total superficial velocity, 

which is the sum of each phase’s superficial velocities:  

 

 kJ J= . (2.6) 

 

 There are many geometric definitions of void fractions from different averages, like the 

ensemble and time averages; however, all definitions have the same results in ergodic 

processes. The sum of the void fractions of each phase is the unit, as shown in Eq. (2.7): 

 

 kα = 1 , (2.7) 

 

where the time average of the variable defines the average operator, as shown in Eq. (2.8): 

 

 ( )
0

1
.

T

f t dt
T

=  . (2.8) 

  

 As shown in Eq. (2.9), the volumetric void fraction is defined as the ratio of the volume 

occupied by the phase to the total measured volume. The quick-close valves’ technique usually 

determines the experimental volumetric void fraction.  
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 k
k

 
=


. (2.9) 

 

 The area-based void fraction is the ratio of the area occupied by the phase to the pipe 

cross-sectional area, as shown in Eq. (2.10). Optical methods can measure the experimental 

area void fraction. 

 

 
A k

k

A

A
 = . (2.10) 

 

 Considering that the two-phase flow is an ergodic process, the volumetric and area void 

fractions are the same:  

  

 
A

k k 

= . (2.11) 

 

 This study focuses on the gas-liquid two-phase flow. From here, subscript G indicates 

the gas phase, L is the liquid phase, f  is the elongated bubble region, S is the liquid slug, and U 

is the unit cell.  

 The liquid hold-up definition complements the void fraction definition. While the void 

fraction determines the presence of the gas phase in a pipe’s section, the liquid hold-up 

determines the presence of the liquid phase. Equations (2.12) and (2.13) show the hold-up in 

the liquid film region and the liquid slug for two-phase slug flows: 

 

 1f fR = − , (2.12) 

 

 1S SR = − . (2.13) 

 

The average operator  will be suppressed from now on for simplification.  

 The slug flow consists of an alternated sequence of elongated bubbles and liquid slugs. 

An elongated bubble and a liquid slug together form what is known as a unit cell. Thus, the 

length of a unit cell is the sum of the liquid film and the liquid slug lengths, as shown in Eq. 

(2.14): 
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 U f SL L L= + . (2.14) 

 

 The intermittence factor is the ratio of the liquid film length to the unit cell length, as 

shown in Eq. (2.15): 

 

 
f

U

L

L
 = . (2.15) 

 

 The slug flow frequency is the inverse of the transit time of a unit cell. This frequency 

is related to the nose bubble velocity and the unit cell length, as shown in the following: 

 

 T

U

U
=

L
 . (2.16) 

 

 From the definition of phases, we can determine a model for the fluid properties based 

on the length-weighted average. Equation (2.17) shows the unit cell void fraction:  

 

 ( )1U f S   = + − . (2.17) 

 

 Similarly, the void fraction-weighted average gives the mixture density and dynamic 

viscosity, as shown in Eqs. (2.18) and (2.19): 

 

 ( )1U U G U L    = + − , (2.18) 

 

 ( )1U U G U L    = + − , (2.19) 

 

where  is the density and  is the dynamic viscosity. 

 It is noteworthy that these definitions are valid only for immiscible fluids. The study of 

emulsions involves modeling it as a single fluid with unique properties that must be measured 

in the laboratory for each case. 
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2.2 Slug flow models 

 

 

 There are two categories of multiphase flow models: the flow mixture models and the 

separated flow models. The flow mixture models include the Homogeneous Flow Model 

(HFM) and the Drift-Flux Model (DFM). The Two-Fluid Model (TFM) is a separate flow 

model. Figure 2.1 shows the diagram of the two-phase flow models. 

 

 

Figure 2.1. Diagram of the two-phase flow models. 

  

 The homogeneous flow model considers that the two-phase flow mixture behaves as a 

single pseudo-fluid with specific properties, given by the weighted average of the elongated 

bubble and liquid slug lengths. In this case, it assumes no-slip condition between the phases, 

and the two phases are well mixed and in equilibrium. 

 The drift-flux model is similar to the homogeneous flow model. However, it is an 

improvement over the HFM because it considers the slippage between the phases. The model 

uses the mixture’s continuity, momentum, and energy equations. In addition, it requires one 

extra continuity equation for one of the phases. Therefore, the DFM consists of four equations 

plus a drift velocity closure relation. 

 The two-fluid model treats the two phases separately. The model includes the continuity, 

momentum, and energy equations for both phases, totaling six equations. Furthermore, it needs 

one closure relationship to obtain the interfacial shear stress.  

 The mixture models do not capture the abrupt properties variation caused by the 

elongated bubbles; thus, these models are unsuitable for studying the pressure wave propagation 

in slug flows. Omgba-Essama (2009) pointed out that the two-fluid model better represents the 
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dynamic interaction between the phases; consequently, this model is more suitable for studying 

wave propagation phenomena. In addition, Gonçalves and Mazza (2022) noted that a slug 

tracking approach is also a good option for studying this phenomenon because of its ability to 

capture the interaction between neighboring cells.  

 The slug flow consists of an intermittent sequence of elongated bubbles and liquid slugs. 

The studies on slug flow started with the definition of the unit cell proposed by Wallis (1969). 

The unit cell comprises an elongated bubble and a liquid slug, and the model assumes that the 

cell keeps its characteristics along the pipe. Figure 2.2 shows a unit cell and its variables for 

horizontal and slightly inclined flows. It is worth mentioning that the elongated bubble is 

concentric to the pipe for larger inclination angles and vertical flows.  

 

 

Figure 2.2. The unit cell for inclined and horizontal flow. 

   

In Fig. 2.2, the liquid slug flow properties are the bubbles ub and liquid slug uS velocities. 

In addition, the film or elongated bubble region properties are the gas and liquid film relative 

velocities vG and vf. The shear stress is τ, and the subscripts G, i, and  f mean the gas, interface, 

and liquid film, respectively.  

Many authors used the unit cell concept to model the liquid film around the elongated 

bubble for horizontal and slightly inclined flows (ANDREUSSI et al., 1993; COOK; BEHNIA, 

1997; DUKLER; HUBBARD, 1975; KOKAL; STANISLAV, 1989; NICHOLSON et al., 

1978). In addition, Fagundes Netto et al. (1999) proposed a liquid film model specific to 

horizontal flows, and Fernandes et al. (1983) and Sylvester (1987) presented their models for 

vertical flows. Finally, Taitel and Barnea (1990) proposed a model suitable for horizontal, 

inclined, and vertical flows. Furthermore, it is currently the most accepted liquid film model.  
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 The slug tracking model employs a transient control volume analysis based on the one-

dimensional mass and momentum balances applied to a unit cell flowing throughout the pipe. 

The spatial integrals condense the mass and momentum into a point, representing the lumped 

properties of the jth cell; nonetheless, the time analysis is continuous. The model tracks each 

cell down throughout the domain, capturing the evolution of the flow variables over time.  

 The approach of the slug tracking model started with Barnea and Taitel (1993). Earlier 

models could predict the slug length average; however, slug length has the characteristic of 

having a variance around its average value. The authors proposed a model capable of predicting 

the slug length distribution at any point along the pipe.  They used two distribution types at the 

inlet: random and normal, and found that slug length distribution is not sensitive to the 

distribution at the entrance. They also found that their model agrees with the experimental data 

from van Hout et al. (1992) for upward vertical flow. 

 Zheng et al. (1994) developed a slug-tracking model to simulate the slug flow behavior 

in a hilly terrain pipeline using the liquid mass balance. The authors approached two cases: one 

in which the slugs maintain their shape when passing to another section, and the other when 

new slugs can be generated while others can dissipate, and the slug length can change. They 

compared the numerical results with experimental data of air-kerosene in a test section of 77.9 

mm ID and 5,395D long with slope variation along its length. They found that the model could 

predict the mechanism of slug generation and dissipation. 

 Taitel and Barnea (1998) developed a Lagrangian model, i.e., capable of following the 

mass elements, and it is only time-dependent. They consider the gas compressibility and assume 

that all slugs at the inlet have the same length using a similar model to Barnea and Taitel (1993). 

However, the authors neglected the time derivative terms in the momentum balances. Their 

numerical results were for the case of horizontal air-water flow. They concluded that the 

significant gas compressibility effect occurs in the elongated bubble region. 

  Based on the model proposed by Taitel and Barnea (1998), Al-Safran et al. (2004) 

developed a transient slug tracking model to study the flow in hilly terrain pipes. They 

compared the numerical results with experimental data of horizontal air-oil flow of 50.8 mm 

ID and 840D long test section with slope variations. The comparison shows a good fitting 

between the experimental and the numerical results. The authors emphasize its capacity to 

predict the maximum slug length at the outlet with less than 8% deviation. 

 In addition, Wang et al. (2006) also developed a slug tracking model based on Taitel 

and Barnea’s (1998) model; however, they consider the wake effect and the pressure drop 

caused by acceleration. The authors assumed that liquid slugs with random lengths entered the 
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test section and compared the results with experimental data from a horizontal air-water flow 

in a test section of 50 mm ID and 2,660D long. The model presented a good agreement in 

predicting the mean, maximum, and distribution slug length at 1,557D; however, the average 

slug length was underestimated at 2,609D, showing the model’s difficulty in capturing the slug 

evolution as it flows along the pipe. 

 The slug-tracking model used in this research follows the formulation of Rosa et al. 

(2015). Their formulation includes all the terms considered in previous models plus the 

advective term. The model is capable of simulating horizontal and inclined flows. The authors 

compared the numerical results with experiments in a 26 mm ID and 900D long horizontal test 

section, presenting a good fit in predicting the average slug flow properties. They also 

concluded from both numerical and experimental results that the effect of the type of entrance 

on the slug flow properties reduces along the pipe, agreeing with Barnea and Taitel’s (1993) 

statement. 

  

 

2.3 Pressure propagation in multiphase flow 

 

 

 The pressure pulse propagation studies in two-phase flow started with Wallis (1969). 

He developed a one-dimensional model for single and two-phase flows from the continuity 

equations and considered the fluid density variation due to the pressure change. For the 

homogeneous case, Wallis (1969) presented the Eq. (2.20): 

 

 

( ) 2 2
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1

P
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 
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 
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 −

+ − +    
 

, (2.20) 

 

where U  is the unit cell void fraction and a is the acoustic velocity. Analyzing the equation 

above, Wallis (1969) concluded that the propagation velocity in a homogeneous two-phase flow 

is smaller than the acoustic velocity of each phase. In addition, he found that the propagation 

velocity achieves its minimum at 50% of the void fraction. 

 The lack of experimental data and models for two-phase flow motivated the work of 

Henry et al. (1971). The authors studied the pressure wave for different flow patterns presenting 



31 
 

 

the modeling and experimental data. For slug flow, they assumed an idealized form of this 

pattern: the gas and liquid phases enter alternately in the pipe and fill the entire cross-section, 

as shown in Fig. 2.3. 

 

 

Figure 2.3. Idealized model of slug flow of Henry et al. (1971). 

  

 The model depends on the void fraction and each phase acoustic velocity, as shown in 

Eq. (2.21). The model indicates that the pressure wave velocity decreases when the void fraction 

increases. Their experimental data of air-water flow in a vertical test section of 50.8 mm ID and 

38D long agreed with the model proposed. The authors concluded that the flow pattern 

influences the pressure wave velocity flow. 

 

 
( )

1

1
p

G L

c
a a


−

− 
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 

. (2.21) 

 

 Miyazaki et al. (1971) studied the pressure propagation experimentally in a stagnant air-

water mixture to focus on the drift study. The experiment was carried out in a 40 mm hydraulic 

diameter and 52D long vertical test section; they compared the results with a homogeneous, 

adiabatic, and no-slip model. The authors evaluated the pressure wave velocity with a single 

model and the void fractions spanning from 0 to 60%. The model diverges for higher void 

fractions. The authors agreed with Wallis (1969) that the pressure wave velocity in a two-phase 

flow is slower than in each phase due to the gas compressibility and the liquid inertia. In 

addition, they concluded that the two-phase system has a natural frequency featured by a 

coupled oscillation. 

 Later, Samuel Martin and Padmanabhan (1979) claimed that the model of Henry et al. 

(1971) did not consider the wave reflection caused when the pulse travels from one media to 

another. The authors used the homogenous and drift-flux models and compared the results with 

experimental air-water flow data. The experimental loop has a 26 mm ID and 723D total length. 
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It consists of vertical upward, horizontal, and downward parts that form an inverted U. They 

presented the Eq. (2.22) for the homogeneous case:  

  

 

( ) ( ) ( )

P
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ρ a ρ
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. (2.22) 

 

 The homogenous model shown in Eq. (2.22) underpredicts the pulse wave velocity. 

However, it presents a significant improvement when compared to the model of Henry et al. 

(1971). They concluded that the pressure wave velocity calculated by the drift-flux model is the 

same as the calculated by the homogenous model for slug flow. The authors suggested that a 

two-fluid model would be more suitable. 

 Unlike Henry et al. (1971), who linked the pressure velocity to the void fraction only, 

Matsui et al. (1979) suggested that the number of cells within the pipe also influences the 

pressure propagation. The authors assumed an idealized slug model and used an analogy to a 

mass-spring system with linear and non-linear approaches to obtain their model, as shown in 

Eq. (2.23). 

 

 
( )P

L

γP
c =

ρ β 1- β
, (2.23) 

 

where γ is the polytropic constant, P is the bubble pressure, and β is the intermittence factor. 

The experimental test section is horizontal and has high- and low-pressure chambers totaling 

618D and 5 mm ID. They fed water and air alternately to the pipe to reproduce the slug in its 

idealized form and compared the results with their model. The experimental results agreed 

qualitatively with the model; however, the quantitative results approached the experimental 

results for more than ten cells within the pipe. The natural frequency is symmetrical and with a 

minimum when the intermittence factor is 0.5. Consequently, the pressure wave velocity also 

is lowest with this intermittence factor. The authors also found that the pressure wave has a 

dispersive feature, i.e., its shape changes while the propagation occurs. 

 Nguyen et al. (1981) claimed that no models could predict the pressure pulse for all void 

fractions and flow patterns. Thus, the authors studied the pressure propagation velocity in 

stratified, slug, and bubbly flows, the last one using the homogenous flow model. For the slug 
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flow regime, they found the same equation proposed by Henry et al. (1971), as shown in Eq. 

(2.21).  

 Aiming to study the transient flow features caused by a quick-close valve, Akagawa et 

al. (1982) developed an oscillatory model based on a mass-spring system. They used a 

homogenous model such as a water hammer analysis. The authors suggest that the transient 

profile depends on the initial configuration adjacent to the valve when it closes. This 

configuration can be of two types: slug and gas. The first occurs when a liquid slug is adjacent 

to the valve; the last occurs when there is an elongated bubble. The authors compared the results 

with experimental data from a horizontal test section of 20.7 mm ID and 894D long. They 

claimed that the transient profile of the slug type has the characteristics of high-frequency 

oscillations and a fast amplitude decrease. The analogous mass-spring model gives good results 

compared to the experimental data when the adjacent configuration is gas-type. The authors 

concluded that the pressure profile depends on the initial configuration adjacent to the valve 

and can differ even for the same gas and liquid flow rates. 

 Caussade et al. (1989) studied the transient regime in slug flow with the drift-flux model. 

They compared the results with experimental data from a horizontal test section of 53 mm ID 

and 1,698D total length. The authors found out that the pressure wave propagates faster than 

the void fraction wave. In addition, they described the propagation mechanism of these two 

waves: when a disturbance reaches a particular pipe section, the pressure at this section changes 

abruptly; and remains approximately constant until the void fraction wave comes to the same 

area; moreover, when the void fraction wave reaches the pipe outlet, the pressure wave reaches 

its second steady-state. They also concluded that the void fraction wave is conservative, i.e., it 

maintains its shape while traveling along the pipe. 

 Vigneron et al. (1995) studied the transient features experimentally in slug and stratified 

patterns and compared the results with the predictions of three commercial software (TUFFP, 

PLAC, and OLGA). The horizontal test section has a 77.9 mm ID and is 5,392D long. Without 

drift, the void propagation velocity in slug flow is almost equal to the bubble translational 

velocity at the second steady state, either for an increase or decrease in the liquid flow rate. The 

experimental results showed that a change in the gas flow rate causes fast transients, while a 

change in the liquid flow rate causes slow transients.  

 Fabre et al. (1995) investigated the transient regime experimentally, focusing on the 

waves induced by a sudden change in the operational conditions. The experiments were 

conducted by Théron (1989) and Gadoin (1993). The experimental test section consists of a 

long horizontal pipe of 50 mm ID and 1,800D flowing air and water. Their principal findings 
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are: that the void wave is shape-conservative and propagates with the bubble’s nose velocity; 

the pressure wave presented a dispersive shape as it traveled along the pipe. These pressure 

waves propagate due to the fluid density variation and can propagate upstream and downstream. 

In addition, they presented a void fraction and pressure wave model based on Fabre et al. (1989) 

generalized drift-flux model. This model can predict the void wave velocity with an acceptable 

agreement; however, it tends to underestimate the pressure wave velocity.  

 Huang et al. (2005) performed an experimental study of propagation velocity and 

attenuation coefficient for both bubbly and slug patterns. The authors observed that the pressure 

wave in the slug flow pattern has a more accentuated dispersive feature when compared with 

the bubbly flow. They concluded that the pressure propagation velocity for the slug flow pattern 

has no significant change for void fractions less than 50%. After that, the velocity increases 

with the void fraction. Furthermore, they found that the angular frequency increases the 

pressure wave velocity and attenuation coefficient. 

 Ambrose et al. (2016) studied the oscillation of the Taylor bubble rising in a stagnant 

liquid column. It is common sense that a pressure unbalance causes the oscillations; however, 

details about how these oscillations occur were not provided previously. They suggested that 

the oscillations are due to the difference between the Taylor bubble pressure and the hydrostatic 

pressure at the bubble’s nose. The authors compared the numerical results with an analytical 

model and experimental data from Pringle et al. (2015) of a 290 mm ID  and 34D long vertical 

test section. The numerical results were obtained using Computational Fluid Dynamics (CFD) 

techniques. They observed that the analytical and numerical solutions agreed with the 

experimental data only in the initial part of the pipe. As the bubble approaches the outlet, 

divergences with the experimental data appear. These divergences were expected for the 

analytical model. The model does not consider the behavior of the liquid ahead of the bubble; 

however, they did not expect this divergence in the CFD numerical simulation. They reported 

that the oscillation frequency depends on the average bubble length, and the amplitude depends 

on the fluid viscosities. 

 Using a lumped-mass approach, Ishikawa et al. (2014) developed a method to model the 

pressure wave in a two-phase steam-water flow. They claimed that no wave propagation model 

included the mass transfer between the phases; thus, they considered mass transfers caused by 

condensation and vaporization. Their model assumes that all cells have the same property; 

consequently, the analogous system has the same mass, spring constant, and damping factor. 

For the more straightforward case, without mass transfer and no damping considered, the 

propagation velocity is given by Eq. (2.24): 
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,  (2.24) 

  

where 
GK  is the Bulk modulus of the gas phase. The authors compared the numerical results 

with experimental data of an air conditioning system and found a good agreement between 

them.   

 Maria and Rosa (2016) experimentally investigated the propagation of pressure and void 

waves in an air-water slug flow. The horizontal test section has a 26 mm ID and is 1,009D long. 

The authors carried out four experimental runs. In the first two runs, the liquid velocity was 

constant at 0.6 m/s, and the transient was introduced due to a change in the gas’s superficial 

velocity (halved in Test #1 and doubled in Test #2). In the last two runs, the gas velocity was 

fixed at 0.6 m/s, while the liquid velocity changed (halved in Test #3 and doubled in Test #4), 

causing the transient. They repeated the experiment 100 times for each run aiming to filter the 

natural intermittent behavior of the slug flow, especially for visualizing the void fraction wave. 

They presented the experimental pressure and void propagation velocity for each case. In 

addition, they concluded that the void wave is conservative and the pressure wave has a 

dispersive feature. 

 Gonçalves and Mazza (2022) used the slug tracking model to investigate the behavior 

of void and pressure waves. They also used an analogy between the mass-spring-damper system 

using the slug tracking model to estimate the time delay between the two steady-states. In this 

analogy, the gas compressibility represents the spring, while the liquid viscosity represents the 

damper. The authors used an approach based on Navarro’s (2010) proposed method to couple 

the system by the liquid slug velocity as shown in Eq. (2.25):  

 

 ( )1 2 3S S Sb u b u b u f t+ + = , (2.25) 

 

where 
1b , 2b , and 3b  are the terms analogous to the mass, spring constant, and damping factor, 

respectively. The authors determined these terms by algebraic manipulations in the slug 

tracking mathematical formulation. In addition, they compared the results with the experimental 

campaign of Maria and Rosa (2016), achieving less than a 10.0% deviation for predicting the 

pressure wave velocity.  
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2.4 Two-fluid models 

 

 

 Xu and Gong (2008) claimed that most models consider the void fraction as the only 

parameter influencing the propagation velocity. In addition, the results from those models also 

diverged between them. The authors were the first to use the two-fluid model to study the 

pressure wave propagation velocity. Their model considers no liquid drops in the gas phase and 

neglects the mass transfer between phases and the heat transfer with the surroundings. The 

authors used the virtual mass force to include phase moment transfer; they believed it 

significantly influences the pressure wave velocity in bubbly and slug flows. Thus, the authors 

divided the virtual mass force into weak and intensive, depending on the virtual mass 

coefficient, as shown in Eq. (2.26). 

 

 
( )vm

vm

c 0; weak stratified

c > 1; intensive (bubbly, slug)
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


, (2.26) 

 

where vmc  is the virtual mass coefficient. The authors presented the Eq. (2.27) to predict the 

pressure wave velocity: 

 

 
( ) ( )

( ) ( )

vm L G L
2

U UU U

P

G UL L
vm2 2

U G U L U G

c ρ ρ ρ
+ +
α 1- αα 1- α

c =
ρ αρ ρ

+ 1+c +
1-α a α a 1- α ρ

 
 
  

     
    
     

. (2.27) 

 

 The authors highlighted a significant drop in the propagation velocity when the void 

fraction spans from 0 to 5% for all virtual mass coefficients. Moreover, they observed that the 

curves of pressure wave velocity for different void fractions remain practically the same for a 

virtual mass coefficient bigger than 1. The model agreed with the experimental data obtained 

by several authors. Although they used the two-fluid model, they did not mention the wave’s 

oscillation frequency.  

 Li et al. (2012) used the two-fluid model to calculate the aerated drilling mud’s wave 

propagation and attenuation coefficient. They assumed there was no heat transfer with the 

surroundings, no mass transfer between the phases, and the gas phase distributed evenly in the 
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liquid phase. They analyzed the influence of the void fraction, system pressure, and frequency 

on the attenuation coefficient and wave propagation velocity. They observed that the pressure 

wave velocity increases with the angular frequency until 100 rad/s (~16 Hz); the velocity 

achieves a limit above this value. In addition, they mention that the measurement while drilling 

(MWD) usually uses a pulse frequency in three ranges 0.02 to 0.2 rad/s, 0.5 to 4.0 rad/s, and 12 

to 24 rad/s; however, they fixed a value of 50 rad/s when analyzing the influence of the void 

fraction and the system pressure. The authors also compared the results with experimental data 

of MWD and found a good agreement between them.  

 Unlike other models that disregarded the influence of oil well depth in the propagation 

velocity, Lin et al. (2013) used the two-fluid model to obtain the pressure wave velocity in 

annular pipes. Their model encompasses the virtual mass and drag forces, oil well depth, and 

temperature. The numerical results were compared with previous experimental data using an 

angular frequency fixed at 50 rad/s. The results were similar to Xu and Gong (2008): the 

propagation velocity suddenly decreases in the void fraction range from 0 to 5%, and the wave 

velocity versus void fraction curve presents a U shape behavior. Nonetheless, they affirmed that 

the pressure wave velocity achieves a constant value for angular frequencies bigger than 500 

rad/s, unlike Li et al.’s (2012) statement. 

 Li et al. (2016) employed the perturbation theory and the two-fluid model to predict 

pressure wave propagation and attenuation in a two-phase slug flow. As in the model of Lin et 

al. (2013), the interfacial momentum interaction is due to the drag and virtual mass forces. Their 

one-dimensional model has four linear equations from each phase's mass and momentum 

conservation. The authors compared the predicted pressure wave velocity with experimental 

data from Henry et al. (1971) for a void fraction range from 0 to 0.25. They found that most 

points were in the 25%  deviation range, but others presented more considerable deviations. 

The authors also compared the attenuation factor with the experimental data from Huang et al. 

(2005). In addition, they evaluated the model’s sensitivity to void fraction, system pressure, and 

temperature for wave velocity and attenuation coefficient using three angular frequency values: 

10, 50, and 100 rad/s. As reported previously, the pressure propagation velocity versus void 

fraction curves has a U shape.  

 Li et al. (2022a) used the mathematical model of Li et al. (2016) to identify the flow-

influencing parameters on the mud pulse, aiming to improve the mud pulse telemetry method. 

They analyzed the influence of the void fraction, operating frequency, and system pressure on 

the wave velocity and attenuation coefficient. For the model’s sensitivity analysis with void 

fraction and pressure, they fixed the angular frequency at 50 rad/s. The curve shapes of void 
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fraction and system pressure agree with the results of Li et al. (2016). In addition, they presented 

that the wave velocity rapidly increases at lower frequencies until it achieves a constant value. 

 Li et al. (2022b) sought a model to predict the gas kick occurrence. Previous models 

neglected operational parameters and compared results with laboratory tests using air and water 

as working fluids. Like other two-fluid models, the authors used the interfacial momentum 

interaction as the sum of drag and virtual mass forces. However, the final equation is different 

from the models of Li et al. (2016) and Lin et al. (2013). The model’s results were compared 

with experimental data from Henry et al. (1971) and Huang et al. (2005) for the 0 to 30% void 

fraction range, finding a good agreement between them.  

 

 

2.5 Literature review gaps 

 

 

 Many works presented in the literature review have used the homogeneous or drift-flux 

models to study the pressure wave propagation velocity (AKAGAWA et al., 1982; 

CAUSSADE et al., 1989; FABRE et al., 1995; SAMUEL MARTIN; PADMANABHAN, 1979; 

WALLIS, 1969). However, the mixture models suppose that the gas phase is evenly distributed 

into the liquid, which does not occur in the slug flow. Therefore, these models do not capture 

the property change caused by the elongated bubble and the intermittent nature of the slug flow. 

 Another approach assumes that the liquid and gas phases fill the entire pipe cross-

section. That is the idealized model of slug flow first proposed by Henry et al. (1971) and used 

later also by Matsui et al. (1979) and Nguyen et al. (1981). Nonetheless, the idealized model 

does not reproduce the real hydrodynamics of the slug flow. In addition, the final equation of 

Henry et al. (1971) and Nguyen et al. (1981) are the same and presented significant divergence 

with experimental data, as reported by Maria and Rosa (2016). 

 Ishikawa et al. (2014) employed a lumped-mass model to obtain the pressure wave 

velocity; however, they developed their model for a one-component two-phase bubbly flow, 

which has different hydrodynamics of the slug flow pattern. 

 The experimental approach is time-consuming, needs particular installation, and cannot 

be generalized. The Maria and Rosa (2016) experimental approach involved the test repetition 

100 times for each point. 

 Furthermore, Gonçalves and Mazza (2022) used the slug tracking model and a mass-

spring-damper analogy to estimate the pressure wave velocity. Despite the simulations 
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presenting a good agreement with the experimental data of Maria and Rosa (2016), the 

simulation of pressure and void waves using slug tracking is demanding. In addition, the slug 

tracking needs an initial condition, which they used the experimental data. However, when no 

experimental data is available, it is complex to provide this initial condition. 

 Xu and Gong (2008) were the first to study the pressure wave velocity using the two-

fluid model. Nevertheless, they did not mention the wave’s oscillation frequency. Another two-

fluid model, as presented by Li et al. (2022a, 2012, 2016), Li et al. (2022b), and Lin et al. 

(2013), only needs constitutive relations for each pattern, thus simplifying the model. In 

addition, obtaining the attenuation coefficient of the pressure wave is simple. However, the 

two-fluid model needs the oscillation frequency as an input value. The authors neglected the 

analysis of this parameter, which presented a sensitivity analysis or used an arbitrary value. 

Therefore, determining this parameter is necessary due to the frequency’s influence on this 

model. With the frequency parameter, it will be possible to estimate the pressure wave 

propagation relatively quickly.  

 Further, Appendix A presents a comparative table of the models presented in the 

literature review containing the methods adopted, the main results, the research gaps identified, 

and the simplified equation when is the case. 
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3 MATHEMATICAL MODEL 

  

 

 This chapter presents the two-fluid and the slug tracking models straightforwardly. The 

mathematical details for both models are in Appendix B and C.  

 

 

3.1 Two-fluid model 

 

 

 This section presents the two-fluid modeling based on the models of Li et al. (2022a, 

2012, 2016), Li et al. (2022b), and Lin et al. (2013). It is worth noticing that we corrected a few 

typographical issues in the previous models. The two-fluid model herein presented is based on 

the following assumptions:  

• The flow is one-dimensional; 

• The gas phase is compressible and treated as an ideal gas; 

• The liquid phase is incompressible; 

• There is no mass transfer between the phases; 

• The model neglects the non-linear effects and high-order terms; 

• The shear force in the gas-wall interface is neglected. 

  

 Equations (3.1) and (3.2) show the mass conservation equations for the gas and the 

liquid phases: 

 

 ( ) ( )U G u G Gα ρ + α ρ V =0
t x

 

 
, (3.1) 

 

 ( ) ( )U L U L L1-α ρ + 1- α ρ V =0
t x

 
       

. (3.2) 

 

 The first and second terms of Eqs. (3.1) and (3.2) represent the temporal mass change 

and mass flow rate, respectively.  
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 Equations (3.3) and (3.4) show the momentum conservation equations for the gas and 

the liquid phases:  

 

 ( ) ( )2

U G G U G G U GL WG U G

P
α ρ V + α ρ V +α = -F - F - α ρ gsinθ

t x x

  

  
, (3.3) 

  

 
( ) ( ) ( )

( )

2

U L L U L L U GL WL

U L

P
1-α ρ V + 1-α ρ V + 1-α = F - F +

t x x

- 1-α ρ gsinθ

  
         , (3.4) 

 

where FGL, FWG, and FWL are the forces in the gas-liquid, wall-gas, and wall-liquid interfaces, 

respectively. The last RHS term represents the force due to gravity. In the LHS of both 

equations, the first term represents the temporal momentum variation, the second represents the 

momentum rate along the axial distance, and the third represents the pressure force term. 

 Thus, we obtain a set of linear equations by rewriting the continuity and momentum 

equations, applying the perturbation theory, and using the following closure relations: force in 

the wall-liquid interface, Fanning friction factor, bubble radius, drag, and virtual mass forces, 

and drag and virtual mass coefficients. Writing the final equations as an inhomogeneous linear 

system, we obtain Eq. (3.5). The mathematical model details are in Appendix B. 

 

 

( )

'
11 12 13 U

'
21 22 24

'
0 G031 32 33 34 G

'
0 L041 42 43 44 L

0M M M 0 α

0M M 0 M P
=

α iρ gsinθM M M M J

- 1-α iρ gsinθM M M M J

    
    
       

    
        

, (3.5) 

 

where the terms of the matrix in Eq. (3.5) are: 

 

 First line:   

 ( )11 G G0M = ρ ω- κV ,  

 ( )U0
12 G02

G

α
M = ω- κV

a
, (3.6) 

 
13 U0 GM = -α ρ κ ,  
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 Second line: 

 ( )21 L L0M = -ρ ω- κV ,  

 
( )

( )U0

22 L02

L

1-α
M = ω- κV

a
, (3.7) 

 ( )24 U0 LM = - 1-α ρ κ , 

  

 Third line: 

 ( )31 G G0 G0 GM = ρ V ω- κV - iρ gsinθ ,  

 ( )U0 G0
32 G0 U02

G

α V
M = ω- κV -α κ

a
,  

 ( )( ) dg U0 L L0

33 U0 G vm L G0 G G0 U0

b

c α ρ V3
M = α ρ +c ρ ω- κV - ρ V α κ+ i

4 R
, (3.8) 

 ( ) dg U0 L G0

34 vm U0 L L0

b

c α ρ V3
M = -c α ρ ω-V κ + i

4 R
,  

 

 Fourth line: 

 ( )41 L L0 L0 LM = ρ V ω- κV - iρ gsinθ , 

 ( )( ) ( )L0
42 U0 L0 U02

L

V
M = - 1-α ω- κV +κ 1- α

a
,  

 ( ) dg U0 L L0

43 vm U0 L G0

b

c α ρ V3
M = c α ρ ω- κV + i

4 R
, (3.9) 

 

( ) ( ) ( ) dg U0 L G0

44 L U0 vm U0 L0 U0 L0 L

b

WL L L0

c α ρ V3
M = -ρ 1- α +c α ω- κV +κ 1- α V ρ + i

4 R

4
iCf ρ V

D

+  

+

 . 

 

 The linear system reduces to a homogeneous system for the horizontal case since the 

RHS is a null matrix for θ=0 . Therefore, for the system to admit a solution different from the 

trivial, the matrix determinant must be equal to zero, as shown in Eq. (3.10):  
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11 12 13

21 22 24

31 32 33 34

41 42 43 44

M M M 0

M M 0 M
= 0

M M M M

M M M M

. (3.10) 

 

 Equation (3.10) gives a fourth-degree polynomial whose solution consists of four 

complex roots of the wave number. Two of these roots have high real values and yield small 

wave velocities. The other two roots have almost equal values except for their opposite signs, 

indicating that the pressure wave propagates upstream and downstream. Thus, we search for 

these opposite-signed roots using the Newton-Raphson method on Mathematica. Appendix D 

shows this implementation.  

 Finally, the angular frequency divided by the real part of the wave number gives the 

pressure wave velocity, as shown in Eq. (3.11). 

 

 
( ) ( )

P

1 2

1 ω ω
c = +

2 Re κ Re κ

 
 
  

, (3.11) 

 

where 1  and 2  are the two opposite-signed roots. Similarly, the imaginary part of the wave 

number gives the attenuation coefficient, as shown in Eq. (3.12): 

 

 ( ) ( )1 2

1
η= Im κ + Im κ

2
 
  . (3.12) 

 

 The two-fluid model needs the oscillation frequency as an input parameter. However, a 

method to determine this parameter is still lacking in the literature. We suggest using the slug 

tracking model to assess the slug flow oscillation frequency. The slug tracking model is briefly 

presented in the next section. 
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3.2 Slug tracking model 

 

 

 The slug tracking model used in this research follows the formulation of Rosa et al. 

(2015). Their model includes all terms considered in previous models plus the advective term. 

The model is capable of simulating horizontal and inclined flows. The following hypotheses 

compose the slug tracking model used in this research: 

• The referential is inertial; 

• The model is condensed in space and discrete in time; 

• The flow is isothermal; 

• The liquid phase is incompressible; 

• The liquid film is non-aerated; therefore, all the gas present in this region is 

transported by the elongated gas bubble; 

• The gas phase is treated as an ideal gas; 

• The gas phase density is constant in a cell; however, it can vary in the other cells due 

to pressure changes; 

• The gas pressure is constant in the elongated bubble. 

  

 Figure 3.1 shows the representation of the jth cell, its structures, and the variables of 

interest. In Fig. 3.1, the coordinates x and y are parallel to the pipe axis and are measured from 

a stationary frame of reference. The flow parameters associated with the liquid slug are the slug 

length LS and the liquid hold-up in the liquid slug RS. Similarly, the flow properties of the 

elongated bubble are the liquid film length Lf, the liquid film Rf, the bubble pressure P, the gas 

velocity uG, and the liquid film velocity uf. 
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Figure 3.1. Properties and cell indexes in the slug tracking model - Rosa et al. (2015) 

adapted. 

  

 The equations that compose the slug tracking model are the mass and momentum 

balances. The mathematical details of the slug tracking model are in Appendix C. In addition, 

the system of equations in Rosa et al. (2015) is evaluated numerically using the Object Oriented 

Programming in FORTRAN and the fourth-order Runge-Kutta method. Modeling and 

programming details are in Rosa et al. (2015) and Rodrigues (2009). The simplified form of the 

mass balance applied to the jth cell, as shown in Fig. 3.1, is reproduced below as Eq. (3.13).  

 

 

( ) ( )
( ) ( )

( )
( )

( )
( )

j j-1 j-1 j j
j j j j G S S S S
f f s s j j-1 j-1 j j

G 0 S 0 S

j-1 j-1 j j

d S d S

j-1 j-1 j j

0 S 0 S

dP u R u R1
1- R L + 1- R L = - +

P dt 1- C 1- R 1- C 1- R

u 1- R u 1- R
-

1- C 1- R 1- C 1- R

 
 

+

. (3.13) 

 

 In Eq. (3.13), the LHS term is the gas density temporal variation in the cell. The first 

two RHS terms represent the gas phase crossing neighboring cell boundaries; the two last are 

the drift terms. Equation (3.14) shows the simplified form of momentum balance applied to the 

jth cell: 

 

 

( )
( )

( )
( )

( )

2 j j+1j j j
2 G GjS S

S j j+1 j j j

S f S S S L

jj jj jj j
SM Mj j jS dM M

S j j jj j j j
L S L S S0 S 0 S

P - Pdu R1 dx dt
= - u -1 1- + - gsinθ+

dt L R u R L ρ

1- Ru uR uρ ρ1
-u 2Cf +2Cf

ρ D R ρ DR u1- C 1- R 1- C 1- R

    
    

    

 
 
  

. (3.14) 
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 In Eq. (3.14), the LHS is the time derivative of the liquid slug velocity. In the RHS of 

this equation, the first term is the momentum exchange; the second is the pressure difference 

between consecutive cells; the third is the force due to gravity; and the last is the friction with 

the wall at the liquid slug. 

 The slug tracking model allows performing transient operations numerically and 

obtaining the evolution of the slug properties over time. Therefore, we can get a signal of the 

pressure and bubble nose velocity through time. We can transform this signal to the frequency 

domain using the Discrete Fourier Transform (DFT) to access the dominant frequencies. 
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4 SIMULATIONS AND FREQUENCY ANALYSIS 

  

 

 This chapter contains the simulation details and the frequency analysis methodology. 

Section 4.1 presents the experimental setup and the test grid from Maria and Rosa’s (2016) 

study. In addition, Section 4.2 presents the random and periodic boundary conditions, the time 

window of the numerical simulations, the properties of the fluids, and the flow properties at the 

second steady state. Section 4.3 shows the Discrete Fourier Transform (DFT) and how we 

transform the signal from a time domain to a frequency domain. Finally, Section 4.4 shows the 

main correlations of the slug frequency of passage, which we will use to complete the two-fluid 

model. 

 

 

4.1 Setup 

 

 

 The experimental data used as a base of comparison to the model presented is from the 

work of Maria and Rosa (2016). Their experimental campaign consists of a horizontal-oriented 

pipe of 26 mm ID and 1,009D long. Four stations along the test section count with pressure 

transducers and conductive probes. These stations are identified as S#1, S#2, S#3, and S#4, and 

their positions are at 153D, 307D, 551D, and 870D from the injector, respectively. Figure 4.1 

shows the experimental test section as described. 

 

 

Figure 4.1. Experimental test section from Maria and Rosa (2016). 

 

 These researchers conducted four runs: for Tests #1 and #2, the liquid superficial 

velocity was fixed at 0.60 m/s, and the superficial gas velocity was halved in Test #1 and 
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doubled in Test #2; for Test #3 and #4, the superficial gas velocity was fixed at 0.60 m/s, and 

the liquid superficial velocity was halved in Test #3 and doubled in Test #4. Further details on 

the experimental setup and execution are in Maria and Rosa (2016). Table 4.1 shows the 

experimental test grid of Maria and Rosa (2016) in both initial and final states. 

 

Table 4.1. Experimental test grid from Maria and Rosa (2016). 

Test 
First Steady State Second Steady State 

JG [cm/s] JL [cm/s] JG [cm/s] JL [cm/s] 

#1 54 60 27 60 

#2 28 60 53 59 

#3 54 60 57 30 

#4 57 30 57 60 

 

 The experimental runs started with the first steady state. At 30 s, they imposed the 

transient for all cases, causing disturbances in the flow. These disturbances are the pressure and 

void waves that propagate along the pipe. The void wave propagates with much less velocity 

than the pressure wave. A new steady state will be achieved after an imposed transient. This 

new steady state, called Second Steady State, is achieved when this void wave reaches the 

outlet. The time it occurs changes for each case; however, all cases already achieved the second 

steady state at 60 s. The total data acquisition time is 100 s. 

 

  

4.2 Boundary conditions 

 

 

 Aiming to numerically obtain the pressure wave propagation velocity, Gonçalves and 

Mazza (2022) used the slug tracking model to reproduce Maria and Rosa’s (2016) experimental 

runs. They assumed two entrance conditions to reproduce the experimental campaign: random 

and periodic.  

 A periodic signal presents a repetition of its shape at constant time intervals. The 

periodic condition implies that all cells entering the test section have the same properties: liquid 

film and liquid slug lengths, unit cell void fraction, and superficial velocities of the phases. 
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These values are the average values measured experimentally. On the other hand, a random 

signal does not repeat itself at uniform intervals. Thus, the random condition consists of cells 

entering the test section with different properties. Both entrance conditions will be analyzed to 

assess the frequency influence beyond the passage frequency and to obtain the frequency 

features of each condition.  

 The time window is from 0 to 100 s, and the imposed transient occurred at 30 s for all 

cases following the data acquisition time from the experimental campaign of Maria and Rosa 

(2016). Furthermore, we will analyze the complete signal that includes the time when the 

transient occurs (0 to 100 s), the first steady-state (0 to 30 s), and the second steady-state (60 to 

100 s). Figure 4.2 shows the complete, first, and second steady-state pressure signals for Test 

#1 at Station S#1 for both random and periodic conditions. In addition, Fig. 4.2 shows a zoom 

at the bottom right corner for the steady states in the periodic condition. This zoom shows a 

periodic oscillation of the signal, representing the entrance frequency of the cells in the domain, 

which is the passage frequency of the cells. 

 It is worth noticing that the average of the steady states in the random condition should 

be close to the presented ones in the periodic condition. However, that differs from what 

happens; this divergence could be due to the reduced time window that is not large enough to 

compose the average. In the periodic condition, the flow is developed artificially and represents 

an average of many cells passing through the stations. 

 To help the signal visualization, the pressure signal through time for all cases will be 

reproduced, but only for periodic conditions. Figures 4.3 to 4.6 show the pressure signal for 

Tests #1 to #4 at the four stations. 
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Figure 4.2. Pressure signals as a function of time for Test #1 at Station S#1:        random, and         periodic conditions. The last two graphs also 

show a zoom of the signal periodic oscillation.
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Figure 4.3. Pressure signals as a function of time for Test #1 from Gonçalves and Mazza 

(2022). From top to bottom Stations S#1, S#2, S#3, and S#4. 
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Figure 4.4. Pressure signals as a function of time for Test #2 from Gonçalves and Mazza 

(2022). From top to bottom Stations S#1, S#2, S#3, and S#4. 
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Figure 4.5. Pressure signals as a function of time for Test #3 from Gonçalves and Mazza 

(2022). From top to bottom Stations S#1, S#2, S#3, and S#4. 
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Figure 4.6. Pressure signals as a function of time for Test #4 from Gonçalves and Mazza 

(2022). From top to bottom Stations S#1, S#2, S#3, and S#4. 
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 In Figs. 4.3 to 4.6, we can observe the change in the pressure signals as they travel along 

the pipe. This behavior demonstrates this wave’s dispersive nature, as Fabre et al. (1995), Maria 

and Rosa (2016), and Matsui et al. (1979) pointed out previously. Another characteristic we can 

observe is the pressure decrease between stations because of the frictional pressure drop. 

 With the two-fluid model settled, we must simulate some input parameters: unit void 

fraction, gas and liquid superficial velocities, and the oscillation frequency. Maria and Rosa 

(2016) affirmed that the slug properties at the final state are more suitable for estimating the 

pressure wave propagation velocity. Therefore, we use the average properties simulated in slug 

tracking in the second steady state for the first three parameters. Table 4.2 shows each run and 

each station’s slug flow properties at the second steady state.  

 

Table 4.2. Flow properties at the second steady state for each run. 

Test S# 
JG  

[m/s] 

JL  

[m/s] 

LB/D  

[-] 

LS/D 

[-] 

β 

[-] 

α 

[-] 

Pj 

[kPa] 

#1 

1 0.27 0.60 11.90 16.26 0.42 0.25 1.02E+02 

2 0.27 0.60 12.05 16.16 0.43 0.25 1.00E+02 

3 0.28 0.60 12.25 16.01 0.43 0.26 9.86E+01 

4 0.29 0.60 12.58 15.77 0.44 0.26 9.62E+01 

#2 

1 0.52 0.59 23.31 16.24 0.59 0.40 1.02E+02 

2 0.53 0.59 23.63 16.12 0.59 0.40 1.01E+02 

3 0.54 0.59 24.12 15.99 0.60 0.40 9.88E+01 

4 0.56 0.59 24.76 15.71 0.61 0.41 9.63E+01 

#3 

1 0.56 0.30 58.32 16.81 0.78 0.53 9.79E+01 

2 0.57 0.30 58.51 16.73 0.78 0.53 9.74E+01 

3 0.57 0.30 58.94 16.62 0.78 0.53 9.66E+01 

4 0.58 0.30 59.81 16.40 0.78 0.53 9.56E+01 

#4 

1 0.55 0.60 24.06 16.32 0.60 0.40 1.02E+02 

2 0.56 0.60 24.37 16.26 0.60 0.41 1.01E+02 

3 0.57 0.60 24.86 16.10 0.61 0.41 9.90E+01 

4 0.59 0.60 25.57 15.78 0.62 0.42 9.64E+01 

 

 Nonetheless, no information about the oscillation frequency is available. Thus, we will 

evaluate the frequency via the Discrete Fourier Transform presented in the next section.   

 In addition, we need some fluids properties for the slug tracking and two-fluid model 

simulations. Table 4.3 summarizes these properties: density, dynamic viscosity, the velocity of 

sound propagation, and superficial tension, respectively.   
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Table 4.3. Fluids properties. 

Fluid 
ρ 

[kg/m3] 

μ 

[Pa.s] 

a 

[m/s] 

σ 

[N/m] 

Water 999 8.55 x 10-4 347.1 0.075 

Air 1.18 1.70 x 10-5 1501 - 

 

 

4.3 Discrete Fourier Transform (DFT) 

  

 

 The Fourier transform allows the analysis of a function in a domain different from the 

initial. The most common application is to transform a function from the time domain to the 

frequency domain. Equation (4.1) calculates the Fourier transform of a function analytically: 

 

 ( ) ( ) i tF ω = f t e dt



−

−

  . (4.1) 

  

 Besides the analytical transform, we can obtain the Fourier transform numerically. 

Therefore, we will use Matlab’s Fast Fourier Transform (FFT) function to transform the signal 

to the frequency domain. The command “fft” calculates the Discrete Fourier Transform (DFT) 

using a fast Fourier transform algorithm.  

 To use this function, we need to determine the instant of time between each acquisition, 

as shown in Eq. (4.2): 

 

 
T

dt =
N

, (4.2) 

 

where T is the time window, and N is the number of samples. In addition, Eqs. (4.3) and (4.4) 

gives the sampling frequency and the frequency differential: 

 

 S

1
F =

dt
, (4.3) 
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 S
S

F
dF =

N
 . (4.4) 

  

 Therefore, we can determine the frequency vector. The modulus of the “fft” command 

gives the function’s power in the frequency domain. Finally, we can plot the signal as a function 

of frequency for all cases. Appendix E contains the details of the Matlab implementation.  

 We used the Discrete Fourier Transform (DFT) to investigate the frequency spectrum. 

The oscillation frequency has not been extensively studied recently. The previous research 

using the two-fluid model to explore the pressure wave velocity used fixed frequency values 

higher than the slug’s oscillation frequency. Therefore, we will analyze the pressure and bubble 

nose velocity signals from the slug tracking simulations performed by Gonçalves and Mazza 

(2022) using the DFT to assess the oscillation frequency for slug flow.  

  

 

4.4 Method flowchart  

  

 

 Figure 4.7 summarizes the steps needed to achieve our primary objective. The flowchart 

has three parts: in pink are the slug tracking simulations and signal analysis; in purple are the 

two-fluid model steps; in blue are the entrance conditions for both models. 

 The process begins by inputting the superficial velocities and void fraction in both 

models. Slug tracking numerical simulations obtain the pressure and elongated bubble’s nose 

velocity signal through time. The frequency spectrum for each signal is obtained using  Discrete 

Fourier Transform (DFT). Analyzing these spectra, we obtain the frequency to use as an input 

parameter in the two-fluid model for each case. 

 The two-fluid model is solved using the frequency mentioned above, void fraction, and 

superficial velocities using the method of characteristics for gas and liquid phases mass and 

momentum conservation equations. This results in a fourth-degree polynomial equation. The 

real part of the roots gives the pressure wave velocity, and the imaginary part gives the 

attenuation factor. Finally, we compare the pressure wave velocity results with the experimental 

campaign of Maria and Rosa (2016). 
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Figure 4.7. Method flowchart. 

 

 

4.5 Frequency of passage correlations 

  

 

 Performing the slug tracking simulations and analyzing the frequency spectrum for each 

new case is time-consuming. Therefore, we aim to disclose the model to the frequency analysis 

for each case. We expect that the oscillation frequency is related to the slug’s passage 

frequency.  

 Based on experimental data, many authors have suggested empirical correlations for the 

frequency of passage in slug flow. Gregory and Scott (1969) (G&Sc) proposed an empirical 

correlation based on their carbon dioxide and water experiments in a 19.05 mm ID horizontal 

pipe. Equation (4.5) shows this correlation: 

 

 

1.2

LJ 19.75
= 0.0226 + J

gD J


  
  
  

 . (4.5) 

 

 Greskovich and Shrier (1972) (G&Sh) suggested a modification in the formulation of 

Gregory and Scott (1969) to encompass the effect of using large pipes and the different fluids’ 
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properties. They based the modification on their experiments with air-water and nitrogen-

kerosene fluids using a 38.1 mm ID horizontal pipe. Equation (4.6) shows this correlation:  

 

 

1.2
22.02

0.0226 LJ J

J D gD


  
= +  

  
 . (4.6) 

 

 Later, Heywood and Richardson (1979) (H&R) proposed a new correlation based on 

Gregory and Scott’s (1969) procedure. They used their experimental data from an air-water 

horizontal system with 42 mm ID. The authors obtained a correlation similar to Greskovich and 

Shrier’s (1972) correlation, as given in Eq. (4.7): 

 

 

1.02

LJ 2.02 J
= 0.0434 +

J D gD


  
   
   

 . (4.7) 

 

 Nydal (1991) apud Schulkes (2011) (ND) suggested the Eq. (4.8) based on experimental 

data from a horizontal pipe flowing air and water; they analyzed different diameters in the range 

from 31 to 90 mm: 

 

 
( )

2
1.5

0.088
LJ

gD


+
=  . (4.8) 

 

 Manolis et al. (1995) (MN) proposed a new slug frequency correlation based on Gregory 

and Scott’s (1969) correlation. Their experimental runs were in a horizontal setup with a 78 

mm ID pipe flowing air and water. Equation (4.9) shows the final suggested correlation: 

 

 
( )

1.8
225

0.0037 L
JJ

J gD


 +
 =
  

 . (4.9) 

 

 In addition, the Shell’s slug frequency correlation is a well-accepted correlation for 

horizontal flows. This correlation was obtained by applying a curve fitting to Heywood and 

Richardson’s (1979) data. Equation (4.10) gives this correlation: 
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L

GL L L

JD
= 0.048 +
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JJ J J
+0.73 + -1.17

gD gD gD gD


 
  
 

      
                  

. (4.10) 

 

 Zabaras (2000) (ZB) adapted the equation of Gregory and Scott (1969) to encompass 

the pipe’s inclination effect. Their conclusion came out after analyzing a vast data set from 

many authors. The pipe’s inclination ranged from 0 to 11 degrees from the horizontal, and the 

diameter ranged from 25.4 to 203.2 mm ID. In addition, the working fluids also differed. 

Equation (4.11) shows this correlation. 

 

 ( )
1.2

0.25 LJ 19.75
= 0.836 +2.75sin θ 0.0226 + J

gD J


  
  
  

 . (4.11) 

 

 Sakaguchi (2001) apud Rodrigues et al. (2007) (SK) proposed the Eq. (4.12) based on 

his experiments in vertical orientation: 

 

 

1
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                          
 
     
     
       

 . (4.12) 

 

Lastly, Fossa et al. (2003) (Fossa) analyzed their experimental data from a horizontal 

test section flowing air and water. They performed the experimental runs in pipes of 40 and 60 

mm ID. They suggested the following slug frequency correlation: 

 

 

1
2

0.044 1 1.71 0.7G L L L
J J J J

D J J J


−

  
= − +  

   

. (4.13) 

  

 We evaluated the pressure propagation velocity prediction using those nine correlations 

results as the input oscillation frequency in the two-fluid model.  
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5 RESULTS 

 

 

 This chapter contains the results of the pressure wave velocity prediction using the two-

fluid model. Section 5.1 presents the model behavior for different frequency values to the four 

tests of Maria and Rosa’s (2016) experimental study and a comparison with Li et al.’s (2022a) 

results. In addition, Section 5.2 show the results of the Discrete Fourier Transform for random 

and periodic boundary conditions and discusses the frequency to use in the two-fluid model. It 

also compares the frequency from DFT analysis with the predicted value by the nine slug 

frequency correlations shown in Section 4.5. Section 5.3 shows the pressure wave velocity 

predicted by the two-fluid model and the comparison with the experimental data from Maria 

and Rosa (2016). 

 Moreover, Section 5.4 presents a case study of the influence of the superficial velocity 

of the liquid phase on the two-fluid model. Section 5.5 compares the maximum value found by 

the two-fluid model and the previous models' predictions. Finally, Section 5.6 presents the 

attenuation coefficient prediction for the experimental tests. 

 

 

5.1 Model behavior 

 

 

 The model presented in the articles of reference of this research has typographical errors 

that were corrected in Chapter 3. Therefore, we performed a parametric analysis for the four 

experimental runs variating the frequency from 0.5 to 30 Hz to obtain the fixed model behavior. 

Figure 5.1 shows this parametric analysis. The unit void fraction and superficial velocities are 

from the average properties of cells at the second steady-state from the slug tracking numerical 

simulations performed by Gonçalves and Mazza (2022). The model presented an asymptotic 

behavior for all cases. This trend agrees with the findings of Li et al. (2022a). 
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Figure 5.1. Pressure wave velocity as a function of frequency:       run #1,       run #2, aaa run 

#3,       run#4.  

 

 The superficial velocity of the liquid phase at the second steady state is 0.6 m/s, but Test 

#3. Especially this case (Test #3 - in purple) has a minor variation from minimum and maximum 

pressure wave velocity. Section 5.4 evaluated the influence of the liquid’s superficial velocity 

on the pressure wave velocity with a case study. 

 Figure 5.2 compares the results of the model presented for Test #1 and the results 

presented by Li et al. (2022a). The maximum pressure wave velocity for each case normalized 

both curves. The curve for Test #1 presented a sharper increase in the wave velocity with the 

oscillation frequency than the results of Li et al. (2022a). However, no details about the 

superficial velocities of the phases or the unit cell void fraction were provided in the work of 

Li et al. (2022a). That is why we simulated a case with higher liquid and gas superficial 

velocities to verify its influence on the model. The liquid and gas superficial velocities are 2.10 

m/s and 0.6 m/s, represented in purple in the figure. For this case, the model's curve 

approximates the curve presented by Li et al. (2022a), showing that the model presents coherent 

results.  
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Figure 5.2. Normalized pressure wave velocity as a function of frequency:      Li et al. 

(2022a),      JL = 0.60 m/s and JG = 0.30 m/s, and      JL = 2.10 m/s and JG = 0.60 m/s. 

 

 

5.2 Frequencies 

 

 

 Although many authors employed the two-fluid model to predict the pressure wave 

velocity, they did not investigate the frequency parameter that is an input in the model. 

Therefore, we transformed the pressure and bubble nose velocity signals to the frequency 

domain to comprehend the frequency characteristics. We analyzed the signal using the Discrete 

Fourier Transform (DFT) for both entrance conditions to get this. Figure 5.3 shows the signal 

power in the frequency domain for the complete signal (0 to 100 s) and first and second steady 

states for Test #1 at Station S#1. 
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Figure 5.3. Signals power in the frequency spectrum of pressure signal for Test #1 at Station S#1:        random condition, and         periodic 

condition.
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 As shown in Fig. 5.3, the random conditions presented multiple dominant frequencies 

of high power for the complete signal, first and second steady states. This behavior can be due 

to the characteristic of the random entrance conditions. The Eq. (2.16) indicates that the 

frequency depends on the nose bubble velocity and the unit length. Therefore, multiple passage 

frequencies exist as cells of different properties enter the domain. This feature hinders 

identifying the dominant frequency due to oscillation. 

 On the contrary, we observed a more defined frequency spectrum in periodic conditions 

for the complete signal; even so, the changing of state (30 to 60 s) could be causing the multiple 

frequencies in this spectrum. However, the frequency spectrum for the first and second steady 

states presented a different feature. In these cases, we observed well-defined, equally spaced 

frequencies. This feature indicates the occurrence of harmonics, as shown in Fig. 5.4, for the 

pressure signal at the second steady state for Test #1 at Station #1. 

   

 

Figure 5.4. The fundamental frequency and harmonics of the pressure signal at the second 

steady state for Test #1 at Station S#1; 0f is the fundamental frequency, and H indicates the 

harmonics. 
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 In Fig. 5.4, the first frequency is the fundamental frequency ( 0f  ), and the following 

frequencies are the harmonics. Equation (5.1) gives the harmonics for a given fundamental 

frequency:  

 

 ( ) 01 , 1, 2,3,...nH n f n= + =   (5.1) 

 

where the letter H indicates the harmonic. 

 However, the frequencies at the steady states’ spectrum have lower power when 

compared to the complete signal in the periodic condition and all three cases of the random 

condition. That indicates the oscillation frequency could be hidden in the spectrum of the other 

cases. The second steady-state is the best alternative to obtain the pressure wave velocity using 

the periodic condition. The slug properties at the final state are more suitable for obtaining the 

pressure wave propagation velocity (Maria and Rosa, 2016).  

 Analyzing the frequency spectrum, we found that the frequency does not change along 

the pipe, having only a variance in power. Figure 5.5 shows the frequency spectrum of the 

pressure and bubble nose velocity signals for Test #1 for Stations S#1 to S#4. In the pressure 

signal case, the fundamental frequency is 0 2.775f =  Hz. 

 In addition, by analyzing the elongated bubble’s nose velocity signal through time, we 

also obtained a frequency spectrum in which fundamental and harmonic frequencies maintain 

their values. However, the power is much less than the frequency spectrum from the pressure 

signal. The power spectrum for the pressure signal is more than 10 times bigger than the nose 

velocity, as shown in Fig. 5.5. Therefore, the fundamental frequency from pressure signals and 

the elongated bubble’s nose velocity at the second steady state are equal, needing to analyze 

only one of these signals.  

 Figure 5.6 shows the frequency spectrum of the pressure signal at the second steady 

state for Tests #2 to #4 for all stations. The fundamental frequencies are 0 2.425f = Hz, 

0 0.775f = Hz, and 
0 2.450f = Hz for Tests #2, #3, and #4. Test #3 has the lowest frequency of 

all tests. This behavior relates to the low liquid’s superficial velocity at the second steady state.  
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Figure 5.5. The frequency spectrum of the pressure signal at the second steady state for Test #1 for all stations:       pressure, and        bubble 

nose velocity signals. 
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Figure 5.6. The frequency spectrum of the pressure signal at the second steady state for Tests #2 to #4 for all stations: from top to bottom #2, #3 

and, #4. 
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 Table 5.1 summarizes the fundamental frequencies for all cases and the ratio of the 

superficial velocities. Tests #2 and #4 show a ratio approximately equal to the unit; 

consequently, the fundamental frequency is almost the same. In Test #1, where the ratio is near 

two, we have smaller elongated bubbles; this led to a smaller compressibility of the gas phase. 

Finally, Test #3 has the more significant gas phase compressibility due to the bigger elongated 

bubbles.  

 

Table 5.1. Fundamental frequency for the four tests and the ratio of the superficial velocities 

at the second steady state. 

Test L

G

J
J

  Fundamental frequency [Hz] - f0 

#1 2   2.775 

#2 1  2.425 

#3 0.5  0.775 

#4 1  2.450 

  

 The cell’s stiffness is related to the ratio of the superficial velocities. It increases with 

the amount of liquid within the pipe. The equation (5.2) gives the oscillation frequency in a 

mass-spring-damper system. From this equation, we expected an increase in the frequency 

when increasing the stiffness. That is what happens. From Tab. 5.1, we observed that increasing 

the ratio increases the oscillation frequency. In addition, it is worth noting that the frequency 

remained almost constant when the ratio was doubled. On the contrary, the frequency 

significantly decreased when the ratio was halved.    

 

 
1

2

k
f

m
=  ,  (5.2) 

 

where k is the spring stiffness, and m is the mass of a mass-spring-damper system. 

 Finding the oscillation frequency is challenging when using the two-fluid model to 

predict the pressure wave velocity. Using the slug tracking simulations to obtain the pressure 

signal through time and the Discrete Fourier Transform is a way to obtain this frequency; 

however, it is time-consuming. Analyzing the frequency values for each case in Tab. 5.1, we 

have observed that this frequency is comparable to the frequency of passage of the slug 
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structures. Thus, the oscillation frequency is related to the frequency of passage and can be 

estimated using correlations available in the literature. 

 Table 5.2 shows the frequency of passage predicted by nine correlations – Eqs. (4.5) to 

(4.13) – and the normalized RMS error compared to the DFT analysis results. 

 

Table 5.2. The average frequency of passage prediction and its normalized RMS deviation. 

Correlation 

#1 #2 #3 #4 

  [Hz] 
NRMS 

[%] 
  [Hz] 

NRMS 

[%] 
  [Hz] 

NRMS 

[%] 
  [Hz] 

NRMS 

[%] 

G&Sc 

(1969) 
2.77 1.10 2.07 14.74 1.22 56.92 2.03 17.03 

G&Sh 

(1972) 
2.78 1.14 2.08 14.42 1.22 57.52 2.04 16.72 

H&R 

(1979) 
2.60 6.49 2.02 16.56 1.29 66.27 1.99 18.60 

ND (1991) 1.52 45.17 1.51 37.85 1.12 44.24 1.52 37.90 

MN (1995) 7.58 173.14 4.84 99.69 2.20 184.03 4.71 92.37 

Shell 1.41 49.18 1.25 48.30 0.64 18.01 1.27 48.35 

ZB (2000) 2.32 16.49 1.73 28.70 1.02 31.20 1.70 30.62 

SK (2001) 9.62 246.59 8.90 266.87 7.17 825.49 8.89 263.03 

Fossa 

(2003) 
2.03 26.73 1.60 33.89 0.67 13.09 1.61 34.22 

Note: G&Sc is the correlation of Gregory and Scott (1969), G&Sh indicates Greskovich and 

Shrier (1972), H&R is the Heywood & Richardson (1979) correlation, ND is Nydal (1991), 

MN is Manolis et al. (1995), ZB is from Zabaras (2000), SK is the correlation of Sakaguchi 

(2001), and last, the correlation Fossa et al. (2003) is Fossa. 

 

 The correlations from Manolis et al. (1995) and Sakaguchi (2001) predicted frequencies 

that presented the largest RMS deviation of all correlations in the four tests. Both correlations 

were developed for different applications than ours; the first for larger diameter pipes and the 

second for vertical flow. Therefore, we discarded these correlations from the pressure wave 

velocity prediction.  
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 The Gregory and Scott (1969), Greskovich and Shrier (1972), and Heywood & 

Richardson (1979) correlations presented a good fit for Test #1 and a significant deviation for 

Test #3 (> 50%). The other correlations presented less than a 50% deviation for all tests. The 

correlations from Shell and Fossa et al. (2003) predicted the frequency in Test #3 more 

accurately, while the others overestimated it. Figure 5.7 compares the frequency via DFT and 

the predicted values by the nine correlations suggested in Chapter 4. 

 

 

Figure 5.7. Comparison between the frequency predicted by the correlations and the 

frequency found via DFT. 

 

 

5.3 Pressure wave propagation 

 

 

 After finding each case's frequency, we need to calculate the pressure wave velocity 

numerically. To do this, we used the two-fluid model. The determinant of Eq. (3.10) leads to a 

fourth-degree polynomial equation in which the roots are the wave numbers. We obtained the 

roots of this polynomial equation using the Newton-Raphson method. Thus, we obtain the 

numerical pressure wave velocity by Eq. (3.11) using the slug properties at the second steady 
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state. Table 5.3 shows the experimental and numerical pressure wave velocity and the deviation 

between these values. The lowest deviation occurs in Test #2 with 4.01%, and the most 

significant deviation occurs in Test #3 with 28.64%.  

 In addition, the frequency is directly related to the pressure wave velocity; higher 

oscillation frequencies result in higher pressure propagation velocity. Thus, we expected the 

highest propagation velocity in Test #1 and the lower propagation velocity in Test #3 due to the 

given frequencies for each case. That agrees with the numerical prediction shown in Tab. 5.3. 

 

Table 5.3. Numerical and experimental pressure wave velocity and the deviation between 

them. 

Test 
Experimental Pc [m/s] 

Maria and Rosa (2016)* 
Numerical 

Pc  [m/s] Deviation [%] 

#1 23.0 ±1.3 27.365 18.98 

#2 25.6 ±1.4 24.575 4.01 

#3 18.5 ±1.0 23.799 28.64 

#4 21.0 ±1.1 24.501 16.67 

Note: *Maria and Rosa (2016) found a relative uncertainty of 5.5% of the average. This 

corresponds to a confidence interval of 95% using the Student’s t-distribution. 

 

 The average deviation of all cases is 17.07%. Nonetheless, the deviation is less than 

30% for all cases, as shown in Fig. 5.8. Although it appears to be a significant deviation, Li et 

al. (2016) found a similar deviation in predicting the pressure wave velocity using the two-fluid 

model with the maximum deviation is near 50%.   
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Figure 5.8. Comparison between the experimental data with the numerical prediction of the 

pressure wave velocity. 

   

 The deviation can result from simplifications and using correlations as the force in the 

wall-liquid interface, Fanning friction factor, bubble radius, drag and virtual mass forces, and 

drag and virtual mass coefficients.  

 Additionally, the most significant deviation occurs for Test #3. In this case, the ratio of 

superficial velocities is approximately 0.5, the smallest of the four cases. Therefore, we 

evaluated the influence of the liquid superficial velocity in the next section. 

 The comparison in Fig. 5.8 depends on the slug tracking simulations and signal analysis 

to obtain the frequency. Thus, we must remove this dependency to simplify the pressure wave 

velocity prediction. In this way, we compared the experimental pressure wave velocity and the 

predicted using the frequency correlations presented in Chapter 4: Fossa et al. (2003), Gregory 

and Scott (1969), Greskovich and Shrier (1972), Heywood and Richardson (1979), Nydal 

(1991), Shell, and Zabaras (2000). We did not test the correlations of Manolis et al. (1995) and 

Sakaguchi (2001) due to the most significant deviation between the predicted frequency and 

the results from the signal analysis. Table 5.4 shows the pressure wave velocity prediction by 

the two-fluid model using the frequency correlations and their relative deviation from the 

experimental data. 
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Table 5.4. Predicted pressure wave velocity, the relative deviation with the experimental data 

from Maria and Rosa (2016), and the average relative deviation for each correlation. 

Correlation 

#1 #2 #3 #4 
  

[%] Pc  

[m/s] 

  

[%] 
Pc  

[m/s] 

  

[%] 
Pc  

[m/s] 

  

[%] 
Pc  

[m/s] 

  

[%] 

G&Sc 

(1969) 
27.36 18.97 24.45 4.48 24.19 30.78 24.36 16.00 17.56 

G&Sh 

(1972) 
27.37 18.99 24.46 4.46 24.20 30.79 24.36 16.02 17.57 

H&R 

(1979) 
27.29 18.67 24.43 4.55 24.23 30.95 24.34 15.92 17.52 

ND (1991) 26.32 14.41 24.08 5.95 24.14 30.51 24.01 14.36 16.31 

Shell 26.10 13.48 23.74 7.28 23.49 26.98 23.68 12.77 15.13 

ZB (2000) 27.15 18.05 24.27 5.21 24.08 30.14 24.17 15.09 17.12 

Fossa 

(2003) 
26.95 17.17 24.17 5.59 23.59 27.53 24.10 14.75 16.26 

Note: G&Sc is the correlation of Gregory and Scott (1969), G&Sh indicates Greskovich and 

Shrier (1972), H&R is the Heywood & Richardson (1979) correlation, ND is Nydal (1991), ZB 

is from Zabaras (2000), and last, the correlation Fossa et al. (2003) is Fossa. 

 

 The Shell correlation presented the lowest average relative deviation from these seven 

correlations. Many authors have used this correlation to predict the frequency in numerical 

studies of horizontal flow. However, all correlations predicted the pressure wave velocity with 

a similar deviation to when we used the frequency from the pressure signal analysis of slug 

tracking simulations. 

 

 

5.4 Case study 

 

 

 In Section 5.3, we compared the numerical and experimental pressure wave velocities. 

Test #3 presented the most significant relative deviation of all cases in this comparison. This 

experimental point has the lowest ratio of liquid and gas superficial velocities. Therefore, we 
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performed this case study to investigate the influence of the liquid’s superficial velocity on 

predicting the pressure wave velocity.  

 In this way, we maintained the superficial velocity of the gas phase of Test #3 at the 

second steady state (JG = 0.6 m/s), and we progressively increased the liquid’s superficial 

velocity by 0.3 m/s for each point from 0.3 to 2.1 m/s. In addition, we plotted these points on 

the flow map for horizontal flow to ensure that the pattern is the slug. Figure 5.9 shows the flow 

map and the points evaluated. All these points are in the intermittent region. 

 

 

Figure 5.9. Flow pattern map for horizontal flow contains five patterns: dispersed bubble, 

intermittent, annular, stratified smooth, and stratified wavy; indicates the points evaluated in 

the case study. 

 

 In addition to the liquid and gas superficial velocities, we need the unit void fraction to 

employ the two-fluid model. For this purpose, we can use the unit cell model and correlations 

for the liquid slug aeration or the drift relation. The drift relationship represents the slug flow 

signature. Equation (5.3) shows this relation proposed by Zuber and Findlay (1965): 

 

 0
G

U

J
C J C gD


= +  . (5.3) 
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 Rearranging the terms in Eq. (5.3), we determine the unit void fraction by Eq. (5.4): 

 

 
0

G
U

J

C J C gD




=
+

 , (5.4) 

 

where 0C  is the distribution parameter and C  is the drift coefficient. Bendiksen (1984) 

proposed two closure relations to obtain the distribution parameter and the drift coefficient for 

horizontal and vertical flow. His relations depend on the liquid’s superficial velocity and the 

pipe’s diameter and inclination, as given by Eqs. (5.5) and (5.6): 
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where 
LJFr  is the liquid’s superficial velocity Froude’s number, as shown in Eq. (5.7): 

 

 
L

L
J

J
Fr

gD
=  . (5.7) 

 

 Therefore, we can obtain the unit void fraction for each point suggested. Table 5.5 shows 

the points and the predicted void fraction for each one. 

 

Table 5.5. Case study’s points and the void fraction prediction by the drift relation. 

Case JG [m/s] JL [m/s] α [-] 

A 

0.6 

0.3 0.493 

B 0.6 0.391 

C 0.9 0.325 

D 1.2 0.277 

E 1.5 0.242 

F 1.8 0.208 

G 2.1 0.185 
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 Finally, we performed a parametric analysis of the liquid’s superficial velocity on the 

model employing the two-fluid model. We varied the frequency from 0.5 to 30 Hz to evaluate 

the curves. Figure 5.10 shows the liquid’s superficial velocity influence on the prediction of 

pressure wave velocity. 

 

 

Figure 5.10. Liquid’s superficial velocity influence in the pressure wave velocity curve; Case 

A has JL = 0.3 m/s and increases progressively by 0.3 m/s until Case G, where JL = 2.1 m/s. 

 

 Figure 5.10 shows some newsworthy features of the model. Case A is similar to Test 

#3; the curve presented the slightest variation of the pressure wave velocity between 0.5 Hz and 

30 Hz frequencies. Table 5.6 shows the pressure wave velocity at the minor and major 

frequencies tested for each case and the difference between them.  

 

 

 

 

 

 

 



78 
 

 

Table 5.6. Pressure wave propagation velocity at 0.5 and 30 Hz and the difference between 

them. 

Case 
@0.5HzP

c [m/s] 
@30HzP

c [m/s] 
@30Hz @0.5HzP Pc - c [m/s] 

A 23.171 24.445 1.275 

B 19.676 25.011 5.335 

C 16.653 26.018 9.365 

D 16.680 27.154 10.475 

E 18.158 28.318 10.160 

F 20.186 29.803 9.617 

G 21.940 31.091 9.151 

 

 As we increase the liquid’s superficial velocity, the difference between the pressure 

wave velocity at these two frequencies increases until it reaches a value of around 10 m/s, as 

shown in Tab. 5.6. Therefore, overestimating the pressure wave velocity in Test #3 can be due 

to the small superficial velocity of the liquid phase at the second steady state due to the 

difference of minor and major pressure wave velocities.  

 In addition, the pressure wave velocity increases when the liquid’s superficial velocity 

increases. This result agrees with the oscillatory mass-spring-damper system. In this case, a 

large amount of liquid compared to gas increases the oscillation frequency; consequently, the 

pressure wave velocity also increases.  

 Finally, we observed a displacement of the point where the pressure wave velocity 

achieves the maximum value; Case A achieves a constant value at 5 Hz, while Case G achieves 

it at approximately 20 Hz, for example. 

 

 

5.5 Comparison with previous models 

 

 

 Many authors have been studying the pressure wave propagation velocity in two-phase 

flow since the ‘70s using the mixture’s models as Wallis (1969), Henry et al. (1971), Samuel 

Martin and Padmanabhan (1979), and Matsui et al. (1979). More recently, Xu and Gong (2008) 

and Ishikawa et al. (2014) studied the pressure wave velocity using the two-fluid model and a 
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lumped-mass approach, respectively. All these authors presented a simple equation to predict 

the pressure wave velocity after some simplifications in their initial models.  

 As the pressure wave velocity achieves a constant value after a specific frequency, we 

suppose the previous models can estimate the maximum pressure wave velocity predicted by 

the two-fluid model. Therefore, we compared the value predicted by the previous models with 

the pressure wave velocity prediction by the two-fluid model at an oscillation frequency of 30 

Hz. We established the polytropic constant γ equal to 1.4 for the model of Matsui et al. (1979) 

and the Bulk modulus of the air KG equal to 142 kPa in the Ishikawa et al. (2014) model. Table 

5.7 shows the pressure wave velocity predicted by previous models and the relative deviation 

compared to the maximum value calculated by the two-fluid model.  

 

Table 5.7. Comparison of the pressure wave velocity predicted by previous models and the 

maximum value from the two-fluid model. 

Model 

#1 #2 #3 #4 

Pc  

[Hz] 
σ [%] 

Pc  

[Hz] 
σ [%] 

Pc  

[Hz] 
σ [%] 

Pc  

[Hz] 
σ [%] 

Wallis 

(1969) 
27.39 1.79 24.34 2.28 23.90 2.38 24.25 2.30 

Henry et 

al. (1971) 
812.96 2814.79 642.80 2480.92 543.55 2120.42 634.69 2456.88 

SM&P 

(1979) 
27.39 1.79 24.34 2.28 23.90 2.38 24.25 2.30 

Matsui et 

al. (1979) 
23.82 14.61 24.11 3.20 28.13 14.91 24.20 2.52 

X&G 

(2008) 
27.91 0.06 24.92 0.05 24.49 0.04 24.84 0.05 

Ishikawa 

et al. 

(2014) 

27.38 1.84 24.32 2.34 23.88 2.43 24.24 2.35 

Note: SM&P corresponds to Samuel Martin and Padmanabhan’s (1979) model, and the X&G 

is the model from Xu and Gong (2008).  

 

 All models could predict the maximum pressure wave velocity in the four cases with 

less than 15% deviation, but the Henry et al. (1971) model. Matsui et al. (1979) pointed out that 

the model of Henry et al. (1971) represents the fast pressure wave velocity, neglecting the strong 

wave attenuation when it passes from the liquid to the gas phase. On the other hand, Xu and 

Gong’s (2008) model presented the best fit with a mean deviation of 5%; their model is also a 
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two-fluid model, showing the model’s ability to study the slug flow in a transient regime. Figure 

5.11 shows the maximum and the predicted pressure wave velocity for visualization. In this 

figure, we neglected the predicted value from Henry’s model due to the higher deviation among 

the other models. 

 

 

Figure 5.11. Maximum pressure wave velocity versus the prediction by previous models. 

 

 

5.6 Attenuation coefficient 

 

 

 In addition to predicting the pressure wave velocity, the two-fluid model can also 

estimate the attenuation coefficient by the imaginary part of the wave number, as shown in Eq. 

(3.12). The results are in rad/m, and we converted them into dB/m. Although it is possible to 

calculate the numerical attenuation coefficient, Maria and Rosa (2016) did not obtain this 

variable experimentally. However, we can numerically observe the attenuation coefficient 

behavior for the four tests. Figure 5.12 shows the influence of the oscillation frequency on the 

attenuation coefficient for Tests #1 to #4. 
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Figure 5.12. Attenuation coefficient for the four tests as a function of the oscillation 

frequency:          run #1,          run #2,          run #3, and         run #4. 

 

 The attenuation coefficient appears to have the same pressure wave velocity asymptotic 

behavior. However, this behavior differs from the one reported by Li et al. (2022a), where the 

attenuation coefficient presented a linear behavior with the frequency. The attenuation 

coefficient increased with the increase of the frequency for all Tests, but #3. This inverse 

behavior in Test #3 can be due to the small ratio of liquid’s and gas’ superficial velocities. Due 

to the liquid’s viscosity, we expected more liquid within the pipe to cause a more significant 

attenuation coefficient. That is what happens. In the example of Test #1, where there is the 

biggest ratio of liquid and gas’s superficial velocities, we also have the higher attenuation 

coefficient of all cases.  
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6 CONCLUSIONS 

 

 

 In this research, we have studied the pressure wave propagation phenomenon in a 

transient regime focusing on predicting the pressure wave velocity using the two-fluid model. 

The analytical two-fluid model presented was based on the models of Li et al. (2022a, 2012, 

2016), Li et al. (2022b), and Lin et al. (2013). However, the model presented in this research 

has corrected typographical issues in the previous formulations.  

 In addition, we investigated the slug’s frequency oscillations due to the importance of 

this parameter in the two-fluid model. The previous research neglected this analysis. The curve 

of pressure wave velocity as a function of frequency presents an asymptotic behavior, where 

the biggest variation occurs at minor frequencies. However, the oscillation frequency is located 

in this range of small frequencies. We analyzed the pressure and bubble’s nose velocity signals 

from the slug tracking simulations performed by Gonçalves and Mazza (2022) to obtain this 

value. Both signals were analyzed using the Discrete Fourier Transform (DFT) to get a 

frequency spectrum for each case. We concluded from these analyses that the oscillation and 

passage frequency are related; thus, they can be estimated using one of the many correlations 

available in the literature. 

 Using the frequency resulting from the DFT analysis, we have calculated the pressure 

wave velocity employing the two-fluid model. The results were compared with the 

experimental data from the experimental campaign of Maria and Rosa (2016). Their 

experimental setup consists of a 26 mm ID horizontal pipe with four stations equipped with 

pressure and conductive sensors. The transient was imposed by changing the liquid and gas 

flow rates. The two-fluid model could predict the pressure wave velocity with a 17% mean 

deviation and less than 30% deviation for all cases. However, some points presented smaller 

deviations. This deviation is similar to the previously reported by Li et al. (2016). 

 The higher deviation occurs for Test #3. This point has the minor liquid’s superficial 

velocity at the second steady state of all cases. Therefore, we performed a case study 

investigating the influence of the superficial velocity of the liquid phase on pressure wave 

propagation. Increasing the liquid’s superficial velocity, we observed: an increase in the 

difference of the pressure wave velocity at 0.5 and 30 Hz, an increase in the maximum pressure 

wave velocity, and a displacement of the frequency where the maximum value is achieved.  
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 As the oscillation frequency is related to the passage frequency, we compared the 

pressure wave velocity prediction using seven frequency of passage correlations with the 

experimental data from Maria and Rosa (2016). The Shell correlation resulted in a minor mean 

deviation of 15.13%. However, all correlations resulted in similar deviations when using the 

frequency resulting from DFT. 

 In addition, we can use the frequency of passage correlation and the drift relationship to 

close the two-fluid model. Therefore, we remove the need for previous experiments or slug-

tracking simulations to estimate the pressure wave velocity using the two-fluid model. In this 

case, we only need to know the gas and liquid’s superficial velocities at the second steady state. 

Thus, we can predict the pressure wave velocity relatively quickly. 

 We also compared the maximum pressure wave velocity predicted by the two-fluid 

model with previous models. All models could predict the maximum pressure wave velocity in 

the four cases with less than 15% deviation, but the Henry et al. (1971) model. However, Xu 

and Gong (2008) give the best fit with a mean deviation of 5%. Finally, we presented the 

numerical results of the attenuation coefficient as a function of the frequency. 

 For future works, we suggest performing an experimental study of the pressure wave 

propagation in horizontal flow for higher gas and liquid flow rates and compare with the two-

fluid model. In addition, the study of the transient regime in a vertical experimental test section 

can be interesting due to the gas expansion effect and also in a pipe with slope variation along 

its length. Finally, exploring the two-fluid model to predict the pressure wave velocity in the 

vertical orientation could also be interesting. 
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APPENDIX A – Review of pressure wave propagation velocity  
Equation Chapter (Next) Section 1 

 

 Method Main results Research gap Simplified equation 

Wallis (1969) 
- Homogeneous 

model. 

- The pressure wave 

velocity in a two-phase 

flow is less than the 

acoustic velocity of each 

phase; 

 

- The pressure wave 

velocity achieves its 

minimum at 50% of the 

void fraction. 

- The homogeneous case is 

unsuitable for slug flow. ( ) 2 2

1

1
1

P

U U
U G U L

L L G G

c

a a

 
   

 

=
 −

+ − +    
 

 

Henry et al. 

(1971) 

- Idealized model 

for slug flow; 

 

- Experimental 

method. 

- The model reproduces 

their experimental data; 

 

- The model for slug flow 

is a simple equation that 

depends on the void 

fraction and the acoustic 

velocity of each fluid. 

- The idealized model does 

not reproduce the real 

hydrodynamics of the slug 

flow; 

 

- The authors found that the 

pressure wave velocity 

decreased with void fraction. 

However, other models 

found a U-shaped curve with 

a minimum when the void 

fraction is 0.5. 

( )
1

1
p

G L

c
a a


−

− 
= + 
 
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 Method Main results Research gap Simplified equation 

Miyazaki et 

al. (1971) 

- Homogeneous 

model; 

 

- Stagnant 

mixture of gas-

liquid to focus on 

the drift flux;  

  

- Experimental 

method. 

- The pressure wave 

velocity appeared to be 

independent of the pressure 

pulse; 

 

- They presented a mass-

spring simplified model to 

study the pressure 

propagation in a 

heterogeneous media;  

 

- As in Wallis (1969), the 

authors found that the 

pressure wave velocity in a 

two-phase flow is less than 

in each phase separately. 

- They analyzed only vertical 

flows; 

 

- Does not consider the shape 

change of the pressure wave 

along the pipe; 

 

- They evaluated the pressure 

wave for the void fraction 

range 0 to 60% and used a 

single model for this range;  

 

- For the higher void fraction 

within the operating range, 

the model presented higher 

deviation when compared 

with the experimental data; 

however, this higher void 

fraction is where the slug 

pattern tends to occur. 

- 
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Martin et al. 

(1976) 

- Homogeneous 

model; 

 

- Method of 

characteristics; 

 

- Experimental 

method. 

- The homogeneous one-

dimensional model can 

predict the pressure 

transient. 

- The model is suitable only 

for bubbly flow. 
- 

Samuel 

Martin and 

Padmanabhan 

(1979) 

- Mixture models: 

homogeneous and 

drift-flux; 

 

- Experimental 

method. 

- The proposed 

homogeneous model 

presented better results for 

the pressure wave velocity 

than Henry et al.’s (1971) 

model;  

 

- They found that the 

pressure wave velocity for 

slug flow predicted by the 

drift-flux model is the same 

as that by the homogeneous 

model. 

- The authors suggested that 

a two-fluid model is more 

suitable for studying the 

pressure wave velocity. 

( )

( ) ( )

0.5

2L

U U U

G
P

2

2G G G

U U U

L L

ρ
α 1- α +α +

ρc
=

a a ρ
+ 1-α +α 1- α

a ρ

−

 
 
 
 

    
    
    
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 Method Main results Research gap Simplified equation 

Matsui  et al. 

(1979) 

- Mass-spring 

model using 

linear and non-

linear approaches; 

 

- Similar model of 

idealized slug 

flow previously 

proposed by 

Henry et al. 

(1971); 

 

- Experimental 

method; they 

injected air and 

water alternately 

into the pipe to 

reproduce the 

idealized slug. 

- The natural frequency has 

its minimum at 50% of 

void fraction, and it is 

symmetrical to this point; 

 

- The model and 

experimental results agreed 

qualitatively; 

 

- The number of cells 

within the pipe influences 

the pressure wave velocity; 

the results also agreed 

qualitatively for more than 

ten cells.  

- The idealized model does 

not reproduce the real 

hydrodynamics of the slug 

flow; 

( )
P

L

γP
c =

ρ β 1- β
 

Nguyen et al. 

(1981) 

- Idealized model 

for slug flow; 

- The model depends on the 

void fraction and the 

acoustic velocity of each 

fluid; 

 

- The model presented 

good results compared with 

experimental data of 

stratified, slug, and 

homogeneous flow for all 

void fraction ranges. 

- The idealized model does 

not reproduce the real 

hydrodynamics of the slug 

flow; 

 

- They found the same 

relation for slug flow as 

Henry et al. (1971). 

( )
1

1
p

G L

c
a a


−

− 
= + 
 
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 Method Main results Research gap Simplified equation 

Akagawa et 

al. (1982) 

- Oscillatory 

mass-spring 

model; 

 

- Homogeneous 

model with a 

similar approach 

to water hammer 

analysis;  

 

- Experimental 

method. 

- The pressure profile 

depends on the flow 

configuration adjacent to 

the valve when it closes. It 

can vary accordingly to the 

configuration, even for the 

same gas and liquid flow 

rates; 

 

- The transient profile 

when of slug type has high 

oscillation frequency and 

fast amplitude decrease;  

 

- The mass-spring model 

presented good results with 

experimental data when the 

adjacent configuration is 

gas type.  

- The homogeneous model is 

unsuitable for slug flow. 
- 

Caussade et 

al. (1989) 

- Drift-flux 

model; 

 

- Experimental 

method. 

- The pressure wave has a 

higher velocity than the 

void fraction wave; 

 

- They described the 

propagation mechanism of 

the pressure and void 

waves. 

 

- The void fraction wave is 

shape-conservative. 

- The authors quote that the 

experimental results are 

limited to capturing waves 

with an amplitude higher 

than a limit and waves that 

travel downstream.   

- 
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Vigneron et 

al. (1995) 

- Comparison 

with commercial 

software; 

 

- Experimental 

method. 

- The void propagation 

velocity is almost equal to 

the bubble’s nose velocity 

at the second steady state, 

either for an increase or 

decrease of the liquid flow 

rate; 

 

- The data showed that a 

change in the gas flow rate 

causes fast transients, and 

the liquid flow rate causes 

slow transients. 

- The experimental test 

section has a large diameter 

(77.9 mm). 

- 

Fabre et al. 

(1995) 

- Drift-flux 

model; 

 

- Experimental 

method. 

- The void wave is shape-

conservative and 

propagates with the 

elongated bubble’s nose 

velocity; 

 

- The pressure wave has a 

dispersive feature. 

- The model underpredicts 

the pressure wave velocity. 
- 
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Huang et al. 

(2005) 

- Experimental 

method; 

 

- Comparison 

with numerical 

results. 

- The pressure wave in slug 

flow has a dispersive 

feature sharper than in the 

bubbly regime; 

 

-The pressure wave 

velocity and wave 

attenuation increase with 

the frequency; 

 

- The pressure propagation 

velocity has no significant 

variation for void fractions 

less than 50%; however, it 

increases after this value. 

- The results presented focus 

more on the bubbly regime; 

 

- The authors found a 

different trend for the 

pressure wave velocity as a 

function of the void fraction. 

- 

Ambrose et 

al. (2016) 

-  CFD – finite 

volume method; 

- They found that the 

bubble ascended with 

variable translational 

velocity, accelerating and 

decelerating. This 

phenomenon occurs only at 

the bubble’s nose.  

 

- The experimental findings 

agreed with the numerical 

results only in the initial 

part of the pipe; 

 

-The oscillation frequency 

depends on the average 

bubble length.  

- They studied the bubble 

oscillation rising in a 

stagnant liquid; 

 

- Due to the mesh, tiny 

bubbles are not captured by 

the numerical model. 

- 
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Ishikawa et 

al. (2014) 

- Mass-spring-

damper analogy; 

 

-Lumped mass 

approach; 

 

- Perturbation 

theory. 

- The model agreed well 

with experimental data of 

an air conditioning system. 

- The model is based on the 

bubbly flow; 

 

- The model validation was 

for a one-component flow in 

an air conditioning system.  

( )
G

p

U G U L U

K
c =

α ρ α + ρ 1- α  
 

Maria and 

Rosa (2016) 

- Experimental 

method; 

- The results showed a time 

delay of 6 seconds between 

the two steady states; this 

time depends on the 

experimental setup;  

 

- Comparison with the 

previous models to predict 

the pressure wave 

propagation velocity; 

 

- They suggested that the 

properties of the slug flow 

at the second steady state 

are more suitable for 

predicting the pressure 

wave propagation velocity; 

 

- They presented important 

features of the pressure and 

void waves in horizontal 

flow. 

- The experimental approach 

involves the test repetition 

100 times for each point; this 

is time-consuming. 

 

- The test grid has a few 

points. 

- 
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Gonçalves 

and Mazza 

(2022) 

- Slug tracking; 

 

- Mass-spring-

damper analogy 

coupled by the 

liquid velocity at 

the slug; 

- The time delay between 

the two steady states 

influences the pressure 

wave velocity; however, do 

not influence the void 

fraction wave; 

 

- Reproduce the 

experimental results of 

Maria and Rosa (2016) 

with a less than 10% 

deviation. 

- Despite presenting a good 

agreement with the 

experimental data of Maria 

and Rosa (2016), the 

simulation of pressure and 

void waves using slug 

tracking is a demanding task; 

 

- The slug tracking 

simulations need an initial 

condition, which they used 

the experimental data. 

However, when no 

experimental data are 

available, it is complex to 

provide this initial condition.  

( )1 2 3S S Sb u b u b u f t+ + =  

Xu and Gong 

(2008) 

- Two-fluid 

model. 

- For all values of the 

virtual mass coefficient 

tested, the pressure wave 

velocity has a sharp 

decrease in the void 

fraction range of 0 – 5%; 

 

- The pressure wave 

velocity versus void 

fraction curve remains 

almost the same for virtual 

mass coefficients larger 

than 1. 

- No mention of the 

oscillation frequency. 

( ) ( )

( ) ( )

vm L G L

2

U UU U

P

G UL L
vm2 2

U GU G U L

c ρ ρ ρ
+ +
α 1- αα 1- α

c =
ρ αρ ρ

+ 1+c +
1-α ρ1-α a α a

 
 
  

     
    
     
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Li et al. 

(2012) 

- Two-fluid 

model; 

 

- Method of 

characteristics; 

- The pressure wave 

velocity increases with the 

angular frequency until 100 

rad/s; 

 

- They compared the 

results with data from 

measurement while 

drilling, finding a good 

agreement. 

- They used the frequency 

fixed at 50 rad/s;  

 

- The model equations 

presented typographical 

errors. 

- 

Lin et al. 

(2013) 

- Two-fluid 

model; 

 

- Method of 

characteristics; 

- The pressure wave 

velocity has a sharp 

decrease in the void 

fraction range of 0 – 5%; 

 

- The pressure wave 

velocity versus void 

fraction curve presented a 

U shape, as reported by Xu 

and Gong (2008) 

previously. 

- The results presented are 

for annular pipes; 

 

- They used the frequency 

fixed at 50 rad/s;  

 

- The model equations 

presented typographical 

errors. 

- 
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Li et al. 

(2016) 

- Two-fluid 

model; 

 

- Method of 

characteristics; 

- The comparison with 

Henry et al.’s (1971) 

experimental data showed 

that 88% of these are in 

±25% deviation; 

 

- For the attenuation 

coefficient, they compared 

to Huang et al.’s (2005) 

data and found that the 

model could predict with 

less than 20% deviation;  

 

- The pressure wave 

velocity and attenuation 

coefficient change with the 

angular frequency; 

 

- As reported previously, 

the pressure wave velocity 

versus the void fraction 

curve presented a U shape. 

- They did not investigate the 

frequency parameter needed 

as an input value on their 

model;  

 

- The model equations 

presented typographical 

errors. 

- 
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 Method Main results Research gap Simplified equation 

Li et al. 

(2022a) 

- Two-fluid 

model presented 

by Li et al. 

(2016); 

 

- Method of 

characteristics; 

- They presented the 

influencing parameter on 

the pressure wave velocity 

and attenuation factor: void 

fraction, operating 

frequency, and system 

pressure; 

 

- The pressure wave 

increases fast with the 

frequency at lower 

frequencies range and 

reaches an approximately 

constant value. 

- They used the frequency 

fixed at 50 rad/s;  

 

- The model equations 

presented typographical 

errors. 

- 

Li et al. 

(2022b) 

- Two-fluid 

model; 

 

- Method of 

characteristics; 

- They compared the 

results with the 

experimental data from 

Huang et al. (2005) and 

Henry et al. (1971) in a 

void fraction range from 0 

to 30% and found a good 

agreement; 

  

- The model could predict 

the gas kick occurrence 7 

to 9 minutes earlier than 

previous models.  

- The model equations 

presented typographical 

errors. 

- 



103 
 

 

APPENDIX B – Two-fluid model mathematical details 
Equation Chapter (Next) Section 1 

 Equation Chapter (Next) Section 1 

 This chapter presents the details of two-fluid modeling based on the models of Li et al. 

(2022a, 2012, 2016), Li et al. (2022b), and Lin et al. (2013). Some typographical errors in the 

previous research were corrected in the following equations. We started with the closure 

relations needed in the model evaluation. Then, we approached the continuity and momentum 

equations for gas and liquid phases. 

 

 

Closure relations 

 

 

 The two-fluid model is evaluated using closure relations. Equation (B.1) gives the force 

in the interface wall-liquid. 

 

 WL WL L L L

2
F = Cf ρ V V

D
, (B.1) 

 

where WLCf  is the Fanning friction factor, given by the equation proposed by Colebrook (1939), 

as shown in Eq. (B.2): 

 

 10

L

1 ε D 1.256
= -4log +

3.7Cf Re Cf

 
  
 

, (B.2) 

 

where LRe  is the Reynolds number of the liquid phase, as shown in Eq. (B.3): 

 

 Re L L
L

L

V D


= . (B.3) 

 

 As shown in Eq. (B.4), the force in the gas-liquid interface is assumed to be the sum of 

the drag and virtual mass forces. 
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GL D vmF = F +F . (B.4) 

 

 The two following equations give the drag and virtual mass forces: 

 

 
( )dg U L G L G L

D

b

c α ρ V -V V -V3
F =

8 R
, (B.5) 

 

 G G L L
vm vm U L G L

V V V V
F = c α ρ +V - +V

t x t x

       
   

      
, (B.6) 

 

where dgc  is the drag coefficient, 
bR  is the bubble radius, and vmc  is the virtual mass coefficient. 

Equation (B.7) shows the drag coefficient proposed by Lin et al. (2013), and Eq. (B.8) shows 

the virtual mass coefficient proposed by Nicholson et al. (1978), both for slug flow:  

 

 ( )
3

dg U bc = 110 1-α R , (B.7) 

 

 

U

vm

U

α
1-

15
c = 3.3+1.7

α
1-

45

  
  
   
 
 
  
  
  

. (B.8) 

  

 We can also employ the two-fluid model for different patterns, only changing the virtual 

mass and drag coefficients closure relations. For dispersed bubble flow, Ishii and Mishima 

(1984) proposed the following: 

 

 
( ) ( )

( )

2
9 7

1.5

1 17.67 14

3 18.67 1

G L U

dg b

U

g
c R

  

 

 − + −
=  

−  

, (B.9) 

  

 
1 21

2 1

U
vm U

U

c





+
=

−
,  (B.10) 
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where   is the interfacial tension between the gas and liquid phases. Park et al. (1998) 

suggested a correlation to obtain this parameter, as shown in Eq. (B.11): 

 

 ( )
2

0.3 L G LV V = − − .  (B.11) 

 

 

Two-fluid model 

 

 

 Equations (B.12) and (B.13) show the mass conservation equations for gas and liquid 

phases: 

 

 ( ) ( )U G u G Gα ρ + α ρ V =0
t x

 

 
, (B.12) 

 

 ( ) ( )U L U L L1-α ρ + 1- α ρ V =0
t x

 
       

. (B.13) 

 

 Equations (B.14) and (B.15) show the momentum conservation equations for gas and 

liquid phases:  

 

 ( ) ( )2

U G G U G G U GL WG U G

P
α ρ V + α ρ V +α = -F - F - α ρ gsinθ

t x x

  

  
 , (B.14) 

  

 
( ) ( ) ( )

( )

2

U L L U L L U GL WL

U L

P
1-α ρ V + 1-α ρ V + 1-α = F - F

t x x

- 1-α ρ gsinθ

  
  +       . (B.15) 

  

 Assuming that the in situ velocities of the phases are related to superficial velocities by 

the equations above for gas and liquid phases, respectively: 

 

 G
G

U

J
V


= , (B.16) 
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( )1

L
L

U

J
V


=

−
. (B.17) 

  

 The pressure differential and the density differential of the phase are related to the sound 

speed in that phase by Laplace’s equation, as shown below for gas and liquid phases, 

respectively: 

 

 
2

G

G

P
a =

ρ




, (B.18) 

 

 
2

L

L

P
a =

ρ




. (B.19) 

 

 Rewriting the continuity equations shown in (B.12) and (B.13), we have the Eqs. (B.20) 

and (B.21): 

 

 U U U U G G
G G G U G2 2

G G

α α α α V VP P
ρ + + ρ V + +α ρ =0

t a t x a x x

   

    
, (B.20) 

 

 
( ) ( )

( )U U LU U L
L L L U L2 2

L L

1-α 1- α Vα α VP P
-ρ + - ρ J + + 1-α ρ =0

t a t x a x x

   

    
. (B.21) 

 

 Rewriting the momentum equations presented in (B.14) and (B.15), we have the Eqs. 

(B.22) and (B.23): 

 

 

2G G U G G
U G U G G G U G G U G

2 U
G G U GL WG U G

V ρ α V ρ
α ρ +α V + ρ V +2α ρ V +α V +

t t t x x

α P
+ρ V +α = -F - F - α ρ gsinθ

x x

    

    

 

 

, (B.22) 
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( )
( )

( )
( )

( )

( )

U L 2U L
L L U L L L2

L

2

U LL
U L L U GL WL2

L

U L

1-α Vα V P α
-ρ V + 1-α ρ + - ρ V

t t a t x

1-α VV P P
+2 1-α V ρ + + 1-α = F - F +

x a x x

- 1-α ρ gsinθ

   
+

   

  

  
. (B.23) 

 

 Applying the closure relations (Eq. (B.1), (B.4), (B.5), and (B.6)) in the momentum 

equations and neglecting the force at the wall-gas interface ( )0WGF = , we have the following 

for gas and liquid phases: 

 

 

( )

( )

( )

2G U G U UL
U G vm L vm U L G G G G2

G

2

G G L
G U G vm L U vm U L L2

G

2

dg U L G L

U G

b

V α V α αV P
α ρ +c ρ - c α ρ + + ρ V + ρ V +

t t a t t x

V V VP
+V α 2ρ +c ρ +α 1+ - c α ρ J

x a x x

c α ρ V -V3
= - -α ρ gsinθ

8 R

   

    

  
= 

   
, (B.24) 

 

 

( )
( )

( ) ( )

( )
( )

U LG UL
vm U L L U vm U L L2

L

2
2 U L L

L L L L U vm U U 2

L

2

dg U L G LG
vm U L G WL L L L U L

b

1-α VV αV P
-c α ρ + ρ 1- α +c α + - ρ V +

t t a t t

α V V P
-ρ V +V ρ 2 1- α +c α + 1- α 1+ +

x x a x

c α ρ V -VV 3 2
-c α ρ V = - Cf ρ V V - 1- α ρ gsinθ

x 8 R D

  
     

   
       





. (B.25) 

 

 As shown in Eq. (B.26), the perturbation theory says that one variable is the sum of its 

value on the unperturbed state with a small oscillatory amount. 

 

 0Z = Z + Z' , (B.26) 

 

where Z is one of the following variables: 
GV , LV , P , and U ; thus, rewriting the continuity 

equations, we have the following:  
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' ' '' '

U U0 U U0 G0 G
G G G0 U0 G2 2

G G

α α α α V VP P
ρ + + ρ V + +α ρ =0

t a t x a x x

   

    
, (B.27) 

 

 
( ) ( )

( )
' ' '' '

U0 U0 L0U U L
L L L0 U0 L2 2

L L

1-α 1- α Vα α VP P
-ρ + - ρ V + + 1-α ρ =0

t a t x a x x

   

    
. (B.28) 

 

 Also, rewriting the momentum equations with Eq. (B.26) and neglecting high-order 

terms, we have the following:  

 

 

( )

( )

( )
( )

2
2 0

0

' '

0 0

' '' '

G U0 G0 UL
U0 G vm L vm U0 L G G02

G

' ' '

U G G
G G G0 U0 G vm L U0 2

G

'
dg U0 L G L L G 'L

vm U0 L L0 U0 U G

b

V α V αV P
α ρ +c ρ - c α ρ + + ρ V +

t t a t t

α V V P
+ρ V +V α 2ρ +c ρ +α 1+

x x a x

c α ρ V V V VV 3
-c α ρ V = - α +α ρ gsinθ

x 4 R

  

   

   
+ 

   

+



, (B.29) 

 

 

( )
( )

( )

( )
( )

U0 L0G L
vm U0 L L U0 vm U0 2

L

2U U L
L L0 L L0 L0 L U0 vm U0

2
dg U0 L G0 L L0 GL0 G

U0 vm U0 L G02

L b

WL L L0 L

1-α VV ' V ' P'
-c α ρ + ρ 1- α +c α +

t t a t

α ' α ' V '
-ρ V - ρ V +V ρ 2 1- α +c α +

t x x

c α ρ V V '+V V 'V V 'P' 3
+ 1-α 1+ - c α ρ V = -

a x x 4 R

4
- Cf ρ V V '

D

  
+    

  
    

  
+ 

  

( )U0 U L- 1- α +α ' ρ gsinθ  

. (B.30) 

 

 Equation (B.31) shows the small oscillatory equation: 

 

 
( )

0'
i t x

Z Z e
 


−

= , (B.31) 

 

where   is the wave number, x is the position, and Z0  is one of the following variables:  
G0V , 

0LV , 0P , and 0U . Rewriting and reorganizing the continuity and momentum equations (Eqs. 

(B.27) to (B.30)), we have:  
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 ( ) ( )' ' 'U0
G G0 U G0 U0 G G2

G

α
ρ ω- κV α + ω- κV P -α ρ κV =0

a
, (B.32) 

 

 ( )
( )

( ) ( )U0' ' '

L L0 U L0 U0 L L2

L

1-α
-ρ ω- κV α + ω- κV P - 1- α ρ κV =0

a
, (B.33) 

 

 

( ) ( )

( )( )

( )

' 'U0 G0
G G0 G0 G U G0 U02

G

dg U0 L L0 '

U0 G vm L G0 G G0 U0 G

b

dg U0 L G0 '

vm U0 L L0 L U0 G

b

α V
ρ V ω- κV - iρ gsinθ α + ω- κV - α κ P +

a

c α ρ V3
+ α ρ +c ρ ω- κV - ρ V α κ+ i V +

4 R

c α ρ V3
+ -c α ρ ω-V κ + i V = α iρ gsinθ

4 R

 
    

 

 
 
 

 
 
 

, (B.34) 

 

 

( ) ( )( ) ( )

( )

( ) ( ) ( )

( )

' 'L0
L L0 L0 L U U0 L0 U02

L

dg U0 L L0

vm U0 L G0 G

b

L U0 vm U0 L0 U0 L0 L

'

Ldg U0 L G0

WL L L0

b

U0 L

V
ρ V ω- κV - iρ gsinθ α - 1- α ω- κV - κ 1- α P +

a

c α ρ V3
+ c α ρ ω- κV + i V ' +

4 R

ρ 1- α +c α ω- κV - κ 1- α V ρ

- V =c α ρ V3 4
- i - iCf ρ V

4 R D

= - 1-α iρ gsinθ

 
    

 

 
 
 

 +  
 
 
 
 

. (B.35) 

 

 Finally, we can write the Eqs. (B.32) to (B.35) in the format of a inhomogeneous linear 

system as presented previously in Chapter 3. 
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APPENDIX C – Slug tracking model details 

 

  

 This appendix presents the mathematical details of the slug tracking model. A complete 

description of the modeling and programming is in Rosa et al. (2015) and Rodrigues (2009). 

 Figure 3.1 shows the representation of the jth cell, its structures, and the model’s 

variables of interest. The figure is repeated below for convenience:  

 

 

Figure B.1. Properties and index of the cells in the slug tracking model - Rosa et al. (2015) 

adapted. 

  

 The coordinates x and y are parallel to the pipe axis and are measured from a stationary 

frame of reference. The x and y coordinates have a special role in the model; they track the 

heads of each liquid slug and gas bubble. These coordinates also define the bubble head velocity 

and the axial lengths of the liquid slug and the liquid film: 

 

 

j
j

T

dy
U =

dt
, (C.1) 

 

 

j j j
j j j S
S

dL dx dy
L = x - y = -  

dt dt dt
 , (C.2) 
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j j j-1
fj j j-1

f

L dy dx
L = y - x = -

dt dt dt
 . (C.3) 

 

 The mass flow rates of the liquid and gas phases crossing the jy  boundary are defined 

as: 

 

 j j j j j

j j

L LL,y f,y f,y S,y S,y

dy dy
m = ρ u - R A ρ u - R A

dt dt

   
   

   
, (C.4) 

 

 ( ) ( )j j j j j

j j
j j

G,y G,yG,y G,y f,y b,y S,y

dy dy
m = ρ u - 1- R A ρ u - 1- R A

dt dt

   
   

   
. (C.5) 

 

 Since Rs, us, and ub are considered uniform throughout the slug region and representative 

of the corresponding averaged values, the associated boundary values at yj are also coincident 

with the lumped values: 

 

 j

j

ss,y
 R = R , (C.6) 

 

 j

j

sS,y
u = u , (C.7) 

 

 j

j

bb,y
u = u . (C.8) 

 

 Therefore, the face subscripts can be dropped, except for the gas density, which varies 

significantly. Thus, the Eqs. (C.4) and (C.5) are simplified to: 

 

 j

j
j j

L S SL,y

dy
m = ρ u - R A

dt

 
 
 

, (C.9) 

 

 ( )j j

j
j j j

b SG,y G,y

dy
m = ρ u - 1- R A

dt

 
 
 

. (C.10) 
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 Similarly, the mass flow rates of the liquid and gas phases crossing the xj boundary are 

defined as: 

 

 j j j j j

j j

L LL,x f,x f,x S,x S,x

dx dx
m = ρ u - R A ρ u - R A

dt dt

   
   

   
, (C.11) 

 

 ( ) ( )j j j j j j j

j j
j j

G,x G,x G,x f,x G,x b,x S,x

dx dx
m = ρ u - 1- R A ρ u - 1- R A

dt dt

   
   

   
. (C.12) 

 

 Using the same assumptions, the face subscripts are dropped. Thus, the Eqs. (C.11) and 

(C.12) are simplified to: 

 

 j

j
j j

L S SL,x

dx
m = ρ u - R A

dt

 
 
 

, (C.13) 

 

 ( )j j

j
j j j

b SG,x G,x

dx
m = ρ u - 1- R A

dt

 
 
 

. (C.14) 

 

 The hypothesis of a uniform liquid slug velocity uS throughout the liquid slug does not 

accurately predict the mass flow rate crossing the xj and yj boundaries because the velocity field 

is truly tri-dimensional on these boundaries. Also, liquid slug hold-up RS is non-uniform; it has 

a high value in the wake of the elongated bubble and then decreases. 

 

 

Liquid and gas mass equation 

 

 

 Liquid and gas mass balance at the unit cell can be written by: 

 

 ( ) j j-1

j j j j

L f f L s s L,x L,x

d
A ρ R L + ρ R L +m -m =0

dt
, (C.15) 
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 ( ) ( ) j j-1

j j j j j j

G f f G s s G,x G,x

d
A ρ 1- R L + ρ 1- R L +m -m =0

dt
 
 

. (C.16) 

 

 Substituting the Eqs. (C.1) to (C.3) and Eq. (C.13) into Eq. (C.15):  

 

 ( ) ( )
j jj-1 j
fj-1 j j j j j j-1 j-1 j js

S f f s f s S S S S

dR dRdx dy
R - R + R - R + L + L = u R - u R

dt dt dt dt
. (C.17) 

 

 Now, substituting the Eqs. (C.1) to (C.3) and Eq. (C.14) into Eq. (C.16): 

 

 

( )

( ) ( ) ( ) ( )

j-1 j-1

j j-1

j-1

j

j-1 j-1 j jj j-1
fj j j j-1 j jG,x G,x s

f s f S f sj j

G,x G,x

j-1 j
j j j-1 j-1 j j j jG,x G

b S b S f f s sj j

GG,x

ρ ρ dR dRdy dx
- R - R - 1- - R + R - L - L =

dt ρ ρ dt dt dt

ρ dρ1
-u 1- R +u 1- R - 1- R L + 1- R L

ρ ρ dt

 
 
  

 
 

. (C.18) 

 

 The gas and liquid mass equation is the sum of the Eqs. (C.17) and (C.18), shown as: 

 

 

( ) ( )

( ) ( )

j-1 j-1

j j

j-1

j

j-1 j-1j j-1
j j j j j-1 G,x G,xG
f f s s Sj j j

G G,x G,x

j-1

j-1 j-1 j j j j j-1 j-1G,x

S S S S b S b Sj

G,x

ρ ρdρ1 dx
1- R L + 1- R L = - R 1- -1+

ρ dt ρ ρ dt

ρ
+u R - u R - u 1- R +u 1- R

ρ

  
    +        . (C.19) 

 

 

Momentum equation 

 

 

 The procedures to get the transient gas-liquid momentum are based on the steady-state 

approach of Taitel and Barnea (1990). The balance is performed at the jth cell for the gas and 

liquid using a stationary and inertial frame of reference. The frame encompasses the jth cell, 

with one of its surfaces coincident with the pipe wall while the others match the pipe cross-

section. For the jth cell, the cross-section coincides with the jth bubble tail position at xj-1 

upstream and the j+1th bubble tail position at xj downstream. Under these assumptions, the gas 

and liquid momentum balance over the jth cell is:  
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( )( ) ( )( )

( ) ( ) ( )

( ) ( ) 

f S

j j j j j-1 j-1 j-1 j-1

L L

j j j j j j j j j j

L f f G f G f L s s G s b S

0 0

j j+1

G GL,x L,x G,x G,x L,x L,x G,x G,x

j j j j j j j j

L f G f f L S G s S

j j j j

s S f f

d d
ρ R u + ρ 1- R u Adz + ρ R u + ρ 1- R u Adz +

dt dt

u m +u m - u m +u m = P - P A+

-gsinθ ρ R + ρ 1- R L + ρ R + ρ 1- R L A+

-τ SL - τ S +τ

+

   
   

 

( )

( ) ( ) 

j-1 j-1 j j

j-1 j-1 j-1 j j j

j j j

G G f L LL,x f,x L,x f,x

G,x G,x f,x G,x G,x f,x

S L + gcosθD ρ ξ R - ρ ξ R A+

+gcosθD ρ ξ 1- R - ρ ξ 1- R A

 
 

. (C.20) 

 

 The film region for the jth cell, the cross-section is coincident with the jth bubble nose 

position at yj downstream and with the jth bubble tail position at xj-1 upstream, and the 

momentum balance at this region is: 

 

 

( )( ) ( )

( ) ( ) 

( )

f

j j j j

j-1 j-1 j-1 j-1

j-1 j-1 j j

j-1 j-1

L

j j j j j

L f f G f G f L,y L,y G,y G,y

0

j j j j

L f G f fL,x L,x G,x G,x

j j j j j

f f G G f L LL,x f,x L,y f,y

G,x G,x

d
ρ R u + ρ 1- R u Adz + u m +u m

dt

- u m +u m = -gsinθ ρ R + ρ 1- R L A+

- τ S +τ S L +gcosθD ρ ξ R - ρ ξ R A+

+gcosθD ρ ξ 1-

+

 
 

 
 



( ) ( ) j-1 j j j
f,x G,y G,y f,y

R - ρ ξ 1- R A

. (C.21) 

 

 Substituting the Eq. (C.21) into the momentum balance of the jth cell represented by the 

Eq. (C.20), the momentum time rate in the film region can be expressed, and the momentum 

equation of the jth cell turns to: 

 

 

( )( ) ( )

( ) ( ) ( ) 

( )

( )

j j j j

j j j j

j j j j

j j j j j

j j j j j j

L S S G S b S L,x L,x L,y L,y

j j+1 j j j j

G G L S G s SG,x G,x G,y G,y

j j

s S L L,y f,y L,x f,x

G,y G,y f,y G,x G,x f,

d
A ρ R u + ρ 1- R u L + u m -u m

dt

+ u m - u m = P - P A- gsinθ ρ R + ρ 1- R L A+

-τ SL + gcosθDρ ξ R - ξ R A+

+gcosθD ρ ξ 1- R - ρ ξ 1- R

  +
 

 
 

( )j
x

A 
  

. (C.22) 

 

 Considering that the gas density is much less than the liquid’s density ( G L   ), the 
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equation simplifies to: 

 

 
( ) ( ) ( )

( )

j j j j

j j j j

j j j j j+1

L S S S G GL,x L,x L,y L,y

j j j j

L S S s S L L,y f,y L,x f,x

d
A ρ R u L + u m -u m = P - P A+

dt

-ρ R L Agsinθ - τ SL + gcosθDρ ξ R - ξ R A

. (C.23) 

 

 Substituting the mass liquid flow rate definition at y and x cross-sections through the 

Eqs. (C.9), (C.11), and (C.13). Although, other definitions need to rewrite this term as 

demonstrated in Eqs. (C.24) and (C.25). The liquid velocity crossing the y transverse section is 

the liquid’s velocity in the liquid slug itself:  

 

 j

j

SL,y
u = u . (C.24) 

 

 Equation (C.25) shows the liquid velocity crossing the x transversal section is the liquid 

velocity at the film of the jth cell, which is related to j

Su  Eq. (C.11).  

 

 j j

j+1 jj j
f Sj S

S j+1 j+1f,xL,x
f f

R - RR dx
u = u = u +

R R dt

   
      
   

. (C.25) 

 

 So, rewritten the second term of Eq.(C.23) as: 

 

 

( )j j j j

j jj j
j j jS S

S L S Sj+1 j+1L,x L,x L,y L,y
f f

j
j j j

S L S S

R Rdx dx
u m - u m = u - -1 ρ u - R A

R dt R dt

dy
- u ρ R A u -

dt

        
+                    

   
  
   

. (C.26) 

 

 The x position of the jth cell coincides with the bubble’s tail of the j+1th cell. Therefore, 

the liquid hold-up at x is the liquid film hold-up of the j+1th cell. In addition, the coordinates of 

the center of pressure are equal in these positions: 

 

 j

j+1

ff,x
R = R , (C.27) 
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 j

j+1

LL,x
ξ = ξ . (C.28) 

 

 The y position coincides with the elongated bubble’s nose for the jth cell, and it 

considers that the liquid slug occupies the entire cross-section. Considering an aerated slug 

piston, the liquid hold-up and the coordinate of the center of pressure for the liquid and gas is: 

 

 j

j

Sf,y
R = R , (C.29) 

 

 j
L,y

1

2
 = , (C.30) 

 

where the center of pressure of the liquid and gas are determined hereafter. Finally, the 

momentum balance as a function of uS, ub, and geometrical parameters of the jth cell is:  

 

 

( )

( )

2
j j j

2
j j j jS S

L S S L S S j+1 j

f S

j+1

fj j+1 j j j j j j+1

G G L S S s S L S L j

S

du R dx dt
ρ R L + ρ R u -1 1-

dt R u

RS 1
= P - P - ρ R L gsinθ - τ L +gcosθDρ R - ξ

A 2 R

    
=    

    

 
  
 

. (C.31) 

 

 The mass and momentum balances are complicated to be solved directly, and more 

simplifications should be made. It is considered a smooth gas density variation between two 

consecutive cells; thus, we have the Eq. (C.32): 

 

 
j-1

j

j-1

G,x

j

G,x

ρ
1

ρ
 . (C.32) 

 

 The liquid and gas mass conservation in the jth is: 

 

 
( ) ( ) ( )

( )

j
j j j j j-1 j-1 j j j-1 j-1G
f f s s S S S S b Sj

G

j j

b S

dρ1
1- R L + 1- R L = u R - u R +u 1- R +

ρ dt

-u 1- R

 
 

. (C.33) 
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 It is considered a perfect gas state equation to the gas phase along an isothermal process 

to relate the gas density to pressure as:  

 

 
j j

G G

j j

G G

dρ dP1 1
=

ρ dt P dt
. (C.34) 

 

Substituting the Eq. (C.34) into Eq. (C.33), we obtain the liquid and gas mass balance in the 

jth: 

 

 
( ) ( ) ( )

( )

j
j j j j j-1 j-1 j j j-1 j-1G
f f s s S S S S b Sj

G

j j

b S

dP1
1- R L + 1- R L = u R - u R +u 1- R

P dt

-u 1- R

  +
 

. (C.35) 

 

 The gas velocity in the liquid slug is related to the mixture velocity with a constitutive 

relationship, as shown in Eq. (C.36):  

 

 
M

j j j j

b b du = c u +u . (C.36) 

 

 In addition, the mixture velocity is related to the liquid velocity in the liquid slug: 

 

 ( )j j j j j

M S S b Su = u R +u 1- R . (C.37) 

 

 Substituting the Eq. (C.37) into Eq. (C.36), the gas velocity in the liquid slug is:  

 

 
( )

j j j j
j b S S d

b j j

b S

c u R +u
u =

1- c 1- R
. (C.38) 

 

 Substituting the Eq. (C.38) into Eq. (C.37), the mixture velocity is: 

 

 
( )

( )
( )

j jj j
d Sj S S

M j j j j

b S b S

u 1- Ru R
u = +

1- c 1- R 1- c 1- R
. (C.39) 
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 Substituting the Eq. (C.39) into Eq. (C.35), the mass balance in the jth is: 

 

 

( ) ( )
( ) ( )

( )
( )

( )
( )

j j-1 j-1 j j
j j j j G S S S S
f f s s j j-1 j-1 j j

G b S b S

j-1 j-1 j j

d S d S

j-1 j-1 j j

b S b S

dP u R u R1
1- R L + 1- R L = -

P dt 1- c 1- R 1- c 1- R

u 1- R u 1- R
+ -

1- c 1- R 1- c 1- R

  +
 

. (C.40) 

 

 Regarding the momentum balance, is used a closure relationship for wall shear stress 

for turbulent flow in the liquid slug as: 

 

 
j j j j j

S f M M M

1
τ =C ρ u u

2
. (C.41) 

 

 Substituting Eq. (C.39) into Eq. (C.41): 

 

 
( )

( )
( )

j jj j
d Sj j j j j j jS S

S M M M Mj j j j

b S b S

u 1- Ru R1 1
τ =Cf ρ u +Cf ρ u

2 21- c 1- R 1- c 1- R
. (C.42) 

 

 Thus, substituting Eq. (C.42) into Eq.(C.31), and disregarding the hydrostatic term, the 

momentum balance becomes: 
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dt L R u R L ρ

1- Ru uR uρ ρ1
-u 2Cf +2Cf

ρ D R ρ DR u1- c 1- R 1- c 1- R

    
    

    

 
 
  

. (C.43) 

 

 The fourth-order Runge-Kutta method numerically evaluates the mass and momentum 

equations using Object Oriented Programming in FORTRAN. 
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APPENDIX D – Two-fluid model code on Wolfram Mathematica 
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APPENDIX E – MATLAB code to obtain the FFT 

 

 

clc 

clear all 

close all 

  

%import data from file 

file=load ('Test1_Station1_CompleteSignal.txt');  

  

%determine time range and frequency 

N = length(file); %vector length 

dt=100/N; %time step, change the numerator for the time 

window 

t=0:dt:100-dt; %time vector 

dF=1/(N*dt);  

F=1/dt; %sampling frequency 

f=(0:dF:F-dF); %frequency vector 

P=file(:,2); %pressure vector from file 

Ut=file(:,3); %Traslational velocity vector from file 

  

%Fast Fourier Transform 

Pfft=fft(P); 

MagPfft=abs(Pfft)/N; 

Utfft=fft(Ut); 

MagUtfft=abs(Utfft)/N; 

  

%Write results in a txt file 

Data=table(f',MagPfft,MagUtfft) 

writetable(Data,'FFT_Test1_Station1_CompleteSignal.txt'); 

  

%Plots  

figure (1) 

plot(t,P) 

title('Complete Signal - Pressure') 

xlabel('time [s]') 

ylabel('Pressure [kPa]') 

  

figure(2) 

plot (f,MagPfft) 

title('FFT Complete Signal - Pressure') 

xlabel('frequency [Hz]') 

ylabel('|Pressure|') 

  

figure (3) 

plot(t,Ut) 
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title('Complete Signal - Ut') 

xlabel('time [s]') 

ylabel('Ut [m/s]') 

  

figure(4) 

plot (f,MagUtfft) 

title('FFT Complete Signal - Ut') 

xlabel('frequency [Hz]') 

ylabel('|Ut|') 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


