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Resumo
Este trabalho apresenta um modelo inédito e abrangente que utiliza campos de fase
e derivadas fracionárias para modelagem de dano em materiais viscoelásticos. Foram
utilizados potenciais de energia livre e pseudo potenciais de dissipação apropriados, como
uma extensão da estratégia apresentada em Costa-Haveroth et al. (2022), para produzir
uma metodologia capaz de descrever fenômenos hereditários com efeitos de memória,
grandes deformações e influências térmicas. Os potenciais são acoplados ao modelo de
forma termodinamicamente consistente e conduzem a relações tensão/deformação gerais em
termos de derivadas fracionárias. Obtemos um sistema não-linear de equações governantes
que descrevem a evolução do movimento, dano e temperatura, e mostramos como este
conjunto geral de equações pode ser adaptado para recuperar uma grande quantidade
de submodelos, incluindo algumas metodologias tradicionais encontrados na literatura.
Adaptamos uma estratégia numérica escalonada para resolver o sistema de equações
de forma desacoplada; várias simulações foram incluídas no trabalho, tanto para o caso
unidimensional quanto bidimensional. Os resultados numéricos são divididos em duas partes:
comentários e detalhamentos com respeito aos testes previamente publicamos por nós em
Costa-Haveroth et al. (2022), para um submodelo simplificado com representação reológica
em paralelo; e novos resultados para um modelo mais abrangente com representação
reológica em série. Os testes mostram que a metodologia desenvolvida neste trabalho
pode descrever diferentes padrões de danificação, tanto para o regime de pequenas quanto
grandes deformações, sendo uma estratégia com grande potencial para tratar de falha em
materiais viscoelásticos.

Palavras-chave: Campos de Fase. Dano e Fratura. Viscoelasticidade. Derivadas
Fracionárias.



Abstract
This work presents a new and comprehensive damage phase-field model with fractional
derivatives for viscoelastic materials. We apply appropriate specific free-energy density
and a pseudo-potential of dissipation as an extension of the strategy presented in Costa-
Haveroth et al. (2022), producing a framework able to describe hereditary phenomena
with memory, large strains, and thermal effects. These potentials are coupled to the model
in a thermodynamically consistent way, leading to general fractional stress/strain relations.
We obtain a system of nonlinear governing equations to describe the evolution of motion,
damage, and temperature. Furthermore, we show how this general set of equations can
recover several sub-models, including some traditional approaches widely employed in the
literature. We adjust a staggered strategy to solve the governing system numerically and
address several one and two-dimensional numerical simulations. We divide the numerical
results into two main parts: comments and details on the tests, previously published in
Costa-Haveroth et al. (2022), for a simplified parallel sub-model obtained from our general
approach; and novelty results for a series model. The tests show that the developed model
can describe different damage patterns, both for small and finite strains, being a promising
methodology to deal with failure in viscoelastic materials.

Keywords: Phase-field. Damage and Fracture. Viscoelasticity. Fractional Deriva-
tives.
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Introduction

Modern technology has led to the increased use of viscoelastic materials in
several branches of engineering applications as a lighter and cheaper substitute for metals.
Nowadays, viscoelastic components are found in a wide range of situations, ranging from
the simplest items of daily use to more complex items used in industrial, structural, or
biological applications. However, it is widely known that an item made of these materials
must meet different mechanical demands according to its conditions of use; thus, a poor
design that does not carefully consider those conditions may lead to the item’s failure
during the operation. Material damage prediction may be the most relevant request in
structural applications when designing them.

The damage process for viscoelastic materials generates patterns that are
difficult to describe in mathematical terms; this situation explains why most of the classical
theories for damage modeling are usually based on the behavior of metals. Furthermore,
viscoelastic materials are often used in applications involving large or fast deformations in
which the behavior is essentially non-linear - a point that makes the problem still more
challenging. This subject attracted the interest of many researchers over the recent years,
making modeling damage in viscoelastic materials a trending research topic.

A Brief Account of Previous Viscoelastic Damage Models
The first contributions to damage modeling in viscoelastic material were empiric

theories based on the establishment of a critical strain that took place in the 1960s
(KNAUSS, 1963; WILLIAMS, 1964; SCHAPERY, 1964). Since then, the proposed models’
scientific quality has progressed with works combining theoretical and computational
aspects.

Classical damage models assume that sharp interfaces split damaged and
undamaged parts of the material. This assumption brings theoretical difficulties: one must
have the equations governing the interfaces’ evolution and ad hoc criteria for the branching
and merging the cracking interfaces. Moreover, the sharp interface assumption also brings
numerical implementation issues since it demands a complex front-tracking process to
follow nontrivial crack propagation. Alternatively to this approach, models based on the
phase-field methodology have emerged as an attractive choice to carry out with material
damage once they provide a continuum description of state changes. This feature has
inspired several proposals on damage phase-field models in the last years (MIEHE et al.,
2015; AMENDOLA; FABRIZIO; GOLDEN, 2016; BOLDRINI et al., 2016; HAVEROTH
et al., 2020).
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Shortcomings of Previous Viscoelastic Damage Models
Despite significant progress in damage modeling for viscoelastic materials,

most of the previous viscoelastic damage models describe the damage process based
on non-continuous models are restricted to small strain regime. They cannot account
simultaneously for the crack nucleation, loading-unloading processes modeling, non-linear
viscoelasticity, or thermal influence. Models dealing with non-linear viscoelasticity generally
adopt parallel rheological arrangements, which have a simple mathematical development
and do not present the flexibility of modeling given by series models.

An essential aspect of being considered is the unclear thermodynamical devel-
opment of several previous formulations; thermodynamic consistency is a crucial point to
be guaranteed since it ensures the physical reliability of the model.

Another issue is how the model includes elastic degradation. In phase-field
damage models, this is usually obtained using suitable degradation functions (KUHN;
SCHLÜTER; MÜLLER, 2015); this procedure, besides ensuring the elastic degradation,
also implies that the driving force related to the elastic effect influences the damage growth.
The choice of this degradation function is crucial to obtain a fair model. Costa-Haveroth et
al. (2022) propose a novel degradation function to handle damage in viscoelastic materials,
which we use in this thesis.

Proposal of the Present Work
Motivated by the abovementioned criticisms, we propose a general damage

phase-field framework based on continuum mechanical principles. This model can be
used to describe non-linear viscoelasticity and damage by using phase-field variables and
fractional derivatives. It is constructed as an extension of our previous work (COSTA-
HAVEROTH et al., 2022) and represents rheological arrangement in series which can be
particularized to describe several different viscoelastic models. Furthermore, it allows the
consideration of finite strain and non-isothermal aspects.

We adopt a scalar variable to describe a diffuse crack transition. It is derived
from thermodynamic considerations and is governed by a Partial Differential Equation
(PDE). It results in a natural crack nucleation, unlike the discrete fracture models. Addi-
tionally, the coupling with fractional viscoelasticity allows using fewer material parameters
than models obtained by the classical viscoelastic description for the called power-law
materials.
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Objectives
The main objectives of this thesis are:

1. Use a damage phase-field methodology to develop a thermodynamically consistent
model based on continuum thermo-mechanical principles, able to account for finite
strain and non-isothermal effects;

2. Include non-linear viscoelastic behavior in a series model which can be particularized
to represent several viscoelastic models;

3. Couple fractional derivatives to the model and establish an appropriate description
of the viscoelastic behavior;

4. Propose a suitable and workable numerical approach for the approximation of the
model;

5. Develop and implement algorithms based on the previous concepts in MATLAB
language and the (hp)2FEM1 program written in C++ language;

6. Evaluate numerical results and compare them with those obtained by analogous
studies and experimental data.

Outline of this thesis
Chapter 1 presents a review concerning mathematical and historical aspects,

which underlies the theme of this work. We present the phase-field concept and explain
how it has been used to construct damage models. Then, we delineate how traditional and
fractional viscoelasticity are commonly used. At the end of this first chapter, we briefly
discuss the coupling of phase field theory and fractional derivatives to model failure in
viscoelastic materials.

Chapter 2 develops a general damage phase-field model according to a new free-
energy potential, based on that proposed by Costa-Haveroth et al. (2022), which includes
memory material effects. This model is derived in Eulerian and Lagrangian coordinates
using continuum mechanics and thermodynamic principles. Under specific hypotheses, the
model derived in this chapter can be associated with a rheological combination of elements
in series and is considered a generalization of the model proposed by Costa-Haveroth et al.
(2022).
1 The architecture of the program (hp)2FEM allows flexibility and generalization for implementing

high-order finite element methods. It has been implemented using the object-oriented paradigm with
the C++ language (see <http://www.fem.unicamp.br/~hp2fem> for details.)

http://www.fem.unicamp.br/~hp2fem
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Chapter 3 specializes the general framework for specific viscoelastic materials by
choosing a proper free-energy potential and pseudo-potential of dissipation. Particularly, the
proposed viscoelastic free-energy potential results in a stress/strain constitutive equation
in terms of a fractional order derivative. In the chapter’s final, we show that several
sub-models, including that presented in Costa-Haveroth et al. (2022), can be obtained from
our general fractional viscoelastic damage model using a specific simplification hypothesis.

The method proposed in this work leads to a system of non-linear partial
differential equations to describe the evolution of motion, damage, and temperature in
viscoelastic materials subject to stress. Chapter 4 describes how the non-linear system
is discretized using a staggered scheme for time (semi-implicit/explicit strategy) and the
finite element method (FEM) for the spatial domain. We also discuss how the numerical
treatment can be simplified to account for sub-models.

Chapter 5 presents a set of one and two-dimensional numerical simulations.
These results are divided into two parts: tests with a simplified parallel model, as an
extension of those previously published by Costa-Haveroth et al. (2022), and novelty
results for a more general series model. Finally, we address the conclusions, remarks, and
observations established from the development of this thesis. We also include ideas for
future works on this theme.

Final Remark
During the elaboration of this thesis, the author published or presented the

following works which have some relation with this thesis:

1. Presentation in the International Symposium on Solid Mechanics - MECSOL -
USP(2019)

Title: Modeling of damage, fracture and fatigue in viscoelastic materials with phase
field and fractional derivatives.

Authors: Costa-Haveroth, T. C.; Bittencourt, M.L.; Boldrini, J.L.

2. Poster presentation in the Workshop of Numerical Analysis and Applications -
WANA - IMECC/UNICAMP (2019)

Title: Phase field and fractional derivatives to model damage, fracture and fatigue
in viscoelastic materials.

Authors: Costa-Haveroth, T. C.; Bittencourt, M.L.; Boldrini, J.L.

3. Presentation in the Workshop of Challenges on numerical simulation for PDE -
LabMeC-FEC/UNICAMP(2020)
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Title: A phase field model with fractional derivatives for damage in viscoelastic
materials.

Authors: Costa-Haveroth, T. C.; Bittencourt, M.L.; Boldrini, J.L.

4. Article published in the Journal Mechanics of Advanced Materials and Structures -
Taylor & Francis (2021)

Title: Aspects on viscoelasticity modeling of HDPE using fractional derivatives:
interpolation procedures and efficient numerical scheme.

Authors: Costa-Haveroth, T. C.; Haveroth, G. A.; Kühl, A.; Boldrini, J.L.; Bitten-
court, M.L.; Sasse, F.D.; Polak, M.A.; Muñoz-Rojas, P.A.

5. Article published in the Journal Computational Mechanics - Springer (2022)

Title: A damage phase-field model for fractional viscoelastic materials in finite strain.

Authors: Costa-Haveroth, T. C.; Haveroth, G. A.; Bittencourt, M. L.; Boldrini, J. L.
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1 Historical and Mathematical Overview

This chapter presents the material background of this work. We start with a
brief description of the mathematical and historical aspects which underlie the phase-field
models, including a literature review and some of their applications. Next, we explain what
is understood by viscoelastic material behavior and the traditional method used to describe
this phenomenon. The fractional viscoelastic modeling is also presented by considering the
Caputo fractional derivative. Ultimately, these concepts are merged by coupling phase-field
theory and fractional derivatives to model failure in viscoelastic materials.

1.1 Background on Phase-fields Models
Phase-field models have been increasingly used as an efficient mathematical

tool to describe interface evolution in several state change problems. Differently from
non-continuous methods, which adopt instant-sharp interfaces between states, phase-field
models introduce a diffuse transition between states (see Fig. 1.1) (STEINBACH, 2009).
This feature agrees with practical observations of several state change phenomena, which
present transition layers where some physical property changes continuously, although
sometimes in a very steep gradient, along each layer width; examples of this situation are
melting, solidification, fluid separation, and damage.

Figure 1.1 – Representation of the state changing. Sharp interface (left) and continuum transition
by a phase-field variable (right).

Adapted from Moelans, Blanpain and Wollants (2008).

A rather general mathematical description of phase-field models is illustrated
by considering the following situation. Suppose that a physical process involving state
changes occurs in evolving regular domains (open, bounded, and connected) Ωt ∈ R3

over a time interval [0, tf ]. Phase-field models associate those states to the values of a
certain variable φ(x, t) defined for x ∈ Ωt and t ∈ [0, tf ], which may be related to some
material property that varies between different phases. For instance, being w1 < w2 real



Chapter 1. Historical and Mathematical Overview 23

numbers, values of φ ≤ w1 may correspond to a certain material state I, whereas values
of φ ≥ w2 may correspond to another material state II. Then, at each time t ∈ [0, tf ],
Ωw1(t) = {x ∈ Ωt : φ(x, t) ≤ w1} is the subset of Ωt where the material is at state I;
Ωw2(t) = {x ∈ Ωt : φ(x, t) ≥ w2} is the subset of Ωt where the material is at state II, and
Ωw1,w2(t) = {x ∈ Ωt : w1 < φ(x, t) < w2} is the subset associated to the transition layers.
Variables of this sort are the phase-field variables (also called order parameters) and are
additional unknowns in the corresponding mathematical problem.

This methodology substitutes the required evolution equations for the surfaces
used in the sharp interface models, which are rather hard to justify and solve in complex
cases, by Partial Differential Equations (PDEs) for the phase fields. These PDEs can be
obtained as the usual physical state variable using thermodynamic arguments, as we will
show later in this thesis.

1.1.1 Historical Development of Phase-Field Models

The idea of diffusive models started with the work of van der Waals (1979) that
presented a model for a liquid-gas phase change problem. This author presented a density
function that continuously varies at the interface and considers thermodynamic arguments
to conclude that the diffuse state transition overcomes discontinuities in the model, being
more reasonable than the assumption of a sharp interface. Landau and Ginzburg (1950)
expanded this concept by introducing order parameters (phase fields) evolving according to
a non-conservative equation, which followed the condition that the rate of change of these
order parameters was directly proportional to the corresponding free-energy functional
derivative.

These studies were followed by the contributions of Cahn and Hilliard (CAHN;
HILLIARD, 1958; CAHN, 1959), which presented the fourth-order nonlinear Cahn-Hilliard
equation for an order parameter to describe fluid separation. In these works, the evolution
of the order parameter follows from the mass conservation equation. In contrast, Allen
and Cahn (1972) developed the second-order Allen-Cahn equation to describe the phase
changing in iron alloys. Both Allen-Cahn and Cahn-Hilliard equations are based on the
Ginzburg-Landau free-energy functional (HOHENBERG; KREKHOV, 2015); however,
while the Cahn-Hilliard equation is conservative, the original Allen-Cahn equation is
non-conservative (CHIARELLI et al., 2017).

Studies about phase-field modeling fall into three main categories. The first
uses the diffusion approach, which includes ad-hoc additional variables to the problem to
generate an appropriate diffuse interface. The second contemplates the works based on the
energetic variational concept using the ideas developed by Allen, Cahn, and Hilliard. The
third one, called the entropy approach, adopts physical principles as the second law of
thermodynamics to generate the proper evolution equation for the phase fields. A detailed
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discussion of the differences among these approaches can be found in Haveroth (2020).

The phase-field methodology has found applications in many different scientific
areas as, for example, in the solidification (KARMA; RAPPEL, 1996), crystal growth
and recrystallization (III; CHEN, 2002), domain microstructure evolutions in ferroelectric
materials and dislocation dynamics (WANG et al., 2001; WANG et al., 2004). The
prominent acceptance of this theory is due to the advantages from both mathematical and
application point-of-view. It is physically motivated, with thermodynamical consistency
ensured through rigorous mathematical developments (PENROSE; FIFE, 1990; WANG et
al., 1993; BOLDRINI et al., 2016; BOLLADA; JIMACK; MULLIS, 2017). Furthermore, it
explicitly allows considering complicated morphological evolution once it is not necessary
to know the moving interface (CHOUDHURY, 2017). Moreover, it is relatively easy, at
least in theory, to include a variety of physical effects such as plasticity (HAVEROTH et
al., 2020), isotropic porous media (ZHOU; ZHUANG, 2020), and anisotropy (MCFADDEN
et al., 1993).

In this work, we are particularly interested in the phase-field methodology to
model material failure in mechanical components. The following section presents some
details in this regard.

1.1.2 Damage Phase-Field Models

Predicting structural failure due to crack nucleation and subsequent propagation
is mandatory in several areas and has been the subject of many works during the last century.
Classical methodologies approximate the crack by a sharp and discontinuous interface
which can lead to challenging numerical problems. In this scenario, phase-field models
have gained prominence due to their ability to describe damage processes continuously,
creating advantageous features in both theoretical and computational aspects.

The damage phase-field models are diffusive crack methods based on the
thermodynamic framework introduced at the beginning of the 20th century by Griffith
(1921). Bourdin, Francfort and Marigo (2000) developed the first study on this subject
by presenting a scalar phase-field variable to indicate the quasi-static brittle fracture. At
the same time, Aranson, Kalatsky and Vinokur (2000) considered damage by coupling
dynamic equations and a non-conservative Allen-Cahn-type equation. These works were
the basis for most later extensions and improvements.

Miehe and co-workers (MIEHE; HOFACKER; WELSCHINGER, 2010a; MIEHE;
WELSCHINGER; HOFACKER, 2010a) presented a damage phase-field model for brittle
fracture. In particular, their formulations ensure local irreversibility of the phase-field by
preventing the healing of the material. They also contributed to the numerical aspects using
a staggered methodology to solve the governing equations. Borden presented a differential
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equation for a fourth-order phase-field model (BORDEN, 2012; BORDEN et al., 2014) and
Schillinger, Borden and Stolarski (2015) proposed improvements in the crack resolution and
the computation time. Duda et al. (2015) proposed a phase-field/gradient-based damage
model for brittle fractures in elastic-plastic solids. Ambati, Gerasimov and Lorenzis (2015)
presented a formulation that uses the phase-field model for quasi-static fracture and can
describe isotropic and anisotropic behaviors. Further developments on damage phase-field
models concerning physical aspects were given by Karma, Kessler and Levine (2001),
Hakim and Karma (2005), and Hakim and Karma (2009). They used the phase-field
variable to model the pattern of the interface evolution to predict the crack for brittle
materials. Miehe et al. (2015) defined a generalization of their previous phase-field model
by considering finite strains, plasticity, and temperature effects to account for ductile
fracture. Amendola, Fabrizio and Golden (2016) also presented similar models, including
fatigue description and isothermal cases.

Although several models in the previously cited works are described as thermo-
dynamically consistent, no clear mathematical arguments prove those claims. Boldrini et al.
(2016) showed a significant advance in this aspect, presenting a general thermodynamically
consistent phase-field model for damage and fatigue, where the behavior of distinct material
classes is the consequence of the free-energy and pseudo-potentials of dissipation chosen.
Haveroth et al. (2020) coupled plasticity in Boldrini’s model and compared simulations
with laboratory results. Haveroth (2020) also considered the finite strain in addiction to
plasticity.

The studies were done over the last years, and the numerous applications of
phase-field methodology to predict mechanical failure, lead to a relatively consolidated
framework. Despite that, it is still possible to explore several aspects regarding specific
classes of materials. In this context, the following section discusses the modeling of
viscoelasticity materials, whose behavior is challenging to account for when subject to
damage.

1.2 Background on Viscoelasticity
There are different classes of viscoelastic materials with particular properties

and applications. Polymers are a classic example of viscoelastic materials, which allow
large-scale applications due to their easy manufacturability and low cost.

Viscoelastic materials present a continuum transition between elastic and
viscous states and exhibit a time-dependent stress/strain constitutive relation. If the stress
is linearly related to the strain rate, the material is said linear viscoelastic (Newtonian);
Otherwise, it is said non-linear viscoelastic (non-Newtonian) (MEYERS; CHAWLA, 2008).
Although linear modeling is widely used in academia, most of industrial applications
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generally require large or fast deformations in which the behavior is non-linear.

One of the main aspects that must be considered for viscoelastic materials is
the non-local time dependence of their strain-stress relations; it is called memory property
and must be considered in the modeling process to ensure the accurate description of the
material behavior (COLEMAN, 1976).

1.2.1 Traditional Viscoelastic Modeling

In the one-dimensional small strain context, the modeling of viscoelastic mate-
rials can be performed using mechanical analogies based on the dualism of viscoelasticity.
Generally, Hookean springs represent the elastic part (see Fig. 1.2a). The constitutive
equation that relates the stress and strain measurements for this element is the traditional
Hooke law, written as

S(t) = EY D0E(t) ⇐⇒ S = EYE, (1.1)

where S is the stress, E is the strain (in this case, the infinitesimal strain measure), EY

is the usual spring stiffness constant (sometimes associated with the Young’s modulus),
and D0(·) denotes the derivative of zero-order, i.e., the function itself. On the other hand,
the dashpot component represents the viscous part (see Fig. 1.2b). The corresponding
stress/strain relation for this component is given by

S(t) = ηvD1E(t) ⇐⇒ S = ηvDE, (1.2)

where ηv is the viscous constant and D1(·) = D(·) denotes the usual first derivative.

Figure 1.2 – Rheological Elements.

(a) Spring. (b) Dashpot. (c) Spring-pot.

Adapted from Costa-Haveroth (2015).

The development of many traditional viscoelastic mechanical models is based
on the arrangement of springs and dashpots, either in series or parallel (see Fig. 1.3).
For these models, the corresponding stress/strain relations are defined mathematically by
differential equations that can be solved to predict or fit different material.

The stress/strains relations for these models involve exponential functions; then,
the materials that can be described by them are called power-law behaved (BAGLEY,
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1989; BONFANTI et al., 2020). For power-law viscoelastic materials the internal micro-
structure response is associated with a wide distribution of time-scales. For this reason, they
can be described by these traditional models once the exponential terms can associated
with different time-scales (FINDLEY; DAVIS, 2013). Under additional conditions, the
springs/dashpots models can also be generalized to account for finite strain and multi-
dimensional cases (see Section 1.2.3).

Figure 1.3 – Examples of rheological models in series and parallel.

(a) Generalized Kelvin model.
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,

(b) Generalized Maxwell model.
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Adapted from Costa-Haveroth (2015).

Despite the simple derivation associated with these models, the number of
components necessary to accurately describe a power-law behaved material can be too
large. It leads to difficulties for the associated inverse identification problem since each
component has a parameter to be adjusted. The following section presents an alternative
concept based on the fractional derivative that can overcome this issue.

1.2.2 Fractional Viscoelasticity Modeling

Fractional derivatives have been used as a promising tool to accurately describe
the rheological behavior of viscoelastic materials that present power-law behavior, giving
rise to the so-called fractional viscoelastic models. They typically demand fewer rheological
elements for the stress/strain constitutive relation compared to the traditional models
(WELCH; RORRE; DUREN, 1999), reducing the burden of identifying material parameters
in inverse problems.
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The usual procedure to convert the traditional one-dimensional models into
fractional ones is to include another rheological element to draw up a continuum transition
between the viscous and elastic states. This particular element is named spring-pot (or
Scoot-Blair element) (KOELLER, 1984) (see Fig. 1.2c), and its constitutive stress/strain
relation is given by

S(t) = A t1Dα
t E(t), (1.3)

where A is a weigh for the fractional derivative (usually as a scalar constant), α ∈ [0, 1] is
the fractional derivative order, and t1Dα

t (·) denotes the fractional derivative operator, over
α, in the time interval [t1, t]. Note that if α = 0, Eq. (1.3) describes the spring behavior
and A becomes the elastic constant, as shown in Eq. (1.1). On the opposite, if α = 1,
Eq. (1.3) defines the constitutive equation for the dashpot component, and A becomes
the viscous constant, as we can see in Eq. (1.2). When α comprises values between 0 and
1, the spring-pot represents a rheologic element that behaves partially as a spring and
partly as a dashpot. Bonfanti et al. (2020) shows a detailed discussion on the physical
and mathematical interpretations for the spring-pot as a representative element to model
viscoelastic power-law materials.

These mechanical analogies correspond to the one-dimensional case; however,
they can be generalized for the three-dimensional case by using suitable correlated tensors
(for details, see Section 3.1.1).

Remark 1.1. The usual derivative is local because the derivative value at a point depends
only on the function values in a small neighborhood around that point. Fractional derivatives
are not local; the subscripts that appear quite frequently in the fractional derivative notation,
t1Dt(·), are related to this feature; the definition depends on the time domain of the functions
under evaluation. If the domain of derivation changes, then the derivative in a specific point
also changes. In other words, the derivative computed in a specific time depends on the
past values of the function (for more details, see Zhang, Benson and Reeves (2009)). Such
non-locality feature makes the fractional derivatives a matching tool for time-dependent
problems. In the case of viscoelasticity modeling, the non-local feature is associated with
the memory effects.

1.2.2.1 Historical Overview on Fractional Viscoelasticity

Fractional derivatives were first mentioned in 1695 when Leibniz established
the usual notation to represent the derivative, dw

dtw (·), where t is the independent variable
of some function and w is a natural number (LOVERRO, 2004). Some conversations
between L’Hopital and Leibniz were concerned with the characterization of this derivative
if the index w was not a positive integer number. Such discussion gave rise to the idea of
fractional derivatives (NISHIMOTO, 1991).
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Throughout the 18th and 19th centuries, famous mathematicians such as Euler,
Lagrange, Riemann, Liouville, and Heaviside, among others, dispended some time on this
subject (SAMKO; KILBAS; MARICHEV, 1987). However, the relation between fractional
derivatives and viscoelasticity outsets only in the 1930s with the works of Gemant and
Scott-Blair (GEMANT, 1936; SCOTT-BLAIR, 1944). These pioneers presented fractional
differential operators to describe the relaxation process in viscoelastic fluids. After, Caputo
and Mainardi presented progress both in the theoretical and practical viewpoints (CA-
PUTO, 1966; CAPUTO, 1967; CAPUTO; MAINARDI, 1971a; CAPUTO; MAINARDI,
1971b). Their contributions range from proposing new definitions for the fractional deriva-
tive to applying fractional models to fit experimental creep curves (CAPUTO; MAINARDI,
1971a).

Bagley and Torvik (1983) proposed a significant advance concerning the ba-
sis of fractional derivative modeling. These authors compared the molecular theory of
viscoelasticity with the fractional constitutive relations and showed their equivalence.
Koeller (1984) showed that the fractional viscoelastic models could be obtained as a
generalization of the traditional models. Lion (1997) addressed the fractional Zener model
from a thermodynamics point-of-view. Remaining in thermodynamics, Fabrizio (2014)
proposed a free-energy that leads to a fractional stress/strain equation. This author also
compared his fractional models with the classic theories. Alfano and Musto (2017) change
the fractional model developed by Musto and Alfano (2015) and derive a linear viscoelastic
model coupled with damage. Zhang et al. (2020) contributed to numerical aspects with a
novel method for the finite element approach applied for non-linear fractional viscoelastic
materials by using the Caputo’s derivative.

Due to their natural ability to model time-dependent phenomena, the most
extensive application for fractional derivatives is the viscoelasticity description. (CAPUTO;
FABRIZIO, 2016; LAZOPOULOS; KARAOULANIS; LAZOPOULOS, 2016; BALEANU;
FERNANDEZ, 2018). Furthermore, comparisons between the traditional and fractional
viscoelastic models have been proposed by many authors, showing that the latter can be
more advantageous for curve fitting for power law materials (JIA; SHEN; HUA, 2007;
FERRANTE; CAPPONI, 2017; COSTA-HAVEROTH, 2015).

1.2.2.2 Caputo Fractional Derivative

For the reader unfamiliar with non-integer derivatives, it is essential to clarify
that there are several definitions for fractional derivatives, written in many ways, which
are not necessarily equivalent (OLIVEIRA; MACHADO, 2014). These concepts are mostly
adaptations of the Riemann-Liouville, Grünwald-Letnikov, or Caputo definitions, the
commonly accepted ones. The application at hand usually affects the suitability of the
definition to be used.
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We adopt the Caputo fractional derivative (CAPUTO, 1966) in this work. It is
defined for a function f(t) ∈ C[t1, t2] according to

t1Dα
t f(t) = 1

Γ(1− α)

∫ t

t1

d⌈α⌉f(τ)
dτ⌈α⌉

(t− τ) dτ,

where t1 < t < t2, ⌈α⌉ is the ceiling function of α ∈ R, and Γ(·) is the traditional Gamma
function given by

Γ(w) =
∫ ∞

0
exp(−τ)τw−1dτ,

with w ∈ R.

When α ∈ [0, 1], then the following definition is obtained:

t1Dα
t f(t) = 1

Γ(1− α)

∫ t

t1

df(τ)
dτ

(t− τ)dτ. (1.4)

According to the manipulations given in Appendix E.1, Eq. (1.4) can be rewritten as

aDα
t f(t) = 1

Γ(1− α)
f(t)− f(t1)

(t− t1)α
+ α

∫ t

t1

f(t)− f(τ)
(t− τ)α+1 dτ. (1.5)

Equation (1.5) has a central role in the viscoelastic pseudo-potential of dissipation definition,
as will be seen later in this work.

From the application viewpoint, there are some advantages of using Caputo’s
definition. For instance, it provides an interpolation between integer-order derivatives;
when α tends to n ∈ N, we recover the traditional integer-order derivative (PODLUBNY,
1999). It agrees with the physical interpretation of the spring-pot element being suitable
to describe viscoelasticity. Additionally, for this operator, the derivative of a constant is
zero.

1.2.3 Parallel versus Series Models

Significant differences exist between rheological element arrangements in series
and parallel for both traditional and fractional viscoelastic models. To illustrate this
difference, consider Fig. 1.4, where A and B represent rheological elements in blocks (or
sets). Figure 1.4a shows the arrangement of rheological blocks in parallel, where the total
strain in this system equals each rheological block strain. Conversely, if we consider the
arrangement of rheological blocks in series, as shown in Fig. 1.4b, the total strain is the
sum of the strain in each rheological block. Examples of specific choices for the sets A and
B can be seen in Fig. 1.3.

These rheological models can be extended to the finite strain regime by includ-
ing additional mathematical considerations and replacing linear Hookean springs with
non-linear ones. This procedure is simple for parallel models (once the total strain is equal



Chapter 1. Historical and Mathematical Overview 31

Figure 1.4 – General parallel and series models.

(a) Parallel model. (b) Series model.

to the strain of each block) and implies a significant simplification in the mathematical
development, justifying its wide use in the literature (HAUPT; LION, 2002; SILBER-
STEIN; BOYCE, 2010; LIU; FATT, 2011; SHIM; MOHR, 2011). However, it is limited for
applications for particular classes of materials.

On the other hand, for series models, the finite strain regime can no longer be
described by the additive decomposition of the strains. In this case, the multiplicative
decomposition of the deformation gradients generates a challenging task (see Sec. 2.1).

Several authors have previously used the multiplicative decomposition for the
deformation gradient for viscoelasticity (see Reese and Govindjee (1998) for a review).
However, they do not discuss these decompositions’ geometrical or physical meaning.
Some clarification about these aspects was given by Ihlemann (2014), who presented a
general method for deriving models of multiplicative inelasticity and related them with
rheological connections generating the balance of the stresses. Bröcker and Matzenmiller
(2014) presented a similar approach; however, differently from Ihlemann’s study, they
presupposed the balance of the stresses and obtained the decomposition of the stress power
as a result.

Despite the advances and improvements achieved by the previously cited studies
in the task of modeling viscoelasticity in the finite strain regime, they did not include
influences of temperature variance or damage effects.

1.2.4 Modeling of Failure in Viscoelastic Materials

Damage due to load for viscoelastic components generates particular patterns
that are difficult to model. If we consider, for instance, the standard case of polymers, the
damage process can be broadly summarized by two steps: slippage and chain separation
(DANIELS, 1989).

Generally, viscoelastic materials comprise long molecular chains (ANDERSON,
1994). Under tensile stress, the slippage of chains decreases the stiffness, and the localized
stress level grows; if the stress on the chain is higher than the bond strength can hold,
chain separation arises, resulting in initiation and subsequent coalescence of voids. This
process may evolve until fracture (DANIELS, 1989; ANDERSON, 1994; KUKSENKO;
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TAMUSZ, 2013). Furthermore, viscoelastic materials are subject to local failure, even at
minimal strain levels (CHRISTENSEN, 2012). Then, the slippage is a critical and crucial
part of the process and cannot be neglected; it leads to local instabilities which govern the
damage evolution. Moreover, the industrial manufacture of viscoelastic materials frequently
involves large or fast deformations where the non-linear behavior predominates.

The first contributions on damage modeling for viscoelastic materials date back
to the mid-1960s, with the studies of Knauss (KNAUSS, 1963; KNAUSS, 1966; KNAUSS,
1969; WNUK; KNAUSS, 1970), Williams (WILLIAMS, 1964; WILLIAMS, 1965) and
Schapery (SCHAPERY, 1964). These works established the crack description empirically
by prescribing a critical strain. Nowadays, models progressed, generating works combining
advances in mathematical and computational aspects.

Some of the classical models for damage adopt the cohesive zone method
(TIJSSENS; GIESSEN; SLUYS, 2000a; TIJSSENS; GIESSEN; SLUYS, 2000b), which,
although widely used, presents some shortcomings associated with the description of a
sharp interface. Other contributions couple traditional methods for viscoelasticity with
statistical approaches to describe failure (SCHAPERY, 1999; SUVOROVA; OHLSON;
ALEXEEVA, 2003; VERNEREY et al., 2018). Models based on X-FEM (MOËS; DOL-
BOW; BELYTSCHKO, 1999) and peridynamics (MADENCI; OTERKUS, 2017) are
also used. However, these approaches require extensive reformulation for computational
implementation or present issues to account for non-linear viscoelasticity (THAMBURAJA
et al., 2019). Then, the continuum approaches arise as an attractive alternative to deal
with these problems (NGUYEN et al., 2016; THAMBURAJA et al., 2019).

In particular, the application of phase-fields to model the damage in viscoelastic
materials was studied by Schänzel (2015) and Shen, Waisman and Guo (2019). These
authors had effective results for material response prediction when subject to load, although
the unclear thermodynamic development of the models. Nonetheless, they used classic
rheological combinations of dashpots and springs to characterize viscoelasticity, resulting
in several material parameters to be identified.

The coupling of fractional viscoelasticity and damage models is very recent in
the literature. Krasnobrizha et al. (2016) used a viscoelastoplastic damage model with
fractional derivatives that separate the dissipation for each considered effect: material
damage, plasticity, and viscoelasticity. Alfano and Musto (2017) re-elaborated the fractional
model proposed previously by Musto and Alfano (2015) and addressed thermodynamic
considerations resulting in a linear viscoelastic damage model. Tang et al. (2018) presented
a fractional viscoplastic continuum damage model to describe creeping in rocks. Good
fitting with laboratory data was obtained in this work. Caputo and Fabrizio (2015) used
the order of the fractional derivative as a phase-field variable to describe the damage in
viscoelastic materials; however, the thermodynamical consistency of this framework is also
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unclear. Recently, in Costa-Haveroth et al. (2022), we presented a thermodynamically
consistent damage phase-field model for viscoelastic materials. In this previous correlated
work, we also proposed a new free-energy potential to consider materials with memory.

The previous discussion shows that many authors have driven further develop-
ment on modeling failure in viscoelastic materials; however, the research still needs to be
explored in some points. Many constitutive models are limited to the parallel combination
of rheological blocks. They do not consider simultaneously the crack nucleation, modeling
of loading-unloading processes, non-linear viscoelasticity, or even thermal influence. Addi-
tionally, excepting the works of Tijssens, Giessen and Sluys (2000a), Tijssens, Giessen and
Sluys (2000b), Schänzel (2015), Thamburaja et al. (2019) and Costa-Haveroth et al. (2022)
the proposed models are restricted to small strain. The next Chapter intends to deepen
these questions by presenting an extension of the model proposed in Costa-Haveroth et al.
(2022).
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2 General Damage Phase-Field Model

This chapter presents the mathematical development of a general damage
phase-field model based on mechanical aspects of the continuum. For the reader who is
not familiar with continuum mechanics, we strongly to read Appendix C, which gives a
brief review on this theme (for theory details, see the textbooks by Gurtin (1982) and
Oden (2012)).

2.1 Incremental Strain and Rheological Connections in Series
Let consider a body Bt subject to deformations that, at time t, occupies a space

defined by a regular domain (open, bounded, connected) Ωt ⊂ R3 with boundary Γt divided
into two disjoint parts: ΓD, |ΓD| > 0, and ΓN , where the body is subject to Dirichlet
and Neumann conditions, respectively. The reference configuration B0 is described by the
Lagrangian (material) points p ∈ Ω0 whereas the current configuration B (= Bt) is given
by the Eulerian (spatial) points x ∈ Ω (= Ωt). The current configuration can be obtained
by a smooth vector mapping of p, also called body motion, or, as usual, by adopting its
linearization represented by the total deformation gradient (see details in Appendix C.3):

F = I +∇pu (p, t) ,

where I is the identity tensor and ∇pu is the gradient of the displacement field u. The
tensor F is called a two-point tensor, because it is used to map quantities between material
and spatial configurations.

When taking the problem incrementally, that is, including intermediate states
between B0 and B, it is possible to verify that the strain tensors can generally not be
obtained by adding incremental strains due to the successive motions in the finite strain
setting (CHAVES, 2013). Figure 2.1 illustrates this fact, where we consider the body
B0 subject to deformations in two steps. The application of the partial deformation
gradient F A takes the body in Ω0 and leads to the intermediate configuration Ω̂, while
the application of the partial deformation gradient F B sends the body in Ω̂ to the current
configuration Ω. Then, we straighfoward see that the total deformation gradient can be
written as a composition of the partial terms, that is,

F = F BF A. (2.1)

We highlight that the multiplicative decomposition of F in Eq. (2.1) is purely conceptual
and can not be determined with experiments (HUBER; TSAKMAKIS, 2000).
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Figure 2.1 – Decomposition of the deformation gradient F .

An alternative way to illustrate incremental deformations is to consider an
analogy with one-dimensional rheological models. Let consider that the body is composed
of a material represented by a rheological connection of two components, A and B, arranged
in series as illustrated in Fig. 2.2. When it is subject to stress, the components A and
B are affected respectively by the partial deformation gradients F A and F B in such a
way that the total rheological component is affected according Eq. (2.1). We highlight
that the components A and B are general and not necessarily linear (we give a possible
specialization in Section 3.1).

Figure 2.2 – Representation of a rheological connection of two components in series. Indeed,
A and B can represent different rheological blocks. Possible examples include the
Maxwell model, Poynting-Thomson model (BOUKAMEL et al., 2001) or composed
chains as the generalized Kelvin model (see Fig. 1.3a).

In the previous analogy, we used only two incremental steps for the deformation
process, corresponding to parts A and B in the rheological series model. This interpretation
can be generalized for q elements, namely A1, A2, ..., Aq, coupled in series, with the total
deformation gradient given by

F = F Aq · · ·F A2
F A1

.

Formally, the mentioned rheological model is used to represent the one-dimensional case.
However, we will use this mechanical analogy throughout the text to help with the physical
interpretation of the model in R3.

Remark 2.1. Before we move on to the model development, we need to clarify the
notation and some measures used in the following. Unless otherwise stated, the subscript
(·)0 denotes a tensor (or measure) in the reference configuration Ω0, while the corresponding
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in the current setting, Ω, doe not have a subscript. Tensors defined in the intermediate
configuration Ω̂ assume the hat symbol (̂·).

The partial velocity gradients associated with the partial deformation gradients
F A and F B are defined respectively by

L̂A := Ḟ A
(
F A

)−1
and LB := Ḟ B

(
F B

)−1
, (2.2-2.3)

where ˙(·) denotes the derivative on time. Due to the multiplicative decomposition of F

given in Eq. (2.1), the total velocity gradient L can be defined as

L := ∇xv = Ḟ F −1 = ˙(F BF A)
(
F BF A

)−1

= LB + LA, (2.4)

where

LA := F BL̂A
(
F B

)−1
, (2.5)

is the correspondent of L̂A in the configuration Ω.

2.2 Development of the General Damage Phase-Field Model
This section presents a general damage phase-field model based on the rheo-

logical arrangement in series. We derive the governing equations for both Eulerian and
Lagrangian configurations, and we obtain the general form of the constitutive relations
for the Lagrangian case in terms of the free-energy functional and pseudo-potential of
dissipation. The main equations for the model are highlighted by a blue box, and to
construct a flowing and concise text, we suppressed some details on basic mechanical
principles. The reader will find indications pointing to detailing through the text.

2.2.1 The Governing Equations in Eulerian Coordinates

Let us consider the body B in the configuration Ω ⊂ R3 (see Fig. 2.1). The
fundamental state of B is given by: (i) the density of mass ρ in Ω, that satisfies the principle
of mass conservation; (ii) dynamic variables u and v, representing the displacement and
velocity vector fields, respectively; and (iii) the specific density of the internal energy e
in Ω. The principle of virtual power (PVP) is used to obtain a governing equation for v,
while the first principle of thermodynamics is employed to determine e. We also assume
that the material does not present a preferential direction for the strain evolution.

As in Boldrini et al. (2016), let us presuppose that B can evolves with damage
due to the deformation process. Then we introduce a phase-field variable φ that represents
the volumetric fraction of the damaged material and varies in the interval [0, 1]; φ = 0
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represents the undamaged material, φ = 1 the fractured material (voids in the material),
and 0 < φ < 1 an intermediate damaged state. Here, the damage is used as a dynamic
scalar variable whose corresponding equation will be derived from the PVP. The PVP
requires the definition of virtual velocities δv and δc, which are, respectively, the admissible
macroscopic virtual velocity (the time rate of change of displacement) and the admissible
microscopic virtual velocity (the time rate of change of dynamic phase-field φ).

By considering the decomposition of F , as shown in Fig. 2.1, and following
Frémond and Shitikova (2002) and Boldrini et al. (2016), we derive the basic govern-
ing equations in Eulerian coordinates of our model by using the mechanical principles
summarized below (see Appendix C.8 for details).

1. For the principle of mass conservation, the total quantity of mass in a closed system
can not be altered by physical and chemical actions (see Appendix C.8.1). The
Eulerian form of this principle is given by

ρ̇ = −ρ divx(v), (2.6)

where divx(·) is the Eulerian divergent operator.

2. The PVP states the equilibrium among the virtual powers of inertia Pa, internal Pi

and external Pe loads for any virtual action {δv, δc} in Ω as

Pa (Ω, δv, δc) = Pi (Ω, δv, δc) + Pe (Ω, δv, δc) . (2.7)

From the multiplicative decomposition of F , given in Eq. (2.1), the total internal
virtual power Pi is composed of a sum of the virtual power generated by F A and
F B, plus a virtual power related to the damage. By considering an adaptation of
the total internal virtual power Pi, postulated by Ihlemann (2014), to include the
effect of the damage, we define

Pi = PA + PB + Pφ, (2.8)

where PA and PB are the virtual internal stress power contributions due to F A

and F B, respectively, and Pφ is the power by the interior loads due to the material
damage.

Based on the usual definitions for the internal power in continuum mechanics,
according to Temam and Miranville (2005) and Piero (2009), and defining T̂ A and
T B as the stress tensors related with F A and F B, respectively, we write

PA = −
∫

Ω̂
T̂ A : δL̂A dΩ̂, (2.9)

PB = −
∫

Ω
T B : δLB dΩ, (2.10)
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and

Pφ = −
∫

Ω
(kδc+ h · ∇xδc) dΩ, (2.11)

where δ(·) indicates a virtual quantity1, k is the volumetric density of energy ex-
changed by variation of a unity of φ in a unity of time, h is the energy flux correlated
with the spatial variation of a unit of φ in a unit of time and ∇x(·) is the gradient
operator in the Eulerian configuration. Equation (2.11) is the same as that proposed
by Frémond and Shitikova (2002). We emphasize that, in the present case, Pφ

represents the virtual power due to the material damage by the application of the
total gradient of deformation2.

The integral in Eq. (2.9) is defined in the intermediate configuration Ω̂; then,
from Eq. (2.5), we can rewrite Eq. (2.9) in the current configuration as

PA = −
∫

Ω̂
T̂ A : δL̂A dΩ̂

= −
∫

Ω
T̂ A :

((
F B

)−1
δLAF B

) 1
det(F B) dΩ

= −
∫

Ω
T A : δLA dΩ, (2.12)

where T A is a stress tensor in Ω given by

T A = 1
det(F B)

(
F B

)−t
T̂ A

(
F B

)t
. (2.13)

Then, by replacing Eqs. (2.10), (2.11) and (2.12) in Eq. (2.8), we have

Pi = −
∫

Ω
T A : δLA dΩ−

∫
Ω

T B : δLB dΩ−
∫

Ω
(kδc+ h · ∇xδc) dΩ. (2.14)

We also define
Pa =

∫
Ω
ρv̇ · δv dΩ, (2.15)

and
Pe =

∫
Ω
ρf · δv dΩ +

∫
ΓN

σ · δv dΓN +
∫

Γ
thδc dΓ, (2.16)

where f is the vector field representing the body force per unit of mass, σ is the
macroscopic stress vector field, and th is the superficial density of energy supplied to
the material by the flux h. The first term in Eq. (2.16) represents the virtual power
by actions at a distance, and the last two are associated with the virtual powers by

1 From a purely mathematical point of view, we could define, for example, a partial virtual velocity δvB

related to the partial gradient of deformation F B . Then, the partial velocity gradient associated with
δvB could be written as δLB = ∇x(δvB).

2 We could also consider two separated damage variables related to F A and F B; namely φ̂A and φB

respectively. In this case, the total internal power related to damage should be considered a sum of
the damage power generated by φ̂A in Ω̂ plus φB in Ω.
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the surface loads. We assume no external microscopic actions influencing the damage
(e.g., corrosion or aging).

By replacing Eqs. (2.14), (2.15) and (2.16) into (2.7), we obtain∫
Ω
ρv̇ · δv dΩ = −

∫
Ω

T A : δLA dΩ−
∫

Ω
T B : δLB dΩ

−
∫

Ω
(kδc+ h · ∇xδc) dΩ +

∫
ΓN

σ · δv dΓN

+
∫

Ω
ρf · δv dΩ +

∫
Γ
thδc dΓ. (2.17)

Since the above equation is valid for any {δv, δc, δLA, δLB} in Ω we can assume
δc = 0 and δLA = 0, obtaining ∇xδv = δLB from Eq. (2.4). In this case, Eq. (2.17)
leads to∫

Ω
ρv̇ · δv dΩ =

∫
ΓN

σ · δv dΓN +
∫

Ω
ρf · δv dΩ−

∫
Ω

T B : δLB dΩ, (2.18)

that is the weak form of the balance of linear momentum associated with macroscopic
loads. By considering δLB = ∇x(δv) and using integration by parts in the above
equation (see Eq. (A.3)), we obtain∫

Ω
ρv̇ · δv dΩ =

∫
ΓN

σ · δv dΓN +
∫

Ω
ρf · δv dΩ−

∫
Γ

(
T Bn

)
· δv dΓ

+
∫

Ω
divx

(
T B

)
· δv dΩ,

where n is the unit exterior vector normal to the surface-area element dΓ. The above
equation is valid for every δv; then it results in

ρv̇ = ρf + divx(T B) in Ω,
σ = T Bn on ΓN ,

u = ū on ΓD,

(2.19a)
(2.19b)
(2.19c)

that is the local form (or strong form) of the balance of linear momentum in the
Eulerian configuration, where ū is some prescribed value for Dirichlet condition.

Also, by supposing δc = 0 and δv = 0, we obtain ∇xδv = 0 from Eq. (2.4), which
leads to δLB = −F BδL̂A

(
F B

)−1
= −δLA. In this case, Eq. (2.17) results in

0 = −
∫

Ω
T A : δLA dΩ−

∫
Ω

T B : δLB dΩ

= −
∫

Ω
T A : δLA dΩ +

∫
Ω

T B : δLA dΩ

= −
∫

Ω

(
T A − T B

)
: δLA dΩ,

which implies in

T B = T A in Ω. (2.20)
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We stress the importance of Eq. (2.20). In the one-dimensional case, it shows that the
stress T A acting on A of the rheological arrangement of Fig. 2.2 is the same as that
acting at B, recovering the usual stress relation for rheological connection in series.
We also found this result for three-dimensional models (GURTIN; FRIED; ANAND,
2010). Additionally, note that we also could have taken δc = 0 and δL̂B = 0 in Eq.
(2.17); however, due to Eq. (2.20), the result would be the same as that shown in
Eq. (2.19a).

Finally, if δv = δLA = 0, then Eq. (2.17) returns

divx(h)− k = 0 in Ω,
th = h · n on Γ,

(2.21a)
(2.21b)

that is the balance of linear momentum associated with microscopic loads.

3. The conservation of angular momentum requires that

T B =
(
T B

)t
in Ω, (2.22)

where (·)t is the transpose of (·). In other words, the tensor T B acts as a Cauchy
stress tensor in Ω. By considering Eq. (2.20) we can also conclude that T A =

(
T A

)t
.

4. The first principle of the thermodynamics (or balance of energy) states that the time
rate of change of the total energy is equal to the external power plus the heating of
the body (ODEN, 2012):

d
dtK + d

dtU = Pe + Qf + Qs, (2.23)

where

K = 1
2

∫
Ω
ρ|v|2 dΩ, (2.24)

is the total kinetic energy,

U =
∫

Ω
ρe dΩ, (2.25)

is the total internal energy, with e being the specific density of internal energy,

Qf = −
∫

Γ
q · n dΓ, (2.26)

is the total energy (by unit of time) carried by the energy flux q, and

Qs =
∫

Ω
ρr dΩ, (2.27)

is the total thermal energy (by unit of time) generated in Ω, by the heat sources
(or sinks) with specific heat source density r. Replacing Eqs. (2.24-2.27) in (2.23),
and after some algebraic manipulations (see Appendix C.8.4.3 for details), we can
rewrite the balance of energy in the local form according to

ρė = T A : LA + T B : LB + kφ̇+ h · ∇x(φ̇) + ρr − divx(q) in Ω. (2.28)
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5. We also consider the entropy inequality. As Fabrizio, Giorgi and Morro (2006) and
Boldrini et al. (2016), the second principle of thermodynamics can be expressed in a
generalized form of the Clausius-Duhem inequality (see Truesdell (1952) for details),
whose differential form is given by

ρη̇ ≥ −divx(Φ) + ρω in Ω. (2.29)

As in Costa-Haveroth et al. (2022), η denotes the specific entropy density; the total
entropy flux is given by Φ = Φθ + Φm where Φθ = q/θ is the traditional thermal
entropy flux, θ > 0 is the temperature, and Φm is some additional entropy flux that
can occurs due to other microscopic changes. The total specific entropy production
term is split by ω = ωθ + ωm, where ωθ = r/θ is the traditional specific thermal
entropy production, and ωm is some additional specific entropy production term due
to other microscopic changes. Here, ωm is related to damage process. Furthermore,
for proper physical modeling, we must have

∫
Ω
ωm dΩ ≥ 0.

The specific free-energy of Helmholtz

ψ = e− θη, (2.30)

implies in e = ψ+θη. By replacing it in Eq. (2.28) and comparing with the inequality
(2.29), we obtain

−ρ
(
ψ̇ + θ̇η

)
+ T A : LA + T B : LB + kφ̇+ h · ∇x (φ̇)

−1
θ

q · ∇x (θ) + θdivx(Φm)− θρωm ≥ 0 in Ω, (2.31)

that must be verified for thermodynamic consistency of all physical admissible
processes.

Finally, we summarize the general Eulerian governing equations for our model
in the Box 1.
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Box 1: General Eulerian governing equations

Consider the general equations:

ρ̇ = −ρ divx(v)
u̇ = v

ρv̇ = ρf + divx

(
T B

)
divx (h)− k = 0
T A = T B

T B =
(
T B

)t

F = F BF A

ρė = T A : LA + T B : LB + kφ̇+ h · ∇xφ̇+ ρr − divx (q) ,

in Ω that must satisfying the inequality

−ρ
(
ψ̇ + θ̇η

)
+ T A : LA + T B : LB + kφ̇+ h · ∇xφ̇−

1
θ

q · ∇xθ

+θdivp(Φm)− θρωm ≥ 0 in Ω,

for all physical admissible processes.
In this box, we presented eight governing equations. The variables are: u, v, T B,
T A, F , F B, F A, LA, LB, q, h, e and φ.

2.2.2 The Governing Equations in Lagrangian Coordinates

Let consider the body B0 in the configuration Ω0 ∈ R3 (see Fig. 2.1). Similarly
to the Section 2.2.1, the state of B0 is described by: (i) the density of mass ρ0, satisfying
the principle of mass conservation; (ii) the dynamic variables u and v, describing the
displacement and velocity vector fields, respectively; and (iii) the specific density of internal
energy e0. The governing equations for v and e0 derive from the PVP and by making use
of the first principle of thermodynamics, respectively. Moreover, we assume that B0 can
develop damage due to the straining process (without preferential direction), with the
corresponding phase-field variable φ0 lying in the interval [0, 1] (φ0 = 0 for undamaged
material and φ0 = 1 for fractured material). The correspondence φ0(p, t) = φ(x, t) is valid.

An immediate way to derive the general Lagrangian governing equations is to
follow the same procedure presented in the previous section using Lagrangian variables and
tensors. However, such a procedure leads to a cumbersome mathematical manipulation
of the internal power due to the pull-back of the tensors in Ω by the total deformation
gradient F . An alternative to avoid these issues is to derive the Lagrangian equations
directly from the Eulerian version, as shown below.
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1. According to the discussion on Appendix C.8.1, the Lagrangian version of the
principle of mass conservation is given by

ρ̇0 = 0 in Ω0. (2.32)

2. The balance of linear momentum can be obtained by changing the domain of
integration and the physical quantities in Eq. (2.18) to the reference configuration as∫

Ω0
ρ0v̇ · δv dΩ0 =

∫
Γ0

σ0 · δv dΓ0 +
∫

Ω0
ρ0f0 · δv dΩ0 −

∫
Ω0

P B : δḞ dΩ0, (2.33)

where σ0 = σ, f0 = f , P B is the first Piola-Kirchhoff stress tensor, and δḞ = ∇pδv,
where ∇p(·) is the Lagrangian gradient operator. Integration by parts can be applied
to find∫

Ω0
ρ0v̇ · δv dΩ0 =

∫
Γ0

σ0 · δv dΓ0 +
∫

Ω0
ρ0f0 · δv dΩ0 −

∫
Γ0

(P Bn0) · δv dΓ0

+
∫

Ω0
divp(P B) · δv dΩ0, (2.34)

where n0 is the unit vector normal to Γ0. Once Eq. (2.34) is valid for every δv, the
local form of the balance of linear momentum due to the macroscopic forces in the
Lagrangian version is

ρ0v̇ = ρ0f0 + divp

(
P B

)
in Ω0,

σ0 = P Bn0 on ΓN ,

u = ū on ΓD.

(2.35a)

(2.35b)
(2.35c)

Details concerning this derivation can be seen in Appendix C.8.2.

Furthermore, we can define

P B := F SB (2.36)
= det (F ) T BF −t, (2.37)

where SB is a symmetric second Piola-Kirchhoff stress tensor (SB =
(
SB

)t
). In the

one-dimensional case, the tensors T B, P B, and SB, are the stress tensors related
to the part B of the rheological model shown in Fig. 2.2. Remember that T B is an
Eulerian quantity while SB is a Lagrangian measure. Note that, by using Eq. (2.36)
and the symmetry of SB, we can manipulate the last term in Eq. (2.33) as

P B : δḞ = F SB : δḞ = SB : F tδḞ = SB : 1
2
(
F tδḞ + δḞ tF

)
= SB : δĖ, (2.38)

where
δĖ := 1

2
(
F tδḞ + δḞ tF

)
,
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is the time rate of the Green-Lagrange virtual strain tensor. Replacing Eq. (2.38) into
Eq. (2.33) we obtain an alternative weak form of the balance of linear momentum
associated with macroscopic loads in the Lagrangian configuration:∫

Ω0
ρ0v̇ · δv =

∫
Γ0

σ0 · δv dΓ0 +
∫

Ω0
ρ0f0 · δv dΩ0 +

∫
Ω0

SB : δĖ dΩ0. (2.39)

Equation (2.39) is very useful for numerical purposes once the last term on it is the
inner product of symmetric tensors.

To develop the balance of linear momentum associated with microscopic loads in the
Lagrangian configuration, we consider Eq. (2.17) with δv = δLA = 0:∫

Ω
divx(h) dΩ−

∫
Ω
k dΩ = 0.

By applying the divergence theorem (see Appendix. A) and changing the domain of
integration to Ω0, we obtain

0 =
∫

Γ
h · n dΓ−

∫
Ω
k dΩ

=
∫

Γ0
det (F ) F −1h · n0 dΓ0 −

∫
Ω0
k0 dΩ0

=
∫

Ω0
divp (h0) dΩ0 −

∫
Ω0
k0 dΩ0, (2.40)

where n = det(F )F −tn0. Furthermore, h0 = det(F )F −1h and k0 = det(F )k. From
Eqs. (2.40) and (2.35b), we finally have the balance of the microscopic loads:

divp (h0)− k0 = 0 in Ω0,

th,0 = h0 · n0 on Γ0,

(2.41a)
(2.41b)

with th,0 representing the superficial density of energy supplied to the material by
the flux h0.

3. Let derive the first principle of the thermodynamics in the Lagrangian configuration,
by considering the integrated version of Eq. (2.28) in Ω:∫

Ω
ρė dΩ =

∫
Ω

T A : LA dΩ +
∫

Ω
T B : LB dΩ +

∫
Ω
kφ̇ dΩ +

∫
Ω

h · ∇xφ̇ dΩ

+
∫

Ω
ρr dΩ−

∫
Ω

divx(q) dΩ.

Some calculation (see details in Appendix C.8.4) implies that the above equation
can be rewritten in the reference configuration Ω0 as∫

Ω0
ρ0ė0 dΩ0 =

∫
Ω0

T A : LA det(F ) dΩ0 +
∫

Ω0
T B : LB det(F ) dΩ0

+
∫

Ω0
k0φ̇0 dΩ0 +

∫
Ω0

h0 · ∇pφ̇0 dΩ0 +
∫

Ω0
ρ0r0 dΩ0

−
∫

Ω0
divp(q0) dΩ0, (2.42)
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where ė = ė0 , r = r0,

kφ̇ det(F ) = k det(F )︸ ︷︷ ︸
k0

φ̇ = k0φ̇0,

h · ∇xφ̇ det(F ) = h · F −t∇pφ̇0 det(F ) = det(F )F −1h︸ ︷︷ ︸
h0

·∇pφ̇0 = h0 · ∇pφ̇0,

and

q · n = q · det(F )F −tn0 = det(F )F −1q︸ ︷︷ ︸
q0

· n0 = q0 · n0.

Equation (2.42) implies the following local form of the balance of energy in the
Lagrangian configuration:

ρ0ė0 = det(F )T A : LA + det(F )T B : LB + k0φ̇0 + h0∇pφ̇0 + ρ0r0 − divp(q0),
(2.43)

which can be rewritten conveniently by manipulating the first and second terms on
the right-hand side. By using Eqs. (2.1), (2.13), and (2.5), the first term in the right
hand side of Eq. (2.43) can be transformed according to

det(F )T A : LA = det(F )T A : F BL̂A
(
F B

)−1

= det(F )
(
F B

)t
T A

(
F B

)−t
: L̂A

= det(F A)det(F B)
(
F B

)t
T A

(
F B

)−t
: L̂A

= det(F A)T̂ A : L̂A, (2.44)

where

T̂ A := det(F B)
(
F B

)t
T A

(
F B

)−t
. (2.45)

To proceed with the calculation, we split the tensors T̂ A and L̂A as

T̂ A = T̂ A
symm + T̂ A

skew and L̂A = D̂A + Ŵ A, (2.46-2.47)

where T̂ A
symm and T̂ A

skew are the symmetric and skew-symmetric parts of T̂ A, respec-
tively. Similarly, D̂A (the partial deformation rate tensor) is the symmetric part of
L̂A and Ŵ A (the partial spin tensor) is the skew-symmetric counterpart.

The replacement of Eqs. (2.46) and (2.47) into (2.44), implies in

det(F )T A : LA = det(F A)T̂ A : L̂A

= det(F A)T̂ A
symm : D̂A + det(F A)T̂ A

skew : Ŵ A, (2.48)
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and, by Eq. (C.27), we can write

det(F )T A : LA = det(F A)T̂ A
symm :

(
F A

)−t
ĖA

(
F A

)−1
+ det(F A)T̂ A

skew : Ŵ A

= det(F A)
(
F A

)−1
T̂ A

symm

(
F A

)−t
: ĖA + det(F A)T̂ A

skew : Ŵ A

= SA : ĖA + det(F A)T̂ A
skew : Ŵ A, (2.49)

where EA is the Green-Lagrangian strain tensor, and

SA := det(F A)
(
F A

)−1
T̂ A

symm

(
F A

)−t
, (2.50)

is the Second-Piola Kirchhoff stress tensor. Both tensors, EA and SA, are associated
with the rheological block A.

The symmetry of T B (see Eq. (2.22)) allows rewriting the second term in the
right-hand side of Eq. (2.43) as

det(F )T B : LB = det(F )T B : DB

= det(F )T B :
(
F B

)−t ˙̂
EB

(
F B

)−1

= det(F A)
(
F B

)−1
det(F B)T B

(
F B

)−t
: ˙̂
EB

= det(F A)T̂ B : ˙̂
EB, (2.51)

where

T̂ B :=
(
F B

)−1
det(F B)T B

(
F B

)−t
, (2.52)

is the stress tensor that is similar to the Cauchy tensor, and ÊB is a strain tensor
similar to Green-Lagrange; these last two tensors are both defined in Ω̂.

Furthermore, by using Eqs. (2.37) and (2.52), we obtain

SB = det(F A)
(
F A

)−1
T̂ B

(
F A

)−1
, (2.53)

where SB is a symmetric stress tensor that is similar to the second Piola tensor in
Ω0.

Finally, Eqs. (2.43), (2.49) and (2.51) lead to an alternative (to the one given in Eq.
(2.42)) local form of the balance of energy:

ρ0ė0 = SA : ĖA + det(F A)T̂ A
skew : Ŵ A + det(F A)T̂ B : ˙̂

EB + k0φ̇0

+h0 · ∇pφ̇0 + ρ0r0 − divpq0, (2.54)

where tensors SA and EA are regarded as Lagrangian quantities in the reference
configuration Ω0, while T̂ B, T̂ A

skew, Ŵ A and ÊB are defined in the intermediate
configuration Ω̂.
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4. Now, we consider inequality (2.29) integrated in Ω:∫
Ω
ρη̇ dΩ ≥ −

∫
Ω

divx(Φ) dΩ +
∫

Ω
ρω dΩ.

This inequality can be rewritten in the Lagrangian configuration as∫
Ω0
ρ0η̇0 dΩ0 ≥ −

∫
Ω0

divp(Φ0) dΩ0 +
∫

Ω0
ρ0ω0 dΩ0, (2.55)

where η0(p, t) = η(x, t), Φ0 = det(F )F −1Φ(x, t) and ω0(p, t) = ω(x, t) (see details
in Appendix C.8.5). Equation (2.55) leads to the local form

ρ0η0 ≥ −divpΦ0 + ρ0ω0.

Similarly to the Eulerian case, we assume the total entropy flux as Φ0 = Φ0,θ + Φ0,m

where Φ0,θ = q0/θ is the classical thermal entropy flux, and Φ0,m is some additional
entropy flux by other microscopic features. The total specific entropy production
term is ω0 = ω0,θ + ω0,m, where ω0,θ = r0/θ is the traditional specific thermal
entropy production, and ω0,m is some additional specific entropy production term
by other microscopic features. In this work, ω0,m relates to the damage mechanisms.
Furthermore, we require that

∫
Ω0
ω0,m dΩ0 ≥ 0.

Replacing the Lagrangian Helmholtz-specific free-energy

ψ0 = e0 − θη0,

in Eq. (2.54) and using inequality (2.55), we obtain

−ρ0
(
ψ̇0 + θ̇η0

)
SA : ĖA + det(F A)T̂ A

skew : Ŵ A + det(F A)T̂ B : ˙̂
EB + k0φ̇0

+h0 · ∇pφ̇0 −
1
θ

q0 · ∇pθ + θdivp(Φ0,m)− θρ0ω0,m ≥ 0.

(2.56)

5. Herein, we derive important relations among SA, T̂ A
skew and T̂ B. From Eqs. (2.20)

and (2.45), we get

T̂ A = det(F B)
(
F B

)t
T A︸︷︷︸
=T B

(
F B

)−t
= det(F B)

(
F B

)t
F B

(
F B

)−1
T B

(
F B

)−t
.

(2.57)

By defining the right Cauchy-Green strain tensor related with F B as

ĈB :=
(
F B

)t
F B = 2ÊB + I,
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and considering Eqs. (2.52) and (2.57), we obtain

T̂ A = ĈBT̂ B. (2.58)

Now, from Eqs. (2.46) and (2.58), by using the definition of SA presented in Eq.
(2.50), we have

1
det(F A)F ASA

(
F A

)t
+ T̂ A

skew = ĈBT̂ B. (2.59)

Furthermore, Eqs. (2.36) and (2.1) lead to

P B = det(F )T BF −t = det(F A) det(F B)F B
(
F B

)−1
T B

(
F B

)−t (
F A

)−t

= det(F A)F
(
F A

)−1
T̂ B

(
F A

)−t
. (2.60)

This implies that Eq. (2.35a) can be rewritten in terms of T̂ B as

ρ0v̇0 = ρ0f0 + divp

(
det(F A)F

(
F A

)−1
T̂ B

(
F A

)−t
)
. (2.61)

Finally, we summarize the general Lagrangian3 governing equations in Box 2.
We remember that the reader can consult the Eulerian equations of this model in Box 1
and compare them with the Lagrangian version of Box 2.
3 In a precise mathematical description, the system of equations shown in Box 2 are not Lagrangian,

once some of the present tensors are defined in the intermediate configuration Ω̂ (see Appendix C.2.2
for details).
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Box 2: General Lagrangian governing equations

Consider the general equations

ρ̇0 = 0
u̇ = v

ρ0v̇0 = ρ0f0 + divp

(
det(F A)F

(
F A

)−1
T̂ B

(
F A

)−t
)

divp(h0)− k0 = 0,
1

det(F A)F ASA
(
F A

)t
+ T̂ A

skew = ĈBT̂ B

SB =
(
SB

)t

F = F BF A

ρ0ė0 = SA : ĖA + det(F A)T̂ A
skew : Ŵ A + det(F A)T̂ B : ˙̂

EB + k0φ̇0 + h0∇p(φ̇0)
+ρ0r0 − divpq0,

in Ω0 that must satisfying the inequality

−ρ0
(
ψ̇0 + θ̇η0

)
SA : ĖA + det(F A)T̂ A

skew : Ŵ A + det(F A)T̂ B : ˙̂
EB + k0φ̇0

+h0 · ∇p(φ̇)− 1
θ

q0.∇pθ ≥ 0,

for all physical admissible processes.
In this box we presented eight governing equations. The variables are: u, v, T̂ B,
SA, T̂ A

skew, W A, EA,ÊB, F , F B, F A, LA, LB, q, h, e and φ.

Figure 2.3 presents the main stress tensors used in the previous derivations
and summarizes the relations among them.

Figure 2.3 – Stress tensors of the model and their correlations.

Remark 2.2. We adopt the Lagrangian version of the governing equations shown in Box
2 to follow with the derivation of the general model. The Eulerian case can be similarly
constructed, but it is not included in this work.
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2.2.3 Constitutive Relations in Lagrangian Coordinates

Let us consider the body B0 subject to the conditions described at the beginning
of Sec. 2.2.2. We want to use the previously established equations of continuum mechanics
to determine the behavior of the body (the motion, deformation, temperature, stress,
heat flux, entropy, and damage) at each position p and for any time t in some interval
[0, tf ]. However, until now, we do not have enough information to solve this problem. To
“complete” it, we must supplement the basic equations with constitutive equations that
characterize the material of which the body is made up. The constitutive equations impose
constraints on the possible responses of the material body that describe how a particular
material behaves when subjected to different conditions4.

To proceed, we must define the dependent and independent variables. As Oden
(2012) states, variables whose response is experienced by observation are a natural choice
for independent ones. By considering that, we define

SA = τ1(Υ1), T̂ A
skew = τ2(Υ2), T̂ B = τ3(Υ3), (2.62-2.64)

h0 = τ4(Υ4), k0 = τ5(Υ5), q0 = τ6(Υ6), (2.65-2.67)

where τ(·) represents a constitutive relation and Υ(·) is a set of independent variables that
we might expect to influence the dependent ones that will be those variables will be clear
from the following developments.

Now, we want to impose restrictions on the constitutive equations by applying
the second law of thermodynamics. Then, the first step is to define the general free-energy
density and the pseudo-potential of dissipation used in this model.

2.2.3.1 General Free-Energy

The general free-energy density that we consider in this work is an extension
of that presented in Costa-Haveroth et al. (2022) and is given by

ψ0 := ψ
(
θ,∇pθ,E

A, ÊB,H (EA),H (ÊB), φ,∇pφ
)

= ψc + ψm, (2.68)

where

ψc := ψc

(
θ,∇pθ,E

A, ÊB, φ,∇pφ
)
,

is the traditional space-time pointwise potential, and

ψm := ψm

(
θ,∇pθ,E

A, ÊB,H (EA),H (ÊB), φ,∇pφ
)
,

4 The constitutive relations must satisfy some fundamental principles (determinism, material frame
indifference, physical consistency, amog others). See Oden (2012) for details.
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is the potential related to possible memory effects in the strain field 5 (see Sec. 1.2 for
comments on the fading memory effects). Furthermore, for simplicity of notation, we use
ψ = ψ0 henceforth.

Here, we consider only strain free materials for all time t before the initial
analysis time t0 = 0. It means that EA(p, t) = ÊB(p, t) = 0, ∀t < t0, and

Ht(EA) = H (EA)(p, t) = {EA(p, s), 0 < s < t)}, (2.69)

and

Ht(ÊB) = H (ÊB)(p, t) = {ÊB(p, s), 0 < s < t)}. (2.70)

where Ht(ÊA) and Ht(ÊB) denote the histories of the Green-Lagrange strain tensors EA

and ÊB up to time t, respectively. Definitions (2.69) and (2.70) are particular cases of
that proposed in Fabrizio (2014).

Now let us consider the rheological model presented in Fig. 2.2 to follow the
arguments. Conventionally, the rheological arrangements are used to illustrate the one-
dimensional case. Herein, we use it to construct an analogy for the three-dimensional
case.

If we consider that the body B0 can be represented by the model of Fig. 2.2,
then Eq. (2.68) can be rewritten as

ψ = ψA
c

(
θ,∇pθ, φ,∇pφ,E

A
)

+ ψA
m

(
θ,∇pθ, φ,∇pφ,Ht(EA)

)
+ψB

c

(
θ,∇pθ, φ,∇pφ, Ê

B
)

+ ψB
m

(
θ,∇pθ, φ,∇pφ,Ht(ÊB)

)
= ψc + ψm, (2.71)

where ψA
c and ψB

c are the classical space-time pointwise potentials associated with the
rheological parts A and B, respectively; and ψA

m and ψB
m are the potentials that account

for possible fading memory effects in the strain field for A and B, respectively. Both,
ψc := ψA

c + ψB
c and ψm := ψA

m + ψB
m, are presented here in a general way. Specialized

equations for these functions can be obtained by selecting the material to be modeled (for
the case of viscoelastic materials, see Sec. 3.1.1).

We follow Costa-Haveroth et al. (2022) and use the potentials ψA
m and ψB

m as

ψA
m

(
φ,Ht(EA)

)
= GA

m (φ)
ρ0

ψ̃A
m

(
Ht(EA)

)
,

and

ψB
m

(
φ,Ht(ÊB)

)
= GB

m(φ)
ρ0

ψ̃B
m

(
Ht(ÊB)

)
, (2.72)

5 Christensen (2012, pg.265) also presents the general free-energy density due to the strain and its fading
memory parts. It is comparable with the total free-energy ψ of Eq. (2.68), but kept in the general form
and not split as proposed here.
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where GA
m(φ), GB

m(φ) ≥ 0 are proper damage degradation functions that will be specified
in Sec. 3.1.4, and the potentials ψ̃A

m(Ht(EA)) and ψ̃B
m(Ht(ÊB)) are defined as

ψ̃A
m

(
Ht(EA)

)
= 1

Γ(1− α)

NA

(
EA

t ,E
A
0

)
tα

+α
∫ t

0

NA

(
EA

t ,E
A
τ

)
(t− τ)1+α

dτ
 ,

and

ψ̃B
m

(
Ht(ÊB)

)
= 1

Γ(1− α)

NB

(
ÊB

t , Ê
B
0

)
tα

+α
∫ t

0

NB

(
ÊB

t , Ê
B
τ

)
(t− τ)1+α

dτ
 ,

where α is a scalar with lies in the interval (0, 1), Γ(·) is the standard Gamma function
(ARTIN, 2015), EA

(·) := EA(p, ·) and ÊB
(·) := ÊB(p, ·). Furthermore, N(·)(Z1,Z2) is a

continuous function of second-order symmetric tensors Z(·) satisfying the conditions
defined in Costa-Haveroth et al. (2022):

(a) N (Z1,Z2) ≥ 0, ∀ Z(·);

(b) |N (Z1,Z2)| ≤ C(Z1,Z2)|Z1 −Z2|β, with β ≥ 1 + α and C(Z1,Z2) bounded as
|Z1 −Z2| → 0+;

(c) |∂Z1N (Z1,Z2)| ≤ C1(Z1,Z2)|Z1 −Z2|β1 , with β1 ≥ α and C1(Z1,Z2) bounded as
|Z1 −Z2| → 0+.

We also emphasize that although the gamma function and the domain boundary
have the same symbol Γ, the context used in each case is clear, with no ambiguity.

In Costa-Haveroth et al. (2022), we present several examples of possible choices
for N satisfying the conditions (a-c). In particular, Appendix E.2.2 shows a choice for
ψm, which leads to a constitutive relation stress/strain in terms of fractional derivatives
and will be used further on.

We could include the dependence of ψ̃A
m and ψ̃B

m on θ,∇pθ and∇pφ, as indicated
in Eq. (2.71); however, it results in longer computations. To maintain the exposition simple,
in this work, we consider ψ̃A

m and ψ̃B
m depending only on the fading memory effects on the

strain field.

By applying the standard chain rule in Eq. (2.71), we obtain the time derivative
of ψ:

ψ̇ = ψ̇c + ψ̇m = ψ̇A
c + ψ̇B

c + ψ̇A
m + ψ̇B

m

= ∂θψ
A
c θ̇ + ∂∇pθψ

A
c

˙∇pθ + ∂EAψA
c : ĖA + ∂φψ

A
c φ̇+ ∂∇pφψ

A
c

˙∇pφ+ ∂θψ
B
c θ̇

+∂∇pθψ
B
c

˙∇pθ + ∂ÊBψ
B
c : ˙̂

EB + ∂φψ
B
c φ̇+ ∂∇pφψ

B
c

˙∇pφ

+SA
m : ĖA + GA′

m

ρ0
ψ̃mφ̇−RA + T̂ B

m : ˙̂
EB + GB′

m

ρ0
ψ̃mφ̇−RB, (2.73)
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where ∂(·)ψ
(·)
c is the partial derivative of ψ(·)

c on the subscribed variable,

SA
m = GA

m(φ)
ρ0

1
Γ(1− α)

[
∂EA

t
NA(EA

t ,E
A
0 )

tα
+α

∫ t

0

∂EA
t
NA(EA

t ,E
A
τ )

(t− τ)1+α
dτ
]
,

T̂ B
m = GB

m(φ)
ρ0

1
Γ(1− α)

∂ÊB
t
NB(ÊB

t , Ê
B
0 )

tα
+α

∫ t

0

∂ÊB
t
NB(ÊB

t , Ê
B
τ )

(t− τ)1+α
dτ
 ,

RA = GA
m(φ)
ρ0

α

Γ(1− α)

[
NA(EA

t ,E
A
0 )

t1+α
+ (1 + α)

∫ t

0

NA(EA
t ,E

A
τ )

(t− τ)2+α
dτ
]
≥ 0,

and

RB = GB
m(φ)
ρ0

α

Γ(1− α)

[
NB(ÊB

t , Ê
B
0 )

t1+α
+ (1 + α)

∫ t

0

NB(ÊB
t , Ê

B
τ )

(t− τ)2+α
dτ
]
≥ 0. (2.74)

where RA, RB ≥ 0, due to the property (b) of the functions N(·). Appendix E.2.1 show
the obtaining of ψ̇A

m and ψ̇B
m. It also presents a property mandatory for inequality (2.56).

2.2.3.2 The Coleman-Noll Method

In this section, we will apply the Coleman-Noll argument (COLEMAN, 1964a;
COLEMAN, 1964b), which restricts the nature of constitutive equations imposed by the
second law of thermodynamics. To proceed with, we split additivelly the constitutive
relations in Eqs. (2.62), (2.64-2.67) as follows:

SA = (nd)SA + (d)SA, (2.75)

T̂ B = (nd)T̂ B + (d)T̂ B, (2.76)

h0 = (nd)h0 + (d)h0, (2.77)

k0 = (nd)k0 + (d)k0, (2.78)

and
q0 = (nd)q0 + (d)q0. (2.79)

The first part terms, indicated by the left superscript (nd)(·), will be derived by using the
free-energy density. The remaining ones, indicated by the left superscript (d)(·), will be
obtained by using pseudo-potential of dissipation6. We expect that the (nd)(·) terms do
not contribute to the entropy increase in the system. On the other hand, the (d)(·) part
necessarily contributes to the entropy increase; that is, they are essentially dissipative
terms (see Sec. 2.2.3.2.2 for further explanation on these aspects). Additionally, we consider
6 We could also have included the split of the tensor T̂ A

skew in this step; however, we will consider that the
effects included by its conjugated tensor, WA, are purely dissipative. Then, the constitutive equation
for T̂ A

skew = (d)T̂ A
skew will be obtained by using the pseudo-potential of dissipation.
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that the heat flux is purely irreversible, or, on other words, (nd)q0 = 0 and, as in Frémond
and Shitikova (2002), we assume that (d)h0 = 0.

Remember that, for any sufficiently smooth field it is correct to consider
˙∇p(·) = ∇p

˙(·). Then, using this relation, replacing Eq. (2.73) in the entropy inequality
(2.56) and using the split of the variables into dissipative and nondissipative components
given in Eqs. (2.75)-(2.79), we obtain

−ρ0
(
η0 + ∂θ(ψA

c + ψB
c )
)
θ̇ +

(
(nd)SA + (d)SA − ρ0∂EAψA

c − ρ0S
A
m

)
: ĖA + ρ0R

A

+
(
det(F A)(nd)T̂ B + det(F A)(d)T̂ B − ρ0∂ÊBψ

B
c − ρ0T̂

B
m

)
: ˙̂
EB + ρ0R

B

+ det(F A)T̂ A
skew : Ŵ A − ρ0∂∇pθ

(
ψA

c + ψB
c

)
∇p

(
θ̇
)
−

(d)q0

θ
∇p (θ)

+
(

(nd)k0 −GB′

m ψ̃
B
m −GA′

m ψ̃
A
m − ρ0∂φ

(
ψA

c + ψB
c

))
φ̇

−
(
ρ0∂∇p(φ)

(
ψA

c + ψB
c

)
− (nd)h0

)
∇pφ̇+ k

(d)
0 φ̇+ θdivp(Φ0,m)− θρ0ω0,m ≥ 0. (2.80)

This inequality will be crucial in the arguments that follow to obtain the correct constitutive
relations.

2.2.3.2.1 Terms Derived from the Free-Energy

The terms derived from the free-energy are generally non-dissipative. To proceed
with the arguments, we observe that dissipation is a term associated to the increase of
the entropy; that is, terms appearing in the constitutive relations of a given material are
considered dissipative when they contribute for the entropy increasing; otherwise, they are
considered non-dissipative.

This means that the non-dissipative terms in the inequality (2.80) necessarily
must not contribute to the increase of the entropy. In other words, their contribution to
(2.80) must be zero. This is done by imposing that

−ρ0
(
η0 + ∂θ

(
ψA

c + ψB
c

))
θ̇ +

(
(nd)SA − ρ0∂EAψA

c − ρ0SmA

)
: ĖA

+
(
det(F A)(nd)T̂ B − ρ0∂ÊBψ

B
c − ρ0T̂

B
m

)
: ˙̂
EB − ρ0∂∇p(θ)

(
ψA

c + ψB
c

)
∇p

(
θ̇
)

+
(

(nd)k0 −GB′

m ψ̃
B
m −GA′

m ψ̃
A
m − ρ0∂φ(ψA

c + ψB
c )
)
φ̇

−
(
ρ0∂∇p(φ)

(
ψA

c + ψB
c

)
− (nd)h0

)
∇pφ̇ = 0. (2.81)

Since θ̇, ĖA, ˙̂
EB, ∇pθ̇, φ̇ and ∇pφ̇ of Eq. (2.81) are independent and arbitrary, the

traditional Coleman-Noll method leads to

η0 = −∂θψc, ∂∇p(θ)ψc = 0, (2.82-2.83)

(nd)SA = ρ0∂EAψA
c + ρ0S

A
m,

(nd)T̂ B = 1
det(F A)

(
ρ0∂ÊBψ

B
c + ρ0T̂

B
m

)
, (2.84-2.85)
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h0 = (nd)h0 = ρ0∂∇p(φ)ψc,
(nd)k0 = ρ0∂φψc + ∂φG

B
mψ̃

B
m + ∂φG

A
mψ̃

A
m. (2.86-2.87)

Note that we can obtain the constitutive equations for η0, (nd)SA , (nd)T̂ B, (nd)h0 and (nd)k0

directly from ψc := ψA
c + ψB

c , once it is defined. Furthermore, we note that the free-energy
density cannot depend on the gradient of the temperature ∇p (θ); a condition captured by
Eq. (2.83).

2.2.3.2.2 Dissipative Terms and Pseudo-Potential of Dissipation

Next, to obtain the dissipative terms, we replace in inequality (2.80) the just
obtained expressions for the non-dissipative terms; remembering that θ > 0, we are left
with

(d)SA

θ
ĖA + det(F A)

θ
(d)T̂ B : ˙̂

EB + det(F A)
θ

T̂ A
skew : Ŵ A −

(d)q0

θ2 · ∇p (θ) +
(d)k0

θ
φ̇

+divp(Φ0,m)− ρ0ω0,m + ρ0

θ
(RA +RB) ≥ 0. (2.88)

In order to establish a simple theory, we simplify this last expression by taking
ω0,m = (RA +RB)/θ and Φ0,m = 0. The last consideration means that there is no additional
flux of entropy and the specific entropy production due to microscopic features other than
thermal ones. Then, we obtain that RA and RB are related to the damage mechanisms.

Considering these results in (2.88), we obtain the following simplified form of
the dissipation inequality:

(d)SA

θ
ĖA + det(F A)

θ
(d)T̂ B : ˙̂

EB + det(F A)
θ

T̂ A
skew : Ŵ A−

(d)q0

θ2 ·∇p (θ)+
(d)k0

θ
φ̇ ≥ 0. (2.89)

To ensure the inequality (2.89), it is sufficient consider the coefficients (ir)k/θ,
(d)SA/θ, (d)T̂ B/θ, T̂ A

skew/θ, −(d)q/θ2 and (d)k0/θ as the derivatives of the pseudo-potential
of dissipation ψd with respect to ĖA, ˙̂

EB, Ŵ A, ∇p (θ) and φ̇, respectively.

We follow (BOLDRINI et al., 2016), and adopt ψd with the general form

ψd = ψd(ĖA,
˙̂

EB, Ŵ A,∇pθ, φ̇,E
A, ÊB, θ, φ,∇pφ) ≥ 0, (2.90)

where ψd(0,0,0,0, 0,Θ) = 0 with Θ = {EA, ÊB, θ, φ,∇pφ}. Furthermore, it must be
convex and continuous on the independent variables φ̇, ĖA, ˙̂

EB, Ŵ A, and ∇pθ (details
on the pseudo-potential of dissipation properties can be found in Frémond and Shitikova
(2002, p. 22)). Then, when ψd is differentiable. we obtain that

(d)SA = θ∂ĖAψd,
(d)T̂ B = θ

det (F A)∂ ˙̂
EBψd, T̂ A

skew = θ

det (F A)∂W Aψd, (2.91-2.93)

(d)q0 = −θ2∂∇p(θ)ψd,
(d)k0 = θ∂φ̇ψd. (2.94-2.95)

For the case where ψd is non-differentiable, the previous derivatives must be substituted
by subdifferentials.
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3 A Damage Phase-Field Model with Frac-
tional Viscoelasticity

The framework derived in Chapter 2 is rather general since suitable free-energy
potential, ψ, and pseudo-potential of dissipation, ψd, allow us to model different materials.
Henceforward, we want to particularize it to the class of viscoelastic materials.

In this chapter, we present a thermodynamically consistent framework that
couples the features of phase-field methodology and the fractional derivative to describe
the damage in viscoelastic materials. Written in the Lagrangian configuration, the resulting
model describes the diffuseness of the crack interface using a scalar phase-field variable.
Such model allows for describing finite strain and includes non-isothermal considerations
in a thermodynamic consistent way. Furthermore, the model can be particularized to meet
different rheological arrangements.

3.1 Viscoelastic Series Model
As discussed in Sec. 2.1, viscoelastic series models can be represented by the

rheological arrangement shown in Fig. 2.2. Strictly speaking, rheological arrangements
are used to illustrate the one-dimensional case; however, we will use it to give physical
meaning to the following arguments and construct an analogy for the three-dimensional
case. Remember also that the the multiplicative decomposition of F , given in Eq. (2.1),
governs the strain process.

3.1.1 A Particular Free-Energy Potential

Consider the rheological arrangement illustrated in Fig. 3.1. If we assume that
there is no memory components for part A, then we can take ψA

m = 0 in Eq. (2.71), which
simplifies to

ψ = ψA
c (θ, φ,∇p (φ) ,EA) + ψB

c (θ, φ,∇p (φ) , ÊB) + ψB
m

(
θ, φ,∇p (φ) ,Ht(ÊB)

)
. (3.1)

Here, ψc := ψA
c + ψB

c does not depend on ∇p (θ) due to Eq. (2.83).

The “local” free-energy density ψA
c is split in three terms:

ρ0ψ
A
c

(
θ, φ,∇p (φ) ,EA

)
= GA

h (φ)ψA
h

(
EA

)
+ ψA

θ (θ) + IA
(
φ,∇p (φ) ,EA

)
. (3.2)

Similarly, for ψB
c we have

ρ0ψ
B
c

(
θ, φ,∇p (φ) , ÊB

)
= GB

h (φ)ψB
h

(
ÊB

)
+ ψB

θ (θ) + IB
(
φ,∇p (φ) , ÊB

)
. (3.3)
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Figure 3.1 – Rheological connection of two components in series where Part A has no contribution
of memory effects. This arrangement is used for the viscoelastic model of this work.

Remark 3.1. Herein, the energies with the subscript ψ(·)
h are related to the hyperelastic

deformation and G(·)
h (φ) ≥ 0 are proper damage degradation functions of the elastic part

of the free-energy which will be characterized and discussed further in Sec. 3.1.4. The
energies with the subscript ψ(·)

θ are related to purely thermal effects. Damage contributions
are considered in I (·).

We consider that both parts, A and B, of the rheological model of Fig. 3.1 will
include a hyperelastic compressible Neo-Hookean spring (see Appendix D). In this case,
the energy density related to a compressible Neo-Hookean material in part A is given,
according to Bonet and Wood (2008), by

ψA
h := ψA

h

(
EA

)
= µA

2
[
tr
(
CA

)
− 3

]
− µA ln

[
det

(
CA

)] 1
2 + λA

2

[
ln
(
det

(
CA

)) 1
2
]2
, (3.4)

where µA and λA are the associated Lamé material parameters and CA is the right
Cauchy-Green strain tensor related to part A and defined by

CA :=
(
F A

)t
F A = 2EA + I. (3.5)

In the same way, for part B, we have the following energy density:

ψB
h := ψB

h

(
ÊB

)
= µB

2
[
tr
(
ĈB

)
− 3

]
− µB ln

[
det

(
ĈB

)] 1
2 + λB

2

[
ln
(
det

(
ĈB

)) 1
2
]2
. (3.6)

where µB and λB are the Lamé material parameters and ĈB is the right Cauchy-Green
strain tensor defined in Eq. (2.58). The non-linear elastic behavior (hyperelasticity) given
by Eqs. (3.4) and (3.6) allows to consider finite strain.

The part of the free-energies related to thermal effects are assumed to be as in
Frémond and Shitikova (2002):

ψ
(·)
θ (θ) = −cvθ ln θ,

where cv is the heat capacity.
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According to Costa-Haveroth et al. (2022), the energy densities that account
for the damage contribution are given by

I (·) (φ,∇pφ, ·) = gc

(
γc

2 ∇pφ ·C−1∇pφ+ 1
γc

H(φ)
)
, (3.7)

where C = F tF (see Eq. (C.25)) represents the total right Cauchy-Green strain tensor
for the system. The Griffith fracture constant gc > 0 is fixed (PEREZ, 2016) and

H(φ) = φ2

2 , (3.8)

is the potential for φ ∈ [0, 1] (BOLDRINI et al., 2016). The constant γc > 0 characterizes
the magnitude of the width for the fractured layers. From Bourdin, Francfort and Marigo
(2008), it regulates the crack path diffuseness and can recover the sharp cracks in the
limit γc → 0. Furthermore, according to Haveroth et al. (2020), γc is also related to crack
propagation speed; as γc increases, the crack propagates faster.

Remark 3.2. The first term in the right-hand side of (3.7), when expressed in Eulerian
coordinates is exactly ψ(φ) = gc

γc

2 |∇x(φ)|2. This expression corresponds to the standard
physical assumption that some quantity of the energy related to damage concentrates in
transition layers of the damage phase-field.

For ψB
m, the free-energy density related with memory effects in part B, we

consider the definition in Eq. (2.72) with ψ̃B
m given by

ψ̃B
m = κ

ρ0


(
ÊB

t − Ê0
)

: A :
(
ÊB

t − ÊB
0

)
tα

+ α
∫ t

0

(
ÊB

t − ÊB
τ

)
: A :

(
ÊB

t − ÊB
τ

)
(t− τ)1+α

dτ
 ,

(3.9)

and
κ = 1

2Γ(1− α) .

Here, A is a constitutive forth-order symmetric positive definite tensor whose specific
form will be described in Sec. 5.1.1. Remember also that, ÊB

(·) := ÊB(p, (·)). See further
discussion about the choice of ψ̃B

m in Appendix E.2.2.

Deriving Eq. (3.9) with respect to ÊB leads to the stress associated to the
memory effects in part B:

T̂ B
m = GB

m(φ)
ρ0

[
A : 0Dt

αÊB
t + κ

(
ÊB

t − ÊB
0

)
: ∂ÊBA :

(
ÊB

t − ÊB
0

)
tα

+κα
∫ t

0

(
ÊB

t − ÊB
τ

)
: ∂ÊBA(ÊB

t ) :
(
ÊB

t − ÊB
τ

)
(t− τ)1+α

dτ
 , (3.10)
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and

RB
m = GB

m(φ)
ρ0

κ


(
ÊB

t − ÊB
0

)
: A :

(
ÊB

t − ÊB
0

)
tα+1

+(α + 1)
∫ t

0

(
ÊB

t − ÊB
τ

)
: A :

(
ÊB

t − ÊB
τ

)
(t− τ)2+α

dτ
 , (3.11)

where RB
m is defined previously for the general case in (2.74). Equation (3.10) presents the

term 0Dt
αÊB, that is the Caputo fractional derivative of ÊB (see Sec. 1.2.2); the tensor

A weights this fractional derivatives. Appendix E.2.2 details how Eq. (3.10) is obtaining.

3.1.2 Specialization of the Pseudo-Potential of Dissipation

Previously, we established that the specific model presented in this chapter
does not have memory components for part A, as can be seen in Fig. 3.1. In other words,
part A is non-dissipative and, consequently, the pseudo-potential of dissipation does not
depend on ĖA. Therefore, a possible choice for ψd, that ensures the conditions in Sec.
2.2.3.2.2, is

ψd

( ˙̂
EB, Ŵ A,∇p (θ) , φ̇,Θ

)
= b̃(Θ)

2 |
˙̂

EB|2 + ϵ̃(Θ)
2 |Ŵ

A|2 + c̃(Θ)
2 ∇p (θ) ·C−1∇pθ

+ λ̃(Θ)
2 |φ̇|2, (3.12)

where Θ = {EA, ÊB, θ, φ,∇p (φ)}; b̃ > 0 and c̃ > 0 are the viscous damping and the heat
conductivity associated with the material, respectively (BOLDRINI et al., 2016). The
parameter ϵ̃ > 0 can be considered a spin variable associated with the material, and the
inverse of λ̃ is the rate of change of φ, and we take it as in Boldrini et al. (2016):

1
λ̃

= cλ

(1 + δ − φ)ζ
> 0, (3.13)

where cλ > 0 and ζ > 0 are material parameters and δ is a very small perturbation inserted
to avoid singularity when φ = 1. See Costa-Haveroth et al. (2022) for comments on the
form of Eq. (3.12).

By considering the pseudo-potential of dissipation of Eq. (3.12), and Eqs.
(2.92-2.95), we obtain

(d)T̂ B = θ

det(F A) b̃(Θ)ĖB, T̂ A
skew = θ

det(F A) ϵ̃(Θ)W A, (3.14-3.15)

(d)k0 = θλ̃φ̇, (d)q0 = −θ2c̃(Θ)∇pθ. (3.16-3.17)
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3.1.3 Stress Tensors of the Model

We have three stress tensors associated with the proposed model: SA, T̂ B and
T̂ A

skew. Once T̂ A
skew is given by Eq. (3.15), this section focus on obtaining SA and T̂ B.

The specific viscoelastic model developed in this chapter does not present
dissipative terms in part A; then (d)SA = 0. Furthermore, as part A does not present
memory terms, SA

m = 0. From Eqs (2.75), (2.84), and (3.2), it is possible to write the
stress tensor SA according to

SA = ρ0∂EAψA
c = GA

h ∂EAψA
h + ∂EAIA. (3.18)

From Eq. (3.4), it is simple to obtain

∂EAψA
h = µA

(
I −

(
CA

)−1
)

+ λA ln
(

det
(
CA

)1/2
) (

CA
)−1

,

as show in Appendix D.

On the other hand, the analytic development of ∂EAIA holds extensive algebraic
difficulties (see Appendix E.3 for comments); then, it will not explicitly evaluated at this
moment.

In summary, Eq. (3.18) can be rewritten, as

SA = GA
h

[
µA

(
I −

(
CA

)−1
)

+ λA ln
(

det
(
CA

)1/2
) (

CA
)−1

]
+ ∂EAIA. (3.19)

The stress tensor T̂ B can be obtained by replacing Eqs. (2.85) and (2.92) in
Eq. (2.76):

T̂ B = (nd)T̂ B + (d)T̂ B

= 1
det(F A)

(
ρ0∂ÊBψ

B
c + ρ0T̂

B
m + θ∂ ˙̂

EBψd

)
. (3.20)

The above equation can be associated with the stress generated by part B of the rheological
arrangement given in Fig. 3.1.

By considering Eq. (3.3), we obtain

∂ÊBψ
B
c = 1

ρ0

(
GB

h ∂ÊBψ
B
h + ∂ÊBIB

)
. (3.21)

The derivative in the first right-hand side term is obtained from Eq. (3.6) (see details in
Appendix D), which leads to

∂ÊBψ
B
h = µB

(
I −

(
ĈB

)−1
)

+ λB ln
(

det
(
ĈB

)1/2
) (

ĈB
)−1

,

whereas the second one is evaluated by replacing

C−1 = F −1(F )−t =
(
F A

)−1(
F B

)−1(
F B

)−t(
F A

)−t
=
(
F A

)−1(
ĈB

)−1(
F A

)−t
. (3.22)
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in (3.7) and remembering that ĈB = 2ÊB + I:

∂ÊBIB = 2∂ĈBIB = ∂ĈB

[
gcγc∇pφ ·

(
F A

)−1(
ĈB

)−1(
F A

)−1
∇p (φ)

]
. (3.23)

After algebraic manipulation, Eq. (3.23) becomes

∂ÊBIB = −gcγc

[(
ĈB

)−1(
F A

)−t
∇p (φ)

]
⊗
[(

ĈB
)−1(

F A
)−t
∇p (φ)

]
. (3.24)

For details on obtaining Eq. (3.24), see Appendix E.4.

Taking into account Eqs. (3.20), (3.14) and (3.24), and considering the expres-
sion for T̂ B

m given by Eq. (3.10), the second Piola-Kirchhoff stress tensor T̂ B is given
by

T̂ B = 1
det (F A)

{
GB

h

[
µB

(
I −

(
ĈB

)−1
)

+ λB ln
(

det
(
ĈB

)1/2
)(

ĈB
)−1

]
+θb̃ (Θ) ˙̂

EB − gcγc

[(
ĈB

)−1(
F A

)−t
∇pφ

]
⊗
[(

ĈB
)−1(

F A
)−t
∇pφ

]

+G
B
m

ρ0

A : 0Dt
α(ÊB

t ) + κ

(
ÊB

t − ÊB
0 0
)

: ∂ÊBA :
(
ÊB

t − ÊB
0

)
tα

+κα
∫ t

0

(
ÊB

t − ÊB
τ

)
: ∂ÊBA :

(
ÊB

t − ÊB
τ

)
(t− τ)1+α

dτ
 (3.25)

= T̂ B
class + T̂ B

frac, (3.26)

where

T̂ B
class = 1

det (F A)

{
GB

h

[
µB

(
I −

(
ĈB

)−1
)

+ λB ln
(

det
(
ĈB

)1/2
)(

ĈB
)−1

]
+θb̃ (Θ) ˙̂

EB − gcγc

[(
ĈB

)−1(
F A

)−t
∇pφ

]
⊗
[(

ĈB
)−1(

F A
)−t
∇p (φ)

]}
,

(3.27)

and

T̂ B
frac = 1

det (F A)

GB
m

ρ0

A : 0Dt
α(ÊB

t ) + κ

(
ÊB

t − ÊB
0

)
: ∂ÊBA :

(
ÊB

t − ÊB
0

)
tα

+κα
∫ t

0

(
ÊB

t − ÊB
τ

)
: ∂ÊBA :

(
ÊB

t − ÊB
τ

)
(t− τ)1+α

dτ
 . (3.28)

As will be discussed in Sec. 3.2, by using the analogy with the rheological
arrangement, the first term in (3.27) represents the stress by the Neo-Hookean spring;
the second one represents a dashpot; and the last one gives the thermal influences. On
the other hand, T̂ B

frac, represents the stress by other memory terms. Costa-Haveroth et al.
(2022) presented a study on the last two terms of Eq. (3.28) and shown that they give
almost no contribution to the total stress, and can be neglected in several cases.
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3.1.4 Degradation Functions

In this section, we review the degradation functions G(·)
(·)(φ), that appear in the

stress Equations (3.19) and (3.25). These functions induce the damage effect describing the
stiffness variation between undamaged (without voids) and damaged material. According
to Miehe, Welschinger and Hofacker (2010b), the degradation function G(·)

(·)(φ) must satisfy:

G
(·)
(·)(φ) > 0, G

(·)
(·)(φ) =

 1 if φ = 0,
0 if φ = 1,

and ∂φG
(·)
(·)(1) = 0. (3.29)

There are many proposals for G(·)
(·)(φ) depending on the material (KUHN;

SCHLÜTER; MÜLLER, 2015; BORDEN et al., 2016; HAVEROTH et al., 2020). For
instance, Miehe, Hofacker and Welschinger (2010b) use the function

G
(·)
(·)(φ) := G1(φ) = (1− φ)2. (3.30)

In fact, Eq. (3.30) is one of the most used in the literature for modeling of crack in metals;
however, it is not a suitable option to model viscoelasticity, which presents a distinct
fracture pattern.

As commented in Sec. 1.2.4, the damage process in viscoelastic materials
combines two failure mechanisms: slippage and chain disjuction. When the slippage along
the chains arises, the stiffness decreases. As the slippage evolves, the stress levels increase.
In contrast, function G1 yields a significant loss of stiffness, as shown in Fig. 3.2.

Figure 3.2 – Degradation functions.

(a) G2 for b = c = 1 and a vary-
ing.

with:

(b) G2 for a = c = 1 and b vary-
ing.

with:

(c) G2 for a = b = 1 and c vary-
ing.

with:

Costa-Haveroth et al. (2022)

Based on the above mentioned criticisms, in Costa-Haveroth et al. (2022), we
designed a novel degradation function defined by

G
(·)
(·)(φ) := G2(φ) = (1− φ)3 + aφd(1− φ)d

1 + b(φ− c)2 , (3.31)
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where a, b, c > 0 and d = 1.05. We fix the constant d to obtain the expected behavior
in G2; however it could be included as an extra parameter in the inverse identification.
Figure 3.2 presents the response of G2 by the variation of the parameters a, b and c. Note
that, differently from the quadratic function G1, the new function G2 is able to introduce
transition ranges in the damage process.

For a specific region, function G2 makes the damage grow slowly. This behavior
can be related with the microstructural evolution in strain processes for viscoelastic
materials. In fact, the parameters a, b, and c, used in Eq. (3.31) govern G2 and can be
related to the slippage of the chains. In other words, the variation of these parameters
changes the concavity of G2 accordingly, and allows flexibility for modeling materials, once
the speed between slippage and the rupture is best controlled.

Section 5.1.3.2 shows the comparisons between G1 and G2, as a review on the
results previously published in Costa-Haveroth et al. (2022).

3.1.5 System of Equations for the Viscoelastic Series Model

In this section, we outline the final system of equations that accounts for the
evolution of motion, damage, and temperature in a body with viscoelastic behavior.

1. Firstly, the motion is governed by the balance of linear momentum:

ρ0v̇0 = ρ0f0 + divp

(
det(F A)F

(
F A

)−1
T̂ B

(
F A

)−t
)
, (3.32)

where u̇ = v. We recall that T̂ B is the stress given by Eq. (3.25).

2. The equation for the damage can be found by replacing k0 and h0 in Eq. (2.41a) and
applying Eqs. (2.77), (2.78) and (2.95). Remembering that ψ̃A

m = 0 in this model,
we obtain

θ∂φ̇ψd = divp(ρ∂∇pφψc)− ρ0∂φψc − ∂φG
B
mψ̃

B
m. (3.33)

Note that, Eq. (3.33) is written in terms of the potentials ψd, ψc and ψ̃B
m, given

by Eqs. (3.12), (3.1) and (3.9), respectively. Then, by solving the derivatives in Eq.
(3.33), we obtain

φ̇ = 1
λ̃θ

divp

(
2gcγc(C)−1∇p (φ)

)
− 2gc∂φH(φ)

γcλ̃θ
− ∂φG

λ̃θ

(
ψA

h + ψB
h + ψ̃B

m

)
,

(3.34)

where G = G
(·)
h = G(·)

m , meaning that we choose, for simplicity, degrading the
hyperelastic part of the model and the part associated with memory effects in the
same way.
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3. The equation that governs the temperature variation is obtained by Eq. (2.54). We
use Eqs. (2.94), (2.78), (2.87), and (2.86) to obtain

ρ0ė0 = −divp(θ2∂∇p(θ)ψd) + ρ0r0 + SA : ĖA + det(F A)T̂ A
skew : Ŵ A

+ det(F A)T̂ B : ˙̂
EB +

(
ρ∂φψc + θ∂φ̇ψd + ∂φGψ̃m

)
φ̇+ ρ∂∇p(φ)ψc · ∇p (φ̇) .

(3.35)

Replacing the expressions for SA, T̂ A
skew, and T̂ B, given respectively by Eqs. (3.18),

(2.93) and (3.20) in Eq. (3.35), and using the specific free-energy of Helmholtz , we
can write

−ρ0θ∂
2
θψcθ̇ = divp(θ2∂∇pθψd) + ρ0r0 + ρ0θ∂θ∂EA

ψA
c : ĖA

+θ∂ŴA
ψd : Ŵ A +

(
ρ0θ∂θ∂EBψB

c + θ∂ĖBψd

)
: ĖB

+ρ0R
B + (ρ0θ∂θ∂φψc + θ∂φ̇ψd)φ̇+ ρ0θ∂θ∂∇pφψc∇pφ̇, (3.36)

where RB is given by (3.11). The free-energies ψA
c and ψB

c are given by Eqs. (3.2)
and (3.3), respectively, while the pseudo-potential of dissipation ψd is given by Eq.
(3.12), leading to the equation that governs the temperature:

θ̇ = 1
2cv

[
divp

(
θ2c̃C−1∇p (θ)

)
+ ρ0r0 + θb̃| ˙̂EB|2 + θλ̃|φ̇|2 + θϵ̃|Ŵ A|2 + ρ0R

B
]
.

(3.37)

4. Eqs. (2.1) and (2.59) are also considered for the evolution of the gradient of defor-
mation:

1
det(F A)F ASA

(
F A

)t
+ T̂ A

skew = ĈBT̂ B, (3.38)

and
F = FBFA. (3.39)

Equations (3.32), (3.34) and (3.37-3.39) constitute a system of nonlinear partial
differential equations (PDEs). The numerical approach used to account for the system
solution is presented in the next chapter.

Remark 3.3. We observe that the equations presented in this section do not necessarily
ensure the condition φ̇ > 0. In other words, the proposed model allows the possibility of
healing in meso and macro-cracks. Actually, this behavior can be found in real materials
(HAYES et al., 2007; LI; NETTLES, 2010; LI, 2014); however, in order to prevent healing
and ensure damage irreversibility, we assumed that the damage is irreversible by imposing
a numerical constrain that will be described in Sec. 4.2. Further discussion on the damage
ireversibility can be found in Costa-Haveroth et al. (2022).
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3.2 Simplifications and Sub-models
The model described in the previous sections allows to consider many simplifi-

cations which lead to different material behaviors. In the text that follows, we will discuss
some of these possibilities.

Firstly, consider the particularized model obtained if the tensor A is constant,
implying that the last two terms of Eq. (3.25) are null. In this case, the one-dimensional
version of the model can be represented by the rheological mechanism of Fig. 3.3a. Here,
part A in Fig. 3.1 is composed by the Neo-Hookean spring, and part B is composed by
a parallel combination of a Neo-Hookean spring, a dashpot and a spring-pot (fractional
element represented by the rhombus; see Sec. 1.2.2). The nature of the mentioned elements,
characterizes the stress/strain relation for the model. The dashpot allows to consider
viscous dissipative damping in the material and is represented by the term θb̃

˙̂
EB in

Eq. (3.27). The non-linear springs give suitable description on the contribution of the
Neo-Hookean material; the springs of part A and B act on the first two terms of Eq.
(3.19) and (3.27), respectivelly. The spring-pot, described by the term A : 0Dt

α(ÊB
t ) in Eq.

(3.25), allows to include both, elastic and viscous responses, in the same component. The
behavior of the spring-pot is governed by A and α. It is important to remember that, due
to the nature of a fractional derivative element, with interpolates between the behavior of
a spring (non-dissipative) and a dashpot (dissipative), it always includes some dissipation.
Additionally, the degradation functions GA

h (φ), GB
h (φ) and Gm(φ) in Eqs. (3.19) and (3.25)

indicate that the Neo-Hookean springs and the spring-pot include damage effects.

Figure 3.3 – Possible interpretations of our model in the one-dimensional case for A constant.
The spring represents the hyperelastic contribution of the Neo-Hookean material
and, the dashpot gives the viscous damping. The rhombus represents the fractional
rheological element.

(a) General series model.

Stress Stress

A B

(b) Modified fractional Zener model.

Stress Stress

A B

(c) Modified Zener model.

Stress Stress

A B
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If A is constant and b̃ = 0, then we obtain the modified fractional Zener1

model of Fig. 3.3b. On the other hand, if A is constant and viscoelastic effects due to the
fractional component are not considered, we recover the modified Zener model of Fig. 3.3c,
that is discussed in Costa-Haveroth et al. (2021).

Now, consider that the contribution of the Neo-Hookean spring of part A is
not acting for the material considered. Then, we recover a viscoelastic parallel model
shown in Fig. 3.4a and widely discussed in Costa-Haveroth et al. (2022). If part A is
not acting in the material, tensor A is constant and b̃ = 0, then we obtain the modified
fractional Kelvin-Voigt model of Fig. 3.4b. If A is constant and viscoelastic effects due to
the fractional component are not considered, we recover the modified Kelvin-Voigt model
of Fig. 3.4c.

Figure 3.4 – Viscoelastic parallel models as a particularization of our model.

(a) General parallel model.

Stress Stress

(b) Modified fractional
Kelvin-Voigt model.

StressStress

(c) Modified Kelvin-Voigt
model.

StressStress

Costa-Haveroth et al. (2022).

Remark 3.4. Even for the one-dimensional case, we emphasize that for small strain, the
Neo-Hookean spring becomes the traditional linear elastic spring. In this case, if part A is
not acting in the material, A and θ are constants, and no damage is considered, the model
described in this work recovers the usual fractional Kelvin-Voigt model, widely discussed
in the literature (LEWANDOWSKI; CHORĄŻYCZEWSKI, 2010; XU; XU; HU, 2015;
FARNO; BAUDEZ; ESHTIAGHI, 2018). Section 5.1.1.1 presents an example where this
simplification is considered. In fact, for that case, Eq. (3.25) is simplified for a widely
known equation, for which the thermodynamics were addressed by Lion (LION, 1997); a
free-energy potential was even derived with physical justification and the corresponding
mechanical dissipation potential was obtained. However, the model presented in this work
is more general, including the effects of non-linear dependence of A on ÊB, large strain,
thermal effects and damage.
1 In this work, we refer to modified fractional rheological model when the springs represent Neo-Hookean

springs, damage is acting, and termal effects are considered for the material behavior. If the springs
represent the traditional linear elastic material and damage or thermal effects are not considered, then
we refer to the traditional model.
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3.2.1 Viscoelastic Parallel Model

As previously commented, a possible simplification of the general model pro-
posed in this work is obtained when we consider that part A of the rheological arrangement
of Fig. 3.3a is not acting. This is equivalent to consider that the spring in A is totally rigid
(the elastic constant tends to infinity). Additionally, if viscous damping is not considered
(b̃ = 0), neither temperature variation, then, the representation is given by a parallel
rheological arrangement similar to that show in Fig. 3.4b.

In terms of the gradient decomposition of Eq. (2.1), this particular model is
obtained by considering F A = I. In other words, the intermediate configuration Ω̂ is the
same as the original configuration Ω0 and, the total gradient of deformation is given by
F = F B. It implies that the total stress acting in the system arises only from part B.
Then, the total first Piola-Kirchhoff stress tensor can given by P = P B.

Taking it into account, Eqs. (2.60) and Eq. (2.53) lead to

T̂ B = SB = S,

and

P = P B = F T̂ B = F SB = F S, (3.40)

where S is taken as the total Second Piola-Kirchhoff stress tensor.

In the same way, the total strain for the system is provided by part B. Then, the
total Green-Lagrange strain tensor is taken as E = ÊB. Similarly, the right Cauchy-Green
strain tensor is given by C = ĈB.

The governing equations for the evolution of motion, damage and temperature
in a body with viscoelastic behavior described by this parallel model can be resumed as
follows.

1. Due to Eq. (3.40), the relation (3.32), which express the motion in the system, can
be rewritten as

ρ0v̇ = divp(P ) + ρ0b0. (3.41)

where u̇ = v and P = F S. The constitutive relation stress/strain for S given by
the simplification of Eq. (3.25):

S = Gh

[
µ(I −C−1) + λ ln

(
(det(C))

1
2
)

C−1
]
−gcγc

(
C−1∇p(φ)

)
⊗
(
C−1∇p(φ)

)
+Gm

ρ0

[
A : 0Dt

α(Et) + κ
(Et −Eτ ) : ∂EA : (Et −Eτ )

tα

+κα
∫ t

0

(Et −Eτ ) : ∂EA : (Et −Eτ )
(t− τ)1+α

dτ
]
, (3.42)
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where Gh = GB
m and Gm = GB

m are the degradation functions associated with the
hyperelastic and the fractional-viscoelastic parts of the material, respectively. If A
is constant, then

S = Gh

[
µ(I −C−1) + λ ln

(
(det(C))

1
2
)

C−1
]
−gcγc

(
C−1∇p(φ)

)
⊗
(
C−1∇p(φ)

)
+Gm

ρ0
A : 0Dt

α(Et). (3.43)

2. The equation for the damage evolution is obtained by simplifying Eq. (3.34) as
follow:

φ̇ = 1
λ̃θ

divp

(
gcγcC

−1∇p(φ0)
)
− gc∂φH(φ)

γcλ̃θ
+ 1
λ̃θ
∂φGψh −

∂φG

λ̃θ

(
ψh + ψ̃m

)
,

where G = Gh = Gm, ψh is associated with hyperelastic energy of the Neo-Hookean
spring and ψ̃m is the energy associated with memory parts.

Finally, Equations (3.41) and (3.44) constitute a nonlinear system of PDEs
with fractional derivatives and memory terms.

Remark 3.5. The previously obtained equations, as a particular case of the general model
introduced in this thesis, are similar to those presented in Costa-Haveroth et al. (2022).
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4 Numerical Considerations

In this chapter we present the numerical approach used to solve the general
system of nonlinear partial differential equations (PDEs) presented in Sec. 3.1.5. This
procedure is a generalization of that proposed in Costa-Haveroth et al. (2022).

In order to simplify the numerical treatment, the temperature was remained
fixed. Then, it is sufficient describe the evolution of the damage variable, the displacement
and the tensors gradients of deformation, F A and F B, through the time.

The general methodology considers the application of a staggered scheme (also
called semi-implicit/explicit time integration scheme) and the Newton-Raphson (NR)
method (HAVEROTH et al., 2018). We solve each equation of the system separately by
a proper implicit time integration method. It leads to considerable computational gain
in comparison with traditional dependent and coupled approaches to solve systems of
nonlinear equations.

Details concerning the linearization and numerical considerations for each
equation are presented in the following sections. We also present a pseudo-code in Sec. 4.4
which summarizes the numerical treatment.

The time interval [0, tf ] is split intoN sub-intervals with time-step ∆t = tn−tn−1

and n = 1, · · · , N+1. We adopt the subscript (·)n+1 to indicate that the variable is updated
for the time tn+1 .

Remark 4.1. In the arguments that follow, we assume that we know all the information
of the discretized state variables up to time tn and show how to obtain the corresponding
information at tn+1.

To avoid computational burden, the spatial domain is discretizated for two-
dimensional finite element (FE) meshes. We consider the domain Ω0 divided into m

elements Ωq
0 where q = 1, · · · ,m, and Ω0 = ∪m

q=1Ω
q
0 and Ωq

0 ∩ Ωp
0 = ∅, ∀q ̸= p. The

estimation for vector z and scalar z valued-fields are written as a superposition of the
local nodal basis function Ni (the know Lagrange polynomials) in each q-th element,
i = 1, · · · , ϑ and ϑ is the quantity of nodes in the element:

zq ≃N z̃q and zq ≃ N̄ z̃q. (4.1-4.2)

The symbol (̃·) represents the nodal values for variable of interest and the interpolation
functions are organized in the matrices

N =
[
N1 N2 · · · Nϑ

]
, (4.3)
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and

N̄ =
N1 0 N2 0 · · · Nϑ 0

0 N1 0 N2 · · · 0 Nϑ

 . (4.4)

The gradient operator is estimated by the global derivatives of the functions Ni with
respect to the x and y directions and arranged as

B =
N1,x N2,x · · · Nϑ,x

N1,y N1,y · · · Nϑ,y

 , (4.5)

and

B̄ =


N1,x 0 N2,x 0 · · · Nϑ,x 0
N1,y 0 N2,y 0 · · · Nϑ,y 0

0 N1,y 0 N2,x · · · 0 Nϑ,x

0 N1,x 0 N2,y · · · 0 Nϑ,y

 . (4.6)

4.1 Equation of Motion
The motion is governed by the balance of linear momentum, as shown in Eq.

(3.32) or, alternatively, in Eq. (2.35a). To use FE, we must obtain the correlated weak
form. Then, we take the inner product of Eq. (2.35a) with some arbitrary virtual velocity
δv as ∫

Ω0
ρ0v̇ · δv dΩ0 =

∫
Ω0

divp(P B)δv dΩ0 +
∫

Ω0
ρ0f0 · δv dΩ0. (4.7)

Doing integration by parts in the above equation and considering Eqs. (2.35b) and (2.36),
we are left with∫

Ω0
ρ0v̇ · δv dΩ0 =

∫
Ω0

(F SB) : ∇p (δv) dΩ0 +
∫

Ω0
ρ0f0 · δv dΩ0 +

∫
Γ0

σ0 · δv dΓ0. (4.8)

Considering the symmetry of SB (see Eq. (2.36)) we have

F SB : ∇p (δv) = SB : F t∇p (δv) = SB : F tδḞ = SB : 1
2
(
F tδḞ + δḞ tF

)
= SB : δĖ (4.9)

where δḞ = ∇p (δv) and

δĖ(u) := 1
2
(
F t(u)δḞ + δḞ tF (u)

)
, (4.10)

is the time rate of the Green-Lagrange virtual strain tensor (BONET; WOOD, 2008, p.
148) .

Using Eq. (4.9), we can rewrite Eq. (4.8) as∫
Ω0
ρ0v̇ · δv dΩ0 = −

∫
Ω0

SB : δĖ dΩ0 +
∫

Ω0
ρ0f0 · δv dΩ0+

∫
Γ0

σ0 · δv dΓ0. (4.11)

The numerical approximation for Eq. (4.11) involves: discretization of time
by the Newmark method (NM), linearization, and spatial discretization by using the FE
method. These steps are detailed next.
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4.1.1 Applying the Newmark Method for Motion

The NM considers the updated acceleration, at time-step n+ 1, by using:

v̇n+1 = ün+1 = a1(un+1 − un)− a2u̇n − a3ün, (4.12)

where the constants ai, with i = 1, · · · , 3, are given by

a1 = 1
βN∆t2 , a2 = 1

βN∆t , and, a3 = 1− 2βN

2βN

,

and βN is the Newmark constant (LINDFIELD; PENNY, 2012, p. 266).

By replacing Eq. (4.12) in Eq. (4.11), we obtain the residue for the time
discretization of the equation of motion:

Ru
n+1 =

∫
Ω0

(a1(un+1 − un)− a2u̇n − a3ün) · δv dΩ0

+ 1
ρ0

∫
Ω0

SB(ÊB(un+1)) : δĖ(un+1) dΩ0

−
∫

Ω0
f0,n+1.δv dΩ0 −

1
ρ0

∫
Γ0

σ0,n+1.δv dΓ0. (4.13)

Here, for simplicity of notation, we explicit the dependency only for mechanical variables.

4.1.2 Linearization for the Equation of Motion

For linearization, it is convenient to recall the general definition of partial
directional derivative. We assume that Z1 and Z2 are tensor variables and F (Z1,Z2) is a
tensor valued function of Z1 and Z2. Then the partial directional derivative of F with
respect to Z1 at (Z1,Z2) in the direction of ∆Z1 is the limit (when it exists) defined by

DZ1F (Z1,Z2)(∆Z1) = lim
s→0

1
s

(F (Z1 + s∆Z1,Z2)−F (Z1,Z2)) .

There are similar definitions for the partial derivative with respect to variable Z2 and for
the case of more independent variables.

Here, to shorten the notation, we will use the notation of directional derivative
as in Bhatti (2006), which hides some of the details and assumes that the reader can get
them from the context:

D∆Z1F = DZ1F (Z1,Z2)(∆Z1).

Now, let us calculate the directional derivative of the residue Ru
n+1, given in

Eq. (4.13), on the displacement un+1 in the direction of the displacement increment wn+1

defined as

wn+1 := ∆un+1.
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As we said, we follow the notation of Bhatti (2006), and denote this derivative as

Dwn+1Ru
n+1 = D∆un+1Ru

n+1.

Consider the first term in the right hand side of Eq. (4.13). Its directional
derivative is written as

Dwn+1

[∫
Ω0

(a1(un+1 − un)− a2u̇n − a3ün) · δv dΩ0

]
= a1

∫
Ω0

wn+1 · δv dΩ0. (4.14)

Now, consider the third term in the right hand side of Eq. (4.13). The updated
body forces in the initial configuration are represented by f0,n+1. Once the displacement
does not affect these forces, the directional derivative of this term on the displacement
variation wn+1 is null. In the same way, we consider the surface loads σ0, in the last terms
of Eq. (4.13), not dependent on the strain; then its directional derivative is also null.

On the other hand, the second term on the right hand side of Eq. (4.13) is highly
nonlinear on the displacement field and demands special care. Note that, SB depends on
the EB, which in turn depends on u. Other source on nonlinearity is due to δĖ, which is
also dependent on the displacement.

Observe that the directional derivative of Fn+1 with respect to the displacement
in the direction of an increment of displacement wn+1 is

Dwn+1(Fn+1) = Dwn+1 (I +∇p(un+1)) = ∇p(wn+1). (4.15)

Furthermore, for shortness of notation, we consider

SB(ÊB(un+1)) := SB
n+1, F (un+1) := Fn+1, and δĖn+1 := δĖ(un+1).

We use the product rule of differentiation to obtain the directional derivative
of the second term in the right hand side of Eq. (4.13) with respect to displacement along
a displacement increment wn+1, as follows:

Dwn+1

[
1
ρ0

∫
Ω0

SB
n+1 : δĖn+1 dΩ0

]
= 1

ρ0

∫
Ω0

Dwn+1(SB
n+1) : δĖn+1 dΩ0

+ 1
ρ0

∫
Ω0

SB
n+1 : Dwn+1(δĖn+1) dΩ0. (4.16)

Firstly, consider the directional derivative in the last term of the right hand
side of Eq. (4.16). From Eqs. (4.10) and (4.15) we have

Dwn+1(δĖn+1) = 1
2
[
∇p(wn+1)tδḞn+1 + δḞ t

n+1∇p(wn+1)
]
. (4.17)

Now, we work with the derivative in the first term of the right hand side of Eq.
(4.16). Note that tensor SB is given in terms of the partial strain ÊB. In order to derive
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SB in the direction of the increment of displacement wn+1 = ∆un+1, we must rewrite SB

in terms of the total strain E. We remember that E = 1
2(C − I) and use Eqs. (2.1) and

(2.58) to obtain

ÊB =
(
F A

)−t
(

E + I

2

)(
F A

)−1
− I

2 (4.18)

= 1
2

[(
F A

)−t
C
(
F A

)−1
− I

]
. (4.19)

Then, by using Eq. (4.18), the derivative in the first term of the right hand side of Eq.
(4.16) can be rewritten with the dependency of the total strain E:

Dwn+1

(
SB

n+1(ÊB
n+1)

)
= Dwn+1

[
SB

n+1

((
F A

n+1

)−t
(

En+1 + I

2

)(
F A

n+1

)−1
− I

2

)]
. (4.20)

Note that F A
n+1 depends on Fn+1, that in turn, depends on the displacements. Since this

dependency results in difficulties to the chain rule and, to obtain an easier form for (4.20),
we take the value of F A

n+1 as its known previous time-step value F A
n . Then, Eq. (4.20) is

approximated by using

Dwn+1

(
SB

n+1(ÊB
n+1)

)
≃Dwn+1

[
SB

n+1

((
F A

n

)−t
(

En+1 + I

2

)(
F A

n

)−1
− I

2

)]
. (4.21)

By using the chain rule for differentiation in Eq. (4.21), and considering Eq.
(4.19), we obtain

Dwn+1

(
SB

n+1(ÊB
n+1)

)
≃ Dwn+1

[
SB

n+1

((
F A

n

)−t
(

En+1 + I

2

)(
F A

n

)−1
− I

2

)]
=

(
∂ÊB SB

)
n+1

:
(
∂EÊB

)
n+1

: Dwn+1(En+1)

= 2
(
∂ÊB SB

)
n+1

:
(
∂CÊB

)
n+1

: Dwn+1(En+1). (4.22)

Note that SB
n+1 is given in terms of ÊB

n+1, that in turn is written in terms of
F B

n+1. We obtain the updated F B
n+1 by using Eq. (2.1) to generate the approximation

F B
n+1 ≃ Fn+1

(
F A

n

)−1
, (4.23)

where F A
n is already known for the time step n+ 1.

The first derivative in the right hand side of Eq. (4.22) demands special care;
then, details on its obtaining are discussed in Appendix E.4. The derivative ∂CÊB, shown
in Eq. (4.22), can be obtained by using Eq. (4.19), as show in Appendix E.5:(

∂CÊB
)

n+1
≃
(1

2
(
F A

n

)−t
⊗
(
F A

n

)−1
)
, (4.24)

and, the linearization of En+1, also required for the Eq.(4.22), is obtained from

E = 1
2
[
∇(u)t∇(u) +∇(u)t +∇(u)

]
, (4.25)
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and simplified as

Dwn+1(En+1) = 1
2
[
∇p(wn+1)tFn+1 + F t

n+1∇p(wn+1)
]
. (4.26)

From Eq. (4.22), using (4.24) and (4.26), we get

Dwn+1

(
SB

n+1(ÊB
n+1)

)
≃ Dwn+1

[
SB

n+1

((
F A

n

)−t
(

En+1 + I

2

)(
F A

n

)−1
− I

2

)]
= 2

(
∂ÊB SB

)
n+1

:
(
∂CÊB

)
n+1

: Dwn+1(En+1)

= 2
(
∂ÊB SB

)
n+1

:
(1

2
(
F A

n

)−t
⊗
(
F A

n

)−1
)

: Dwn+1(En+1)

= Hn+1 :
[1
2
(
∇p(wn+1)tFn+1 + F t

n+1∇p(wn+1)
)]
, (4.27)

where, we denoted

Hn+1 :=
(
∂ÊB SB

)
n+1

:
(
F A

n

)−t
⊗
(
F A

n

)−1
. (4.28)

Note that, by the definition of H in Eq. (4.28), it is a fourth-order, symmetric and
positive-definite tensor.

By using Eqs. (4.10), (4.17) and (4.27), Eq. (4.16) can be rewritten as

Dwn+1

[
1
ρ0

∫
Ω0

SB
n+1 : δĖn+1 dΩ0

]

= 1
ρ0

∫
Ω0

Hn+1 :
[1
2
(
∇p(wn+1)tFn+1 + F t

n+1∇p(wn+1)
)]

: δĖn+1 dΩ0

+ 1
ρ0

∫
Ω0

SB : 1
2
[
∇p(wn+1)tδḞn+1 + δḞ t

n+1∇p(wn+1)
]

dΩ0

= 1
ρ0

∫
Ω0

Hn+1 :
[1
2(∇p(wn+1)tFn+1 + F t

n+1∇p(wn+1))
]

: 1
2
[
F t(u)δḞ + δḞ tF (u)

]
dΩ0

+ 1
ρ0

∫
Ω0

SB : 1
2
[
∇p(wn+1)tδḞn+1 + δḞ t

n+1∇p(wn+1)
]

dΩ0. (4.29)

Appendix E.6 shows that we can use the symmetry of SB and H to write

H : 1
2
(
∇p(w)tF + F t∇p(w)

)
: 1

2
(
F tδḞ + δḞ tF

)
= F tδḞ : H : F t∇(w), (4.30)

and

SB : 1
2
[
∇(w)tδḞ + δḞ t∇(w)

]
= δḞ : ∇(w)SB. (4.31)

The last two expressions can simplify Eq. (4.29) as

Dwn+1

[
1
ρ0

∫
Ω0

SB
n+1 : δĖn+1 dΩ0

]
= 1

ρ0

∫
Ω0

F t
n+1δḞn+1 : Hn+1 : F t

n+1∇(wn+1) dΩ0

+ 1
ρ0

∫
Ω
δḞ t

n+1 : ∇(wn+1)SB
n+1 dΩ0. (4.32)
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Finally, the linearized form of Eq. (4.13) is written from Eqs. (4.14) and (4.32)
as

Dwn+1

(
Ru

n+1

)
= a1

∫
Ω0

wn+1 · δv dΩ0 + 1
ρ0

∫
Ω0

F t
n+1δḞn+1 : Hn+1 : F t

n+1∇(wn+1) dΩ0

+ 1
ρ0

∫
Ω0
δḞ t

n+1 : ∇(wn+1)SB
n+1 dΩ0. (4.33)

4.1.3 Finite Element Method for Motion Equation

We apply the Finite Element Method (FEM) to the motion equation and obtain
the final discretized expressions for the associated Jacobian matrix and the residue vector.
Therefore, consider the spatial approximations

u(·) ≃ N̄ũ(·), δv(·) ≃ N̄δṽ(·), (4.34-4.36)

t(·) ≃ N̄ t̃(·), f(·) ≃ N̄ f̃(·), (4.37-4.38)

where N̄ is given in Eq. (4.4). We follow Bhatti (2006, p.496)), and adopt an equivalent
product of matrices to write the residue of Eq. (4.13) for each q-th element as

Rq,u
n+1 ≃M q

(
a1(ũq

n+1 + ũq
n − a2 ˙̃uq

n − a3 ¨̃uq
n) + f̃ q

n+1

)
+ 1
ρ0

∫
Ωq

0

B̄tF̄ t
n+1

(
sB

n+1
)q

dΩq
0 +BT q, (4.39)

where M q is the element mass matrix defined as

M q =
∫

Ωq
0

N̄ tN̄ dΩq
0, (4.40)

the matrix B̄ is given by Eq. (4.6), BT q are possible boundary terms from displacements
or stresses, sB is a vector written from the tensor SB, and F̄ is derived from F :

sB =
[
SB

11 SB
22 SB

12

]
and F̄ =


F11 0 F21 0
0 F12 0 F22

F12 F11 F22 F21

 . (4.41-4.42)

The Jacobian matrix J q,u
n+1 is obtained by deriving the residue Rq,u

n+1 to wn+1.
From Eq. (4.33), we have

J q,u
n+1 = M qa1 + 1

ρ0

∫
Ωq

0

B̄tF̄ t
n+1H

q
n+1F̄n+1B̄ dΩq

0 + 1
ρ0

∫
Ωq

0

B̄t
(
S̄B

n+1

)q
B̄ dΩq

0, (4.43)

for each q-th element. Matrix S̄B is a symmetric and block-diagonal matrix constructed
from S, and given by

S̄B =


SB

11 SB
12

SB
12 SB

22

SB
11 SB

12

SB
12 SB

22

 ,
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and H is a symmetric matrix obtained by contracting two indexes in the fourth order
tensor H.

Then, we can write the linearized system

Ju
n+1,i∆un+1,i = Ru

n+1,i, (4.44)

where i is the NR iteration. We assemble each q-th local Jacobian matrix J q,u
n+1,i, to obtain

the global Jacobian matrix Ju
n+1,i. Similarly, the global residue Ru

n+1,i is given by the
assembling of each local residue vector Rq,u

n+1,i. We solve the system (4.44) for ∆un+1,i and
use it to obtain a new approximation for un+1,i+1 :

un+1,i+1 = un+1,i + ∆un+1,i.

This procedure repeats until the difference between the displacements for two consecutive
time-steps achieves a prescribed tolerance ϵ1, i.e., ||un+1,i+1 − un+1,i|| ≤ ϵ1.

4.1.4 Numerical Fractional Derivative - The Algorithm G1

We apply the numerical algorithm known as G1 to approximate the Caputo
fractional derivative (OLDHAM; SPANIER, 1974). The fractional derivative of the strain
ÊB

t , that appear in Eq. (3.28), will be calculated by

0Dα
t ÊB

t = (∆t)−α
N∑

m=0
Bm+1Ê

B(t−m∆t), (4.45)

where the coefficients Bm+1 are defined as

Bm+1 = Γ(m− α)
Γ(−α)Γ(m+ 1) = m− 1− α

m
Bm. (4.46)

Here, N is the number of sub-intervals for the time. It is important to emphasize that Eq.
(4.45) is an approximation for the called Grunwald-Letnikov fractional derivative, that
is equal to the Caputo fractional derivative for the circumstances adopted in this work.
Further comments on fractional derivatives algorithms can be seen in Costa-Haveroth et
al. (2021).

4.2 Equation of Damage
Consider Eq. (3.34), which gives the evolution for damage. By applying the

backward Euler method for time discretization, we obtain

φn+1 = φn + ∆t
λ̃n+1θn+1

[
divp

(
2gcγC−1

n+1∇p(φn+1)
)
− 2gc

γ
∂φHn+1

−∂φGn+1
(
ψA

h + ψB
h + ψ̃B

m

)
n+1

]
, (4.47)
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where (
ψA

h + ψB
h + ψ̃B

m

)
n+1

:= ψA
h (EA

n+1) + ψB
h (ÊB

n+1) + ψ̃B
m(ÊB

n+1),

∂φGn+1 := ∂φG(φn+1)

and

∂φHn+1 := ∂φH(φn+1) = φn+1, (4.48)

according to the definition of H in Eq. (3.8).

As before, we apply FEs for spatial discretization; but firstly, consider the
divergent term in Eq. (4.47) rewritten as

φn+1 = φn + 2∆tgcγ

[
divp

(
1

λ̃n+1θn+1
C−1

n+1∇p(φn+1)
)

−∇p

(
1

λ̃n+1θn+1

)
·C−1

n+1∇p(φn+1)
]

(4.49)

− ∆t
λ̃n+1θn+1

[
2gc

γ
H ′

n+1 +G′
n+1

(
ψA

h + ψB
h + ψ̃B

m

)
n+1

]
.

We multiply Eq. (4.49) by a proper scalar test function w and integrate over the domain
Ω0 to obtain the weak form:∫

Ω0
φn+1w dΩ0 =

∫
Ω0
φnwdΩ0 + 2∆tgcγ

∫
Ω0

divp

(
1

λ̃n+1θn+1
C−1

n+1∇p(φn+1)
)
w dΩ0

−2∆tgcγ
∫

Ω0
∇p

(
1

λ̃n+1θn+1

)
·C−1

n+1∇p(φn+1)w dΩ0

−2∆tgc

γ

∫
Ω0

1
λ̃n+1θn+1

∂φHn+1w dΩ0

−∆t
∫

Ω0

∂φGn+1

λ̃n+1θn+1

(
ψA

h + ψB
h + ψ̃B

m

)
n+1

w dΩ0. (4.50)

Considering Eq. (3.13) we can write

∇p

( 1
λ̃θ

)
= 1
θ
∇p

(1
λ̃

)
+ 1
λ̃
∇p

(1
θ

)
= ζcλ

θ(1 + δ̃ − φ)ζ+1
∇p(φ)− 1

λ̃θ2
∇p(θ). (4.51)

By replacing Eqs. (4.48) and (4.51) into Eq. (4.50), and assuming θ and λ delayed, we
obtain∫

Ω0
φn+1w dΩ0 =

∫
Ω0
φnwdΩ0 − 2∆tgcγ

∫
Ω0

1
λ̃nθn

C−1
n+1∇p(φn+1) · ∇p(w) dΩ0

−2∆tgcγζcλ

∫
Ω0

∇p(φn) ·
(
C−1

n+1∇p(φn+1)
)

θn(1 + δ̃ − φN)ζ+1
w dΩ0

+2∆tgcγ
∫

Ω0

1
λ̃nθ2

n

∇p(θn) ·
(
C−1

n+1∇p(φn+1)
)
w dΩ0

−2∆tgc

γ

∫
Ω0

1
λ̃nθn

φn+1w dΩ0

−∆t
∫

Ω0

1
λ̃nθn

∂φGn+1
(
ψA

h + ψB
h + ψ̃B

m

)
n+1

w dΩ0. (4.52)
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Now, we adopt the spatial approximations

φq
(·) ≃N φ̃q

(·), ∇p(φq
(·)) ≃ Bφ̃q

(·), (4.53-4.54)

θq
(·) ≃N θ̃q

(·), ∇p(θq) ≃ Bθ̃q
(·), (4.55-4.56)

wq ≃N w̃q, ∇p(wq) ≃ Bw̃q, (4.53-4.58)

with N and B given by Eqs. (4.3) and (4.5), respectivelly. Henceforth, the gradient ∇p(φ),
in the third and fourth terms of the right-hand side of Eq. (4.52), is delayed in time to
avoid non-symmetric Jacobian matrix. Then, the residue for each q-th element at time-step
n+ 1 for the damage equation can be given by

Rq,φ
n+1 =

∫
Ωq

0,
N tN

[(
1 + 2∆tgc

γλ̃q
nN θ̃q

n

)
φ̃q

n+1 − φ̃q
n

]
dΩq

0,

+2∆tgcγ̃
∫

Ωq
0

BtC−1
n+1

q
Bφ̃q

n

λ̃q
nN θ̃q

n

dΩq
0,

+2∆tgcγζcλ

∫
Ωq

0,

N t (φ̃q
n)t BtC−t

n+1
q
Bφ̃q

n

N θ̃q
n(1 + δ̃ −N φ̃q

n)ζ+1
dΩq

0,

−2∆tgcγ
∫

Ωq
0,

N t (φ̃q
n)t BtC−t

n+1
q
Bθ̃q

n

λ̃q
n(N θ̃q

n)2
dΩq

0,

+∆t
∫

Ωq
0,

N t (∂φG
q
n+1)

(
ψA

h + ψB
h + ψ̃B

m

)q

n+1

λ̃q
nN θ̃q

n

dΩq
0, (4.59)

where

1
λ̃q

n

= cλ

(1 + δ̃ − φq
n)ζ
≃ cλ

(1 + δ̃ −N φ̃q
n)ζ

, (4.60)

by Eq. (3.13), and we define Gq
n+1 := G(φq

n+1).

The corresponding Jacobian matrix J q,φ
n+1 is obtained by deriving Eq. (4.59) to

φq
n+1:

J q,φ
n+1 =

∫
Ωq

0

N tN

(
1 + 2∆tgc

γλ̃q
nN θ̃q

n

)
dΩq

0 + 2∆tgcγ
∫

Ωq
0

BtC−1
n+1

q
B

λ̃q
nN θ̃q

n

dΩq
0

+∆t
∫

Ωq
0

N t (∂φφG
q
n+1)

(
ψA

h + ψB
h + ψ̃B

m

)q

n+1

λ̃q
nN θ̃q

n

dΩq
0. (4.61)

For each time step, we can write the linearized system

Jφ
n+1,i∆φn+1,i = −Rφ

n+1,i, (4.62)

where i is the NR iteration. We assemble each q-th local Jacobian matrix J q,φ
n+1,i to obtain

the global Jacobian matrix Jφ
n+1,i. Similarly, the global residue Rφ

n+1,i is obtained by
assembling the local residue vector Rq,φ

n+1,i.



Chapter 4. Numerical Considerations 79

We solve the system (4.62) for ∆φn+1,i and use it to obtain a new approximation
for φn+1,i+1 :

φn+1,i+1 = φn+1,i + ∆φn+1,i.

This procedure repets until the difference between the values for two consecutive time
steps achieves a prescribed tolerance ϵ2, i.e., ||φn+1,i+1 − φn+1,i|| ≤ ϵ2.

As discussed in Sec. 3.1.5, the damage irreversibility will be established using a
predict-corrector procedure: we consider known the state values at time step n and use
the governing equation without the additional term in the pseudo-potential to estimate
the damage at time step n + 1, leading to the predicted value φ∗

n+1 for the damage.
Next, we compare φ∗

n+1 and φn, for each node of the mesh; if φ∗
n+1 ≥ φn then we assume

φn+1 := φ∗
n+1; otherwise φn+1 := φn.

Additionally, we adopt φ0 = 0 prescribed, i.e., undamaged material to start
the analysis; although some level of damage could be assumed to initiate the evolution.

4.3 Equations for the Gradients of Deformation
As commented previously, the model proposed in this work considers only

materials which do not present preferential direction for strain evolution. In this sense, we
are dealing with isotropic material for which it is usual to postulate zero spin1; that is,
W A = 0. Consequently, T̂ A

skew = 0 due to Eq. (2.93).

Taking it into account, Eq. (3.38) can be rewritten as

1
det(F A)F ASAF At = ĈBT̂ B. (4.63)

Then, Eqs. (2.53) and (4.63) imply in

F ASA =
(
F B

)t
F SB. (4.64)

By imposing time discretization for Eqs. (3.39) and (4.64) we obtain

Fn+1 = F B
n+1F

A
n+1 and F A

n+1S
A
n+1 = F B

n+1
t
Fn+1S

B
n+1, (4.65-4.66)

where SA
n+1 := SA(EA

n+1) and SB
n+1 := S(ÊB

n+1).

Remark 4.2. If Fn+1, SA
n+1, and SB

n+1 are known, then Eqs. (4.65) and (4.66) might
be simultaneously solved to update the tensors F A

n+1 and F B
n+1. In this case, since this

system is non-linear with respect to F A
n+1 and F B

n+1, we should apply some iterative method,
1 Neto, Peric and Owen (2011, p.584) shown the case of an anisotropic single-crystal, in which a model

with non zero spin is considered. Further discussion on the possibility of non zero spin can be found in
Dafalias [4, 5].
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like the NR, for instance, to numerically solve it. Some preliminary simulated tests using
this methodology show convergence lost; then, in the following, we choose an alternative
procedure to solve the decoupled system in order to improve the convergence.

As explained in Sec. 4.1.3, we solve the motion equation in the time step n+ 1
by considering F A

n calculated in the previous time-step. If Fn+1 and F A
n are known, Eq.

(4.23) can be used to approximate F B
n+1. By adopting this, we can calculate ÊB using Eq.

(2.58), the associated stress T̂ B
n+1 using Eq. (3.25), and SB through Eq. (2.53).

Next, we need to update the tensor F A
n+1 in order to evolve the solution. We

use Eq. (4.65) and Eq. (4.66) to write

F A
n+1S

A
n+1 = (F A)−t

n+1Cn+1S
B
n+1,

where C := F tF . Once F A
n+1 is not know yet, we can approximate the above equation by

using F A
n :

F A
n SA

n+1 ≃ (F A)−t
n Cn+1S

B
n+1. (4.67)

Multiplying both sides of Eq. (4.67) by (F A
n )−1, we obtain

SA
n+1 =

(
CA

n

)−1
Cn+1S

B
n+1, (4.68)

where
(
CA

n

)−1
= (F A

n )−1(F A
n )−t.

Now, we can use the NR method to solve Eq. (4.68) and find EA
n+1. For each

iteration i, the residuum2 is given by

REA

n+1,i = SA
n+1,i −

(
CA

n

)−1
Cn+1,iS

B
n+1,i. (4.69)

By deriving Eq. (4.69) on the increment of EA
n+1,i, which is denoted as ∆EA

n+1,i, we obtain
the associated Jacobian:

JEA

n+1,i = ∂∆EA
n+1,i

SA
n+1,i −

(
CA

n

)−1
∂∆EA

n+1,i
Cn+1,iS

B
n+1,i −

(
CA

n

)−1
Cn+1,i∂∆EA

n+1,i
SB

n+1,i.

(4.70)

Remark 4.3. It is important to emphasize that we could have calculated the residuum by
using Eq. (4.67) instead of (4.68). However, by adopting Eq. (4.68) the subsequent system
is composed by three equations. On the other hand, by adopting Eq. (4.67), we need to
solve a system with four equations, once (4.67) is non-symmetric.
2 We also could have employed the NR method to solve Eq. (4.67) instead of (4.68). However, note that

the tensor SA
n+1 can be stored in a vector of three components in Voigt notation, if SA is defined as

symmetric. On the other hand, to store F A
n SA

n+1 we need four components for the vector form. In
order to reduce the storage, we choose solve Eq.(4.68).
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The simplest approximation for the Jacobian of Eq. (4.70) can be given by

JEA

n+1,i ≃ ∂∆EA
n+1,i

SA
n+1,i

= ∂∆EA
n+1

[
µA

(
I −

(
CA

n

)−1
)

+ λA ln
(
det(CA

n )1/2
) (

CA
n+1

)−1
+ ∂EAIA

n

]
≃ λA

(
CA

n

)−1
⊗
(
CA

n

)−1
+ 2

[
µA − λA ln

(
det(F A

n )
)]

I (4.71)

where I is the fourth order identity. The derivative for the first two terms in the right hand
side of Eq. (4.71) is obtained similarly to that shown in Eq. (D.6), while the derivative for
the last term is null, once we are using F A

n delayed.

Some numerical tests shown that the Eq. (4.71) implies in reasonable conver-
gence properties for the NR method without the need of calculate additional costly and
difficulty derivatives. Then, Eq. (4.71) is used for the applications presented in this work.
The remaining derivatives appearing in Eq. (4.70), he can look them up in Appendix E.5.

As usual, we must solve for ∆EA
n+1,i, the final linearized system

JEA

n+1,i∆EA
n+1,i = −REA

n+1,i.

in each integration point. A new approximate solution for EA
n+1,i+1 is given by

EA
n+1,i+1 = EA

n+1,i + ∆EA
n+1,i.

The procedure repeats until ||∆EA
n+1,i|| ≤ ϵ3, where ϵ3 is a prescribed tolerance. Then

EA
n+1 := EA

n+1,i+1.

After that, the updated value EA
n+1 is used to calculate its time derivative by

using backward finite differences:

ĖA
n+1 = EA

n+1 −EA
n

∆t .

Next, we use Eqs. (2.2) and (2.47) to write the time derivative of F A as

Ḟ A
n+1 = L̂A

n+1F
A
n+1 =

(
D̂A

n+1 + Ŵ A
n+1

)
F A

n+1.

By Eq. (C.27), we have that

Ḟ A
n+1 =

(
F A

)−t

n+1
ĖA

n+1 + Ŵ A
n+1F

A
n+1. (4.72)

Once we adopted Ŵ A = 0, Eq. (4.72) is simplified to

Ḟ A
n+1 = F A

n

−t
ĖA

n+1. (4.73)

Finally, we employ backward finite differences again to update F A
n+1:

F A
n+1 = F A

n + ∆tḞ A
n+1. (4.74)
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It is important to emphasize that, the stress tensor SA had already been defined
as a symmetric one in Eq. (2.50). However, in Eq. (4.68) this property is not evident
(due to the simplifications adopted for numerical consideration). In order to ensure the
symmetry of SA, we adopt the following configuration in the numerical simulations:

SA =
[

(CA
n

−1
Cn+1SB

n+1)11 (CA
n

−1
Cn+1SB

n+1)12 + (CA
n

−1
Cn+1SB

n+1)21

(CA
n

−1
Cn+1SB

n+1)12 + (CA
n

−1
Cn+1SB

n+1)21 (CA
n

−1
Cn+1SB

n+1)22

]
.

(4.75)

4.4 Summary of the Numerical Treatment
This section summarizes the global procedure adopted to solve the system of

PDEs presented in Sec. 3.1.5. Algorithm 1 outline the global procedure derived from the
numerical treatment indicated in the previous sections to evaluate the damage variable,
the displacement and the tensors gradients of deformation, F A and F B, from a time-step
to the next. Remember that temperature was remained constant for the simulations.

In summary, we proceed as follows: we solve the equation for damage evolution
and obtain the updated damage value by using the backward Euler method for time and
the NR method to deal with nonlinearities (see Sec. 4.2); at this point we use the known
displacement of the previous time-step as input. Next, the updated damage values are
fixed and used as input to solve the equation of motion. Once we need F B to solve the
motion, we adopt the known total gradient of deformation F and the partial gradient of
deformation F A of the previous time-step to approximate F B, allowing to update the
stress T̂ B. Remember that, the fractional derivatives appearing in Eq. (3.28) are evaluated
by using algorithm G1 (see Sec. 4.1.4). Then, we solve the equation of motion by using
the standard NM coupled with the NR procedure. It results in the updated displacement,
velocity and acceleration. Finally, we use the NR again to update EA;which is used to
update ĖA and finally, F A. The last one is used as input for the next time-step.

If we consider the simplified parallel model of Sec. 3.2.1 (without temperature
evolution), then, the numerical procedure described above simplifies to the same one used
in Costa-Haveroth et al. (2022).

Remark 4.4. As we can see in Findley and Davis (2013, p.130), viscoelastic materials
can behave differently under temperature variations; then, thermal influences in viscoelastic
materials demand special care. The mechanical properties of most viscoelastic materials
are very sensitive to temperature, and thus for many structural applications, a wide
understanding of the effect of temperature on the mechanical properties is necessary.
Based on those observation, we preferred to proposed a full non-isothermal thermodynamic
consistent model in order to give to the reader the possibility to account for the temperature
variation. However, once this opens up a very large range of options to be investigated,
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and, since the model needs to be firstly proved in simpler situations, we decided to restrict
the examples of the present work to the isothermal case. Comments and suggestions for
the inclusion of temperature variation can be found in (HAVEROTH, 2020).
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5 Numerical Results

Numerical results concerning simulations for the models proposed in this work
are detailed in this chapter. In order to lead the reader through a progressive and natural
understanding of the employed approaches, the examples are ordered from the simplest
case to the most complex one, and are divided in two main parts. Firstly, we consider tests
with the simplified parallel model of Sec. 3.2.1, as a review of those previously published
by Costa-Haveroth et al. (2022). Secondly, we present and discuss novelty results for the
series model, for which the governing equations are summarized in Sec. 3.1.5.

5.1 Results on the Parallel Model
This section presents several numerical results related to specializations of the

model discussed in Sec. 3.2.1, as a review and an extension of those previously published
in Costa-Haveroth et al. (2022). We start by commenting on some aspects of the one-
dimensional version of this model and use the conclusions to extend the approach for the
two-dimensional case.

5.1.1 Viscoelastic Bar

Consider a viscoelastic bar with density ρ0, length ℓ, and a squared cross-section
area A, fixed at the left end and subject to an external force F (t) on the other end, as
shown in Fig. 5.1.

Figure 5.1 – Viscoelastic bar.

0

Modified from Costa-Haveroth et al. (2022).

Here we test a simplified version of the model shown in Sec. 3.2.1 to account
for this problem. In the first moment, we consider no damage effects (cλ = 0); neither
dissipation due viscous damping (b̃ = 0); furthermore, the bar is strain free for the initial
time (E0 = 0). We also adopt the results shown in Costa-Haveroth et al. (2022) to
disregard the last two terms in Eq. (3.42), that simplifies to:

S = µ(I −C−1) + λ ln
[
(det(C))

1
2
]

C−1 + 1
ρ0

A : 0Dα
t (Et). (5.1)
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Next, one-dimensional dynamic tensile tests for the viscoelastic bar of Fig. 5.1
are performed to measure effect of the fractional viscoelastic parameters.

Remark 5.1. It is important to emphasize that, concerning this author’s best knowledge,
previously published works, apart from Costa-Haveroth et al. (2022), do not consider
the last two terms shown in Eq. (3.42) when fractional derivatives are used to simulate
viscoelasticity. As shown in Appendix E.2.1, these terms appear from the choice of the
free-energy density associated with memory terms that was proposed to induce the fractional
derivative term in the stress/strain relation. When A is not dependent on E, these terms
are null. When A is allowed to depend on E, then, from the purely mathematical point of
view, these terms must be included in S for consistent thermodynamics considerations;
however, by the tests performed in Costa-Haveroth et al. (2022), we conclude that they can
be disregarded for the numerical purposes considered in the present work. Based on these
arguments, the following numerical simulations are performed by neglecting the last two
terms in Eq. (3.42).

5.1.1.1 Displacement for the Dynamic One-Dimensional Test

Here, we study the dynamic one-dimensional response of the bar by checking
the viscoelastic effect induced by the fractional derivative.

For this problem, we assume Finite Element Method (FEM) with a mesh
composed by m Lagrangian linear bar elements. Proper adaptations must be considered for
the one-dimensional version of the interpolation shape functions matrices presented in Eqs.
(4.3)-(4.6). In the time discretization, we use the Newmark method (NM) (NEWMARK,
1952) with time increment ∆t and the usual constants βN and γN as presented in Tab.
5.1. Remember that ϵ1 represents the tolerance for the motion in the Newton-Raphson
(NR) implementation. We implemented the Algorithm 1 for numerical evaluation of the
problem we are considering in this subsection by using Matlab language.

Table 5.1 – Parameters for the viscoelastic bar simulations.

Mass Length Area Newmark
Density constant

ρ0 = 1420 kg/m3 ℓ = 2 m A = 176.71459 mm2 βN = 0.25
Newmark Time-step Tolerance for Mesh
constant NR Elements
γN = 0.5 ∆t = 1× 10−4s ϵ1 = 10−8 m = 30

Costa-Haveroth et al. (2022).

For the tests in this section, damage effects are not considered; furthermore,
the applied load is F = 100 N (for t > 0). The intensity of this load, the bar dimensions
and the simulation time, implies that the results remain in the small strain regime (in fact,
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all the tests results in strain smaller than 0,04%). Following Gaul and Schimidt (2007),
we assume that A weights the fractional derivative without dependence on the strain. It
means that in this example we have A := p is a fixed scalar viscoelastic parameter. The
Neo-Hookean spring in Eq. (5.1) is replaced by a linear elastic spring, once we are dealing
with small strain. Then, Eq. (5.1) simplifies1 to

S = EYE + p

ρ0
·Dα

t (Et), (5.2)

where the unbolded S and Et are the scalar forms of S and Et, respectively. The Poisson’s
ratio considered here is ν = 0.39, the Young’s modulus is EY = 1430.1× 106 Pa, and the
simulation time is tf = 0.1 s. The values for other parameters are show in Tab. 5.1.

We observe an oscillatory displacement at the free end of the bar induced by
the loading. It is shown in Figs. 5.2 and 5.3 for some values of p and α. Once p weights the
viscoelasticity influence given by the fractional derivative, the damping effect is augmented
when this parameter increases. The same behavior is observed for the variation of α.

Figure 5.2 – Displacement of the viscoelastic bar for α = 0.5 fixed and p varying.
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Costa-Haveroth et al. (2022).

The results of this section gives qualitative information that improve our
knowledge on the viscoelastic effects associated to the parameters p and α; they guide the
two-dimensional tests that will be presented in the next section.

We also stress that the results of Figs. 5.2 and 5.3 agree qualitatively with those
presented in the literature for similar viscoelastic problems (EVGENY; HUFENBACH;
KROLL, 2003; SCHIMIDT; GAUL, 2006).

5.1.1.2 Two-Dimensional Extension

In this section we perform two-dimensional simulations for the viscoelastic
bar of Fig. 5.1 as an extension of the one-dimensional case investigated in the previous
1 Equation (5.2) is a fractional stress/strain relation widely used in the literature to describe a simple

one-dimensional viscoelastic model (FARNO; BAUDEZ; ESHTIAGHI, 2018; MAINARDI, 2010). In
the context of this work, it is obtained as a simplification of a more general model (see Sec. 3.2.
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Figure 5.3 – Displacement of the viscoelastic bar for p = 214.6
[
(N/m2)sα

]
and α varying.
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sub-section.

Here, we evaluate the stress by

S = EY E + 1
ρ0

A : 0Dt
α(Et), (5.3)

that is the multidimensional counterpart of the stress expression of Eq. (5.2).

A key aspect for the two-dimensional extension is a suitable A choicement,
that now must be calculated as a fourth-order tensor. Concerning this aspect, reviewing
and extending some of the considerations presented in Costa-Haveroth et al. (2022), we
assume that

A := λC−1 ⊗C−1 + 2(µ− λ ln
[
(det(C))

1
2
]
I, (5.4)

with
λ = pν

(1 + ν)(1− 2ν) , µ = p

2(1 + ν) , (5.5-5.6)

which are the expressions of the traditional Lamé parameters but replacing the Young’s
modulus EY by the constant p = 21.46× 106 N/m2sα; here, p is the weighing parameter
that has a role similar to that of Young’s modulus in the standard elasticity case.

Note that expression (5.4) is an adaptation of the traditional Neo-Hookean
elastic tensor and includes the possibility of nonlinearities on A with respect to the
strain. Frequently in the literature, A is taken fixed and constant, once most of the
applications of fractional derivatives are limited to small strains (GAUL; SCHIMIDT,
2007; LEWANDOWSKI; CHORAŚYCZEWSKI, 2010). Although the fractional derivative
imposes a nonlinear behavior on the strain for α ∈ (0, 1], when α tends to 0, the term
0Dt

α(Et) tends to Et. In this case, if we assume a nonlinear dependency of A on E, then
the term A · 0Dt

α(Et) can behave as a nonlinear spring, which is a desirable modeling
behavior when dealing with large strains. Then, Eq. (5.4) is used next to simulate the
viscoelastic behavior.
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5.1.2 I-shaped Viscoelastic Specimen

In this section, we review the plane stress state simulations with an idealized
I-shaped viscoelastic specimen (see Fig. 5.4) performed in Costa-Haveroth et al. (2022).
The material was considered undamaged (without voids) for the initial time, but, for some
cases discussed following, we include the effect of damage as the simulation evolves.

Figure 5.4 – I-shaped viscoelastic specimen.

Modified from Costa-Haveroth et al. (2022).

We used m Lagrangian bi-linear quadrilateral elements for the FE discretization,
as shown in Fig. 5.4. Table 5.2 presents further simulation data and the adopted material
parameters chosen to reproduce the behavior of a generic hard-strong polymeric material
(GOWARIKER; VISWANATHAN; SREEDHAR, 1986, p.440). The check point, for which
the results are presented, is the center of the specimen (the center of the gauge length).

Table 5.2 – Parameters for the viscoelastic bar simulations.

Mass Thickness Griffith Fracture
density coefficient layer

ρ0 = 2700 Kg/m3 t = 0.132934 mm gc = 4000 N/m γc = 0.025 mm
Young’s Time-step Poisson’s Mesh
modulus ratio elements

EY = 69× 109 Pa ∆t = 1× 10−3 s ν = 0.33 m = 300
Costa-Haveroth et al. (2022).

5.1.2.1 Loading-Unloading Simulation without Damage

Consider the specimen show in Fig. 5.4 fixed on the left end and subject to
an step-by-step distributed load on the other end with constant rate of 5.0 × 106 N/s.
When the simulation achieves tf = 0.8 s, the unloading starts to be performed by the
opposite rate. We tested the two-dimensional version of our motion equation to describe
this loading/unloading problem and scrutnize the influence of the fractional parameter α.
The tolerance of the NR procedure for motion is 1× 10−8. In this first moment, damage
effects are not considered; then, the stress/strain relation can be given by

S = µ(I −C−1) + λ ln
(
(det(C))

1
2
)

C−1 + 1
ρ0

A : 0Dt
α(Et), (5.7)
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with A shown in Eq. (5.4) and p = 214.6× 104 N/m2sα fixed.

Figure 5.5a shows the stress/strain plots in the x-direction (horizontal) for
α varying. We do not prescribed a residual strain to the specimen after unloading. The
behavior shown in Fig. 5.5a is determined naturally by the α choice. As expected, the
viscous effect and the residual strain grow as α tends to 1. For α near to 0, the elastic
recovering is predominant. These results agree with the background shown in the literature
for viscoelastic material under a loading-unloading movement (ZHANG; MOORE, 1997)
and give more details on the influence of the parameter α.

Figure 5.5 – Stress/strain diagram in the horizontal direction for some values of α.

(a) Load-unload test without damage
effects. Constant strain rate of
5.0×106 N/s.

- (     )

(b) Tensile test until the specimen
breaks with a step-by-step displace-
ment of 1.0×10−5 mm/t.s Damage
evolution is included.

1

0.8

0.6

0.4

0.2

Costa-Haveroth et al. (2022).

5.1.2.2 Tensile Test with Damage Evolution

In order to increment the complexity of the tests, we perform two-dimensional
tensile simulations with the specimen of Fig. 5.4, including the damage effects. In this
case, the stress tensor considered is given by:

S = G
[
µ(I −C−1) + λ ln

(
(det(C))

1
2
)

C−1
]
−gcγ

(
C−1∇p(φ)

)
⊗
(
C−1∇p(φ)

)
+G

ρ0
(A : 0Dt

α(Et)) , (5.8)

with A and G given respectively by Eqs. (5.4) and (3.30), and p = 69 × 108 N/m2sα.
The damage evolution is considered by solving Eq. (3.44). We applied a step-by-step
displacement of 1.0× 10−5 mm/t.s and monitored the damage increasing until the rupture.
The parameter associated with the rate of damage increasing (see Eq. (3.13)) is cλ =
10−7 m2/Ns and the remaining parameters are the same as Sec. 5.1.2.1. We adopted the
numerical procedure indicated in Sec. 4.4, with the suitable adaptations for this case. The
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tolerance of the NR procedure is ϵ2 = 1.0× 10−8 for motion equation and ϵ1 = 1.0× 10−3

for damage equation.

Figure 5.5b presents the stress/strain diagrams for α variation. Note that
the nonlinearity due to damage, viscoelasticity and large strains is remarkably in these
graphs. When the specimen achieves the rupture, the stress/strain curves recover to the
origin, a typical behavior for viscoelastic materials. Figure 5.6 shows the damage evolution
for α = 0.5 fixed until the specimen breaks. The parameters chosen induces the crack
localization. The next section shows a different pattern for damage occurrence.

Figure 5.6 – Damage evolution for α = 0.5.

5.1.3 Comparison with Experimental Results

In this section, reviewing results of Costa-Haveroth et al. (2022), we comment
on the robustness of the model proposed in Sec. 3.2.1 to fit laboratory data.

The experimental data were obtained from Dusunceli and Colak (2008), who
accomplished several tests to characterize material properties of high-density polyethylene
(HDPE). They collected samples from extruded PE100 pipes and used the ISO 6259-1
and ISO 6259-3 standards to perform the experiments. For loading-unloading tensile tests,
the specimens were fixed at one end, and a load, in the x-direction (horizontal) with a
constant strain rate, was applied on the other end. When the test point, at the center of
the specimen, achieves a prescribed strain level, the unloading occurs by adopting the
opposite strain rate. The geometry of the samples is shown in Fig. 5.7. The laboratory
temperature was fixed at 24◦ C.

In Costa-Haveroth et al. (2022), the setting of these experiments is reproduced
for simulations. The formulation proposed in Sec. 3.2.1 is adapted for the plane strain state
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Figure 5.7 – HDPE sample used in for curve fitting.

115mm

6 mm

Modified from Costa-Haveroth et al. (2022).

in a quasi-static case; the damage evolves by Eq. (3.44). The irreversibility for damage
(see Sec. 4.2) is adopted; thus, damage does not decrease during unloading. The stress
used is shown in Eq. (5.8), where the fractional derivative is evaluated by Algorithm G1
(see Sec. 4.1.4).

The Algorithm 1 was adjusted for this problem and implemented in the software
hp2Fem in C++ language. The NR tolerance was ϵ1 = ϵ2 = 1 × 10−12 for motion and
damage equations. A mesh with 2240 finite linear triangular elements of the nodal Lagrange
family were used (see Fig. 5.7), and the time step considered was ∆t = 0.1 s.

It is important to highlight that we had to compare the obtained simulated
curves directly with the experimental curve presented in Dusunceli and Colak (2008); a
more quantitative comparison was not possible because we did not have access to the
laboratory data.

Next, we comment on the effectiveness of our model in fitting the laboratory
results in two cases: small and large strains2.

5.1.3.1 Small Strain

Firstly, the specimen of Fig. 5.7 is loaded slowly by a constant strain rate of
1 × 10−4 until achieves 5% of strain for the test point. Then, the unloading occurs by
the opposite strain rate. The damage effects are included for the simulations through Eq.
(3.44) and the degradation function G := G1 of Eq. (3.30).

The parameters identification was preceded by several tests to investigate their
influence on the model. When the effect of these parameters on the stress/strain curve
was identified, we proposed trial values for curve-fitting on the loading part. The values
which lead to the best fit were adopted.
2 There is not consensus in the literature concerning the proper range for small strain; then, in this work,

we follow Brinson and Brinson (2015) and Leonov and Prokunin (2012) and assume that small strain
for a viscoelastic material occurs if the strain level is less than 5%.
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We stress that we do not fit the curve for the unloading part; it is obtained
as a natural consequence of the choice of the parameters for the loading. The material
parameters identified in Costa-Haveroth et al. (2022) are indicated in Tab. 5.3.

The geometric/material fixed data are thickness t = 5 mm; fracture toughness
ft = 0.89×106 Pa.m

1
2 ; length of the fracture layer γ = 0.006 mm; Poisson’s ratio ν = 0.45;

density ρ = 0.954 g/m3; and ζ = 1. For the plane strain case3, we follow Perez (2016) by
taking the Griffith constant gc in terms of the fracture toughness:

gc = f 2
t

(1.0− ν2)
E

. (5.9)

Table 5.3 – Identified parameters for fitting the experimental results.

Young’s Rate of Viscoelastic Fractional
modulus damage increase parameter derivative order

E = 0.8× 108Pa c̃ = 0.18× 10−2 m2/N.s p = 0.56× 109 N/m2sα α = 0.3
Costa-Haveroth et al. (2022)

The stress/strain diagram obtained for the simulation can be compared with
the laboratory result in Fig. 5.8a. Note that the coupling of the straining process and
damage evolution, allowed by the model, holds the fitting in the simulations for loading,
and naturally promotes the recovering pattern of the experimental results for the unloading.
The degradation, as a hereditary phenomenon associated with the damage during the
loading process, affects the residual strain for the unloading, resulting in a very approximate
behavior when compared with experimental data. Most viscoelastic models found in the
literature does not deal properly with unloading.

We consider that the inclusion of damage effects in the process is crucial to
obtain suitable results, since viscoelastic materials are susceptible to local failure even at
very small strain levels.

Figure 5.8b presents the damage nucleation and subsequent propagation for
this simulation. We note the increase of the damage in the center of the specimen, but for
this percentage of strain, it is still far from the rupture.

To check the accuracy of the results, we also tested the simulations with ∆t =
10−3 s. Although we obtained the same qualitative results as those presented for a coarser
∆t, some issues related to the fractional derivative evaluation were intensified: simulation
effort and memory storage increased greatly. Furthermore, although the algorithm G1,
described in Sec. 4.1.4 is attractive due to its simple implementation, its use carries
difficulties in coupling an automatic optimization procedure for parameter identification.
3 The geometry of Fig. 5.7 unfortunately is neither fully in plane strain state nor fully plane stress

state; in fact, according to Irwin (1958, p. 656) it is a mixed stress/strain state. Then, to simplify the
simulation, we decided to approximate by considering a plane strain situation.
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Figure 5.8 – Fitting for the load/unload test in the case of small strain.

(a) Stress/strain diagram for experiment and
simulation. Contant strain rate of 1×10−4.
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(b) Damage propagation in the sample until
5% strain by using G1.

Costa-Haveroth et al. (2022).

Future works on this concern must consider more economic fractional derivative algorithms
(see Costa-Haveroth et al. (2021) for some suggestions).

5.1.3.2 Large Strain and Fracture

In this section, we test the robustness of our model to fit laboratory results
for the case of large strain; the discussion here is an extension of that we presented in
Costa-Haveroth et al. (2022).

The sample shown in Fig. 5.7 is fixed on the left end and subject to an uniaxial
load in the x-direction (horizontal) until the sample achieves 15% strain for the test point
(the center of the specimem); then an unloading is performed by the opposite strain rate.

We assume this problem as a natural extension of the previous case; then, in a
first moment, we try to fit the laboratory results of Dusunceli and Colak (2008) by using
the same conditions of Sec. 5.1.3.1 and the previous identified material parameters (see
Tab. 5.3). Figure 5.9a shows simulated results and the experimental data.

For the laboratory results, note that the stress level increases until the strain
achieves 8%. After that, the loss of stiffness implies in a gradual decreasing of stress. This
result diverges remarkably from the simulated one, in which the stress decline quickly
after 5% of strain.

The behavior of the stress is strongly determined by the degradation function
G := G1, as can be seen in Eq. (5.8). Figure. 5.9b correlates the strain level and the
damage values during the simulation by the geometric symbols. Note that as the strain
increases, the degradation due damage decreases quickly. In contracts, the damage variable
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Figure 5.9 – Trial to fit the experimental results. The geometric symbols associate the strain
level with the corresponding degradation for the test.

(a) Stress/strain diagrams for the
degradation function G := G1.

Loading until

Loading until

Experimental

(b) Degradation function G := G1.

Costa-Haveroth et al. (2022).

increases fast as the process evolves and leads to rupture when the strain exceeds 8,25%.
Consequently, as the degradation gets smaller, the stress decreases rapidly (for more
comments on the degradation function, see Sec. 3.1.4). Although this behavior is suitable
for brittle materials, it is not desirable for the viscoelastic component studied here.

Once the degradation function G1 does not reproduce the expected behavior
for the case of large strains, Costa-Haveroth et al. (2022) tested the alternative function
G2, given by Eq. (3.31), to perform a new fitting. As commented in Sec. 3.1.4, the function
G2 was conceived to characterize the damage in viscoelastic materials based on the micro-
structure evolution. This function is written in terms of the constants a, b and c, that are
additional parameters to be identified. The parameters identified in Costa-Haveroth et al.
(2022) are shown in Tab. 5.4.

Table 5.4 – Parameters for fitting the experimental results.

Young’s Rate of Viscoelastic Fractional
modulus damage increase parameter derivative order

EY = 0.4× 108 Pa cλ = 0.115× 10−2 m2/N.s p = 0.67× 109 N/m2sα α = 0.35
Parameters of
function G2 a = 3.8 b = 1.5 c = 1.15

Costa-Haveroth et al. (2022)

Figure 5.10a presents a significantly improvement in the fitting between the
new simulation and the laboratory results. Figure 5.10b shows that G2 has the desirable
behavior to properly fit the experimental data, as commented previously. Geometric
symbols correlate the degradation and the strain levels. Figure 5.11 shows the damage
evolution for the specimen until 15 % strain.
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Figure 5.10 – Stress/strain diagrams for the use of the degradation function G := G2. The
geometric symbols associate the strains and the degradation levels.

(a) Stress/strain diagram.

Loading until

Loading until

(b) Degradation function G2 for a =
3.8, b = 1.5 and c = 1.15.

Costa-Haveroth et al. (2022).

Figure 5.11 – Damage evolution in the sample until 15% strain using G2.

Costa-Haveroth et al. (2022).

Figure 5.10a also shows the simulated results with the parameters of Tab. 5.4
for the case studied in the previous section, where the specimen is loaded just until 5%,
then the unloading is performed. Note that in this case, the functions G1 and G2 yields
very similar stress/strain diagrams. It occurs because the degradations presented by G1

and G2 are similar for this levels of strain; nearly to φ = 0.16289 for both the functions.
On this concerning, the fitting provided when the strain level is less then 5% is almost
unaffected by the choice of the degradation functions. However, only the function G2 was
able to reproduce the results for the case of large strains.

An additional simulation with the specimen of Fig. 5.7 is performed in our
previous work (COSTA-HAVEROTH et al., 2022). To check the crack pattern, we kept
the tensile loading until the rupture. We assumed the same parameters shown in Tab. 5.4
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for this test. Figure 5.12 shows the damage evolution for this simulation until tf = 2654s.
At this point, the strain increased until 23%, and we note the fracture in the center of the
specimen.

Figure 5.12 – Damage evolution in the sample until the specimen breaks.

Damage

t= 2648s t=2652s t=2653s t=2654s

Costa-Haveroth et al. (2022).

5.2 Results for the Series Model
Consider the modified fractional Zener model (SM) and the modified Kelvin-

Voigt model (PM) shown in Fig. 5.13. The SM comprises a series arrangement of non-linear
springs and a spring-pot, while PM is represented by a non-linear spring and a spring
pot arranged in parallel. We observe that, as discussed in Sec. 3.2.1, these models are
not purely mechanical since we have also included the damage evolution by coupling the
phase-field variable φ in the mathematical modeling.

StressStress
Stress Stress

A B

, ,

SM PM

Figure 5.13 – Simplification of the modified fractional Zener model (SM) to the modified Kelvin-
Voigt model (PM).

The parameters, EY A and EY B, shown in Fig. 5.13, are related with the stiffness
of the non-linear springs in part A and B, respectively, and behave similarly to the Young’s
modulus. For the SM, if we assume that the non-linear spring, associated with EY A,
is much stiffer than the other elements, then the applied forces, and consequently the
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displacements, are substantially transferred to the other non-linear spring, described by
EY B, and to the spring-pot. In other words, if we neglect part A, then SM simplifies to
PM.

In this section, we performed some qualitative comparisons between SM and
PM and verified the behavior induced by the material parameters variation in order to
enhance the understanding of the behaviors of the models.

In the following, we consider two-dimensional tensile tests for the specimen
shown in Fig. 5.7. As before, the specimen is fixed at one end, and a uniaxial load in
the x-direction (horizontal) is applied on the other end. The temperature is fixed at 24◦

C. The stress adopted for PM is shown in Eq. (5.8), where the fractional derivative is
evaluated by the Algorithm G1 (see Sec. 4.1.4). For SM, remember that we split the stress
on part A and part B (see Sec. 3.1.3). The stress considered for part A is given by Eq.
(3.19) and for part B

T̂ B = 1
det (F A)

{
G
[
µB

(
I −

(
ĈB

)−1
)

+ λB ln
(
det

(
ĈB

))1/2(
ĈB

)−1
]

−gcγc

[(
ĈB

)−1(
F A

)−t
∇pφ

]
⊗
[(

ĈB
)−1(

F A
)−t
∇pφ

]
+G

ρ0

[
A : 0Dt

α(ÊB
t )
]}
, (5.10)

where G is the degradation function, taken as shown in Eq. (3.31), with the parameters a,
b and c given in Tab. 5.4

The numerical implementations of the models are performed by making suitable
adaptations on the Algorithm 4.4 for the plane strain case. It is implemented in the software
hp2Fem using C++ language. The tolerance of the NR procedure was ϵ = 10−12 for both
motion and damage equations. We considered 2240 linear triangular elements for the FEM,
as shown in Fig. 5.7.

The geometric/material data fixed are: thickness t = 5 mm; fracture toughness
ft = 0.89×106 Pa.m

1
2 ; length of the fracture layer γ = 0.006 mm; Poisson’s ratio ν = 0.45;

density ρ0 = 0.954 g/m3; and ζ = 1. Again, for the plane strain case, we take the Griffith
constant gc in terms of the fracture toughness as shown in Eq. (5.9).

5.2.1 Comparisons Between SM and PM

Firstly, we compare the behavior of SM and PM (see Fig. 5.13) in the tensile
tests by varying the material parameter α associated with the level of viscoelasticity
imposed to the models, and fixing the remaining parameters. For this test, we adopt
EY = EY A = EY B = 3×109 Pa, meaning that the non-linear springs have the same stiffness
and p = 0.67 × 109N/m2sα. We apply an incremental distributed load of 10 × 103 N/s

until the time tf = 1s with ∆t = 10−2s. Figures 5.14a and 5.14b show the stress/strain
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diagrams for the case where damage is not considered for the models. For SM, remember
that, according to Eq. (2.20), the Cauchy stress tensor has the same value for part A and
part B (T B = T A). Then, in order to promote proper comparisons, we plot the Cauchy
stress tensor versus the total strain E for both SM and PM.

Figure 5.14 – Stress/strain diagrams for PM and SM.

(a) PM without damage.
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(b) SM without damage.
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(c) PM with damage.
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(d) SM with damage.
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For SM, the level of strain achieved is much higher than for PM, although the
level of stress remain similar for both the cases. This behavior was expected, once the
extra spring connected in series, for the SM, provides less stiffness to the model.

Figures 5.14c and 5.14d show the stress/strain diagrams for the case where
damage was included for the models. We considered cλ = 0.11× 10−4m2/N · s. Again, the
strain level is higher for the SM then the PM; however, in this case, we can see that the
damage effect includes additional nonlinearity to the models. It is noted remarkably in
the case of SM, where the strain achieves around to 20% for α = 0.1.
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5.2.2 Damage effect for SM

In this section, we perform qualitative analysis on the effect caused by the
variation of the parameter cλ, which is associated with the rate of damage increasing, for
tensile tests. We apply an incremental distributed load of 10 N/s for the specimen of Fig.
5.7 until the time tf = 1s with ∆t = 10−2s. Further data is the same as in the previous
section. Figure 5.15 show the damage evolution for different values of cλ and α = 0.35,
p = 0.67× 109, EY A = EY B = 0.4× 108. fixed. For cλ = 1× 10−2 m2/N · s, the damage
nucleation starts near to the radius of the specimen. When cλ is fixed at 1× 10−5 m2/N · s,
the damage changes the location and tends to initiate in the center of the sample. By the
variation of cλ, we can obtain different patters for the damaging..

Figure 5.15 – Variation of cλ for tensile tests and different patters for damage nucleation.
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Figure 5.16 shows the damage evolution for the case with cλ = 1×10−3 m2/N ·s.
The simulation was performed until the damage location was well defined. Further fixed
data is α = 0.5, ∆t = 10−3 and an incremental distributed load of 1000 N/s. When we
compare the damage pattern presented in this figure with that shown in Fig. 5.12, we can
note the flexibility of our model in recover several behaviors that are in fact found for real
viscoelastic materials.
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Figure 5.16 – Damage evolution for cλ = 1× 10−3 m2/N · s fixed until the crack.
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6 Conclusions

In this work, we presented and discussed a new and comprehensive approach in
the framework of the damage phase-field model based on the multiplicative decomposition
of deformation gradient. It follows the continuum mechanics principles and leads to rather
general thermodynamically consistent models.

By adopting a specific free-energy and a particular pseudo-potential of dissipa-
tion, we could derive a new family of damage phase-field models with fractional derivatives
for materials with fading memory effects. In this thesis, we detailed the arguments for
the choice of the free-energy potential, firstly proposed in our previous work (COSTA-
HAVEROTH et al., 2022); in particular, we showed in detail how its use ensures the
second principle of thermodynamics. This free-energy potential allows damage evolution
by including suitable degradation functions, which play an essential role in modeling the
stiffness change between the undamaged and the fractured states. As a natural conse-
quence of our choice of free-energy, the stress/strain relation obtained is written in terms
of fractional derivatives. Furthermore, the general model can account for finite strain and
thermal effects; it is enough to include the thermal dependencies in the chosen potential. A
set of partial differential equations mathematically governs the model to describe a body’s
motion, damage, and temperature.

We applied the degradation function proposed in Costa-Haveroth et al. (2022)
to improve the description of viscoelastic fracture to the more general setting of this
thesis; this provides more possibilities for realistic characterization of the micro-structural
evolution of damage in these materials.

We showed that our general model can be simplified to generate several sub-
models to describe damage and viscoelasticity effects in various situations. These sub-
models are related to mechanical combinations of rheological components, having thus
straightforward physical interpretations.

For the numerical treatment of the system of governing equations, we followed
Haveroth et al. (2018) and considered an adapted staggered scheme. This method is also
called a semi-implicit/explicit scheme. It consists of solving the equation for each system
variable separately by the most appropriate time integration method coupled with the
Newton-Rhapson (NR) procedure. We implemented our model in Matlab and C++ and
contributed to the software hp2Fem by including the fractional viscoelasticity.

We verified the performance of our models by several simulations for the
isothermal case. The numerical results presented were divided into two parts: a review
of the tests provided in Costa-Haveroth et al. (2022) and new simulations for a series
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viscoelastic model.

6.1 Observations and Contributions
Here, we summarize the main observations about and conclusions of our work:

1. Firstly, it is essential to emphasize that the general series model proposed in this
work is a novelty in the literature. Previous approaches dealing with non-linear
viscoelasticity generally relate to parallel rheological arrangements, which have a
simple mathematical development and do not present the flexibility of modeling
given by series models. Our methodology results in a notably comprehensive model
that can be simplified to generate sub-models and deal with different effects, such as
large strain, thermal contributions, and distinct damage patterns.

In Sec. 3.1.1, we used the free-energy potential ψ̃d, associated with fading memory
effects, to ensure the second principle of thermodynamic for the general model
proposed in this thesis. This potential, firstly presented in Costa-Haveroth et al.
(2022), leads to a stress/strain relation written in terms of fractional derivatives. The
form of ψ̃d allows the thermodynamically consistent consideration of the non-linear
dependency of the tensor A on the strain (see Sec. E.2.2). It is more general than
other potentials associated with fractional viscoelasticity presented in the literature
that consider A as a simple scalar constant.

As commented in Sec. 3.2, under specific hypotheses, the stress/strain relation
obtained in this work can be simplified to generate different relations, including the
usual fractional viscoelastic constitutive equations, widely employed in the literature.

2. We extended the discussion provided in Costa-Haveroth et al. (2022) on applying
the degradation function G2 to describe damage for viscoelastic materials. In Sec.
5.1.3.2, we comment on how this function allows the fitting of experimental curves for
load/unload tensile tests. These results reinforce that G2 is a promising alternative
to deal with the micro-structure evolution of damage in materials with memory.

3. We presented several one and two-dimensional simulations for the models proposed
in this work in different situations. The results indicate that the proposed models
successfully describe the response of viscoelastic materials under several conditions:
finite strain, damage, fracture, and load/unload process. In Sec. 5.2, we presented new
simulated results for our damage viscoelastic series model (SM). We compared SM
and its simplified version, a parallel model (PM) previously tested in Costa-Haveroth
et al. (2022). We also commented on the behavior induced by the material parameters
variation to enhance the understanding of the model. In these tests, we observed the
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flexibility of our model in recovering several different behaviors for both, damage
evolution and stress/strain relation.

4. We contributed on the expansion of the software (hp)2FEM by implementing a
fractional viscoelastic solver in the C++ language. This code was used to generate the
simulations presented in Sec. 5.1.3 and 5.2. We presented a pseudo-code summarizing
this implementation in Sec. 4.4.

The results presented in this work indicate that the proposed framework
successfully describes the response of viscoelastic materials under the conditions tested
and is an adequate thermodynamically consistent alternative to deal with large strain and
distinct damage patterns.

6.2 Deficiencies and Limitations
The model summarized in Sec. 3.1.5 is comprehensive and can describe several

phenomena. However, as a mathematical model becomes more general, it is common to
have an increase in algebraic, numerical and interpretative difficulties. Next, we outline
the main difficulties identified in this work:

1. As commented in Chapter 4, we adopted several simplifications and strategies to
avoid difficulties related to the numerical approach and subsequent computational
implementation. Nevertheless, we observed a conspicuous deficiency of the algorithm
G1 used to compute the fractional derivatives in our simulations. Although this
algorithm is attractive due to its simple implementation, it requires a high computa-
tional time. It restricts implementation of automatic optimization procedures for
parameter identification to small time intervals. Since the purpose of the present
work was to test the effectiveness of the proposed viscoelastic model, we did not
investigate the computational aspects of the fractional derivatives here.

2. Due to the limitation associated with the numerical fractional derivative algorithm, it
was not possible to implement an automatic inverse parameter identification process.
For the fittings presented in this work, the parameters identification was preceded
by several tests to investigate their influence on the model. When the effect of these
parameters on the stress/strain curve was identified, we proposed trial values for
curve-fitting on the loading part. The values with lead to the best fit were adopted.
This process is cumbersome, once it demands several non-automatic tests. We hope
that the consideration of some economic algorithm for the fractional derivative also
allows the implementation of automatic parameter identification processes.
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3. Another challenge is the inclusion of thermal effects in viscoelastic materials. This
difficulty is not due to limitations of our general model, which is already prepared for
the theoretical inclusion of thermal effects, but derives from the necessity of choosing
the correct thermal dependencies in particular free-energies and pseudo-potentials
of dissipation to recover realistic material behaviors. As commented in Chapter 4,
thermal influences in viscoelastic materials demand special care. The mechanical
properties of most viscoelastic materials are very sensitive to temperature, and thus
for many structural applications, a vast understanding of the effect of temperature
on mechanical properties is necessary.

We did not analyze thermal effects in this work because they open up an extensive
range of options to be investigated and mainly because our model needed firstly to
be verified in simple situations. For these reasons, we restricted the examples in the
present work to the isothermal case.

However, we also decided to include our full non-isothermal thermodynamic consistent
model as a preparation for future investigations taking into account temperature
variations.

6.3 Future Works
For future works on the framework of this thesis, we suggest the following:

1. A thorough study on the thermal effects in the viscoelastic materials and the corre-
sponding possibilities, besides the one already presented in this work, of extending
the free-energy and pseudo-potential of dissipation to include the dependence on the
temperature.

2. The study of the previous item will lead to suitable specific forms for the temperature
equation, which can be included in the numerical approach proposed in Chap. 4;
subsequent numerical simulations can then be done;

3. Consideration of economic algorithms for fractional derivatives implementation;

4. Comparisons between laboratory results and simulations for the general series model
proposed in this work.

5. Further simulations for shear and slow relaxation tests.
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APPENDIX A – Important Theorems

Let Ω be a regular region in Rn with boundary Γ; let n be its external unitary
normal vector field at the boundary. Then, the following results hold:

Teorema 1 (Divergence theorem). Let w be a regular vector field defined on the closure
of Ω. Then, by denoting x ∈ Ω, we have that∫

Ω
divx(w)dΩ =

∫
Γ

w · ndΓ. (A.1)

For a regular second order tensor field T defined on the closure of Ω, we have
that ∫

Ω
divx(T )dΩ =

∫
Γ

T ndΓ. (A.2)

The divergence theorem is applied in Sec. 2.2.2 and Appendices C.8.4.3 and
C.8.5.

Teorema 2 (Integration by parts for a second order tensor). Consider a regular second
order tensor field T and a regular vector field w, both defined on the closure of Ω; by
denoting x ∈ Ω, we have that∫

Ω
divx(T ) ·wdΩ = −

∫
Ω

T : ∇x(w)dΩ +
∫

Γ
T n ·w dΓ, (A.3)

where n is the unit vector normal to dΓ.

The integration by parts is applied in Sec. 2.2.2 and Appendices E.1 and C.8.5.

Teorema 3 (Reynolds transport theorem). Let v be a regular velocity field defined on the
closure of Ω, and f be a regular tensor, vector or scalar valued field also defined on the
closure of Ω. Then,

d
dt

∫
Ω

fdΩ =
∫

Ω
∂tfdΩ +

∫
Γ

(v · n) f dΓ, (A.4)

where v is the velocity vector field. The Reynolds Transport theorem is used
in Appendix C.8.4.3.

The proof of the abovementioned theorems is out of this work’s scope. Interested
readers are referred to the text by Hildebrand (1976).
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APPENDIX B – Recurrent Derivatives

1. Derivative of the determinant of a second-order tensor:

∂C det(C) = det(C)C−t. (B.1)

2. Derivative of the trace of a second-order tensor:

∂C(tr(C)) = I. (B.2)

3. Derivative of the inverse of a second-order tensor:

∂C

(
C−1

)
= −C−1 ⊗C−1. (B.3)

These results are used in Appendix D and the correlated proofs can be seen in Chaves
(2013).
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APPENDIX C – Review on Continuum
Mechanics

The following text summarizes some primary information on continuum me-
chanics. Then, in a simplified way, we review the tensors and the fundamental equations
of continuum mechanics used in this work. For details and additional discussions, we
recommend the textbooks of Reddy (2013), Chaves (2013) and Gurtin (1982).

C.1 Tensors
Tensors are used to construct mathematical representations of physical phe-

nomena. They are written in a given coordinate system; we can also include the concept
of tensor components. Tensors are independent of the coordinate system (they must be
the same for different observers); on the other hand, the tensor components change as the
system changes.

The tensors can be divided according to their order.

• The zeroth-order tensors have magnitude and no direction. They are scalar quantities
and will be denoted by lowercase letters; for instance, z.

• First-order tensors have both magnitude and direction. Usually, they are called
vectors and will be denoted by bold lowercase letters z in Rn, and their components
by zi with i = 1, ..., n:

z =


z1

z2
...
zn

 .

• Second-order tensors present magnitude and two directions; they are represented
by matrices and will be denoted by bold capital letters Z in Rm × Rn, and their
components by Zij with i = 1, ...,m and j = 1, · · · , n:

Z =


Z11 Z12 · · · Z1n

Z21 Z22 · · · Z2n

... ... . . . ...
Zm1 Zm2 · · · Zmn

 . (C.1)
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Higher-order tensors can be defined in the same way as those mentioned above. In
particular, this work deals with fourth-order tensors, which are represented by bold
calligraphic letters Z in Rm × Rn × Rp × Rq. Their components are given by Zijkl

with i = 1, ...,m, j = 1, · · · , n, k = 1, ..., p and l = 1, · · · , q (see Appendix C.9 for
representing a symmetric fourth-order tensor in Voigt notation).

For generality, this classification is written for tensors defined in spaces which
are Cartesian products of Euclidean spaces Rn.

C.2 Kinematic of Bodies
Consider a material body in motion, with an initial state defined at time

t0 = 0. This initial configuration, also known as the reference or undeformed configuration
(CHAVES, 2013), is a regular domain (open, bounded, and connected) Ω0 ⊂ R3 with a
smooth boundary Γ0. In this state, the material body is denoted by B0 and made up of
physical points called material points p = (p1, p2, p3), i.e., the coordinates of the place
occupied by the body in its reference configuration relative to a fixed Cartesian coordinate
system. It is important to emphasize that B0 is not discrete but a continuous media.

As the body moves, it will have different configurations over time. Then B0

passes to B in the current configuration Ω ⊂ R3 (also known as the actual or deformed
configuration) with boundary Γ (see Fig. 2.1). Consequently, the material points p in the
closure of Ω0 are mapped into positions x by a smooth vector valued mapping

x = χ(p, t), (C.1)

where χ is bijective (implying that the function admits an inverse χ−1), and ∇χ > 0
(meaning that the material cannot penetrate itself or reverse the orientation of the material
coordinates (ODEN, 2012)). The set {χ(p, s), 0 ≤ s ≤ t} is called trajectory of the body
through the time interval [0, t] and χ is the motion.

We have two types of motions. The first is a rigid body motion, which maintains
the original shape of the body after motion preserving the distance between particles.
This type of motion has two subcategories: translation and rotation. The second one is
the motion with deformation, which leads to changes in the distance between particles.
Generally, motion is characterized by rigid body motion and deformation, which can arise
simultaneously in the body.

C.2.1 Displacement, Velocity and Acceleration

By definition, the displacement vector u of a particle (material point) is given
by the difference between the position vector in the current configuration and the position
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vector in the reference configuration. If we consider Eq. (C.1), then the displacement can
be written as

u = x− p = χ(p, t)− p. (C.2)

The rate of change of the position vector defines the velocity v. Then, by using
Eq. (C.2) it is possible to write

v = d
dtx = d

dt(u + p) = d
dtu + d

dtp︸︷︷︸
0

= d
dtu = u̇,

i.e., the velocity is simply the time derivative of the displacement. As shown in the previous
equation, we will use the dot notation ˙(·) to refer to the time derivative along the text.

Finally, the acceleration vector a, is the rate of change of velocity:

a = d
dtv = v̇ = ü,

where (̈·) denotes the second time derivative.

C.2.2 Lagrangian and Eulerian Configurations

The motion χ of the body, defined in Eq. (C.1), ensures a correlation between
the current and reference configurations. Once χ admits an inverse χ−1, the study of
motion can be carried out either in the current or reference configuration. In other words,
the motion equation can be written in terms of the material points p, i.e., the coordinates
in the reference configuration, or by spatial coordinates, x in the current configuration
(CHAVES, 2013). In general, other physical aspects of the body (temperature, damage)
can also be described by equations in these two forms. Suppose the set of equations that
describes these attributes is written in terms of the material points. In that case, it is
commonly referred to as the Lagrangian governing equations of continuum mechanics. If the
spatial coordinates are used instead, we refer to it as the Eulerian form (or formulation).

In this work, we denote zeroth and first-order Lagrangian tensors by (·)0 =
(·)(p, t), with the subscript denoting that the quantity is given in the reference configuration
by material points. On the other hand, zero and first-order Eulerian tensors are denoted
by (·)(x, t) (without subscripts). For instance, a given field is written in the Lagrangian
form as z0 and in the Eulerian form as z. These quantities are related by

z0(p, t) = z(p(x, t), t) = z(x, t), and z(x, t) = z(ξ(p, t), t) = z0(p, t). (C.3-C.4)

There are differences in the way rates of change appear for each formulation.
For the Lagrangian case:

d
dtz0 = d

dtz0(p, t) = ∂tz0(p, t) + ∂pz0(p, t) · ∂tp︸︷︷︸
0

= ∂tz0(p, t).
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In the Eulerian case, we have

d
dtz = d

dtz(x, t) = ∂tz(x, t) + ∂xz(x, t) · ∂tx︸︷︷︸
v

= ∂tz(x, t) + ∂xz(x, t) · v. (C.5)

Equation (C.5) is called material time derivative in the classical literature.

Additionally, we differentiate the notation for gradient and divergent fields in
the Lagrangian and Eulerian formulations. The Lagrangian gradient and divergent are
given, respectively, by

∇p(z0) = ∂p(z0), and divp(z0) = ∂p · (z0). (C.6-C.7)

On the other hand, the Eulerian counterparts are given by

∇x(z) = ∂x(z), and divx(z) = ∂x · (z). (C.8-C.9)

C.3 Deformation Gradient
This section analyzes how distances between particles change during motion

and defines deformation and strain tensors.

In order to proceed, consider two neighboring particles in the reference configu-
ration, denoted by m0 and n0 where dp is a vector that joints these points defining a line
element (see Fig. C.1) After motion, particles m0 and n0 occupy new positions m and
n, respectively. In this new configuration (current configuration), the vector joining the
points w and z is represented by dx, as shown in Fig. C.1. The relation between dp and
dx is given by

dx = F dp, (C.10)

where

F = ∂px, (C.11)

is the material deformation gradient, or simply gradient of deformation (CHAVES, 2013). It
is a two-point tensor because it maps quantities between reference and current configuration.

By using Eqs. (C.1) and (C.2), and the gradient definition of Eq. (C.6), it is
possible to write F as

F (p, t) = ∇p(χ(p, t)) = I +∇p(u(p, t)), (C.12)

where I is the usual second-order identity matrix and ∇p(u) is the displacement gradient
tensor.
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Figure C.1 – Definition for F .

We emphasize that det F ̸= 0, which means that the physical material cannot
penetrate itself or reverse the orientation of material coordinates (ODEN, 2012).

The time derivative of F is given by

Ḟ = ∂t∇p(u(p, t)) = ∂t
∂

∂p
(u(p, t)) = ∂p︸︷︷︸

∇p

∂t(u(p, t))︸ ︷︷ ︸
v

= ∂xv∂px = ∇x(v)F . (C.13)

If z0(p, t) is a scalar field, then we can find the relation between the material
gradient ∇p(z0(p, t)) and the spatial gradient ∇x(z(x, t)) by using Eq. (C.3). In terms of
components, we have

[∇p(z0(p, t))]i = ∂z0(p, t))
∂pi

= ∂z(χ(p, t)), t
∂χj

∂χj

∂pi

= [∇x(z(x, t))]jFji

= F t
ij[∇x(z(x, t))]j. (C.14)

Then,

∇p(z0(p, t) = F t∇x(z(x, t)). (C.15)

Inversely, we can also obtain

∇x(z(x, t)) = F −t∇p(z0(p, t)). (C.16)

By using the last result, it is possible to write

∇x(v) = ∇p(v0)F −1. (C.17)

Furthermore, the time derivative of the determinant of F is given by

˙det(F ) = divx(v) det(F ). (C.18)

For details on obtaining Eq. (C.18), see Chaves (2013), p. 175.
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C.4 Velocity Gradient Tensor
We start this section calculating the material time derivative (defined in Eq.

(C.5)) of F by using Eq. (C.11):

Ḟ = ∂t∂px = ∂p ∂tx︸︷︷︸
v

= ∂xv∂px = ∇x(v)F = LF ,

where

L = ∇x(v), (C.19)

is an Eulerian quantity called the velocity gradient tensor. In practice, the tensor L is
written as an addictive deposition of its symmetric and skew-symmetric parts:

L = D + W ,

where D is the deformation rate tensor and W is the spin tensor, which are given
respectively by

D = 1
2(L + Lt) and W = 1

2(L−Lt). (C.20-C.21)

When W = 0, the velocity is said irrotational (CHAVES, 2013).

C.5 Strain Tensors
Broadly, strain is a normalization of deformation. Several strain measures are

used in the literature, and some of them are described below.

Firstly, we consider the differential material line segment in the reference
configuration and the current configuration, given respectively, by

dS2
0 = dp · dp, and dS2 = dx · dx.

The simplest strain definition in the material description is written through the dimen-
sionless rate:

dS2 − dS2
0

dS2
0

. (C.22)

Similarly, the spatial counterpart is written as
dS2 − dS2

0
dS2 . (C.23)

The relationship dS2 − dS2
0 can be expressed in the material description using

(C.10):

dS2 − dS2
0 = dx · dx− dp · dp = F dp · F dp− dp · dp

= dptF tF dp− dptdp = dpt(F tF − I)dp

= dpt(C − I)dp = dpt(2E)dp, (C.24)
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where

C = F tF , (C.25)

is a symmetric positive definite tensor known as the right Cauchy-Green tensor, and

E = 1
2(C − I) = 1

2(F tF − I), (C.26)

is the symmetric Green-Lagrange strain tensor, also called Lagrangian finite strain tensor
or Green-St. Venant strain tensor.

The material time derivative of C is given by

Ċ = 2Ė = ˙F tF = Ḟ tF + F tḞ = F tF −tḞ tF + F tḞ F −1F

= (F tḞ F −1F )t + F tLF = (F tLF )t + F tLF = 2F tDF , (C.27)

where D is defined in Eq. (C.20).

As commented previously, if the continuum is subjected to rigid body motion,
then D = 0. Due to Eq. (C.27), this condition is equivalent to Ė = 0 or Ċ = 0.

C.6 Area and Volume
Firstly, consider two line elements dp1 and dp2 in the reference configuration

to define the area element dΓ0 (see Fig. C.2a). After the motion, these vectors are mapped
to dx1 and dx2, respectively, that in turn define the new area element dΓ as shown in Fig.
C.2a. According to Oden (2012, p. 18), these area elements can be related by

dΓn = det(F )F −tn0dΓ0, (C.28)

where n and n0 are unit vectors which are normal to the area elements Γ and Γ0,
respectively. Now, consider a parallelepiped formed by the line elements dp1, dp2 and dp3

in the reference configuration with volume Γ0. After motion, these vectors are mapped to
dx1, dx2 and dx3 , respectively, and describe a new parallelepiped dΩ as shown in Fig.
C.2b. Next, we can establish the relationship between dΩ0 and dΩ:

dΩ = det(F )dΩ0. (C.29)

Note that if det(F ) = 1, the above equation implies that the volume does not change
during motion. If det(F ) > 1, the volume increases. If 0 < det(F ) < 1, the volume
decrease. On the other hand, if det(F ) ≤ 0, the material penetrates itself, violating
physical interpretation in the continuum mechanics (CHAVES, 2013).

Additionally, for any smooth field w, we can use Eq. (C.29) to write

d
dt

∫
Ω
ρw dΩ = d

dt

∫
Ω0

wρ det(F ) dΩ0 =
∫

Ω0

dw

dt ρ0 dΩ0 =
∫

Ω

dw

dt ρ dΩ. (C.30)
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(a) Area element. (b) Volume element.

Figure C.2 – Area and volume elements.

C.7 Forces and Stress
According to Oden (2012), force is a concept used to describe the interaction

of the motion of a body with its surrounding. There are two types of forces: body and
contact forces. The first one is the forces acting on material points of the body by external
agents, and the second characterizes the contact of the boundary surfaces of a body with
another body or with the environment.

Body forces are considered a type of external force and will be represented by
f , which represents force per unit of mass. Then, the total body forces in the domain Ω,
represented by Fbody, are given by

Fbody =
∫

Ω
ρf dΩ,

where ρ is the density of mass. Contact forces are associated with the stress tensor σ,
where the total contact forces acting on the body surface can be represented by Fsurface

and obtained through the surface integral

Fsurface =
∫

Γ
σ dΓ. (C.31)

Then, it is immediate that the total force acting in a body be given by

Fsurface + Fbody =
∫

Γ
σdΓ +

∫
Ω
ρf dΩ. (C.32)

The following section details contact forces and clarify the concept of stress.

C.7.1 Cauchy Stress Tensor

Consider the body shown in Fig. C.3, and the surface Γ, which divides the
body into two parts. For each part of the body, a unit normal vector n = [n1n2n3] gives
orientation to Γ from point x = (x1, x2, x3) at time t. By convention, the direction of n

points to the outer side of the surface.
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Figure C.3 – Definition for F .

The so-called Cauchy hypothesis asserts a vector-valued contact force density,
σ, giving the contact force per unit of area on the surface Γ through x, at time t. The
orientation of σ on one part of the material is opposite to the other part. Furthermore,
the total force on surface Γ is given by Eq. (C.31).

The vector σ is usually called traction or stress vector and is associated with
the normal n. The stress state at a point x is completely described when σ can be obtained
for any arbitrary plane passing through this point. Cauchy’s Theorem claims that if we
define the traction vector on three mutually perpendicular planes passing through x, we
can fully describe the stress state at that point. In other words, there exists a symmetric
tensor field T such that

σ = T n, (C.33)

where T can be represented in the matrix form:

T =


T11 T12 T13

T21 T22 T23

T31 T32 T33

 . (C.34)

The tensor T is called the Cauchy stress tensor and is used to represent the
components of the stress vector. For instance, if n = [1 0 0], then σ = [T11 T21 T31]
is the vector acting on the plane normal to x1 direction.In the same way, T2i and T3i,
with i = 1, · · · , 3, are components of the stress vector normal to the planes x2 and x3,
respectively(ODEN, 2012).

C.7.2 Other Stress Measures

The Cauchy stress tensor, presented in the previous section, was derived in
the current configuration Ω. However, sometimes it is necessary to adopt the Lagrangian
description to describe motion. Then it will be necessary to map the Cauchy stress to a
stress tensor in the reference configuration.

Then, we introduce the first Piola-Kirchhoff stress tensor P . This tensor repre-
sents the force in the current configuration per unit of undeformed area; it is asymmetric
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and a two-point tensor like the deformation gradient. The relation between P and T is
given by

P = det (F )T F −t. (C.35)

Furthermore,

divp(P ) = det(F )divx(T ). (C.36)

See Oden (2012, pp. 41) for comments on obtaining the last equation.

We can also define the symmetric second Piola-Kirchhoff stress tensor S, which
is defined in the reference configuration, as

S = F −1P = det(F )F −1T F −t. (C.37)

By Eq. (C.37), we can see that tensor S is the mapping of T to the reference configuration
through F .

C.8 Fundamental Equations of Continuum Mechanics
This section summarizes the main physical principles and conservative laws

used to write the fundamental equations of continuum mechanics.

C.8.1 Principle of Mass Conservation

The principle of mass conservation states that the total mass in a closed system
remains constant over time. Then, if ρ0 and ρ are mass densities for a body in the reference
and current configurations, respectively, the total mass m of a system is given by

m =
∫

Ω0
ρ0 dΩ0 =

∫
Ω
ρ dΩ. (C.38)

Using Eq. (C.29), we can rewrite the above equation as∫
Ω0
ρ0 dΩ0 =

∫
Ω
ρ dΩ =

∫
Ω0

det(F )ρ dΩ0. (C.39)

Since this equation is valid for any volume, we can obtain the local form

ρ0 = ρ det(F ). (C.40)

Furthermore, we remember that ρ0 does not depend on time; then

ρ̇0 = 0. (C.41)
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Equation (C.41) describes the Lagrangian description of the principle of mass conservation.
By integrating Eq. (C.41) in Ω0 and using Eqs. (C.40) and (C.18), we obtain

0 =
∫

Ω0
ρ̇0 dΩ0 =

∫
Ω0

˙ρ det(F ) dΩ0 =
∫

Ω0
[ρ̇+ ρdivx(v)] det(F ) dΩ0

=
∫

Ω
(ρ̇+ ρdivx(v)) dΩ.

The above equation is the weak form of the principle of mass conservation in the Eulerian
configuration. The local form (also called the strong form) is given by

ρ̇+ ρdivx(v) = 0. (C.42)

Additionally, by using the above relation and the material time derivative of
Eq. (C.5), we can write an alternative equation for the mass conservation:

0 = ∂tρ+ v · ∇x(ρ) + ρdivx(v) = ∂tρ+ divx(ρv). (C.43)

C.8.2 Balance of Linear Momentum

The body’s linear momentum is a material property associated with mass and
velocity. For the current configuration, it is defined as Lm and given by

Lm =
∫

Ω
ρv dΩ, (C.44)

where v is the Eulerian velocity field.

The Balance of Linear Momentum states that the time rate of change of Lm,
at time t, of an arbitrary part of a continuous medium is the same as the total force acting
on the body. In mathematical terms, we can use Eq. (C.32) and Eq. (C.44) to write∫

Γ
σ dΓ +

∫
Ω
ρf dΩ = d

dt

∫
Ω
ρv dΩ, (C.45)

that is the Eulerian global form of the principle of conservation of linear momentum. By
using (C.33) and (C.30) we can rewrite the above equation as∫

Γ
T n dΓ +

∫
Ω
ρf dΩ =

∫
Ω

dv

dt ρ dΩ,

and applying the Eq. (A.2), we obtain∫
Ω

divx(T ) dΩ +
∫

Ω
ρf dΩ =

∫
Ω
ρv̇ dΩ. (C.46)

Once this equation holds for any arbitrary domain, we can write the local form as

divx(T ) + ρf = ρv̇, (C.47)

that is largely known as the equation of motion in the Eulerian description. The Lagrangian
counterpart is obtained by replacing Eqs. (C.36) and (C.30) in (C.46):∫

Ω0
divp(P )dΩ0 +

∫
Ω0
ρ0f0dΩ0 =

∫
Ω0
ρ0v̇dΩ0,

where f0 = f . Then, the local Lagrangian equation of motion is obtained as

divp(P ) + ρ0f0 = ρ0v̇. (C.48)
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C.8.3 Balance of Angular Momentum

The angular momentum of a body in the current configuration is given by

Am =
∫

Ω
x× ρv dΩ.

Its time rate of change can be obtained as

d
dt

∫
Ω

x× ρv dΩ =
∫

Ω
x× ρdv

dt dΩ.

The balance of angular momentum (or rotational equilibrium) states that the
time rate of change of angular momentum of a body is equal by the total moment produced
by the forces acting on the body. It means that∫

Ω
x× ρdv

dt dΩ = d
dt

∫
Ω

x× ρf dΩ + d
dt

∫
Ω

x× σ dΩ. (C.49)

The above equation implies that T = T t; consequently, we can also obtain
St = S, by using Eq. (C.37). Details on obtaining these previous properties can be seen
in (CHAVES, 2013, p. 303).

C.8.4 First Law of Thermodynamics

In this section, we present equations for the balance of mechanical energy, also
referred to as the first law of thermodynamics. We also briefly discuss thermo-mechanical
power once the energy balance is written regarding this feature.

C.8.4.1 Balance of Power

Power is a fundamental property of a body in motion when subjected to forces.
Mathematically, it is described as the product of force and velocity. Then, by taking
the inner product of the equation for the balance of linear momentum, (C.47), with the
velocity field v and integrating on Ω, we obtain the called balance of mechanical power in
the Eulerian form:∫

Ω
divx(T ) · v dΩ +

∫
Ω
ρf · v dΩ =

∫
Ω
ρv̇ · v dΩ. (C.50)

Now, integration by parts (see Eq. (A.3)) and using the symmetry of T , the first term in
Eq. (C.50) can be rewritten as∫

Ω
divx(T ) · v dΩ = −

∫
Ω

T : ∇x(v) dΩ +
∫

Γ
T n · v dΓ

= −
∫

Ω
T : ∇x(v)︸ ︷︷ ︸

L

dΩ +
∫

Γ
T n · v dΓ

= −
∫

Ω
T : D dΩ +

∫
Γ

T n · v dΓ, (C.51)
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where D = Lsymm is the deformation rate tensor defined in Eq. (C.20). Replacing the
above equation into (C.50), we obtain

−
∫

Ω
T : D dΩ +

∫
Γ

T n · v dΓ +
∫

Ω
ρf · v dΩ =

∫
Ω
ρv̇ · v dΩ. (C.52)

Each term in Eq. (C.52) can be associated to particular forces. For instance, the term

Pa =
∫

Ω
ρv̇ · v dΩ, (C.53)

is the power of acceleration forces acting in the body (the inertia forces). The term

P i = −
∫

Ω
T : D dΩ, (C.54)

is the power of internal forces, and

Pe =
∫

Γ
T n · v dΓ +

∫
Ω
ρf · v dΩ, (C.55)

is the power due to external forces.

By using the notation established in Eqs. (C.53)-(C.55), the balance of me-
chanical power, Eq. (C.52), can be written as

Pa = Pe + P i. (C.56)

Alternatively, we can write the powers for the reference configuration. The
power of inertia forces, Equation (C.53), can be rewritten as

Pa =
∫

Ω0
ρ0v̇ · vdΩ0.

Equations (C.17) and (C.54) result in

P i = −
∫

Ω
T : D dΩ = −

∫
Ω

T : ∇x(v) dΩ = −
∫

Ω0
T : ∇x(v) det(F ) dΩ0

= −
∫

Ω0
T : ∇p(v)F −1 det(F ) dΩ0.

Manipulating the above relation and using Eqs. (C.35) and (C.13), we obtain

P i = −
∫

Ω0
det(F )T F −t : ∇p(v) dΩ0 = −

∫
Ω0

P : Ḟ dΩ0.

Now, remembering that P = F S (see Eq. (C.37)), using the symmetry of S and the time
derivative of E, given by Eq. (C.27), we are left with

= −
∫

Ω0
F S : Ḟ dΩ0 = −

∫
Ω0

S : F tḞ dΩ0

= −
∫

Ω0
S : 1

2
(
F tḞ + Ḟ tF

)
dΩ0 = −

∫
Ω0

S : Ė dΩ0.
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In summary, the amount of power generated by the conjugated pair T and D is the same
as that generated by P and Ḟ ; that in turn is equal to that for S and Ė:

−
∫

Ω
T : D dΩ = −

∫
Ω0

P : Ḟ dΩ0 = −
∫

Ω0
S : Ė dΩ0. (C.57)

Now, we can apply Reynold’s theorem to write∫
Γ

T n︸︷︷︸
σ

·b dΓ =
∫

Ω
T : ∇x(v) dΩ +

∫
Ω

divx(T )v dΩ. (C.58)

By changing the domain of integration to the reference domain and using Eq. (C.36), we
obtain

−
∫

Ω
T : D dΩ =

∫
Ω0

T : ∇x(v) det(F ) dΩ0 +
∫

Ω0
divx(T )v det(F ) dΩ0

=
∫

Ω0
T : ∇p(v)F −1 det(F ) dΩ0 +

∫
Ω

1
det(F )divp(P )v det(F ) dΩ0

=
∫

Ω0
T F −t det(F )︸ ︷︷ ︸

P

: ∇p(v) dΩ0 +
∫

Ω0
divp(P )v dΩ0

=
∫

Γ0
P n0︸ ︷︷ ︸

σ0

·v dΓ0. (C.59)

Then, the power due to external forces can be rewritten in the reference configuration as

Pe =
∫

Γ0
P n0 · v dΓ0 +

∫
Ω0
ρf0 · v dΩ0. (C.60)

C.8.4.2 Principle of Virtual Power

By taking the inner-product of the equation for the balance of linear momentum,
(C.47), with any virtual velocity field δv and integrating on Ω, we obtain:∫

Ω
divx(T ) · δv dΩ +

∫
Ω
ρf · δv dΩ =

∫
Ω
ρv̇ · δv dΩ. (C.61)

Similarly to the previous section, the above equation can be rewritten as

−
∫

Ω
T : ∇x(δv) dΩ +

∫
Γ

T n · δv dΓ +
∫

Ω
ρf · v dΩ =

∫
Ω
ρv̇ · v dΩ, (C.62)

where

Pa =
∫

Ω
ρv̇ · δvdΩ, (C.63)

is the virtual power due to the inertia forces,

Pi = −
∫

Ω
T : ∇x(δv) dΩ, (C.64)

is the virtual power by the internal forces, and

Pe =
∫

Γ
T n · δv dΓ +

∫
Ω
ρf · δv dΩ, (C.65)
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is the virtual power due to the external forces. For the previous equations we use the same
notation as Eq. (C.56) in order to simplify the exposition.

Equation (C.62) defines the so-called principle of virtual power (or balance of
virtual power). Note that the principle of virtual power can be used to obtain the equation
of motion. It is equivalent to the momentum balance laws (provided some assumptions
are satisfied). When we consider more general situations, which imply additional forces
acting on a body, it is easier to define the internal forces associated with these forces by
their virtual power than to define them directly (see Sec 2.2.1). Furthermore, the balance
of virtual power directly generates the weak forms usually employed in finite element
formulations.

C.8.4.3 Balance of Energies

The first principle of the thermodynamics (balance of energy) states that the
time rate of change of the total energy is balanced by the external power plus the heating
of the body (ODEN, 2012):

d
dtK + d

dtU = Pe + Qf + Qs, (C.66)

where

K = 1
2

∫
Ω
ρ|v|2 dΩ, (C.67)

is the total kinetic energy,

U =
∫

Ω
ρe dΩ, (C.68)

is the total internal energy with e being the specific density of internal energy,

Qf = −
∫

Γ
q · n dΓ, (C.69)

is the total energy (by a unit of time) carried by an energy flux q, and

Qs =
∫

Ω
ρr dΩ, (C.70)

is the total thermal energy (by a unit of time) generated in Ω by the heat sources (or
sinks) with specific heat source density r. It is important to emphasize that, although
it is possible to include microstructural effects, in the present case, we consider that the
involved body is subject simply to macro-mechanic and thermal energies (for a more
general case, see Chapter 2).
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By using the Reynold’s theorem (see Eq. (A.4)) and Eq. (C.67), it is possible
to write

d
dtK = 1

2
d
dt

∫
Ω
ρ|v|2 dΩ

= 1
2

(∫
Ω

∂

∂t

(
ρ|v|2

)
dΩ +

∫
Γ

v · nρ|v|2 dΓ
)

= 1
2

(∫
Ω

∂ρ

∂t
|v|2 dΩ +

∫
Ω
ρ
∂|v|2

∂t
dΩ +

∫
Γ

v · nρ|v|2 dΓ
)
. (C.71)

Now, using Eq. (C.43) and the divergence theorem (see Eq. (A.1)), we found∫
Ω

∂ρ

∂t
|v|2 dΩ = −

∫
Ω

divx(ρv)|v|2 dΩ = −
∫

Γ
ρv · n|v|2 dΓ. (C.72)

Replacing the above equation in (C.71) we obtain

d
dtK = d

dt
1
2

∫
Ω
ρ|v|2 dΩ = 1

2

∫
Ω
ρ
∂|v|2

∂t
dΩ =

∫
Ω
ρv̇ · v dΩ = Pa. (C.73)

Then, the derivative of the kinematic energy is equal to the power of inertial forces, as we
can see in Eq. (C.53).

Using Eq. (C.73) we can rewrite the balance of energy, Eq. (C.66), as

d
dtU = −Pi + Qf + Qs. (C.74)

Now, replacing Eqs. (C.54), (C.68), (C.69) and (C.70) in the above equation, we obtain

d
dt

∫
Ω
ρe dΩ =

∫
Ω

T : DdΩ−
∫

Γ
q · n dΓ−

∫
Ω
ρr dΩ. (C.75)

Using Eq. (C.43), (C.30) and the divergence theorem of Eq. (A.1), we obtain∫
Ω
ρė dΩ =

∫
Ω

T : DdΩ−
∫

Ω
divxq dΩ−

∫
Ω
ρr dΩ, (C.76)

that is the integral form of the balance of internal energy. Once it is valid for any arbitrary
volume, we can write the local form as

ρė = T : D − ρr − divx(q). (C.77)

Equation (C.77) can be rewritten in the original configuration. For that, consider
the last term in the above equation:∫

Ω
divxq dΩ =

∫
Γ

q · n dΓ =
∫

Γ0
q · det(F )F −tn0 dΓ0

=
∫

Γ0
det(F )F −1q · n0 dΓ0

=
∫

Γ0
q0 · n0 dΓ0

=
∫

Ω0
divpq0 dΩ0, (C.78)



APPENDIX C. Review on Continuum Mechanics 137

that was manipulated by using the Eq. (A.1) and (C.28). Furthermore,

q0 = det(F )F −1q, (C.79)

is the energy flux in the original configuration.

Then, by using Eqs. (C.29), (C.57) and (C.78), we can write the Lagrangian
version for the balance of energies:∫

Ω0
ρ0ė0 dΩ0 =

∫
Ω0

S : ĖdΩ0 −
∫

Ω0
divpq0 dΩ0 −

∫
Ω0
ρ0r0 dΩ0, (C.80)

where the local form is given by

ρ0ė0 = S : Ė − ρ0r0 − divp(q0). (C.81)

C.8.5 Second Law of Thermodynamics

The second law of thermodynamics is defined in terms of a state function1

called entropy. This property is commonly used to describe system disorder or uncertainty.
In thermodynamics, it is the physical quantity that measures the amount of heating or
work that a system can receive (CHAVES, 2013). Then, the concept of entropy can be used
to construct a relationship between the internal energy that is available or unavailable for
transformations and the resulting heat and work.

The total entropy of a system is given by∫
Ω
ρη dΩ, (C.82)

where η is the specific entropy density. The entropy furnished to the system is given by∫
Ω
ρω dΩ, (C.83)

where w is the specific density of sources and sinks, called the entropy production term.
The entropy that enters the system by the surface is

−
∫

Γ
q · n dΓ. (C.84)

The second law of thermodynamics states that the entropy of isolated systems
cannot decrease with time. It means that the rate of change of the total entropy is never
less than the entropy flow that enters through the body’s surface, plus the entropy created
inside the body. Mathematically, we can use Eqs. (C.82)-(C.84) to write the integral form
of the second principle of thermodynamics, also called entropy inequality, in the Eulerian
configuration:

d
dt

∫
Ω
ρη dΩ ≥

∫
Ω
ρw dΩ−

∫
Γ

q · n d(Γ). (C.85)
1 A state function is a property that depends only on the system’s current state, independently of how

that state came to be achieved (CALLEN, 1998).
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We can use Eq. (C.30) to write

d
dt

∫
Ω
ρη dΩ =

∫
Ω
ρη̇ dΩ. (C.86)

Then, by using the above equation and the divergence theorem, Eq. (A.1) in Eq. (C.85),
we obtain the alternative form of the entropy inequality, also referred as integral form of
Clausius-Duhem inequality:∫

Ω
ρη̇ dΩ ≥

∫
Ω
ρω dΩ−

∫
Ω

divxq dΩ. (C.87)

Note that, by inequality (C.87), if entropy occurs, the process is irreversible; that is, we can
not return to the original state without adding work or heat to the system. The process is
reversible if the equality is valid for (C.87). The local form of inequality (C.87) is given by

ρη̇ ≥ ρω − divxq.

The Lagrangian version of the entropy inequality can be obtained by using Eq.
(C.78) in (C.87): ∫

Ω0
ρ0η̇0 dΩ0 ≥

∫
Ω0
ρ0ω0 dΩ0 −

∫
Ω0

divpq0 dΩ0. (C.88)

where η0(p, t) = η(x, t) and ω0(p, t) = ω(x, t). Since this equation is valid for any volume,
we can obtain the local form as

ρ0η̇0 ≥ ρ0ω0 − divpq0.

C.9 Voigt notation
Symmetric fourth-order tensors in the two-dimensional space can be stored in

matrices using Voigt notation. The components of Z = [Zijkl] are arranged in the matrix
Z, which represents the contraction of two indexes of Z:

Z =


Z1111 Z1122 Z1112

Z2211 Z2222 Z2212

Z1211 Z1222 Z1212

 (C.89)

Second-order tensors can be written in vector form using the Voigt notation.
For instance, the tensor Z can be written as a vector z that represents the contraction of
one index. It is given by

z =


Z11

Z12

Z21

Z22

 . (C.90)
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If Z is symmetrical, then

z =


Z11

Z22

2Z12

 . (C.91)

We refer to the Voigt notation in Secs. C.1 and 4.3. Further comments on this
notation can be seen in Chaves (2013).

C.10 Double Scalar Product
Consider the second order tensors Z1 and Z2. The double scalar product (also

called double contraction) between these tensors is given by

Z1 : Z2 = Z1,ijZ2,ij = tr
(
Z1Z

t
2

)
= tr

(
Zt

1Z2
)
. (C.92)

Details on the above equation can be see in Chaves (2013).

If we have a fourth-order tensor Z, then

Z : Z1 = ZijklZ1,kleiej, (C.93)

where ei and ej are the unitary vectors in the direction of x and y, respectively. It means
that Eq. (C.93) results in a second-order tensor.
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APPENDIX D – Neo-Hookean Material

We referred to the Neo-Hookean material in Sec. 3.1.1. It is a class of hyperelastic
materials, considered an extension of the traditional Hookean material for predicting the
nonlinear stress-strain behavior for finite strain. The Neo-Hookean model is based on
the behavior of the cross-linked chains and used mainly to describe polymeric materials
(OGDEN, 2013).

The energy function for these materials is defined as

ψh = µ

2 (tr(C − 3)− µ ln(det(F )) + λ

2 (ln(det(F ))2, (D.1)

where C and F are the right Cauchy-Green and the deformation gradient tensors, respec-
tively (see Eqs. (C.25) and (C.11)). These tensors are related by C = F tF .

The second Piola-Kirchhoff stress tensor can be defined in terms of the energy
as

S = ∂Eψh = 2∂Cψh. (D.2)

where E is the Green-Lagrange strain tensor defined in Eq. (C.26). The relations (B.1)
and (B.2) and the symmetry of C imply in

∂C

[
ln(det(C)1/2)

]
= 1

2C−t = 1
2C−1 (D.3)

and

∂C(ln(det(C)1/2)2 = 2 ln(det(C)1/2)∂C ln(det(C)1/2) = ln(det(C)1/2)C−1. (D.4)

By using the above equations and (D.2) we obtain

S = 2∂Cψh = µ(I −C−1) + λ ln(det(C)1/2)C−1. (D.5)

The fourth-order tangent tensor corresponding to the Neo-Hookean material
can be obtained by differentiation of Eq. (D.5) with respect to C. By using Eqs. (B.2)
and (B.3) we obtain

2∂CS = 2
(
µ− λ ln(det(C)1/2)

)
I + λC−1 ⊗C−1, (D.6)

where I = 1
2 (δijδjl + δilδjk) is the fourth order symmetric identity tensor, with δij the

usual Kronecker delta:

δij =

1, i = j

0, i ̸= j.
(D.7)

Further comments on the Neo-Hookean material can be seen in Chaves (2013).
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APPENDIX E – Algebraic Manipulations

E.1 Alternative Definition for Caputo Fractional Derivative
Consider Eq. (1.4) rewritten as

aDα
t f(t) = 1

Γ(1− α) lim
C→t−

∫ C

a

f ′(τ)
(t− τ) dτ︸ ︷︷ ︸

I

. (E.1)

Applying integration by parts with

u = 1
(t− τ)α

⇒ du = α

(t− τ)α+1 dτ,

dv = f ′(τ)dτ ⇒ v = f(τ),

we obtain

I = f(τ)
(t− τ)α

∣∣∣∣∣
C

a

− α
∫ ϵ

a

f(τ)
(t− τ)α+1 dτ.

= f(C)
(t− C)α

− f(a)
(t− a)α

− α
∫ C

a

f(τ)
(t− τ)α+1 dτ + α

∫ C

a

f(C)
(t− τ)α+1 dτ

−α
∫ C

a

f(C)
(t− τ)α+1 dτ

= f(C)
(t− C)α

− f(a)
(t− a)α

+ α
∫ C

a

f(C)− f(τ)
(t− τ)α+1 dτ − αf(C)

∫ C

a

1
(t− τ)α+1 dτ

= f(C)
(t− C)α

− f(a)
(t− a)α

+ α
∫ C

a

f(C)− f(τ)
(t− τ)α+1 dτ − f(C)

(t− C)α
+ f(C)

(t− a)α

= − f(a)
(t− a)α

+ α
∫ C

a

f(C)− f(τ)
(t− τ)α+1 dτ + f(C)

(t− a)α
.

By replacing the above expression in Eq. (E.1), then

aDα
t f(t) = 1

Γ(1− α)

(
f(t)− f(a)

(t− a)α
+ α

∫ t

a

f(t)− f(τ)
(t− τ)α+1 dτ

)
.

E.2 Properties for N

In this Appendix, we discuss some properties for the function N (Z1,Z2), that
appears in Sec. 2.2.3.1. This function, proposed originally in Costa-Haveroth et al. (2022),
is a suitable continuous function of second-order symmetric tensors with the following
properties:

(a) N (Z1,Z2) ≥ 0, ∀Z;
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(b) |N (Z1,Z2)| ≤ C(Z1,Z2)|Z1 − Z2|β, with β ≥ 1 + α and
C(Z1,Z2) bounded as Z1 −Z2 → 0+;

(c) |∂Z1N (Z1,Z2)| ≤ C1(Z1,Z2)|Z1 −Z2|β1 , with β1 ≥ α and C1(Z1,Z2) bounded as
Z1 −Z2 → 0+.

Consider now, that N is applied for (Et,Eτ ), where E(·) := E(p, (·)) is the
Green-Lagrange strain tensor (as discussed in Sec. 2.2.3.1). By using the previous properties,
and the mean value theorem, we obtain

|N (Et,Eτ )| ≤ C(Et,Eτ )|Et −Eτ |β

≤ C(Et,Eτ ) max{|Ės|, s ∈ [0, t)}β|t− τ |β, (E.2)

and

|∂EtN (Et,Eτ )| ≤ C1(Et,Eτ )|Et −Eτ |β1

≤ C1(Et, Ėτ ) max{|Es|, s ∈ [0, t)}β1|t− τ |β1 . (E.3)

Inequality (E.2) leads to

lim
τ→t−

N (Et,Etau)
(t− τ)1+α

= 0, 0 < α < 1. (E.4)

Moreover, we also consider that N (Et,Eτ )
(t− τ)2+α

and ∂EtN (Et,Eτ )
(t− τ)1+α

are integrable in [0, t)
with respect to τ .

E.2.1 On the Obtaining of ψ̇m
Consider ψm and ψ̃m, as presented in Sec. 2.2.3.1, given respectively by

ψm (φ,Ht(E)) = Gm (φ)
ρ0

ψ̃m (Ht(E)) , (E.5)

and
ψ̃m (Ht(E)) = 1

Γ(1− α)

[
N (Et,E0)

tα
+α

∫ t

0

N (Et,Eτ )
(t− τ)1+α

dτ
]
, (E.6)

where

Ht(E) = H (E)(p, t)
= {E(p, t− s), 0 < s <∞)}
= {E(p, s), 0 < s < t)}, (E.7)

as show in Eq. (2.69). Under the conditions for N , established in the previous section,
the time derivative ψ̇m for strains are continuous at time t = 0+ and has bounded rates
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(i.e, |Ė(p, t)| bounded as t→ 0+), can be obtained as

ψ̇m(φ,Ht(E)) = Ġm(φ)
ρ0

ψ̃m + Gm(φ)
ρ0

˙̃ψm(Ht(E))

= Ġm(φ)
ρ0

ψ̃m + Gm

ρ0

(
∂Ht(E)ψ̃m : ˙Ht(E) + ∂tψ̃m

)
. (E.8)

Firstly, we consider

∂Ht(E)ψ̃m : ˙Ht(E)

= 1
Γ(1− α)

[
∂Ht(E)N (Et,E0)

tα
+ α

∫ t

0

∂Ht(E)N (Et,Eτ )
(t− τ) dτ

]
: ˙Ht(E), (E.9)

Now, we calculate

∂tψ̃m = 1
Γ(1− α)

[
−αN (Et,E0)

tα+1 + α
d
dt

∫ t

0

N (Et,Eτ )
(t− τ)1+α

dτ
]

= 1
Γ(1− α)

[
−αN (Et,E0)

tα+1 + α

(
N (Et,Eτ )
(t− τ)1+α

∣∣∣∣∣
τ=t

+
∫ t

0
∂t

(
N (Et,Eτ )
(t− τ)1+α

)
dτ
)]

.

(E.10)

The result of Eq. (E.4) implies that

∂tψ̃m = −α(1 + α)
∫ t

0

N (Et,Eτ )
(t− τ)2+α

dτ. (E.11)

Then, Eq. (E.8) becomes

ψ̇m = Sm : Ėt + Ġm

ρ
ψ̃m −R, (E.12)

where

Sm = Gm

ρ0Γ(1− α)

[
∂EtN (Et,E0)

tα
+ α

∫ t

0

∂EtN (Et,Eτ )
(t− τ)1+α

dτ
]
, (E.13)

and

R = Gmα

ρ0Γ(1− α)

[
N (Et,E0)

t1+α
+ (1 + α)

∫ t

0

N (Et,Eτ )
(t− τ)2+α

dτ
]
. (E.14)

Note that R ≥ 0, due to the property (b) defined previously for N .

E.2.2 Example of N

Consider N (Et,Eτ ) = 1
2(Et − Eτ ) : A(Et) : (Et,Eτ ) with A(Et) a fourth

order symmetric-positive definite tensor continuously depending on Et. Then (E.6) becomes

ψ̃m = κ

ρ

[
[Et −E0] : A : [Et −E0]

tα
+α

∫ t

0

[Et −Eτ ] : A : [Et −Eτ ]
(t− τ)1+α

dτ
]
. (E.15)
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In this case, some algebraic manipulation and Eq. (E.13) lead to

Sm = Gm

ρ
[A : 0Dt

αEt + κ
(Et −E0) : ∂EA : (Et −E0)

tα

+κα
∫ t

0

(Et −Eτ ) : ∂EA : (Et −Eτ )
(t− τ)1+α

dτ
]
, (E.16)

were 0Dt
αE is the Caputo fractional derivative of E, as shown in Eq. (1.5). Furthermore,

Eq. (E.14) can be rewritten as

Rm = Gm

ρ0
κ


(
Et − Ê0

)
: A : (Et −E0)
tα+1

+(α + 1)
∫ t

0

(Et −Eτ ) : A :
(
Et − Êτ

)
(t− τ)2+α

dτ
 , (E.17)

An interesting possibility is to take A(E) = ∂2
Eψe(E), where ψe(E) is any

standard elastic specific free-energy with continuous derivatives with respect to E up to
order 3.

It is important to emphasize that Equation (E.15) is a modification of the
free-energy potential proposed in Fabrizio (2014). The author shows that his proposal for
the free-energy implies in a stress equation in terms of fractional derivatives. However, the
arguments presented in Fabrizio (2014) do not make clear why the definition of fractional
derivatives must appear. In the present paper we modified Fabrizio’s suggestion including
the first term of Eq. (E.15) to properly lead to the fractional derivative definition that
appears in the associated stress Sm (see Eq. (E.16)). We also extend his suggestion for the
three-dimensional case, and added the possibility to consider A(E) nonlinear in relation
to E.

E.3 On the Obtaining of SA

How to compute the derivative of IA with respect to the strain tensor EA,
as demanded by Eq. (3.18)? The text that follows explicit the difficult to obtain this
derivative analytically.

Note that

IA
(
φ,∇pφ,E

A
)

= gc

(
γc

2 ∇pφ ·C−1∇pφ+ 1
γc

H(φ)
)
, (E.18)

is given in terms of the inverse of total right Cauchy-Green strain tensor C = F tF . We
can use the multiplicative decomposition of F in Eq. (2.1), and the definiton of ĈB in Eq.
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(2.58) to obtain

C−1 = F −1(F )−t

=
(
F A

)−1(
F B

)−1(
F B

)−t(
F A

)−t

=
(
F A

)−1(
ĈB

)−1(
F A

)−t
. (E.19)

Moreover, we can consider the polar decomposition F A = RAUA, where RA is an
orthogonal matrix that represents a rotation and UA is a symmetric positive definite
matrix that represents a distortion and can be related with CA by UA =

(
CA

)1/2

(CHAVES, 2013). It enables to write the following identity:(
F A

)−1(
ĈB

)−1(
F A

)−t
=
(
CA

)−1/2(
RA

)−1(
ĈB

)−1(
RA

)−t(
CA

)−t/2
.

Then, remembering that CA = 2EA + I and using the above equation, we have

∂EAIA = 2∂CAIA

= gcγ∂CA

[
∇pφ ·

(
CA

)−1/2(
RA

)−1(
ĈB

)−1(
RA

)−t(
CA

)−t/2
∇pφ

]
.

The difficulty in derive the above equation is clear; then, if necessary, we
recommend to calculate this term by using numerical derivatives. For Sec. 5.2, we calculated
it by using complex numerical derivatives as show bellow (HAVEROTH; STAHLSCHMIDT;
MUÑOZ-ROJAS, 2015):

∂IA
p

∂EA
q

=
Im
(
IA

n+1

(
(EA

n+1) + jδ̂
)

p

)
q

δ̂
, (E.20)

where p, q = 1, 2, 3, δ̂ is a small perturbation (δ̂ ∈ [10−100, 10−300]) and j the imaginary
unit.

E.4 On the Obtaining of ∂EBSB

Here, we indicate how to calculate the derivative in the first term of Eq. (4.22).
By using Eq. (2.53), we can write

∂EB
n+1

SB
n+1 = det(F A

n )
(
F A

n

)−1
∂EB

n+1
T̂ B

n+1

(
F A

n

)−1
. (E.21)

Remember that, as discussed in Sec. 4.1.2, we use F A
n know. By Eq. (E.21), it is necessary

to calculate ∂EB
n+1

T̂ B
n+1. In order to simplify the following computations, we suppress the

last two terms in Eq. (3.25) and consider b̃ = 0 (no viscous damping) to obtain the
approximation

T̂ B ≃ = 1
det (F A)

{
GB

h

[
µB

(
I −

(
ĈB

)−1
)

+ λB ln
(
det

(
ĈB

))1/2(
ĈB

)−1
]

−gcγ
[(

ĈB
)−1(

F A
)−t
∇pφ

]
⊗
[(

ĈB
)−1(

F A
)−t
∇pφ

]
+G

B
m

ρ0
A : 0Dt

α(ÊB
t )
}
. (E.22)



APPENDIX E. Algebraic Manipulations 146

Particularly, Costa-Haveroth et al. (2022) shown a detailed discussion that validates the
simplifications adopted in the last equation.

By considering Eq. (E.22), we can write

∂ÊB T̂ B = = 1
det (F A)

{
GB

h ∂ÊB

[
µB

(
I −

(
ĈB

)−1
)

+ λB ln
(
det

(
ĈB

))1/2(
ĈB

)−1
]

−gcγ∂ÊB

[((
ĈB

)−1(
F A

)−t
∇pφ

)
⊗
((

ĈB
)−1(

F A
)−t
∇pφ

)]
+G

B
m

ρ0
∂ÊB

(
A : 0Dt

α
(
ÊB

t

))}
. (E.23)

The derivative in the first term of Eq. (E.23) can be obtained similarly to that
show in Eq. (D.6):

∂ÊB

[
µB

(
I −

(
ĈB

)−1
)

+ λB ln
(
det

(
ĈB

))1/2(
ĈB

)−1
]

= 2
(
µB − λB ln(det(ĈB)1/2

)
I + λ(ĈB)−1 ⊗ (ĈB)−1, (E.24)

where I is the fourth order identity tensor.

The derivative in the second term of Eq. (E.23) is calculated by using Eq. (B.3).
In terms of components, we have

[∂CBI ]mn = −gc
γ

2 [∇p(φ0)]i
[
(FA)−1

]
ij

[
(FA)−t

]
kl

[∇p(φ0)]l
[
(CB)−1

]
jm

[
(CB)−1

]
nk

= −gc
γ

2
[
(CB)−t

]
mj

[
(FA)−t

]
ji

[∇p(φ0)]i
[
(CB)−1

]
nk

[
(FA)−t

]
kl

[∇p(φ0)]l .
(E.25)

that implies in

∂CBI = −
(
(CB)−1(F A)−t∇p(φ0)

)
⊗
(
(CB)−1(F A)−t∇p(φ0)

)
, (E.26)

The last term in Eq. (E.23) is calculated as

∂ÊB

(
A : 0Dt

α(ÊB
t )
)

= ∂ÊB (A) : 0Dt
α(ÊB

t ) + A : ∂ÊB

(
Dt

α(ÊB
t )
)
. (E.27)

The derivative ∂ÊB (A) is dependent on the choice for A (see some suggestions in Sec.
5.1.1.2). On the other hand, the derivative ∂ÊB

(
Dt

α(ÊB
t )
)

is calculated in this work by
adopting the numerical approximation given by the algorithm G1 show in Eq. (4.45).
Then,

∂ÊB

[
Dt

α(ÊB
t )
]

= ∂ÊB

[
(∆t)−α

N−1∑
m=0

Bm+1Ê
B(t−m∆t)

]
= ∂ÊB

[
(∆t)−α

[
B1Ê

B(t) +B2Ê
B(t−∆t)+

· · ·+BNÊB(t− (N)∆t)
]]

= (∆t)−αB1. (E.28)
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Alternatively, the derivative ∂EB T̂ B, can also be obtained by using numerical
derivatives. In particular, Costa-Haveroth et al. (2022) comment on how to use complex
numerical derivatives to calculate this tensor.

E.5 On the Obtaining of ∂EAC and ∂EASB

Consider the derivative that follows, in terms of components:

∂[EB]ij
∂[C]pq

= ∂

∂[C]pq

[
1
2

([(
FA

)−t
]

ik
Ckl

[(
FA

)−1
]

lj
− Iij

)]

= 1
2

[(
FA

)−t
]

ik

∂Ckl

∂Cpq︸ ︷︷ ︸
δkpδlq

[(
FA

)−1
]

lj

= 1
2

[(
FA

)−t
]

ip

[(
FA

)−1
]

qj
.

This means that we can use the approximation
(
∂∂CÊB

)
n+1
≃
(1

2
(
F A

n

)−t
⊗
(
F A

n

)−1
)
. (E.29)

Now, we use Eq. (3.5) and (3.39) to write

C =
(
F B

)t
CAF B =

(
F B

)t
(2EA − I)F B, (E.30)

which implies in

∂EAC = 2
(
F B

)t
⊗ F B = 2(F A)−tF t ⊗ F (F A)−1. (E.31)

Then, the derivative ∂EASB can be obtained by the chain rule:

∂EASB = ∂ÊB SB∂CÊB∂EAC. (E.32)

The term ∂ÊB SB is given in Sec. (E.4); ∂CÊB is given in Eq. (4.24) and ∂EAC is shown
in Eq. (E.31).

E.6 Simplifications in the Linearization of the Motion Equation
Here we discuss the obtaining of Eq. (4.31). Consider the following manipulation:

SB :
[1
2
(
δḞ t∇p(w) +∇p(w)tδḞ

)]
= 1

2SB :
(
δḞ∇p(w)

)
+ 1

2SB :
(
∇p(w)tδḞ

)
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By using Eq. (C.92) and SB =
(
SB

)t
in the above equation, we obtain

SB :
[1
2
(
δḞ t∇p(w) +∇p(w)tδḞ

)]
= 1

2tr
((

SB
)t
δḞ∇p(w)

)
+ 1

2tr
((

SB
)t
∇p(w)tδḞ

)
= 1

2tr
(
δḞ∇p(w)SB

)
+ 1

2tr
(

(δḞ t∇p(w)
(
SB

)t
)

= 1
2tr

(
δḞ∇p(w)SB

)
+ 1

2tr
(
δḞ t∇p(w)SB

)
= 1

2
(
∇p(w)tδḞ : SB

)
+ 1

2
(
∇p(w)tδḞ : SB

)
= 1

2
(
δḞ : ∇p(w)SB

)
+ 1

2
(
δḞ : ∇p(w)SB

)
=

(
δḞ : ∇p(w)S

)
.

Now, to obtain Eq. (4.30), we consider

1
2
(
δḞ tF + F tδḞ

)
: A :

[1
2
(
∇p(w)tF + F t∇p(w)

)]
= 1

2
(
δḞ tF

)
: A :

[1
2
(
∇p(w)tF

)]
+ 1

2
(
δḞ tF

)
: A :

[1
2
(
F t∇p(w)

)]
+

1
2
(
F tδḞ

)
: A :

[1
2
(
∇p(w)tF

)]
+ 1

2
(
F tδḞ

)
: A :

[1
2
(
F t∇p(w)

)]
. (E.33)

As can be shown by using the symmetry of A, the terms in the above equation are identical.
Consider the first term of Eq. E.33 (for the remaining terms the calculation is similar):

1
2
(
δḞ tF

)
ij
Aijkl

1
2
(
∇p(w)tF

)
kl

= 1
4∇p(w)t

imFmjAijklδḞ
t
knFnl

= 1
4F

t
jm∇p(w)miAijklF

t
lnδḞnk

= 1
4
(
F t∇p(w)

)
ji
Ajilk

(
F tδḞ

)
lk

= 1
4
(
F tδḞ

)
: A :

(
F t∇p(w)

)
.

Replacing the above equation in (E.33), we obtain (4.30).
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