
UNIVERSIDADE ESTADUAL DE
CAMPINAS

Instituto de Matemática, Estatística e
Computação Científica

GUILHERME VIEIRA NETO

Hypercomplex-Valued Feedforward Neural
Networks

Redes Neurais Progressivas com Valores
Hipercomplexos

Campinas
2023

Guilherme Vieira Neto

Hypercomplex-Valued Feedforward Neural Networks

Redes Neurais Progressivas com Valores Hipercomplexos

Tese apresentada ao Instituto de Matemática,
Estatística e Computação Científica da Uni-
versidade Estadual de Campinas como parte
dos requisitos exigidos para a obtenção do
título de Doutor em Matemática Aplicada.

Thesis presented to the Institute of Mathe-
matics, Statistics and Scientific Computing
of the University of Campinas in partial ful-
fillment of the requirements for the degree of
Doctor in Applied Mathematics.

Supervisor: Marcos Eduardo Ribeiro do Valle Mesquita

Este trabalho corresponde à versão
final da Tese defendida pelo aluno Gui-
lherme Vieira Neto e orientada pelo
Prof. Dr. Marcos Eduardo Ribeiro do
Valle Mesquita.

Campinas
2023

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

 Vieira Neto, Guilherme, 1992-
 V673h VieHypercomplex-valued feedforward neural networks / Guilherme Vieira Neto.

– Campinas, SP : [s.n.], 2023.

 VieOrientador: Marcos Eduardo Ribeiro do Valle Mesquita.
 VieTese (doutorado) – Universidade Estadual de Campinas, Instituto de

Matemática, Estatística e Computação Científica.

 Vie1. Redes neurais (Computação). 2. Inteligência artificial. 3. Quatérnios. 4.

Álgebra geométrica. 5. Aprendizado de máquina. I. Mesquita, Marcos Eduardo
Ribeiro do Valle, 1979-. II. Universidade Estadual de Campinas. Instituto de
Matemática, Estatística e Computação Científica. III. Título.

Informações Complementares

Título em outro idioma: Redes neurais progressivas com valores hipercomplexos
Palavras-chave em inglês:
Neural networks (Computer science)
Artificial intelligence
Quaternions
Geometric algebra
Machine learning
Área de concentração: Matemática Aplicada
Titulação: Doutor em Matemática Aplicada
Banca examinadora:
Marcos Eduardo Ribeiro do Valle Mesquita [Orientador]
João Batista Florindo
Carlile Campos Lavor
João Paulo Papa
Leandro Augusto Frata Fernandes
Data de defesa: 24-03-2023
Programa de Pós-Graduação: Matemática Aplicada

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0003-3361-6154
- Currículo Lattes do autor: http://lattes.cnpq.br/4513901014974073

Powered by TCPDF (www.tcpdf.org)

Tese de Doutorado defendida em 24 de março de 2023 e aprovada

pela banca examinadora composta pelos Profs. Drs.

 Prof(a). Dr(a). MARCOS EDUARDO RIBEIRO DO VALLE MESQUITA

 Prof(a). Dr(a). JOÃO BATISTA FLORINDO

 Prof(a). Dr(a). CARLILE CAMPOS LAVOR

 Prof(a). Dr(a). JOÃO PAULO PAPA

 Prof(a). Dr(a). LEANDRO AUGUSTO FRATA FERNANDES

A Ata da Defesa, assinada pelos membros da Comissão Examinadora, consta no

SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria de Pós-Graduação do Instituto de

Matemática, Estatística e Computação Científica.

Acknowledgements

Aos meus pais, Angela e Guilherme, que nunca deixaram faltar carinho, amor,
e confiança. Sempre se esforçaram para me ensinar que não é necessário entender para
apoiar.

Aos amigos, novos e antigos, que participaram, cada um à sua medida, dessa
jornada transformadora. Certamente sou grato a todos e todas de coração. Em especial,
exalto aqueles que estavam lá nos momentos de luta mas também nos momentos de colher
as recompensas: Danilo Seghese, Juliana Florêncio, Thiago Savoy, Lucca Santos, Mayara
Sebinelli, Ana Cláudia Oliveira, e Thais Montanari, que compreendem de maneira visceral
os esforços e os louros deste ofício.

Ao meu orientador, Marcos Eduardo Ribeiro do Valle Mesquita, sou muitíssimo
grato pela exemplar orientação. Sua prontidão, empenho e compreensão são admiráveis, e
me proporcionaram a confiança necessária para realizar os trabalhos aqui compilados.

A todos os professores que contribuíram para a minha formação na Unicamp. Ao
Professor Danilo Comminiello e ao grupo de pesquisa ISPAMM da La Sapienza Università
di Roma, que me receberam de braços abertos e agregaram muito à minha formação.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001.

“All we have to decide is what to do with the time that is given to us.”
Gandalf, O Senhor dos Anéis

Resumo
Em décadas recentes redes neurais artificiais (RNAs) ganharam notável popularidade. Este
tipo de modelo de inteligência artificial se ramificou através das décadas, alcançando uma
grande variedade de áreas desde aplicações na indústria como processamento de sinais digi-
tais, robótica, automação, previsão de séries temporais, assistência a diagnósticos médicos,
reconhecimento de padrões e tarefas de classificação, até aplicações diretamente em contato
com o usuário final tais como smartphones, sistemas de recomendação, reconhecimento
facial e de voz e dispositivos interativos no geral. No entanto, a maioria esmagadora de
aplicações de RNAs se baseia em modelos com valores reais. Nesta tese, exploramos dois
tipos de RNAs baseadas em álgebras hipercomplexas, a saber as máquinas de aprendizado
extremo (ELMs, do inglês Extreme Learning Machines) e as redes neurais convolucionais
(CNNs, do inglês Convolutional Neural Networks). Discutimos detalhadamente seus prin-
cipais aspectos arquiteturais e analisamos como estes modelos se comparam a modelos
reais equivalentes com respeito a três aspectos centrais: armazenamento, desempenho
e tempo de processamento. Em particular, implementamos ELMs com número similar
de parâmetros treináveis e os modelos baseados em álgebras hipercomplexas mostram
resultados expressivamente superiores aos do modelo real tanto numa tarefa de previ-
são de série temporal quanto em uma tarefa de auto-encoding de imagens coloridas. Já
com relação às CNNs, desenvolvemos modelos compactos com valores hipercomplexos
contendo aproximadamente 33% dos parâmetros treináveis contidos em um modelo real,
e mostramos que estes ainda assim tem um desempenho muito superior ao modelo real
em duas tarefas de classificação de imagens médicas aqui apresentadas. Ademais, explo-
ramos estes modelos em uma gama variada de álgebras, desde as mais usuais como os
quatérnios e os tessarinos até as mais não-usuais como álgebras de Cayley-Dickson e os
quatérnios hiperbólicos de MacFarlane. Concluímos que na maioria das vezes uma álgebra
não-usual mostra desempenho consistentemente superior aos quatérnios, apesar desta
última dominar expressivamente a literatura em RNAs com valores hipercomplexos com
respeito ao número de publicações. Ainda, mostramos na prática que a codificação de
cores de uma imagem afeta cada modelo diferentemente, e discutimos as implicações deste
fato na codificação de dados no geral. Por fim, incluimos uma aplicação de um modelo
hipercomplexo baseado na álgebra dos quatérnios duais que demonstra sua equivariância
de translação e a maneira com a qual este modelo trata conjuntos de testes transladados
sem a necessidade de intervenção de um especialista. Discutimos brevemente o potencial
desta álgebra em aplicações do mundo real. Em suma, operações nos modelos com valores
hipercomplexos exibem custo computacional mais elevado que nos modelos reais, porém os
modelos finais obtidos são mais compactos e tem desempenho consistentemente superior
em todas as métricas avaliadas.

Palavras-chave: Redes neurais artificiais, álgebras hipercomplexas, álgebras geométricas,
aprendizado de máquinas.

Abstract
Over the past few decades artificial neural networks (ANNs) rose notably in popularity.
This type of artificial intelligence model branched out, reaching a wide variety of areas
from industry applications such as digital signal processing, robotics and automation, time
series forecasting, medical diagnosis assistance, pattern recognition and classification tasks,
all the way to end-user applications such as smartphones, recommendation systems, face
and voice recognition and smart interactive devices in general. However, the dominant
majority of ANN applications feature real-valued models. In this thesis we explore two
ANN models based on hypercomplex algebras, namely the extreme learning machines
(ELMs) and convolutional neural networks (CNNs). We explore the main architecture
features in detail and show how these fair when compared to real-valued equivalent models
regarding three key aspects: storage, performance and time. In particular, we build ELMs
with similar number of free parameters and the hypercomplex-valued models dominate the
real-valued one by a large margin on both a time series prediction task and a color image
auto-encoding task. With respect to CNNs, we showcase compact hypercomplex-valued
models featuring slightly over 33% of the free parameters in the real-valued model, yet
the former heavily outperforms the latter on two classification tasks involving medical
images. Moreover, we explore said models on a wide variety of algebras, ranging from
usual ones such as quaternions and tessarines to unusual ones such as Cayley-Dickson
algebras and MacFarlane’s hyperbolic quaternions. We conclude that more often than not
these unusual algebras fair consistently better than the quaternions, despite the latter
boasting an overwhelmingly larger number of works. Notwithstanding, we also showcase
in practice how color encoding of images affects models differently, and briefly discuss
the implications of data encoding. Lastly, we include an application of a hypercomplex-
valued model based on the dual quaternions that showcases the translation equivariance
property and how effortlessly this model predicts translated test sets without specialist
intervention. We briefly discuss this potential in real-world applications. In sum, operations
in the hypercomplex-valued models exhibit higher computational cost, but the final models
obtained are more compact than the real-valued counterparts and perform better according
to all evaluated metrics.

Keywords: Artificial neural networks, hypercomplex algebras, geometric algebras, machine
learning.

Contents

1 Introduction . 11
2 Basics Concepts on Hypercomplex Algebras 14

2.1 Notable algebras . 16
2.2 Hypercomplex-Valued Matrix Computation 20

3 Hv-ELM: Hypercomplex-valued Extreme Learning Machine 23
3.1 Real-valued Extreme Learning Machines 23
3.2 Hypercomplex-valued Extreme Learning Machines 23
3.3 Application: Times Series Prediction . 26
3.4 Application: Colored Image Auto-encoding 29
3.5 Concluding Remarks . 33

4 Hv-CNN: Hypercomplex-valued Convolutional Neural Network 36
4.1 Real-valued Convolutional Layers . 36
4.2 Hypercomplex-valued Convolutional Layers 37
4.3 Emulating Hypercomplex-valued Convolutional Layers 38
4.4 Max-pooling Layer . 41
4.5 Application: Lymphoblast Image Classification 41

4.5.0.1 Experiment I: General algebras 42
4.5.0.2 Experiment II: Clifford algebras 48

4.6 Concluding Remarks . 52
5 Dual Quaternion Neural Network for Rigid Motion Modelling 55

5.1 Definition of Dual Quaternions . 55
5.2 Translation-Equivariant Rigid Motion Representation by Dual Quaternions 56
5.3 Applications . 58

5.3.0.1 Experiment I: Lorenz System and Translational Equivariance 58
5.3.0.2 Experiment II: Human Pose Forecasting 60

5.4 Concluding Remarks . 63
6 Conclusions . 65

BIBLIOGRAPHY . 69

11

1 Introduction

Artificial neural networks (ANNs) increasingly rose in popularity since the
1980s. In the 2000s, especially, ANNs skyrocketed in popularity due to the increased access
to semiconductors, which greatly enhanced the computational capabilities of computers.
Nowadays ANNs figure among the most used artificial intelligence models and are widely
applied to many fields. To cite a few, ANNs are widely used in digital signal processing,
robotics, automation, time series forecasting, pattern recognition, medical diagnosis as-
sistance, all sorts of classification tasks, computer vision, art, social and demographic
sciences, recommendation systems, face and voice recognition and smart interactive devices
in general. In sum, ANNs made possible many new functions and systems, and showed
that a myriad of tasks can be partially or entirely automated, reducing costs and time
requirements while also often increasing performance. From its inception, however, ANNs
have been developed both theoretically and practically on the real algebra. By making
use of higher dimension objects such as hypercomplex numbers we are able to represent
multiple channels of information in a more cohesive manner. Indeed, ANN models based
on hypercomplex algebras allow us to consolidate multiple inputs regarding the same
object and make use of correlation between said inputs.

Generally speaking a hypercomplex algebra is an algebra of dimension higher
than one. The most well known example is the complex numbers algebra, of dimension
2, defined by introducing an imaginary part i to a real number and imposing i2

“ ´1.
Hyperbolic numbers are defined in a similar manner but with i2

“ 1. Both these algebras
are spanned by a parametric process known as Cayley-Dickson process, which generates
algebras of doubling dimension and progressively incurs in loss of properties along the
chain of generated algebras. Another notable family is the Clifford algebras, an infinite
collection of associative algebras with dimensions in powers of 2. Higher dimensional
hypercomplex algebras are usually represented by a table containing the product of each
pair of imaginary units; these tables uniquely determine the algebra and express properties
of the product such as commutativity, associativity, anti-commutativity, among others. In
this work we approach ANNs based on several hypercomplex algebras with varying sets of
properties.

Hypercomplex-valued ANNs (Hv-ANNs) are, as the name suggests, ANN
models in which parameters are taken from a hypercomplex algebra, as opposed to real
numbers. Common examples of Hv-ANNs include complex-valued (AIZENBERG, 2011;
HIROSE, 2012), hyperbolic-valued (BUCHHOLZ; SOMMER, 2000; NITTA; BUCHHOLZ,
2008; NITTA; KUROE, 2018), and quaternion-valued neural networks (XIA et al., 2018;
PARCOLLET; MORCHID; LINARÈS, 2019). Notably, using hypercomplex algebra inputs

Chapter 1. Introduction 12

and outputs allows for the compact representation of multiple information channels related
to the same object in a single entity, such as phase-angle information for waves or multiple
color channels of an image for example. On top of that, product operations in these
algebras are more elaborate due to the fact that they consider cross-channel information.
In general this leads to longer processing times and yields a much more efficient model
in terms of performance and storage. Precisely, we observed this exact phenomenon in
(VIEIRA; VALLE, 2020; VIEIRA; VALLE, 2022b).

With these in mind, our main objectives of investigation in this PhD were to

• investigate and propose extensions of neural network models and operations to
hypercomplex algebras in a general manner;

• evaluate the processing of multichannel signals by hypercomplex models in compari-
son to real-valued equivalent models to gain insight on the advantages and identify
potential shortcomings;

• strive to better understand the relationship between the underlying algebra of a
model and its performance in a given application, investigating whether or not given
properties provide an advantage in certain situations.

These objectives steered the course of my PhD studies and all the works I’ve collaborated
with. In sum, the main thesis of this work is that there is an intricate relationship between
the triad model-algebra-problem, and we are yet at the start of the process of unravelling
the full extent of it.

During this PhD program we explored a few feedforward models on hypercom-
plex algebras. Using extreme learning machines (ELMs), also initially known as random
vector functional links (RVFLs), we were able to implement a time series predictor on the
Lorenz system as well as auto-encoders on the CIFAR-10 color image dataset (VIEIRA;
VALLE, 2020), and rigorously formalized the methodology of such hypercomplex-valued
ELMs (HvELMs) in (VIEIRA; VALLE, 2022b). While exploring hypercomplex-valued
convolutional neural networks (HvCNNs), we performed a classification task on a real-world
medical image dataset using light-weight CNNs in (VIEIRA; VALLE, 2022a) and developed
an improved version of this work, presented at the International Conference of Advanced
Computational Applications of Geometric Algebra (ICACGA 2022). In both these HvCNN
works, the performance achieved by the implemented models rivaled state-of-the-art per-
formances that rely on transfer learning and extremely large models, thus presenting
undeniable advantages regarding processing times and storage space. Moreover, the codes
used in the aforementioned works considered the multiplication rules of the hypercomplex
algebra as an input and thus the implementation is rather general, being easily adaptable
to any desired algebra. On top of these works, I participated in an exchange program at

Chapter 1. Introduction 13

the Department of Information Engineering, Electronics and Telecommunications of the
Sapienza Univeristy of Rome during september and october of 2022. In the two months
I spent there I collaborated with Prof. Danilo Comminiello and Eleonora Grassucci, as
well as my advisor Marcos Eduardo Valle, during which we worked with dual quaternions’
ability to model rigid motions to perform human pose forecasting. Lastly, despite not
being the main topic of this PhD study we also worked on some recursive models such
as the hypercomplex-valued Hopfield neural networks and vector-valued Hopfield neural
network (GARIMELLA et al., 2022).

14

2 Basics Concepts on Hypercomplex Algebras

In this section we introduce the fundamental concepts of hypercomplex algebras.
Hypercomplex algebras are broadly defined over an arbitrary field F, but we exclusively
consider real numbers as the ground field. The more general approach to hypercomplex
algebra concepts can be found in the work by Kantor and Solodovnikov (KANTOR;
SOLODOVNIKOV, 1989), which was the main inspiration for this construction.

A hypercomplex number x can be written in the form

x “ x0 ` x1i1 ` ¨ ¨ ¨ ` xnin, (2.1)

where x0, x1, . . . , xn P R. The numbers i1, i2, . . . , in are called hyperimaginary units
(KANTOR; SOLODOVNIKOV, 1989; CASTRO; VALLE, 2020). We shall denote a set of
hypercomplex numbers by A. Then, by enriching a set of hypercomplex numbers A with
addition and multiplication operations one obtains a hypercomplex algebras (KANTOR;
SOLODOVNIKOV, 1989; CASTRO; VALLE, 2020).

The addition is carried out component-wise as

x ` y “ px0 ` y0q ` px1 ` y1qi1 ` . . . ` pxn ` ynqin, (2.2)

for x “ x0 ` x1i1 ` ¨ ¨ ¨ ` xnin and y “ y0 ` y1i1 ` ¨ ¨ ¨ ` ynin in A.

The multiplication, on the other hand, is performed distributively. By computing
the terms we end up with products between hyperimaginary units, which are defined as

iiij ” µij “ pµijq0 ` pµijq1i1 ` ¨ ¨ ¨ ` pµijqnin P A, (2.3)

for all i, j “ 1, . . . , n. Note that the µij are hypercomplex numbers in A and are usually
presented in the form of a multiplication table, as in Table 1. This is due to the fact
that the µij’s characterize the hypercomplex algebra, i.e., an algebra A is uniquely
determined by the product of its imaginary units and vice-versa.

The multiplication of two hypercomplex numbers x “ x0 ` x1i1 ` ¨ ¨ ¨ ` xnin

and y “ y0 ` y1i1 ` ¨ ¨ ¨ ` ynin is defined using the distributivity and replacing the products
pxiiiqpyjijq by xiyjµij, for all i, j “ 1, . . . , n using (2.3). Formally, we have

xy “

˜

x0y0 `

n
ÿ

i,j“1
xiyjpµijq0

¸

`

˜

x0y1 ` x1y0 `

n
ÿ

i,j“1
xiyjpµijq1

¸

i1 ` . . .

`

˜

x0yn ` xny0 `

n
ÿ

i,j“1
xiyjpµijqn

¸

in.

(2.4)

Chapter 2. Basics Concepts on Hypercomplex Algebras 15

Table 1 – Multiplication tables of the complex numbers and quaternions, respectively.

C 1 i
1 1 i
i i -1

H i j k
i ´1 k ´j
j ´k ´1 i
k j ´i ´1

As opposed to a field, hypercomplex algebra multiplication needs not to be associative,
commutative, nor have any other notable algebraic properties.

We observe that a scalar α P R can be identified with the hypercomplex number
α ` 0i1 ` . . . ` 0in. Moreover, the scalar product

αx “ αx0 ` αx1i1 ` ¨ ¨ ¨ ` αxnin, (2.5)

can be deduced from (2.4). This yields a canonical isomorphism between the hypercomplex
algebra A and the vector space Rn`1. Indeed, the canonical isomorphism φ : A Ñ Rn`1 is
defined by a simple rearrangement operation as

φpxq “ φpx0 ` x1i1 ` ¨ ¨ ¨ ` xninq “

»

—

—

—

—

–

x0

x1
...

xn

fi

ffi

ffi

ffi

ffi

fl

(2.6)

Clearly φ is a linear operator. The inverse isomorphism φ´1 is merely the inverse rear-
rangement operation. Naturally, the canonical basis of A is defined as β “ t1, i1, ..., inu

Based on this isomorphism between an hypercomplex algebra A and the vector
space Rn`1 we can derive an expression of the multiplication of hypercomplex numbers
using a real matrix-vector product. Formally, given a hypercomplex number a P A, the
multiplication to the left by a is equivalent to a linear operator AL : A Ñ A defined by
ALpxq “ ax, for all x P A. Hence, using the isomorphism φ, we see that

φ pALpxqq “ ΦLpaqφpxq, (2.7)

where ΦL : A Ñ Rpn`1qˆpn`1q is the matrix representation of AL with respect to the
canonical basis β (CATONI et al., 2005). This operator has the form

ΦLpaq “

»

—

–

| | |

φpaq φpai1q . . . φpainq

| | |

fi

ffi

fl

. (2.8)

We highlight that the terms aii that span the columns are products in A and, thus, the
operator ΦL carries information regarding the multiplication table of A and ultimately

Chapter 2. Basics Concepts on Hypercomplex Algebras 16

regarding the algebra A. Indeed, the identity

ΦLpaq “

»

—

—

—

—

—

—

—

—

–

a0
ÿ

i

aipµi1q0 . . .
ÿ

i

aipµinq0

a1 a0 `
ÿ

i

aipµi1q1 . . .
ÿ

i

aipµinq1

...
an

ÿ

i

aipµi1qn . . . a0 `
ÿ

i

aipµinqn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

is a general formulation, for all a “ a0 ` a1i1 ` ¨ ¨ ¨ ` anin.

Symmetrically, the multiplication to the right by a P A yields an operator
AR : A Ñ A defined by ARpxq “ xa, for all x P A. Once again by applying the isomorphism
φ given by (2.6) we get

φ pARpxqq “ ΦRpaqφpxq, (2.9)

where ΦR : A Ñ Rpn`1qˆpn`1q is defined by

ΦRpaq “

»

—

–

| | |

φpaq φpi1aq . . . φpinaq

| | |

fi

ffi

fl

. (2.10)

Lastly, the absolute value (or norm) of a hypercomplex number x “ x0 ` x1i1 `

¨ ¨ ¨ ` xnin P A is defined as

|x| “

d

n
ÿ

i“0
x2

i . (2.11)

That means, the absolute value of x corresponds to the Euclidean norm of φpxq, that is,
|x| “ ||φpxq||2.

In the remainder of this work we will often refer to the dimension of an algebra.
We define the dimension of the algebra as seen as a vector space, i.e., an algebra with
pn ´ 1q hyperimaginary units is said to have dimension n. Moreover, we consider the
canonical basis as β “ t1, i1, . . . , in´1u.

2.1 Notable algebras
In this section we overview a handful of hypercomplex algebras of dimension

four, going over their main definition, notable properties and providing their multiplication
tables. The examples elected in this section feature some of the most well-known four-
dimensional hypercomplex algebras, both from computational and theoretical standpoints.
These algebras are also featured in the applications presented in later chapters, 3 and 4.
In particular, many algebras used here are also present in the recent work by Takahashi
(TAKAHASHI, 2021). Note that in the presentation of the multiplication tables we suppress

Chapter 2. Basics Concepts on Hypercomplex Algebras 17

the row and column associated with 1, since it is the identity element for the multiplication
in every algebra presented, i.e., 1a “ a1 “ a, @a.

In the quaternions algebra H the hyperimaginary units are i ” i1, j ” i2, and
k ” i3. Since quaternions are so widely known, we will adopt this notation for all algebras
in this work, thus the general element of a four-dimensional algebra shall be henceforth
represented as

x “ x0 ` x1i ` x2j ` x3k. (2.12)

Example 1 (Quaternions). Quaternions (H) are arguably one of the most well-known
hypercomplex algebras. Introduced in 1843 by W. R. Hamilton, quaternions are an extension
of complex numbers and represent three-dimensional space rotations compactly. Indeed, a
quaternion can be expressed in polar form as

q “ |q|pcos θ ` senθÝÑu q (2.13)

where |q| is the norm of q, θ P r0, πq and ÝÑu “ uxi ` uyj ` uzk, where pux, uy, uzq is a
direction in R3. Then, by taking q˚

“ |q|pcos θ ´ senθÝÑu q the conjugate of q we have that

vr “ qvq˚ (2.14)

is the vector v rotated by 2θ around the axis determined by ÝÑu and dilated by |q|
2. In other

words, a quaternion uniquely describes a rotation-dilation operation. In particular, unitary
quaternions describe strict rotations.

Quaternions have been extensively applied to control and computer graphics
and vision due to this connection to rotations in 3D-space. They are also known to avoid
the Gimbal Lock, an effect that incurs a loss of a degree of freedom in certain rotations in
space. The product of quaternion hyperimaginary units is anticommutative and is described
in Table 2.

Example 2 (Cayley-Dickson Algebras). In 1919 Dickson introduced a recursive process that
generates algebras of doubling dimension (SCHAFER, 1954). Notably, complex numbers
are derived from real numbers using this recursive process. Then, quaternions are obtained
from complex numbers, and octonions, also known as Cayley numbers, are obtained from
quaternions (CULBERT, 2007). For this reason, algebras generated by Dickson’s recursive
process are called Cayley-Dickson algebras. The Cayley-Dickson process incurs in loss of
properties with each increment in dimension. For example, complex numbers are not an
ordered set. Quaternions are not ordered, and their product is not commutative. Octonions
lack the ordering property as well as the commutativity and associativity of the product.

In this work, we consider a generalized version of the Cayley-Dickson algebras
over R proposed by Albert in 1942 (ALBERT, 1942). Formally, we take the first Cayley-
Dickson algebra as A0 “ R, the real numbers. Then, given a non-zero scalar γk P R called

Chapter 2. Basics Concepts on Hypercomplex Algebras 18

Table 2 – Multiplication tables of four-dimensional Cayley-Dickson algebras, including the
quaternions pH ≈ Rr´1, ´1sq.

H i j k
i ´1 k ´j
j ´k ´1 i
k j ´i ´1

R r`1, `1s i j k
i 1 k j
j ´k 1 ´i
k ´j i ´1

R r´1, `1s i j k
i ´1 k ´j
j ´k 1 ´i
k j i 1

R r`1, ´1s i j k
i 1 k j
j ´k ´1 i
k ´j ´i 1

generator, the kth Cayley-Dickson algebra is defined recursively as the Cartesian product
Ak´1 ˆ Ak´1, that is,

Ak “ tpx, yq : x, y P Ak´1u, k ě 1, (2.15)

where addition and multiplication are defined, using the operations from Ak´1, as follows
for all px, yq, pz, wq P Ak and α P R:

• Addition:
px, yq ` pz, wq “ px ` z, y ` wq. (2.16)

• Multiplication:
px, yqpz, wq “ pxz ` γkw˚y, wx ` yz˚

q. (2.17)

Remark 1. The conjugate is defined as px, yq
˚

“ px˚, ´yq. Note that this uses the conjugate
of Ak´1, thus it is defined recursively. We recall that in R this is the identity, i.e., we
have x˚

“ x and hence the conjugate operation is equivalent to changing the sign of each
component of the imaginary part.

The Cayley-Dickson algebra depends on the previous algebra Ak´1 and the
generator γk. Therefore, we can write

Ak :“ Ak´1rγks. (2.18)

We note that Rr´1s ” C is the complex number field. Moreover, as pointed out previously,
quaternions are an extension of C, indeed, we have Cr´1s ” Rr´1, ´1s ” H. Since the
dimension of an algebra doubles with each step of the process obtaining four-dimensional
algebras requires 2 steps, and hence 2 generators γ1, γ2. Without loss of generality we take
γ1, γ2 P t´1, `1u. Therefore we end up with the quaternions and three other notable four-
dimensional algebras over R, namely, Rr`1, `1s and Rr`1, ´1s are the Clifford algebras
Cℓ2,0 and Cℓ1,1 respectively, and Rr´1, `1s is the coquaternions (or split-quaternions). The
multiplication tables for all these algebras are shown in Table 2.

Chapter 2. Basics Concepts on Hypercomplex Algebras 19

Example 3 (Clifford Algebras). Briefly speaking, a Clifford algebra is an associative algebra
generated by a vector space endowed with a quadratic form (HESTENES; SOBCZYK, 2012).
The main interest in this family of algebras is regarding its geometric properties, which
play an important role in many applications, ranging from physics (CRUMEYROLLE,
2013; CHISHOLM; FARWELL, 1996) to digital signal processing (LABUNETS, 2004).

A Clifford algebra over R is denoted by Cℓp,qpRq, or simply Cℓp,q. Here p and q

are non-negative integers. The dimension of Cℓp,q is n “ 2p`q. Since we are interested in
four-dimensional Clifford algebras, we impose the constraint p ` q “ 2. This leads to a
total of 3 algebras. The algebra Cℓ0,2 is equivalent to the quaternions, with multiplication
table given previously by Table 2. The two remaining configurations are Cℓ1,1 and Cℓ2,0,
both of which are equivalent to M2pRq, i.e., the algebra of square real matrices of order
2 (PORTEOUS; others, 1995). Moreover, the multiplication table of Cℓ1,1 is identical to
Rr`1, ´1s, whereas the table for Cℓ2,0 is identical to that of Rr`1, `1s.

Example 4 (MacFarlane’s hyperbolic quaternions). This algebra was formalized in 1900
by MacFarlane (DEMIR; TANIŞLI; CANDEMIR, 2010). Among its particularities is
the fact that the MacFarlane’s hyperbolic quaternions lacks two desirable properties of
the product: associativity and commutativity. Denoted by Y, the multiplication table of
this algebra is presented in Table 3. We draw attention to the fact that the table is not
symmetric, thus corroborating the non-commutativity.

Commutativity is a key property for algebras. From a computational standpoint
it can be used to ensue many simplifications thus reducing operations’ computational com-
plexity. We finish this section with two examples addressing commutative four-dimensional
algebras.

Example 5 (Tessarines). The tessarines were introduced in 1849 (ROCHON; SHAPIRO,
2004). Also known as bicomplex numbers, this is a commutative four-dimension algebra
that differs slightly from the Cayley-Dickson algebra Rr´1, `1s (split-quaternions). For
that reason it is also known as commutative quaternions. Table 3 shows the multiplication
rules for the tessarines. This algebra has been applied for digital signal processing (PEI;
CHANG; DING, 2004; ALFSMANN, 2006).

Example 6 (Klein Four-Group). The Klein four-group K4 is a four-dimension algebra
whose hyperimaginary unit are self-inverse, i.e., i2

“ j2
“ k2

“ 1. Moreover, the product
of two hypercomplex units yields the third. Table 3 contains the multiplication rules for the
Klein group. This algebra was used extensively in theoretical results in symmetric group
theory (HUANG; YU, 2013; CRAVEN et al., 2011), and Hopfield neural networks based
on the Klein four-group have also shown outstanding results (KOBAYASHI, 2020).

Chapter 2. Basics Concepts on Hypercomplex Algebras 20

Table 3 – Multiplication tables of the hyperbolic quaternions (Y), tessariens (Tq, and Klein
four-group (K4).

Y i j k
i 1 k ´j
j ´k 1 i
k j ´i 1

T i j k
i ´1 k ´j
j k 1 i
k ´j i ´1

K4 i j k
i 1 k j
j k 1 i
k j i 1

2.2 Hypercomplex-Valued Matrix Computation
In this section we discuss matrix operations in hypercomplex algebras. Formally,

using the operators φ, ΦL, and ΦR given respectively by (2.6), (2.7), and (2.9), we present
a framework to perform hypercomplex-valued matrix computations using well-known
real-valued matrix computation techniques. This not only allows us to work with models
without going through the toil of implementing hypercomplex algebra operations from
scratch, but also allows us to take advantage of modern computing tools and libraries.

A hypercomplex matrix is simply a matrix with entries in a hypercomplex
algebra A. Similar to real-valued linear algebra, the product of matrices A P AMˆL and
B P ALˆN results in a new matrix C P AMˆN with entries given by

cij “

L
ÿ

ℓ“1
aiℓbℓj, (2.19)

where i “ 1, . . . , M and j “ 1, . . . , N . Here, aiℓ and bℓj are entries of the matrices A and
B, respectively, and hence the right hand side of (2.19) is a linear combination of products
in A.

Since most modern scientific computing softwares and tools are based on real-
valued linear algebra, we use the isomorphism (2.6) and either (2.7) or (2.9) to compute
matrix operations of A using real-valued operations instead. This yields much faster
computing than general purpose codes meant to deal with hypercomplex computations.
Precisely, the application of φ to both sides of (2.19) along with (2.7) allows us to write

φpcijq “

L
ÿ

ℓ“1
φ paiℓbℓjq “

L
ÿ

ℓ“1
ΦLpaiℓqφpbℓjq

“

”

ΦLpai1q ΦLpai2q . . . ΦLpaiLq

ı

»

—

—

—

—

–

φpb1jq

φpb2jq

...
φpbLjq

fi

ffi

ffi

ffi

ffi

fl

.

Equivalently, using real-valued matrix operations, we have

φpCq “ ΦLpAqφpBq. (2.20)

Chapter 2. Basics Concepts on Hypercomplex Algebras 21

The operators ΦL and φ are defined for hypercomplex matrix arguments respectively as:

ΦLpAq “

»

—

—

–

ΦLpa11q ΦLpa12q . . . ΦLpa1Lq

...
ΦLpaM1q ΦLpaM2q . . . ΦLpaMLq

fi

ffi

ffi

fl

, (2.21)

and

φpBq “

»

—

—

—

—

–

φpb11q . . . φpb1N q

φpb21q . . . φpb2N q

...
φpbL1q . . . φpbLN q

fi

ffi

ffi

ffi

ffi

fl

. (2.22)

Here it is important to note that ΦLpAq is a real-valued matrix of size pn ` 1qM ˆ pn ` 1qL

and φpBq is a real-valued matrix of size pn ` 1qL ˆ N . The real-valued matrix φpCq P

Rpn`1qMˆN yielded by (2.20) is expressed in the form of (2.22). Therefore, one can obtain
the hypercomplex-valued matrix C P AMˆN simply by rearranging the elements of φpCq

by means of the inverse mapping φ´1 : Rpn`1qMˆN
Ñ AMˆN . In sum, this means

C “ φ´1
pΦLpAqφpBqq , (2.23)

which provides an effective formula for the computation of hypercomplex-valued matrix
product through the real-valued linear algebra operators, which are often available in
scientific computing softwares. This is the cornerstone of the implementations in the works
discussed in the following chapters.

As a remark, we recall that it is possible to compute C using the same idea for
the product to the right by bℓj in (2.19) instead of product to the left by aiℓ. In such case,
we have

φpcijq “

L
ÿ

ℓ“1
ΦRpbℓjqφpaiℓq

“

”

ΦRpb1jq ΦRpb2jq . . . ΦRpbLjq

ı

»

—

—

—

—

–

φpai1q

φpai2q

...
φpaiLq

fi

ffi

ffi

ffi

ffi

fl

,

for all i “ 1, . . . , M and j “ 1, . . . , N . Using the same logic as the conversion to real-valued
matrix operations above, we obtain the identity

ϕpCq “ ΦRpBqϕpAq, (2.24)

where ΦR is defined by

ΦRpBq “

»

—

—

–

ΦRpb11q ΦRpb21q . . . ΦRpbL1q

...
ΦRpb1N q ΦRpb2jq . . . ΦRpbLN q

fi

ffi

ffi

fl

. (2.25)

Chapter 2. Basics Concepts on Hypercomplex Algebras 22

Here ϕpAq “ φpAT
q since we are using the product to the right. In this case ΦRpBq and

φpAT
q are real-valued matrices of respective sizes pn ` 1qN ˆ pn ` 1qL and pn ` 1qL ˆ M .

Finally, the hypercomplex-valued matrix C “ AB can alternatively be computed by
means of the equation

C “ ϕ´1
pΦRpBqϕpAqq . (2.26)

Remark 2. From a computational standpoint, the bottleneck in (2.23) and (2.26) is the
construction of the real-valued matrices ΦLpAq and ΦRpBq of sizes pn ` 1qM ˆ pn ` 1qL

and pn ` 1qN ˆ pn ` 1qL, respectively. It can be deduced that (2.23) is cheaper than
(2.26) if the matrix A has less entries than B, and the other way around if B has less
entries. In practice, we implement both (2.23) and (2.26) and dynamically check whether
to compute the product of two hypercomplex-valued matrices using (2.23) or (2.26) by a
simple comparison of the sizes of matrices.

23

3 Hv-ELM: Hypercomplex-valued Extreme
Learning Machine

This chapter concerns itself with Extreme Learning Machines (ELMs). Namely,
it contains the hypercomplex-valued matrix computation concepts necessary for developing
hypercomplex-valued ELMs, which are centered around the hypercomplex-valued least-
squares problem. In particular, we show how to solve this type of least-squares problems
through real-valued pseudo-inversion (GOLUB, 2007; TREFETHEN; III, 1997).

3.1 Real-valued Extreme Learning Machines
As theoretical baseline we consider the Multilayer Perceptron (MLP) as depicted

in Fig. 1. A MLP features multiple dense hidden layers and a dense output layer and
training is done by the backpropagation algorithm based on gradient descent. In 1999,
Husmeier presented the random vector functional link (RVFL) (HUSMEIER; HUSMEIER,
1999). Years later, the selfsame idea was presented by Huang et. al (HUANG et al., 2004)
as real-valued Extreme Learning Machine (ELM). This model consists of a feedforward
network with multiple dense hidden layers and a dense output layer, i.e., the same layout
as the MLP. The main idea behind the ELM is that, by fixating the randomly initialized
synaptic weights of the hidden layers (all layers except for the output layer on Fig. 1), the
output of the last hidden layer is fixated. Then, the weights connecting the last hidden
layer to the output layer can be adjusted by means of a least squares problem (LSP).
This allows for a change in the training step from an iterative process (backpropagation)
to a direct method, which means the optimal solution is attained in a finite numbers
of operations that can also be calculated a priori. The most direct implication is that
the ELM offers a trade-off: training is way faster when compared to the MLP, but the
hidden layer weights are randomly generated and hence not interpretable nor adjustable.
Since hidden layers act as feature extractors, the randomly generated hidden layers are
akin to black-boxes. On the other hand, since the training cost is lower, one can use an
expressively larger number of neurons in the hidden layers.

3.2 Hypercomplex-valued Extreme Learning Machines
Hypercomplex-valued ELMs (Hv-ELMs) are simply ELMs in which the inputs,

parameters and outputs are numbers from a hypercomplex algebra. Accordingly, Hv-ELMs
are trained by means of hypercomplex-valued least-squares problems. The framework

Chapter 3. Hv-ELM: Hypercomplex-valued Extreme Learning Machine 24

Figure 1 – Feedforward network with dense layers. Figure taken from (HAYKIN et al.,
2009).

described below can solve such least-squares problems in hypercomplex algebras. This
leads directly to the implementation of hypercomplex-valued ELMs. We begin the discussion
regarding the hypercomplex-valued least-squares problem with the Frobenius norm.

Analogously to the real-valued case (GOLUB, 2007), the Frobenius norm of a
hypercomplex-valued matrix A P AMˆN is defined by

}A}F “

g

f

f

e

M
ÿ

i“1

N
ÿ

j“1
|aij|2, (3.1)

where |aij| represents the absolute value of aij P A. By combining (2.6) and (2.11), we
conclude that |aij| “ }φpaijq}2, where } ¨ }2 stands for the Euclidean norm. Moreover, from
(2.22) it can be seen that the Frobenius norm of a hypercomplex-valued matrix is related
to the real-valued Frobenius norm by means of the identity:

}A}F “ }φpAq}F . (3.2)

As in the real-valued case (GOLUB, 2007), the Frobenius norm (3.1) is required to define
the hypercomplex-valued least squares problem as follows:

Definition 1 (Hypercomplex-Valued Least Squares Problem). Given matrices A P AMˆL

and B P AMˆN , the hypercomplex-valued least squares problem consists of finding the
minimal Frobenius norm solution to the problem

min
␣

}AX ´ B}F : X P ALˆN
(

. (3.3)

In practice we solve a hypercomplex-valued least square problem using the
real-valued algebra framework detailed previously. A detailed account on real-valued
least-squares problems and their solution methods can be found in (GOLUB, 2007;

Chapter 3. Hv-ELM: Hypercomplex-valued Extreme Learning Machine 25

TREFETHEN; III, 1997). We briefly state that the solution is usually obtained by means
of the Moore-Penrose pseudoinverse when the matrix A has full rank. A matrix with
randomly generated entries has full rank with probability 1 (FENG; ZHANG, 2007).
Formally, for real matrices A, B, X we have:

AX “ B

AT AX “ AT B

X “ pAT Aq
´1AT B.

The matrix pAT Aq
´1AT is called the pseudoinverse of A and is denoted by A:. From

(2.20) and (3.2), we write

}AX ´ B}F “ }φpAX ´ Bq}F “ }φpAXq ´ φpBq}F

“ }ΦLpAqφpXq ´ φpBq}F .

Hence, the hypercomplex-valued least squares problem is equivalently written as a real-
valued problem:

mint}ΦLpAqXprq
´ φpBq}F : Xprq

P Rpn`1qLˆN
u. (3.4)

Here Xprq is simply φpXq. Now, the real-valued least square problem in (3.4) is solved by
means of the Moore-Penrose pseudoinverse (GOLUB, 2007), i.e.,

Xprq
“ ΦLpAq

:φpBq, (3.5)

where ΦLpAq
: is the pseudoinverse of ΦLpAq. Finally, making use of the real-valued

linear algebra, the solution of the hypercomplex-valued least squares problem (3.3) can be
obtained by using the inverse isomorphism φ´1 on the solution of the real-valued least
squares problem:

X “ φ´1 `ΦLpAq
:φpBq

˘

. (3.6)

In the following sections we expound two applications featuring Hv-ELMs
implemented according to the framework presented above: a time series prediction task on
the Lorenz system and one color image auto-encoder in the CIFAR-10 dataset. One of
the key aspects of these works is to compare the proposed ELM model based on different
hypercomplex algebras of the same dimension. As previously stated, hypercomplex-valued
neural network models are well adapted to tasks involving high-dimensional data, that is,
when the input consists of many signals related to the same object. In both experiments
we include four-dimensional hypercomplex-valued ELMs based on seven of the algebras
discussed previously on Section 2.1. We also consider a real-valued ELM of equivalent
size for comparison purposes.

The total number of parameters (TNP), defined as the raw number of trainable
parameters of a network, has been used to work with comparable size networks. In the case

Chapter 3. Hv-ELM: Hypercomplex-valued Extreme Learning Machine 26

of ELMs, all but the last layer’s parameters (weights and bias) are randomly initialized and
fixed, therefore non-trainable. Thus, a real-valued ELM with an input signal of dimension
DpRq, LpRq neurons in the hidden layer, and output of dimension OpRq, has

TNP pRq
“ pLpRq

` 1qOpRq. (3.7)

Analogously, a four-dimensional hypercomplex-valued ELM model has 4-times the TNP of
the real-valued with the same layout. Formally, we have

TNP pAq
“ 4pLpAq

` 1qOpAq, (3.8)

where LpAq and OpAq denote respectively the number of hidden neurons and the dimension
of the output.

3.3 Application: Times Series Prediction
For the time series prediction task, we considered the well known Lorenz system.

The Lorenz system is a chaotic system of ordinary differential equations describing a
nonperiodic flow on a three dimensional space. Formally, this system is described by the
equations

$

’

’

’

’

&

’

’

’

’

%

dx

dt
“ σpy ´ xq,

dy

dt
“ xpρ ´ zq ´ y,

dz

dt
“ xy ´ βz,

(3.9)

where the variables px, y, zq describe a position in space. The constants σ, ρ, β ą 0
characterize the system. The Lorenz system is chaotic for some of these constants’ values,
which means that small perturbations in the initial conditions will often propagate into
large changes in the resulting trajectory. We considered σ “ 10, β “ 8{3, and ρ “ 28 in
our computational experiments as these values are known to yield chaotic behavior near
the origin.

As usual in time series prediction (DATAR et al., 2002; XU; XIA; MANDIC,
2016), we consider a sliding window of fixed length T . In short: T consecutive positions
are used as input for a model that attempts to predict the next position. Here we
take T “ 3. Thus, each training sample contains the positions pt´2 “ pxt´2, yt´2, zt´2q,
pt´1 “ pxt´1, yt´1, zt´1q, and pt “ pxt, yt, ztqq as input while the desired output is the
position pt`1 “ pxt`1, yt`1, zt`1q, for some t point in time.

Therefore, the real-valued network has 9 real input values consisting of the
nine variables concatenated in a vector. Mathematically:

• Real input: pxt´2, yt´2, zt´2, xt´1, yt´1, zt´1, xt, yt, ztq.

Chapter 3. Hv-ELM: Hypercomplex-valued Extreme Learning Machine 27

The desired output for the real-valued model is simply the 3-position vector pt`1.

For the four-dimensional hypercomplex-valued models we encode the positions
in the hyperimaginary parts of distinct hypercomplex numbers. Formally we have:

• Hypercomplex input: ppt´2, pt´1, ptq,

where pt “ xti ` ytj ` ztk for discrete time instant t. The output of the hypercomplex-
valued network is simply the hypercomplex number representing the position in t ` 1 as
pt`1 “ xt`1i ` yt`1j ` zt`1k.

We generated 4.000 consecutive positions using a fourth-order Runge-Kutta
method. The training set consists of the first 300 positions, while the remaining 3.700
positions have been used for testing. Due to the sliding window the training and test sets
have 297 and 3697 samples, respectively.

We evaluated the performance of the ELM models according to the prediction
gain, following (HAYKIN; LI, 1995). Broadly speaking, this quantity is measured in decibel
(dB) and expresses the ratio between reference level pσsq and the signal error (σe). This
metric is defined as

R “ 10 log10
σ2

s

σ2
e

, (3.10)

where σ2
s is the estimated variance of the input signal and σ2

e denotes the estimated
variance of the prediction error. The reference level for the prediction gain is usually
specified for physical quantities, for example. More broadly, the reference level can be
determined implicitly from the input signal as the variance σ2

s . Precisely, we computed the
sample variances

σ2
s “

1
NS ´ 1

NS
ÿ

t“1
p}pt}2 ´ µsq

2, (3.11)

and

σ2
e “

1
NS ´ 1

NS
ÿ

t“1
p}pt`1 ´ p̂t`1}2 ´ µeq

2, (3.12)

where p̂t`1 “ ELMppt´2, pt´1, ptq is the position predicted by an ELM model, NS is the
number of samples, and

µs “
1

NS

NS
ÿ

t“1
}pt}2 and µe “

1
NS

NS
ÿ

t“1
}pt`1 ´ p̂t`1}2. (3.13)

are the input and error means, respectively.

According to (3.7), the TNP for the real-valued feedforward network with LpRq

hidden neurons is TNPpRq
“ 3LpRq

` 3. Similarly, for a hypercomplex-valued network with
LpAq hidden neurons, TNPpAq

“ 4LpAq
` 4. Imposing TNPpRq

» TNPpAq, we obtain the
following relationship for the number of hidden neurons:

LpRq
»

4LpAq

3 . (3.14)

Chapter 3. Hv-ELM: Hypercomplex-valued Extreme Learning Machine 28

Figure 2 – The probability of an ELM predictor yields the highest prediction gain by the
underlying algebra.

We performed a series of simulations with LpAq ranging in t11, 12, . . . , 34, 35u

and determining the corresponding number of hidden neurons for the real-valued ELM
using (3.14), resulting LpRq

P t15, 16, . . . , 45, 47u. For each LpAq and LpRq, we trained and
tested 100 networks of each, seven hypercomplex-valued, one real-valued, resulting in a total
of 20.000 simulations. We annotated the best-performing model for each of these rounds,
i.e., the model that yielded the highest prediction gain. Figure 2 shows the normalized
frequency with which each of the models outperformed all others. Note that Figure 2
depicts the fraction of the 20.000 simulations won by each model, and can therefore be
interpreted as the likelihood of each ELM model yielding the highest prediction gain.

Note that the real-valued model underperformed the hypercomplex-valued
ELM networks, seldom showcasing the highest prediction gain. Moreover, among the top-
performing models three are based on Cayley-Dickson algebras, namely the quaternions
(H), Rr´1, `1s, and Rr`1, ´1s. The tessarines- and Klein-group-based ELMs performed
on par with these Cayley-Dickson models, while Rr`1, `1s and the hyperbolic quaternions
exhibited noticeably worse results. Nonetheless, the hypercomplex models’ advantage
over the real-valued becomes clearer by taking the average prediction gain over 100
simulations for each number of hidden neurons. Figure 3 shows the average prediction
gain by the total number of parameters for several models, namely the real-valued ELM,

Chapter 3. Hv-ELM: Hypercomplex-valued Extreme Learning Machine 29

200 300 400 500 600 700
Total Number of Parameters (TNP)

4

2

0

2

4

6

8

10

12
Pr

ed
ict

io
n

Ga
in

Y
T
H
R[+1,+1]
Real

Figure 3 – The average prediction gain by the total number of parameters.

the two top-performing hypercomplex-valued models (H and T) and the two bottom-
performing hypercomplex-valued models (Rr`1, `1s and Y). Figure 3 shows that the
top-performing models hold a good margin over the bottom-performing ones, while the
three omitted hypercomplex-valued models lie between these two separate groups. Moreover,
all hypercomplex-valued models are significantly ahead of the real-valued ELM network.

3.4 Application: Colored Image Auto-encoding
This section presents an application in auto-encoding featuring the CIFAR-10

dataset. This dataset was originally intended as an image database for classification tasks.
It consists of five training batches and one testing batch, each one consisting of 10, 000
images, adding up to a total of 60, 000 images divided evenly into 10 classes.

Although the CIFAR-10 was initially aimed at classification tasks, it was also
used for training auto-encoders (TANG; DENG; HUANG, 2016; ZHANG; XUE; DANA,
2017; MINEMOTO et al., 2017). Auto-encoding involves obtaining a model capable of
compressing data in a way that preserves the maximum amount of information possible. In
practice, a high-dimensional object – in this case, an image – is first represented (encoded)
in a different space, then reconstructed from the compressed information. This is a vital

Chapter 3. Hv-ELM: Hypercomplex-valued Extreme Learning Machine 30

task in many fields such as information theory and automated control, for example, where
minimal information loss is the key objective. A neural network designed to perform an
auto-encoding task, known as an auto-encoder, is trained using a set in which the input and
the desired output are the same data. On top of that, the dimension of the intermediate
layers must be smaller than that of the data being compressed, thus forcing the network
to learn a representation for a high-dimensional object in the space of a smaller dimension
in an efficient way. Auto-encoders are known as robust feature detectors for their ability to
learn representations that preserve information, and are used in unsupervised pre-training
on large datasets. There is a significant similarity between auto-encoders and convolutional
layers, which act as feature extractors in deep learning models. Auto-encoders also have
applications in modern generative models (GÉRON, 2017).

In this work, a total of 7 Hv-ELM models have been trained with 10.000 images
of a training batch of the CIFAR-10 and tested using the original test batch of the same
dataset, meaning the test set also consists of 10, 000 images. The hypercomplex-valued
architectures evaluated are based on the 7 algebras with multiplication tables given in
Tables 2 and 3. Additionally, we include an equivalent real-valued ELM for comparison.

Images in the CIFAR-10 dataset are represented as 32 ˆ 32 8-bit RGB arrays,
i.e., a total of 3072 values per image. An 8-bit RGB image I has been flattened to a
real-valued vector xpRq of length 3072 by concatenating the pixel values in the red, green,
and blue channels in that order. The values were also re-scaled to fit the symmetric
interval r´1, `1s. For the hypercomplex-valued encoding, each image I was expressed as a
hypercomplex-valued vector xpAq of length 1024 with components

x
pAq

i “

ˆ

2IR
i

255 ´ 1
˙

i `

ˆ

2IG
i

255 ´ 1
˙

j `

ˆ

2IB
i

255 ´ 1
˙

k,

where IR
i , IG

i , IB
i represent the values of the i-th pixel respectively at the red, green, and

blue channels. Hence, each of the components of the input is also scaled to fit the r´1, 1s

interval.

In order to make comparable experiments, we considered real- and hypercomplex-
valued ELMs with similar total number of free parameters (TNP). We recall that input-
output pairs are symmetric and that hidden layer parameters are fixed, therefore not free.
Thus, the real-valued and hypercomplex-valued ELM have respectively

TNPpRq
“ DpRqLpRq and TNPpAq

“ 4pDpAqLpAq
q, (3.15)

where DpRq
“ 3072 and DpAq

“ 1024 denote the input dimension of each network, and LpRq

and LpAq denote the number of neurons in the hidden layer of the real- and hypercomplex-
valued models, respectively. Guided by what was reported previously by Minemoto et al.
(MINEMOTO et al., 2017) and further experimentation by us (VIEIRA; VALLE, 2020),
the number of hidden layer neurons were taken as LpRq

“ 600 and LpAq
“ 450. This way,

models add up to an equal TNP, that is, TNPpRq
“ TNPpAq

“ 1, 843, 200.

Chapter 3. Hv-ELM: Hypercomplex-valued Extreme Learning Machine 31

The networks used did not have bias terms in any of the layers. The hidden
layer’s activation function was the hyperbolic tangent, namely the real-valued one for the
real ELM and the split version for the hypercomplex ELMs:

tanhpx0 ` x1i ` x2j ` x3kq “ tanhpx0q ` tanhpx1qi ` tanhpx2qj ` tanhpx3qk, (3.16)

i.e., the application of tanhp¨q to each component of the hypercomplex number individually.
This is common practice in hypercomplex-valued networks as the universal approximation
property holds for these split activation functions. The hidden layer parameters were
randomly generated according to a standard normal distribution, mean 0 and variance 1.
The normally distributed parameters were re-scaled by a constant α based on the network’s
input length, so as to ensure that the internal state values did not saturate the activation
function. The precise values used are αpRq

“ 30{3072 and αpAq
“ 10{1024 for the real and

hypercomplex-valued models, respectively.

The first training batch of the CIFAR-10 dataset was used to train the eight
ELM auto-encoders. The test batch, containing 10,000 different images, was used for
testing. For illustrative purposes, Figure 4 depicts an example from the training set while
Figure 5 depicts one from the test set. Each figure consists of nine images, the first one
being the original CIFAR dataset image, the remaining ones being the eight decoded
images, i.e., the output image reconstruction by each trained auto-encoder.

By visual inspection it can be seen that all auto-encoders performed well in both
training and test images. The images were reconstructed with a good resemblance to the
original one. However, even to the naked eye it is apparent that the reconstructed images
are blurry. This effect is expected since the encoding of the images in a lower-dimensional
object is bound to incur some level of information loss. In order to evaluate performances
from a quantitative perspective, the peak signal-to-noise ratio (PSNR) and structural
similarity index (SSIM) were used. These metrics are calculated considering the desired
and auto-encoders outputs: on the one hand the PSNR is measured in a logarithmic scale
inversely proportional to the mean squared error, thus a higher PSNR value indicates a
higher reconstruction quality. On the other hand, the SSIM is a unitary real-valued index
(r´1, `1s); higher values represent the high similarity between the input and the output
images, with 1.0 representing perfect reconstruction. Both metrics are widely used and,
together, they cover the concept of similarity in great detail. The metrics attained by the
ELM auto-encoders are reported in Table 4 as well as represented by the boxplots shown
in Figure 6.

From Table 4 it can be seen that the eight auto-encoders yielded similar PSNR
and SSIM rates when comparing training and test results for each model individually.
That is, the ELMs learned the auto-encoding task with adequate generalization capability,
without overfitting to the training data. This is further backed up by the both sets
having the same amount of images, which ensures that the models were thoroughly tested.

Chapter 3. Hv-ELM: Hypercomplex-valued Extreme Learning Machine 32

a) Original b) R c) Y

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

d) K e) T f) H

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

g) Rr´1, `1s h) Rr`1, ´1s i) Rr`1, `1s

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Figure 4 – Training set samples: original color image from the CIFAR dataset and the
corresponding images decoded by the real and hypercomplex-valued auto-
encoders.

Furthermore, except for the ELM based on MacFarlane’s hyperbolic quaternions, the
hypercomplex-valued auto-encoders outperformed the real-valued model by a noticeable
margin. An outlier to the hypercomplex-valued models, the hyperbolic quaternion-valued
ELM was the single one to perform slightly worse than the real-valued network. The
auto-encoders based on quaternions, tessarines, Klein four-group, and the Cayley-Dickson
algebra Rr`1, `1s yielded similar performance among the hypercomplex-valued models.
Finally, the ELM models based on the Cayley-Dickson algebras Rr´1, `1s and Rr`1, ´1s

pulled ahead by an outstanding margin. These top-performing models boast an almost
perfect score in terms of SSIM.

With regards to computational complexity, the hypercomplex-valued ELMs
are much more time consuming than their real-valued equivalent. The computational
bottlenecks are mainly due to the transformations ΦL and ΦR required on (2.23), (2.26),
and (3.6). For example, in our experiment, the training step took 3.25s for the real-valued

Chapter 3. Hv-ELM: Hypercomplex-valued Extreme Learning Machine 33

a) Original b) R c) Y

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

d) K e) T f) H

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

g) Rr´1, `1s h) Rr`1, ´1s i) Rr`1, `1s

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Figure 5 – Test set samples: original color image from the CIFAR dataset and the corre-
sponding images decoded by the real and hypercomplex-valued auto-encoders.

model and a whopping 283.76s for the hypercomplex-valued models, on average. This
amounts to roughly 87 times more training time. As a brief disclaimer, we would like
to highlight that we implemented suboptimal codes for the hypercomplex-valued ELM
models and strongly believe that this gap in time-wise performance can be greatly reduced
with the proper implementation of more optimized hypercomplex-valued operations.

Remark 3. The experiments above were run on an environment within Google Colaboratory
and reported times were given by the platform itself.

3.5 Concluding Remarks
Extreme learning machines are known for being light-weight models regarding

training time. As such, the real-valued ELM is extremely fast in the learning step despite
the dataset being so large, with a total of 10.000 images of size 32 ˆ 32. The hypercomplex-

Chapter 3. Hv-ELM: Hypercomplex-valued Extreme Learning Machine 34

a) PSNR

Re
al Y K T

Qu
at

er
ni

on
s

[-1
,+

1]

[+
1,

-1
]

[+
1,

+1
]

20

25

30

35

40

b) SSIM

Re
al Y K T

Qu
at

er
ni

on
s

[-1
,+

1]

[+
1,

-1
]

[+
1,

+1
]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 6 – PSNR and SSIM rates produced by the real and hypercomplex-valued auto-
encoders in the test set.

Chapter 3. Hv-ELM: Hypercomplex-valued Extreme Learning Machine 35

Table 4 – Average PSNR and SSIM rates achieved by real and hypercomplex-valued auto-
encoders.

Train Set Test Set

Algebra PSNR SSIM PSNR SSIM

Real 27.3 ˘ 2.4 0.91 ˘ 0.05 26.8 ˘ 2.6 0.89 ˘ 0.05

Y 26.4 ˘ 2.4 0.89 ˘ 0.05 26.0 ˘ 2.6 0.88 ˘ 0.05

K4 28.9 ˘ 2.5 0.93 ˘ 0.04 28.5 ˘ 2.7 0.92 ˘ 0.05

T 28.9 ˘ 2.5 0.93 ˘ 0.04 28.5 ˘ 2.7 0.92 ˘ 0.05

H 28.9 ˘ 2.5 0.93 ˘ 0.04 28.5 ˘ 2.7 0.92 ˘ 0.05

Rr´1, `1s 31.0 ˘ 2.5 0.95 ˘ 0.03 30.5 ˘ 2.7 0.95 ˘ 0.04

Rr`1, ´1s 31.1 ˘ 2.5 0.95 ˘ 0.03 30.6 ˘ 2.7 0.95 ˘ 0.04

Rr`1, `1s 27.9 ˘ 2.4 0.92 ˘ 0.04 27.5 ˘ 2.6 0.91 ˘ 0.05

valued variants take notably more time to train, showcasing roughly 87 times longer
training steps. Nonetheless, Hv-ELMs still stand out as fast models for a task considering
such a dataset, thus preserving the core advantage of the original ELM concept.

Performance-wise the hypercomplex-valued models show unparalleled results
considering both metrics, PSNR and SSIM. In fact, all hypercomplex models with exception
of the one based on the MacFarlane’s hyperbolic quaternions outperformed the real-valued
baseline by a wide margin. Moreover, our experiments show that a few algebras stand
out among the others, as we observe the ELMs based on the Cayley-Dickson algebras
Rr´1, `1s and Rr`1, ´1s achieve near perfect SSIM scores. We recall that all models have
identical total number of parameters (TNP), and thus the storage requirement is the same
for all of them.

In sum, the hypercomplex-valued ELMs pose a trade-off: they hold a strict
advantage over the real-valued counterpart in terms of performance, while maintaining
the same storage requirements and requiring notably longer time on the training steps.
However, the main advantage of ELMs is that of having a short training step, thus
Hv-ELMs are still fast models despite being much slower than the real-valued version.
Moreover, the prediction time for both models is negligible, so once trained the Hv-ELM
poses a near-strict advantage over the real-valued ELM.

36

4 Hv-CNN: Hypercomplex-valued Convolu-
tional Neural Network

To introduce convolution in the context of neural networks we first briefly review
the mathematical concept from which it was derived. The convolution is a mathematical
operation pf ˚ gqptq on two real-valued functions f, g that can be interpreted as a weighted
average of the value of f around a point t where the weights are given by the function g.
The convolution is defined formally as follows, for a continuous variable t:

pf ˚ gqptq “

ż `8

´8

fptqgpt ´ xqdx. (4.1)

In case the variable t is discrete in uniform intervals, Eq. (4.1) becomes

pf ˚ gqptq “

`8
ÿ

n“´8

fpnqgpt ´ nq. (4.2)

Finally, the function g can be null outside of a finite set, so that the above sum is finite.
This is often the case in image processing and convolutional layers in particular. It is
sometimes useful to use the same weight function g for a handful of different functions f .
In these cases it is common to refer to the function g as kernel and f as input.

Convolutional layers are particular types of layers in which the trainable
parameters are arranged in spatial structures called filters (GOODFELLOW; BENGIO;
COURVILLE, 2016). The filter structures allow the network to process data in a locally
cohesive manner, thus identifying local patterns. Convolutional neural networks are
networks equipped with one or more such layers, and are so named because the filters act
as the kernels and the data being processed acts as the input in (4.2). During the training
step the parameters in the filters are adjusted and thus the network is able to learn local
features, acting as trainable encoders. These networks have been widely applied to image
processing tasks, taking full advantage of the spatial nature of its learning mechanism and
the translation invariance of filters.

4.1 Real-valued Convolutional Layers
Let us consider a convolutional layer being fed by a real-valued image I con-

taining C channels. We shall express the intensity of the cth channel of the image I at
pixel p as Ipp, cq P R . By definition, the filters must have the same number C of channels
as the image I. Filters have an associated area shape in which they act called domain. The
most common domains are square grids. Here we shall denote the domain by D. Then,

Chapter 4. Hv-CNN: Hypercomplex-valued Convolutional Neural Network 37

the synaptic weights of a convolutional layer with K real-valued filters are compactly
expressed in an array F such that Fpq, c, kq denotes the weight of the cth channel of the
kth filter associated to the point q P D, with c “ 1, . . . , C and k “ 1, . . . , K. Consequently,
the output of a convolutional layer with K filters is a real-valued image J with K feature
channels, one per filter. These are obtained by calculating the convolution of the image
patch under D by the respective weights in the filter, adding a bias term (associated to the
channel) and lastly applying an activation function. This is similar to the feedforward step
of the common neuron structure in MLPs, for example. Visually this operation corresponds
to superimposing the filter over the image, centered on a pixel p, and calculating the linear
combination of the elements in the domain D in which the weights are given by the filter
values and the variables are given by the intensities of the underlying pixels. Formally let
us write the convolution of the image I by the kth filter at pixel p as pI ˚ Fqpp, kq. Then,
mathematically we have

pI ˚ Fqpp, kq “

C
ÿ

c“1

ÿ

qPD

I
`

p ` Spqq, c
˘

Fpq, c, kq, (4.3)

in which the term Spqq, for q P D, represents a translation that takes vertical and horizontal
strides into account. Note that (4.3) computes a cross correlation. Finally, the intensity of
the output of this channel in this particular pixel is directly obtained as

Jpp, kq “ φ pbpkq ` pI ˚ Fqpp, kqq , (4.4)

where φ : R Ñ R is the activation function and bpkq is the bias. Note that each channel
has its own bias term.

4.2 Hypercomplex-valued Convolutional Layers
With the previous section in hand we can extend real-valued convolutional

layer concepts in order to obtain the hypercomplex-valued convolutional layer. Indeed,
this is done simply by replacing the real numbers and operations with their corresponding
hypercomplex versions in (4.3) and (4.4) (TRABELSI et al., 2017; GAUDET; MAIDA,
2017). Moreover, the intensity of the kth channel of the hypercomplex-valued output image
Jphq at pixel p is simply

Jphq
pp, kq “ φA

`

bphq
pkq ` pIphq

˚ Fphq
qpp, kq

˘

, (4.5)

with φA : A Ñ A being a hypercomplex-valued activation function and b
phq

k P A is the bias
term associated with that channel. Here

pIphq
˚ Fphq

qpp, kq “

C
ÿ

c“1

ÿ

qPD

Iphq
pp ` Spqq, cqFphq

pq, c, kq, (4.6)

Chapter 4. Hv-CNN: Hypercomplex-valued Convolutional Neural Network 38

is the convolution of Iphq by the kth hypercomplex-valued filter at pixel p. Note that the
expression is similar to that in (4.3), except that the product is carried out in A. In order
to compute these terms, we emulate these products by means of real-valued matrix-vector
products by arranging the filter matrices in a similar fashion to what is described in
section 2.2.

Once again, in this work we only consider split-functions φA defined as in (3.16).
That is, based on a real-valued function φ : R Ñ R we have

φApxq “ φpx0q ` φpx1qi1 ` . . . ` φpxnqin, (4.7)

for all x P x0 ` x1i1 ` ¨ ¨ ¨ ` xnin P A.

4.3 Emulating Hypercomplex-valued Convolutional Layers
As previously mentioned, the vast majority of deep learning libraries and tools

are designed for real-valued inputs using floating point operations. In a way akin to
what was done in Section 2.2, we show how to emulate the operations in four-dimensional
hypercomplex-valued convolutional layers by means of real-valued convolutions. This is also
similar to other approaches reported in the literature for complex- and quaternion-valued
deep networks (TRABELSI et al., 2017; GAUDET; MAIDA, 2017).

For this definition let us consider a generalized multiplication table for four-
dimensional algebras as

i j k

i s11 s12k s13j

j s21k s22 s23i

k s31j s32i s33

. (4.8)

Note that all multiplication tables for the notable algebras presented in Tables 2 and
3 can be obtained by setting the sij’s in (4.8) equal to ˘1. Thus, the expressions for
the emulation of hypercomplex-valued convolutions are valid for the algebras presented
previously in this work.

First off, we represent an image Iphq with C channels on a four-dimensional
hypercomplex algebra as

Iphq
“ I0 ` I1i ` I2j ` I3k, (4.9)

with I0, I1, I2, and I3 representing real-valued images also with C channels each. Anal-
ogously, a collection of K hypercomplex-valued filters with domain D and C feature
channels is represented as

Fphq
“ F0 ` F1i ` F2j ` F3k, (4.10)

Chapter 4. Hv-CNN: Hypercomplex-valued Convolutional Neural Network 39

where F0, F1, F2, and F3 are real-valued arrays each representing a collection of K filters.
Naturally these filter also have domain D and C feature channels. To compute the products
on the right hand side of (4.6) we simply apply the distributive law and use the associated
multiplication table. Formally, we follow the rules from (4.8) to obtain

Iphq
pp ` Spqq, cqFphq

pq, c, kq

“ pI0 ` I1i ` I2j ` I3kqpF0 ` F1i ` F2j ` F3kq

“ I0F0 ` s11I1F1 ` s22I2F2 ` s33I3F3

` pI0F1 ` I1F0 ` s23I2F3 ` s32I3F2qi

` pI0F2 ` s13I1F3 ` I2F0 ` s31I3F1qj

` pI0F3 ` s12I1F2 ` s21I2F1 ` I3F0qk,

in which we omit the arguments pp ` Spqq, cq and pq, c, kq to help with readability. Now,
by isolating the real-part of the convolution in (4.6), we see that

`

Iphq
˚ Fphq

˘

0pp, kq “

C
ÿ

c“1

ÿ

qPD

”

I0pp ` Spqq, cqF0pq, c, kq

` s11I1pp ` Spqq, cqF1pq, c, kq (4.11)
` s22I2pp ` Spqq, cqF2pq, c, kq

` s33I3pp ` Spqq, cqF3pq, c, kq

ı

,

Alternatively, this term can be computed using the real-valued convolution
`

Iphq
˚ Fphq

˘

0pp, kq “
`

Iprq
˚ Fprq

0
˘

pp, kq, (4.12)

where Iprq is a real-valued image with 4C feature channels obtained simply by concatenating
the real and imaginary parts of Iphq. Mathematically, this means

Iprq
pp, :q “ rI0pp, :q, I1pp, :q, I2pp, :q, I3pp, :qs, (4.13)

for each pixel p. The alternative filter Fprq

0 is the real-valued filter defined by

Fprq

0 pq, 1 : C, kq “ F0pq, 1 : C, kq, (4.14)
Fprq

0 pq, C ` 1 : 2C, kq “ s11F1pq, 1 : C, kq, (4.15)
Fprq

0 pq, 2C ` 1 : 3C, kq “ s22F2pq, 1 : C, kq, (4.16)
Fprq

0 pq, 3C ` 1 : 4C, kq “ s33F3pq, 1 : C, kq, (4.17)

for all q P D and k “ 1, . . . , K. For short, the notation

Fprq

0 “ rF0, s11F1, s22F2, s33F3s, (4.18)

means that Fprq

0 is obtained by concatenating F0, s11F1, s22F2, and s33F3 as prescribed
above. Once again we note that this is similar to the way we emulate products of hyper-
complex numbers by real-valued matrix-vector products, which is simply a concatenation

Chapter 4. Hv-CNN: Hypercomplex-valued Convolutional Neural Network 40

of the real-valued components with auxiliary terms (in this case the sij’s) conveying the
information of the multiplication table of the underlying algebra. Note from (4.3) that

`

Iprq
˚ Fprq

0
˘

pp, kq “

4C
ÿ

c“1

ÿ

qPD

Iprq
`

p ` Spqq, c
˘

Fprq

0 pq, c, kq

“
ÿ

qPD

«

C
ÿ

c“1
Iprq

`

p ` Spqq, c
˘

Fprq

0 pq, c, kq ` . . .

`

4C
ÿ

c“3C`1
Iprq

`

p ` Spqq, c
˘

Fprq

0 pq, c, kq

ff

“
ÿ

qPD

«

C
ÿ

c“1
I0
`

p ` Spqq, c
˘

F0pq, c, kq ` . . .

`

C
ÿ

c1“1
s33I3

`

p ` Spqq, c1
˘

F3pq, c1, kq

ff

,

which corroborates the expression for
`

Iphq
˚ Fphq

˘

0pp, kq given by (4.11). Hence, in a
network using a split-function φA based on a real-valued function φ, the real-part J0pp, kq

of the output Jphq
pp, kq of the hypercomplex-valued convolutional layer can be obtained

simply by
J0pp, kq “ φ

´

b0pkq `
`

Iprq
˚ Fprq

0
˘

pp, kq
˘

. (4.19)

Here we denote as b0pkq the real-part of the bias term bpkq, and Iprq and Fprq

0 are the
previously given expressions in (4.13) and (4.18), respectively. The same reasoning yields

Fprq

1 “ rF1, F0, s23F3, s32F2s, (4.20)
Fprq

2 “ rF2, s13F3, F0, s31F1s, (4.21)
Fprq

3 “ rF3, s12F2, s21F1, F0s, (4.22)

as the filters used to calculate the three imaginary parts J1pp, kq, J2pp, kq, and J3pp, kq,
respectively. Naturally each imaginary part uses its associated part of the bias term,
namely b1pkq, b2pkq, and b3pkq.

There are many advantages to the emulation procedure described in this section.
First off, the established equivalence makes it possible to implement hypercomplex-valued
convolutional layers using fast open-source deep learning libraries such as Tensorflow and
PyTorch for python and Flux for Julia Language. This directly leads to the possibility of
implementing hypercomplex-valued versions of well-known deep neural network models in
these libraries with ease. Moreover, many machine learning techniques can be incorporated
naturally due to being already available in these libraries such as batch normalization and
various weight initialization paradigms. Finally, this bridge between hypercomplex-valued
models and modern libraries brings immediate benefits such as a handful of state-of-the-art
optimizers and multiple types of layers and operators such as flattening and pooling.

Chapter 4. Hv-CNN: Hypercomplex-valued Convolutional Neural Network 41

To exemplify the introduced concepts we describe a hypercomplex-valued deep
neural network used in the classification task of lymphocytes from blood smear images.
The implemented model takes inspiration in the LeNet architecture (LECUN et al., 1998).

4.4 Max-pooling Layer
A pooling layer operates a downsampling effect in the input. In addition, this

layer structure contains no trainable parameters. The most common pooling layers are
the max and average pooling layers. In this work in particular we use the max pooling
layer, exclusively. Roughly speaking, a max pooling layer has a kernel shape, usually a
rectangular grid G, and it operates by collapsing each set of pixels contained in the grid into
the single maximum value present. This operation reduces the dimensionality of the input
while also highlighting the “stronger” signal in each window. The max pooling operation is
conducted on each filter separately, i.e., it acts as a split maximum function for elements of
a hypercomplex algebra. Formally, if the output of a 4-dimensional hypercomplex-valued
filter Jphq is such that

Jphq
“ J0 ` J1i ` J2j ` J3k, (4.23)

then Jphq after the max-pooling operation is simply

MPpJphq
q “ MPpJ0q ` MPpJ1qi ` MPpJ2qj ` MPpJ3qk, (4.24)

where MPpJiq is the max-pooling operation applied to the i-th real matrix.

4.5 Application: Lymphoblast Image Classification
In this section we describe the experiment conducted to showcase the proposed

hypercomplex-valued convolutional neural network (Hv-CNN). It consists in a classification
task in a medical-image dataset containing blood smear images.

Acute Lymphoblastic Leukemia (ALL) is a rare type of blood cancer that
occurs more frequently in children of ages 2-5 and can be lethal in under a few weeks if
left undiagnosed. The main indicator of ALL is the presence of lymphoblasts, a type of
malformed lymphocyte, in the blood stream. The most common diagnosis method is the
inspection of microscopic blood smear images. The ALL-IDB (LABATI; PIURI; SCOTTI,
2011) is a public benchmark aimed at computer assisted ALL diagnosis and consists of 2
datasets: one directed at a segmentation and classification, and the other directly aimed
at the classification task itself. In this work we use the latter dataset which contains 260
images, each containing a single blood element, and perform a binary classification task in
which the model decides whether or not the presented image is a lymphoblast. Figure 7
shows examples of a probable lymphoblast and a healthy cell, respectively.

Chapter 4. Hv-CNN: Hypercomplex-valued Convolutional Neural Network 42

a) Probable lymphoblast b) Healthy cell

Figure 7 – Example of images from the ALL-IDB dataset used for the classification task.

The original images are encoded in RGB channels. This means each pixel
contains 3 values representing the red, green and blue values respectively. An alternate
encoding for images is the HSV, which stands for hue, saturation, and value. This color
scheme displays colors in a radial slice, and better represents the human eye perception
of color elements. In mathematical terms, an HSV encoded color pixel is represented as
follows in a four-dimensional hypercomplex algebra:

Ippq “
`

Sppq ` V ppqi
˘`

cospHppq
˘

` sen
`

Hppq
˘

jq, (4.25)

where Hppq P r0, 2πq and Sppq, V ppq P r0, 1s denote respectively the hue, saturation, and
value, of pixel p.

We conducted experiments in 2 different settings with this dataset. For both
experiments we performed a 50%-50% train-test split, i.e., used half of the images for
training and half for testing. We also performed data augmentation on the training set
using horizontal and vertical flips to increase the number of examples. The next subsections
detail the experiments individually.

4.5.0.1 Experiment I: General algebras

This experiment is part of the paper (VIEIRA; VALLE, 2022a). We define
four-dimensional algebras in a more general manner for this experiment as follows.

We start by imposing that the product of hypercomplex units is associative.
Furthermore, we let the identity

k “ ij, (4.26)

hold true. Finally, we assume the four-dimensional hypercomplex algebra is either commu-
tative or anti-commutative.

• Anticommutative Algebras: We obtain an anticommutative four-dimensional
hypercomplex algebra by imposing ij “ ´ji. From the associativity and (4.26), we

Chapter 4. Hv-CNN: Hypercomplex-valued Convolutional Neural Network 43

Table 5 – Multiplication tables of the anticommutative algebras.
Quaternions Cℓ2,0

Ar´1, ´1s i j k
i ´1 k ´j
j ´k ´1 i
k j ´i ´1

A r`1, `1s i j k
i 1 k j
j ´k 1 ´i
k ´j i ´1

Coquaternions Cℓ1,1
A r´1, `1s i j k

i ´1 k ´j
j ´k 1 ´i
k j i 1

A r`1, ´1s i j k
i 1 k j
j ´k ´1 i
k ´j ´i 1

obtain

k2
“ pijqpijq “ ipjiqj “ ip´ijqj “ ´i2j2, (4.27)

ik “ ipijq “ i2j, (4.28)
jk “ jpijq “ jp´jiq “ ´j2i. (4.29)

To simplify the exposition, let i2
“ γ1 and j2

“ γ2. From (4.26)-(4.29), we obtain
an associative and anticommutative four-dimensional algebra denoted by Arγ1, γ2s,
whose multiplication table is then

Arγ1, γ2s i j k

i γ1 k γ1j

j ´k γ2 ´γ2i

k ´γ1j γ2i ´γ1γ2

(4.30)

By considering γ1, γ2 P t´1, `1u, we obtain the four-dimensional hypercomplex
algebras Ar´1, ´1s, Ar´1, `1s, Ar`1, ´1s, and Ar`1, `1s whose multiplication
tables are depicted in Table 5.

Remark 4. Clearly the algebras Ar´1, ´1s, Ar´1, `1s, Ar`1, ´1s, and Ar`1, `1s

can be derived using the generalized Cayley-Dickson process described in Section
2.1 and in (BROWN, 1967; VIEIRA; VALLE, 2020). Notably, the hypercomplex
algebra Ar´1, ´1s is equivalent to the quaternions, which can be easily seen from the
identical multiplication tables. On the other hand, the algebra Ar´1, `1s corresponds
to the co-quaternions or split-quaternions. Finally, Ar`1, `1s and Ar`1, ´1s are
identical to the aforementioned Clifford algebras Cℓ2,0 and Cℓ1,1, respectively. The
algebras Ar´1, `1s, Ar`1, ´1s, and Ar`1, `1s are all isomorphic, meaning they can
be obtained from one another by a simple change of basis operation, which in this
case corresponds to a re-labelling of hyperimaginary units.

• Commutative Algebras: If we instead impose the condition ij “ ji we end up
with commutative four-dimensional hypercomplex algebras. Once again, using (4.26)

Chapter 4. Hv-CNN: Hypercomplex-valued Convolutional Neural Network 44

Table 6 – Multiplication tables of commutative algebras.
Bicomplex numbers

Br´1, ´1s i j k
i ´1 k ´j
j k ´1 ´i
k ´j ´i 1

Br`1, ´1s i j k
i 1 k j
j k ´1 ´i
k j ´i ´1

Tessarines Klein 4-group
Br´1, `1s i j k

i ´1 k ´j
j k 1 i
k ´j i ´1

Br`1, `1s i j k
i 1 k j
j k 1 i
k j i 1

and the associativity property, we get the identities

k2
“ pijqpijq “ ipjiqj “ ipijqj “ i2j2, (4.31)

ik “ ipijq “ i2j, (4.32)
jk “ jpijq “ jpjiq “ j2i. (4.33)

By expressing i2
“ γ1 and j2

“ γ2, we obtain a commutative hypercomplex algebra
Brγ1, γ2s whose multiplication table is

Brγ1, γ2s i j k

i γ1 k γ1j

j k γ2 γ2i

k γ1j γ2i γ1γ2

(4.34)

Taking γ1, γ2 P t´1, `1u yields the four-dimensional algebras Br´1, ´1s, Br´1, `1s,
Br`1, ´1s and Br`1, `1s, with multiplication tables depicted in Table 6.

Remark 5. The hypercomplex algebra Br´1, `1s and the tessarines have the same
multiplication table, hence they are equivalent. By the same reasoning, the bi-complex
numbers are equivalent to the algebra Br´1, ´1s while the Klein 4-group is identical
to Br`1, `1s. Finally, we highlight that Br´1, ´1s and Br`1, ´1s can be both ob-
tained from Br´1, `1s by a change of bases operation. In other words, the algebras
Br´1, ´1s, Br`1, ´1s and Br´1, `1s are all isomorphic.

In sum, this amounts to eight algebras. As per what was imposed, all of them
are associative, half of them are anticommutative while the remaining half are commutative
algebras. Furthermore, all the multiplication tables for these algebras follow a pattern, i.e.,
all can be written as

i j k

i s11 s12k s13j

j s21k s22 s23i

k s31j s32i s33

(4.35)

Chapter 4. Hv-CNN: Hypercomplex-valued Convolutional Neural Network 45

Table 7 – Parameter distribution per layer for each architecture.

Rv-CNN Hv-CNN

Conv Layer 1 (3,3) filters 32 8
Parameters 896 320

Conv Layer 2 (3,3) filters 64 16
Parameters 18,496 4,672

Conv Layer 3 (3,3) filters 128 32
Parameters 73,856 18,560

Dense Layer Units 1 1
Parameters 12,801 12,801

Total 106,049 36,353

with sij P t´1, `1u, for all i, j “ 1, . . . , 3. Note that the sij’s are uniquely determined by
the choice of the parameters γ1 and γ2 as well as on the commutativity or anticommutativity
of the multiplication. This observation was crucial for the efficient implementation of
convolutional neural networks based on the eight hypercomplex algebras presented in this
section.

This development leads to a total of 18 configurations featured in this ex-
periment. Namely, each of the 9 models (1 Rv-CNN and 8 Hv-CNNs) was used in the
classification task of images encoded in both RGB and HSV color spaces. Following the
pipeline detailed by (GRANERO; HERNÁNDEZ; VALLE, 2021) we adopt a similar
architecture for real- and hypercomplex-valued models: three convolutional layers with
3 ˆ 3 filters, each followed by a max-pooling layer with kernels of size 2 ˆ 2. The output of
the third max-pooling layer is flattened and fed to a dense layer featuring a single neuron
responsible for outputting the label, i.e., 1 for a lymphoblast image, 0 for a healthy cell. The
hypercomplex-valued convolutional layers have a smaller number of filters since each filter in
these layers corresponds, in some sense, to four filters in the real-valued convolutional layer.
The dense layer is identical in both types of models. The activation functions used are the
rectified linear unit (ReLU) and split-ReLU for the real- and hypercomplex-valued models,
respectively. A detailed account of the architectures described is comprised in Figure 8
and Table 7. Lastly, all models in this work were implemented using the python libraries
Keras and Tensorflow and were ran using Google Colaboratory. All models used the
’adam’ optimizer with the BinaryCrossEntropy() loss function from the Keras.losses
library. The source codes are available at https://github.com/mevalle/Hypercomplex-
valued-Convolutional-Neural-Networks.

The box plots depicted in Fig. 9 and Table 8 summarize the outcome of the
computational experiment as measured by the accuracy in the test set. Note that all models
showed satisfactory performance for the RGB encoded images, with medians (indicated
by the line inside the respective blocks) close to 95% accuracy, with the exception of
the Hv-CNN based on the algebra Br´1, `1s boasting a median accuracy rate of 93.8%.

Chapter 4. Hv-CNN: Hypercomplex-valued Convolutional Neural Network 46

Figure 8 – General architecture of the CNNs used in the experiments.

a) RGB-encoded images b) HSV-encoded images

Re
al

+R
GB

A[
-1

,-1
]+

RG
B

A[
-1

,+
1]

+R
GB

A[
+1

,-1
]+

RG
B

A[
+1

,+
1]

+R
GB

B[
-1

,-1
]+

RG
B

B[
-1

,+
1]

+R
GB

B[
+1

,-1
]+

RG
B

B[
+1

,+
1]

+R
GB

85
87
89
91
93
95
97
99

Ac
cu

ra
cie

s (
%

)

Re
al

+H
SV

A[
-1

,-1
]+

HS
V

A[
-1

,+
1]

+H
SV

A[
+1

,-1
]+

HS
V

A[
+1

,+
1]

+H
SV

B[
-1

,-1
]+

HS
V

B[
-1

,+
1]

+H
SV

B[
+1

,-1
]+

HS
V

B[
+1

,+
1]

+H
SV

85
87
89
91
93
95
97
99

Ac
cu

ra
cie

s (
%

)

Figure 9 – Boxplot of test set accuracies produced by real-valued and hypercomplex-valued
neural networks.

Nevertheless, performances vary more notably in the HSV case. The real-valued model
exhibits poor performance when compared to all the hypercomplex-valued ones, showing
a very low median accuracy rate of 91.5%. Among the hypercomplex-valued competitors,
the Hv-CNNs based on the algebras Ar´1, ´1s, Br´1, ´1s, and Br´1, `1s yielded a
median accuracy score of 96.2%. Above those, the Br`1, ´1s-based Hv-CNN showcased
a median accuracy score of 96.5%. On the top of the charts, the Hv-CNNs based on the
isomorphic algebras Ar´1, `1s, Ar`1, ´1s, and Ar`1, `1s as well as the Hv-CNN based
on Br`1, `1s showed an impressive median accuracy score of 96.9%. We highlight that
there is a significant improvement in the accuracy scores of the Hv-CNN models when
changing the image encoding, thus demonstrating that these models work well within the
locally cohesive structure of the HSV encoding.

Performances attained in this experiment are summarized visually in the
Hasse diagram shown in Fig. 10. We omit multiple algebras of the same isomorphism
group to avoid cluttering the image, so each algebra present in the diagram represents
all other algebras isomorphic to them. Indeed, only 4 algebras are needed to cover all
isomorphism groups, so the chosen representatives are Ar´1, ´1s (quaternions), Ar´1, `1s

(coquaternions), Br´1, `1s (tessarines), Br`1, `1s (Klein 4-group), along with the real-

Chapter 4. Hv-CNN: Hypercomplex-valued Convolutional Neural Network 47

Table 8 – Mean accuracy (%) RGB- and HSV-encoded images of the test set per model.
Bold numbers indicate the best performer in each test set.

Model RGB-Encoded HSV-Encoded

Real-valued 94.12 ˘ 3.78 91.89 ˘ 2.32

Ar´1, ´1s 93.72 ˘ 4.48 96.24 ˘ 2.24

Ar´1, `1s 93.35 ˘ 4.12 96.68 ˘ 2.01

Ar`1, ´1s 94.58 ˘ 3.14 96.85 ˘ 1.89

Ar`1, `1s 93.71 ˘ 4.45 96.61 ˘ 2.03

Br´1, ´1s 94.12 ˘ 3.43 95.80 ˘ 2.80

Br´1, `1s 92.93 ˘ 3.84 96.39 ˘ 2.36

Br`1, ´1s 94.92 ˘ 3.51 96.18 ˘ 2.37

Br`1, `1s 93.30 ˘ 4.27 96.22 ˘ 3.15

Real+RGB

Real+HSV

A[-1,-1]+RGB
(quaternions)

B[-1,+1]+RGB
(tessarines)

A[-1,+1]+RGB
(coquaternions)

B[+1,+1]+RGB
(Klein 4-group)

A[-1,-1]+HSV
(quaternions)

A[-1,+1]+HSV
(coquaternions)

B[-1,+1]+HSV
(tessarines)

B[+1,+1]+HSV
(Klein 4-group)

Figure 10 – Hasse diagram of representative experiment configurations.

valued models. Each of the representatives is included with regards to its performance
in both RGB and HSV encodings of the image dataset. This diagram is intended as a
hierarchical map of the models, in which two models connected by a solid line indicate that
the model higher up dominates the one on the lower end of the line, i.e., showcases better
performance with confidence level of 0.99 according to a Student’s T test. Moreover, this
hierarchy relation is transitive so models higher up on the diagram perform better than

Chapter 4. Hv-CNN: Hypercomplex-valued Convolutional Neural Network 48

all models below, not just immediate ones. The first thing to notice is how all Hv-CNN
models on RGB encoded images are dominated by the Hv-CNN models on HSV encoded
images, reinforcing our previous claim. Furthermore, all hypercomplex-valued models in
HSV encoding outperform the real-valued models regardless of the encoding used on the
latter. Indeed, the Rv-CNN on HSV encoded images shows a very poor performance and is
outclassed by most models, avoiding being dominated only by the tessarine-valued model
on RGB encoded images. Nonetheless, our main takeaway from this diagram is the fact
that coquaternion- and tessarine-based Hv-CNNs show dominant performance over the
quaternion-based CNN. This is surprising given that the latter is the most commonly
used and widespread four-dimensional hypercomplex algebra. It is also important to
recall that superior performance of neural networks based on non-usual hypercomplex
algebras has been previously reported in the literature (VIEIRA; VALLE, 2020; VIEIRA;
VALLE, 2022b). That is not to say that quaternions are underperformers in general, as was
shown that a quaternion-based neural network yielded better results in applications like
controlling a robot manipulator (TAKAHASHI, 2021). This is merely a piece of evidence
that quaternions should not be taken as the automatic choice for any and all sort of task.

Finally, with regards to state-of-the-art comparison, Genovese et al. obtained a
reported accuracy rate of 97.92% using a ResNet18 paired with histopathological transfer
learning (GENOVESE et al., 2021b) in the same experimental settings of train-test split
as above. Genovese’s model builds upon the ResNet18 backbone by adding a dense layer
after the convolutional layers; this dense layer is fine tuned while the convolutional layers
are initialized by transfer learning (weights pre-trained on an histopathological dataset).
Our top-performing Hv-CNNs achieved average accuracy scores of 96.51% and 96.39%.
That being said, Genovese’s ResNet18-based network contains approximately 11.4M
parameters while the Hv-CNNs here described have only 36k parameters. In particular,
the coquaternion-valued Hv-CNN with HSV encoding achieved 98% of the accuracy score
of the ResNet18 with transfer learning while using only 0.3% of its total number of
parameters, thus representing massive savings in terms of storage and training time. This
will be further discussed in Section 4.6.

4.5.0.2 Experiment II: Clifford algebras

This experiment is part of a work entitled "Clifford Convolutional Neural Net-
works for Lymphoblast Image Classification" that has been presented at the International
Conference of Advanced Computational Applications of Geometric Algebra (ICACGA 2022),
held in October 2022.

This work features similar architectures to that of Experiment I. The algebras
used here are only 3, namely the Clifford algebras Cℓ2,0, Cℓ1,1, Cℓ0,2, with a real-valued
model for comparison. The baseline Clifford CNN model (CℓCNN) used in this work is

Chapter 4. Hv-CNN: Hypercomplex-valued Convolutional Neural Network 49

Table 9 – Product of vectors and multivectors in four-dimensional Clifford algebras.
Cℓp2, 0q i j k

i 1 k j
j ´k 1 ´i
k ´j i ´1

Cℓp1, 1q i j k

i 1 k j
j ´k ´1 i
k ´j ´i 1

Cℓp0, 2q i j k

i ´1 k ´j
j ´k ´1 i
k j ´i ´1

composed by a convolutional layer with 4 filters, followed by two consecutive convolutional
layers with 8 filters each and a convolutional layer with 16 filters. All layers use the
split-rectified linear unit (split-ReLU) activation, i.e., the real ReLU applied separately
to each channel of a Clifford number, and filters of size 3 ˆ 3. Each of these layers is
followed immediately by a max pooling layer with 2 ˆ 2 kernels. The output of the final
max pooling layer is then flattened and fed to a real-valued dense layer containing a single
unit whose output is the label, 1 for lymphoblast, 0 otherwise. This defines a total of 3
CℓCNNs, one based on each algebra with multiplication table presented in Table 9.

For comparison, we propose a real-valued network with similar number of
free trainable parameters and, hence, we shall refer to the CℓCNNs defined above as
“equivalent”. Since each hypercomplex-valued channel is roughly equivalent to four real-
valued channels, we take the real-valued architecture with a larger number of filters per
layer. Precisely, the real-valued CNN (Rv-CNN) is composed of the same four convolutional
layers with 3 ˆ 3 filters, each followed by a max pooling operator with 2 ˆ 2 kernel. The
number of filters per layer is 8, 16, 16 and 32, respectively, i.e., twice the number of filters
in the corresponding equivalent hypercomplex-valued layer. The activation function used
is the ReLU. The output of the fourth max pooling operation is then fed to a real-valued
dense layer with a single neuron which outputs the calculated label. Lastly, to illustrate the
vast learning capabilities of the CℓCNNs we take much smaller versions of the equivalent
CℓCNNs and use these to perform the same task. These henceforth called “small” models
use the same architecture of four convolutional layers followed by max pooling layers and
a dense layer with a single neuron for labeling, yet each convolutional layer is taken with
half the number of filters in the equivalent model. This leads to 3 small models with
considerably less parameters than the real-valued and equivalent Clifford models. Thus,
we end up with a total of 9 networks, namely, a real-valued model, 3 equivalent Clifford
models with similar size to that of the real-valued model, and 3 small Clifford networks.
All the architectures include a dropout layer before the dense layer with rate 0.5. This
layer acts on a random behavior of setting inputs of the layer to the value 0 with a 0.5 rate.
This layer helps avoiding overfitting the network to the training examples. Overfitting
causes the network to learn noisy patterns present in the training set, thus making it

Chapter 4. Hv-CNN: Hypercomplex-valued Convolutional Neural Network 50

Table 10 – Sequential architecture outline and the number of trainable parameters.
Rv-CNN CℓCNN (equivalent) CℓCNN (small)

Conv Layer 1 (3,3) filters 8 4 2
Parameters 224 160 80

Max Pooling 2 ˆ 2 - - -

Conv Layer 2 (3,3) filters 16 8 4
Parameters 1,168 1,184 304

Max Pooling 2 ˆ 2 - - -

Conv Layer 3 (3,3) filters 16 8 4
Parameters 2,320 2,336 592

Max Pooling 2 ˆ 2 - - -

Conv Layer 4 (3,3) filters 32 16 8
Parameters 4,640 4,672 1,184

Max Pooling 2 ˆ 2 - - -

Dense Layer Neurons 1 1 1
Parameters 1,153 2,305 1,153

Total 9,505 10,657 3,313

worse at generalizing. Table 10 outlines the architectures and shows a comparison of the
total number of parameters. Despite the architectural similarity, the equivalent and small
networks proposed in this paper have respectively 29% and 9% of the trainable parameters
of the hypercomplex-valued CNNs considered by us in (VIEIRA; VALLE, 2022a). Again,
all models were trained using the ’adam’ optimizer with the BinaryCrossEntropy() loss
function from the Keras.losses library.

The dataset contains 260 images evenly divided between the two classes. We
resize images to 126 ˆ 126 upon loading. Next, we perform 100 experiments with each
of the 7 networks, a total of 700 experiments. We adopted the same 50% train-test split
used in (GENOVESE et al., 2021a) and performed vertical/horizontal flips to augment
the training set. To showcase the proposed model’s ability to learn on scarce datasets, we
prioritized the use of compact (i.e. lower total number of parameters) networks, which
help reduce the risk of overfitting on small training sets, a frequent issue with deep-
learning applications in the medical field due to the inherent data scarcity. The proposed
neural networks were implemented using Tensorflow v2.9 and Keras. We trained for
300 epochs, using the Adam optimizer, with learning rate of 0.001, batch size of 32, and
binary cross-entropy loss function. Performance is gauged using the accuracy in the test
set 1.

Remark 6. We tested the 9 networks on both RGB- and HSV-encoded images and the
results reported here are the best for each network. Namely, the Rv-CNN uses RGB-encoded
images while all CℓCNNs use the HSV-encoded images.
1 The complete code is available at https://github.com/mevalle/Hypercomplex-valued-Convolutional-

Neural-Networks.

Chapter 4. Hv-CNN: Hypercomplex-valued Convolutional Neural Network 51

Re
al

CL
(0

,2
)-s

m
al

l

CL
(1

,1
)-s

m
al

l

CL
(2

,0
)-s

m
al

l

CL
(0

,2
)-e

qu
iv

CL
(1

,1
)-e

qu
iv

CL
(2

,0
)-e

qu
iv

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Figure 11 – Boxplot of test set accuracy performance by model.

Results for the 100 experiments of each model are depicted in Figure 11.
The real-valued model shows a larger range and a wider interquartile range (IQR) when
compared to the Clifford models. Furthermore, the maximum and minimum values attained
by the Rv-CNN are lower than the maximum and minimum for the remaining models
respectively. This clearly indicates that the Clifford models outperformed the Rv-CNN.

When comparing the 6 CℓCNNs we observe that the equivalent models show
smaller IQRs and ranges than the small models. Also, the equivalent models achieve a
superior mean accuracy in the test set than their respective small counterparts. Thus, the
equivalent networks perform better and are statistically more reliably than the respective
small models. Nonetheless, the accuracy showcased by the small models is impressive in
the light of their reduced number of parameters. Precisely, Genovese et al. (GENOVESE
et al., 2021b) attained average accuracy of 97.92% using the same dataset on a ResNet18
architecture combined with histopathological transfer learning, a network with approxi-
mately 11.4M free parameters. The top performing small CℓCNN attained 96.50% accuracy
using only 3, 313 trainable parameters. This amounts to 98.55% of ResNet18’s accuracy
using roughly 0.0029% of the total parameters. Table 11 shows the detailed metrics for all
models, including the accuracy achieved by the ResNet18 combined with histopathological
transfer learning (GENOVESE et al., 2021b).

Finally, Figure 12 presents a Hasse diagram of the seven models used. This
diagram represents a hypothesis test with 95% significance level. Models higher up in
the hierarchy perform better than the ones to which they’re linked and also better than
the ones below those models. As expected, at the top are located the equivalent CℓCNN

Chapter 4. Hv-CNN: Hypercomplex-valued Convolutional Neural Network 52

Table 11 – Average accuracy (%) in train and test sets per model. Bold numbers are used
to indicate the best performing small and equivalent models.

Model Train Set Test Set

Real-valued 99.71 ˘ 0.89 94.60 ˘ 2.76

Cℓp0, 2q-small 99.72 ˘ 1.45 95.55 ˘ 2.30

Cℓp1, 1q-small 99.81 ˘ 0.75 96.05 ˘ 1.88

Cℓp2, 0q-small 99.91 ˘ 0.35 96.40 ˘ 1.92

Cℓp0, 2q-equiv 99.97 ˘ 0.24 96.96 ˘ 1.69

Cℓp1, 1q-equiv 99.92 ˘ 0.52 97.02 ˘ 2.22

Cℓp2, 0q-equiv 99.96 ˘ 0.25 96.94 ˘ 1.54

State of the art model
(GENOVESE et al., 2021b):

Model Test Set

ResNet18 97.92 ˘ 1.62

Figure 12 – Hasse diagram of the nine models present. A solid line linking two models
indicates that the one on top performs better than the one below on a
hypothesis test of 95% significance.

models. The Rv-CNN model is the poorest performer, being at the bottom of the diagram.
The small CℓCNNs lie in the middle, with a special mention to the Cℓp0, 2q (quaternion-
valued) model showcasing the worst performance of the three. Notably, the small CℓCNNs
outperform the Rv-CNN despite having significantly less parameters.

4.6 Concluding Remarks
Convolutional neural networks are among the most common deep learning (DL)

models. As many other DL methods, CNNs usually boast a massive number of parameters.

Chapter 4. Hv-CNN: Hypercomplex-valued Convolutional Neural Network 53

Model TNP Training Time Accuracy (%)
Real-valued CNN 106k 9s (100 epochs) 94.60 ˘ 2.76
Rr`1, ´1s 36.3k 16s (100 epochs) 96.85 ˘ 1.89
Rr´1, `1s 36.3k 16s (100 epochs) 96.68 ˘ 2.21
Real-valued CNN (in Experiment II) 9.5k 30s (300 epochs) 94.60 ˘ 2.76
Cℓp2, 0q-small (in Experiment II) 3.3k 42s (300 epochs) 96.40 ˘ 1.92
Cℓp1, 1q-equiv (in Experiment II) 10.6k 56s (300 epochs) 97.02 ˘ 2.22
ResNet18 (State-of-the-art) 11.4M Not reported * 97.92 ˘ 1.62

Table 12 – Comparison of attained results to the literature. The first three rows are
taken from (VIEIRA; VALLE, 2022a). State-of-the-art model is taken from
(GENOVESE et al., 2021b). Top performing model in each study has results
in bold.
*Training time not reported. This work is based on transfer learning techniques
and large CNNs.

In this chapter we showcased experiments carried out with compact CNNs. The real-valued
models considered by us are small compared to the state-of-the-art model by Genovese
et al. (GENOVESE et al., 2021a) and, on top of that, the Hv-CNNs further reduce the
number of required parameters. This results in an outstandingly compact Hv-CNN model
which is still capable of performing well in the classification task at hand.

As can be seen in Tab. 12, the attained results are not far from the state-
of-the-art performance given in (GENOVESE et al., 2021a). We would like to highlight
that the latter is a network based on a ResNet18 backbone and uses transfer learning,
i.e., the weights are already pre-trained on a histopathological dataset. These thoroughly
trained parameters work as the feature extractors of this state-of-the-art model, upon
which Genovese et al. builds by attaching dense layers to perform the classification. In
sum, it is a massive model that requires a hefty amount of storage space as well as potent
processing hardware such as multiple modern GPUs to be executed. Our top performer,
on the other hand, is an ultra light-weight model that requires negligible storage space
and can be trained from scratch in less than a minute on a single GPU, yet it achieves
99.08% of Genovese’s reported accuracy. Thus, our model is well adapted to being docked
onto portable devices or embedded into a microscope, for example, retaining excellent
performance.

Remark 7. The GPU used in our work is the one provided by the Google Colaboratory
platform. According to Google, the GPUs provided are of two types, NVidia K80 and T4,
with 12 and 16GB of memory as well as 4.1 and 8.1 TFLOPS respectively.

Regarding the comparisons both in (VIEIRA; VALLE, 2022a) and Experiment
II, the hypercomplex-valued models outperform the respective equivalent real-valued
model by a large margin. Not only the HvCNNs showcase higher accuracy while also work
with a notably smaller number of parameters. This is due to each individual parameter

Chapter 4. Hv-CNN: Hypercomplex-valued Convolutional Neural Network 54

appearing multiple times in the convolution operation and the cross-channel information
usage. Concerning training time, as opposed to the 87 times more that was seen in Section
3.5 for the ELM, the HvCNNs take only slightly more than the real-valued counterparts.
This can be explained by the expressive reduction in number of parameters achieved by
hypercomplex convolution. Overall, HvCNNs show a notably higher performance with
only a fraction of the storage space requirement of the real-valued models, while requiring
less than twice as much time to train.

55

5 Dual Quaternion Neural Network for Rigid
Motion Modelling

In the previous chapters we discussed hypercomplex-valued models and frame-
works in a general manner. Nonetheless, applications were restricted to four-dimensional
algebras despite this generality. In this chapter we present a work using models in an
eight-dimensional algebra, namely the dual quaternions D, to predict 3D rigid motions.
This was developed as part of the exchange program I participated in collaboration with
the Sapienza University of Rome, Prof. Danilo Comminiello and Eleonora Grassucci.

5.1 Definition of Dual Quaternions
We recall that a quaternion given by q “ qW ` qXi ` qY j ` qZk efficiently

describes a rotation in 3D space. Formally, qW is called the real part and q “ qXi`qY j`qZk

is referred to as the vector part of q. Hence, a quaternion can be written as q “ qW `q. We
say that q is a pure quaternion if qW “ 0. The conjugate of q “ qW ` q is easily expressed
in this notation as q˚

“ qW ´ q. Moreover, we can write a quaternion in polar form

qθ “ }q}

ˆ

cos
ˆ

θ

2

˙

` sen
ˆ

θ

2

˙

u
˙

, (5.1)

for θ P r0, 2πq and a pure quaternion u “ uXi`uY j`uZk, where }q} “
a

q2
W ` q2

X ` q2
Y ` q2

Z

is the absolute value of q. Finally, the rotation of a 3D vector ppX , pY , pZq by an angle θ

around the axis determined by puX , uY , uZq can be efficiently determined by

prot “ qpq˚, (5.2)

where p “ pXi ` pY j ` pZk and u “ uXi ` uY j ` uZk are pure quaternions encoding the
position and axis vectors, and q is the quaternion given by (5.1). Moreover, if q is not a
unitary quaternion prot will also be scaled by a factor of }q}

2. Therefore, it is common to
normalize q simply as q Ð

q

}q}
. Note that the representation in (5.1) is unique due to the

domain of θ, and thus a quaternion uniquely defines a rotation-dilation and vice-versa.
We highlight that this is equivalent to what was presented in (2.13) in Chapter 2.

Dual numbers are a hypercomplex algebra of dimension 2 over R. A dual
number has the form pa “ a0 ` εaε, a0, aε P R, where ε is called the dual unit and ε2

“ 0.
Due to this, the product obeys pa0 ` εaεqpb0 ` εbεq “ a0b0 ` εpa0bε ` aεb0q, and thus the
dual numbers are a degenerate algebra since the product of two non-zero elements may be
null, e.g. pεaεqpεbεq “ 0 with aε, bε ‰ 0.

Chapter 5. Dual Quaternion Neural Network for Rigid Motion Modelling 56

D 1 i j k ε εi εj εk
1 1 i j k ε εi εj εk
i i ´1 k ´j εi ´ε εk ´εj
j j ´k ´1 i εj ´εk ´ε εi
k k j ´i ´1 εk εj ´εi ´ε
ε ε εi εj εk 0 0 0 0
εi εi ´ε εk ´εj 0 0 0 0
εj εj ´εk ´ε εi 0 0 0 0
εk εk εj ´εi ´ε 0 0 0 0

Table 13 – Multiplication table of the dual quaternions.

The so called dual quaternions D can then be simply defined as quaternions
in which each component is a dual number, pq “ pqW ` pqXi ` pqY j ` pqZk. In this case the
dual unit obeys ε2

“ 0 and additionally ε commutes with the quaternion hyperimaginary
units i, j, k. Thus this is an eight-dimensional algebra over R. We note that D can be
defined equivalently as dual numbers in which each part is a quaternion, i.e., pq “ pq0 `εqεq,
q0, qε P H. The multiplication table of this algebra is shown in Table 13.

We represent dual quaternions as bold-face letters with a hat pq, while dual
numbers will be regular letters with hat pq.

5.2 Translation-Equivariant Rigid Motion Representation by Dual
Quaternions

It can be seen from the multiple null entries in the multiplication Tab. 13 that
the dual quaternions are a degenerate algebra. Nonetheless, this algebra has interesting
properties regarding modelling rigid motions, i.e., movements that do not incur in a
deformation of the body. Any rigid motion in 3D space can be reduced to a rotation-
translation with respect to a screw axis ÝÑ

h . Using a proper dual quaternion representation,
we can characterize a full rigid motion as a unique entity and leverage algebra properties
to build a more robust model.

Let us take a unit dual quaternion pq “ pqW ` pqXi ` pqY j ` pqZk. In a direct
manner, the real part of pq is decomposed as pθ “ arccos ppqW q “

θ

2 `ε
s

2 for θ P r0, 2πq, where
θ

2 is the rotation angle around the screw axis ÝÑ
h and s

2 is the translation distance along
that axis. The imaginary part of pq, on the other hand, contains information regarding the
direction of ÝÑ

h , which consists of a vector through the origin ÝÑu translated by a vector ÝÑ
d

(PENNESTRÌ; VALENTINI, 2010). Formally, we have

pq “ pqW ` pqXi ` pqY j ` pqZk

Chapter 5. Dual Quaternion Neural Network for Rigid Motion Modelling 57

where

pqW “ cos θ

2 ´
ε

2
ÝÑu ¨

ÝÑ
d senθ

2

pqX “ uxsenθ

2 `
ε

2

„

dx cos θ

2 ´ senθ

2puydz ´ uzdyq

ȷ

pqY “ uysenθ

2 `
ε

2

„

dy cos θ

2 ´ senθ

2puzdx ´ uxdzq

ȷ

pqZ “ uzsenθ

2 `
ε

2

„

dz cos θ

2 ´ senθ

2puxdy ´ uydxq

ȷ

(5.3)

where u “ uxi ` uyj ` uzk and d “ dxi ` dyj ` dzk are purely imaginary quaternions and
¨ on the first equation indicates the dot product, ÝÑu ¨

ÝÑ
d “ uxdx ` uydy ` uzdz.

Equation (5.3) highlights an interesting property: the dual part is responsible for
the translation of the rigid motion. Indeed, if there is no translation the vector representing
the translation of the screw axis is ÝÑ

d “ 0i ` 0j ` 0k. By setting dx “ dy “ dz “ 0 in the
above equations we find that the dual part becomes null, and the resulting equation is
equivalent to (5.1). This is a straightforward fact: a rigid motion with no translation is
simply a rotation around an axis that contains the origin, a motion fully described by a
quaternion.

On the other hand, if we take a rigid motion without rotation, i.e., θ “ 0 then
(5.3) yields

pqt “ 1 `
ε

2
ÝÑ
d . (5.4)

This further reinforces that the dual part is responsible for the translation and shows that
the imaginary part of the non-dual part is associated to the rotation operation.

This elegant formulation puts in evidence the role played by the dual part and
formally shows why dual quaternions can encapsulate both operations while quaternions are
restricted to representing rotations. Precisely, we note that the rotation qθ and translation
pqt operations in (5.1) and (5.4) combine naturally into the full rigid motion by means of
the Hamilton product

pq “ pqtqθ. (5.5)

Once again, if one is working with unit quaternions for rotations then q˚
θ “ q´1

θ and the
translation can be extracted from the rigid motion simply by calculating pqt “ pqq˚

θ . In
other words, a unit quaternion rotation qθ is enriched to a full rigid motion pq simply by
multiplication by a dual quaternion pqt responsible for the translation.

Lastly, a unit dual quaternion pq can be written as

pq “ cos
˜

pθ

2

¸

` phsen
˜

pθ

2

¸

, (5.6)

where ph is a unit dual quaternion with zero scalar part. Note that this equation is similar
to the quaternion polar form (5.1), except that pθ “ θ0 ` εθε is a dual number and

Chapter 5. Dual Quaternion Neural Network for Rigid Motion Modelling 58

ph “ h0 ` εhε is a dual quaternion. Indeed, this representation yields the screw motion
parameters directly: θ0{2 is the rotation angle around the axis defined by h0 and θε{2 is
the translation along that same axis. hε is the so-called moment of the axis and provides
an unambiguous representation of the axis in space. It is defined as hε “ ÝÑp ˆ h0, where
ÝÑp is a vector from the origin pointing to any point of the axis h0. We note that any
choice of vector yields the same moment, since pÝÑp ` αh0q ˆ h0 “ ÝÑp ˆ h0 “ hε, @α P R.
This illustrates one very desirable property: dual quaternions express rigid motions based
on an unambiguous representation of the screw axis (KAVAN et al., 2006). Thus, dual
quaternion rigid motions are independent of the coordinate system, hence being translation-
equivariant, as opposed to quaternions whose rotations around axes containing the origin
are deformed by translations.

5.3 Applications
The previous section ties dual quaternions to rigid motions. However, these

concepts are presented in an abstract manner and evidenced formally but the translation
of such aspects to practice is not straightforward. With the aim of clarifying this usage,
the following subsections present two experiments featuring dual quaternion-valued models
and 3D rigid motions: one exploring the translation equivariance in the Lorenz system
and one showcasing an application to human pose forecasting on a real-world dataset.

The following sections compare the performance of a real-valued model, a
quaternion-valued model and a dual-quaternion-valued model. As a disclaimer, the adapta-
tion of the base real-valued models to hypercomplex values consists of a simple substitution
of real-valued products and sums for the equivalent operations in the respective algebras,
following Table 1 for the quaternions and Table 13 for the dual quaternions.

5.3.0.1 Experiment I: Lorenz System and Translational Equivariance

The Lorenz system is an ordinary differential equations (ODE) system that
describes the movement of a free particle in atmospheric domain effects. This movement is
characterized by rigid motions since the particle is under effects of translation at all times
with its direction constantly rotating. The equations system is

$

’

’

’

’

’

&

’

’

’

’

’

%

dx

dt
“ σpy ´ xq

dy

dt
“ xpρ ´ zq ´ y

dz

dt
“ xy ´ βz

(5.7)

where σ, β, ρ are constants. This system exhibits chaotic behavior for certain values of
these constants such as σ “ 10, β “ 8{3, ρ “ 28, meaning that a slight deviation in the

Chapter 5. Dual Quaternion Neural Network for Rigid Motion Modelling 59

initial position results in a large deviation in the particle trajectory. Using these constant
values we generate a time series of 10k consecutive positions, 10% of which are used for
training, and the remaining 90% are used for testing. By strongly limiting the size of the
training set we ensure that the performance of the network is more closely related to how
well it learns the rigid motions rather than overfitting.

We employ single-hidden-layer MLPs with ReLU activation in the hidden
layer and identity in the output layer in this example. The MLP neuron units simply
perform a linear combination of inputs by the respective weights, followed by the activation
function. The quaternion- and dual quaternion-valued MLP neurons perform the same
operation, except the product follows the Hamilton rules and uses the commutativity of
ε when needed; the activation function is applied entry-wise to each real component of
the hypercomplex number. The networks were trained for a one-step-ahead prediction
task using a 2-step sliding window, i.e., they received as inputs two consecutive positions
and the desired output is the immediate third one. The inputs and outputs for the real-,
quaternion-, and dual quaternion-valued models are formatted as follows:

• Real-Valued Model: 6 input values containing the 2 positions as pxt´1, yt´1, zt´1,

xt, yt, ztq, 3 output values as pxt`1, yt`1, zt`1q.

• Quaternion-Valued Model: 2 quaternion inputs, one for each position, as p0 `

xt´1i`yt´1j `zt´1k, 0`xti`ytj `ztkq, 1 output quaternion as p0`xt`1i`yt`1j `

zt`1kq.

• Dual Quaternion-Valued Model: 1 dual quaternion input containing the 2
positions as p0 ` xt´1i ` yt´1j ` zt´1kq ` εp0 ` xti ` ytj ` ztkq, one dual quaternion
output p0 ` xt`1i ` yt`1j ` zt`1kq ` εp0 ` 0i ` 0j ` 0kq.

After training, the networks are tested twofold: first on the original test set and then
on a translated test set, obtained by generating a (single) random translation vector
and applying it to each point of the test set. Figure 13 shows these results. From visual
inspection of the left column it is clear the dual quaternion model outputs a trajectory
extremely close to the actual one (Fig. 13(c)), whereas real and quaternion models show
clear flaws, especially on the lower left and upper right corners (Fig. 13 (a)(b)). Moreover,
on the translated test set (on the second column) these two models slightly distort the
shape and fail to translate the trajectory (Fig. 13 (d)(e)), while the dual quaternion model
barely suffers any performance loss (Fig. 13 (f)). These visual observations are confirmed
by the mean squared error (MSE) comparison present in Tab. 14. This showcases how
dual quaternions are robust to translation transformations, and provides strong evidence
that the model indeed learns the rigid motions of the system rather than a local behavior.
The possibility to train a network on a dataset and achieve the same performance on

Chapter 5. Dual Quaternion Neural Network for Rigid Motion Modelling 60

Table 14 – Mean squared error (MSE) for the Lorenz system prediction task with the
original and the translated test set.

Model Number of parameters Test MSE
Original Translated

Real-valued 1283 0.439 5.551
Quaternion-valued 1284 0.872 11.914
Dual Quaternion-valued 972 0.119 0.183

translated objects is invaluable and is a direct consequence of the translation equivariance
of the underlying algebra.

5.3.0.2 Experiment II: Human Pose Forecasting

We carry out a validation inspection on human pose forecasting (HPF) using
the 3D Poses in the Wild (3DPW) dataset. This experiment aims at predicting short-term
immediate future poses for human bodies based on joint information. The 3DPW dataset
contains over 51k registered frames from 60 short videos portraying humans performing
basic activities such as hugging, arguing, playing basketball, and dancing, among others.
Data is provided in 2 forms: RGB images and structured data. We focus on the latter,
which comprises the 3D coordinates of the center of mass and of 13 key joints of individuals.
This application is very modern and extremely important for self driving cars, elderly
assistance systems, security surveillance, among others. However, it remains extremely
daunting for most models, since it involves dealing with high dimensional data such as
images and video as well as very noisy data due to the key points of the skeleton being
mostly inferred.

We adapt the CoRPoF model in this experiment (PARSAEIFARD et al., 2021).
The proposed Dual Quaternion CoRPoF comprises a single-layer DQLSTM encoder with
a hidden dimension of 64, and two dual quaternion fully connected (DQFC) layers with
latent dimension 32 to encode the mean and the variance statistics of the latent vector.
The decoder is composed of two DQLSTM layers with the same hidden dimension with
final DQFC layers to output the predicted pose. The model is trained for 1000 epochs by
the Adam optimizer with a learning rate 0.01 and an adaptive scheduler, as suggested
in (PARSAEIFARD et al., 2021). It is worth mentioning that due to the properties of
the Hamilton product, the quaternion and dual quaternion model reduces the number of
parameters of the network with respect to the real-valued baseline CoRPoF by 75% and
88%, respectively.

To assess the performance of our model and to be consistent with the previous
literature, we compute the visibility ignored metric (VIM), which is the mean Euclidean
distance between the predicted joints and the points in the ground truth, and the final
displacement error (FDE), which is instead an L2 distance. Table 15 shows the objective

Chapter 5. Dual Quaternion Neural Network for Rigid Motion Modelling 61

R
ea

l

X Axis

15 10 5 0 5 10 15 20

Y Axis

20
10

0
10

20

Z
Ax

is

10
15
20
25
30
35
40
45

Ñ

X Axis

10 5 0 5 10 15 20 25

Y Axis

30
20

10
0

10
20

Z
Ax

is

0
5
10
15
20
25
30
35

(a) (d)

Q
ua

te
rn

io
n

X Axis

20 15 10 5 0 5 10 15 20

Y Axis

20
10

0
10

20

Z
Ax

is

10
15
20
25
30
35
40
45

Ñ

X Axis

15 10 5 0 5 10 15 20 25

Y Axis

30
20

10
0

10
20

Z
Ax

is

0
5
10
15
20
25
30
35
40

(b) (e)

D
ua

lQ
ua

te
rn

io
n

X Axis

15 10 5 0 5 10 15 20

Y Axis

20
10

0
10

20

Z
Ax

is

10
15
20
25
30
35
40
45

Ñ

X Axis

10 5 0 5 10 15 20 25

Y Axis

30
20

10
0

10
20

Z
Ax

is

0
5
10
15
20
25
30
35

(c) (f)

Figure 13 – Predicted trajectories in red, expected in blue. Rows contain real-, quaternion-
and dual quaternion-valued outputs, respectively. First column shows the
original test set output, while second column has the translated test set
output. When translating the test set, the dual quaternion model barely shows
any loss in performance, as opposed to the other two models failing to properly
model the system.

Chapter 5. Dual Quaternion Neural Network for Rigid Motion Modelling 62

D
ua

l Q
ua

te
rn

io
n

C
oR

Po
F

Q
ua

te
rn

io
n

C
oR

Po
F

C
oR

Po
F

G
ro

un
d

Tr
ut

h

t = 1 t = 8 t = 14

Figure 14 – Estimated poses at different time steps. The dual quaternion CoRPoF well
models the trajectory of the skeletons, while the real- and quaternion-valued
networks fail to properly learn such translations.

metrics evaluation and the improvement that our dual quaternion formulation brings for
this task, proving the effectiveness of higher-dimensional representations for movements
in the 3D space. We run the training multiple times and we report average scores and
standard deviations over the runs. The comparisons with SC-MPF, Nearest Neighbours,
and Zero velocity are performed with the scores reported in their papers, as their code is

Chapter 5. Dual Quaternion Neural Network for Rigid Motion Modelling 63

Table 15 – Results for 3D human pose estimation on the 3DPW dataset. VIM scores are in
centimeters, as suggested in (PARSAEIFARD et al., 2021). SC-MPF is taken
from (ADELI et al., 2020), Nearest Neighbour is taken from (ZHANG et al.,
2019), Zero Velocity is taken from (MARTINEZ; BLACK; ROMERO, 2017),
and both DeRPoF and CoRPoF are taken from (PARSAEIFARD et al., 2021).

Model VIMÓ FDEÓ Val LossÓ

SC-MPF 46.28 - -
Nearest Neighbour 27.34 - -
Zero Velocity 29.35 - -
DeRPoF 19.07 ˘ .005 0.360 ˘ .007 -
CoRPoF 16.76 ˘ .003 0.317 ˘ .001 0.118 ˘ .004
Quaternion CoRPoF 16.35 ˘ .009 0.271 ˘ .002 0.105 ˘ .010
Dual Quaternion CoRPoF 15.23 ˘ .002 0.266 ˘ .001 0.103 ˘ .006

not available. Additionally, Figure 14 displays a ground truth sample and the corresponding
predicted skeletons by the Dual Quaternion CoRPoF and its quaternion- and real-valued
counterparts. It is evident that, although CoRPoF in the real domain tries to model local
poses, it completely fails to learn the right movement trajectory with the skeletons stuck
in the same coordinates, as is the case of the quaternion model too. On the contrary, our
dual quaternion approach well learns the correct trajectory of both skeletons, proving the
ability of the proposed dual representation to model translations in 3D space.

5.4 Concluding Remarks
This work is particularly intended to showcase the application of dual quater-

nion’s translation equivariance. This property is invaluable for most applications that
can take advantage of it, as is the case of very modern applications such as Human
Pose Forecasting. This challenging task has proved to be very daunting to even the most
well-established models in the literature. Thus we also intend this work to open new paths
of investigation in an effort to satisfactorily solve this problem.

As highlighted in Experiment I, the Lorenz system, the MLP based on dual
quaternions virtually performs the same regardless of the test set used. In other words, the
model was trained on a given data set but it captures the time series nature in an essential
level, beyond the particular coordinate system in which the time series is described. In
practice, this goes to show that, without retraining or any kind of specialist intervention,
the dual quaternion model is not affected by translation of the origin as it instead learns
the pattern regardlessly. The same cannot be said about the real- and quaternion-valued
models. Even for a simple task as the Lorenz system one-step-ahead prediction these
models are exceedingly thrown off by any relevant translation. Indeed, Figure 13 shows
that the original test set, a simple continuation of the time series used in training, already
proves a bit of a challenge to these models and the translated test set yields downright

Chapter 5. Dual Quaternion Neural Network for Rigid Motion Modelling 64

bad results. This is confirmed by the egregious raise in the MSE when passing from one
test set to another, as seen in Table 14.

In Experiment II, an encoder-decoder model of the literature (CoRPof (PARSAEI-
FARD et al., 2021)) was modified in order to encapsulate quaternion and dual quaternion
operations. As seen in Figure 14 the CoRPoF fails to completely model the movement of
the skeletons in the immediate future, showcasing a basic limb movement understanding
but entirely lacking the translation of the bodies. The Quaternion CoRPoF is not any
better in this task, providing a mix of slight joint movement with small translation of
the bodies, while not modelling notably well either of them. Lastly, the Dual Quaternion
CoRPoF shows barely noticeably better results. The skeletons perform the translation
almost to perfection but they are stiff, with little limb and joint movement. In a quantita-
tive evaluation shown in Table 15 this model outperforms the real- and quaternion-valued
CoRPoFs by a slim margin. This experiment represents but an initial step in the direction
of applying dual quaternions to state-of-the-art models as means of improving translation
modelling. As mentioned before, however, this problem is still very challenging, but our
work intends to show that the translation equivariance of dual quaternions may prove
invaluable for it, as well as the ease of adaptability of this algebra to modelling translations
in general.

65

6 Conclusions

The core of this PhD study was to explore the usage of hypercomplex algebras
in ANN models. Broadly speaking, this ranged from implementing entire frameworks for
models in general hypercomplex algebras to simply replacing operations in state-of-the-
art models by their respective hypercomplex counterparts. The main advantage of this
stems from the ability to compactly represent many channels of information regarding
the same object in a single entity, and processing these channels at once compactly.
Therefore, all carried out applications and experiments contain data with multiple channels
of information, such as images, videos, and positions in 3D space.

The first notable point of this work is the generalization of the concept of
hypercomplex algebras in the context of ANNs. Indeed, a simple search on Scopus by
combining the terms "neural network" and the name of notable hypercomplex algebras of
the literature returns the values reported in Table 16. It is clear that the overwhelming
majority of publications in this area focuses on complex- or quaternion-valued ANNs.
This disregards an enormous family of algebras with huge potential, as explored in our
works in the form of (VIEIRA; VALLE, 2020; VIEIRA; VALLE, 2022b). In fact, in all of
the experiments showcased in this thesis, with exception of the one on Section 3.3, the
quaternions were outperformed by at least one unusual hypercomplex algebra. Recognizing
the potential of these alternatives and implementing general models are a main contribution
of our previously mentioned works. By expressing an algebra through its multiplication
table and including these tables as modular pieces of a model we are able to explore a
broad family of algebras at once with ease.

Some recent works interpret the multiplication table with more freedom regard-

Table 16 – Number of publications on Scopus featuring the respective terms. Date: Febru-
ary 2022.

Search Terms # of publications

“neural network”

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

“complex number” OR “complex valued” 1.855
“quaternion” 704

“Clifford" 121
“hypercomplex” 80

“octonion” 22
“hyperbolic number” OR “hyperbolic valued” 18

“Bicomplex” 8
“Cayley-Dickson” 5

“tessarines” 1
“coquaternion” 1

“Klein four-group” 1

Chapter 6. Conclusions 66

ing the values. In our approaches here described there are some unwritten rules that are
consequence of fundamental assumptions that we make, such as for example the closure
of an algebra. In all the algebras presented here the product of hyperimaginary units
µij “ pµijq0 ` pµijq1i ` pµijq2j ` pµijq3k satisfies pµijqm “ ˘1 for some m P t0, 1, 2, 3u

and pµijqn “ 0 for n ‰ m. In other words, one of the components of each element µij

is a signed unit while the rest is null, hence the product of two basis elements of the
hypercomplex algebra always yields a third one with potential minus sign. In the recent
work by Grassucci et al. (GRASSUCCI; ZHANG; COMMINIELLO, 2022) the algebras
can be of arbitrary integer dimension and the product of units needs not follow this rule,
thus pµijqm P R, @m P t0, 1, 2, 3u. In that work the authors argue that the multiplication
table can itself be trained. However, there are still important questions regarding that
concept and any implications the training of the multiplication table has on the algebra.

Another core point of this PhD study is the development of the emulation
techniques. Indeed, by constructing isomorphisms we formalized in detailed manner how
to carry out multiplication and convolution operations in any hypercomplex algebra using
real-valued linear algebra. This allows for the implementation of Hv-ANNs with ease using
top tier libraries and tools. These advanced tools provide much faster processing and
avoid the hassle of having to implement custom-made tools such as pooling layers and
optimizers to the hypercomplex case. This was an important step to avoid spending too
much time in implementing well-known functions, makes it easier to integrate our work
with the majority of available models and allows us to better converse with researchers of
the field.

A main aspect of hypercomplex-valued ANNs is data encoding. In essence,
the main strength of this type of model lies in representing all information regarding the
same object compactly. For example, a real-valued network processes a 3 ˆ 3 window of
RGB pixels of an image as 27 different values treated equally, disregarding the primal
connection between the R, G and B channels of a same pixel among themselves. As in the
experiments presented above, hypercomplex-valued ANNs process all channels of a same
pixel as one entity. Moreover, the data itself can be encoded in a multitude of ways, as
exposed in Chapter 4 with the RGB vs HSV encoded images. These objects both carry
the same information but the encoding used to represent this information plays a key, yet
not fully understood, role in the performance of models. Indeed, conversion of images from
one color space to another affected models in different ways and many of the Hv-CNNs
experienced significant raise in performance while the real-valued model suffered a notable
loss. Color encoding spaces are numerous and yet are barely explored in ANN-related
works; instead many of these works explore non-trivial contrivances that often result in
marginal increase in performance. Furthermore, different data encodings are fairly easy to
test and are ultimately similar to the effect of a hidden layer. Indeed, a hidden layer with
the correct weights and activation function can operate the change from RGB to HSV

Chapter 6. Conclusions 67

encodings, yet the increase seen due to the conversion of the images is far more expressive
than the inclusion of a simple hidden layer before the model itself. Every type of data has
multiple possible representations and exploring alternative candidates is a good practice.

One key question that underlies all the research done in this PhD program
is: "How are the algebra properties or lack thereof connected to the performance of
models based on it?". This is not a straightforward question with a simple answer. The
expected answer is that an algebra with more desirable properties yields better results.
This can be backed up by the experiment in Section 3.4 in which the MacFarlane’s
hyperbolic quaternions are the only hypercomplex algebra to be outperformed by the
baseline real model. This algebra lacks two core properties: associativity and commutativity.
Additionally, we have shown that degeneracy of the product of the algebra leads to absence
of the universal approximation capability of MLPs (VITAL; VIEIRA; VALLE, 2022), or
in other words, MLPs based on degenerate algebras lack the universal approximation
property, initially proposed by Cybenko and a cornerstone of ensuing results in machine
learning (CYBENKO, 1989). Nonetheless, we see on the same experiment of Section 3.4
that two Cayley-Dickson algebras (Rr´1, `1s and Rr`1, ´1s) lacking commutativity are
top performers, notably above two commutative algebras (T and K4) and also above two
other Cayley-Dickson algebras, which possess the same set of properties. The same can be
seen in Experiment I of Chapter 4, where the top performer is again non-commutative.
Lastly, Chapter 5 shows an experiment in which a degenerate algebra, namely the dual
quaternions, outperforms both real- and quaternion-valued models by a decent margin.
Moreover, there appears to be significant contribution of the translation equivariance
property, which is not easily identifiable nor a standard mathematical property. This all
shows that there is much depth to the question than simply expecting the most "robust"
algebra with most desirable properties to yield better results.

On a final note, there is much to be said and weighted about the trade-offs
of using hypercomplex-valued models in place of real-valued ones. As we strived to show
during this program, there is a general trend of hypercomplex-valued models being able
to "learn more" on fewer parameters and deliver better results in overall performance at
the expense of complexity in the operations. Hypercomplex-valued pseudoinversion in the
case of the ELMs and convolution in the case of CNNs are notably slower than operating
the same computations in real-valued algebra. Even with the emulation techniques and
the top tier libraries there is still a decent gap time-wise between these models and their
real-valued baselines. Notwithstanding, this can be mitigated. For example, ELMs are
known to be lightweight models with very little computational cost, and once the training
is done the prediction step is extremely cheap. On the other hand, CNNs usually require a
massive number of trainable parameters to extract desired features of the training data but
the drastic reduction in total number of parameters operated by the Hv-CNNs can balance
that out by learning the complex features in fewer parameters due to parameter reusing

Chapter 6. Conclusions 68

and cross-channel information processing. At the end of the day, hypercomplex-valued
models pose a trade-off involving performance, storage, and time-cost, and by clever choices
of models, data encodings and architecture in general one can work this trade-off in their
advantage, taking slightly more time on training in exchange for a final model with low
storage requirements and similar-or-better performance, for example.

This PhD study played an important part in broadening my research horizons
as well as strengthening my comprehension of concepts regarding multi-channel data,
hypercomplex algebras, neural network models and more. A few collaborations were
initiated, especially with the research group in La Sapienza University of Rome due to the
exchange program that had me spend 2 months there. In addition, through my advisor
Marcos Valle and the Mathematical Imaging Laboratory (MiLab - UNICAMP) there
is great potential in collaborations with renown researchers in the field such as Danilo
Mandic (Imperial College London, UK), Igor Aizenberg (Manhattan College, USA), Akira
Hirose (University of Tokyo, Japan), Ramamurthy Garimella (Mahindra University, India),
Danilo Comminiello (Sapienza University of Rome, Italy) as well as with organizations
such as University of Warmia and Mazury in Olsztyn (Poland) and Universidad de Jaén
(Spain). As this thesis strived to show, many avenues of research are clearer now and
many promising more await thorough investigation. I look forward for the perspective of
contributing with these investigations.

69

Bibliography

ADELI, V.; ADELI, E.; REID, I. D.; NIEBLES, J. C.; REZATOFIGHI, H. Socially and
contextually aware human motion and pose forecasting. IEEE Robotics and Automation
Letters, v. 5, p. 6033–6040, 2020. Citado na página 63.

AIZENBERG, I. N. Complex-Valued Neural Networks with Multi-Valued Neurons. [S.l.]:
Springer, 2011. v. 353. (Studies in Computational Intelligence, v. 353). Citado na página
11.

ALBERT, A. A. Quadratic Forms Permitting Composition. Annals of Mathematics,
Annals of Mathematics, v. 43, n. 1, p. 161–177, 1942. Citado na página 17.

ALFSMANN, D. On families of 2 N-dimensional hypercomplex algebras suitable for
digital signal processing. In: IEEE. 2006 14th European Signal Processing Conference.
[S.l.], 2006. p. 1–4. Citado na página 19.

BROWN, R. B. On generalized Cayley-Dickson algebras. Pacific Journal of Mathematics,
Pacific Journal of Mathematics, v. 20, n. 3, p. 415–422, 1967. ISSN 0030-8730. Disponível
em: https://projecteuclid.org/euclid.pjm/1102992693. Citado na página 43.

BUCHHOLZ, S.; SOMMER, G. Hyperbolic Multilayer Perceptron. In: Proceedings of the
International Joint Conference on Neural Networks. [S.l.: s.n.], 2000. v. 2, p. 129–133.
Citado na página 11.

CASTRO, F. Z. de; VALLE, M. E. A broad class of discrete-time hypercomplex-valued
Hopfield neural networks. Neural Networks, v. 122, p. 54–67, 2020. Citado na página 14.

CATONI, F.; CANNATA, R.; NICHELATTI, E.; ZAMPETTI, P. Commutative
hypercomplex numbers and functions of hypercomplex variable: a matrix study. Advances
in Applied Clifford Algebras, v. 15, n. 2, p. 183–212, 2005. Citado na página 15.

CHISHOLM, J. S. R.; FARWELL, R. S. Properties of Clifford algebras for fundamental
particles. In: Clifford (Geometric) Algebras. [S.l.]: Springer, 1996. p. 365–388. Citado na
página 19.

CRAVEN, D. A.; EATON, C. W.; KESSAR, R.; LINCKELMANN, M. The structure of
blocks with a Klein four defect group. Mathematische Zeitschrift, Springer, v. 268, n. 1-2,
p. 441–476, 2011. Citado na página 19.

CRUMEYROLLE, A. Orthogonal and Symplectic Clifford Algebras: Spinor Structures.
[S.l.]: Springer Science & Business Media, 2013. v. 57. Citado na página 19.

CULBERT, C. Cayley-Dickson algebras and loops. J. Gen. Lie Theory Appl, v. 1, n. 1, p.
1–17, 2007. Citado na página 17.

CYBENKO, G. Approximation by superposition of sigmoidal functions. Mathematics of
Control, Signals and Systems, v. 2, n. 4, p. 303–314, 1989. Citado na página 67.

https://projecteuclid.org/euclid.pjm/1102992693

Bibliography 70

DATAR, M.; GIONIS, A.; INDYK, P.; MOTWANI, R. Maintaining stream statistics
over sliding windows. SIAM Journal on Computing, Society for Industrial and Applied
Mathematics, v. 31, n. 6, p. 1794–1813, 9 2002. ISSN 00975397. Citado na página 26.

DEMIR, S.; TANIŞLI, M.; CANDEMIR, N. Hyperbolic quaternion formulation of
electromagnetism. Advances in Applied Clifford Algebras, Springer, v. 20, n. 3, p. 547–563,
2010. Citado na página 19.

FENG, X.; ZHANG, Z. The rank of a random matrix. Applied mathematics and
computation, Elsevier, v. 185, n. 1, p. 689–694, 2007. Citado na página 25.

GARIMELLA, R. M.; VALLE, M. E.; VIEIRA, G.; RAYALA, A.; MUNUGOTI, D.
Vector-valued hopfield neural networks and distributed synapse based convolutional and
linear time-variant associative memories. Neural Processing Letters, Springer, p. 1–20,
2022. Citado na página 13.

GAUDET, C.; MAIDA, A. Deep Quaternion Networks. arXiv, arXiv, 12 2017. Disponível
em: http://arxiv.org/abs/1712.04604. Citado 2 vezes nas páginas 37 and 38.

GENOVESE, A.; HOSSEINI, M. S.; PIURI, V.; PLATANIOTIS, K. N.; SCOTTI, F.
Acute lymphoblastic leukemia detection based on adaptive unsharpening and deep
learning. ICASSP, IEEE International Conference on Acoustics, Speech and Signal
Processing - Proceedings, Institute of Electrical and Electronics Engineers Inc., v.
2021-June, p. 1205–1209, 2021. ISSN 15206149. Citado 2 vezes nas páginas 50 and 53.

. Histopathological transfer learning for acute lymphoblastic leukemia detection.
CIVEMSA 2021 - IEEE International Conference on Computational Intelligence and
Virtual Environments for Measurement Systems and Applications, Proceedings, Institute of
Electrical and Electronics Engineers Inc., 6 2021. Citado 4 vezes nas páginas 48, 51, 52,
and 53.

GÉRON, A. Hands-on Machine Learning with Scikit-Learn and TensorFlow: Concepts,
Tools, and Techniques to Build Intelligent Systems. [S.l.]: O’Reilly Media, Incorporated,
2017. ISBN 9781491962299. Citado na página 30.

GOLUB, G. H. Numerical methods for solving linear least squares problems. 2007. Citado
3 vezes nas páginas 23, 24, and 25.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.l.]: MIT Press,
2016. Citado na página 36.

GRANERO, M. A.; HERNÁNDEZ, C. X.; VALLE, M. E. Quaternion-valued convolutional
neural network applied for acute lymphoblastic leukemia diagnosis. In: BRITTO, A.;
DELGADO, K. V. (Ed.). Intelligent Systems. Cham: Springer International Publishing,
2021. p. 280–293. Citado na página 45.

GRASSUCCI, E.; ZHANG, A.; COMMINIELLO, D. Phnns: Lightweight neural networks
via parameterized hypercomplex convolutions. IEEE Transactions on Neural Networks
and Learning Systems, IEEE, 2022. Citado na página 66.

HAYKIN, S.; LI, L. Nonlinear adaptive prediction of nonstationary signals. IEEE
Transactions on signal processing, IEEE, v. 43, n. 2, p. 526–535, 1995. Citado na página
27.

http://arxiv.org/abs/1712.04604

Bibliography 71

HAYKIN, S. S.; HAYKIN, S. S.; HAYKIN, S. S.; HAYKIN, S. S. Neural networks and
learning machines. [S.l.]: Pearson Upper Saddle River, NJ, USA:, 2009. v. 3. Citado na
página 24.

HESTENES, D.; SOBCZYK, G. Clifford algebra to geometric calculus: a unified language
for mathematics and physics. [S.l.]: Springer Science & Business Media, 2012. v. 5. Citado
na página 19.

HIROSE, A. Complex-Valued Neural Networks. 2nd editio. ed. Heidelberg, Germany:
Springer, 2012. (Studies in Computational Intelligence). Citado na página 11.

HUANG, G.-B.; ZHU, Q.-Y.; SIEW, C.-K.; others. Extreme learning machine: a new
learning scheme of feedforward neural networks. Neural networks, v. 2, p. 985–990, 2004.
Citado na página 23.

HUANG, J.-S.; YU, J. Klein four-subgroups of Lie algebra automorphisms. Pacific
Journal of Mathematics, Mathematical Sciences Publishers, v. 262, n. 2, p. 397–420, 2013.
Citado na página 19.

HUSMEIER, D.; HUSMEIER, D. Random vector functional link (rvfl) networks. Neural
Networks for Conditional Probability Estimation: Forecasting Beyond Point Predictions,
Springer, p. 87–97, 1999. Citado na página 23.

KANTOR, I. L.; SOLODOVNIKOV, A. S. Hypercomplex Numbers: An Elementary
Introduction to Algebras. [S.l.]: Springer New York, 1989. Citado na página 14.

KAVAN, L.; COLLINS, S.; O’SULLIVAN, C.; ZARA, J. Dual quaternions for rigid
transformation blending. Trinity College Dublin, Tech. Rep., v. 46, 2006. Citado na
página 58.

KOBAYASHI, M. Hopfield neural networks using Klein four-group. Neurocomputing,
Elsevier B.V., v. 387, p. 123–128, 4 2020. ISSN 18728286. Citado na página 19.

LABATI, R. D.; PIURI, V.; SCOTTI, F. All-idb: The acute lymphoblastic leukemia
image database for image processing. In: IEEE. 2011 18th IEEE international conference
on image processing. [S.l.], 2011. p. 2045–2048. Citado na página 41.

LABUNETS, V. Clifford algebras as unified language for image processing and pattern
recognition. In: Computational Noncommutative Algebra and Applications. [S.l.]: Springer,
2004. p. 197–225. Citado na página 19.

LECUN, Y.; BOTTOU, L.; BENGIO, Y.; HAFFNER, P. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, v. 86, n. 11, p. 2278–2323, 1998. ISSN
00189219. Citado na página 41.

MARTINEZ, J.; BLACK, M. J.; ROMERO, J. On human motion prediction using
recurrent neural networks. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), p. 4674–4683, 2017. Citado na página 63.

MINEMOTO, T.; ISOKAWA, T.; NISHIMURA, H.; MATSUI, N. Feed forward neural
network with random quaternionic neurons. Signal Processing, v. 136, p. 59–68, 2017.
Citado 2 vezes nas páginas 29 and 30.

Bibliography 72

NITTA, T.; BUCHHOLZ, S. On the decision boundaries of hyperbolic neurons. In: 2008
IEEE International Joint Conference on Neural Networks (IEEE World Congress on
Computational Intelligence). [S.l.: s.n.], 2008. p. 2974–2980. Citado na página 11.

NITTA, T.; KUROE, Y. Hyperbolic gradient operator and hyperbolic back-propagation
learning algorithms. IEEE Transactions on Neural Networks and Learning Systems, v. 29,
n. 5, p. 1689–1702, 2018. Citado na página 11.

PARCOLLET, T.; MORCHID, M.; LINARÈS, G. Quaternion Convolutional Neural
Networks for Heterogeneous Image Processing. In: ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). [S.l.: s.n.],
2019. p. 8514–8518. Citado na página 11.

PARSAEIFARD, B.; SAADATNEJAD, S.; LIU, Y.; MORDAN, T.; ALAHI, A. Learning
decoupled representations for human pose forecasting. IEEE/CVF Int. Conf. on Computer
Vision Workshops (ICCVW), p. 2294–2303, 2021. Citado 3 vezes nas páginas 60, 63,
and 64.

PEI, S.-C.; CHANG, J.-H.; DING, J.-J. Commutative reduced biquaternions and their
Fourier transform for signal and image processing applications. IEEE Transactions on
Signal Processing, IEEE, v. 52, n. 7, p. 2012–2031, 2004. Citado na página 19.

PENNESTRÌ, E.; VALENTINI, P. P. Dual quaternions as a tool for rigid body
motion analysis: A tutorial with an application to biomechanics. Archive of Mechanical
Engineering, v. 57, n. 2, p. 187–205, 2010. Citado na página 56.

PORTEOUS, I. R.; others. Clifford algebras and the classical groups. [S.l.]: Cambridge
University Press, 1995. v. 50. Citado na página 19.

ROCHON, D.; SHAPIRO, M. On algebraic properties of bicomplex and hyperbolic
numbers. Anal. Univ. Oradea, fasc. math, v. 11, n. 71, p. 110, 2004. Citado na página 19.

SCHAFER, R. D. On the Algebras Formed by the Cayley-Dickson Process. American
Journal of Mathematics, Johns Hopkins University Press, v. 76, n. 2, p. 435–446, 1954.
Citado na página 17.

TAKAHASHI, K. Comparison of high-dimensional neural networks using hypercomplex
numbers in a robot manipulator control. Artificial Life and Robotics, Springer, v. 26, n. 3,
p. 367–377, 2021. Citado 2 vezes nas páginas 16 and 48.

TANG, J.; DENG, C.; HUANG, G. Extreme Learning Machine for Multilayer Perceptron.
IEEE Transactions on Neural Networks and Learning Systems, v. 27, n. 4, p. 809–821,
2016. Citado na página 29.

TRABELSI, C.; BILANIUK, O.; ZHANG, Y.; SERDYUK, D.; SUBRAMANIAN, S.;
SANTOS, J. F.; MEHRI, S.; ROSTAMZADEH, N.; BENGIO, Y.; PAL, C. J. Deep
complex networks. [S.l.]: arXiv, 2017. Citado 2 vezes nas páginas 37 and 38.

TREFETHEN, L. N.; III, D. B. Numerical Linear Algebra. Philadelphia, PA: SIAM
Publications, 1997. Citado 3 vezes nas páginas 23, 24, and 25.

Bibliography 73

VIEIRA, G.; VALLE, M. E. Extreme Learning Machines on Cayley-Dickson Algebra
Applied for Color Image Auto-Encoding. In: 2020 International Joint Conference on
Neural Networks (IJCNN). IEEE, 2020. p. 1–8. ISBN 978-1-7281-6926-2. Disponível em:
https://ieeexplore.ieee.org/document/9207495/. Citado 5 vezes nas páginas 12, 30, 43,
48, and 65.

VIEIRA, G.; VALLE, M. E. Acute lymphoblastic leukemia detection using hypercomplex-
valued convolutional neural networks. In: IEEE. 2022 International Joint Conference on
Neural Networks (IJCNN). [S.l.], 2022. p. 1–8. Citado 4 vezes nas páginas 12, 42, 50,
and 53.

. A general framework for hypercomplex-valued extreme learning machines. Journal
of Computational Mathematics and Data Science, Elsevier, v. 3, p. 100032, 2022. Citado
3 vezes nas páginas 12, 48, and 65.

VITAL, W. L.; VIEIRA, G.; VALLE, M. E. Extending the universal approximation
theorem for a broad class of hypercomplex-valued neural networks. In: SPRINGER.
Intelligent Systems: 11th Brazilian Conference, BRACIS 2022, Campinas, Brazil,
November 28–December 1, 2022, Proceedings, Part II. [S.l.], 2022. p. 646–660. Citado na
página 67.

XIA, Y.; XIANG, M.; LI, Z.; MANDIC, D. P. Echo State Networks for Multidimensional
Data: Exploiting Noncircularity and Widely Linear Models. In: COMMINIELLO, D.;
PRÍNCIPE, J. C. (Ed.). Adaptive Learning Methods for Nonlinear System Modeling. [S.l.]:
Butterworth-Heinemann, 2018. p. 267–288. ISBN 978-0-12-812976-0. Citado na página
11.

XU, D.; XIA, Y.; MANDIC, D. P. Optimization in Quaternion Dynamic Systems:
Gradient, Hessian, and Learning Algorithms. IEEE Transactions on Neural Networks and
Learning Systems, v. 27, n. 2, p. 249–261, 2016. Citado na página 26.

ZHANG, H.; XUE, J.; DANA, K. Deep ten: Texture encoding network. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. [S.l.: s.n.], 2017. p.
708–717. Citado na página 29.

ZHANG, J. Y.; FELSEN, P.; KANAZAWA, A.; MALIK, J. Predicting 3d human
dynamics from video. IEEE/CVF Int. Conf. on Computer Vision (ICCV), p. 7113–7122,
2019. Citado na página 63.

https://ieeexplore.ieee.org/document/9207495/

	First page
	Title page
	Catalographic data
	Approval
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	Contents
	Introduction
	Basics Concepts on Hypercomplex Algebras
	Notable algebras
	Hypercomplex-Valued Matrix Computation

	Hv-ELM: Hypercomplex-valued Extreme Learning Machine
	Real-valued Extreme Learning Machines
	Hypercomplex-valued Extreme Learning Machines
	Application: Times Series Prediction
	Application: Colored Image Auto-encoding
	Concluding Remarks

	Hv-CNN: Hypercomplex-valued Convolutional Neural Network
	Real-valued Convolutional Layers
	Hypercomplex-valued Convolutional Layers
	Emulating Hypercomplex-valued Convolutional Layers
	Max-pooling Layer
	Application: Lymphoblast Image Classification
	Experiment I: General algebras
	Experiment II: Clifford algebras

	Concluding Remarks

	Dual Quaternion Neural Network for Rigid Motion Modelling
	Definition of Dual Quaternions
	Translation-Equivariant Rigid Motion Representation by Dual Quaternions
	Applications
	Experiment I: Lorenz System and Translational Equivariance
	Experiment II: Human Pose Forecasting

	Concluding Remarks

	Conclusions
	Bibliography

