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Resumo
Neste trabalho usaremos a Teoria Geométrica dos Invariantes, formalizada em (MUM-
FORD; FOGARTY; KIRWAN, 1994), para definir e construir espaços moduli de re-
presentações de quivers que estão em relação com redes neurais. Mais formalmente,
definiremos redes neurais em termos de quivers e estudaremos alguns espaços moduli
para os tipos de quivers definidos em (ARMENTA; JODOIN, 2021), e cujas proprie-
dades geométricas foram estudadas em (ARMENTA et al., 2022). Como passo prévio
também generalizaremos a estabilidade necessária para definir tais espaços a uma
mais geral e estudaremos algumas propriedades algébricas que elas tem baseados no
trabalho por (RUDAKOV, 1997).

Palavras-chave: Espaço Moduli. Rede Neural. Teoria Geométrica dos Invariantes.
Estabilidade. Representações de quivers.



Abstract
In this work we will use Geometric Invariant Theory, formalized in (MUMFORD;
FOGARTY; KIRWAN, 1994), to define and construct the moduli spaces of quiver
representations for quivers that are in relation with neural networks. More formally,
we will define neural networks in terms of quivers and study some moduli spaces for
those type of quivers as defined in (ARMENTA; JODOIN, 2021) and where its geometric
properties were studied in (ARMENTA et al., 2022), via the common technique defined
by (KING, 1994). As a previous step we will also generalize the stability needed for
defining such spaces to a one more general and study some algebraic properties it has,
based on the work by (RUDAKOV, 1997).

Keywords: Moduli Space. Neural Network. Geometric Invariant Theory. Stability.
Quiver representations.
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Introduction

Classification problems are among the main interests in mathematics: the
Fundamental Theorem of Linear Algebra gives the classification up to isomorphism of
finite dimensional vector spaces, Sylow theorems give a classification up to isomor-
phism of finite groups, and the topological Euler characteristic gives a classification of
compact orientable surfaces up to homeomorphism, just to mention some examples.
In algebraic geometry, however, discrete invariants are not enough to get a good classi-
fying space (moduli space) due that the set of (equivalence classes of) objects we would
like to classify (for instance, vector bundles over a fixed algebraic variety) is often
“too big”. For the moduli space to enjoy some good properties such as compactness,
connectedness, or smoothness, we have to not only fix enough discrete invariants, but
also restrict ourselves to objects satisfying some type of condition (a stability condition).

One of the most approachable methods for constructing moduli spaces in Algebraic
Geometry is Mumford’s Geometric Invariant Theory (GIT) (MUMFORD; FOGARTY;
KIRWAN, 1994). Ideally, one would find an algebraic variety that over-parametrizes
the equivalence classes of objects we want to classify and then mod out such over-
parametrization, if we are lucky and such over-parametrization is encoded as the
action of a reductive group, Bingo!, GIT will give us a moduli space that, at least, is an
algebraic variety.

The core of Mumford’s GIT is that quotients of algebraic varieties by algebraic groups
are not necessarily algebraic varieties, however if the group acting is reductive, then
it is possible to choose and open subset of the variety (that is a union of orbits) so
that the quotient of this open set by the restriction of the action is an algebraic variety.
These “good orbits” are called semistable orbits. An interesting feature of Mumford’s
construction is that there is not a unique way to choose the open subset of semistable
orbits, something that we will explore in several examples in this text.

In this dissertation we will treat the classifying problem of (equivalence classes of)
representations of directed graphs (known as quivers). Briefly, a representation of a
quiver consists of a vector space for each one of the vertices of the directed graph, and
a linear transformation for each arrow.

For instance, if we want to study the representations of the quiver

1 2

we end up studying the linear transformations V −→W, where V and W are two vector
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spaces. The discrete invariants that we fix in this case are precisely the dimensions
of the corresponding vector spaces that we can encode in a dimension vector. Our
GIT problem then is to classify quiver representations up to the action of changing
basis on the vector spaces on each vertex. Fortunately for us, (KING, 1994) classifies
all the semistable orbits in a very algebraic and intuitive way for this case, following
the theory from (MUMFORD; FOGARTY; KIRWAN, 1994) and adapting it for the case
when the action has a nontrivial kernel.

For doing so we show the equivalence between Mumford’s and a θ−stability, that
depends on a stability parameter, a vector that has the same number of entries as
vertices of the quiver, and that is orthogonal (in the usual sense) to the dimension vector
of the representation we want to classify. So we just end up needing the parameter θ

to obtain the semistable and stable orbits; more precisely, if the dot product between
the representation and the stability parameter is positive for all subrepresentations we
call the representation θ−semistable.

θ−stability and semistability are a particular case of a more algebraic notion of stability
introduced in (RUDAKOV, 1997), which extends particularly for any abelian category,
and then we can consider for instance, the category of coherent sheaves on a projective
variety or the category of representations of quivers, thus obtaining a simpler way of
identifying stability of objects and algebraic properties they inherit. Rudakov’s stability
is in particular an example of Bridgeland stability (BRIDGELAND, 2007), which is
influential by itself on the modern theory of moduli spaces in algebraic geometry
(see for example the related works of (TRAMEL; XIA, 2022), (SCHMIDT, 2020) and
(MARTINEZ; SCHMIDT, 2019)).

One of the applications of the GIT for quiver representations has a relation with the
study of neural networks, which is widely used in machine learning. In particular, we
could define neural networks represented by quivers, and to study the data space in
terms of the moduli space associated to it. This work was formalized in (ARMENTA;
JODOIN, 2021), inspiring some results on computational aspects and bringing to the
table the possible study of more moduli spaces of "mutations" of quivers. It was also
seen in (ARMENTA et al., 2022), that this space has good geometric properties, given
that the quiver associated to a neural network has a desirable structure.

In this dissertation we will use the basic theory from GIT to define moduli spaces of
neural networks in the way as done by (ARMENTA; JODOIN, 2021), and (ARMENTA
et al., 2022), and we will particularly formalize a variant version of the Manifold
Hypothesis, a known conjecture in machine learning that could lead insights on
why most neural networks always achieve a local minimum and hence are able to
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learn. Even with the huge computational implications this has, we will focus on the
mathematical aspects to it; for example, giving more importance to the study of the
associated moduli spaces than to the applications to different neural networks in the
literature.

On the first chapter we give the preliminaries needed for the theory on the text, in
particular, we briefly mention abelian categories, quiver representations, its generalities
and a short review on GIT following the notes by Thomas (THOMAS, 2006) and King’s
seminal work (KING, 1994). In Chapter 2, we will generalize the stability for the one in
(RUDAKOV, 1997), and show its relation with quiver representations. In Chapter 3, we
formalize the theory of neural networks with the usage of quivers, we show how some
basic operations on them work, how to identify via isomorphism neural networks and
how to define a moduli space of them based on (ARMENTA; JODOIN, 2021). Lastly,
Chapter 4, dedicates itself to the geometric properties of two main moduli spaces of
a variant of the quiver, called the double framed quiver, and how it relates to neural
networks via a restriction on the quiver worked and the dimension vector, following
the initial work from (ARMENTA et al., 2022).

Unlike most of common works in mathematics, that have the intention of teach or to
show new mathematics, all work in this text has already been developed, and we just
expanded the theory and added some examples when we saw it as needed. With this
in mind, we did not hesitate to be redundant with the explanation on some arguments,
as this was one of our objectives. This election is merely personal, as some people
would like to leave some details to the reader to make it more interesting or enticing.
We tried to be as clear as possible (most of the time) using the help of examples.
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1 Preliminaries

This chapter has the main objective to prepare the possible reader to the
text, in the attempt of being as self-contained as possible. Here we will mention the
theory needed for some parts of the text, which are not particularly linked one with
another, so we recommend the reader to use this Chapter as a means of reference for
any general fact that may be out of reach of the text, or whenever it is needed. With
this in mind, we will just mention the principal results that are going to be of use, and
we will refer to the articles or books in case of any particular proofs or for more details.
One particular case that we would like to mention is Geometric Invariant Theory (GIT),
which by itself is a very pretty theory, but with some heavy backgrounds, so we made
some cuts when we saw it as appropriate. Throughout the text, we assume the reader
is familiar with the general theory of algebraic geometry.

1.1 Abelian Categories and Grothendieck Group
Here we can use the preliminary definitions from (LANE, 1998). Suppose

that we have a category C, and a field k. We say that C is abelian if:

a. Hom(M, N) is a k−vector space for all M, N ∈ C,

b. the composition of morphisms is bilinear,

c. C admits direct sums, and there is a zero element from C where the corresponding
morphism between that space is the zero vector from Hom(0, 0), and

d. each element in HomC(M, N) admits a kernel k ∈ HomC(K, M) and a cokernel
c ∈ HomC(N, C).

Examples of abelian categories are ample, in particular, we can mention the category
of abelian groups GrpAb, the category of sheaves of abelian groups on a topological
space X, ShvX, and the category of finite dimensional vector spaces over a field k,
FinVeck.

Now, suppose that we have an abelian category A. Let A be the free abelian group
generated by the elements from Ob(A), The Grothendieck group of A, denoted by
K0(A) is the quotient of A by the the following relation: M− N + L = 0 for every
short exact sequence in A:

0 M N L 0
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For example, K0(FinVeck) ∼= Z by the rank nullity theorem. We won’t use the group
for anything different than FinVeck or products of it, so we don’t present any other
examples.

1.2 Quiver Representations
In this section we present the general theory from quiver representations

needed for the text. We will use mainly the definitions and notation from the text
(SCHIFFLER, 2014), so we refer the reader for any more examples and for a broader
approach of the topics treated here.

1.2.1 Generalities

A quiver Q = (Q0, Q1, s, t) consists of: Q0 a set of vertices, Q1 a set of
arrows, s : Q1 −→ Q0 a function that associates to each α ∈ Q1 its starting point
s(α) ∈ Q0, and t : Q1 −→ Q0 a function that associates to each α ∈ Q1 its terminal
point t(α) ∈ Q0. We will represent an α ∈ Q1 by

s(α) t(α)α

A vertex i is called a sink if there are not arrows α ∈ Q1 such that s(α) = i, and will be
called a source if there are not arrows β ∈ Q1 such that t(β) = i. A sequence of arrows
(α1, . . . , αn) such that t(αk) = s(αk+1) for 1 ≤ k < n is called a path, and a path that
starts at vertex i and ends at vertex j (this is, s(α1) = i and t(αn) = j) will be denoted
by i⇝ j.

We say that Q is connected if for any decomposition of vertices Q0 = Q1
0 ∪ Q2

0,
there exists an arrow α ∈ Q1 such that s(α) ∈ Q1

0 and t(α) ∈ Q2
0. Now we fix an

algebraically closed field k. A representation of Q, denoted by M = (Mi, φα)i∈Q0,α∈Q1

is a collection of k−vector spaces Mi one for each vertex i ∈ Q0 and a collection of
linear transformations:

φα = Mi Mj

one for each arrow i jα . We say that the representation M is finite dimensional
if Mi is a finite dimensional vector space for each i ∈ Q0. In this case, its dimension
vector is dim M = (dimk Mi)i∈Q0 ∈ Z|Q0|. Suppose we have a fixed quiver Q and two
representations M = (Mi, φα) and M′ = (M′i , φ′α) of Q. A morphism of representa-
tions f : M −→ M′ is a collection of linear transformations fi : Mi −→ M′i such that
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the following diagram is commutative:

Mi Mj

M′i M′j

φα

fi f j

φ′α

for each arrow i jα ∈ Q1. We say that such morphism is an isomorphism if
each fi is an isomorphism of vector spaces. The isomorphism class of M or the isoclass
of M will be the set of representations of Q which are isomorphic to M. With this
in mind, we can construct the category of finite dimensional representations of the
quiver Q, noted by rep Q, with objects and morphisms naturally defined.

Given two representations M and M′ as before, its direct sum will be the representation
of Q given by:

M⊕M′ =

(
Mi ⊕M′i ,

[
φα 0
0 φ′α

])
i∈Q0, α∈Q1

So rep Q admits direct sums. And similarly, given a morphism between representations
f : M −→ M′ its kernel will be the representation

ker f =
(
ker fi, φα|ker fi

)
i∈Q0, α∈Q1

∈ rep Q

and its cokernel:
coker f = (coker fi, χα)i∈Q0,α∈Q1

with χα : coker fi −→ coker f j defined by χα (x + fi(Mi)) = φ′α(x) + f j(Mj). This
shows that rep Q admits kernels and cokernels, and then it is an abelian category. Now,
we say that a representation L is a subrepresentation of M if there is an injective
morphism i : L M . By fixing a dimension vector d = (di)i∈Q0 ∈ Z|Q0|, we can
see that the space of representations that have dimension d is given by

Rd(Q) =
⊕
i∈Q0

Hom(Vi, Vj)

where Vi is a k−vector space of dimension di for each i ∈ Q0. In particular, we have
that

rep Q =
⊕

d∈Z|Q0|

Rd(Q)

For the next part we use the structure from (KIRILLOV JR., 2016). Suppose we have
two representations M, N of a quiver Q, we define ⟨M, N⟩ ∈ Z by

⟨M, N⟩ = ∑(−1)i dim Exti(V, W) = dim Hom(M, N)− dim Ext1(M, N)
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as all Exti = 0 for i > 1. In particular, we have by ((KIRILLOV JR., 2016), Theorem 1.25)
that if u = (ui)i∈Q0 and v = (vi)i∈Q0 are dimension vectors for M and N, the value
⟨M, N⟩ just depends on the vectors u, v. Then we can define a bilinear form on Z|Q0|,
which we call the Euler form of Q, and moreover:

⟨u, v⟩ = ∑
i∈Q0

uivi + ∑
α∈Q1

us(α)vt(α)

1.2.2 A simple computation on Thin Quiver Representations

Here our objective is to give some criteria for the Hom between two type
of manageable representations for Q. This will be used for a result on Chapter 3.
We say that a representation M of Q with dimension vector d = (di)i∈Q0 is thin if
di ≤ 1 for all i ∈ Q0. Suppose that Q is a finite, acyclic, connected quiver and let
M = (Mi, φα), N = (Ni, φ′α) be two thin representations from Q. If there exists a vertex
i ∈ Q0 such that Mi = Ni = C and we have a section of the form:

C C

0 C

or,

C 0

C C

we say that i has a critic of type I on the first case, or a critic of type II on the
latter. Maybe the important thing is that the critics characterize the Hom(M, N); more
specifically, Hom(M, N) = 0 if and only if there is a vertex with a critic of type I or II.

1.3 A brief comment on the manifold hypothesis
Neural networks have been used for a variety of applications: language

processing: (FATHI; SHOJA, 2018), voice recognition: (MELIN et al., 2006), (VENAYAG-
AMOORTHY; MOONASAR; SANDRASEGARAN, 1998), image processing: (HIJAZI
et al., 2015), (TRAORE; KAMSU-FOGUEM; TANGARA, 2018), code analising and
more recently, for language models for dialogue .

One leading question in machine learning is the one of how a determined neural
network is always capable of learn. The most accepted possible answer is the famous
Manifold Hypothesis . Briefly, it states that the input space of a neural network
contains submanifolds of dimension strictly less where the real-world data lies, and
even when its believed to be true, it has not been proved formally at the time. A known
and extensive testing has already been done in (FEFFERMAN; MITTER; NARAYANAN,
2016).

https://github.com/features/copilot
https://openai.com/blog/chatgpt
https://deepai.org/machine-learning-glossary-and-terms/manifold-hypothesis
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Figure 1 – An example of the MH. The blue surface could represent the space of all
images, and the submanifold in red represents the images of cats (or any
other object).

For example, if the blue surface represents all the images, the manifold hypothesis
would imply the existence of submanifolds, the red curve could parameterize all cat
images.

1.4 A quick (non-cute) review on GIT

1.4.1 Motivating problems for a quotient theory

On this part we will give try to explain why taking quotients on algebraic
geometry is a task that may pose some problems when done in the more intuitive
way. We believe that the treatment given in (THOMAS, 2006) is adequate and very
geometrical for this segment, so we will follow his structure and motivation.

Supose we have a linear algebraic group G acting on a projective variety X through
the group of matrices SL, and we want to form a quotient X⧸G which parametrizes
the orbits of the action of the group. In this case, we would like to consider such a
quotient as a projective variety. We have certain problems with this:

1. The quotient may not be Hausdorff. There are non closed orbits which contain
orbits of smaller dimension on its closures, and then the topological quotient is
not Hausdorff. We have to reduce some orbits to obtain a separated (Hausdorff)
quotient.

2. It is not enough to remove smaller-dimension orbits. Suppose we have the
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•

Figure 2 – A visual representation of condition 1.. The arrows and the dots repre-
sent different orbits, and the arrows have the dot as closure. Taken from
(THOMAS, 2006).

action of C∗ on C2 given by

C∗ ×C2 −→ C2 (1.1)

(λ, (z1, z2)) 7−→ (λz1, λ−1z2) (1.2)

This is, acting through the matrix

(
λ 0
0 λ−1

)
∈ SL(2, C). The orbit of an element

z = (z1, z2) ∈ C2 will be:

C∗ · z =
{(

λz1, λ−1z2

)
| λ ∈ C∗

}
= {(a, b) ∈ C2 | ab = z1z2}

In particular all orbits are parametrized by the constant α such that z1z2 = α.
This gives us the hyperbolas on C2, the x−axis, y−axis and the point 0. If we
remove the origin we would obtain two points at the origin, a nonseparated
double point (corresponding to the orbits of the x− and y−axis). Then the space
wont be Hausdorff.

On this last example we would like to obtain as a topological quotient C, where each
complex number α represents one orbit (the hyperbola z1z2 = α). The quotient obtained
from Geometric Invariant Theory (GIT) will identify the three orbits corresponding to
zero, as when α→ 0 such orbits intersect. More specifically, we identify some of the
orbits to be "bad" and we remove them, and some that are "semistable" and identify
them together. This compactifies the space, making it into a projective variety that we
will note by X⧸G.

We proceed to construct such space. Let OX(−1) the canonical line bundle of X, so
the action of G can be lifted to one on OX(−1), so we also work on the cone, and we
will call the way on which the action acts on the fibers as a linearisation of the action.
Tensoring we can also see that G acts on Γ(OX(r)) = H0(OX(r)) for each r ∈ Z. Then
we construct X⧸G via the ring of G−invariant sections

X⧸G ←→
⊕
r∈Z

H0(OX(r))G
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For having a good quotient we need the fact that
⊕
r∈Z

H0(OX(r))G is finitely generated,

and then we can define:

X⧸G := Proj
⊕
r∈Z

H0(OX(r))G

Lastly we would like to explain what are the points from X⧸G, which ones are the
orbits that get thrown away and what happens if we change the linearisation of the
action. In some cases the quotient may be trivial, but by composing with a character of
the group it is possible to obtain more sensible quotients; for example Pn, which can
be constructed with a line bundle via a particular linearisation.

The next step is to try and look what are the points on the quotient above constructed.
Consider the embedding of X into the quotient given by:

X P
(
(H0(OX(r))G)∗

)
x evx

where evx := s(x) which in coordinates can be written as (s1(x) : · · · : sn(x)) ∈ Pn,
and where the si generate H0(OX(r))G. This map is rational, so it is defined on the
points there ev is not identically zero, this is, on the points where not all the si are
zero. With this in mind, we say that a point x ∈ X is semistable if there exists an
integer r > 0 and section s ∈ H0(OX(r))G such that s(x) ̸= 0. We call a point that is
not semistable as unstable.

This shows that the semistable points are those seen by the G−invariant functions. The
embedding as above is defined in the set of semistable points (or semistable locus)
denoted by Xss ⊂ X, and is constant on G−orbits, as we are working with G−invariant
functions. It allows to factor the space through the set Xss

⧸G, but it can "eat" more
than just the orbits, and then a point were this phenomena does not happens will be
called stable. More formally, a point x is stable if it is semistable and

⊕
r∈Z

H0(OX(r))G

separates orbits near x and has finite stabilizer.

So we have a surjective map where we can pullback the line bundle obtained on the
quotient and obtain the canonical line bundle:

OXss(−1) OX⧸G

Xss X⧸G

In general the map has good geometric properties on the stable locus Xs ⊆ Xss ⊆ X,
and is a geometric quotient in the sense of Mumford. In the following we will describe
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different characterizations of when a point is stable or semistable by looking at the
induced point on the line bundle OX(−1), or in the cone of X when seen as an affine
variety.

1.4.2 General facts of GIT

On this part and for the next one we will follow the structure from (KING,
1994), and we will mention the main results without giving specifics on the proof of
them. We refer the reader to the article or to ((KIRILLOV JR., 2016), Chapter 10) for a
recent treatment of the topics. Suppose we have G as before and a finite-dimensional
space V over k an algebraically closed field (for simplicity). Let O(−1) be the trivial
line bundle for V, and χ an arbitrary character of G. By using χ we lift the G−action
to O(−1) by

g · (x, z) =
(

g · x, χ−1(g)z
)

A regular function f ∈ k[V] is a relative invariant of weight χ if f (g · x) = χ(g) f (x),
and we will write k[V]G,χ for the space of relative invariant functions of weight χ.
By noting that the space of O(−1) is just V × k, we say that an invariant section of
O(−1)n is a function f (x)zn ∈ k[V × k] where f (x) is a relative invariant of weight χn.

Now, let be x ∈ V, we say that x is χ−semistable if there exists an f ∈ k[V]G,χn
with

n ≥ 1 such that f (x) ̸= 0. If we denote by ∆ the kernel of the representation of the
group, we say that x is χ−stable if it is χ−semistable, dim G · x = dim G⧸∆ and the
G−action on the points where the function is non-zero is closed. With this we define

V // (G, χ) := Proj

(⊕
n∈N

k[V]G,χn

)

which is projective over the affine quotient V // G = Spec
(

k[V]G
)

. Then if k[V]G is
the field k the variety V // (G, χ) is projective. The central pillar of GIT ends up that
we can see

Proj

(⊕
n∈N

k[V]G,χn

)
= Vss

χ⧸∼

where Vss
χ is the locus of χ−semistable points and x ∼ y if and only if the closures

of their correspoding orbits intersect, this is, when G · x ∩ G · y ̸= ∅ in Vss
χ , in this

case we say that x and y are GIT equivalent. Moreover, the points of the quotient are
in 1− 1 correspondence with the closed orbits of Vss

χ , we also say that the quotient
parametrizes the closed orbits of Vss

χ . In particular, we have an open subset of the
quotient V // (G, χ) that corresponds to the χ−stable orbits, which are closed.

Now we proceed to give different characterizations for χ−stable and χ−semistable
points. Let x ∈ V and we lift it to a point x̂ = (x, z) ∈ V × k with z ̸= 0. Then we have
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that ((KING, 1994), Lemma 2.2) x is χ−semistable if and only if

G · x̂ ∩ 0 = ∅

where 0 is the zero section V × {0} ∼= V. We also require that χ(∆) = 1. Similarly, we
have that x is χ−stable if and only if the orbit G · x̂ is closed and the stabilizer of x̂
contains the kernel ∆ with [Stab x̂ : ∆] < ∞. Now, we can also obtain a similar result
when working with 1−parameter subgroups, that give some particular orbits of the
points: this is, we obtain that ((KING, 1994), Lemma 2.3) x is χ−semistable if and only
if for all 1−parameter subgroups of G

lim
t→0

λ(t) · x̂ ̸∈ V × {0}

and is χ−stable if and only if all the one parameter subgroups for which such limit
exist are in ∆. However, one radical point of GIT (for our main interest), comes from
numerical characterisations of such points. For doing so, we consider the pairing
between a character χ and a 1−parameter subgroup of G λ given by ⟨χ, λ⟩ = m ∈ Z

if and only if χ(λ(t)) = tm. Then by ((KING, 1994), Proposition 2.5) we say that x is
χ−semistable if and only if χ(∆) = 1 and for each 1−parameter subgroup for which
the limit lim

t→0
λ(t) · x exists we have that

⟨χ, λ⟩ ≥ 0

And it will be χ−stable if and only if the only 1−parameter subgroups λ for which
such limit exists with ⟨χ, λ⟩ = 0 are in ∆. Those last two characterisations are known
commonly as the Hilbert-Mumford numerical criterion, and we will use it for deter-
mining some conditions of those criteria for a particular case where the characters are
well defined and the group acting has a relatively simple face: quiver representations.

1.4.3 GIT for quiver representations

On this part we are going to use the results mentioned above to the case
of quiver representations. So, under our notation, let d be a dimension vector of a
quiver Q, we fix k−vector spaces Vi of dimension di. We have that the isoclasses of
representations of Q with dimension vector d are in a 1− 1 correspondence with the
orbits of the representation space of Q:

Rd(Q) =
⊕

α∈Q1: i→j

Hom(Vi, Vj)

under the action of the group:

Gd(Q) = ∏
i∈Q0

GL(Vi)
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acting via (τ · φ)α = τs(α)φατ−1
t(α) for each α ∈ Q1. This group contains the 1−parameter

subgroup
∆ = {(t id, . . . , t id) | t ∈ k∗}

acting trivially. Now, the characters of Gd(Q), χθ(τ) : Gd −→ k, are all given by

χθ(τ) = ∏
i∈Q0

det(τi)
θi

for a choosing of θ ∈ Z|Q0|. We can see the election of the vector θ as an homeomor-
phism K0(rep Q)→ Z. Let M = (Mi, φα)i∈Q0, α∈Q1

∈ rep Q, we write

θ(M) = ∑
i∈Q0

θi dim Mi

And with this, the condition χθ(∆) = 1 becomes:

1 = χθ(∆) = ∏
i∈Q0

det(∆i)
θi

= ∏
i∈Q0

det(t id)θi

= ∏
i∈Q0

(
tdim Mi

)θi

= t∑ θi dim Mi

= tθ(M)

From where we get that θ(M) = 0, so the dimension vector should be orthogonal
to the vector θ. Now we define a more general type of stability, that we will call
King’s stability and our next objective is to give a sketch on why it coincides with the
χ−stability just given above. More formally, let A an abelian category and θ : K0 −→ R

an additive function. As in ((KING, 1994), Definition 1.1), we say that M ∈ A is
θ−semistable if θ(M) = 0 and for every subobject M′ ⊂ M we have that θ(M′) ≥ 0.
Similarly, we say that M is θ−stable if the only subobjects M′ that θ(M′) = 0 are M
and 0.

For our objective we will use the numerical characterisations given before, and we
will see that any 1−parameter subgroup of Gd(Q) can be seen as a filtration. Let
λ : k∗ −→ Gd(Q) a 1−parameter subgroup, and for every i ∈ Q0 we make the
decomposition

Vi =
⊕
n∈Z

V(n)
i

where λ(t) ∈ Gd(Q) acts on V(n)
i by tn. We will write

V(≥n)
i =

⊕
m≥n

V(n)
i = V(n)

i ⊕V(n+1)
i ⊕V(n+2)

i ⊕ · · ·
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It is possible now to do a description of the transformations of the representation with
this filtration, having in mind the action of λ, the linear map:

φ
(mn)
α : V(n)

s(α) −→ V(m)
t(α)

acts by multiplication of tm−n. Then lim
t→0

λ(t)φα exists if and only if φ
(mn)
α = 0 for all

m < n. And we get this if φα defines a map

V(≥n)
s(α) −→ V(≥n)

t(α) for all n ∈ Z

This is, if all the subspaces V(≥n)
i give subrepresentations Mn of M for all n ∈ Z. With

this, a 1−parameter subgroup λ for which such limit exists determines a filtration of
M:

· · · ⊇ V(≥0)
i ⊇ V(≥1)

i ⊇ · · · ⊇ V(≥n)
i ⊇ V(≥n+1)

i ⊇ · · ·
· · · ⊇ M0 ⊇ M1 ⊇ · · · ⊇ Mn ⊇ Mn+1 ⊇ · · ·

that is indexed by Z and for which Mn = M for n ≪ 0 and Mn = 0 for n ≫ 0. Now
let a Z−filtration of M as above:

M ⊆ M1 ⊆ M2 ⊆ · · · ⊆ Mk ⊆ 0

We define λ(t) as acting on the complement of Mn+1 in Mn by tn, and we obtain some
1−parameter subgroup λ (not necessarily unique), for which the limit lim

t→0
λ(t)φα exists.

We also have that

lim
t→0

λ(t)φα =
⊕
n∈Z

(
V(n)

i , φ
(nn)
α

)
=
⊕
n∈Z

Mn⧸Mn+1

Note that we also obtain a filtration on each one of the vector spaces:

Mi ⊇ M(1)
i ⊇ M(2)

i ⊇ · · · ⊇ M(l)
i ⊇ 0

one for each i ∈ Q0. Unless the 1−parameter subgroup is on the kernel ∆, we have that
the filtration determined by λ is proper, so there is an index n such that 0 ̸= Mn ̸= M.
Suppose that we have an election of scalars θ ∈ Z|Q0| that is orthogonal to d, so we
have

θ(M) = ∑
i∈Q0

θidi = 0

Then, we can obtain a relatively simple expression for the pairing between the char-
acters and the 1−parameter subgroups in terms of the filtration {Mn} induced by λ.
Noting that λ(t) ∈ Gd(Q), then λ(t)i ∈ GL(Vi) for i ∈ Q0. Therefore we can see:
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λ(t)i =




t

t
. . .

t


d1

0 · · · 0

0


t2

t2

. . .

t2


d2

· · · 0

...
... . . . ...

0 0 · · ·


tn

tn

. . .

tn


dn


With this we make the following computation:

χθ(λ(t)) = ∏
i∈Q0

det(λ(t)i)
θi

= ∏
i∈Q0

∏
n∈Z

(
det φ

(nn)
α

)θi

= ∏
i∈Q0

∏
n∈Z

(tn) · · · (tn)︸ ︷︷ ︸
dim V(n)

i


θi

= ∏
i∈Q0

∏
n∈Z

(
tn dim V(n)

i

)θi

= ∏
i∈Q0

tθi ∑n∈Z n dim Vi
(n)

= t∑i∈Q0
θi ∑n∈Z n dim V(n)

i

An then this implies
⟨χθ, λ⟩ = ∑

i∈Q0

θi ∑
n∈Z

n dim V(n)
i (1.3)

Note that we also have that for each n ∈ Z:

∑
i∈Q0

θi dim V(n)
i = ∑

i∈Q0

θi dim
(

Mn⧸Mn+1

)
= θ

(
Mn⧸Mn+1

)
And then

∑
n∈Z

nθ
(

Mn⧸Mn+1

)
= ∑

n∈Z

n ∑
i∈Q0

θi dim V(n)
i = ∑

n∈Z

∑
i∈Q0

nθi dim V(n)
i (1.4)
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As the sums are finite. Together (1.3) and (1.4) give

⟨χθ, λ⟩ = ∑
i∈Q0

θi ∑
n∈Z

n dim V(n)
i by (1.3)

= ∑
n∈Z

nθ
(

Mn⧸Mn+1

)
by (1.4)

= ∑
n∈Z

n (θ(Mn)− θ(Mn+1))

= ∑
n∈Z

nθ(Mn)− ∑
n∈Z

nθ(Mn+1)

= ∑
n∈Z

nθ(Mn)− ∑
n∈Z

(n− 1)θ(Mn) by changing the index

= ∑
n∈Z

θ(Mn) (1.5)

With this we have that ((KING, 1994), Proposition 1.1) any point in Rd(Q) correspond-
ing to a representation M ∈ rep Q is χθ−semistable (respectively χθ−stable) if and
only if M is θ−semistable (respectively θ−stable). For proving this, suppose first that
M is θ−semistable, then by (1.5):

⟨χθ, λ⟩ = ∑
n∈Z

θ(Mn) ≥ 0

as θ(Mn) ≥ 0 by definition because Mn ⊆ M for all n ∈ Z and the 1−parameter
subgroups for which the limit exists are those who induce such filtration Mn. Then
M is χθ−semistable. Now suppose that M is θ−stable, and suppose that exists a
1−parameter subgroup λ such that lim λ(t)x exists and ⟨χθ, λ⟩ = 0. Then λ indices
the filtration Mn and

0 = ⟨χθ, λ⟩ = ∑
n∈Z

θ(Mn)

implies θ(Mn) = 0 for all n ∈ Z as M is θ−semistable. By its stability, Mn = M or
Mn = 0 for all n. As the filtration is descending it cannot be possible that after an
index i where Mi = M we have a j > i with Mj = 0. This implies that exists an integer
n0 ∈ Z such that for all n ≥ n0 we have Mn = M, and the filtration should look like
this:

· · · ⊆ 0 ⊆ · · · ⊆ 0 ⊆ M︸︷︷︸
Mn0

⊆ · · · ⊆ M

In particular, we know that λ(t) acts on M by tn0 and the matrix of λ(t) will have the
form

λ(t) =


tn0

tn0

. . .

tn0

 = diag(tn0 , . . . , tn0) ∈ ∆
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As ∆ = {(t id, . . . , t id) | t ∈ k∗} by definition. By the Hilbert-Mumford numerical
criterion, M is χθ−stable.

Let be M be χθ−semistable. A subrepresentation M′ ⊂ M induces a Z−filtration with
Mi = M′i for any value of i and Mn = M or 0 accordingly. For example, we may have
any of the following:

0 ⊆ · · · ⊆ 0 ⊆ M′ ⊆ M ⊆ M ⊆ · · · ⊆ M

0 ⊆ · · · ⊆ 0 ⊆ 0 ⊆ M′ ⊆ M ⊆ · · · ⊆ M

Which are two different filtrations that are essentially the same as 0 ⊆ M′ ⊆ M. Note
that these filtrations are proper if and only if M′ is a proper subrepresentation. As
before, any Z−filtration induces a 1−parameter subgroup, and for the corresponding
λ we have by (1.5)

⟨χθ, λ⟩ = ∑ θ(Mn) = θ(M′) ≥ 0

as M′ is the only element in the filtration and is greater than zero by the χθ semistability.
This implies that M is θ−semistable.

We suppose that M is χθ−stable, and that we have a M′ ⊆ M with θ(M′) = 0, we want
to show that M′ = 0 or M′ = M. Let λ be the 1−parameter subgroup that induces such
filtration. Once again, ⟨χθ, λ⟩ = θ(M′) = 0 and by the Hilbert-Mumford numerical
criterion λ ⊆ ∆. This is, λ(t) ∈ ∆ for all t ∈ k∗, equivalently, λ(t) = (t′ id, . . . , t′ id) for
some t′ ∈ k. Then the induced filtration must be null or the trivial, thus M is θ−stable.

With this we can compute χθ stability via the stability function θ. We will note by

Mθ−sst
d (Q) := Rd(Q) // Gd(Q)

and will be called the moduli space of θ−semistable representations of dimension
vector d. In particular,Mθ−sst

d (Q) is a projective variety ((KING, 1994), Proposition 4.3),
and contains an open subsetMθ−st

d (Q) of θ−stable representations. If the quiver Q is
finite, acyclic and connected thenMθ−sst

d (Q) is irreducible and normal, and the subset
Mθ−st

d (Q) is smooth (this occurs because the path algebra is hereditary, ((ASSEM;
SIMSON; SKOWROńSKI, 2006); Chapter VII, Theorem 1.7)).
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2 Rudakov’s Stability

The introduction of Geometric Invariant Theory not only gave an interesting
notion of a space that parametrizes orbits but also a way on which we could see the
changes of the action of a group in terms of the usual algebraic geometry. However,
as we mentioned before, it is a really heavy background theory and we must impose
a handful of prerequisites to even define the space as it is. King’s equivalence of
stabilities ((KING, 1994), Proposition 3.1) showed that in quiver representations there is
a way of defining such space in just algebraic terms; and this leads the natural question
on how much this can be done for another spaces.

In (RUDAKOV, 1997), was noted that one key ingredient needed for expanding this
definition was the fact that rep Q was an abelian category, and the usage of a preorder
between the elements of the category (this is, a way on which we can say where M ≼ N
in the objects of the category). Then there was a way of naturally defining stability
for an arbitrary abelian category and where we could retrieve King’s stability. In this
chapter our objective is to develop the theory from (RUDAKOV, 1997), and to show
how it relates to quiver representations. We also give some examples along the way
and we compute a special case of all the θ−semistable and stable representations for
the A2 quiver.

2.1 Stability Structures
The concept of stability on a category is highly related with the notion of

comparison between objects, so we will need a way of measuring different objects in
an specific abelian category.

Definition 2.1.1 (Preorder). Let A be an abelian category. We say that there exists a preorder
over A if we can compare objects in A. This is, given A, B ∈ A, then it occurs just one of the
following three: A > B, A < B or A = B.

The following will be an example of measuring objects in A.

Definition 2.1.2 (Additive Function). Let A an abelian category and A, B, C ∈ Ob(A). We
say that a function α : K0(A) −→ R+ is additive on A if it is an homomorphism of groups
and for any exact sequence of objects

0→ A→ B→ C → 0

we have that α(B) = α(A) + α(C).
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There may be a great number of additive functions on an abelian category,
but here we present one that will be of common use.

Example 2.1.3. Let be FinVeck the abelian category of finite-dimensional vector spaces
over a field k. Then the function dim : FinVeck → Z+ is an additive function by the
rank-nullity theorem.

Having a way of measure objects in a category, we can proceed to give a
certain order between those objects that depends on the additive functions chosen.

Definition 2.1.4 (c:r slope). Let c and r be two additive function on an abelian category A
such that r(A) > 0 for A ∈ A. We define

α(A) =
c(A)

r(A)

and it will be called the (c:r) slope of A. It also induces an order on objects as follows: if
A, B ∈ Ob(A) then we have one of the following

• α(A) > α(B)

• α(A) = α(B)

• α(A) < α(B)

An interesting property of the slope is that it gives a preorder on the abelian
category, and so being able to develop the theory of (RUDAKOV, 1997).

Corollary 2.1.5. The (c:r) slope on A is a preorder in A.

From now on, we will call a µ−preorder to the preorder induced by a (c:r)
slope. Now, even when we do have a sense of order between objects, we still do not
have the concept of stability, and walking towards that objective, we define a stability
structure that will coincide with the usual concepts of stability defined by (KING,
1994).

Definition 2.1.6 (Stability Structure). Let be A an abelian category where there exists
a preorder µ. We say that the preorder is a stability structure for A if for any objects
A, B, C ∈ Ob(A) and any short exact sequence: 0→ A→ B→ C → 0 we have that:

1. µ(A) < µ(B)⇔ µ(B) < µ(C)⇔ µ(A) < µ(C)

2. µ(A) > µ(B)⇔ µ(B) > µ(C)⇔ µ(A) > µ(C)

3. µ(A) = µ(B)⇔ µ(B) = µ(C)⇔ µ(A) = µ(C)
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In essence, a stability structure defines an order that behaves well with
respect to short exact sequences. It is noteworthy that the usage of one additive
function is not enough for constructing a stability structure. Our only example already
shows this behaviour.

Example 2.1.7. Consider A = FinVeck. Then, with the preorder above defined we have
that dim is not a stability structure for A, because if k = C, and we have the following
exact sequence:

0 C2 C5 C3 0
T1 T2

where,
T1(x, y) = (x, y, 0, 0, 0) and T2(a, b, c, d, e) = (a, b, c)

Then dimC

(
C2
)
= 2, dimC

(
C5
)
= 5. However, dimC

(
C5
)
= ̸< dimC

(
C3
)

.

But not everything is lost, we have an example.

Proposition 2.1.8 ((RUDAKOV, 1997), Lemma 3.2). The slope preorder in A is a stability
structure for A.

Proof. Let A, B, D ∈ Ob(A) and 0 A B D 0 a short exact sequence.
We have to prove 1., 2. and 3.. Suppose fisrt that µ(A) < µ(B), then µ(A)− µ(B) < 0,
which implies that

c(A)

r(A)
− c(B)

r(B)
< 0

This is,
c(A)r(B)− c(B)r(A)

r(A)r(B)
< 0

We can write the fraction as: ∣∣∣∣∣c(A) r(A)

c(B) r(B)

∣∣∣∣∣ 1
r(A)r(B)

< 0

If we denote by U the matrix above, we have that as r(A) > 0 and r(B) > 0 by
definition, det U < 0. By the additivity of the functions:

0 > det U =

∣∣∣∣∣c(A) r(A)

c(B) r(B)

∣∣∣∣∣
=

∣∣∣∣∣ c(A) r(A)

c(A) + c(D) r(A) + r(D)

∣∣∣∣∣ =
∣∣∣∣∣c(A) r(A)

c(D) r(D)

∣∣∣∣∣
where on the last equation we used the properties of determinants. Hence, remember-
ing that also r(D) > 0 we get that

c(A)

r(A)
− c(D)

r(D)
< 0
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which implies µ(A) < µ(D). In a similar way,

0 >

∣∣∣∣∣c(A) r(A)

c(D) r(D)

∣∣∣∣∣
=

∣∣∣∣∣c(A) + c(D) r(A) + c(D)

c(D) +r(D)

∣∣∣∣∣ =
∣∣∣∣∣c(B) r(B)
c(D) r(D)

∣∣∣∣∣
from where we get µ(B) < µ(D). This proves 1., and the same argument holds for 2.
and for 3. Thus, the slope preorder is a stability structure.

Example 2.1.9. Let us consider again A = FinVeck, and we define c : K0 (A)→ R given
by c(V) = k dim(V), with k ∈ R+, V ∈ A, and r : K0 (A) → R by r(V) = dim(V).
Then µ(V) = k for all V ∈ A, and the stability structure is trivial. In particular, for any
two V, W ∈ A, µ(V) = µ(W).

Example 2.1.10. Now let be A = rep Q, where Q = 1 2 3 , and given M ∈
rep Q of the form

M = V1 V2 V3

we define c(M) = ∑ ki dim(Vi), r(M) = ∑ dim(Vi) where ki ∈ R+ for i = 1, 2, 3.
Suppose we have the representations:

M1 : C C C , M2 : C2 C C2

Then,

µ(M1) =
c(M1)

r(M1)
=

k1 + k2 + k3

3
, and µ(M2) =

2k1 + k2 + 2k2

3

And thus µ(M2) ≥ µ(M1). However, if we define

M3 : C C2 C

then there exist scalars ki for which µ(M3) > µ(M2) and for which µ(M3) < µ(M2)

(for example, the pairs (0, 1, 0) and (1, 0, 1)).

Another good property of the stability structure is that it places the objects
of a short exact sequence in a well-desired ordering, even when we compare the
elements with an object outside the sequence, as the following lemma shows.

Lemma 2.1.11 ((RUDAKOV, 1997), Lemma 1.2). Let A an abelian category and µ a stability
structure over A. If A, B ∈ Ob(A) are such that 0 A B C 0 is a short
exact sequence, then given a 0 ̸= D ∈ Ob(A) we have:

a. if µ(A) > µ(D) and µ(C) > µ(D), then µ(B) > µ(D),

b. if µ(A) < µ(D) and µ(C) < µ(D), then µ(B) < µ(D),
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c. if µ(A) = µ(D) and µ(C) = µ(D), then µ(B) = µ(D).

Proof. Suppose without lose of generality that µ(A) < µ(B), then by the stability
structure, µ(B) < µ(C) and µ(A) < µ(C), we obtain that µ(A) < µ(B) < µ(C). We
will prove b., so we suppose µ(A) < µ(D) and µ(C) < µ(D), thus µ(A) < µ(B) <
µ(C) < µ(D), in particular µ(B) < µ(D). A similar argument holds for proving a. and
c..

From now on, and until the end of the section, we will assume that A
is an abelian category that has stability structure µ. Now we proceed to prove a
generalization of the last lemma, on which we can compare objects given a filtration
and some relations between the factor objects of such filtration.

Lemma 2.1.12 ((RUDAKOV, 1997), Lemma 1.3). Given B, D ∈ Ob(A) non-zero, and a
filtration of B of the type

0 = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fm ⊂ Fm+1 = B

where Fi ⊂ Fi+1 means that Fi is a subobject of Fi+1. Defining Gi = Fi/Fi−1 for i ∈
{1, . . . , m + 1}, we have that:

a. if µ(Gi) < µ(D) for i ∈ {1, . . . , m + 1}, then µ(B) < µ(D),

b. if µ(Gi) > µ(D) for i ∈ {1, . . . , m + 1}, then µ(B) > µ(D),

c. if µ(Gi) = µ(D) for i ∈ {1, . . . , m + 1}, then µ(B) = µ(D).

Proof. We proceed by induction on the length of the filtration m. If we have a filtration
of the type 0 ⊂ F1 ⊂ B, such that µ(F1/0) < µ(D) and µ(B/F1) < µ(D), we construct
the following exact sequence:

0 F1 B B/F1 0

Then, by Lemma 2.1.11 with D, we obtain that µ(B) < µ(D). This shows the result for
the case m = 1. In a similar way we can show that every Fi holds µ(Fi) < µ(D), and
by constructing the following exact sequence:

0 Fm B Gm+1 0

and applying once again Lemma 2.1.11 with D, we obtain µ(B) < µ(D). This proves
a., and the same argument follows for proving b. and c..

Remark 2.1.13 ((RUDAKOV, 1997), Lemma 1.4). We also have a stronger property,
we can compare any two objects in a filtration. More formally, if B is an object of A
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with a filtration: 0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm ⊂ Fm+1 = B with factors Gi = Fi/Fi−1 for
i ∈ {1, . . . , m + 1} and

µ(Gm+1) < µ(Gm) < · · · < µ(G1)

Given integers k, p with k ≥ 0, p ≥ 1, k + p ≥ m + 1 we denote Gk
p = Fk/Fk−p. Then

for another pair n, q ∈ Z with n ≥ 0, q ≥ 1, n + q ≥ m + 1 we have:

µ
(

Gk
p

)
< µ

(
Gn

q

)
if and only if (k, p) > (n, q)

where the order between ordered pairs of integers is lexicographic.

Next we introduce a concept that will be fundamental henceforth. Until now,
the concepts of subset and preorder were disconnected, and there could be subobjects B
of an object A ∈ A such that its order was bigger, and this is, in a way, counterintuitive.
Those objects where all its subobjects behave ”nicely” in the preorder of the stability
structure will be called stable. We define them formally.

Definition 2.1.14 ((RUDAKOV, 1997), Definition 1.5 and 1.6). Given a non-zero object
A ∈ Ob(A) we say that A is stable under the stability structure µ (or simply, stable) if
for any subobject B ⊂ A we have that µ(B) < µ(A), and we say that A is semistable under
the stability structure µ if µ(B) ≤ µ(A).

Example 2.1.15. Consider the Example 2.1.9. Here any object V ∈ FinVeck is semistable
as µ(V) = µ(W) for any subobject W of V. However, there are no stable objects.

Example 2.1.16 ((RUDAKOV, 1997), p. 244). We consider the example 2.1.10 with ki = 1
for i = 1, 2, 3. The non-zero subobjects of M1 : C C C are:

M′1 : 0 C C and M′′1 : 0 0 C

Where the morphisms between the C vector spaces are isomorphisms. Then, µ(M1) =

µ(M′1) = µ(M′′1 ) = 1 and thus M1 is semistable. If k1 = 1, k2 = 2 and k3 = 3 we obtain

µ(M1) =
6
3
= 2, µ(M′1) =

5
2

, µ(M′′1 ) = 3

Which implies that M1 is not stable. If, otherwise k1 = 3, k2 = 2 and k3 = 1, then M1 is
stable.

As we saw the election of scalars changes the stability structure and with
it, the objects that are stable or not. Even if it seems like it is arbitrary, that election is
important for determining on which stable objects we are interested, and those where
the stability coincides with (KING, 1994), for example. We will discuss those details
with more depth later. Now we proceed to show a useful criterion for deciding when a
determined object is stable by comparing it with a subset of the subobjects.
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Lemma 2.1.17. Let A ∈ Ob(A), then:

a. A is stable if and only if for any non-zero factor object B we have µ(A) < µ(B),

b. A is semistable if and only if for any non-zero factor object B we have µ(A) ≤ µ(B).

We remember that a factor object of A ∈ A is any object of the type A/B
for a subobject B ⊂ A.

Proof. Suppose A is stable, and let B a factor object. Then B = A/A′ for some A′ ⊂ A,
and we can construct the following exact sequence

0 A′ A A/A′ 0

As A is stable and A′ ⊂ A, then µ(A′) < µ(A) and by Definition 2.1.6, µ(A′) <

µ(A) < µ(A/A′) = µ(B).

Conversely, suppose that for any non-zero factor object B we have µ(A) < µ(B) and
let C be a subobject of A. Constructing

0 C A A/C 0

short exact, we have by hypothesis µ(A) < µ(A/C). Again, by Definition 2.1.6 this
implies µ(C) < µ(A) and as C was chosen arbitrarily, this shows the stability of A.
This shows a., and we follow a similar argument for proving b..

The following theorem answers the question on non-zero morphisms be-
tween stable or semistable objects, and relates the order of those objects for which such
morphism exists. In a certain way this is similar to the Schur lemma for representations,
as it states that whenever a non-zero morphism between stable objects exists, it must
be an isomorphism.

Theorem 2.1.1 ((RUDAKOV, 1997), Theorem 1). Let A, B ∈ Ob(A) semi-stable objects
such that µ(A) ≥ µ(B) and suppose that there exists a non-zero morphism φ : A→ B. Then
the following holds:

a. µ(A) = µ(B),

b. if A is stable, then φ is a monomorphism,

c. if B is stable, then φ is an epimorphism,

d. if A and B are stable, then φ is an isomorphism.
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Proof. We will prove a., so we consider the following exact sequences:

0 ker φ A im φ 0 (2.1)

0 im φ B coker φ 0 (2.2)

As im φ ⊂ B and B is semi-stable, µ(im φ) ≤ µ(B), and as ker φ ⊂ A with A semistable,
µ(ker φ) ≤ µ(A). By Definition 2.1.6, µ(A) ≤ µ(im φ), which implies

µ(A) ≤ µ(im φ) ≤ µ(B)

But, as by hypothesis µ(A) ≥ µ(B) we get µ(A) = µ(im φ) = µ(B). This shows a..

For b., let us suppose that φ is not a monomorphism, then ker φ ̸= 0. This is, µ(ker φ) <

µ(A). Definition 2.1.6 on the exact sequence (2.1) implies µ(ker φ) < µ(A) < µ(im φ),
a contradiction with the fact that µ(A) = µ(im φ) = µ(B). Similarly, for c., if φ is
not an epimorphism, im φ ̸= 0 which implies µ(im φ) < µ(B), a contradiction. Lastly,
if A and B are stable, then φ is a monomorphism and an epimorphism, thus, an
isomorphism.

Remark 2.1.18. Theorem 2.1.1 says, in particular, that if A is an stable object, then every
non-zero automorphism is an isomorphism.

2.2 King’s Stability
In this section we will construct another definition of stability that will be

equivalent to the one defined on the first section, but with the advantage of being
easier to calculate stable (or semi-stable) objects on rep Q, where Q is a quiver. We
will also give a characterization of stable objects for the A2 quiver. We start with the
definition of King’s stability for an abelian category.

Definition 2.2.1 ((KING, 1994), Definition 1.1). Let A be an abelian category and Θ :
K0 (A) → R an additive function on the Grothendieck group. An object M ∈ A is called
Θ−semi-stable if Θ(M) = 0 and every subobject M′ ⊂ M satisfies Θ(M′) ≥ 0. Such an M
is called Θ−stable if the only subobjects M′ with Θ(M′) = 0 are M and 0.

Following Example 2.1.10 we saw that there are objects M that are stable
(or semi-stable) with a stability structure µ, even if µ(M) ̸= 0, which goes against
the hypothesis of the stability of Definition 2.2.1. We proceed to construct an additive
function that depends on µ where that condition (and even the stability) holds.
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Proposition 2.2.2 ((RUDAKOV, 1997), Proposition 3.4). Let A be an abelian category with
stability structure µ =

c
r

. Given A ∈ A, we consider the following additive function:

θ = −c + µ(A)r

Then θ(A) = 0 and A is stable on the stability structure µ if and only if it is θ−stable in the
sense of Definition 2.2.1.

Proof. Let M ∈ A be stable on the stability structure µ, and consider a subobject B ⊂ A.
By the definition of stability, µ(B) < µ(A), which is equivalent to

c(B)
r(B)

< µ(A)

Then c(B) < µ(A)r(B), and 0 < −c(B) + µ(A)r(B), thus, 0 < θ(B) and A is θ−stable.
Similarly, if A is θ−semistable then A is stable on the stability structure µ.

Before we give some examples, we will make a brief discussion about
additive functions on the Grothendieck group of rep Q, where Q = (Q0, Q1), Q0

being its set of vertices and Q1 its set of arrows. We remember that K0(FinVeck) ∼= Z,
and then, K0(rep Q) ∼= Z|Q0|. Then, an additive function on K0(rep Q) will be an
homomorphism of groups φ ∈ Hom

(
Z|Q0|, R

)
, but as Hom(Z, R) ∼= R because

(Z,+) is cyclic, we obtain

Hom
(

Z|Q0|, R
)
∼=
|Q0|⊕
i=1

Hom(Z, R) ∼= R|Q0|

This means that an additive function on K0(rep Q) is completely determined by the
election of |Q0| real scalars (a similar phenomena happened on the Example 2.1.10,
when choosing the ki), then every election gives a different homomorphism on the
Grothendieck group and with it, a different Θ−stability on the sense of Definition
2.2.1. This motivates us to define stability on the sense of King via the election of some
scalars θi, for i ∈ {1, . . . , |Q0|}, and that will be the way on which we will define it for
rep Q henceforth.

Remark 2.2.3. We note that the election of the Θ vector should be orthogonal to the
dimension vector of M, as in Subsection 1.4.3.

The above example shows that it is enough to look at an election of scalars
that is orthogonal to the dimension vector of the quiver and it will give a notion of
stability in the King’s sense, and hence, one in the Rudakov’s sense. Now we are going
to try to characterize the stable and semistable representations for an A2 quiver. The
principal result is the following:



Chapter 2. Rudakov’s Stability 39

Theorem 2.2.1. Consider the quiver Q : 1 2 , and a representation

γ : Cm CnM

of Q in the usual sense, where (m, n) ∈ Z≥0 ×Z≥0 and M ∈ Mn,m(C). If m = n, then
dim ker M ≥ 1 if and only if γ is (−m, m)−unstable and ker M = 0 if and only if γ is
(−m, m)−semistable.

Proof. We will start with the case m = n. In this proof we will refer to (−m, m)−stability
by simply saying stability. Given p, q ∈ Z≥0 we define the following representations
for the sake of the proof:

Aq : 0 Cq

Bp : Cp 0

C(p,q) : Cp Cq

We know that the representations of type Aq are always subrepresentations of γ, as
the following diagram commutes:

γ : Cm Cm

Aq : 0 Cq

However, they do not unstabilize. Choosing an orthogonal vector (−m, m) we obtain:(
dim Aq

)
· (−m, m) = −m(0) + mq ≥ 0

Now if dim ker M ≥ 1, the representation B1 is a subrepresentation of γ, because
taking 0 ̸= −→v ∈ ker M the following diagram commutes:

Cm Cm

C 0

M

−→v ⟲

as M−→v = 0. Nevertheless, this subrepresentation unstabilizes because:

(dim B1) · (−m, m) = (1, 0) · (−m, m) = −m < 0

And hence γ is unstable.

Now we are going to consider the case where ker M = 0, or M is one-to-one. We assert
that if there exists a subrepresentation γ′ = C(p,q) with p > q then M is unstable as:(

dim γ′
)
· (−m, m) = −mp + mq = m(−p + q) < 0
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Thus, M will be stable if there are no subrepresentations γ′ with p > q. We will
proceed to show that this in fact does not happens. Suppose that γ′ : Cp → Cq is a
subrepresentation of γ, obtaining then:

Cm Cm

Cp Cq

M

N

N1 N2⟲

As N1 and N2 are one-to-one, dim(im(N1)) = p and dim(im(N2)) = q. Also, having
in mind that the above diagram commutes, MN1 = N2N and

dim (im(MN1)) = dim (im(N1)) = p

Because M is bijective (one-to-one between finite-dimensional vector spaces). Similarly,
we obtain that:dim (im(N2N)) ≤ min{p, q} = q, which is a contradiction, because the
dimensions should coincide. Hence, γ is semistable.

Lastly, we note that γ is strictly semi-stable when m > 1, given that η : C −→ C will
always be a subrepresentation and moreover,

(dim η) · (−m, m) = (1, 1) · (−m, m) = 0

And thus, there exists a subrepresentation η different from γ and 0 such that Θ (η) =

0.

2.3 The Harder-Narasimhan and Jordan-Hölder filtrations
The first section gives a hint on how important are stable objects in an

abelian category, as they not only behave well on the stability structure but even more
with morphisms between them. As the example of the A2 quiver showed, not every
object is stable, so we would like to study those objects and how far from being stable
they are. A way to see this for a special category is the Harder-Narasimhan filtration, a
filtration where all the factors are semi-stable and with monotone increasing order on
the stability structure. In this section we will describe it formally and we will calculate
it for an unstable representation of the A2 quiver. Finally, we give a similar notion for
a strictly semi-stable object, the so called Jordan-Hölder filtration, where each factor
ends up being stable.

2.3.1 The First Object

We start by giving some definitions that will serve as the hypothesis of
our "special" category, and remembering that a noetherian object A is one where any
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ascending chaing of subobjects of A stabilizes, and is artinian if any descending chain
of subobjects stabilizes.

Definition 2.3.1 (Quasi and weakly-noetherian categories). Let A be an abelian category
with stability structure µ and A ∈ Ob(A). Given a family of subobjects of A, {Ai}∞

i=1 and
{Bj}∞

j=1, we consider the following chains:

a. A1 ⊆ A2 ⊆ A3 ⊆ · · · such that µ(A1) ≤ µ(A2) ≤ µ(A3) ≤ · · ·

b. B1 ⊆ B2 ⊆ B3 ⊆ · · · such that µ(B1) ≥ µ(B2) ≥ µ(B3) ≥ · · ·

In any chain of type a. stabilizes (this is, there exists a j ∈ Z such that Ak = Ak+1 and
µ(Ak) = µ(Ak+1) for k ≥ j) we say that A is quasi-noetherian; and if any chain of type a.
and of type b. stabilizes we call A weakly-noetherian. With this in mind, if any object of A is
quasi-noetherian (resp. weakly-noetherian) we say that the category A is quasi-noetherian
(resp. weakly-noetherian).

Similarly, for descending chains we define,

Definition 2.3.2 (Weakly-artinian category). Given A an abelian category, A ∈ Ob(A),
and a family of subobjects {Ai}∞

i=1 such that we have:

A1 ⊇ A2 ⊇ A3 ⊇ · · · such that µ(A1) ≤ µ(A2) ≤ µ(A3) ≤ · · ·

If for any of subobjects of A the above chain stabilizes, we say that A is weakly-artinian, and if
every object of the category A is weakly-artinian, we will call the category A weakly-artinian.

Remark 2.3.3. In particular, if A is weakly-artinian, any chain of type

A1 ⊇ A2 ⊇ A3 ⊇ · · · such that µ(A1) < µ(A2) < µ(A3) < · · ·

must be finite, or else we would have a contradiction with the above definition.

The categories we just defined are extremely particular in nature, and there
are not so many examples of them. We gave those definitions as they will be the "least"
amount of hypotheses needed for assuring the existence of a filtration of the type
we want. Now we start doing the preparations for our filtration, on which our first
result says us that any subobject of a quasi-noetherian and weakly-artinian category is
semi-stable or that there exists a semi-stable object with greater order. From now on,
let A ∈ Ob(A) be quasi-noetherian and weakly-artinian.

Proposition 2.3.4 ((RUDAKOV, 1997), Lemma 1.10). Let A1 ⊆ A a non-zero subobject of
A. Then just one of the following happens:

a. A1 is semi-stable, or
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b. exists a semi-stable 0 ̸= A′1 ⊆ A such that µ(A′1) > µ(A1).

Proof. Let B1 = A1, and suppose that a. does not happens, this is, that B1 is not
semi-stable. Then there exists a nonzero B2 ⊆ B1 such that µ(B2) > µ(B1). If B2 is
semi-stable, then we obtain our object, if not, there would exist a 0 ̸= B3 ⊆ B2 such
that µ(B3) > µ(B2). If none of the Bi is semi-stable, we would obtain a chain of the
type:

B1 ⊇ B2 ⊇ B3 ⊇ · · · such that µ(B1) < µ(B2) < µ(B3) < · · ·

But as A is weakly-artinian, then that chain must stabilize by Remark 2.3.3.

Example 2.3.5. Consider the quiver Q : 1 2 , and the category rep Q with the
stability structure given by:

µ(A) =
c(A)

r(A)
= −∑ θi dim(Ai)

∑ dim(Ai)

where A is a subobject of an object M, and θ = (θ1, θ2) ∈ (dim M)⊥. If we have

M : k2 k2

1 0

0 0



Then the representation M′ : k2 k

[
1 0

]
is a subrepresentation of M, and

is unstable by Theorem 2.2.1. Choosing the orthogonal vector θ = (−2, 2), by the
Proposition above, there should exist a semi-stable subobject M′1 of M such that
µ(M′1) > µ(M1). In this case, we see that the representation M′1 := k 0 is a
subobject of M as the following diagram commutes:

k2 k2

k 0

1 0

0 0


0

1



and we have
2 = µ(M′1) > µ(M1) =

2
3

Which shows the existence of such object.

Lemma 2.3.6 ((RUDAKOV, 1997), Lemma 1.11). Let A1 be a non-zero subobject if A, and
suppose that exists a semi-stable subobject Asst of A such that

µ(Asst) > µ(A1)

Then just one of the following happens:
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a. Asst is a subobject of A1, this is, Asst ⊆ A1, or

b. there exists a A′1 ⊆ A such that A1 ⊆ A′1 and µ(A1) < µ(A′1).

Note 2.3.7. The above lemma can be seen in diagrams as follows. If A1 and Asst are
subobjects of A, we have two injective morphisms:

A Asst

A1

If µ(Asst) > µ(A1), the Lemma 2.3.6 assures that just one of the following happens:

a. there exists an injective morphism φ1 such that the diagram commutes:

A Asst

A1

∃φ1

b. exists a A′1 such that µ(A1) < µ(A′1) and injective morphisms φ1 and φ2 as
shown:

A Asst

A1 A′1
φ1

∃φ2

Proof. We can construct the following short exact sequences:

0 A1 ∩ Asst Asst
Asst⧸A1 ∩ Asst

0 (2.3)

0 A1 A1 ⊕ Asst
A1 ⊕ Asst⧸A1

0 (2.4)

Let us suppose that a. does not happen, then Asst ̸⊆ A1, which implies that A1⊕ Asst ̸=
A1, thus A1 ⊕ Asst ̸= A1 and A1 ⊕ Asst⧸A1

̸= 0.

From now on, we will call F := Asst⧸A1 ∩ Asst
= A1 ⊕ Asst⧸A1

. We have two cases
then, A1 ∩ Asst = 0 or A1 ∩ Asst ̸= 0. If A1 ∩ Asst = 0, then F = Asst, which implies
µ(F) = µ(Asst). If A1 ∩ Asst ̸= 0, then it is a subobject of Asst and as it is semi-stable,
we have that µ(A1 ∩ Asst) ≤ µ(Asst). By the stability structure applied to the exact
sequence (2.3) we obtain µ(Asst) ≤ µ(F). Then, for any case, µ(Asst) ≤ µ(F).
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As by hypothesis we have µ(Asst) > µ(A1), this implies µ(A1) < µ(F), and applying
the definition of stability structure on the exact sequence (2.4) we obtain µ(A1) <

µ(A1 ⊕ Asst). Then the element A′1 := A1 ⊕ Asst is one such that:

A1 ⊆ A1 ⊕ Asst = A′1 and µ(A1) < µ(A1 ⊕ Asst) = µ(A′1)

Which proves the lemma.

In order to prove the main result from this part, we give a specific name for
an object who "eats" all semi-stables with greater order.

Definition 2.3.8 (Greedy Subobject). A subobject 0 ̸= B of A is said to be greedy if for any
semi-stable Bsst ⊆ A such that µ(Bsst) > µ(B), we have Bsst ⊆ B.

Remark 2.3.9. Note that A considered as a subobject of itself is trivially greedy.

The main importance of those objects is that we can always construct a
greedy subobject who measures more than any object in A.

Lemma 2.3.10. Given a non-zero subobject B of A, there exists a greedy subobject G such that
µ(G) ≥ µ(B).

Proof. Let be G0 := B. If such an object does not exist for G0, then exists a semi-stable
Bsst with µ(Bsst) > µ(G0) such that Bsst is not a subobject of G0. By Lemma 2.3.6, exists
a G1 := G′0 ⊇ G0 with µ(G1) > µ(G0). Similarly to before, if G1 is not greedy, then
exists a G2 ⊇ G1 with µ(G2) > µ(G1). We can then construct a sequence of the type:

G0 ⊆ G1 ⊆ G2 ⊆ · · · such that µ(G0) < µ(G1) < µ(G2) < · · ·

of subobjects of A, which stabilizes as A is quasi-noetherian.

The following proposition is important because it will allow us to construct
the Harder-Narasimhan filtration we talked about. In particular, it gives the existence
of a subobject of maximum order in the stability structure, which will turn out to be
the first element of the filtration, as we shall see on the following subsection.

Proposition 2.3.11 ((RUDAKOV, 1997), Proposition 1.9). Let A be quasi-noetherian and
weakly-artinian. Then there exists a unique subobject F+(A) of A such that:

a. if 0 ̸= B ⊆ A is a subobject of A, then µ(B) ≤ µ(F+(A)), and

b. if 0 ̸= B ⊆ A and µ(B) = µ(F+(A)), then B ⊆ F+(A).
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Proof. For the uniqueness, suppose that there exists two objects F+(A) and F2(A) with
properties a. and b.. Then, by property a. as F+(A) ⊆ A we obtain µ(F2(A)) ≤
µ(F+(A)) and similarly µ(F+(A)) ≤ µ(F2(A)). This implies µ(F2(A)) = µ(F+(A)).
By property b. applied twice we get that F+(A) ⊆ F2(A) and F2(A) ⊆ F+(A), which
indicates F+(A) = F2(A).

Let us show existence. Suppose that A does not satisfies a., by Lemma 2.3.10 (applied
to A) there exists a greedy subobject A1 ⊆ A such that µ(A1) > µ(A).

Showing the existence for A1 of an object with property a. implies the existence of such
object for A. Suppose that A1 has the property a., then exists a subobject A′1 ⊆ A1 such
that if 0 ̸= S ⊆ A1, then µ(S) ≤ µ(A′1). In particular, µ(A1) ≤ µ(A′1). Let 0 ̸= B ⊆ A
any subobject, and we want to prove that µ(B) ≤ µ(A′1). By Proposition 2.3.4 we have
two cases:

a. B is semi-stable. If µ(B) ≤ µ(A1), we are done, but if µ(B) > µ(A1), as A1 is
greedy we have B ⊆ A1, which implies that µ(B) ≤ µ(A′1) as A1 satisfies a..

b. There exists a B′ semi-stable such that µ(B′) > µ(B). If µ(B′) ≤ µ(A1), we
obtain µ(B) < µ(A′1) by the transitivity of the preorder. If µ(B′) > µ(A1),
then as B′ is semi-stable and A1 is greedy, B′ ⊆ A1, and as A1 satisfies a.,
µ(B) < µ(B′) ≤ µ(A′1).

In any case, we have that if we prove a. for A1, then it is proved for A. If A1 does
not satisfy a., there is a greedy object A2 ⊆ A1 with µ(A2) > µ(A1). The statement is
proved, because if we do not find such element, we would have an infinite chain of the
type:

A1 ⊇ A2 ⊇ · · · such that µ(A1) < µ(A2) < · · ·

which does not exist because A is weakly-artinian. This assures the existence of an
element with property a..

Let A0 an object with property a. but that does not satisfies b., then it exists some
B with µ(B) = µ(A0) but B ̸⊆ A0. By Proposition 2.3.4 or B is semi-stable or there
exists a B′ ⊆ A semi-stable such that µ(B′) > µ(B) = µ(A0), but µ(B′) ≤ µ(A0) by
property a., then µ(B′) = µ(B) = µ(A0). Hence, we can assume that B is semi-stable.
Let A1 := A0 ⊕ B. Using a reasoning similar to the one on the proof of Lemma 2.3.6,
we can show that:

µ(A1) = µ(A0 ⊕ B) ≥ µ(A0)

As B ̸⊆ A0, then A0 ⊊ A1, and by following an analogous argument to the first part,
we have that A1 also has the property a.. If A1 does not satisfy b., then we can construct
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an A2 where a. is valid and with an strict inclusion A1 ⊊ A2 such that µ(A2) ≥ µ(A1).
We would get a subobject that satisfies both a. and b., if not we obtain an infinite chain
of the type:

A0 ⊆ A1 ⊆ A2 ⊆ · · · such that µ(A0) ≤ µ(A1) ≤ µ(A2) ≤ · · ·

And this does not happens in the quasi-noetherian object A.

Remark 2.3.12. Note that F+(A) is semi-stable and A is semi-stable if and only if
A = F+(A).

2.3.2 The Harder-Narasimhan Filtration

We just saw that there is always a subobject of a quasi-noetherian and
weakly-artinian object that has the biggest order in the stability structure (among all
its subobjects). On this section we will use it for constructing a filtration of an object
with semi-stable factors and where the factors are ordered strictly decreasing. Such
filtration will be called Harder-Narasimhan, and we proceed to define it formally.

Definition 2.3.13 (Harder-Narasimhan Filtration). Let A an abelian category and A ∈
Ob(A). If there exists a filtration

0 = F0A ⊆ F1A ⊆ · · · ⊆ Fm A ⊆ Fm+1A = A

such that

a. the factors Gi A = Fi+1A⧸Fi A for i = 0, 1, . . . , m are semi-stable, and

b. µ(GmB) < µ(Gm−1B) < · · · < µ(G0B),

Then we say that the filtration {Fi A}m+1
i=0 is a Harder-Narasimhan filtration (or HN

filtration) for A of length m.

Our first result is that if there is a HN filtration, then the most desestabilizing
object (the one from Proposition 2.3.11) is the first object of the filtration, as we
anticipated!

Proposition 2.3.14 ((RUDAKOV, 1997), Proposition 1.13). Let A be a quasi-noetherian and
weakly-artinian object for which there exists a HN filtration {Fi A}m

i=0. Then F+(A) = F1A,
where F+(A) is the object from Proposition 2.3.11.

Proof. We will proceed by induction over the length of the filtration. If m = 0, we have
a filtration 0 ⊆ F0A ⊆ F1A = A, where G0A = F1A⧸F0A = A is semi-stable. Then,
F1A = A = F1(A). Let us suppose that the proposition holds for any HN filtration
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of length m − 1. Given a HN filtration {Fi A}m+1
i=0 of length m, we will prove that

F1A = F+(A). During this proof, we will call Fi := Fi A. Let 0 ̸= B ⊆ A, we construct
the filtration:

0 = F1⧸F1
⊆ F2⧸F1

⊆ · · · ⊆ Fm⧸F1
⊆ A⧸F1

which is a HN filtration of length m− 1. By induction hypothesis, we have that:

F+
(

A⧸F1

)
= F2⧸F1

Now, by the second isomorphism theorem we get:

B⊕ F1⧸F1
= B⧸F1 ∩ B

And as B⊕ F1⧸F1
⊆ A⧸F1

; then by definition of F+,

µ
(

B⧸F1 ∩ B
)
≤ µ

(
F+
(

A⧸F1

))
= µ

(
F2⧸F1

)
But F2⧸F1

= G1, thus,

µ
(

B⧸F1 ∩ B
)
≤ µ(G1) (2.5)

By definition of the filtration, µ(G1) < µ(G0) = µ(F1) as G0 = F1, then,

µ
(

B⧸F1 ∩ B
)
≤ µ(F1)

We also note that as F1 is semi-stable and F1 ∩ B ⊆ F1, µ(F1 ∩ B) ≤ µ(F1). Now,
considering the following filtration for B:

0 ⊆ F1 ∩ B ⊆ B

using the Lemma 2.1.12 with µ(F1) we obtain that µ(B) ≤ µ(F1), which implies that F1

satisfies property a. from Proposition 2.3.11.

Now we will prove that F1 satisfies b.. Suppose that µ(B) = µ(F1), and we want to
show that B ⊆ F1. We have that µ(F1 ∩ B) ≤ µ(F1) = µ(B). By Definition 2.1.6 applied
to the following exact sequence:

0 F1 ∩ B B B⧸F1 ∩ B 0

We get
µ(B) ≤ µ

(
B⧸F1 ∩ B

)
if B⧸F1 ∩ B ̸= 0

As µ(B) = µ(F1) = µ(G0) > µ(G1), we deduce µ
(

B⧸F1 ∩ B
)
> µ(G1), a contradiction

with (2.5). Then B⧸F1 ∩ B = 0, from where we get B = F1 ∩ B and thus B ⊆ F1. This is,
F1 satisfies property b. of Proposition 2.3.11. By the uniqueness of the element, we get
that F1 = F+(A), as we wanted.
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We proceed now to the main theorem of the section, which says that such
filtration always exists in our "special" category.

Theorem 2.3.1 ((RUDAKOV, 1997), Theorem 2). Let A be a weakly-artinian and weakly-
noetherian category. Then, for any object A ∈ A exists a unique Harder-Narasimhan filtration
of A.

Proof. Let A weakly-artinian and weakly-noetherian. First we prove existence. For
simplifying the notation, we will write Fi and Gi instead of Fi A and Gi A. Now, to
construct the filtration we define:

F0 = 0, F1 = F+(A), . . . , Fi+1 = π−1
i

(
F+
(

B⧸Fi

))
where πi is the canonical projection from B to B⧸Fi

. We note that

Gi =
Fi+1⧸Fi

= F1
(

B⧸Fi

)
is semi-stable by Remark 2.3.12, and that µ(Gi+1) < µ(Gi) by Definition 2.1.6 applied
to the short exact sequence:

0 Gi
Fi+2⧸Fi

Gi+1 0

because as Fi+2⧸Fi
is a subobject of B⧸Fi

, by definition of F+ we get

µ
(

Fi+2⧸Fi

)
< µ

(
F+
(

B⧸Fi

))
= µ(Gi)

Now, from Remark 2.1.13 it is possible to conclude that µ(F1) > µ(F2) > · · · as we can
write every Fi =

Fi⧸F0
= Gi

i , then µ(Fi) < µ(Fj) if and only if i > j. We note that we
have a chain of the type:

F1 ⊆ F2 ⊆ · · · such that µ(F1) > µ(F2) > · · ·

and as A is weakly-noetherian, that chain stabilizes, so there exists an m for which
Fm+1 = B.

For the uniqueness, as the elements of the filtration are defined by the existence of
the elements given by the Proposition 2.3.11 and 2.3.14, then such filtration must be
unique.

One of the benefits of the presented proof is that it is constructive, so it
gives a recursive way of building the Harder-Narasimhan filtration.
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Example 2.3.15. Let be Q : 1 2 , M ∈ rep Q with dim M = (5, 3), a maximum
rank morphism and θ = (θ1, θ2) = (−3, 5) ∈ (dim M)⊥ an additive function on
K0(rep Q). We consider the stability structure given on Example 2.3.5, so µ(M) =

0. We know that the representations that desestabilize (this is, those S ⊆ M with
µ(S) > 0) are those with strictly decreasing vector dimension. Now, there cannot be
subrepresentations with decreasing order such that the difference between dimensions
is greater than 2. If that happens, then the dimensions of the kernel of the composition
in the diagram won’t coincide. Among the possible subobjects with difference at most
2, the most desestabilizing is:

M′ : k2 0

with µ(M′) = 6. Then F+(M) = M′. Now,

M⧸F1
: k3 k3M̃

where M̃ is injective because we constructed the injection k2 k5N from the
generators in the kernel. Then M⧸F1

is stable and

F+
(

M⧸F1M
)
= M⧸F1M

which means that:

F2M = π−1
1

(
F+
(

M⧸F1M
))

= π−1
1

(
M⧸F1M

)
= M

And the HN filtration of M has length one and is:

0 ⊆
(

k2 0
)
⊆
(

k5 k3
)
= M

Example 2.3.16 ((RUDAKOV, 1997), p. 244). Consider the Example 2.1.16. If ai = i, then
as µ(M′′1 ) = 3 is the most desestabilizing subobject, we obtain that F+(M1) = M′′1 =

F1M1. Now,
M1⧸F1M1

= C C 0

Its unique subobject is S : 0 C 0 , and as:

µ
(

M1⧸F1M1

)
=

1k1 + 1k2 + 0k3

1 + 1
=

3
2
< µ(S) = 2

Then, F+
(

M1⧸F1M1

)
= S. Now, if π1 : M1 −→ M1⧸F1

, we have that:

F2M1 = π−1
1 (S) = 0 C C = M′1

Following a similar argument to the above, we can show that F3M1 = M1 and hence
we have a HN filtration of length 2:

0 ⊆ M′′1 ⊆ M′1 ⊆ M1
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2.3.3 The Jordan-Hölder Filtration

On this last section, we will construct a filtration for strictly semi-stable
objects. This one, unlike the HN filtration is not unique, but here the factors are
uniquely determined. We also show an example for the A2 quiver.

Definition 2.3.17 (Jordan-Hölder Filtration). Let A be a weakly-artinian and quasi-
noetherian category, and A ∈ Ob(A). If there exists a filtration:

0 = F0A ⊆ F1A ⊆ · · · ⊆ Fm A ⊆ Fm+1A = A

such that

a. the factors Gi A = Fi+1A⧸Fi A for i = 0, 1, . . . , m are stable, and

b. µ(A) = µ(G0A) = µ(G1A) = · · · = µ(Gm A)

we will call the filtration {Fi A}m+1
i=0 a Jordan-Hölder filtration for A of length m, or also

JH filtration for A.

Example 2.3.18. Consider the Example 2.3.5. By Theorem 2.2.1 we know that when

ker T = 0, the representation N : kn knT is strictly semi-stable for n ∈ Z+. We

define the objects FiN : ki ki for i = 0, . . . , n. Then, the collection {FiN}n
i=0 is a

JH filtration for N of length n− 1. Note that,

GiN = Fi+1N⧸FiN = k k

Here when we quotient we end up removing i linearly independent vectors from the
transformation of the representation Fi+1N. Also by Theorem 2.2.1 we have that GiN
is stable for i = 0, . . . , n− 1, and

µ(N) = µ(G0N) = µ(G1N) = · · · = µ(Gn−1N) = 0

We note that different elections of linearly independent vectors give rise to different
Jordan-Hölder filtrations for N.

Theorem 2.3.2 ((RUDAKOV, 1997), Theorem 3). Suppose that A is a weakly-artinian and
quasi-noetherian category- Then any semi-stable object A has a JH filtration {Fi A}m

i=0, where
its set of factors is uniquely defined by the properties a. and b. from Definition 2.3.17.
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3 Neural Networks and Weak Manifold Hy-
pothesis

In the attempt of give a mathematical framework for neural networks and
to prove some intuitions involving them, (ARMENTA; JODOIN, 2021) introduces a
new and innovative way of representing a neural network via quivers. This approach
is effective as we can encode each one of the neurons in a determined neural network,
we can represent the operations via representations of such a quiver, it gently adapts to
the different types of neural networks used in practice (convolutional, fully connected
and so on), and it also has deep computational consequences ((ARMENTA; JODOIN,
2021), Chapter 8).

Mathematically, it can be used to formalize a variant of the manifold hypothesis
((GOODFELLOW; BENGIO; COURVILLE, 2016), Section 5.11.3), which briefly states
that the data space lies in a submanifold of dimension strictly smaller inside the input
space. However, for defining the space of neural networks and the input space, and to
parameterize them adequately (when working with quiver and quiver representations),
is only natural to consider GIT. In this chapter our intention is to develop the mathe-
matical theory from (GOODFELLOW; BENGIO; COURVILLE, 2016), and to use King’s
stability for constructing and formalizing what we called the weak manifold hypothesis.
As such, we will skip most of the computational implications that this approach has,
and we focus on its algebraic nature.

3.1 Neural Networks in terms of quivers
In this section we will introduce the concept of neural networks with the

language of quivers and we will show the way on which the information passes
through a determined neural network. Our main objective is to show that there is
invariance on how the information passes between two neural networks that are
isomorphic. This illustrates why we would focus our attention on some "kind" of
isoclasses of neural networks, as there won’t be any alteration on the feed-forward
of the information. We end the section with a short comment on architecture, that is
useful when classifying different types of networks.
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3.1.1 Network quivers and network functions

We start with some previous definitions of vertices and of an arranged by
layers and network quiver, from which we will construct a neural network.

Definition 3.1.1 (Input, output and bias vertices). Let Q be a quiver, we choose a subset of
d source vertices of Q that will be called input vertices. All the other source vertices that are
not input will be called bias vertices. The set of all sinks of Q will be called output vertices,
and the remaining vertices will be called hidden vertices.

Definition 3.1.2 ((ARMENTA; JODOIN, 2021), Definition 4.1 and 4.2). A quiver Q is
said to be a network quiver if it can be drawn from left to right arranging its vertices into
columns such that:

a. There are no oriented edges from vertices to the right to vertices to the left.

b. There are no oriented edges between vertices in the same column, different than loops and
edges from bias vertices.

c. There are no loops on source (i.e. input and bias) nor sink vertices.

d. There is just one loop on each hidden vertex.

If a certain quiver Q holds a. and b., we say that it is arranged by layers. We will call the
first layer, with d source vertices, the input layer; the last layer on the right, with k output
vertices, the output layer; and the layers that are nor input nor output will be called hidden
layers, and are ordered from left to right.

Example 3.1.3. The quiver

Q :

2 5

8

1 3 6

9

4 7

10
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is an arranged by layers quiver that it is not a network quiver. However,

Q′ :

2 5

8

1 3 6

9

4 7

10

is a network quiver with 1 input vertex, 1 output vertex 8, 9, two hidden layers of 3
vertices each, and a bias vertex.

Example 3.1.4. A simple example of network quivers are those obtained by a subset of
the Dynkin diagrams, the quivers of finite type that are linearly oriented, which we
will call Dynkin Network Quivers. Those are not that useful in practice, but they help
to understand simple fluxes of neural networks in small amounts of vertices.

An network quiver: 1 2 · · · n− 1 n

Dn network quiver:

n− 1

1 2 · · · n− 2

n

E6 network quiver:
1 2 3 4 5

6

E7 network quiver:
1 2 3 4 5 6

7

E8 network quiver:
1 2 3 4 5 6 7

8

We carry on to defining the concept of an activation function, as they will
be needed along with the "neuron" to compute a forward pass.



Chapter 3. Neural Networks and Weak Manifold Hypothesis 54

Definition 3.1.5 ((ARMENTA; JODOIN, 2021), Definition 4.4). An activation function
is a one variable non-linear function f : C→ C differentiable except on a set of measure zero.

Example 3.1.6. The functions ReLU, tanh, sigmoid and others serve as usual examples
of activation functions.

Now, when a determined neural network makes a forward pass, it takes the
weight associated to two neurons and it uses it with the output value of the first neuron
to obtain the input of the second neuron. These processes can be encoded neuron by
neuron via a linear map between two C−vector spaces for each weight between the
neurons. If we do this for all the network quiver Q, we obtain a representation where
all vector spaces are C, but without maps on the loops. This is, a thin representation of
a new quiver, called delooped, and we proceed to define it.

Definition 3.1.7 ((ARMENTA; JODOIN, 2021), Definition 4.3). Let Q be a network quiver.
The delooped quiver Q◦ is the quiver obtained from Q by removing all loops, so the set of
vertices remains invariant. It can also be written as

Q◦ =
{

Q◦0 , Q◦1 , s◦, t◦
}

Example 3.1.8. The delooped quivers of the Dynkin Network Quivers are the corre-
sponding linearly oriented Dynkin quivers.

What we said before can be rephrased as: "the weights of a neural networks
Q define a thin quiver representation of the quiver Q◦". Still, we have not said what
happens to the output of a neuron with respect to the activation function. This hints
that whenever we want to make a forward pass we use two things: the activation
functions and the thin representation of Q◦; which leads to the following definition.

Definition 3.1.9 ((ARMENTA; JODOIN, 2021), Definition 4.6). Let Q be a quiver network
with d input vertices and k output vertices. A neural network over Q consists of a pair (W, f ),
where W is a thin quiver representation of Q◦ and f = ( fv)v∈Q0 are activation functions, one
for each loop on Q.

Example 3.1.10 ((ARMENTA; JODOIN, 2021), Remark 6.2). The easiest way to construct
a neural network over a network quiver may be to take all the activation functions
as the identity. This is, every thin quiver representation M of Q◦ induces a neural
network, denoted by (M, 1), where 1 = (id, . . . , id) is the identity activation function.

Example 3.1.11. Consider the network quiver Q′ from the Example 3.1.3. The following
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is a neural network over Q′,

Q′ :

C C

C

C C C

C

C C

C

f2 f5

f3 f6

f4 f7

where the ( fi) are activation functions.

Example 3.1.12. Another simple example of neural networks are the ones obtained
from Dynkin Network Quivers on Example 3.1.4. We will call them Dynkin Neural
Networks. Note that the An neural network has 1 input vertex and 1 output vertex,
the Dn neural network has 1 input vertex and 2 output vertices and E6, E7, E8 have
all 1 input, 1 output and 1 bias.

There is some common terminology that appears on the literature around
neural networks. Let (W, f ) be a neural network; in our case, we will refer to a neuron
or unit interchangeably to the combinatorial properties of a vertex and its activation
function. We will call a weight to the number that defines the linear map Wα, for an
α ∈ Q1. Our next step will be to describe how to compute on a determined network,
one consistent with the usual computations that are done in practice. This leads to the
following.

Definition 3.1.13 ((ARMENTA; JODOIN, 2021), Definition 4.7). Let (W, f ) be a neural
network over a network quiver Q; and let x ∈ Cd a vector, which we will call input vector of
the network. Given i ∈ Q0, we write:

Ei = {α ∈ Q1 | t(α) = i}

the set of all edges with target i. Then the activation output of the vertex i ∈ Q0 with respect
to x after applying a forward pass will be denoted by a(W, f )i(x) and will be given by:

a. xi if i ∈ Q0 is an input vertex,

b. 1 if i ∈ Q0 is a bias vertex,

c. fi

(
∑

α∈Ei

Wα a(W, f )s(α)(x)

)
if i ∈ Q0 is a hidden vertex,
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d. ∑
α∈Ei

Wα a(W, f )s(α)(x) if i ∈ Q0 is an output vertex,

Example 3.1.14. Consider the neural network from Example 3.1.11. We will write the
weights between the layers as matrices. For example,

W1 =

 0.3
−0.7
−0.2


means that the weights Wα1 = 0.3, Wα2 = −0.7, Wα3 = −0.2 where α1 : 1 2 ,

α2 : 1 3 and α3 : 1 4 . Similarly, the weights between the first and
second layer will be given (by definition) as:

W2 =

−0.3 1.3 ∗
0.6 −1.2 0.5
∗ −0.7 0.2


where ∗ means that there is no connection between the corresponding neurons, hence
we don’t assign any weight to such connection; lastly,

W2 =

(
0.4 0.5 ∗
∗ −0.7 −0.6

)

Assume moreover that the activation functions are all ReLU, then, if −1 = x ∈ C is an
input vector of (W, f ),

a(W, f )1(x) = x = −1

a(W, f )3(x) = ReLU(−0.7x) = ReLU(0.7) = 0.7

a(W, f )2(x) = ReLU(0.3x) = 0

a(W, f )4(x) = ReLU(−0.2x) = 0.2

Then the output of the first layer will be:

ReLU

 0.3x
−0.7x
−0.2x

 =

 0
0.7
0.2


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Now,

a(W, f )5(x) = ReLU

(
∑

α∈E5

Wα a(W, f )s(α)(x)

)
= ReLU (−0.3 ReLU(0.3x) + 1.3 ReLU(−0.7x))

= ReLU (−0.3 · 0 + 1.3 · 1.7)

= 0.91

a(W, f )6(x) = ReLU(0.6 · 0− 1.2 · 0.7 + 0.5 · 0.2)

= ReLU(−0.84 + 0.1) = 0

a(W, f )7(x) = ReLU(−0.7 · 0.7 + 0.2 · 0.2 + 1)

= ReLU(−0.49 + 0.4 + 1) = 0.91

As a(W. f )10 = 1, with Wα11 = 1, α11 : 10→ 7. Then, the output of the second layer will
be: 0.91

0
0.91


Lastly,

a(W, f )8(x) = 0.4 · 0.91 + 0.5 · 0
= 0.364

a(W, f )9(x) = −0.7 · 0.91 = −0.637

Which implies that the output of the neural network will be

(
0.364
−0.637

)
.

The example above showed the basic operations of a neural network. Accord-
ing to (ARMENTA; JODOIN, 2021), the two main advantages of using this definition
are that (1) any architecture may be representable, and (2) simplifies the notation on
proofs relating network functions. For defining formally what this means, we note that
in the example we obtained a 2× 1 vector, that represented how the input vector −1
runs through the net. This motivates the following definition.

Definition 3.1.15 ((ARMENTA; JODOIN, 2021), Definition 4.8). Given a network quiver
Q, let (W, f ) a neural network over Q, with d input vertices, k output vertices and l layers.
The network function of the neural networj is the function

Ψ(W, f )(x) : Cd −→ Ck

such that
Ψ(W, f )(x) = (a(W, f )i(x))i∈El+1

that is, the activation outputs of the output vertices of (W, f ) with respecto to an input vector
x ∈ Cd.
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Example 3.1.16. Consider the Example 3.1.14. Then we obtained that

Ψ(W, f )(−1) =

(
0.364
−0.637

)

and following a similar process we get

Ψ(W, f )(1) =

(
0.09
−0.808

)

3.1.2 Isomorphisms of neural networks

By just looking at the combinatorial approach until now, it is easy to create
a huge amount of neural networks over a network quiver, as any election of scalars for
the weights will determine one. With this in mind, we want to study how different
are the neural networks over Q, when given separate scalars, and we would like to
measure such change via the algebraic nature induced in the network quiver; more
specifically, via an isomorphism of quivers. However, by noting the presence of the
activation functions on a neural network, we may impose an additional condition.

Definition 3.1.17 ((ARMENTA; JODOIN, 2021), Definition 4.9). Let Q a network quiver
and (W, f ), (V, g) two neural networks over Q. A morphism of neural networks τ :
(W, f )→ (V, g) is a morphism of thin quiver representations τ : W → V such that τi = 1 for
all i ∈ Q0 that is not a hidden vertex, and for every v ∈ Q0, the following diagram commutes:

C C

C C

fv

τv τv

gv

, or
C

C

fv

τv

gv

Given a morphism of neural networks

τ : (W, f ) −→ (V, g)

we say that τ is an isomorphism of neural networks if the induced morphism of thin
representations τ : W → V is an isomorphism. That being said, two neural networks are
isomorphic if there exists an isomorphism of neural networks between them.

Example 3.1.18. Consider the A4−network quiver and the neural networks with activa-
tion functions:

(W, f1) : C C C C

ReLU ReLU
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(V, f2) : C C C C

ReLU g

where g(x) = min(x, 0) and with weights
(

0.2 0.4 0.6
)

for W and
(

0.08 −0.3 −2
)

for V. Then the morphism τ : W → V given by:

τ = (1, 0.4,−0.3, 1)

is a morphism of thin quiver representations.

C C C C

C C C C

0.2

1 0.4

ReLU

0.4

−0.3

ReLU

0.6

1

0.08

ReLU

−0.3

g

−2

Now we look into the transformations of the activation functions. For the vertex 2, we
have

C C

C C

ReLU

0.4 0.4

ReLU

If x ≤ 0, then ReLU(0.4x) = 0 = 0.4 ReLU(x), and if x > 0, 0.4 ReLU(x) = 0.4x =

ReLU(0.4x). For vertex 3,

C C

C C

ReLU

−0.3 −0.3

g

Here, if x ≤ 0, ReLU(−0.3x) = −0.3x = −0.3 min(x, 0) = −0.3g(x); and if x > 0,
ReLU(−0.3x) = 0 = −0.3 min(x, 0) = −0.3g(x). This says that the activation functions
commute, and then:

τ̃ : (W, f1) −→ (V, f2)

is an morphism of neural networks. As the morphisms are non-zero, they are invertible
and thus τ̃ is an isomorphism.

Example 3.1.19 ((ARMENTA; JODOIN, 2021), Appendix A). Consider the ReLU multi-
layer perceptron (W, f ) with 2 hidden layers of 3 neurons, and 2 neurons on the input
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and output layers:
3 6

1 9

4 7

2 10

5 8

And consider the following weight matrices:

W1 =

 1.3 −0.1
0.9 0.5
−1.0 0.7

 , W2 =

0.3 −1.2 0.9
0.7 0.2 −0.3
0.6 0.4 −0.1



W3 =

(
0.4 −1.1 −0.7
−0.8 0.6 0.2

)
Then the neural network (W, ReLU) with the weight matrices above defined is isomor-
phic to the neural network (V, g) with weights:

V1 =

−0.13 0.01
−0.36 −0.2
−1.2 0.84

 , V2 =

 0.9 0.9 0.225
−6.3 −0.45 −0.225
4.2 0.7 0.0583̄



V3 =

 1.3̄ −1.2̄ 1.0

−2.6̄ 0.6̄
2
7


and with activation functions given by the following matrix:

g =

min(x, 0) ReLU
min(x, 0) ReLU

ReLU min(x, 0)


on where each entry of the matrix has the activation function associated to the corre-
sponding vertex.

It may be cumbersome to do all the calculations for verifying that two
different neural networks are isomorphic, and for this we will describe a way to
construct isomorphic neural networks when given one, and it will also show in a more
intuitive way why the two neural networks from the example above are isomorphic
(without brute force). In order to do so, we define an important class of quiver.
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Definition 3.1.20 ((ARMENTA; JODOIN, 2021), Definition 4.11). Let Q be a network
quiver. The hidden quiver of Q, denoted by Q̃ =

(
Q̃0, Q̃1, s̃, t̃

)
is the quiver obtained from

Q, where Q̃0 is the subset of Q0 which consists of all hidden vertices and Q̃1 is the subset of
arrows between those hidden vertices that are not loops.

Example 3.1.21. Consider the network quiver Q′ from Example 3.1.3, then

Q̃′ :

2 5

3 6

4 7

Example 3.1.22. Consider the network quivers from Example 3.1.4, then Ãn = An−2,
D̃n = An−3 and Ẽ6 = A3, Ẽ7 = A4, Ẽ8 = A5.

Now we define the group of change basis, which acts on neural networks,
and that will have an important property: all elements in any orbit are isomorphic.

Definition 3.1.23 ((ARMENTA; JODOIN, 2021), Definition 4.12). The group of change
basis for Q is denoted as:

G̃ = ∏
i∈Q̃0

C∗

An element τ ∈ G̃ is called a change of basis for the network (W, f ).

Example 3.1.24. If Q is the network quiver from Example 3.1.3, then, by Example 3.1.21,

G̃ = C∗ ×C∗ ×C∗ ×C∗ ×C∗ ×C∗ ≃ (C∗)6

And if Q is the An network quiver, then by Example 3.1.22

G̃ = (C∗)n−2

Note that this group has factors the number of hidden vertices of Q. We
proceed to describe the action of such a group on the set of neural networks of a quiver
Q, and as the action will be given as change of basis, we would like to describe it on
each one of the vertices. However, the group only "shows" such a change for a hidden
neuron, yet this can be solved if we don’t change any vertex that is not hidden. In
other words, given a τ̃ ∈ G̃, there exists a τ ∈ G induced by τ̃, where

τi = 1 for all i ∈ Q0 −H0

where H0 is the set of hidden vertices of Q. This means that we can see elements of G̃
as elements of G. With this in mind,
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Definition 3.1.25 ((ARMENTA; JODOIN, 2021)). Let (W, f ) be a neural network over Q.
The action of G̃ on (W, f ) is given element-wise by:

τ · (W, f ) = (τ ·W, τ · f )

where τ ∈ G̃, and

a. τ ·W is the thin representation where for every α ∈ Q1,

(τ ·W)α = Wα

τt(α)

τs(α)
,

b. τ · f , the activation on the hidden vertex i ∈ Q0 is given by

(τ · f )i (x) = τi fi

(
xτ−1

i

)
for all x ∈ C

Remark 3.1.26. Note that Γ : (W, f ) −→ (τ ·W, τ · f ) is an isomorphism of neural
networks.

Example 3.1.27 ((ARMENTA; JODOIN, 2021), Appendix A). Consider again Example
3.1.19, and the neural network (W, f ) where f is ReLU as there. If we consider
τ ∈ G̃ = (C∗)6 given by:

τ =

−0.1 0.3
−0.4 0.9
1.2 −0.7


then the action of τ over (W, f ) will be, on weights as:

τW1 =



1.3
(
−0.1
1.0

)
−0.1

(
−0.1
1.0

)
0.9
(
−0.4
1.0

)
0.5
(
−0.4
1.0

)
−1.0

(
1.2
1.0

)
0.7
(

1.2
1.0

)


=

−0.13 0.01
−0.36 −0.2
−1.2 0.84

 = V1

Similarly,

τW2 =



0.3
(

0.3
−0.1

)
−1.2

(
0.3
−0.4

)
0.9
(

0.3
1.2

)
0.7
(

0.9
−0.1

)
0.2
(

0.9
−0.4

)
−0.3

(
0.9
1.2

)
0.6
(
−0.7
−0.1

)
0.4
(
−0.7
−0.4

)
−0.1

(
−0.7
1.2

)


=

−0.9 0.9 0.225
−6.3 −0.45 −0.225
4.2 0.7 0.0583̄

 = V2
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And lastly,

τW3 =


0.4
0.3

−1.1
0.9

−0.7
−0.7

−0.8
0.3

0.6
0.9

0.2
−0.7

 =

 1.3̄ −1.2̄ 1.0

−2.6̄ 0.6̄
2
7

 = V3

Now, for the activations we have that (τ · f )i (x) = (τ · ReLU)i (x) = τi ReLU(xτ−1
i ).

So, if τi > 0,

(τ · f )i (x) = τi ReLU(xτ−1
i ) = τiτ

−1
i ReLU(x) = ReLU(x)

But if τi < 0,
(τ · f )i (x) = τiτ

−1
i min(x, 0) = min(x, 0)

Thus, considering the values of τ, the matrix of activations will be

τ · f =

min(x, 0) ReLU
min(x, 0) ReLU

ReLU min(x, 0)

 = g

By Remark 3.1.26, we have that (W, f ) = (τ ·W, τ · f ), but we just saw that (τ ·W, τ ·
f ) = (V, g), which shows the isomorphism of the Example 3.1.19.

We end this section with the following result, a relation between the network
outputs of two isomorphic neural networks, which has special importance for this
approach.

Theorem 3.1.1 ((ARMENTA; JODOIN, 2021), Theorem 4.13). Let τ : (W, f ) −→ (V, g)
an isomorphism of neural networks, then its network functions are the same, i.e.,

Ψ(W, f ) = Ψ(V, g)

Remark 3.1.28. Before we start, we make a brief comment on isomorphisms of neural
networks. Let τ be one of such, then as the representations are thin, we can see (V, g)
as

τ · (W, f ) for some τ ∈ G̃

because the election of a morphism requires a choosing of scalars that are on G̃, and
the conditions hold because of the commutativity of the diagrams. In other words, all
representations isomorphic to (W, f ) are in the G̃−orbit of (W, f ), G̃ · (W, f ).

Proof. Let τ : (W, f ) −→ (V, g) an isomorphism of neural networks over Q, and let
α ∈ Q1, with α : s(α) −→ t(α). We will compare the outputs of the neural networks on
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a given input vector x ∈ Cd. Let i ∈ Q0 be any source vertex, i t(α)α . We have,

a(W, f )i(x) =

xi if i is a source vertex

1 if i is a bias vertex

= a(V, g)i(x)

Now let i be a vertex on the first hidden layer, s(α) iα . By definition, we have

a(W, f )i(x) = fi

(
∑

ϵ∈Ei

Wϵ a(W, f )s(ϵ)(x)

)

And also, as Vα = Wα

τs(α)

τs(α)
= Wατt(α), we obtain by Definition 3.1.25 b.:

a(V, g)i(x) = τi fi

(
1
τi

∑
ϵ∈Ei

Vϵ a(V, g)s(ϵ)(x)

)

= τi fi

(
1
τi

∑
ϵ∈Ei

Wϵτt(ϵ) a(V, g)s(ϵ)(x)

)

= τi fi

(
1
τi

∑
ϵ∈Ei

Wϵτi a(V, g)s(ϵ)(x)

)

= τi fi

(
∑

ϵ∈Ei

Wϵ a(V, g)s(ϵ)(x)

)

As by definition, all arrows ϵ in Ei hold t(ϵ) = i:

ϵ1

... i

ϵk

Also note that s(ϵ) is a source vertex for all ϵ ∈ Ei, then, a(V, g)s(ϵ) = a(W, f )s(ϵ), and
we get

a(V, g)i(x) = τi a(W, f )i(x) (3.1)

Now we assume that i is a hidden vertex on the second layer, with s(α) i ,



Chapter 3. Neural Networks and Weak Manifold Hypothesis 65

then,

a(V, g)i(x) = τi fi

(
1
τi

∑
ϵ∈Ei

Vϵ a(V, g)s(ϵ)(x)

)

= τi fi

(
1
τi

∑
ϵ∈Ei

Wϵτi

τs(ϵ)
a(V, g)s(ϵ)(x)

)

= τi fi

(
∑

ϵ∈Ei

Wϵ

τs(ϵ)
a(W, f )s(ϵ)(x)

)
= τi a(W, f )i(x)

where the next to last equation is due to 3.1. We can proceed by induction to obtain

a(W, f )j(x) = τj a(V, g)j(x) for all j ∈ Q0

With this, we find that
Ψ(W, f )(x) = Ψ(V, g)(z)

as by definition they are the activation outputs of the output vertices, and as τ is an
isomorphism of neural networks, τj = 1 for all output vertex j. The arbitrary choice of
x ∈ Cd shows the equality desired.

Example 3.1.29. Take the Example 3.1.27, this is, the neural networks (W, f ) and (V, g)
that we know by Example 3.1.19 and 3.1.27 that are isomorphic. Here we will calculate

its network functions on x =

(
0.6
0.8

)
. The output of the first layer is:

ReLU(W1x) = ReLU

 1.3(0.6)− 0.1(0.8)
0.9(0.6) + 0.5(0.8)
−1.0(0.6) + 0.7(0.8)



= ReLU

 0.7
0.94
−0.04

 =

 0.7
0.94

0


The output of the second layer is:

ReLU(W2 ReLU(W1x)) = ReLU

0.3(0.7)− 1.2(0.94)
0.7(0.7) + 0.2(0.94)
0.6(0.7) + 0.4(0.94)



= ReLU

−0.918
0.678
0.796

 =

 0
0.678
0.796


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Therefore the output of the network is:

Ψ(W, f )(x) = W3(ReLU(W2 ReLU(W1x)))

= W3

 0
0.678
0.796

 =

(
−1.303
0.566

)

Now lets do a forward pass on (τW, τ f ) = (V, g) for the same x. On the first layer we
have: min(0, x)

min(0, x)
ReLU

 τW1x =

min(0, x)
min(0, x)

ReLU


−0.13 0.01
−0.36 −0.2
−1.2 0.84

(0.6
0.8

)

=

min(0, x)
min(0, x)

ReLU


 −0.07
−0.376
−0.048

 =

 −0.07
−0.376

0


On the second hidden layer we obtain: ReLU

ReLU
min(0, x)

 τW2

 −0.07
−0.376

0

 =

 ReLU
ReLU

min(0, x)


−0.9 0.9 0.225
−6.3 −0.45 −0.225
4.2 0.7 0.0583̄


 −0.07
−0.376

0



=

 ReLU
ReLU

min(0, x)


−0.2754

0.6102
−0.5572

 =

 0
0.6102
−0.5572


And lastly,

Ψ((τW, τ f )(x)) = τW3

 0
0.6102
−0.5572



=

 1.3̄ −1.2̄ 1.0

−2.6̄ 0.6̄ −2
7


 0

0.6102
−0.5572


=

(
−1.303
0.566

)
= Ψ(W, f )(x)

as the theorem showed. Note also that the activation outputs of a layer for (W, f ) are
the same as the outputs for (V, g) just multiplied by the corresponding constant that
appears on τ, as we also showed on the proof of the Theorem.

We end up with a property of ReLU networks, called the positive scale
invariance or positive homogeneity.
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Corollary 3.1.30 ((ARMENTA; JODOIN, 2021), Corollary 4.6). Let (W, f ) be a neural
network over a network quiver Q over R where f is the ReLU activation function. Then if
τ = (τv)v∈Q0

where τi = 1 if i is not a hidden vertex and τj > 0 for all other j we have

τ(W, f ) = (τ ·W, f )

In particular,
Ψ(W, f ) = Ψ(τ ·W, f )

Proof. We know that ReLU satisfies ReLU(τix) = τi ReLU(x) when τi > 0, and any
real x. Now, as

(τ · f ) = τi fi

(
x
τi

)
on i ∈ Q0

we obtain,

τi fi

(
x
τi

)
= τi ReLU

(
x
τi

)
= ReLU(x)

Thus, τ · f = f , from which

τ · (W, f ) = (τ ·W, τ · f ) = (τ ·W, f )

as desired.

Example 3.1.31. Consider Example 3.1.19, if we choose τ as a matrix with all positive
real numbers, we would have obtained τ · f = f as the Corollary showed, and then
there is just necessary to do the transformations on the weight matrices.

3.1.3 Types of architectures

At the moment we have described the concepts of neural networks and
how the input vectors flow through it. One important topic to discuss is the one
that expresses how the neural network is constructed, and this is what we call by
architecture.

Definition 3.1.32 ((GOODFELLOW; BENGIO; COURVILLE, 2016)). The architecture of
a neural network refers to the overall structure of it; it says how many units it should have
and how these units are connected to each other.

In particular, we have the following

Definition 3.1.33 ((ARMENTA; JODOIN, 2021), Definition 5.2). Let (W, f ) be a neural
network over Q.

1. The combinatorial architecture is the network quiver Q.
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2. The weight architecture is given by the restrictions on how the weights are chosen, this
is, the values Wϵ for edges ϵ.

3. The activation architecture refers to the set of activation functions fi associated to the
loops of Q.

Different types of neural networks may have different combinatorial, weight
and activation architectures, but we do know that isomorphic neural networks have the
same combinatorial architecture by definition. However, an isomorphism may change
the weight or the activation architecture, as the Example 3.1.29 showed.

3.2 Data representations in a Neural Network
In this section our objective will be to describe a way of representing the

data in a different framework and perspective, more specifically, via the neuron outputs
that are obtained by a forward pass. This will allow to encode each vector from a data
set in a thin quiver representation, which then will have a mathematical description
of such data in terms of the architecture of the neural network. Such representation
will have a great advantage, it won’t need the existence of activation functions, and we
will describe this phenomena in detail. As in (ARMENTA; JODOIN, 2021), here we
will focus on how the encoding of the representations happens rather than on how
such representations are learned by a determined neural network. We start by defining
what we mean by data.

Definition 3.2.1 ((ARMENTA; JODOIN, 2021), Definition 6.1). A labeled data set is a
finite set {(xi, ti)}n

i=1 of pairs such that xi ∈ Cd (which we will call a data vector) and ti will
be called a data target (or target).

Throughout the text we will say indistinctively dataset or data sample. For
example, ti can be a number or an element of a set (for regression and classification,
respectively).

Now let x be a data vector from a data sample D = {(xi, ti)}n
i=1. We will construct

a thin quiver representation with the outputs of the neuron values when we make
x flow through the neural network. As such, the object that originates is specific
to the data vector, and it will have in mind the activation functions and each one
of the neuron values (also called feature maps). Those are important as they can be
visualized (YOSINSKI et al., 2015). We will call such thin quiver representation by W f

x ,
with identity activations as in Example 3.1.10. As W f

x will take in mind the activation
outputs and the values before doing the activation, this inspires the following:
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Definition 3.2.2 ((ARMENTA et al., 2022), p. 116). Let Q a network quiver and (W, f )
a neural network over Q. Given a vertex i ∈ Q0 and a vector x ∈ Cd, the preactivation of
(W, f ) at i with respect to x will be:

pre-a(W, f )i(x) :=


1 if i is a source vertex

∑
α∈Ev

Wα a(W, f )s(α)(x) in any other case

Remark 3.2.3. Note that if i is a hidden vertex and x ∈ Cd,

fi (pre-a(W, f )i(x)) = a(W, f )i(x)

With this, we can define

Definition 3.2.4 ((ARMENTA; JODOIN, 2021)). Let (W, f ) be a neural network and x a
data vector from a data sample D. Then the representation of (W, f) at x will be an identity
neural network (W f

x , 1), where(
W f

x

)
ϵ
= Wϵ

a(W, f )s(ϵ)(x)
pre-a(W, f )s(ϵ)(x)

and ϵ ∈ Q1 : s(ϵ) −→ t(ϵ). We will denote it by W f
x , as there is no confusion with the

activation functions.

Remark 3.2.5. Note that if s(ϵ) is an input vertex,
(

W f
x

)
ϵ
= Wϵxi and if s(ϵ) is a bias

vertex,
(

W f
x

)
ϵ
= Wϵ.

Example 3.2.6. Consider the A5 neural network (W, f ) given by,

C C C C C
Wα

f1

Wβ

f2

Wγ

f3

Wδ

Given a data vector x ∈ C we obtain that W f
x will have the form:

C C C C C
Wαx

1

Wβ
a(W, f )2(x)

pre-a(W, f )2(x)

1

Wγ
a(W, f )3(x)

pre-a(W, f )3(x)

1

Wδ
a(W, f )3(x)

pre-a(W, f )3(x)

Applying the definition we get:

a(W, f )2(x) = f1(Wα a(W, f )1(x))

= f1(Wαx)

pre-a(W, f )2(x) = Wαx
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Similarly,

a(W, f )3(x) = f2
(
Wβ a(W, f )2(x)

)
= f2

(
Wβ f1(Wαx)

)
pre-a(W, f )3(x) = Wβ f1(Wαx)

And lastly,

a(W, f )4(x) = f3 (Wγ a(W, f )3(x))

= f3
(
Wγ f2

(
Wβ f1(Wαx)

))
pre-a(W, f )4(x) = Wγ f2

(
Wβ f1(Wαx)

)
Which implies that W f

x has the form:

C C C C C
Wαx

1

Wβ
f1(Wαx)

Wαx

1

Wγ
f2(Wβ f1(Wαx))

Wβ f1(Wαx)

1

Wδ

f3(Wγ f2(Wβ f1(Wαx)))

Wγ f2(Wβ f1(Wαx))

Example 3.2.7. Consider the D4 neural network given by:

(W, f ) =

C

C C

C

Wα

f1 Wβ

Wγ

If x is a data vector,

(W f
x , 1) =

C

C C

C

Wαx

1
Wβ

a(W
, f ) 2(

x)

pre-a(W
, f ) 2(

x)

W
γ a(W, f )2 (x)

pre-a(W, f )2 (x)

and doing the same computations as before, we get:

(W f
x , 1) =

C

C C

C

Wαx

1
Wβ

f 1(
Wαx)

Wαx

W
γ f1 (W

α x)W
α x
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There is a possibility where

pre-a(W, f )s(ϵ)(x) = 0

and then the representation of (W, f ) at x won’t be defined at such a vertex. Note
nevertheless that the set where it happens is of measure zero, and then, in such cases
we can add a value η ̸= 0 (sufficiently small but computable) to the preactivation
and consider that value as the preactivation. With this in mind, we will suppose
pre-a(W, f )i(x) ̸= 0 from now on.

The biggest property if the representation W f
x is that it does not alter the network

function of (W, f ) when evaluated on a set of ones. This means that W f
x encodes all

the combinatorics done by the neural network when making x flow. More formally,

Theorem 3.2.1 ((ARMENTA; JODOIN, 2021), Theorem 6.4). Let (W, f ) be a neural
network over a network quiver Q, x ∈ Cd a data vector from a labeled data set D, and W f

x the
representation of (W, f ) at x. Then,

Ψ(W, f )(x) = Ψ(W f
x , 1)(1d)

Proof. We will use a similar argument to the one in Theorem 3.1.1. Let i ∈ Q0 be a
source vertex. Then we have by definition

a(W f
x , 1)i(1d) = 1

If j ∈ Q0 is in the first hidden layer, we have that for every α ∈ Ej,

a(W f
x , 1)s(α)(1

d) = 1 (3.2)

Given such a j ∈ Ej, we can do a decomposition Ej = EB
j ∩ E I

j , where

EB
j = {α ∈ Ej | s(α) is a bias vertex}

E I
j = {α ∈ Ej | s(α) is an input vertex}

where such union is clearly disjoint. Therefore,

a(W f
x , 1)j(1d) = ∑

ϵ∈Ej

(
W f

x

)
ϵ

a(W f
x , 1)s(ϵ)(1

d)

= ∑
ϵ∈Ej

(
W f

x

)
ϵ

by (3.2)

= ∑
ϵ∈EB

j

(
W f

x

)
ϵ
+ ∑

ϵ∈E I
j

(
W f

x

)
ϵ

= ∑
ϵ∈EB

j

Wϵ + ∑
ϵ∈E I

j

Wϵxϵ by Remark 3.2.5

= pre-a(W, f )j(x)
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Then we have that
f j

(
a(W f

x , 1)j(1d)
)
= a(W, f )j(x)

Now, if j ∈ Q0 is in the second hidden layer we get:

a(W f
x , 1)j(1d) = ∑

ϵ∈Ej

(
W f

x

)
ϵ

a(W f
x , 1)s(ϵ)(1

d)

= ∑
ϵ∈Ej

Wϵ

a(W, f )s(ϵ)(x)
pre-a(W, f )s(ϵ)(x)

a(W f
x , 1)s(ϵ)(1

d)

= ∑
ϵ∈Ej

Wϵ

a(W, f )s(ϵ)(x)
pre-a(W, f )s(ϵ)(x)

pre-a(W, f )s(ϵ)(x)

= ∑
ϵ∈Ej

Wϵ a(W, f )s(ϵ)(x)

= pre-a(W, f )j(x)

This says that
f j

(
a(W f

x , 1)(1d)
)
= a(W, f )j(x)

Proceeding by induction we obtain:

Ψ(W f
x , 1)(1d) = Ψ(W, f )(x)

as the output layer does not have activation functions and the function Ψ is the
evaluation of the activation outputs at the output vertices.

Example 3.2.8. Consider the Example 3.2.6. Then

Ψ(W, f )(x) = a(W, f )5(x)

= Wδ a(W, f )4(x)

= Wδ f3 (Wγ a(W, f )3(x))

= Wδ f3
(
Wγ f2

(
Wβ a(W, f )2(x)

))
= Wδ f3

(
Wγ f2

(
Wβ f1 (Wα a(W, f )1(x))

))
= Wδ f3

(
Wγ f2

(
Wβ f1 (Wαx)

))
Similarly, noting that here d = 1, the output of representation of the data at x will be:

Ψ(W f
x , 1)(1) = a(W f

x , 1)5(1)

= Wδ

f3(Wγ f2(Wβ f1(Wαx)))
Wγ f2(Wβ f1(Wαx))

a(W f
x , 1)4(1)

= Wδ

f3(Wγ f2(Wβ f1(Wαx)))
Wγ f2(Wβ f1(Wαx))

Wγ
f2(Wβ f1(Wαx))

Wβ f1(Wαx)
a(W f

x , 1)3(1)

= Wδ

f3(Wγ f2(Wβ f1(Wαx)))
Wβ f1(Wαx)

a(W f
x , 1)3(1)
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= Wδ

f3(Wγ f2(Wβ f1(Wαx)))
Wβ f1(Wαx)

Wβ
f1(Wαx)

Wαx
a(W f

x , 1)2(1)

= Wδ

f3(Wγ f2(Wβ f1(Wαx)))
Wαx

Wαx a(W f
x , 1)1(1)

= Wδ f3(Wγ f2(Wβ f1(Wαx)))

= Ψ(W, f )(x)

As the Theorem showed.

Example 3.2.9 ((ARMENTA; JODOIN, 2021), Appendix B). Consider Example 3.1.29.
There we obtained that

Ψ(W, f )(x) =

(
−1.303
0.566

)
We denote by V1, V2 and V3 the weight matrices of W f

x . Then V1 is given by

V1 =

 1.3(0.6) −0.1(0.8)
0.9(0.6) 0.5(0.8)
−1.0(0.6) 0.7(0.8)



=

 0.78 −0.08
0.54 0.4
−0.6 0.56


For V2 and V3 we will have to calculate the activations and the corresponding pre-
activations on each layer. However, we already did that in Example 3.1.29. More
specifically,

a(W, f )3(x) = 0.7 = pre-a(W, f )3(x)

a(W, f )4(x) = 0.94 = pre-a(W, f )4(x)

a(W, f )5(x) = 0

pre-a(W, f )5(x) = −0.04

Which indicates that:

V2 =



0.3
(

0.7
0.7

)
−1.2

(
0.94
0.94

)
0.9
(

0
−0.04

)
0.7
(

0.7
0.7

)
0.2
(

0.94
0.94

)
−0.3

(
0
−0.04

)
0.6
(

0.7
0.7

)
0.4
(

0.94
0.94

)
−0.1

(
0
−0.04

)


=

0.3 −1.2 0
0.7 0.2 0
0.6 0.4 0


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Similarly, we obtain:

V3 =


0.4
(

0
−0.918

)
−1.1

(
0.678
0.678

)
−0.7

(
0.796
0.796

)
−0.8

(
0

−0.918

)
0.6
(

0.678
0.678

)
0.2
(

0.796
0.796

)


=

(
0 −1.1 −0.7
0 0.6 0.2

)

Now we will compute Ψ(W f
x , 1) on

(
1
1

)
. We have that

V1

(
1
1

)
=

 0.78− 0.08
0.54 + 0.04
−0.6 + 0.56

 =

 0.7
0.94
−0.04

 = W1x

On the second layer,

V2

 0.7
0.94
−0.04

 =

0.3(0.7)− 1.2(0.94)
0.7(0.7) + 0.2(0.94)
0.6(0.7) + 0.4(0.94)

 =

−0.918
0.678
0.796

 = W2 (ReLU(W1x))

And on the third layer we obtain,

Ψ(W f
x , 1)

(
1
1

)
= V3

−0.918
0.678
0.796


=

(
−1.1(0.678)− 0.7(0.796)
0.6(0.678) + 0.2(0.796)

)

=

(
−1.303
0.566

)
= Ψ(W, f )(x)

Which again verifies the theorem.

Note that the combinatorial architectures of (W, f ) and (W f
x , 1) are equal,

and the weight and activation architectures of (W f
x , 1) are determined by the corre-

sponding architectures of (W, f ), and the outputs of (W, f ) when x is percolating
through it. In particular, we see that all the nonlinear parts of the activation functions
can be encoded in a representation (a linear object). We end this section with a result
on two isomorphic representations.

Corollary 3.2.10 ((ARMENTA; JODOIN, 2021), Corollary 6.5). Let x1 and x2 are two data
vectors from a data sample D. If W f

x1
∼= W f

x2 via G̃, then

Ψ(W, f )(x1) = Ψ(W, f )(x2)
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Proof. As (W f
x1 , 1) ∼= (W f

x2 , 1), we have that

Ψ(W f
x1 , 1)(1d) = Ψ(W f

x2 , 1)(1d)

Using Theorem 3.2.1 twice we get:

Ψ(W, f )(x1) = Ψ(W f
x1 , 1)(1d)

= Ψ(W f
x2 , 1)(1d)

= Ψ(W, f )(x2)

As desired.

3.3 Stable Neural Networks
The last Corollary and Theorem in the prior section show that the isomor-

phism classes of thin quiver representations
[
W f

x

]
under the action of the group G̃

of neural networks represent the data and the output of (W, f ). This induces the
construction of a space whose points will be such isoclasses of quiver representations,
which ends up being a moduli space.

In this section our objective is to define it, and with it to propose a different version
of the manifold hypothesis ((GOODFELLOW; BENGIO; COURVILLE, 2016), Chapter
5.11.3) in the same way as did by (ARMENTA; JODOIN, 2021). The manifold hypothesis
roughly states that many data of high-dimensions lie on manifolds of less dimension
inside the input space; however, here we will describe an explicit map from the
input space to the moduli space of a neural network and then we can translate the
data manifold to the moduli space. More specifically, we will prove that the network
function factors through the moduli space.

For doing so, we will put some restrictions.

Remark 3.3.1. We will assume that the weights of (W, f ) and W f
x are non-zero. We

can assume this as the set where it happens is of measure zero, and we could add a
number to make it non-zero sufficiently small so that it is still computable.

Remark 3.3.2. We will also assume for simplicity, that there are no bias vertices in Q.
Remember that the group of change basis G̃ does not change the bias vertex, and as
any input vertex can be extended to a vertex with one’s the number of those vertices,
such assumption can be made. It is also noteworthy that all the results from this section
are also applied to neural networks with bias vertices.

For doing such formalization, we will use framed quiver representations and
their dual concepts, co-framed representations; following the philosophy of (REINEKE,
2008a) for our case of neural networks.
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Definition 3.3.3 ((ARMENTA; JODOIN, 2021), Definition 7.2). Let Q be a network quiver
and Q̃ its hidden quiver as in Definition 3.1.20. We will call input vertices of Q̃ to the subset:

{v ∈ Q̃0 | ∃ α ∈ Q1 such that t(α) = v and s(α) is input of Q}

and we call output vertices of Q̃ to the set:

{w ∈ Q̃0 | ∃ α ∈ Q1 such that s(α) = w and t(α) is output of Q}

This is, the input vertices of Q̃ are those vertices connected to the input vertices of Q, and the
output vertices of Q̃ are those connected to the output vertices of Q.

Example 3.3.4. Consider the network quiver Q:

Q :

1 9

4 7

2 6 10

5 8

3 11

We know that

Q̃ :

4 7

6

5 8

Then, according to the above definition, the vertices 4, 5 and 7 are input vertices of Q̃
and the vertices 7, 8 and 5 are output vertices of Q̃. Note also that 7 is not a source
vertex nor vertex 5 is a sink.

Now, given W̃ a thin representation of Q̃, we fix the following families of
vector spaces:

• {Vi}i∈Q̃0
, indexed by vertices of Q̃, Vi = Ck when i is an output vertex of Q̃ and

0 for any other i ∈ Q̃0.

• {Uj}j∈Q̃0
, also indexed by Q̃0, where Uj = Cd when j is an output vertex of Q̃

and Uj = 0 for any other j ∈ Q̃0.
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W̃

l
h

Cd Ck

Figure 3 – An illustration of a double framed thin quiver representation. In the lateral
boxes there are the vector spaces of the framing and co-framing. Taken from
(ARMENTA; JODOIN, 2021).

With this in mind, we proceed to define our building blocks for the main objects of the
section.

Definition 3.3.5 ((ARMENTA; JODOIN, 2021), Definition 7.4). Let W̃ be a thin represen-
tation of Q̃. Then,

a. A pair (W̃, h), where h = {hi}i∈Q̃0
is given by hi : W̃i −→ Vi for each i ∈ Q̃0 will be

called a framed quiver representation of Q̃ by the family of vector spaces {Vi}i∈Q̃0
.

b. A pair (W̃, l), where h = {lj}j∈Q̃0
is given by lj : Uj −→ W̃j for each j ∈ Q̃0 is called

a co-framed quiver representation of Q̃ by the family of vector spaces {Uj}j∈Q̃0
.

Note that by the definition of the vector spaces {Vi}i∈Q̃0
and {Uj}j∈Q̃0

, we

have that hi = 0 when i is not an output vertex of Q̃ and lj = 0 when j ∈ Q̃0 is not an
input vertex of Q̃.

Example 3.3.6. Consider Example 3.3.4. Then, given a thin representation of Q̃, called
W̃ and a choice of 3 non-zero maps hi : C −→ C3 for i = 5, 7, 8 will give a framed
quiver representation for Q̃. In a diagram,

C C

C

C C

C3

h7

h5

h8
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where we omitted he zero morphisms. Also, a choosing if non-zero maps lj : C −→ C

for j = 4, 5, 7 will give a co-framed representation for Q̃, this is

C3

C C

C

C C

l4

l7

l5

where again, we omitted the zero morphisms.

We define then our main objects.

Definition 3.3.7 ((ARMENTA; JODOIN, 2021), Definition 7.6). A double framed thin
quiver representation for Q̃ is a triple (l, W̃, h), where:

• W̃ is a thin quiver representation of Q̃, the hidden quiver;

• (W̃, l) is a co-framed representation of Q̃ and

• (W̃, h) is a framed representation of Q̃.

Example 3.3.8. Consider the Example 3.3.6. Then (l, W̃, h) with l = (l4, l5, l6, l7, l8) and
h = (h4, h5, h6, h7, h8) is a double framed thin quiver representation for Q,

C C

C3 C C3

C C

h7

l7

l4

l5

h5

h8

where the zero morphisms are missing.

As before, there is group that acts on such representations in a "natural"
way, but we should be a bit careful with the details.
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Definition 3.3.9 ((ARMENTA; JODOIN, 2021), Definition 7.8). The group of change
basis for double framed thin quiver representations is G̃, the group of change of basis for neural
networks. Given a (l, W̃, h), with lj = (l1

j , . . . , ld
j ), hi = (h1

i , . . . , hk
i ) and τ ∈ G̃, the action

of the group will be given by

τ ·
(

l, W̃, h
)
=
(

τ · l, τ · W̃, τ · h
)

where,

• τ · W̃ is the same as defined in Definition 3.1.25 a..

• (τ · l)j =
(

l1
j τj, · · · , ld

j τj

)
for all j ∈ Q̃0, and

• (τ · h)i =

(
h1

i
τi

, · · · ,
hk

i
τi

)
for all i ∈ Q̃0.

We note that every double framed thin quiver representation for Q̃ can be
seen as a

τ ·
(

l, W̃, h
)

for some τ ∈ G̃

With this we proceed to prove the first big result of the section: we can study isoclasses
of double framed thin representations in the attempt of studying isoclasses of thin
quiver representations

[
W f

x

]
.

Theorem 3.3.1 ((ARMENTA; JODOIN, 2021), Theorem 7.9). There is a 1-1 correspondence
between the set of isomorphism classes of thin representations [W] over the delooped quiver Q◦

via G̃ and the set of isomorphism classes
[(

l, W̃, h
)]

of double framed thin quiver representations
of Q̃.

Proof. We first note that the change of basis group is the same, so the isoclasses will be
given by the same action. The correspondence is as follows:

• Suppose we have a thin representation W of Q◦. Then, by removing the input
and output layers of Q we obtain a thin representation W̃ of Q̃. We just need to
construct the maps l and h, but these are given by the weights starting on input
vertices of Q for the map l, and by the weights ending on output vertices of Q
for the map h (here we considered the input vertices as coordinates of Cd, and
the output as coordinates of Ck).

• Now, given a double framed thin quiver representation (l, W̃, h), the entries l
become the weights of a thin quiver representation starting on input vertices, and
dually for the entries of h. The weights of W̃ will define the hidden weights of W.
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The proof of this theorem allows to do two things:

1. Identify easily a thin representation W of Q◦ with a double framed thin quiver
representation of Q̃.

2. Identify the isoclasses
[W] =

[
(l, W̃, h)

]
We will use such identifications indistinctively whenever there is no risk to confusion.

Our objective becomes to study the space of isomorphism classes of all double framed
thin quiver representations of Q̃. By a work (NAKAJIMA, 1998), it is known that such
varieties of quivers don’t behave well, its topology is not Hausdorff in most cases. Then
we proceed to use the stability from (KING, 1994), as in Definition 2.2.1, one that he
showed to have a good structure. We become interested now to study the stable double
framed thin quiver representations.

In (REINEKE, 2008a) was given a good description of those spaces for a framing (called
framed moduli spaces), and was introduced a definition of stability that coincides with
King’s one. Here we give such definition as in (ARMENTA; JODOIN, 2021), where we
do the framing and the co-framing at the same time, and we use the dual stability for
the co-framing.

Definition 3.3.10 ((ARMENTA; JODOIN, 2021), Definition 7.12). Let (l, W̃, h) a double
framed thin quiver representation. We say that (l, W̃, h) is stable if:

a. The only subrepresentation U of W̃ contained in ker(h) is 0, and

b. The only subrepresentation V of W̃ containing im(l) is W̃.

We make a clarification on the above definition. Suppose we have a double
framed thin representation (l, W̃, h). Then,

• l is defined by a family of maps of the type

{li : Cni −→ W̃i | i ∈ Q̃0}

where ni = 0 if i is not an input vertex of Q̃ and ni = d when i is an input vertex
of Q̃. Then im(l) will be

im(l) = (im(li))i∈Q̃0
, where im(li) ⊂ W̃i

a family of vector spaces indexed by Q̃0.
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• h is also defined as a family of maps

{hj : W̃j −→ Cnj | j ∈ Q̃0}

where nj = k when j is an output vertex of Q̃ and 0 in any other case. Note that
ker(h) is inside the representation W̃. Moreover,

ker(h) =
(
ker(hj)

)
j∈Q̃0

, where ker(hj) ⊂ W̃j

is a family of vector spaces indexed by Q̃.

On Definition 3.3.10 we assumed without loss of generality that the weights
on the input layer of W f

x (see Remark 3.3.1), and that all maps hj are non-zero for every
output vertex j of Q̃, as the set where those events occur are of measure zero, and it is
possible (again) to add an η > 0 sufficiently small and computable. Similarly, we will
assume that all maps li are non-zero for every input vertex i of Q̃.

Theorem 3.3.2 ((ARMENTA; JODOIN, 2021), Theorem 7.13). Let (W, f ) be a neural
network and x ∈ Cd a data vector from a labeled data set D. Then the double framed thin
quiver representation W f

x is stable.

Proof. For proving that W f
x = (l, W̃, h) is stable, we are going to prove a. and b..

Let i ∈ Q0 an output vertex, then hi : C −→ Ck is a linear map, so ker hi ∈ {0, C}. If
ker hi = C, then hi = 0, but by hypothesis we have hi ̸= 0. This implies ker(hi) = 0.
Let us suppose that U = (Uj)j∈Q0 is a subrepresentation of W̃ such that U ⊂ ker(h).
We obtain that Ui ⊂ ker(hi) = 0 for each output vertex i. If all the vertices are output
vertices of W̃ we are done, as we showed that each vector space (at an output vertex)
of the subrepresentation U must be zero.

Let l be a vertex that is not output. As Ul ⊂ ker(hl), it could be 0 or C. If all vertices
have as vector spaces 0 then we are also done, as U must be the zero representation.
Suppose that there are vertices such that its corresponding vector space is C. Note
that among those vertices, there exists a vertex l and an arrow α : l −→ t(α) such
that Ut(α) = 0, as the network quiver is connected and W f

x has at least one output
vertex (where its corresponding vector space is 0). This means that we have a critic
of type I at the vertex l, as shown by the Figure 4. A contradiction because U is a
subrepresentation, and there exists an injective morphism from U to W̃. Then, there
are no vertices where its corresponding vector space is C, and this shows a..

Given an input vertex j ∈ Q0 we have lj : Cd −→ C a linear map, and then im(lj) ∈
{0, C}. If im(lj) = 0, lj = 0, and as by hypothesis all lj ̸= 0 for output vertices j, we get
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U :

...
...

· · ·

· · ·

C 0
Uα

W f
x : C C

...
...

· · ·

· · ·

Hidden
vertex l

An output
vertex of Q̃

Figure 4 – The subrepresentation U ⊂ ker(h) of W f
x , and its corresponding critic of

type I, shown in blue.

im(lj) = C. Suppose we are given a V ⊂ W̃ such that im(l) ⊂ V, we know then that
for any input vertex j,

C = im(lj) ⊂ Vj

which implies Vj = C for each input vertex j.

Once again, if all vector spaces of V are C, or if all vertices from W̃ are input vertices,
we are done. Suppose that there are vertices such that its corresponding vector space is
0. We can find then an input vertex j′ and an arrow β : j′ −→ t(β) such that Vt(β) = 0.
We obtain again a critic of type I at the vertex j′, as shown by the Figure 5. As before
this is a contradiction and with it b. is proved.

Now we proceed to define some last notions that will help us to achieve our
expected objective.

Definition 3.3.11 ((ARMENTA; JODOIN, 2021), Definition 7.14). We will denote by

dRk(Q̃) the space of all double framed thin quiver representations. Similarly, the moduli
space of double framed thin quiver representations of Q̃ is

dMk(Q̃) := {[V] |V ∈ dRk(Q̃) is stable}

Note that the elements of the moduli space are isoclasses of stable double
framed thin quiver representations of Q̃ over the action of the group G̃ of neural
networks. Now,
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V :

...
...

· · ·

· · ·

C 0
Vβ

W f
x : C C

...
...

· · ·

· · ·

The input
vertex j′

A hidden
vertex of Q̃

Figure 5 – The subrepresentation im(l) ⊂ V of W f
x , and its corresponding critic of type

I, shown in red.

Definition 3.3.12 ((ARMENTA et al., 2022), p. 16). Let (W, f ) be a neural network. Then,
the knowledge map of (W, f ) is

φ(W, f ) : Cd −→ dRk(Q̃)

x 7−→W f
x

By Theorem 3.3.2, if all the weights are non-zero then the knowledge map
takes values into the moduli space:

φ(W, f ) : Cd −→ dMk(Q̃)

x 7−→
[
W f

x

]
Now given [V] ∈ dRk(Q̃), we can define a map:

Ψ̂ : dMk(Q̃) −→ C

by Ψ̂ ([V]) := Ψ(V, 1)(1d). We see that Ψ̂ is well-defined as the election of the rep-
resentative does not alter the value of the network function by Theorem 3.1.1. With
this,

Corollary 3.3.13 ((ARMENTA; JODOIN, 2021), Corollary 7.18). The network function of
a neural network can be written as:

Ψ(W, f ) = Ψ̂ ◦ φ(W, f )
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Which is equivalent to say that the following diagram commutes:

Cd Ck

dMk(Q̃)

Ψ(W, f )

φ(W, f )
Ψ̂

Proof. By Theorem 3.2.1, given an x ∈ Cd we have:

Ψ̂ ◦ φ(W, f )(x) = Ψ̂
[
W f

x

]
= Ψ(W f

x , 1)(1d)

= Ψ(W, f )(x)

Which shows the corollary.

The last result shows that all the decisions of (W, f ) pass through the moduli
space and that this does not depend on the architecture, nor the data. We can also
mention that this has been generalized to a suitable functoriality on the neural network
((ARMENTA et al., 2022), Theorem 7.3).

One interesting remark of last corollary ((ARMENTA; JODOIN, 2021), Section 7.1,
Consequence 3) is that the data manifold in the input space of (W, f ), denotedM is
taken via φ(W, f ) to

φ(W, f )(M) ⊂ dMk(Q̃)

That ends up being a subspace of the moduli space, which parametrizes all the outputs
that the neural network (W, f ) produces on M. In particular, we want to compute
the dimension of such a space, and this will give an insight into the variation of the
manifold hypothesis. However, even if we don’t know exactly what it is, we have a
bound given by the following and last theorem of the chapter, which will be proved
with more generality in Chapter 4.

Theorem 3.3.3 ((ARMENTA; JODOIN, 2021), Theorem 7.16). Let Q a network quiver.
There exists a geometric quotient dMk(Q̃) of dRk(Q̃) by the action of Q̃, which is non-empty
and with complex dimension

dimC

(
dMk(Q̃)

)
= |Q◦1 | − |Q̃0|
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4 The Moduli Space of Neural Networks

The last results from Chapter 3 say in particular that the space constructed
is a quotient as in Subsection 1.4.3, and then it induces the question of studying the
properties of such a space via some algebraic geometry tools. In (REINEKE, 2008a)
some study of moduli spaces of quiver representations were studied, introducing the
concept of a framed moduli space, describing also different interpretations of the
space. We briefly mentioned this word in Definition 3.3.7, which is in fact related to
the results obtained in (REINEKE, 2008a).

Using those tools, and inspired on the study of moduli spaces that appears in the
context of neural networks, in (ARMENTA et al., 2022) an extensive study of the
geometric properties of a more general space was made (Q does not need to be a
network quiver, for example). In this last chapter, our intention is to develop the first
part of such text corresponding to Chapters 2, 3 and 4, to present some examples on
the theory and to make a relation with the space dMk(Q). Lastly, we comment on
some possible implications of the results presented in this text.

4.1 Deframing
Inspired by the GIT approach (mentioned on the preliminaries) and the

construction of the moduli space of neural networks as in the chapter before, we want
to study the space of classes of isomorphisms of representations under the action of
a determined group. However, as we mentioned before, the group may be large and
then such study may be hard. In this section our objective is to show that in the case
of finite acyclic quivers (for example, the hidden quiver of a network quiver) we can
study the corresponding representation space as one of a deframed quiver. This means
then that we can reduce the problem of studying the moduli space for the quiver in
terms of another with no sinks or sources, and with oriented cycles.

We start by fixing some notation and expanding some definitions from last chapter.

From now on, let Q be an acyclic finite quiver, sQ its set of sources and tQ its set of
sinks.

Definition 4.1.1. The hidden quiver Q̃ is the subquiver of Q with all arrows between the set
of vertices: Q̃0 = Q0 − sQ − tQ. This is, the full subquiver without sinks or sources.

We already gave some examples of hidden quivers when Q is a network
quiver. In this case, we have that sQ is the set of bias and input vertices and tQ is
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the set of output vertices. However, note that this definition is wider as gives the
option of having multiple arrows, and the quivers may not be arranged by layers, for
example. We fix a dimension vector d = (di)i∈Q0

of Q and complex vector spaces Vi,
with dim(Vi) = di for i ∈ Q0.

Definition 4.1.2. The representation space of Q will be

Rd(Q) =
⊕

α:i→j

Hom(Vi, Vj)

also called the variety of complex representations of dimension vector d. Its base change
group is

Gd(Q) = ∏
i∈Q0

GL(Vi)

which acts on Rd(Q) by

Gd(Q)×Rd(Q) −→ Rd(Q)(
(τi)i∈Q0 , (Vα)α∈Q1

)
7−→ (τjVατ−1

i )α: i→j

And this can be seen in a diagram as follows:

Vi Vj

Vi Vj

Vα

τi τj

τjVατ−1
i

We also have the corresponding subgroup

Gd(Q̃) = {(τi)i∈Q0
| τi = 1 for all i ̸∈ Q̃0}

So this group can only change the space when one of the spaces corresponds to a
non-hidden vertex. Note the similarity with the corresponding group in last chapter.
The main objective of this chapter is to study Gd(Q̃)−orbits in Rd(Q), and to give a
description on the space of the orbits along with some of its properties. We explore a
little bit on the representation spaces of the hidden quiver and its relation with Q.

Definition 4.1.3 ((ARMENTA et al., 2022), Definition 2.1). Let i ∈ Q̃0, and sQ =

{s1, . . . , sk}, tQ = {t1, . . . , tq}

Ui =
⊕

α: t(α)=i
s(α)∈sQ

Vs(α) =
⊕

α: sk→i

Vsk

then Ui has a copy of each Vs whenever there is an arrow from a source to the vertex i. Similarly,

Wi =
⊕

α: s(α)=i
t(α)∈tQ

Vt(α) =
⊕

α: i→tl

Vtl
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and Wi has a copy of each space Vt whenever there is an arrow from i to a sink vertex t. We
write ui := dim Ui and wi = dim Wi.

Remark 4.1.4. Note that in particular, if s is a source from Q̃ then Us ̸= 0, or else it
would be a source from Q, and it will not belong to Q̃. Similarly, Wt ̸= 0 for every sink
t from Q̃.

Example 4.1.5. Consider the quiver Q shown:

1

9

2 5 7

10

3

6 8

4 11

We know that Q̃ is given by:

Q̃ =

5 7

6 8

Suppose we have a thin representation of Q, this is d = (1, . . . , 1), or equivalently,
M = (Vi)i∈Q0 = (C)i∈Q0 . Noting that sQ = {1, 2, 3, 4}, tQ{9, 10, 11}:

U5 =
⊕

α: t(α)=5
s(α)∈sQ

Vs(α) =
⊕

α: t(α)=5
s(α)∈sQ

C = C3

as there are only 3 arrows with that condition. Similarly,

U6 =
⊕

α: t(α)=6
s(α)∈sQ

C = C2

Lastly, we have
U7 =

⊕
α: t(α)=7
s(α)∈sQ

C = 0 = U8



Chapter 4. The Moduli Space of Neural Networks 88

And we obtain directly that u5 = 3, u6 = 2, u7 = u8 = 0. Following a similar process
we can also get the W vector spaces, namely,

W5 =
⊕

α: s(α)=5
t(α)∈tQ

Vt(α) =
⊕

α: s(α)=5
t(α)∈tQ

C = C

W6 =
⊕

α: s(α)=6
t(α)∈tQ

C = 0

W7 =
⊕

α: s(α)=7
t(α)∈tQ

C = C2 = W8

This also implies that w5 = 1, w6 = 0, w7 = w8 = 2.

Note that if we changed our thin representation for another one, it directly
changes the spaces U and W. When the representation is thin, we can obtain the values
u, v by just counting the arrows on the quiver that have the property under the sum.
Now we can group all maps that go from a source to any vertex i in Q̃0 into one:

li = (Vα)α: sk→i : Ui −→ Vi

and similarly all the maps that go from a vertex j ∈ Q̃0 to a sink:

hj = (Vα)α: j→tl
: Vj −→Wj

In our running example we have,

Example 4.1.6. Consider Example 4.1.5, then we can compress the morphisms into:

C

C3 C C C2

C2 C C C

f5

h5

h7

f6 h8

and where we did not draw the zero morphisms. We note the similarity with Example
3.3.8.

We remember that we have a dimension vector d of Q fixed, and then we
can obtain a dimension vector for Q̃ by just restricting it, and it will be called d̃. With
this construction, we can make a description of the representation space of Q with
dimension vector d.

Lemma 4.1.7 ((ARMENTA et al., 2022), Lemma 2.2). We obtain an isomorphism of affine
spaces:

Rd(Q) ∼= Rd̃(Q̃)×
⊕
i∈Q̃0

Hom(Ui, Vi)×
⊕
i∈Q̃0

Hom(Vi, Wi)
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and we describe the action of Gd(Q̃) in these terms as:

(τi)i∈Q̃0
·
(
(Vα)α∈Q̃1

, (li)i∈Q̃0
, (hi)i∈Q̃0

)
=
(
(τjVατ−1

i )α: i→j, (τili)i∈Q̃0
, (hiτ

−1
i )i∈Q̃0

)
Proof. The isomorphism is naturally given by:

(Vα)α∈Q1
7−→

(
(Vα)α∈Q̃1

, (li)i∈Q̃0
, (hi)i∈Q̃0

)
as the spaces Hom(Ui, Vi) and Hom(Vi, Wi) compensate for all the morphisms between
the hidden quiver and the sink and sources vertices. The action is obtained by its
definition, and using the fact that on sinks and sources the corresponding τi is the
identity.

Example 4.1.8. Consider the quiver

Q =

1 7

2 4 5 6

3 8

and the dimension vector d = (1, . . . , 1). This is, a thin representation. Then we have
that:

Rd(Q) =
⊕

α: i→j

Hom(C, C) =
⊕

α: i→j

C ∼= C7

as |Q1| = 7. We can see that Q̃ = A3, and then, by restricting the dimension vec-
tor we obtain Rd̃(Q̃) ∼= C2 as A3 has 2 arrows. In particular, dimRd(Q) = 7 and
dimRd̃(Q̃) = 2. On other side,⊕

i∈Q̃0

Hom(Ui, Vi) = Hom(U4, V4)⊕Hom(U5, V5)⊕Hom(U6, V6)

= Hom(C3, C)⊕Hom(0, C)⊕Hom(0, C)

= Hom(C3, C) ∼= C3

and we obtain that its dimension is 3. Similarly,⊕
i∈Q̃0

Hom(Vi, Wi) = Hom(V4, W4)⊕Hom(V5, W5)⊕Hom(V6, W6)

= Hom(C, 0)⊕Hom(C, 0)⊕Hom(C, C2)

= Hom(C, C2) ∼= C2

and its dimension is 2. This shows that

7 = dimRd(Q) = dimRd̃(Q̃) + dim
⊕
i∈Q̃0

Hom(Ui, Vi) + dim
⊕
i∈Q̃0

Hom(Vi, Wi)

= 2 + 3 + 2

And which shows the isomorphism of the theorem.
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Example 4.1.9. Consider again Example 4.1.5, then we obtain that dimRd(Q) = 14, and

dimRd̃(Q̃) = 4

dim
⊕
i∈Q̃0

Hom(Ui, Vi) = 3 + 2 + 0 + 0 = 5

dim
⊕
i∈Q̃0

Hom(Vi, Wi) = 1 + 0 + 2 + 2 = 5

We get,

14 = dimRd(Q) = dimRd̃(Q̃) + dim
⊕
i∈Q̃0

Hom(Ui, Vi) + dim
⊕
i∈Q̃0

Hom(Vi, Wi)

= 4 + 5 + 5

Which shows once again the desired isomorphism.

As we said, we reduce the problem of studying those orbits of the quiver Q̃
to another quiver. We present its definition.

Definition 4.1.10 ((ARMENTA et al., 2022), Definition 2.3). The deframed quiver Q′

with respect to the dimension d is the quiver with vertices:

Q′0 = Q̃0 ∪ {∞}

and set of arrows:
Q′1 = Q̃1 ∪ β ∪ γ

Where

β = {βi,k : ∞ −→ i | i ∈ Q̃0, k = 1, . . . , ui}
γ = {γi,l : i −→ ∞ | i ∈ Q̃0, l = 1, . . . , wi}

And its dimension vector d′ will be d′i = di for i ∈ Q̃0 and d′∞ = 1.

Note that the definition is independent of the representation, as we just use
the vector d for counting the number of arrows that enter or leave the vertex ∞, and
this just makes use of the definition of Ui and Wi, whose dimensions can be counted
only based on the vector d.
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Example 4.1.11. Let again be under the conditions of Example 4.1.5. In this case, if we
have a thin representation (i.e. d is the vector of 11 ones), we obtain that

Q′ =

5 7

6 8

∞ ∞

And where the zero morphisms are not drawn.

In the following example we show the importance of the dimension vector
when constructing the deframed quiver.

Example 4.1.12. Let Q be the A4 quiver, then Q̃ is the A2 quiver. If we have d =

(2, 1, 0, 3), then u2 = 2, u3 = 0 and w2 = 0, w3 = 3. This implies that

Q′ =

2 3

∞

In particular, the representation spaces of dimension vector d for Q and of
the deframed quiver with the corresponding dimension vector are the same.

Lemma 4.1.13 ((ARMENTA et al., 2022), Lemma 2.4). There exists an isomorphism

Rd(Q) ∼= Rd′(Q
′)

and this isomorphism preserves the orbits of the action of Gd(Q̃), as a subgroup of Gd′(Q
′).

Proof. We can obtain a representation of Q′ of dimension vector d′ by giving:

(1) a representation from Rd̃(Q̃),

(2) vectors vi,k ∈ Vi that represents the arrows βi,k from β,

(3) covectors φi,l ∈ Hom(Vi, C) = V∗i that represents the arrows γi,l from γ.
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∞ ∞

Q̃βi,k γi,l

...
...

Figure 6 – Obtaining a representation of Rd’(Q′) by the choosing of an element in
Rd̃(Q̃) with vectors and covectors, represented at the vertex i.

This can be seen in Figure 6, where the vectors and covectors define the
arrows of the corresponding representation. Now choose bases for the spaces Ui and
Wi for each i ∈ Q̃0. Then, we can collect all the vectors vi,k ∈ Vi into a function
li : Ui −→ Vi, as there are ui elements of type vi,k, and then we obtain a

l = (li)i∈Q̃0
∈
⊕
i∈Q̃0

Hom(Ui, Vi)

Similarly, we can collect all covectors φi,l ∈ V∗i and construct a map hi : Vi −→Wi and
we get a

h = (hi)i∈Q̃0
∈
⊕
i∈Q̃0

Hom(Vi, Wi)

This induces a natural morphism

Rd’(Q′) −→ Rd̃(Q̃)×
⊕
i∈Q̃0

Hom(Ui, Vi)×
⊕
i∈Q̃0

Hom(Vi, Wi)

And we can obtain the inverse morphism in a similar way. Then, by Lemma 4.1.7,
Rd(Q) ∼= Rd′(Q

′), and the first part of the theorem is proved.

For the second part, we just have to look at the action of the base change group on
Rd’(Q′). The base change group Gd’(Q′) can be seen as C∗ × Gd(Q̃), and the action
will be given by

(λ, (τi))i∈Q̃0
·
(
(Vα)α∈Q̃1

, (vi,k)i,k, (φi,l)i,l

)
=
(
(τjVατ−1

i )
α∈Q̃1

, (λ−1vi,kτi)i,k, (λφi,lτ
−1
i )i,l

)
We note that the action on the vertices for arrows in Q̃1 is the same, and it is possible
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to see the action on the vectors and covectors with the following diagram

C C C

Vi

Vi

λ−1vi,kτi

vi,k

λ λ

φi,l

τi
λφi,lτ

−1
i

whenever i ∈ Q̃0.

We end this section by showing that the orbits of the spaces are the same,
so we can reduce our objective to the one of studying Gd’(Q′)−orbits on Rd’(Q′):

Lemma 4.1.14. The groups Gd(Q̃) and Gd’(Q′) have the same orbits in Rd(Q) ∼= Rd′(Q
′).

Proof. We note that as before, Gd′(Q
′) ∼= C∗ × Gd(Q̃), and then it is enough to check

that any additional action by a λ ∈ C∗ of Gd(Q̃) can be seen as an element of Gd(Q̃).
In fact, given a λ as before, define g ∈ Gd(Q̃) by gi = λ−1idVi for each i ∈ Q̃0.

An action of Gd’(Q′) ∼= C∗ × Gd(Q̃) in that way is given by:

(λ, id) ·
(
(Vα)α∈Q̃1

, (vi,k)i,k, (φi,l)i,l

)
=
(
(Vα)α∈Q̃1

, (λ−1vi,k)i,k, (λφi,l)i,l

)
and we can see it as the following action of Gd(Q̃),(

λ, (gi)i∈Q̃0

)
·
(
(Vα)α∈Q̃1

, (vi,k)i,k, (φi,l)i,l

)
=
(
(Vα)α∈Q̃1

, (λ−1vi,k)i,k, (λφi,l)i,l

)
So the actions are the same. If for instance, we would have some τi instead of the
identity on the first equation, we can compose the two actions, and it still can be seen
as an action of Gd(Q̃). This shows the lemma.

In the following sections we will proceed to study the space of isoclasses of
Gd’(Q′)−orbits on Rd’(Q′), via the usual mode of a quotient space: that will give us
the semisimple representations, or by eliminating the "bad" orbits as in Chapter 1, that
will gives us the stable representations.

4.2 Moduli of Semisimple Representations
Usually, when the problem of studying orbits of a space appears it is

common the technique of stability, and for quiver representations the moduli space
defined by (KING, 1994) is more than enough to give good geometric properties, and
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to parameterize in an elegant way such spaces. However, when the quiver has oriented
cycles, we saw that the space of semisimple representations is non-trivial, and that we
can parameterize such space via those cycles. In this section we define them and give
some coordinates of the space.

We start by giving our motivation for studying them.

Lemma 4.2.1 ((ARMENTA et al., 2022), Lemma 3.1). There exists at least one oriented
cycle in Q′.

Proof. It is enough to consider the composition of a path in Q̃ with an arrow βi,k and
γj,l. We can always construct such a path in Q̃ as Q is connected. This is particularly
illustrated in Figure 6.

Example 4.2.2. Consider Example 4.1.12. We illustrate an oriented cycle of Q′. In blue
the arrows from β and γ, and in orange a path (the only one) in Q̃:

Q′ =

2 3

∞

Note that this is also possible in the Example 4.1.11.

With this, we can define:

Definition 4.2.3. The moduli space of semisimple representations of Q′, noted by
Mssimp

d’ (Q′) is:

Mssimp
d’ (Q′) := Rd’(Q′)⧸Gd’(Q′)

which parametrizes by definition the isomorphism classes of semisimple representations of Q′ of
dimension vector d’.

Using the results from Chapter 1, we obtain the following properties.

Theorem 4.2.1 ((ARMENTA et al., 2022), Theorem 3.2). The spaceMssimp
d’ (Q′):

a. Is an affine irreducible variety.

b. Parametrizes the closed orbits of Gd’(Q′) in Rd’(Q′); this is, the closed orbits of Gd(Q̃)

in Rd(Q).

c. Has dimension dimRd(Q) − dim Gd(Q̃), if exists a simple representation of Q′ of
dimension d’.
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Proof. The first two statements are by the general theory given in Chapter 1, and
by Lemma 4.1.14. We obtain item c. as we know that the dimension is given by
1− ⟨d’, d’⟩Q′ , see for example ((REINEKE, 2008b), Theorem 2.2), and this is:

1− ⟨d’, d’⟩Q′
= 1− ∑

i∈Q′0

(d′i)
2 + ∑

(α: i→j)∈Q′1

d′id
′
j

= 1−

(d′∞)2 + ∑
i∈Q̃0

(di)
2

+ ∑
(α: i→j)∈Q′1

d′id
′
j

= 1−

1 + ∑
i∈Q̃0

d2
i

+

 ∑
(α: i→j)∈Q̃1

didj + ∑
α: s(α)=∞

d′∞d′t(α) + ∑
α: t(α)=∞

d′s(α)d
′
∞


= − ∑

i∈Q̃0

d2
i + ∑

(α: i→j)∈Q̃1

didj + ∑
i∈Q̃0

uidi + ∑
i∈Q̃0

diwi

= ∑
i∈Q̃0

(ui + wi)di −

 ∑
i∈Q̃0

d2
i − ∑

(α: i→j)∈Q̃1

didj

 (∗)

= ∑
i∈Q̃0

(ui + wi)di + ⟨d̃, d̃⟩Q̃

Where we have that

∑
α: s(α)=∞

d′∞d′t(α) = ∑
i∈Q̃0

uidi

as we have ui arrows ∞ −→ i, for each i ∈ Q̃0, and d′∞ = 1 in each case when exists
such an arrow. The same argument holds for

∑
α: t(α)=∞

d′s(α)d
′
∞ = ∑

i∈Q̃0

diwi

On the other hand,

dimRd(Q)

= dim

Rd̃(Q̃)×
⊕
i∈Q̃0

Hom(Ui, Vi)×
⊕
i∈Q̃0

Hom(Vi, Wi)


= dim

⊕
(α: i→j)∈Q̃1

Hom(Vi, Vj) + dim
⊕
i∈Q̃0

Hom(Ui, Vi) + dim
⊕
i∈Q̃0

Hom(Vi, Wi)

= ∑
(α: i→j)∈Q̃1

dim Hom(Vi, Vj) + ∑
i∈Q̃0

dim Hom(Ui, Vi) + ∑
t∈Q̃0

dim Hom(Vi, Wi)

= ∑
(α: i→j)∈Q̃1

didj + ∑
i∈Q̃0

uidi + ∑
i∈Q̃0

diwi

= ∑
(α: i→j)∈Q̃1

didj + ∑
i∈Q̃0

(ui + wi)di
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And similarly, we obtain

dim Gd(Q̃) = dim

∏
i∈Q̃0

GL(Vi)

 = ∑
i∈Q̃0

dim GL(Vi) = ∑
i∈Q̃0

d2
i

Then Equation (∗) becomes:

(∗) = dimRd(Q)− dim Gd(Q̃)

= 1− ⟨d’, d’⟩Q′

Which shows what we wanted.

Example 4.2.4. Consider the quiver Q = A3, with dimension vector d = (1, 1, 1), we
know then that Q̃ = A1 and with vertex 2. Moreover,

dimRd(Q) = 2 and dim Gd(Q̃) = 1

as there are two arrows in Q, and just one vertex with dimension 1 in Q̃. Then, by
Theorem 4.2.1 we have dimMssimp

d’ (Q′) = 1. This is,Mssimp
d’ (Q′) ∼= C.

Example 4.2.5. Consider again Example 4.1.8. We saw that Rd(Q) = 7. Now,

dim Gd(Q̃) = ∑
i∈Q̃0

d2
i = 3

Which implies dimMssimp
d’ (Q′) = 7− 3 = 4. On the other hand we also have:

Q′ =

4 5 6

∞

Note the similarity with Example 4.1.12. And with this,

1− ⟨d’, d’⟩Q′ = 1−

 ∑
i∈Q′0

d2
i − ∑

(α: i→k)∈Q′1

d′id
′
j


= 1− 4 + 7 = 4

Which verifies the theorem. Note that |Q′1| = 7 and the dimensions are 1 on each case.

Now we proceed to give coordinates of the space of semisimple representa-
tions. In general, we see that there are easy to describe in terms of the oriented cycles
from Q′:
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Theorem 4.2.2 ((ARMENTA et al., 2022), Theorem 3.3). The moduli spaceMssimp
d’ (Q′) is

isomorphic to the image of the map

Rd(Q) ∼= Rd̃(Q̃)×
⊕
i∈Q̃0

Hom(Ui, Vi)×
⊕
i∈Q̃0

Hom(Vi, Wi) −→
⊕

ω: i⇝j

Hom(Ui, Wj)

given by (
(Vα)α∈Q̃1

, (li)i∈Q̃0
, (hi)i∈Q̃0

)
7−→ (

(
hjVωli

)
)ω: i⇝j

Proof. We know that the coordinates are given by the traces along oriented cycles. Now,
as Q is acyclic, Q̃ also is, and we get that the only possible oriented cycles in Q̃ are
those described in the proof of Lemma 4.2.1, and then given by γj,lωβi,k, where ω is a
path i⇝ j in Q̃, and k = 1, . . . , ui, l = 1, . . . , wj. This implies that we can describe such
coordinates by the following functions(

(Vα)α∈Q̃1
, (vi,k)i,k, (φi,l)i,l

)
φj,lVωvi,k

Fω,l,k (4.1)

Where we used the isomorphism from Lemma 4.1.13. Now, gluing the values for
each one of the paths into the corresponding hj and li we obtain the result from the
Theorem.

Remark 4.2.6. We note that the map as above separates closed orbits, and then equiv-
alently separates isoclasses of semisimple representations by Theorem 4.2.1. More
specifically, it also separates isoclasses of simple representations.

Example 4.2.7 ((ARMENTA et al., 2022), p. 103). Consider as hidden quiver Q̃ the
extended Dynkin quiver D̃4, with dimension vector d̃ = (1, 1, 1, 1, 1). This is,

1 4

3

2 5

We also consider u = (u1, u2, u3, u4, u5) = (2, 2, 0, 0, 1) and w = (w1, w2, w3, w4, w5) =

(0, 0, 0, 2, 2). An element of Rd(Q) is given by:

C2 ∼= U1 C C W4
∼= C2

C

C2 ∼= U2 C C W5
∼= C2

U5
∼= C

φ1

λ1

v4

λ3

λ4

φ2

λ2

v5

φ5

(4.2)
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where λi ∈ C for i = 1, . . . , 5, φ5 ∈ C, v4, v5 ∈ C2 and φ1, φ2 ∈
(

C2
)∗

. The map from
Theorem 4.2.2 has codomain:⊕

ω: i⇝j

Hom(Ui, Wj) =Hom(U1, W4)⊕Hom(U1, W5)⊕Hom(U2, W4)

⊕Hom(U2, W5)⊕Hom(U5, W5)

which we can embed into the space Hom(U1 ⊕U2 ⊕U5, W4 ⊕W5), isomorphic to a
space of 4× 5 matrices with complex entries. We can also write the representation (4.2)
as (

(λl)
5
l=1, (φl)

2
l=1, (vl)

5
l=4

)
Then the functions from (4.1) can be rewritten:(

(λl)
5
l=1, (φl)

2
l=1, (vl)

5
l=4

)
7−→

(
vjVω φi

)
ω: i⇝j

whenever ω is a path from i to j, and then Vω becomes a multiplication of the
corresponding λi. The map from the Theorem then assigns to such representation the
following matrix (seen as embedded into the space Hom(U1 ⊕U2 ⊕U5, W4 ⊕W5)):[

v4λ1λ3φ1 v4λ2λ3φ2 0
v5λ1λ4φ1 v5λ2λ4φ2 v5φ5

]

Before ending this section we give two criteria for the existence of a simple
representation for the deframed quiver Q′, as its existence will imply the non-emptiness
of the corresponding moduli space.

Lemma 4.2.8 ((ARMENTA et al., 2022), Lemma 4.1). Let V =
(
(Vα)α∈Q̃1

, (li)i∈Q̃0
, (hi)i∈Q̃0

)
an element from Rd’(Q′) ∼= Rd(Q). Then V is simple if and only if the following hols:

a. The largest subrepresentation (in Q̃) V′ = (V′i )i∈Q̃0
of V where V′i ⊂ ker(hi) for all

i ∈ Q̃0 is the representation 0.

b. The smallest subrepresentation (in Q̃) V′ = (V′i )i∈Q̃0
of V where im(li) ⊂ V′i for all

i ∈ Q̃0 is V.

Proof. Suppose V is simple. Let V′ a subrepresentation of V such that V′i ⊆ ker(hi)

for all i ∈ Q̃0. As V is simple, then V′ = 0 or V′ = V. If V′ = V, we obtain that
Vi ⊆ ker(hi) for all i ∈ Q̃0, which implies ker(hi) = Vi. Then hi = 0 for all i ∈ Q̃0. As
the morphisms

hi : Vi −→
⊕

α: i→tl

Vtl

are zero, then V′ is isomorphic to one where all Wi = 0 for all i ∈ Q̃0. By Remark 4.1.4
we have that there are no sinks vertices on Q̃. Thus it exists an oriented cycle on Q̃, a
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contradiction, as Q does not have any oriented cycles by definition. This proves a.. For
b. we use a similar argument, as if there are no sources on Q̃ we also have an oriented
cycle on Q̃, again a contradiction.

Now suppose we have a representation V with properties a. and b.. We will prove that
it is simple, so suppose that V′ is a subrepresentation. The vector space V′∞ may be or
0 or C, if it’s 0, ker(hi) = Vi for all i ∈ Q̃0, and then

V′i ⊆ ker(hi) = Vi for all i ∈ Q̃0

By a. we get that V′ = 0. If V′∞ = C, with the following commutative diagram:

C Vi

C V′i

li

l′i

we get that im(li) ⊆ V′i and by b., V′ = V. Then V is simple.

The characterization of semisimple representations and its moduli space,
altogether with a description of the coordinates of it (a bit on the spirit of Theorem 4.2.2)
was given in (BRUYN; PROCESI, 1990). In particular, we can adapt some numerical
results in terms of the Euler form to give one of the characterizations for the existence
of simple representations. More specifically,

Theorem 4.2.3 ((ARMENTA et al., 2022), Theorem 4.2). Suppose that Q̃ is not the extended
Dynkin quiver Ãn. Then exists a simple representation of Q′ with dimension vector d’ if and
only if:

a. There is a vertex i ∈ Q̃0 such that di(ui + wi) ̸= 0,

b. ui ≥ ⟨d, ei⟩Q̃ for all i ∈ Q̃0, and

c. wi ≥ ⟨ei, d⟩Q̃ for all i ∈ Q̃0.

If Q′ = Ãn, then exists a simple representation if and only if the representation is thin, or
di = 1 for all i ∈ Q̃0.

Proof. The proof is out of the purposes of this text, and then is omitted. The original
numerical criterion can be found in ((BRUYN; PROCESI, 1990), Theorem 4).

In particular, if the representation for the hidden quiver is thin, we have:
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Corollary 4.2.9 ((ARMENTA et al., 2022), Corollary 4.3). Suppose that di = 1 for all
i ∈ Q̃0. ThenMssimp

d’ (Q′) is an affine irreducible variety with

dimMssimp
d’ (Q′) = |Q1| − |Q̃0|

Proof. Let i ∈ Q̃ such that i is a source, then di(ui + wi) = ui + wi ̸= 0 and this proves
a.. Now, as

⟨d, ei⟩Q̃ = ∑
j∈Q̃0

dj(ei)j − ∑
(α: a→b)∈Q̃1

da(ei)b

= ∑
j∈Q̃0

(δi)j − ∑
(α: a→b)∈Q̃1

(δi)b

= 1− |Q̃→ i
1 | ≤ 0 ≤ ui

Where Q→ i
1 is the subset of arrows that end at the vertex i. This shows b., and we

obtain c. with a similar argument. Thus there exists a simple representation of Q′ of
dimension vector d’ by Theorem 4.2.3, and then by Theorem 4.2.1 we get that

dimMssimp
d’ (Q′) = dimRd(Q)− dim Gd(Q̃)

= ∑
(α: i→j)∈Q1

didj − ∑
i∈Q̃0

d2
i

= ∑
(α: i→j)∈Q1

1− ∑
i∈Q̃0

1

= |Q1| − |Q̃0|

Which shows the dimension computation. The other properties are direct consequence
of Theorem 4.2.1.

Before we end this section we make a small comment on the space of stable
double framed thin quiver representations from Chapter 3. Let Q be a network quiver
as in Definition 3.1.2, and suppose it has d input vertices and k output vertices. As Q̃
does not have loops (see Definition 3.1.20) we obtain that

dMk(Q̃) =Mssimp
d’

(
(Q◦)′

)
as the conditions of stability in dMk(Q̃) (see Definition 3.3.10) and simpleness in
Mssimp

d’ (Q′) (see Lemma 4.2.8) coincide. Thus by Corollary 4.2.9 we get:

dimdMk(Q̃) = |Q◦1 | − |Q̃0|

Which proves Theorem 3.3.3.
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4.3 Moduli of Stable Representations and geometric properties
In this section we will define two different types of moduli spaces arising

from King’s stability: one from a construction of a "double framed" quiver which won’t
have oriented cycles, and with a trivial stability function; and one derived from the
moduli space of semisimple representations. Particularly, the advantage of the last one
is its smoothness, and all the geometric properties shared withMssimp

d’ (Q′). And for
concluding, we give some relations with the moduli space defined in Chapter 3, we
prove Theorem 3.3.3 as a corollary of the results given, and we make comments on
some topics around the results and its possible relation with a few similar researches.

4.3.1 Constructions and some equivalences

We will define an alternate quiver from Q′, having another vertex, and
which has an essentially different moduli space.

Definition 4.3.1 ((ARMENTA et al., 2022), p. 104). The double framed quiver Q′′ is the
quiver associated to Q, where Q′′0 = Q̃0 ∪ {0, ∞}, set of arrows: Q′′1 = Q̃1 ∪ β ∪ γ. With:

β = {βi,k : 0 −→ i | i ∈ Q̃0, k = 1, . . . , ui}
γ = {γi,l : i −→ ∞ | i ∈ Q̃0, l = 1, . . . , wi}

And its dimension vector d” will be d′′i = di for all i ∈ Q̃0 and d′′0 = 1 = d′′∞.

Example 4.3.2. Let Q = A3, if we have d = (1, 1, 1) then we obtain:

Q′′ = 0 2 ∞

the A3 quiver once again, with relabeled vertices.

Example 4.3.3. Consider the quiver from Example 3.3.4, and where we computed its
hidden quiver. If we take thin representations, we obtain that:

Q′′ =

4 7

0 6 ∞

5 8



Chapter 4. The Moduli Space of Neural Networks 102

Example 4.3.4. Lastly, consider Example 4.1.12, with the same dimension vector d =

(2, 1, 0, 3) we get:

Q′′ = 0 2 3 ∞

We would like to consider stability in the King’s sense, (with respect to
Definition 2.2.1) for a determined stability function: θi = 0 for all i ∈ Q̃0, θ0 = 1,
θ∞ = −1. We note that if M ∈ Rd”(Q′′), then

θ(M) = θ · dim M = (1, 0, . . . , 0,−1) · (1, d1, . . . , d|Q′′0 |, 1) = 0

And it is reasonable to consider such stability as the dimension vector is orthogonal to θ.
With this in mind, we will callMθ−sst

d” (Q′′) to the space of semi-stable representations
of dimension vector d” of Q′′. This space is essentially different fromMssimp

d’ (Q′):

Lemma 4.3.5 ((ARMENTA et al., 2022), p. 104). The expected dimension ofMθ−sst
d” (Q′′) is

dimRd(Q)− dim Gd(Q̃)− 1

Proof. We give an sketch, for more details, we refer the reader to (ARMENTA et al.,
2022). Note that here the acting group will have one additional vertex (namely, 0), and
it will separate the dilations from the input and output vertices into the respective
vertices. Then,

dimMθ−sst
d” (Q′′) = dimRd(Q)− dim

(
Gd(Q̃)×C∗

)
= dimRd(Q)− dim Gd(Q̃)− 1

which in particular is equal toMssimp
d’ (Q′)− 1.

Example 4.3.6 ((ARMENTA et al., 2022), p. 104). Consider Example 4.2.4, where we
found that dimMssimp

d’ (Q′) = 1. We are going to compute the stable representations
with dimension vector d = (1, 1, 1), and with stability function

θ = (θ0, θ2, θ∞) = (1, 0,−1)

We use the contrary definition of King’s stability where for any subrepresentation U,
we have θ(U) ≤ 0. There are 4 possiblities of representations with such dimension
vector under the action of Gd(Q), those are:

Mλ1,λ2 : C C C
λ1 λ2

If λ1 = 0, then N1 = C 0 0 is a subrepresentation with

θ(N1) = θ · dim N = (1, 0,−1) · (1, 0, 0) = 1 ≥ 0
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then M0,λ2 is unstable. Similarly, if λ2 = 0, N2 = C C 0 is a subrepre-
sentation with

θ(N2) = θ · dim N = (1, 0,−1) · (1, 1, 0) = 1 ≥ 0

and hence unstable again. However, we can verify that if λ1, λ2 ̸= 0 the only subrepre-
sentations (see Example 2.1.16) are

M1 = 0 C C and M2 = 0 0 C

with θ(M1) = θ(M2) = 1 and then stable. This implies that Mθ−sst
d” (Q′′) is just one

point and then has dimension zero, as the Lemma showed. Note that by Example 4.3.2,

Q′′ is the quiver A3, and we also have Q′ = ∞ 2 .

4.3.2 The main theorem

Now we construct a variant of the moduli space Mssimp
d’ (Q′) which will

always be smooth. So, we define a stability function Θ for Q′ as

Θ∞ = ∑
i∈Q̃0

di, and Θi = −1 for all i ∈ Q̃0

Then, if M′ ∈ Rd’(Q′) is the representation associated to M ∈ Rd(Q),

Θ(M) = Θ · dim M′ = Θ · d’

=

 ∑
i∈Q̃0

,−1, . . . ,−1

 · (1, d1, . . . , d|Q̃0|

)
= ∑

i∈Q̃0

di − ∑
i∈Q̃0

di = 0

And then again it makes sense to consider it as a stability function because it belongs to
the set of orthogonal vectors of the dimension. Now, remembering that our semistability
is Θ(U) ≤ 0 for all U subrepresentations, we obtain the following:

Lemma 4.3.7 ((ARMENTA et al., 2022), Lemma 4.4). Let V =
(
(Vα)α∈Q̃1

, (li)i∈Q̃0
, (hi)i∈Q̃0

)
an element from Rd’(Q′), then the following are equivalent:

a. V is Θ−semistable.

b. V is Θ−stable.

c. The smallest representation (in Q̃) V′ = (V′i )i∈Q̃0
such that im(li) ⊆ V′i for all i ∈ Q̃0

is V.
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Proof. We know that b. implies a. by definition. Suppose that V is Θ−semistable, and
let V′ a subrepresentation of V with dimension vector d’ = (di)i∈Q̃0

and such that
Θ(V′) = 0, then

0 = Θ(V′) = Θ · dim V′

=

 ∑
i∈Q̃0

di,−1, . . . ,−1

 · (1, d′1, . . . , d′|Q̃0|

)
= ∑

i∈Q̃0

di − d′i

But as V′ is a subrepresentation, each one of the morphisms must be injective and then
di − d′i ≥ 0. So, the only way on which the above equation is zero occurs when di = d′i,
this is, when V′ = V. This shows that V is Θ−stable, and we obtain that a. implies b..

Now suppose that V is Θ−stable, and let V′ be a subrepresentation of V in Q̃ such
that im(li) ⊆ V′i for all i ∈ Q̃0. As V is Θ−stable we get Θ(V′) ≤ 0. We can construct a
representation associated to V′ in Q′ such that its vector space on the vertex ∞ is C,
because if not then we would obtain a contradiction with the hypothesis, as we can
glue the vi,k to get the li and the diagram

C Vi

C V′i

vi,k

v′i,k

is commutative. By the Θ−semistability of V,

Θ(V′) = Θ · dim V′ = ∑
i∈Q̃0

(
di − d′i

)
≤ 0

But by definition di − d′i ≥ 0, so ∑(di − d′i) ≥ 0. And this implies Θ(V′) = 0, and the
Θ−stability implies that V′ = V or V′ = 0. It cannot be 0 as it does not holds the initial
condition im(li) ⊆ V′i , so V′ = V and we obtain c.. We just proved that b. implies c..

Following a very similar argument to the ones just given above we obtain that c. implies
b., and this proves the lemma.

We can apply the theory from Chapter 1 and Theorem 4.2.1 to obtain our
main result, the properties of the moduli spaces for representations of Q:

Theorem 4.3.1 ((ARMENTA et al., 2022), Theorem 4.5). The spaceMΘ−sst
d’ (Q′):

1. Is a smooth affine irreducible variety.
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2. Parametrizes the isomorphism classes of stable representations of Q′ with dimension
vector d’.

3. Its dimension is dimRd(Q)− dim Gd(Q̃) if it is nonempty.

4. It admits a projective morphism

MΘ−sst
d’ (Q′) −→Mssimp

d’ (Q′)

Proof. This happens as the quiver Q is finite, acyclic and without oriented cycles.
It is smooth as stability coincides with semistability (see Preliminaries, Subsection
1.4.3).

4.3.3 Ok, so what’s next? Final comments

Theorem 4.3.1 says that we have good geometric properties on the space of
Θ−stable representations of Q with dimension vector d. In particular, its smoothness
whichMssimp

d’ (Q′) does not have. It allows us to compute its Betti numbers for example,
and to consider it as a complex manifold. One of the possibilities that could be done
with the space, for instance, happens when Q is a network quiver, and we can make
an analogy similar to the one on the last section.

In this case, we do have that the space is a toric variety ((ARMENTA et al., 2022),
Theorem 4.5), and then we can expect to be able to study the toric geometry of the space
along with the corresponding GIT properties inherited from it. It may be interesting to
study what happens with them and if they can explain some properties that the neural
networks have, using for example, the theory in ((COX; LITTLE; SCHENCK, 2011),
Chapter 14).

One of the main similarities that (REINEKE, 2008a) and (ARMENTA et al., 2022) have
in common is that on the first, just the framed quiver moduli are defined, and on the
second the same tools are used to defined the double framed quivers, even for stability.
We would expect to obtain some of the results that were obtained on the first, like
computation of Chern classes and Cox rings for those new defined type of spaces. We
expect that there may be some results that are directly obtained from the theory made
by Reineke.

Lastly, we didn’t mention some applications with Neural Networks on the computa-
tional aspect, and the approach for defining mathematical neural networks in the sense
of Chapter 3, introduced in (ARMENTA; JODOIN, 2021) has several consequences
on the interpretation of those and the corresponding encoding of information that
passes on them. There are some questions that are expected to be solved with that



Chapter 4. The Moduli Space of Neural Networks 106

approach, and it is a natural question to look after the similarities that may appear
with the moduli spaces and the inherited geometric nature of such spaces. A huge part
of the computational questions and possible leading researches were commented on
(ARMENTA; JODOIN, 2021), which are nice and interesting topics to look at.
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