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Resumo

Uma analogia bem formulada pode em alguns casos ser uma ferramenta de raciocínio bas-

tante eficiente. Quando devidamente aplicada, pode ressaltar conexões que seriam difíceis de

enxergar por outro modo. Nesta tese, aplicamos métodos comumente associados à área de

pesquisa em Modelos Análogos à Gravitação (Analog Gravity) para analisar alguns aspectos

da propagação de ondas no buraco negro de Bañados, Teitelboim e Zanelli (BTZ).

A área de Modelos Análogos à Gravitação ocupa-se de estabelecer conexões (tanto teóricas

como experimentais) entre sistemas gravitacionais e sistemas de outras áreas da física, com o

objetivo de entender mais profundamente ambos os sistemas.

Inicialmente apresentamos uma breve visão geral a respeito dos conceitos básicos envol-

vidos no estudo de Modelos Análogos à Gravitação, e apresentamos o espaço-tempo que pre-

tendemos analisar (o espaço-tempo de BTZ).

Em seguida, apresentamos um modelo análogo para o espaço-tempo de BTZ, o qual é ba-

seado no escoamento unidirecional de um fluido heterogêneo. Mais adiante, analisamos a

excitação dos modos característicos de oscilação (modos quase-normais) do campo escalar no

espaço-tempo de BTZ em termos do modelo análogo obtido.

Finalmente, apresentamos um modelo análogo baseado no bocal de Laval — um bocal com

secção transversal variável que inicialmente converge e posteriormente diverge, formando

uma garganta na região central, e que comumente é usado para acelerar o ar — e analisamos o

efeito que a imposição de condições de contorno de Robin no infinito espacial exerce sobre a

dinâmica no seu interior. Estudamos ainda os efeitos causados por estas condições de contorno

por meio do modelo análogo apresentado.



Abstract

A well-designed analogy can sometimes provide a very effective way of reasoning. When

properly applied, it may highlight conections that are difficult to see otherwise. In this thesis,

we employ the methods of the Analog Gravity research program to analyse some aspects of

wave propagation in the Bañados, Teitelboim and Zanelli (BTZ) black hole.

The Analog Gravity program deals with establishing connections (both theoretical and

experimental) between gravitational systems and systems belonging to other areas of physics,

aiming to achieve in this way a deeper understanding of both sides.

Initially, in this work, we give a brief overview of the basic concepts involved in the study of

analog models of gravity and present the spacetime we intend to emulate (the BTZ spacetime).

After that, we introduce a novel analog model of the BTZ spacetime based on the unidirec-

tional flow of a nonhomogeneous fluid. Then we analyse the excitation of the characteristic

oscillation modes (the quasinormal modes) of the scalar field in the BTZ spacetime in terms

of the obtained analog model.

Finally, we introduce an analog model based on the Laval nozzle — which is a convergent-

divergent nozzle with a throat in the middle, usually employed to accelerate air — and analyse

the effect that imposing Robin boundary conditions at the BTZ spatial infinity has on the dy-

namics in the spacetime bulk. We study these effects by means of the analog model presented

here.
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Chapter 1

Introduction

In a broad sense, an analogy can be defined as the process of using the known features of a

particular subject to explain and understand the features of another subject. It is a powerful

cognitive tool for individuals to approach reality in everyday life since it relies on previously

accumulated experiences to draw inferences when one faces new scenarios. However, when

naively employed, an analogy might lead to misleading conclusions, and, in a time of increas-

ing spreading of misinformation, this can ultimately cause irreversible harm to individuals and

to society as a whole.

In the context of science, where criteria are arguably more rigorous, this tool of reason-

ing (analogy) has a wide range of applications. A particularly fruitful area where arguments

based on analogy have thrived is the so-called Analog Gravity (also referred to as analog mod-

els of gravity) [1]. The Analog Gravity research program is based on the observation that

the propagation of classical or quantum fields in curved spacetimes can be mapped into the

propagation of perturbations in background states of systems belonging to other branches of

physics. The time evolution of perturbations is governed by a wave-like equation determined

by a (Lorentzian) effective metric which, in turn, fully depends on the background.

Since the background is governed by equations of motion unrelated to the Einstein field

equations of General Relativity (GR) [2, 3, 4, 5], the approach based on an analog model nat-

urally leads us to think deeply about the fundamental differences among features resulting

uniquely from the curved spacetime structure (which are generally referred to as kinematical

features) and features resulting from the Einstein field equations (which are generally referred

to as dynamical features). In particular, this approach leads us to consider the fundamental role

and differences between Lorentzian Geometry, the Einstein equivalence principle, and GR as
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a whole. For instance, one can show that aspects such as Hawking radiation [6] and horizons,

which are generally thought of as intrinsic to GR, are, in fact, general features of quantum

field theory in curved spacetimes [7, 8, 9, 10], not fundamentally related with gravity.

The seminal work establishing the beginning of the modern period of analog gravity is

Unruh’s paper [7], published in 1981. The physical system implemented was a perfect fluid,

and the goal was to probe fundamental issues — such as the trans-Planckian problem [11, 12,

13] — regardingHawking radiationwithin a context where themicroscopic degrees of freedom

of the underlying background were fully understood. The initial motivation to explore the

similarities between this system and gravity can be summarized, in the words of the author,

by:

“This system forms an excellent theoretical laboratory where many of the un-

known effects that quantum gravity could exert on black hole evaporation can be

modelled. (...) At distances of 10−8 cm, the assumptions which I use of a smooth

background flow are no longer valid just as in gravity one expects the concept of a

smooth spacetime on which the various relativistic fields propagate to breakdown

at scales of 10−33 cm."

After the publication of [7], more developments in the same direction were pursued [13,

14, 15, 16, 17, 18, 19]. Aside from that, many other analog models of gravity, implementing

both classical and quantum systems, were discovered in the following years. For instance, we

mention models based on: surface waves in a shallow basin [20]; Bose-Einstein condensates

[21, 22, 23, 24], nonlinear electrodynamics [25], etc. For an extensive list, we refer the reader

to the already mentioned review [1] and the works [26], [27] and references therein.

Finally, in the last decades, the efforts on the experimental side culminated in the obser-

vation of phenomena such as analog Hawking radiation [28, 29, 30, 31, 32, 33]; superradiant

amplification [34]; and the quasinormal ringing of an analog black hole [35, 36]. For an ac-

count of the current state of affairs and future prospects of experiments in analog gravity, we

refer the reader to [37].

Although the efforts of the last years have significantly turned towards the experimental

side, it is still worth considering analog models from a theoretical perspective since thought

experiments and toy models often provide insightful grounds to test GR effects by means

of systems governed by simpler laws. It is with this spirit that we approach the problems



Chapter 1. Introduction 12

considered in this thesis, but before presenting the specific subject of this work, we still have

to discuss some essential points in order to put things in perspective.

The description of wave propagation in GR is usually formulated in the context of globally

hyperbolic spacetimes. For this kind of spacetime, the wave motion is completely determined

by a wavelike equation together with proper initial conditions. However, when one drops the

assumption of global hyperbolicity, the wave time evolution is no longer uniquely determined

from the equations of motion together with proper initial conditions. Indeed, spatial infinity

now plays a fundamental role in the dynamics, and appropriate boundary conditions are re-

quired in order to fully describe the motion in bulk. A spacetime lacking global hyperbolicity

is also referred to as a nonglobally hyperbolic spacetime.

As an example of nonglobally hyperbolic spacetime, we mention the anti-de Sitter space

(AdS) [5, 3], a maximally symmetric solution of General Relativity with a negative cosmologi-

cal constant. In AdS spacetime, null geodesics can reach spatial infinity for a finite value of the

affine parameter, which means that information can effectively flow through spatial infinity.

In work [38], the authors characterized the non-dynamical boundary conditions at the confor-

mal boundary of the two-dimensional anti-de Sitter space, AdS2, using an analog model based

on a perfect fluid flowing radially into/from a sink/source. They showed that the boundary

conditions at the AdS2 conformal boundary are encoded into the phase difference between cir-

cularly symmetric waves falling into the sink/source and waves reflected. By regularizing the

velocity profile of the fluid in the vicinity of the sink/source — which at the analog spacetime

level corresponds to deforming AdS2 at its infinity —, it was found that appropriate boundary

conditions are automatically imposed according to the specific form of the function used to

perform the regularization [39].

Another interesting example of nonglobally hyperbolic spacetime is the Bañados, Teitel-

boim and Zanelli (BTZ) black hole [40], which is a solution to (2+1)-dimensional GR with a

negative cosmological constant. The rotating BTZ black hole has many properties in common

with the Kerr black hole [2, 4, 41]. For instance, it is stationary and axisymmetric and (in the

non-extremal case) has an inner and an outer horizon [42, 43, 44]. Nevertheless, instead of

asymptotically flat, the asymptotic structure of the BTZ black hole is ruled by the AdS3 geom-

etry. The BTZ black hole also has a timelike conformal boundary at its spatial infinity, so that

information can reach spatial infinity in finite time, reflecting the lack of global hyperbolicity

of this spacetime.
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Our focus in this thesis is to emulate the effects resulting from the presence of the BTZ

conformal boundary on wave propagation by means of properly designed analog models.

The main physical observables we will consider are the quasinormal modes (QNMs) [45, 46,

47], characteristic vibrations that depend only on the background spacetime parameters. For

asymptotically flat black holes, the effective potential describing wave propagation vanishes at

spatial infinity so that we have a planewave behavior for the field there. Hence, in this case, we

can define QNMs as mode solutions of an eigenvalue problem obeying ingoing (plane wave)

boundary conditions at the horizon and outgoing (plane wave) boundary conditions at infinity.

On the other hand, for asymptotically curved black holes (which is the case o the BTZ

spacetime), aside from the difficulty imposed by the lack of global hyperbolicity, the effective

potential does not vanish at spatial infinity, and no plane wave (neither ingoing nor outgoing)

boundary conditions can be fulfilled there. Thus we cannot distinguish ingoing modes from

outgoing modes at spatial infinity [48, 49]. Hence the definition of QNMs, in this case, will

necessarily involve the prescription of boundary conditions describing the state of the field

and the energy flux at infinity. In the particular case of the BTZ black hole, the spatial infin-

ity corresponds to a timelike conformal boundary, and the necessity of boundary conditions

highlights the fundamental role played by the boundary in the description of the dynamics in

bulk.

We are going to use two different physical systems as analog models to investigate scalar

wave propagation in the BTZ black hole. First, we will consider the canonical case of acoustic

waves propagating in an inviscid barotropic fluid. We will show that when the fluid pressure

𝑝 and density 𝜌 obey the simplest non-trivial equation of state

𝑝 = 𝑐𝜌, (1.1)

with the sound speed 𝑐 being a constant, we can find profiles for the physical quantities (𝑣, 𝜌,

𝑝) so that acoustic waves in the fluid are equivalent to massless scalar waves propagating in

the static BTZ black hole.

The second system we use to model the BTZ geometry is an isentropic gas flowing within

a Laval nozzle. The Laval nozzle is a convergent-divergent nozzle with a throat in the middle,

usually employed to accelerate air. When the ends of the nozzle are submitted to a sufficiently

strong pressure difference, a transonic flow is achieved [50, 51]. In such a case, an acoustic

horizon (the point where gas velocity equals sound speed) forms at the nozzle throat. In a Laval
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nozzle, all the physical quantities describing the fluid (𝑝, 𝜌, 𝑣, 𝑐, … ) can be determined from

the cross-sectional area 𝐴 of the nozzle. Thus, by judiciously prescribing an area profile, one

can emulate the effective potential for massive scalar waves traveling in spherically symmetric

spacetimes [52, 53].

We have organized this thesis in the following manner. First, in Chapter 2, we present

a general view of the Analog Gravity framework. As a prototypical system, we consider the

propagation of acoustic waves in the bulk of an inviscid fluid inmotion. We derive the effective

geometry to which the waves couple and discuss how the concepts of GR can be carried to

other physical contexts. We also discuss how the effective geometry inherits some properties

from physical spacetime.

In Chapter 3, we review some basic concepts concerning the geometry of the BTZ black

hole and the quasinormal modes of the scalar field propagating in this spacetime. In partic-

ular, we show how the boundary conditions at spatial infinity influence the dynamics in the

spacetime bulk.

In Chapter 4, we introduce an analog model for the BTZ black hole by performing appro-

priate coordinate transformations on the effective metric presented in Chapter 2. We find that

our model effectively maps the BTZ conformal boundary into a location at finite distance in

laboratory. After that, we numerically solve the nonlinear equations of motion of fluid dy-

namics to study the excitation and decay of quasinormal modes in the analog BTZ spacetime.

The material in this chapter was published in [54].

In Chapter 5, we consider acoustic waves in the Laval nozzle and find a nozzle form such

that the sound propagationmimics the propagation of a conformally coupled scalar field on the

BTZ black hole. We find that the corresponding nozzle has a finite size, with the BTZ spatial

infinity being effectively mapped onto one of the nozzle ends. We show that one can emulate

the implementation of Robin boundary conditions (RBCs) at the BTZ conformal boundary by

properly extending the nozzle. The material in this chapter is based on our work [55].

In Appendix A, we present a work written in parallel with the research for the main subject

of this thesis. In the work [56], we study the energy flux through spatial infinity of a scalar

field propagating in an asymptotically anti-de Sitter spacetime. We show that in the general

case when there is a superposition of field modes, the boundary conditions of Dirichlet and

Neumann types are the only boundary conditions compatible with the assumption that the

spacetime is isolated.
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Appendix B gives a brief introduction to the theory of scalar field propagation in nonglob-

ally hyperbolic spacetimes. We start by introducing the basic tools of the formalism and then

apply them to the case of the BTZ spacetime.
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Chapter 2

General Features of Analog Models

In this chapter, we present a general view of the basic concepts and mathematical machinery

of the Analog Gravity research program. We start by deriving the canonical result that acous-

tic waves propagating in the bulk of a nonhomogeneous fluid are equivalent to a scalar field

propagating in an (effective) spacetime endowed with a metric determined by the background

state of the fluid. After that, we discuss how the kinematical and dynamical aspects of Gen-

eral Relativity (GR) relate to the description in terms of the effective geometry obtained. We

also discuss the causal structure of the analog spacetime and how some concepts of GR (as

horizons and ergoregions) can be naturally defined at the analog spacetime level. Finally, we

present a general approach unifying the description of systems that can be treated in terms of

effective/analog geometries. The material in this chapter is widely known in the field and our

exposition is strongly based on the references [1, 26, 8].

2.1 The Effective Metric

The fundamental equations of motion for a classical fluid with velocity field given by 𝑣(𝑡, 𝑥)

and density 𝜌(𝑡, 𝑥) are [57] the equation of continuity

𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝑣) = 0, (2.1)

and the Euler equation

𝜌
𝑑𝑣
𝑑𝑡

= 𝜌 [
𝜕𝑣
𝜕𝑡

+ (𝑣 ⋅ ∇)𝑣] = 𝐹 , (2.2)
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where 𝐹 represents the net force acting upon a volume element of the fluid.

We assume the fluid to be nonviscous so that the internal surface forces are only those

due to pressure 𝑝. Additionally, we consider the Newtonian gravitational potential, 𝜙, and an

external bulk force due to an arbitrary potential, Φ, so that the total force is given by

𝐹 = −∇𝑝 − 𝜌∇𝜙 − 𝜌∇Φ. (2.3)

Further assuming that the flow is irrotational (∇ × 𝑣 = 0), and the fluid is barotropic (this

means that pressure depends only on the density), we can rewrite the Euler equation (2.2) as

𝜕𝑣
𝜕𝑡

= −
∇𝑝
𝜌

− ∇ [
1
2
𝑣2 + 𝜙 + Φ] . (2.4)

Taking 𝜓(𝑡, 𝑥) as the velocity potential (𝑣 = −∇𝜓) and defining enthalpy by

ℎ(𝑝) = ∫
𝑝

0

𝑑𝑝′

𝜌(𝑝′)
, so that ∇ℎ =

∇𝑝
𝜌
, (2.5)

the Euler equation can be recasted as the Bernoulli equation

−
𝜕𝜓
𝜕𝑡

+
1
2
(∇𝜓)2 + ℎ + 𝜙 + Φ = 0. (2.6)

Given an initial profile for the density 𝜌 and velocity potential 𝜓, and a barotropic equation

of state, 𝑝 = 𝑝(𝜌), the dynamics of the fluid is completely determined by Eqs. (2.1) and (2.6). In

order to find the equation of motion for acoustic disturbances in the fluid, we linearize these

equations around a background solution. We do this by considering the full solution of Eqs.

(2.1) and (2.6) as being the sum of a contribution due to the background state (with physical

quantities denoted by 𝜓0, 𝑣0, 𝜌0,… ), plus a contribution due to the linear acoustic perturbations

(with physical quantities denoted by 𝜓(1), 𝑣(1), 𝜌(1), … ), plus a contribution due to second order

perturbations, and so on. Of course, we assume that the amplitudes of the perturbations are

small when compared to the amplitude of background physical quantities.

Linearizing the equation of continuity yields

𝜕𝜌0
𝜕𝑡

+ ∇ ⋅ (𝜌0𝑣0) = 0, (2.7)

𝜕𝜌(1)
𝜕𝑡

+ ∇ ⋅ [𝜌(1)𝑣0 + 𝜌0𝑣(1)] = 0. (2.8)
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From the barotropic condition, it follows

ℎ(𝑝) = ℎ(𝑝0 + 𝜖𝑝(1) + 𝑂(𝜖2)) = ℎ0 + 𝜖
𝑝(1)
𝜌0

+ 𝑂(𝜖2). (2.9)

Substituting this relation in the linearized Bernoulli equation (2.6), gives

−
𝜕𝜓0

𝜕𝑡
+
1
2
(∇𝜓0)2 + ℎ0 + 𝜙 + Φ = 0 (2.10)

−
𝜕𝜓(1)

𝜕𝑡
+
𝑝(1)
𝜌0

− 𝑣0 ⋅ ∇𝜓(1) = 0. (2.11)

Here we are assuming that the variations of the fluid physical variables do not affect the

external potentials 𝜙 and Φ, that is, we do not allow back-reaction. Putting differently, in the

present case, linear disturbances are insensitive to variations in the external potentials.

From Eq. (2.11), we have

𝑝(1) = 𝜌0 [
𝜕𝜓(1)

𝜕𝑡
+ 𝑣0 ⋅ ∇𝜓(1)] , (2.12)

and using the barotropic assumption, it follows

𝜌(1) = (
𝜕𝜌
𝜕𝑝)0

𝑝(1) = (
𝜕𝜌
𝜕𝑝)0

𝜌0 [
𝜕𝜓(1)

𝜕𝑡
+ 𝑣0 ⋅ ∇𝜓(1)] , (2.13)

where the subscript ‘0’ in the derivative (𝜕𝜌/𝜕𝑝)0 means that we evaluate it with respect to

the background state of the flow.

Substituting this last result into the linearized equation of continuity Eq. (2.8), we find the

wave equation for acoustic perturbations

−
𝜕
𝜕𝑡

{

(
𝜕𝜌
𝜕𝑝)0

𝜌0 [
𝜕𝜓(1)

𝜕𝑡
+ 𝑣0 ⋅ ∇𝜓(1)]

}
+ ∇ ⋅

{
𝜌0∇𝜓(1) − 𝑣0 (

𝜕𝜌
𝜕𝑝)0

𝜌0 [
𝜕𝜓(1)

𝜕𝑡
+ 𝑣0 ⋅ ∇𝜓(1)]

}
= 0.

(2.14)

Given a background state solving the Eqs. (2.7) and (2.10), we determine the propagation

of the perturbation in the velocity potential 𝜓(1) by solving Eq. (2.14). Having obtained 𝜓(1), we

can use Eqs. (2.12) and (2.13) to find the disturbances in the pressure and density, respectively.

Thus it follows that Eq. (2.14) fully determines the time evolution of acoustic waves in the

fluid.
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To recast the wave equation (2.14) in a form suitable to direct application of the Lorentzian

differential geometry mathematical machinery, we define the auxiliar 4 × 4 symmetric matrix
1

𝑓 𝜇𝜈(𝑡, 𝑥) =
𝜌0
𝑐2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−1 ⋮ −𝑣𝑗0

⋯ ⋅ ⋯⋯⋯⋯⋯⋯

−𝑣𝑗0 ⋮ (𝑐2𝛿𝑖𝑗 − 𝑣𝑖0𝑣
𝑗
0)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (2.15)

where 𝑐 stands for the local speed of sound and is given by

𝑐−2 = (
𝜕𝜌
𝜕𝑝)0

. (2.16)

Introducing (3 + 1)-dimensional coordinates 𝑥𝜇𝜈 ≡ (𝑡, 𝑥 𝑖), the wave equation (2.14) can be

rewritten as
2

𝜕𝜇 (𝑓 𝜇𝜈𝜕𝜈𝜓(1)) = 0. (2.17)

In this form, the acoustic wave equation remarkably resembles the equation of motion for a

minimally coupled massless scalar field propagating in a curved spacetime

□𝜓 =
1

√−𝑔
𝜕𝜇 (

√−𝑔𝑔𝜇𝜈𝜕𝜈𝜓) = 0, (2.18)

where □ = ∇𝜇∇𝜇 denotes the d’Alembert operator, and ∇𝜇 stands for the covariant derivative.

In order to accomplish the correspondence between these equations, a necessary condition

is

√−𝑔𝑔𝜇𝜈 = 𝑓 𝜇𝜈. (2.19)

Assuming that Eq. (2.19) holds, we find

𝑔 =
𝜌40
𝑐2
, (2.20)

1
Greek indices run from 0 to 3, and latin indices run from 1 to 3.

2
All over the text, we will denote the partial derivative with respect to the 𝜇-th coordinate in the traditional

form

𝜕𝜇 =
𝜕
𝜕𝑥𝜇

.
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and the inverse effective metric

𝑔𝜇𝜈(𝑡, 𝑥) =
1
𝜌0𝑐

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−1 ⋮ −𝑣𝑗0

⋯ ⋅ ⋯⋯⋯⋯⋯⋯

−𝑣𝑗0 ⋮ (𝑐2𝛿𝑖𝑗 − 𝑣𝑖0𝑣
𝑗
0)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (2.21)

Inverting 𝑔𝜇𝜈, we finally find the effective metric3

𝑔𝜇𝜈(𝑡, 𝑥) =
𝜌0
𝑐

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−(𝑐2 − 𝑣20) ⋮ −𝑣𝑗0

⋯⋯⋯⋯ ⋅ ⋯

−𝑣𝑗0 ⋮ 𝛿𝑖𝑗

⎤
⎥
⎥
⎥
⎥
⎥
⎦4×4

. (2.22)

We note that the effectivemetric has a signature (−,+,+,+), whichmakes 𝑔𝜇𝜈 in fact a Lorentzian

metric. Along the text, we will sometimes refer to the spacetime with geometry described by

Eq. (2.22) as the analog spacetime.

The description in terms of Eq. (2.18) with metric given by Eq. (2.22) is completely equiv-

alent to the description given in terms of Eq. (2.14). Nevertheless, the formulation in terms of

the effective metric makes an approach inspired in the physics of fields propagating in curved

spacetimes much more attainable.

It might be enlightening to look at the derivation of the obtained description in the opposite

direction. Indeed, if we start with an effective metric, we can ask what constraints a particular

fluid has to satisfy in order to reproduce the respective effective geometry. From Eq. (2.22)

we can in principle identify the fluid degrees of freedom. After that, we have to check if

these quantities obey the fluid equations of motion Eqs. (2.1) and (2.2). By judiciously adding

an external driving potential, we can always fulfil the Euler equation, Eq. (2.2). Thus, the

realization of the effective geometry will be constrained only by the equation of continuity,

Eq. (2.1). In fact, by implementing this kind of reasoning we were able to find analog models

to the equatorial sections of the Schwarzschild and Reissner-Nordström black holes in [58].

It is important to point out that the discussion developed in this section entails two relevant

distinct spacetimes:

3
In the particular case of acoustic waves, this metric is also commonly referred in the literature as “acoustic

metric” and “Unruh’s metric”. We opt to use “effective metric” because of its applicability to analog models based

on physical systems of any kind.
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(i) the physical spacetime, with geometry described by the Minkowski metric

𝜂𝜇𝜈 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−𝑐light 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (2.23)

where 𝑐light stands for the speed of light. The fluid elements move in Newtonian space

plus time and couple only to this metric (i.e., fluid elements do not “feel” the effective

metric). Aside from that, we point out that since we derived the dynamics of propagation

from classical equations of motion — Eqs. (2.1) and (2.2) —, we are, in fact, assuming that

the fluid motion is completely non-relativistic, |𝑣| ≪ 𝑐light.

(ii) the effective/analog spacetime, with geometry described by the effectivemetric Eq. (2.22).

The acoustic waves couple only to this metric and do not “feel” the metric of the physical

spacetime.

2.2 Kinematics and Dynamics

The equations governing the dynamics of the effective metric will depend on the underlying

physics of the system being considered. In the specific case of acoustic waves propagating

in an inviscid fluid, the fundamental physical laws are the equation of continuity, Eq. (2.1),

Euler’s equation, Eq. (2.2), and the barotropic equation of state, 𝑝 = 𝑝(𝜌). On the other hand,

metrics of spacetimes of GR obey the Einstein field equations [2, 3, 4, 5]. Thus, by means

of analog geometries, we are, in general, only able to simulate kinematical aspects —such as

the effects of an externally imposed geometry on the fields and trajectories of particles— of

GR. The simulation of dynamical aspects is a much more subtle question, and we refer the

interested reader to [26, 59] for further discussions.

Although not entirely equivalent to GR, the study of analog models of gravity can still

lead to a deeper understanding of gravity specifically providing plenty of concrete physical

contexts that allow one to distinguish intrinsic aspects of GR (resulting from Einstein field

equations) from generic aspects of physics in curved spacetimes.



Chapter 2. General Features of Analog Models 22

Arguably one of the most interesting results obtained by the approach based on analog

models is the realization that the emission of Hawking radiation is a purely kinematical effect,

which only depends on the existence of a horizon and does not depend on the Einstein field

equations [10, 9].

2.3 Causal Structure

At any event in Minkowski spacetime, the definition of the notions of past, present, and future

rely on the concept of light cone [60], which is the region generated by trajectories of light rays

in the highwavelength (small frequency) limit. The light cone is fundamental to understanding

the causal structure of the Minkowski spacetime. In general Lorentzian curved spacetimes, the

local causal structure is the same as that of Minkowski space. However, light cones can now

be warped by the underlying spacetime geometry. The light cone is now described by null

geodesics of the spacetime metric.

Let us see how these notions are directly carried over to the analog spacetime described

by the effective metric Eq. (2.22). First, we take ansatz

𝜓(𝑥𝜇) = 𝐴(𝑥𝜇) exp[𝑖𝜔Θ(𝑥𝜇)], (2.24)

where𝐴(𝑥𝜇) andΘ(𝑥𝜇) are amplitude and phase functions, respectively, and𝜔 is the frequency

𝜔 ∼ 𝜆−1 (In GR, the small wavelength scale is set by the curvature of spacetime, while in

acoustics, this is fixed by the interatomic distance of fluid particles). Substituting Eq. (2.24)

into Eq. (2.18), at leading order, we find the eikonal equation

𝑔𝜇𝜈𝜕𝜇Θ𝜕𝜈Θ = 0. (2.25)

Hence the gradient of the phase, 𝑘𝜇 ≡ 𝜕𝜇Θ, is a null vector field normal to the family of

constant-phase hypersurfaces Θ(𝑥𝜇) = const. Taking the derivative of Eq. (2.25) and using the

identity
4 ∇𝜈𝑘𝜇 = ∇𝜇𝑘𝜈, one can straightforwardly show that

𝑘𝜇∇𝜇𝑘𝜈 = 0, (2.26)

4
This identity follows immediately from the fact that 𝑘𝜇 is a gradient.
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and thus conclude that the integral curves of 𝑘𝜇 are null geodesics of spacetime. The vector

field 𝑘𝜇 defines a null congruence [61], which is a family of null geodesics with tangent vectors

given by 𝑘𝜇.

In the eikonal limit, the wavefront propagates along a null congruence. In the case of sound

waves governed by Eq. (2.18), this corresponds to the geometric acoustics limit in which sound

rays propagate along null geodesics of the effective metric. Since null geodesics are invariant

with respect to conformal transformations of the metric, from (2.22), we see that sound rays

are insensitive to the background density of the fluid, and depend only on the local sound

speed and velocity of the fluid.

For a detailed analysis of the eikonal wavefront propagation and a comparison with the

full wavefront determined by the exact solution of Eq. (2.18), we refer the reader to [62] and

[63]. For a discussion concerning general aspects such as global causal structure and maximal

analytic extensions of analog spacetimes, we refer the reader to [64].

2.4 Horizons and Ergoregions

Because the Minkowski metric of the physical spacetime provides a natural definition of “at

rest”, we can define the notions of horizon, ergoregion, ergosurface, and trapped surface [2, 4]

in a relatively simple manner, with much less work than that required to define these objects

in GR.

First, let us consider the timelike vector induced by theNewtonian time (𝜕/𝜕𝑡)𝜇 = (1, 0, 0, 0).

Then

𝑔𝜇𝜈(
𝜕
𝜕𝑡)

𝜇

(
𝜕
𝜕𝑡)

𝜈

= 𝑔𝑡𝑡 = −(𝑐2 − 𝑣2). (2.27)

At a supersonic region (|𝑣| > 𝑐), a subsonic particle cannot appear stationary with respect to

an observer located at a region such that |𝑣| < 𝑐. Thus any region of supersonic flow is an

ergoregion. The boundary of an ergoregion is an ergosurface. The analog of this notion in

GR is the ergosphere that surrounds a spinning black hole: a region where space moves with

superluminal velocity with respect to distant observers [2, 41].

Let us now consider a region in space enclosed by a 2-surface and such that the fluid veloc-

ity points inwards and its normal component is greater than the speed of sound everywhere.

A sound wave emitted from the interior of this region cannot escape and will be trapped in-

side the surface. Such a surface is said to be an outer-trapped surface. Inner-trapped surfaces
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can be defined similarly by demanding the fluid velocity to point outwards and to have a nor-

mal supersonic component everywhere. The acoustic trapped region is defined as the region

containing outer-trapped surfaces, and the acoustic apparent horizon is the boundary of the

trapped region. Finally, the acoustic event horizon is defined as the boundary of the region

from which null geodesics cannot escape.

2.5 Generalization: Lagrangian approach

The existence of analog models with very distinct physical natures, ranging from condensed

matter to fluid dynamics, suggests the existence of a deeper common structure shared by these

systems. In fact, in this section, we will see that propagation of acoustic waves in a fluid is just

one instance of a much larger class of systems that can be described in terms of an effective

geometry.

Let us consider a scalar field, 𝜙, with dynamics given by an arbitrary Lagrangian which

depends on the field and its first derivatives, (𝜕𝜇𝜙, 𝜙). First, we write the field as

𝜙(𝑡, 𝑥) = 𝜙0(𝑡, 𝑥) + 𝜖𝜙1(𝑡, 𝑥) +
𝜖2

2
𝜙2(𝑡, 𝑥) +⋯ , (2.28)

where 𝜖 is a perturbation parameter (which we take being “small"); 𝜙0 is a background state;

𝜙1 is a linear perturbation; 𝜙2 is a second-order perturbation; and so on.

We want to study the dynamical evolution of linear perturbations on the background state,

so we expand the Lagrangian around 𝜙0,5

(𝜕𝜇𝜙, 𝜙) =(𝜕𝜇𝜙0, 𝜙0) + 𝜖 [
𝜕

𝜕(𝜕𝜇𝜙)
||||𝜙0
𝜕𝜇𝜙1 +

𝜕
𝜕𝜙

||||𝜙0
𝜙1] +

𝜖2

2 [
𝜕

𝜕(𝜕𝜇𝜙)
||||𝜙0
𝜕𝜇𝜙2 +

𝜕
𝜕𝜙

||||𝜙0
𝜙2]

+
𝜖2

2 [
𝜕2

𝜕(𝜕𝜇𝜙)𝜕(𝜕𝜈𝜙)
||||𝜙0
𝜕𝜇𝜙1𝜕𝜈𝜙1 + 2

𝜕2
𝜕(𝜕𝜇𝜙)𝜕𝜙

||||𝜙0
𝜕𝜇𝜙1 𝜙1 +

𝜕2
𝜕𝜙𝜕𝜙

||||𝜙0
𝜙1 𝜙1] + (𝜖3).

(2.29)

Now we consider the action

𝑆[𝜙] = ∫ 𝑑𝑑+1𝑥 (𝜕𝜇𝜙, 𝜙), (2.30)

5
In this section, we consider a (𝑑 + 1)-dimensional spacetime, with Greek indices ranging from 0 to 𝑑.
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integrate by parts, and use the Euler-Lagrange equations,

𝜕𝜇(
𝜕

𝜕(𝜕𝜇𝜙))
−
𝜕
𝜕𝜙

= 0, (2.31)

to eliminate linear terms and obtain

𝑆[𝜙] =𝑆[𝜙0]

+
𝜖2

2 ∫ 𝑑𝑑+1𝑥
{

(
𝜕2

𝜕(𝜕𝜇𝜙)𝜕(𝜕𝜈𝜙))
||||𝜙0
𝜕𝜇𝜙1𝜕𝜈𝜙1 + [

𝜕2
𝜕𝜙𝜕𝜙

||||𝜙0
− 𝜕𝜇(

𝜕2
𝜕(𝜕𝜇𝜙)𝜕𝜙)

||||𝜙0]
𝜙1𝜙1

}

+ (𝜖3). (2.32)

Hence the equation of motion for linear disturbances is

𝜕𝜇 [(
𝜕2

𝜕(𝜕𝜇𝜙)𝜕(𝜕𝜈𝜙))
||||𝜙0
𝜕𝜈𝜙1] − [

𝜕2
𝜕𝜙𝜕𝜙

||||𝜙0
− 𝜕𝜇(

𝜕2
𝜕(𝜕𝜇𝜙)𝜕𝜙

||||𝜙0)]
𝜙1 = 0, (2.33)

which is a second-order differential equation with position-dependent coefficients (notice that

these coefficients depend implicitly on the background 𝜙0).

In order to accomplish a geometrical interpretation, we proceed as in Sec. 2.1, and identify

√−𝑔𝑔𝜇𝜈 ≡ 𝑓 𝜇𝜈 ≡ (
𝜕2

𝜕(𝜕𝜇𝜙)𝜕(𝜕𝜈𝜙))
||||𝜙0
. (2.34)

Taking the determinant of this equation

(−𝑔)(𝑑−1)/2 = −det
{

𝜕2
𝜕(𝜕𝜇𝜙)𝜕(𝜕𝜈𝜙)

} ||||𝜙0
, (2.35)

so that

𝑔𝜇𝜈(𝜙0) = (−det
{

𝜕2
𝜕(𝜕𝜇𝜙)𝜕(𝜕𝜈𝜙)

} ||||𝜙0)

−1/(𝑑−1) { 𝜕2
𝜕(𝜕𝜇𝜙)𝜕(𝜕𝜈𝜙)

} ||||𝜙0
, (2.36)

and the effective metric becomes

𝑔𝜇𝜈(𝜙0) = (−det
{

𝜕2
𝜕(𝜕𝜇𝜙)𝜕(𝜕𝜈𝜙)

} ||||𝜙0)

1/(𝑑−1)

[

{
𝜕2

𝜕(𝜕𝜇𝜙)𝜕(𝜕𝜈𝜙)

} ||||𝜙0]

−1

. (2.37)

The equation of motion for linear perturbations is then

[□(𝑔(𝜙0)) − 𝑉 (𝜙0)]𝜙1 = 0, (2.38)
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where the notation for the d’Alembert operator, □(𝑔(𝜙0)), emphasizes its dependence on the

background state of the system. The background-dependent “mass term” is given by

𝑉 (𝜙0) = (−det
{

𝜕2
𝜕(𝜕𝜇𝜙)𝜕(𝜕𝜈𝜙)

} ||||𝜙0)

−1/(𝑑−1)

×(
𝜕2
𝜕𝜙𝜕𝜙

− 𝜕𝜇 [
𝜕2

𝜕(𝜕𝜇𝜙)𝜕𝜙])
||||𝜙0
. (2.39)

The linearized equation Eq. (2.38) describes the propagation of perturbations on the fixed

background 𝜙0. In fact, Eq. (2.38) is going to be hyperbolic — and, as such, will have wave-like

solutions — if and only if the effective metric 𝑔𝜇𝜈(𝜙0) has Lorentzian signature [22]. Therefore,

we conclude that any physical system with dynamics described by a Lagrangian depending

only on a single scalar field and its first derivatives, and such that the metric given by Eq. (2.37)

has Lorenzian signature, will allow a description of wave propagation in terms of an effective

spacetime.

That the barotropic irrotational perfect fluid considered in Sec. 2.1 belongs to the class of

systems introduced in this section results from the fact that (i) the equations of motion for the

fluid can be derived from the Lagrangian [65]

(𝜙, 𝜕𝜇𝜙) = 𝜌�̇� +
1
2
𝜌(∇𝜙)2 + 𝑢(𝜌), (2.40)

where 𝑣 = −∇𝜙, and 𝑢(𝜌) is the internal energy density; and (ii) the corresponding effective

metric for acoustic disturbances has a Lorentzian signature.
6

6
For a complete derivation of the effective (acoustic) metric Eq. (2.22) starting from the Lagrangian Eq. (2.40),

we refer the reader to [65].
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Chapter 3

The BTZ Black Hole and its

Quasinormal Modes

In this chapter, we introduce the Bañados, Teitelboim and Zanelli (BTZ) black hole [40] and

the quasinormal modes associated with the scalar field in this geometry. We first discuss the

BTZ spacetime causal structure, and after that we calculate the mode solutions and obtain the

equation that determines the quasinormal frequencies obeying various Robin boundary condi-

tions (including those of Dirichlet and Neumann types). The concepts and results presented in

this chapter will lay the ground for the development of the forthcoming chapters. The results

in this chapter are by no means original [42, 43, 44, 45, 46, 66, 67].

3.1 The BTZ Black Hole

The rotating BTZ black hole is described by the metric [40]

𝑑𝑠2 = −(𝑁 ⟂)2𝑑𝑡2 + (𝑁 ⟂)−2𝑑𝑟2 + 𝑟2(𝑑𝜑2 + 𝑁 𝜑𝑑𝑡)2, (3.1)

where

𝑁 ⟂ = (−𝑀 +
𝑟2

𝑙2
+
𝐽 2

4𝑟2)

1/2

, 𝑁 𝜑 = −
𝐽
2𝑟2

(|𝐽 | < 𝑀𝑙). (3.2)

The metric Eq. (3.1) is stationary and axially symmetric, with Killing vectors 𝜕𝑡 and 𝜕𝜑.

One can check that the metric Eq. (3.1) is a solution to the Einstein field equations in (1+2)-
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dimensions,

𝑅𝜇𝜈 −
1
2
𝑔𝜇𝜈𝑅 + Λ𝑔𝜇𝜈 = 0, (3.3)

with cosmological constant given by Λ = −1/𝑙2. The constants 𝑀 and 𝐽 are the mass and the

angular momentum of the BTZ black hole [43, 44]. Note that 𝑀 is a nondimensional quantity

in the units used here.

The BTZ black hole share many properties with its (1+3)-dimensional counterparts. For

instance, the surface where 𝑔00 = 0, i.e., the surface determined by

𝑟 = 𝑟erg, (3.4)

with 𝑟erg = 𝑀1/2𝑙, is an ergosphere, so that an observer with 𝑟 < 𝑟erg is dragged along by the

black hole rotation and cannot remain static. Besides, the values

𝑟2± =
𝑀𝑙2

2

⎧⎪⎪
⎨⎪⎪⎩
1 ±

[
1 −(

𝐽
𝑀𝑙2)

2

]

1/2⎫⎪⎪
⎬⎪⎪⎭
, (3.5)

for which the metric has coordinate singularities, determine an event horizon (𝑟 = 𝑟+) and a

Cauchy horizon (𝑟 = 𝑟−).

In the next chapters, we will consider only the static ( 𝐽 = 0) BTZ spacetime. In this case,

the metric Eq. (3.1) reduces to

𝑑𝑠2 = −(−𝑀 +
𝑟2

𝑙2)
𝑑𝑡2 +

𝑑𝑟2

(−𝑀 + 𝑟2
𝑙2 )

+ 𝑟2𝑑𝜑2, (3.6)

and we have 𝑟− = 0, 𝑟+ = 𝑟erg = 𝑀1/2𝑙.

In order to have a clearer picture of the causal structure of the BTZ geometry, it is useful

to transform to Kruskal-like coordinates [42]

𝑟ℎ ≤ 𝑟 < ∞

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑈 = ( 𝑟−𝑟ℎ𝑟+𝑟+ )
1/2

cosh(
𝑀1/2𝑡
𝑙 ) ,

𝑉 = ( 𝑟−𝑟ℎ𝑟+𝑟+ )
1/2

sinh(
𝑀1/2𝑡
𝑙 ) ,

(3.7)
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0 < 𝑟 < 𝑟ℎ

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑈 = (
𝑟ℎ−𝑟
𝑟ℎ+𝑟)

1/2
sinh(

𝑀1/2𝑡
𝑙 ) ,

𝑉 = (
𝑟ℎ−𝑟
𝑟ℎ+𝑟)

1/2
cosh(

𝑀1/2𝑡
𝑙 ) ,

(3.8)

where we have defined 𝑟ℎ = 𝑟+ = 𝑀1/2𝑙. In these coordinates the metric Eq. 3.6 is given by

𝑑𝑠2 =
(𝑟 + 𝑟ℎ)2

𝑀
(−𝑑𝑉 2 + 𝑑𝑈 2) + 𝑟2𝑑𝜑2. (3.9)

Figure 3.1: Kruskal diagram for the static BTZ black hole.

Figure 3.1 shows the Kruskal diagram for the BTZ static black hole. We note that null

geodesics (i.e., those with 𝑑𝑠2 = 0) travel along straight lines with slope 45◦. Note that we have

suppressed the angular coordinate so that each point in Fig 3.1 actually represents a circle in

the BTZ spacetime.
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Let us interpret the diagram in Fig. 3.1. First, when 𝑟 > 𝑟ℎ the Eq. (3.7) yields

𝑈 2 − 𝑉 2 =
𝑟 − 𝑟ℎ
𝑟 + 𝑟ℎ

, (3.10)

fromwhere it follows that 𝑟 = ∞ is mapped onto the hyperbola 𝑈 2−𝑉 2 = 1. Similarly, the lines

𝑟 = const. correspond to hyperbolas in the (𝑈 , 𝑉 ) plane, and as 𝑟 decreases, the hyperbolas

degenerate to the lines 𝑉 = ±𝑈 at the event horizon 𝑟 = 𝑟ℎ. On the other hand, since

𝑉
𝑈

= tanh(
𝑀1/2𝑡
𝑙 ) , (3.11)

we see that lines 𝑡 = const. correspond to straight lines in the (𝑈 , 𝑉 ) plane. Thus the exterior

of the BTZ black hole corresponds to the set 𝐴 = {(𝑈 , 𝑉 ) | 𝑈 > 𝑉 and 𝑈 > −𝑉 }.

Analogously, when 𝑟 < 𝑟ℎ, we see from Eq. (3.8) that lines 𝑟 = const. are mapped onto the

hyperbolas

𝑉 2 − 𝑈 2 =
𝑟ℎ − 𝑟
𝑟ℎ + 𝑟

. (3.12)

In particular, the singularity 𝑟 = 0 is mapped onto the hyperbola 𝑉 2 − 𝑈 2 = 1. On the other

hand, from Eq. (3.8), we now have

𝑈
𝑉

= tanh(
𝑀1/2𝑡
𝑙 ) , (3.13)

and 𝑡 = const. lines are still mapped onto straight lines in the (𝑈 , 𝑉 ) plane. The interior of the

BTZ black hole corresponds to the set 𝐵 = {(𝑈 , 𝑉 ) | 𝑉 > 𝑈 and 𝑉 > −𝑈 } in the (𝑈 , 𝑉 ) plane.

The set 𝐶 = {(𝑈 , 𝑉 ) | 𝑉 > 𝑈 and 𝑉 < −𝑈 } corresponds to an exterior region of BTZ disjoint

from 𝐴, and can be covered by the coordinate patch

𝑟ℎ ≤ 𝑟 < ∞

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑈 = − ( 𝑟−𝑟ℎ𝑟+𝑟+ )
1/2

cosh(
𝑀1/2𝑡
𝑙 ) ,

𝑉 = ( 𝑟−𝑟ℎ𝑟+𝑟+ )
1/2

sinh(
𝑀1/2𝑡
𝑙 ) .

(3.14)

The set 𝐷 = {(𝑈 , 𝑉 ) | 𝑉 < 𝑈 and 𝑉 < −𝑈 } corresponds to a white hole, and can be covered by

the coordinate patch

0 < 𝑟 < 𝑟ℎ

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑈 = (
𝑟ℎ−𝑟
𝑟ℎ+𝑟)

1/2
sinh(

𝑀1/2𝑡
𝑙 ) ,

𝑉 = −(
𝑟ℎ−𝑟
𝑟ℎ+𝑟)

1/2
cosh(

𝑀1/2𝑡
𝑙 ) .

(3.15)
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E

Figure 3.2: Penrose diagram for the static BTZ black hole.

By the same argument used to interpret the lines 𝑟 = const. and 𝑡 = const. in regions 𝐴 and

𝐵, one can see that we have again lines 𝑟 = const. corresponding to hyperbolas and lines

𝑡 = const. corresponding to straight lines.

The diagram of Fig. 3.1 can be further simplified if we consider the transformation

𝑈 + 𝑉 = tan (
𝑝+𝑞
2 ) ,

𝑈 − 𝑉 = tan (
𝑝−𝑞
2 ) ,

(3.16)

with 𝑝, 𝑞 ∈ (−𝜋, 𝜋), which leads us to the Penrose diagram represented in figure 3.2.

Let us now interpret this diagram. Since 𝑟 = ∞ corresponds to the hyperbola 𝑈 2 − 𝑉 2 = 1,

we have that

1 = 𝑈 2 − 𝑉 2 = tan(
𝑝 + 𝑞
2 ) tan(

𝑝 − 𝑞
2 ) =

cos 𝑞 − cos 𝑝
cos 𝑞 + cos 𝑝

, (3.17)
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which implies cos 𝑝 = 0, and we conclude that 𝑟 = ∞ is mapped onto the lines 𝑝 = ±𝜋/2 in the

(𝑝, 𝑞) plane. We will refer to 𝑝 = ±𝜋/2 (or, equivalently, to 𝑟 = ∞) as the conformal boundary

of the BTZ spacetime. By similar reasoning, we conclude that 𝑟 = 0 is mapped onto the lines

𝑞 = ±𝜋/2, and the horizon is mapped onto 𝑝 = ±𝑞.

The Penrose diagram of fig. 3.2 allows us to illustrate the lack of global hiperbolicity of the

BTZ spacetime in a very intuitive way. Indeed, let us suppose we have given smooth initial

data on a spacelike hypersurface Σ at the exterior region of the BTZ spacetime. The state of an

observer at the event 𝐸 will depend not only on the information coming from the intersection

of his/her past light cone with Σ. In fact, to determine the state of the observer at 𝐸, we need

to know what happens at the conformal boundary during the time interval indicated by the

dashed line in Fig. 3.2.

The indetermination of the dynamics in this static nonglobally hyperbolic spacetime can

be overcome by prescribing proper boundary conditions at 𝑟 = ∞. The details of the process

of implementing boundary conditions in such spacetimes are not trivial since the equation

of motion usually leads to a singular Sturm-Liouville problem [68]. One way to circumvent

such dificulties is to apply Wald and Ishibashi’s formalism [69, 70, 71]. In this case, one can

recover unique deterministic time evolution for the dynamics. In Appendix B, we present a

brief introduction to this formalism and its application to the propagation of a scalar field in

the BTZ spacetime.

We present Appendix B for the sake of completeness since it will not be fundamentally

essential to the discussion on the forthcoming chapters. In fact, in Chapter 4, we emulate the

dynamics of amassless scalar field, for which only Dirichlet boundary conditions at infinity are

allowed. On the other hand, in Chapter 5, we consider a conformally coupled field, for which

general Robin boundary conditions are allowed. Nevertheless, since the effective potential on

the radial equation is regular in this case, we can implement Robin boundary conditions in the

traditional way of solving regular Sturm-Liouville problems [72].

3.2 Quasinormal Modes

When an isolated system (such as a finite string, a membrane or a cavity filled with electro-

magnetic radiation) is perturbed, its internal degrees of freedom are excited, and the resulting

dynamical evolution is described by a superposition of characteristic vibrations known as nor-
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mal modes [73, 74, 75]. The frequencies of these modes do not depend on the configuration

of the initial perturbation and are, therefore, intrinsic properties of the system. Moreover,

they completely describe the dynamics since, at any time, the state of the system is given by

a superposition of such normal modes.

On the other hand, in the case of a field propagating in the vicinity of a black hole, energy

will always leak out from the system through the horizon (and possibly through infinity),

which means that we cannot, in general, treat a black hole as a conservative system. The

characteristic modes of oscillation, in this case, are the quasinormal modes (QNMs) [45, 76,

46, 47]. The corresponding frequencies, the quasinormal frequencies, are complex numbers

with a real part corresponding to an actual frequency of oscillation and an imaginary part

corresponding to a damping factor accounting for the energy leaking out from the system.

Similarly to what happens in conservative systems, the quasinormal frequencies will in

general depend only on the black hole parameters (mass, angular momentum, charge) but

not on the particular form of the initial perturbation. Nevertheless, an important distinction

between normal modes and QNMs is that the latter, in general, do not describe the dynamics

completely at any time [77]. In fact, the usual response of a black hole after a perturbation

undergoes three stages [78]: (i) the prompt response, determined by the initial perturbation;

followed by (ii) the intermediate phase, which is dominated by the QNMs; and (iii) the final

phase, usually governed by a power-law tail.

As an example of how QNMs arise in the description of oscillations on a black hole back-

ground, let us make some comments on the characterization of QNMs as solutions to an eigen-

value problem. To keep things simpler, we consider a scalar field propagating on a spherically

symmetric spacetime.

After separating time and angular variables, the problem can be reduced to the equation

−
𝑑2𝜓(𝑟)
𝑑𝑟2∗

+ 𝑉 (𝑟)𝜓(𝑟) = 𝜔2𝜓(𝑟), (3.18)

where 𝜓 is the radial component of the field Ψ, 𝑉 (𝑟) is the effective potential, 𝑟∗ is the tortoise

coordinate, and 𝜔 is the eigenfrequency. For instance, in the case of the Schwarzschild black

hole, the effective potential is given by [79]

𝑉 (𝑟) = (1 −
2𝑀
𝑟 )[

𝓁(𝓁 + 1)
𝑟2

+
2𝑀
𝑟3

+ 𝜇2] , (3.19)
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where 𝑀 is the black hole mass, 𝜇 is the field mass, 𝓁 is the angular quantum number, and the

tortoise coordinate is

𝑟∗ = 𝑟 + 2𝑀 ln(
𝑟
2𝑀

− 1) . (3.20)

We are interested in studyingwave propagation in the exterior region of the black hole. For

the Schwarzschild spacetime, this corresponds to the region 𝑟ℎ < 𝑟 < ∞, where 𝑟ℎ = 2𝑀 is the

Schwarzschild radius. In terms of the tortoise coordinate, Eq. (3.20), this region corresponds

to −∞ < 𝑟∗ < ∞.

To determine the eigenmodes of Eq. (3.18), we need to impose some conditions at the

boundaries of the system (i. e. at the horizon and spatial infinity). On the horizon, we have

𝑉 = 0, and the field behaves as 𝜓 ∼ 𝑒±𝑖𝜔𝑟∗ . Since QNMs correspond to waves that take energy

out from the system, we should impose the boundary condition

𝜓 ∼ 𝑒−𝑖𝜔𝑟∗ , 𝑟∗ → −∞ (𝑟 → 𝑟+), (3.21)

which is referred to as an ingoing boundary condition, meaning that the wave goes into the

black hole. Notice that we are assuming a Fourier mode decomposition such that Ψ = 𝑒−𝑖𝜔𝑡 ×

(spatial variables), which indeed implies an ingoing wave at the horizon, Ψ ∼ 𝑒−𝑖𝜔(𝑟∗+𝑡).

In the Schwarzschild case (and for asymptotically-flat spacetimes in general), we have 𝑉 =

0 at spatial infinity, and again the plane wave behavior 𝜓 ∼ ±𝑒±𝑖𝜔𝑟∗ . Now the appropriate

boundary condition is

𝜓 ∼ 𝑒𝑖𝜔𝑟∗ , 𝑟∗ → ∞ (𝑟 → ∞), (3.22)

which corresponds to outgoing waves at infinity, Ψ ∼ 𝑒𝑖𝜔(𝑟∗−𝑡).

The boundary conditions (3.21) and (3.22) determine a discrete infinity set of QNMs, {Ψ𝜔},

with complex eigenfrequencies {𝜔𝑛 ; 𝑛 = 0, 1, 2, … }. The real part of 𝜔 gives the actual fre-

quency of oscillation, and the imaginary part gives the inverse damping time of the corre-

sponding mode. The quasinormal frequencies are usually sorted by the magnitude of their

imaginary part. We use an integer label 𝑛, called the overtone number, and take the least-

damped mode (or fundamental mode) corresponding to 𝑛 = 0.

In the case of the BTZ black hole (and for asymptotically-curved spacetimes in general), one

does not have 𝑉 = 0 at spatial infinity, so that outgoing boundary conditions are not available

there [48, 49]. This issue can be addressed by prescribing appropriate boundary conditions at

the BTZ spatial infinity, as we will see in the next section.
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For a comprehensive treatment of the many important features of QNMs we refer the

reader to the review articles [45, 76, 46, 47], thesis [80, 81, 82], and references therein.

3.3 QNMs of the Scalar Field in the BTZ Black Hole

In this section, we calculate the QNMs of the scalar field Ψ propagating on the BTZ back-

ground. We first consider generalized Robin boundary conditions at spatial infinity, and then

show that for the particular cases of Dirichlet and Neumann conditions, we can obtain the

QNMs exactly.

The equation of motion for the scalar field is

(□ − 𝑚2
𝜉)Ψ = 0, (3.23)

where the d’Alembert operator, □ = ∇𝜇∇𝜇, is calculated with respect to the BTZmetric Eq. (3.6),

and the effective mass squared is given by

𝑚2
𝜉 = 𝜇2 + 𝜉, (3.24)

with 𝜇 being the mass of the field and 𝜉 being the coupling constant with the Ricci scalar

 = −6/𝑙2.

Separating variables by the ansatz

Ψ(𝑡, 𝑟 , 𝜑) =
𝜓(𝑟)
𝑟1/2

𝑒−𝑖𝜔𝑡𝑒𝑖𝑚𝜑, (3.25)

and transforming to the tortoise coordinate

𝑟∗ = −
𝑙

𝑀1/2 arcoth(
𝑟

𝑀1/2𝑙)
, (3.26)

and substituting into Eq. (3.23), the equation of motion reduces to the radial equation

−
𝑑2𝜓(𝑟∗)
𝑑𝑟2∗

+ 𝑉eff(𝑟∗)𝜓(𝑟∗) = 𝜔2𝜓(𝑟∗), (3.27)



Chapter 3. The BTZ Black Hole and itsQuasinormal Modes 36

where the effective potential is given by

𝑉eff(𝑟∗) = 𝑀 (
3
4𝑙2

+ 𝑚2
𝜉) csch2(

𝑀1/2𝑟∗
𝑙 ) +(

4𝑚2 +𝑀
4𝑙2 ) sech2(

𝑀1/2𝑟∗
𝑙 ) . (3.28)

Note that the transformation Eq. (3.26) maps the horizon 𝑟ℎ = 𝑙𝑀1/2
to 𝑟∗ = −∞, and the

spatial infinity 𝑟 = ∞ to 𝑟∗ = 0. We also notice that for generic values of 𝑚2
𝜉 the potential

blows up at the conformal boundary, which, in turn, leads to a singular Sturm-Liouville prob-

lem [68], so that boundary conditions cannot be directly imposed at 𝑟∗ = 0. On the other

hand, when 𝑚2
𝜉 = −3/4𝑙2 the potential is regular, and one can impose boundary conditions

by the usual procedure prescribed by the theory of regular Sturm-Liouville problems. This

case corresponds to a conformally coupled field (𝜇2 = 0, 𝜉 = 1/8), and we will be particularly

interested in considering it in Chapter 5. However, for now, let us keep things as general as

possible and proceed with the calculation of the QNMs with generic 𝑚2
𝜉 .

As shown in Appendix B
1
, one can impose generalized Robin boundary conditions at

infinity for 𝜓 when −1/𝑙2 < 𝑚2
𝜉 < 0, so we will assume this is the case hereafter in this

section. The general solution to Eq. 3.27 can be written as a linear combination of the linearly

independent fundamental solutions {𝜓𝐷𝜔 , 𝜓𝑁𝜔 },

𝜓𝜔(𝑟∗) = 𝑁𝜔 [cos 𝜁 𝜓𝐷𝜔 (𝑟∗) + sin 𝜁 𝜓𝑁𝜔 (𝑟∗)] , (3.29)

where 𝜁 ∈ [0, 𝜋] parametrizes the generalized Robin boundary conditions [83, 67] and 𝜓𝐷𝜔
is chosen as the principal solution, i.e., the unique solution (up to scalar multiples) such that

lim
𝑟∗→0

𝜓𝐷𝜔/𝜙 = 0, for every solution 𝜙 that is not a multiple of 𝜓𝐷𝜔 . We say that the other linearly

independent solution 𝜓𝑁𝜔 is a non-principal solution. Note that a non-principal solution is not

unique since, for any constant 𝑘, the function 𝜓𝐷𝜔 + 𝑘𝜓𝑁𝜔 is also a non-principal solution.

Let us now find 𝜓𝐷𝜔 and 𝜓𝑁𝜔 . It is convenient to choose units such that

𝑟∗ =
𝑀1/2

𝑙
𝑟∗, �̂� =

𝑙
𝑀1/2𝜔, (3.30)

so that the radial equation becomes

−
𝑑2𝜓(𝑟∗)
𝑑𝑟2∗

+ �̂�eff(𝑟∗)𝜓(𝑟∗) = �̂�2𝜓(𝑟∗), (3.31)

1
See the case (ii) in section B.1.2 and note that 𝜈 = 1 + 𝑙2𝑚2

𝜉 .
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where the nondimensional effective potential is given by

�̂�eff(𝑟∗) = (
3
4
+ 𝑙2𝑚2

𝜉) csch2 𝑟∗ +(
4𝑚2 +𝑀

4𝑀 ) sech2 𝑟∗ (3.32)

Changing to the new coordinate and wave function

𝑧 = sech2 𝑟∗ (3.33)

𝜓𝜔(𝑧) = 𝑧𝛼(1 − 𝑧)𝜆(1 − 𝑧)−1/4𝐹𝜔(𝑧), (3.34)

and substituting these into Eq. (3.31), we find

𝑧(1 − 𝑧)
𝑑2𝐹𝜔
𝑑𝑧2

+ [(1 + 2𝛼) − (2𝛼 + 2𝜆 + 1)𝑧]
𝑑𝐹𝜔
𝑑𝑧

+ [
𝐴

𝑧(1 − 𝑧)
+

𝐵
1 − 𝑧

− 𝐶] 𝐹𝜔(𝑧) = 0, (3.35)

where

𝐴 = −𝛼2 −
�̂�2

4
, (3.36)

𝐵 = 𝛼2 − 𝜆2 + 𝜆 +
𝑙2𝑚2

𝜉

4
+
�̂�2

4
, (3.37)

𝐶 =
𝑚2

4𝑀
+ (𝛼 + 𝜆)2. (3.38)

If we take 𝛼 and 𝜆 so that 𝐴 = 𝐵 = 0, i.e.,

𝛼 = −
𝑖�̂�
2
, 𝜆 =

1
2 (

1 +
√
1 + 𝑙2𝑚2

𝜉) , (3.39)

and further define the auxiliar quantities

𝑎 = 𝛼 + 𝜆 +
𝑖𝑚

2𝑀1/2 , 𝑏 = 𝛼 + 𝜆 −
𝑖𝑚

2𝑀1/2 , 𝑐 = 1 + 2𝛼, (3.40)

the Eq. (3.35) can be rewritten as

𝑧(1 − 𝑧)
𝑑2𝐹𝜔
𝑑𝑧2

+ [𝑐 − (𝑎 + 𝑏 + 1)𝑧]
𝑑𝐹𝜔
𝑑𝑧

− 𝑎𝑏𝐹𝜔(𝑧) = 0, (3.41)

which is the known hypergeometric differential equation [84].
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When none of 𝑐, 𝑐 − 𝑎 − 𝑏, 𝑎 − 𝑏 is an integer
2
, a convenient pair of linearly independent

solutions for Eq. (3.41) is

𝐹𝐷𝜔 (𝑧) = 2𝐹1(𝑎, 𝑏; 𝑎 + 𝑏 + 1 − 𝑐; 1 − 𝑧), (3.42)

𝐹𝑁𝜔 (𝑧) = (1 − 𝑧)𝑐−𝑎−𝑏 2𝐹1(𝑐 − 𝑎, 𝑐 − 𝑏; 𝑐 − 𝑎 − 𝑏 + 1; 1 − 𝑧), (3.43)

where 2𝐹1 stands for the standard hypergeometric function

2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) =
∞

∑
𝑗

(𝑎)𝑗(𝑏)𝑗
(𝑐)𝑗 𝑗 !

𝑧𝑗 , (3.44)

and (𝑥)𝑗 indicates the Pochhammer symbol

(𝑥)𝑗 = 𝑥(𝑥 + 1)… (𝑥 + 𝑗 − 1). (3.45)

The corresponding solutions for Eq. (3.31) are

𝜓𝐷𝜔 (𝑧) = 𝑧𝛼(1 − 𝑧)𝜆(1 − 𝑧)−1/4 2𝐹1(𝑎, 𝑏; 𝑎 + 𝑏 + 1 − 𝑐; 1 − 𝑧), (3.46)

𝜓𝑁𝜔 (𝑧) = 𝑧𝛼(1 − 𝑧)1−𝜆(1 − 𝑧)−1/4 2𝐹1(𝑐 − 𝑎, 𝑐 − 𝑏; 𝑐 − 𝑎 − 𝑏 + 1; 1 − 𝑧), (3.47)

which behave near 𝑟 = ∞ (𝑧 = 1) as

𝜓𝐷𝜔 (𝑧 → 1) ≈ (1 − 𝑧)𝜆, (3.48)

𝜓𝑁𝜔 (𝑧 → 1) ≈ (1 − 𝑧)1−𝜆, (3.49)

so that

lim
𝑧→1

𝜓𝐷𝜔 (𝑧)
𝜓𝑁𝜔 (𝑧)

≈ (1 − 𝑧)2𝜆−1. (3.50)

Since we assumed 𝑚2
𝜉 > −1/𝑙2, it follows that 𝜆 > 1/2 and hence

lim
𝑧→1

𝜓𝐷𝜔 (𝑧)
𝜓𝑁𝜔 (𝑧)

= 0, (3.51)

2
The other cases can be treated similarly, and we will not pursue them here. The reader interested in the this

case is referred to [83].
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which implies

lim
𝑧→1

𝜓𝐷𝜔 (𝑧)
𝑐1𝜓𝐷𝜔 (𝑧) + 𝑐2𝜓𝐷𝜔 (𝑧)

= 0, (3.52)

for 𝑐2 ≠ 0, and shows that 𝜓𝐷𝜔 (𝑧) is the principal solution.

Before imposing the ingoing boundary condition at the horizon, it is convenient to express

the general solution in terms of another set of independent solutions, that is,

𝜓𝜔(𝑧) =𝑐1 𝑧𝛼(1 − 𝑧)𝜆(1 − 𝑧)−1/4 2𝐹1(𝑎, 𝑏; 𝑐; 𝑧)

+𝑐2 𝑧−𝛼(1 − 𝑧)𝜆(1 − 𝑧)−1/4 2𝐹1(𝑎 − 𝑐 + 1, 𝑏 − 𝑐 + 1; 2 − 𝑐; 𝑧). (3.53)

From this, it follows that

𝜓𝜔(𝑟∗ → −∞) ∝ 𝑐1𝑒−𝑖�̂�𝑟∗ + 𝑐2𝑒+𝑖�̂�𝑟∗ , (3.54)

and in order to have only ingoing waves at the horizon, we should take 𝑐2 = 0. If we addition-

ally use the transformation [85]

2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) =
Γ(𝑐)Γ(𝑐 − 𝑎 − 𝑏)
Γ(𝑐 − 𝑎)Γ(𝑐 − 𝑏) 2𝐹1(𝑎, 𝑏; 𝑎 + 𝑏 − 𝑐 + 1; 1 − 𝑧)

+ (1 − 𝑧)𝑐−𝑎−𝑏
Γ(𝑐)Γ(𝑎 + 𝑏 − 𝑐)

Γ(𝑎)Γ(𝑏) 2𝐹1(𝑐 − 𝑎, 𝑐 − 𝑏; 𝑐 − 𝑎 − 𝑏 + 1; 1 − 𝑧), (3.55)

the solution becomes

𝜓𝜔(𝑧) = 𝑐1 ×
{
Γ(𝑐)Γ(𝑐 − 𝑎 − 𝑏)
Γ(𝑐 − 𝑎)Γ(𝑐 − 𝑏)

𝜓𝐷𝜔 (𝑧) +
Γ(𝑐)Γ(𝑎 + 𝑏 − 𝑐)

Γ(𝑎)Γ(𝑏)
𝜓𝑁𝜔 (𝑧)

}
. (3.56)

Comparing this expression with Eq. (3.29), we find

cos(𝜁 )
Γ(𝑎 + 𝑏 − 𝑐)
Γ(𝑎)Γ(𝑏)

= sin(𝜁 )
Γ(𝑐 − 𝑎 − 𝑏)

Γ(𝑐 − 𝑎)Γ(𝑐 − 𝑏)
. (3.57)

For each 𝜁 ∈ [0, 𝜋], the solutions of Eq. (3.57) will determine a discrete set of quasinormal

frequencies. We note that, in general, this equation cannot be analytically solved so that in

most cases, one has to rely on numerical methods. However, when 𝜁 = 0 or 𝜁 = 𝜋/2, we can

solve Eq. (3.57) exactly. Indeed, since the gamma function has poles on negative integers, for
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𝜁 = 0, we have that

𝑎 = −𝑛 or 𝑏 = −𝑛, (𝑛 = 0, 1, 2, 3… ), (3.58)

solve Eq. (3.57) and yield the frequencies

𝜔 = ±
𝑚
𝑙
− 𝑖

𝑀1/2

𝑙 (2𝑛 + 1 +
√
1 + 𝑙2𝑚2

𝜉) , (𝜁 = 0). (3.59)

Similarly, we find that for 𝜁 = 𝜋/2, the poles of the gamma function correspond to

𝑐 − 𝑎 = −𝑛 and 𝑐 − 𝑏 = −𝑛, (𝑛 = 0, 1, 2, 3… ), (3.60)

which gives the frequencies

𝜔 = ±
𝑚
𝑙
− 𝑖

𝑀1/2

𝑙 (2𝑛 + 1 −
√
1 + 𝑙2𝑚2

𝜉) , (𝜁 =
𝜋
2)

. (3.61)

We note that the obtained frequencies Eqs. (3.59) and (3.61) agree with the results of [66]

and [67]. The boundary conditions 𝜁 = 0 and 𝜁 = 𝜋/2 are usually referred to as generalized

Dirichlet and Neumann boundary conditions. This terminology is motivated by the case of the

conformally coupled field, for which we have

𝜇2 = 0, 𝜉 =
1
8
, (3.62)

so that 𝑚2
𝜉 = −3/4𝑙2. One can see this by using Eqs. (3.46) and (3.47) to calculate

𝑑𝜓𝜔/𝑑𝑟∗
𝜓𝜔

||||𝑟∗=0
= − cot 𝜁 ≔ 𝛽, (3.63)

where we defined the parameter −∞ < 𝛽 < ∞. Notice that Eq. (3.63) is the usual Robin

boundary condition imposed at the boundary of a regular Sturm-Liouville problem. Besides,

we have that 𝜁 = 0 corresponds to 𝛽 = −∞, so that 𝜓𝜔(𝑟∗ = 0) = 0, which is the known

regular Dirichlet boundary condition. By the same reasoning, we see that 𝜁 = 𝜋/2 (𝛽 = 0)

corresponds to the regular Neumann boundary condition, (𝑑𝜓𝜔/𝑑𝑟∗)|𝑟∗=0 = 0.

Inspired by this discussion, in the general case (non-conformally coupled field), we say that

a solution with 𝜁 = 0 (𝜁 = 𝜋/2) obeys a generalized Dirichlet (Neumann) boundary condition at
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spatial infinity. In the same way, the other values of 𝜁 ∈ [0, 𝜋] correspond to solutions obeying

generalized Robin boundary conditions at infinity.

Before ending this section, we note that, for the conformally coupled field, Eqs. (3.57) and

(3.63) yield

𝛽 = −
Γ(𝑐 − 𝑎 − 𝑏)

Γ(𝑐 − 𝑎)Γ(𝑐 − 𝑏)
Γ(𝑎)Γ(𝑏)

Γ(𝑎 + 𝑏 − 𝑐)
, (3.64)

which after using Eqs. (3.39) and (3.40) reduces to

𝛽 =
2Γ ( 3

4 −
𝑖�̂�
2 )

2

Γ ( 1
4 −

𝑖�̂�
2 )

2 , (3.65)

for a mode with zero angular momentum, 𝑚 = 0. This result will be used to check the consis-

tency of the analog model of the conformally coupled field introduced in Chapter 5.
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Chapter 4

Hydrodynamical Analog Model of the

BTZ Black Hole

In this chapter, we present an analog model for the Bañados, Teitelboim, Zanelli (BTZ) black

hole based on a hydrodynamical flow. We numerically solve the fully nonlinear hydrodynamic

equations of motion and observe the excitation and decay of the analog BTZ quasinormal

modes in the process. We consider both a small perturbation in the steady state configuration

of the fluid and a large perturbation; the latter could be regarded as an example of formation

of the analog (acoustic) BTZ black hole. The material in this chapter is based on our work [54].

4.1 Introduction

In the work [58], we have proposed a hydrodynamical analog model for a class of spherically

symmetric metrics (which include the Schwarzschild and Reissner-Nordström spacetimes).

That model was based on the propagation of acoustic waves in the bulk of an inviscid fluid

and governed by the effective metric Eq. (2.22). Besides, that model required a careful fine-

tuning of the physical parameters of the flow, namely its local velocity and sound speed. The

local fluid velocity can be directly set up, in principle, by applying a suitable external force to

the fluid. However, the local speed of sound is much less amenable to external control since it

is determined by the relevant equation of state, which describes the internal forces in the flow

and depends on the nature of the fluid.

In this chapter, we apply the method introduced in [58], but now we do not start by fixing

the spacetime we want to emulate. Instead, we start by assuming that the equation of state for
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the fluid is as simple as it gets so that the local speed of sound is constant throughout the fluid

(see Eq. (4.13)). Interestingly enough, the curved spacetime that results from this procedure is

the celebrated BTZ spacetime introduced by Bañados, Teitelboim and Zanelli in [40].

As mentioned in Chapter 3, an important characterizing property of black holes is how

they respond to perturbations in the metric. Upon perturbation, a black hole goes, in general,

through a transient stage that depends on the source of the perturbation. After that, the system

can be characterized by a spectrum of complex quasinormal frequencies that depend only on

the black hole parameters [45, 46, 47]. The corresponding QNMs describe the characteristic

ringdown that occurs as a response to the perturbation. As noted in the previous chapter, the

QNMs are usually defined as the modes satisfying ingoing boundary conditions at the black

hole horizon and outgoing boundary conditions at infinity. This definitionworks perfectly fine

for asymptotically flat spacetimes (Schwarzschild and Kerr black holes, for instance). However,

the situation is subtler in the case of asymptotically curved spacetimes. In part, this results

from the difficulty in distinguishing ingoing and outgoing waves at infinity. Moreover, for an

asymptotically anti-de Sitter spacetime, the lack of global hyperbolicity gives rise to another

issue: the initial conditions are not sufficient to uniquely determine the time evolution of a

field, and extra boundary conditions at spatial infinity are required [69, 70, 71] (see also the

Appendix B). These boundary conditions influence all types of wave phenomena [56, 67, 86],

including, in particular, the quasinormal modes.

In this chapter, we are interested in analyzing the characteristic quasinormal decay of the

BTZ black hole in terms of the analog nonlinear phenomenon that takes place in the fluid

as a response to perturbing its flow. Our goal is, therefore, to use an ideal fluid to probe the

quasinormal decay of a scalar field in BTZ via the observation of the decay rate of soundwaves.

The next sections are organized as follows. In Sec. 4.2, we find the flow background pa-

rameters corresponding to the emulation of the BTZ spacetime by an effective metric. In Sec.

4.3, we numerically solve the equations of fluid dynamics for a small perturbation in the veloc-

ity field propagating on the background found in Sec. 4.2. Using the known BTZ quasinormal

frequencies [66], we show that the field intermediate-time and the late-time behaviors are well

described by a superposition of QNMs. After that, we consider an example of the formation

of an analog BTZ black hole and use this fully nonlinear process to observe the excitation and

decay of the analog BTZ quasinormal modes.
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4.2 Analog BTZ Black Hole

Let us consider an inviscid barotropic fluid flowing in two spatial dimensions. Let 𝑥 , 𝑦, and 𝑡 be

the spatial and time coordinates with respect to an inertial frame of reference in the laboratory.

Following [58], we start with a stationary one-dimensional velocity profile given by

𝑣(𝑥, 𝑦) = 𝑣(𝑥)�̂� . (4.1)

The equation of continuity (2.1) then implies that

𝜌(𝑥) =
𝑘

|𝑣(𝑥)|
, (4.2)

where 𝑘 is a constant.

Substituting the expression for the density profile Eq. (4.2) into the (2+1)-dimensional ver-

sion of Eq. (2.22), the effective metric can be written as

𝑑𝑠2 =
𝛼2𝑘2

𝑐2𝑣2 [−(𝑐2 − 𝑣2)𝑑𝑡2 − 2𝑣𝑑𝑡𝑑𝑥 + 𝑑𝑥2 + 𝑑𝑦2] , (4.3)

where 𝑐 is the local speed of sound. Note that the metric Eq. (4.3) is fully determined by the

background flow configuration. The constant 𝛼 was introduced for convenience in order to

make the factor (𝛼2𝑘2/𝑐2𝑣2) dimensionless.

Let us define a new timelike coordinate

𝑇 = 𝑡 + ∫
𝑣(𝑥′)

𝑐2(𝑥′) − 𝑣2(𝑥′)
𝑑𝑥′, (4.4)

so that the metric becomes diagonal

𝑑𝑠2 =
𝛼2𝑘2

𝑐2(𝑥)𝑣2(𝑥)

{
− [𝑐2(𝑥) − 𝑣2(𝑥)] 𝑑𝑇 2 +

𝑐2(𝑥)
𝑐2(𝑥) − 𝑣2(𝑥)

𝑑𝑥2 + 𝑑𝑦2
}
. (4.5)

Following [58], we define an angular coordinateΘ = 𝑦/𝐿 (mod 2𝜋), where 𝐿 is a characteristic

length of the analog model, and a radial coordinate
1

𝑅(𝑥) = ±
𝛼𝑘𝐿

𝑐(𝑥) 𝑣(𝑥)
, (4.6)

1
Since the velocity 𝑣(𝑥) can be positive or negative, we choose the sign in (4.6) so that 𝑅(𝑥) is always positive.
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which was chosen as the function that multiplies the resulting 𝑑Θ2
in Eq. (4.5). In terms of the

new coordinates (𝑇 , 𝑅,Θ), the metric now reads

𝑑𝑠2 = − [−
𝛼2𝑘2

𝑐4(𝑥)
+
𝑅2(𝑥)
𝐿2 ] 𝑑𝑇

2 +
𝑅2(𝑥)/𝐿2

[1 −
𝛼2𝑘2𝐿2

𝑐4(𝑥)𝑅2(𝑥)]𝑅
′2(𝑥)

𝑑𝑅2 + 𝑅2(𝑥)𝑑Θ2, (4.7)

where 𝑅′(𝑥) = 𝑑𝑅/𝑑𝑥 . We now demand that this metric be in the Schwarzschild gauge so that

𝑔11 = −𝜅2/𝑔00. This requires that 𝑅(𝑥) obey the differential equation

𝑅′2(𝑥) =
𝑐2(𝑥)𝑅4(𝑥)

𝜅2𝐿4
. (4.8)

Up to here, the argument is valid for a generic (position-dependent) speed of sound. How-

ever, in contrast with [58], where we considered position-dependent speed of sound configu-

rations (with their ensuing contrived equations of state), here we will analyze the simpler case

of a constant speed of sound. In this case, Eq. (4.8) can be immediately integrated to yield (up

to a trivial translation in 𝑥)

𝑅(𝑥) = −
𝐿2

𝑥
, (4.9)

where we took, for simplicity, 𝜅 = 𝑐 and we chose the negative sign at the right-hand side so

that 𝑅(𝑥) is positive and increasing for 𝑥 ∈ (−∞, 0).

As a result, the effective metric takes the form

𝑑𝑠2 = −(−
𝛼2𝑘2

𝑐4
+
𝑅2

𝐿2)
𝑑𝑇 2 +(−

𝛼2𝑘2

𝑐4
+
𝑅2

𝐿2)

−1

𝑑𝑅2 + 𝑅2𝑑Θ2. (4.10)

We recognize (4.10) as the metric of a static BTZ black hole, Eq. (3.6), with mass 𝑀 = 𝛼2𝑘2/𝑐4

and curvature radius 𝑙 = 𝐿. We note that the horizon (𝑅 = 𝑅ℎ ∶= 𝑙
√
𝑀) and conformal

boundary (𝑅 = ∞) of the BTZ spacetime are realized at 𝑥 = −𝐿/
√
𝑀 and 𝑥 = 0, respectively,

in this model. We will denote the boundary 𝑥 = 0 of the laboratory by  . Notice that the

constant 𝑀 is dimensionless in this spacetime.
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4.3 Time Evolution and Analog Quasinormal Decay

As we have seen in chapter 2, the equations of motion for an inviscid fluid subjected to an

externally imposed body force are given by Eqs. (2.1) and (2.2). For convenience, we rewrite

these equations as

𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝑣) = 0, (continuity equation) (4.11)

𝜌 [
𝜕𝑣
𝜕𝑡

+ (𝑣 ⋅ ∇) 𝑣] = −∇𝑝 + 𝑓 , (Euler equation) (4.12)

where 𝑓 denotes the external force applied upon a volume element of the fluid, and the pressure

𝑝 now satisfies the equation of state

𝑝 = 𝑐2𝜌, (4.13)

with constant 𝑐, as discussed above.

We are concerned with two-dimensional flows with physical quantities varying along 𝑥

only. More explicitly, density and pressure will depend only on 𝑥 [i.e., 𝜌 = 𝜌(𝑥), 𝑝 = 𝑝(𝑥)],

the velocity 𝑣 will be given by (4.1), and the external force density will be given in terms of a

driving potential Φ(𝑥),

𝑓 (𝑥) = −𝜌∇Φ = −𝜌𝜕𝑥Φ �̂� . (4.14)

The external potential is taken to be fixed, which means that it is insensitive to backreaction,

as in [1, 8]. Therefore, the discussion of [87] does not apply to the present work
2
(nor to [58]).

With the assumptions made above, the equations of motion simplify to

𝜕𝑡𝜌 + 𝜕𝑥 (𝜌𝑣) = 0, (4.15)

𝜌 (𝜕𝑡 + 𝑣𝜕𝑥) 𝑣 = −𝜕𝑥𝑝 − 𝜌𝜕𝑥Φ. (4.16)

The fluid configuration that implements the results of the previous section can be obtained

from Eqs. (4.2), (4.6) and (4.9), which determine the background velocity

𝑣0(𝑥) = (
𝛼𝑘
𝑐𝐿)

𝑥, (4.17)

2
For a discussion concerning the issues of implementing an external force upon a flowing fluid, we refer the

reader to [88].
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and the background density

𝜌0(𝑥) = −(
𝑐𝐿
𝛼 )

1
𝑥
. (4.18)

From the Euler equation (4.16), we find the external potential

Φ(𝑥) = 𝑐2 log(
𝑥
𝐿)

−(
𝛼2𝑘2

𝑐2𝐿2 )
𝑥2

2
. (4.19)

We now consider perturbations of the above steady-state configuration of the fluid and

follow the evolution of the relevant physical quantities in time. In order to do that, we nu-

merically solve the nonlinear fluid equations and compare the result with what would have

been the corresponding evolution on the BTZ black hole. As we show in the following, the

propagation of the fluid in this regime allows one to recover the mechanism of excitation of

quasinormal modes at the black hole level. We do this for both a small perturbation and a

large perturbation; the latter could be regarded as an example of the process of formation of

an acoustic BTZ black hole.

We note that since the effective geometry described by Eq. (4.3) couples to a massless scalar

field, it follows from the discussion in Appendix B that only generalized Dirichlet boundary

conditions are allowed to be imposed at 𝑥 = 0. This, in turn, implies that the acoustic black

hole will have quasinormal modes given by Eq. (3.56) with 𝑚2
𝜉 = 0, which means that

𝜓𝜔(𝑧) ∝ 𝜓𝐷𝜔 (𝑧) = 𝑧𝛼(1 − 𝑧)𝜆(1 − 𝑧)−1/4 2𝐹1(𝑎, 𝑏; 𝑎 + 𝑏 + 1 − 𝑐; 1 − 𝑧), (4.20)

where

𝑧 = 1 − 𝑅2
ℎ/𝑅

2, 𝛼 = −
𝑖�̂�
2
, 𝜆 = 1, (4.21)

and 𝑎, 𝑏, 𝑐, are given by (3.40). The corresponding frequencies will be

𝜔 = ±
𝑚
𝑙
− 2𝑖

𝑀1/2

𝑙
(𝑛 + 1) , 𝑚, 𝑛 = 0, 1, 2, 3… (4.22)

From Eq. (4.20), we can show that the field Ψ satisfy

Ψ||𝑅=∞ = 0,
𝜕Ψ
𝜕𝑅

||||𝑅=∞
= 0. (4.23)
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From 𝑣 = −∇Ψ and Eq. (2.13), we see that on the analog model end, these boundary conditions

correspond to vanishing perturbation in the velocity and density profiles at 𝑥 = 0.

A nice feature of our model is that it maps the black hole spatial infinity to the physical

(finite) boundary  of the system at the laboratory, at 𝑥 = 0. Hence, the boundary conditions

at 𝑥 = 0 that are required by the sound propagation in the fluid can be naturally chosen to

emulate the massless scalar field in the BTZ spacetime. For the fluid motion, these boundary

conditions ensure that the energy flux across the boundary  is zero. At the spacetime level,

these boundary conditions mean that information can neither escape to nor come from the

spatial infinity.

4.3.1 Small perturbation and QNM excitation

Let us consider as initial conditions a configuration for which 𝑣 is slightly perturbed from the

steady state configuration 𝑣0 at a given point 𝑥0:

𝑣(𝑡 = 0, 𝑥) = 𝑣0(𝑥) + 𝛿𝑣(𝑥), (4.24)

𝜌(𝑡 = 0, 𝑥) = 𝜌0(𝑥) + 𝛿𝜌(𝑥), (4.25)

with

𝛿𝑣(𝑥) = 𝐴 𝑒−
(𝑥−𝑥0)6

2𝜎2 , (4.26)

𝛿𝜌(𝑥) = 0. (4.27)

We choose units such that 𝛼 = 𝑘 = 𝑐 = 1; the black hole mass then becomes 𝑀 = 1. For

simplicity, we also choose the width 𝐿 as 𝐿 = 1. The exterior region of the black hole is then

mapped into the interval −1 < 𝑥 < 0, with 𝑥 = −1 corresponding to the horizon, and 𝑥 = 0

corresponding to spatial infinity.

To simulate Dirichlet boundary conditions at infinity, we should impose that the distur-

bance vanishes at 𝑥 = 0,

𝛿𝑣(𝑥 = 0) = 0, (4.28)

𝛿𝜌(𝑥 = 0) = 0. (4.29)
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In order to avoid numerical difficulties, we impose boundary conditions at 𝑥 = −𝜖, with 𝜖 > 0

being a sufficiently small parameter instead of at 𝑥 = 0. More explicitly, we require

𝑣(𝑡, 𝑥 = −𝜖) = 𝑣0(−𝜖), (4.30)

𝜌(𝑡, 𝑥 = −𝜖) = 𝜌0(−𝜖). (4.31)

We solved the system given by Eqs. (4.15) and (4.16) for 𝑣(𝑡, 𝑥) and 𝜌(𝑡, 𝑥)with the software

Mathematica [89].
3
Figure 4.1 shows the obtained time evolution of a perturbation initially

centered at 𝑥0 = −0.5. We see that the initial disturbance splits into two portions: one goes

towards the horizon and falls into the supersonic region (𝑥 < −1). The other goes towards

𝑥 = 0 and, around 𝑡 ∼ 0.6, is reflected at the boundary and redirected towards the horizon.

Although the expression of the analog metric is degenerate at the horizon (as it occurs for a

Schwarzschild black hole, for instance), the fluid physical quantities and their corresponding

perturbations are both well defined there. We see that these physical quantities are also well

defined in the supersonic region (𝑥 < −1).
3
We used its NDSolve routine with a MaxStepSize set to 0.001. Our calculations showed good numerical

convergence, with the same results for values of 𝜖 ranging from 10−3 to 10−7.
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Figure 4.1: Time evolution of an initial perturbation in the background velocity (top) and

density (bottom) given by Eqs. (4.26) and (4.27). The parameters were chosen as 𝜖 = 10−7,
𝐴 = 0.1, 𝜎 = 0.00005, and 𝑥0 = −0.5. The perturbation splits into two portions. One goes

towards 𝑥 = 0 and is reflected at time 𝑡 ∼ 0.6. The other goes towards the horizon and falls

into the supersonic region (𝑥 < −1).



Chapter 4. Hydrodynamical Analog Model of the BTZ Black Hole 51

Quasinormal decay

As discussed in Chapter 3, it follows from the general theory of wave propagation on black hole

spacetimes that the response to a perturbation on the background geometry has, in general,

three distinct stages [78, 90]: (i) the early time response, which depends highly on the initial

conditions; (ii) the intermediate-time regime, which is dominated by a QNM ringing; and (iii)

the late-time regime, which is governed by a power law tail. Mathematically, the quasinormal

modes arise from the poles of the Green’s function associated with the wave equation, and the

power law tail comes from a branch cut on the Green’s function domain.

However, differently from the Schwarzschild and Kerr black holes, where a branch cut on

the Green’s function frequency domain gives rise to a late-time power law tail [78, 91, 92], the

Green’s function associated with wave propagation on the BTZ black hole has no branch cut

on the 𝜔-complex plane. One can see this by noting that the Green’s function in this case is

given by

𝐺(𝑟∗, 𝑟 ′∗;𝜔) =

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

𝜓ℎ(𝑟 ′∗,𝜔)𝜓∞(𝑟∗,𝜔)
𝑊 (𝜔;𝜓ℎ,𝜓∞)

if 𝑟 ′∗ < 𝑟∗,

𝜓ℎ(𝑟∗,𝜔)𝜓∞(𝑟 ′∗,𝜔)
𝑊 (𝜔;𝜓ℎ,𝜓∞)

if 𝑟∗ < 𝑟 ′∗,

(4.32)

where𝜓ℎ(𝑟∗, 𝜔) and𝜓∞(𝑟∗, 𝜔) are linearly independent solutions of the radial equation Eq. (3.31)

for the massless field behaving as

𝜓ℎ(𝑟∗, 𝜔) ∼ 𝑒−𝑖𝜔𝑟∗ , at the horizon (𝑟∗ → −∞) (4.33)

and

𝜓∞(𝑟∗, 𝜔) ∼ 𝜓𝐷(𝑧(𝑟∗))

∼ 𝑧𝛼(1 − 𝑧)𝜆(1 − 𝑧)−1/4 2𝐹1(𝑎, 𝑏; 𝑎 + 𝑏 + 1 − 𝑐; 1 − 𝑧), (4.34)

with 𝑧(𝑟∗) = sech2 𝑟∗, at spatial infinity 𝑟∗ = 0. The 𝑊 (𝜔;𝜓ℎ, 𝜓∞) stands for the Wronskian of

the solutions 𝜓ℎ(𝑟∗) and 𝜓∞(𝑟∗), that is,

𝑊 (𝜔;𝜓ℎ, 𝜓∞) = 𝜓ℎ(𝑟∗, 𝜔)
𝜕𝜓∞

𝜕𝑟∗
− 𝜓∞(𝑟∗, 𝜔)

𝜕𝜓ℎ
𝜕𝑟∗

. (4.35)
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From the discussion in Chapter 3, we see that possible choices for 𝜓ℎ(𝑟∗, 𝜔) and 𝜓∞(𝑟∗, 𝜔)

obeying conditions (4.33) and (4.34) are

𝜓ℎ(𝑟∗, 𝜔) =𝑧𝛼(1 − 𝑧)𝜆(1 − 𝑧)−1/4 2𝐹1(𝑎, 𝑏; 𝑐; 𝑧), (4.36)

𝜓∞(𝑟∗, 𝜔) =𝜓𝐷(𝑧(𝑟∗)) = 𝑧𝛼(1 − 𝑧)𝜆(1 − 𝑧)−1/4 2𝐹1(𝑎, 𝑏; 𝑎 + 𝑏 + 1 − 𝑐; 1 − 𝑧), (4.37)

where 𝑧 should be seen as a function of 𝑟∗ given by 𝑧 = sech2 𝑟∗. Thus, because neither 𝜓ℎ nor

𝜓∞ has a branch cut on the 𝜔-complex plane, it follows that the Green’s function in Eq. (4.32)

also does not have a branch cut. As a result, the late-time behavior of the solution for the field

Ψ is governed by a quasinormal (exponential) decay.
4

In the following, we fit the intermediate and late-time behavior of our numerical solution,

at a fixed position of observation 𝑥𝑜𝑏𝑠, to a linear superposition of the first 𝑁 quasinormal

modes [50]. We take

𝑢(𝐂; 𝑡) = 𝑣0(𝑥𝑜𝑏𝑠) +
𝑁

∑
𝑛=0

𝐶𝑛𝑒−𝑖𝜔𝑛0(𝑡−𝑡1), (4.38)

where 𝜔𝑛0 are the frequencies given by Eq. (4.22) (with 𝑀 = 𝑙 = 1) and 𝐂 = (𝐶0, 𝐶1, 𝐶2,… , 𝐶𝑁 )

are fitting parameters. We note that only frequencies with 𝑚 = 0 are excited since nothing

depends on the analog angular coordinate 𝑦 = Θ𝐿.5 We find the quasinormal approximation

by minimizing the integral

𝐸(𝐂) = ∫
𝑡2

𝑡1
[𝑣(𝑡, 𝑥𝑜𝑏𝑠) − 𝑢(𝐂; 𝑡)]2 𝑑𝑡. (4.39)

The time interval (𝑡1, 𝑡2) should be chosenwithin the time domainwhere the numerical solution

𝑣(𝑡, 𝑥) is dominated by the QNM decay.

Figure 4.2 shows the numerical velocity profile (solid curve) at fixed position 𝑥 = 𝑥𝑜𝑏𝑠 =

−0.3 as a function of time. We see the initial perturbation passing through the observation

point around 𝑡 ∼ 0.3. The reflected pulse comes around 𝑡 ∼ 0.85. After 𝑡 ∼ 1 the quasinormal

modes govern the signal decay. We also see in Fig. 4.2 the quasinormal fitting obtained from

Eq.(4.38) for𝑁 = 0 (red dashed curve),𝑁 = 1 (green dotted curve), and𝑁 = 3 (blue dot-dashed

curve). The corresponding parameters 𝐶𝑛 are listed in Table 4.1.

4
For a thorough discussion on this point, we refer the reader to [93, 90].

5
We note that modes with nontrivial angular dependence (𝑚 ≠ 0) cannot be considered in this model unless

we impose periodic boundary conditions identifying the lines 𝑦 = 0 and 𝑦 = 𝐿.
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N = 0
N = 1
N = 3

Figure 4.2: Numerical waveform 𝑣(𝑡, 𝑥 = −0.3) (black solid curve) and quasinormal modes

for a perturbation on the analog BTZ background. The parameter 𝜖 was chosen as 10−7. Top
right: quasinormal approximation to late-time behavior. The red dashed curve represents the

least-damped mode (𝑁 = 0), the green dotted curve represents the sum of the first two modes

(𝑁 = 1), and the blue dot-dashed curve represents the sum of the first four modes (𝑁 = 3).
The integral (4.39) was calculated with 𝑡1 = 1.5 and 𝑡2 = 5.

Table 4.1: Parameters 𝐶𝑛 for the quasinormal approximation in the scenario of a small pertur-

bation on a steady background flow.

𝑁 = 0 𝑁 = 1 𝑁 = 3

𝐶0 -0.000983912 -0.000757182 -0.00078922

𝐶1 -0.000340095 -0.000230737

𝐶2 -0.0000441535

𝐶3 -0.0000469776

4.3.2 Large perturbation: acoustic black hole formation

As another example of excitation of quasinormal modes, we now consider a possible scenario

for the formation of the acoustic BTZ black hole. As an initial state for the system, we set a
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particular configuration where the fluid starts with zero velocity everywhere and let it evolve

while subjected to the same external potential given by Eq. (4.19). Here it is worth recalling

that the analog gravity framework can only probe kinematical aspects of GR, as opposed to

dynamical aspects emerging from the Einstein field equations. As such, the model presented

in this section does not emulate the actual dynamical evolution of the BTZ spacetime metric.

The purpose of this example is to illustrate one possible formation process for the analog BTZ

black hole and to analyze the corresponding excitation of its quasinormal modes.

To simulate this scenario numerically, we have taken the initial conditions

𝑣(𝑡 = 0, 𝑥) = 0, (4.40)

𝜌(𝑡 = 0, 𝑥) = 𝜌0(𝑥), (4.41)

and solved the fluid equations (4.15) and (4.16) with the softwareMathematica [89].6 Figure 4.3

shows the velocity profile at the observation point 𝑥 = −0.3. We again found the contribution

of the quasinormal modes to the waveform by using the fitting function (4.38). The values

found for 𝐶𝑛 are listed in Table 4.2.

We observe from Fig. 4.3 that the initial phase of the transition takes place roughly between

𝑡 ∼ 0.8 and 𝑡 ∼ 1.6. After that, the quasinormal modes govern the signal. We also see the late-

time behavior of the velocity field (black solid curve) together with quasinormal profiles for

the least-damped mode, 𝑁 = 0 (red dashed curve), a superposition of the first two modes,

𝑁 = 1 (green dotted curve), and of the first four modes, 𝑁 = 3 (blue dot-dashed curve). After

the quasinormal regime, 𝑡 ≳ 4, the flow approximately reaches equilibrium at the steady state

configuration of the acoustic BTZ black hole.

6
The boundary conditions were again given by Eqs. (4.30) and (4.31), with the results being the same for

values of 𝜖 ranging from 10−3 to 10−7. This time we used the routine NDSolve with a MaxStepSize set to 0.005.
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N = 1
N = 0

N = 3

Figure 4.3: Numerical waveform 𝑣(𝑡, 𝑥 = −0.3) (black solid curve) and quasinormal modes

for an example of the formation of the acoustic BTZ black hole. The parameter 𝜖 was again
chosen as 10−7. The first phase of the transition occurs roughly between 𝑡 ∼ 0.8 and 𝑡 ∼ 1.6.
After that, the quasinormal modes govern the signal. Top right: quasinormal approximation

to late-time behavior. The red dashed curve represents the least-damped mode (𝑁 = 0), the
green dotted curve represents the sum of the first two modes (𝑁 = 1), and the blue dot-dashed
curve represents the sum of the first four modes (𝑁 = 3). The integral (4.39) was calculated
with 𝑡1 = 1 and 𝑡2 = 5.

Table 4.2: Parameters 𝐶𝑛 for the quasinormal approximation on the scenario of formation of

the analog BTZ black hole.

𝑁 = 0 𝑁 = 1 𝑁 = 3

𝐶0 0.074547 0.0808317 0.0812623

𝐶1 -0.00942706 -0.0113435

𝐶2 0.00208244

𝐶3 -0.000485368
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Chapter 5

BTZ Black Hole in a Laval Nozzle

In this chapter, we introduce an analog model for the conformally coupled scalar field on the

BTZ black hole. The model is based on the propagation of acoustic waves in a Laval nozzle.

Since the BTZ black hole is not a globally hyperbolic spacetime, the dynamics of the scalar field

is not well defined until extra boundary conditions are prescribed at its spatial infinity. We

show that quasinormal modes satisfying Dirichlet, Neumann, and Robin boundary conditions

in the BTZ black hole can be interpreted in terms of ordinary QNMs defined with respect to

an appropriately extended nozzle. We also discuss the stability of our model with respect to

small perturbations. The material in this chapter is strongly based on our work [55].

5.1 Introduction

In this chapter, we introduce an analogmodel for the conformally coupled scalar field on a BTZ

black hole based on a Laval nozzle, which is a convergent-divergent nozzle with a throat in the

middle, usually employed to accelerate air [51]. By establishing a sufficiently strong difference

of pressure between the nozzle ends, a transonic flow regime can be achieved. On one side of

the nozzle, there is a subsonic flow; on the other side, a supersonic flow is established. The

sonic point (where air velocity equals sound velocity) is located at the nozzle throat.

We find that the obtained nozzle has a finite length, with its end corresponding to the

spatial infinity of the BTZ spacetime, so that our analog model effectively maps the exterior

region of the BTZ black hole into a finite region of the Laval nozzle. Since the effective potential

governing the wave propagation does not vanish at the nozzle end (which corresponds to the

BTZ spatial infinity), we still cannot impose plane wave outgoing boundary conditions to
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find QNMs. In order to circumvent this problem, we consider a family of extensions for the

nozzle. We choose the extensions in such a way that the corresponding effective potentials go

to zero in the new end. By doing this, we recover the plane wave behavior, and we can thus

impose outgoing boundary conditions and find the ordinary QNMs of the extended nozzle

(corresponding to BTZ spacetime + extension). In this way, we interpret the QNMs of the

conformally coupled scalar field on the BTZ black hole (which do not obey outgoing boundary

conditions at spatial infinity) in terms of ordinaryQNMs of acoustic waves in the nozzle (which

do obey the usual outgoing boundary conditions). We find that the ordinary QNMs can be

sorted according to their parity and show that odd ordinary QNMs correspond to QNMs in the

black hole which satisfy a Dirichlet boundary condition, and even ordinary QNMs correspond

to black hole QNMs obeying Neumann or Robin boundary conditions.

Finally, we use a result from the dynamics of the scalar field in the BTZ black hole [67] to

discuss the stability of our model under linear perturbations.

This chapter is organized as follows. In Sec. 5.2, we briefly review the equations of acous-

tics in the Laval nozzle and apply the method of [52] to find the nozzle for which acoustic

waves correspond to those of a conformally coupled field on the BTZ black hole. In Sec. 5.3,

we consider continuations of the effective potential of Sec. 5.2 to find extensions for the nozzle

previously obtained. We also show how one may use the ordinary QNMs of acoustic waves

to emulate QNMs obeying Dirichlet, Neumann and Robin boundary conditions at BTZ spatial

infinity. After that, we discuss the stability of our model under small perturbations.

5.2 The Nozzle Analog to the BTZ Black Hole

5.2.1 Conformally coupled field propagating on the BTZ black hole

The equation of motion for the scalar field Ψ conformally coupled to the static BTZ geometry

is obtained taking 𝜇2 = 0 and 𝜉 = 1/8 in Eq. (3.24) so that Eq. (3.23) becomes [94, 95]

(□ +
3
4𝑙2)

Ψ = 0, (5.1)

where the d’Alembertian operator, □ = ∇𝜇∇𝜇, is calculated with respect to the spacetimemetric

Eq. (3.6).
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The radial equation in this case is given by Eq. (3.31) with the effective potential

�̂�BTZ(𝑟∗) = (
4𝑚2 +𝑀

4𝑀 ) sech2 𝑟∗, (5.2)

Note that we have rescaled 𝑟∗ and 𝜔 so that 𝑟∗ = (𝑀1/2/𝑙)𝑟∗ and �̂� = (𝑙/𝑀1/2)𝜔, as in Eq. (3.30).

We intend to simulate the scalar field propagation determined by the effective potential

�̂�BTZ(𝑟∗) in terms of acoustic waves propagating in an appropriately designed Laval nozzle. In

order to achieve this, we need to know how the shape of the nozzle determines the wave prop-

agation. In what follows, we review the fundamental equations of fluid dynamics in the Laval

nozzle and show how the cross-sectional area determines the effective potential for acoustic

waves.

5.2.2 Wave propagation in the Laval nozzle

Let us take the 𝑥 coordinate along the axial direction of the nozzle. We consider air as a perfect

fluid flowing in a quasi-one-dimensional regime [51], where physical quantities vary along the

𝑥 axis only. The equations of motion are then the continuity and Euler’s equations,

𝜕𝑡 (𝜌𝐴) + 𝜕𝑥 (𝜌𝑣𝐴) = 0, (5.3)

𝜌 (𝜕𝑡 + 𝑣𝜕𝑥) 𝑣 = −𝜕𝑥𝑝, (5.4)

where 𝜌 is the air density, 𝑝 is the pressure, 𝑣 is the air velocity, and 𝐴 is the nozzle cross-

sectional area. Furthermore, we shall assume the gas is isentropic

𝑝 ∝ 𝜌𝛾 , (5.5)

where 𝛾 = 7/5 stands for the heat capacity ratio of air.

Assuming an irrotational flow, 𝑣 = 𝜕𝑥Φ, and defining the specific enthalpy ℎ(𝜌) = ∫ 𝜌−1𝑑𝑝,

Eq. (5.4) reduces to the Bernoulli’s equation

𝜕𝑡Φ +
1
2
(𝜕𝑥Φ)2 + ℎ(𝜌) = 0. (5.6)

To derive the linearized wave equation for sound, we first rewrite (𝜌,Φ) as the sum of a

contribution corresponding to the background flow (�̄�, Φ̄) and a contribution corresponding
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to the acoustic disturbance (𝛿𝜌, 𝜙). The background and perturbation satisfy

𝜌 = �̄� + 𝛿𝜌, �̄� ≫ |𝛿𝜌|,

Φ = Φ̄ + 𝜙, |𝜕𝑥Φ̄| ≫ |𝜕𝑥𝜙|.
(5.7)

Following [50], we define the auxiliary quantities

𝑔 =
�̄�𝐴
𝑐𝑠

=
�̄�𝐴√
𝛾�̄�/�̄�

, (5.8)

𝑓 (𝑥) =∫
|𝑣|𝑑𝑥
𝑐2𝑠 − 𝑣2

, (5.9)

𝐻𝜔 =𝑔1/2 ∫ 𝑑𝑡𝑒𝑖𝜔[𝑡−𝑓 (𝑥)]𝜙(𝑡, 𝑥), (5.10)

𝑥∗ =𝑐𝑠0 ∫
𝑑𝑥

𝑐𝑠(1 −2)
, (5.11)

where 𝑐𝑠 =
√
𝜕𝑝/𝜕𝜌 =

√
𝛾�̄�/�̄� is the local sound speed, 𝑐𝑠0 is the stagnation sound speed,

constant over the isentropic flow, and  = |𝑣|/𝑐𝑠 is the Mach number. In terms of these

quantities, the wave equation reduces to

−
𝑑2𝐻𝜔

𝑑𝑥2∗
+ 𝑉 (𝑥∗)𝐻𝜔 = 𝜅2𝐻𝜔, (5.12)

where

𝜅 =
𝜔
𝑐𝑠0
, (5.13)

and the effective potential is given by

𝑉 (𝑥∗) =
1
𝑔2 [

𝑔
2
𝑑2𝑔
𝑑𝑥2∗

−
1
4 (

𝑑𝑔
𝑑𝑥∗)

2

]
. (5.14)

The effective potential 𝑉 (𝑥∗) characterizes the dynamics of acoustic waves in the gas flow.

For a transonic flow in a Laval nozzle, all the nondimensional quantities (𝜌/𝜌0, 𝑝/𝑝0, ,… )

are uniquely determined by the function 𝐴(𝑥∗)/𝐴𝑡ℎ, where 𝐴𝑡ℎ is the cross-sectional area at

the throat of the nozzle [51, 50]. In particular, the function 𝑔(𝑥∗) and the effective potential

𝑉 (𝑥∗) are also completely determined by 𝐴(𝑥∗)/𝐴𝑡ℎ. On the other hand, 𝐴 (and hence all other

physical quantities) can be fully determined in terms of 𝑔 by the equations relating the physical

variables in the nozzle.
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Let us see more closely how one can express the physical quantities in terms of 𝑔 . First,

we note that it follows from Eqs. (5.5) and (5.8) that

𝑔 ∝
�̄�𝐴

�̄�(𝛾−1)/2
, (5.15)

and from [51], we have

(
𝐴
𝐴𝑡ℎ)

−1

=
1
𝜂𝛾 [

1 −(
�̄�
𝜌0)

(𝛾−1)

]

1/2
�̄�
𝜌0
, (5.16)

where 𝜌0 is the stagnation density and

𝜂𝛾 =
√
𝛾 − 1
2 (

2
𝛾 + 1)

𝛾+1
2(𝛾−1)

. (5.17)

Since Eq. (5.12) is invariant under rescaling of 𝑔 , we take the coefficient in Eq. (5.15) so

that

𝑔 =
𝐴

𝜂𝛾𝐴𝑡ℎ
�̄�
𝜌0

2(
�̄�
𝜌0)

(𝛾−1)/2 . (5.18)

With the assumptions above, we can implement the same reasoning of [52] to find the

physical variables in terms of 𝑔 :

𝐴
𝐴𝑡ℎ

=
𝜂𝛾
√
2 [2𝑔2 (1 −

√
1 − 𝑔−2)]

1/(𝛾−1)

√
1 −

√
1 − 𝑔−2

, (5.19)

(
�̄�
𝜌0)

1−𝛾

= 2𝑔2 (1 −
√
1 − 𝑔−2) , (5.20)

𝑐𝑠 =
𝑐𝑠0√

2𝑔2 (1 −
√
1 − 𝑔−2)

, (5.21)

2 =
2

𝛾 − 1 (
2𝑔2 (1 −

√
1 − 𝑔−2) − 1) . (5.22)

For convenience, we rescale 𝑥∗ and 𝜔 to dimensionless quantities �̂�∗ and �̂� such that

�̂�∗ =
𝑥∗
𝐿
, (5.23)
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and

𝜅 =
𝜔
𝑐𝑠0

=
�̂�
𝑐𝑠0𝑇

=
�̂�
𝐿
, (5.24)

where 𝐿 is a characteristic length in the nozzle and a characteristic time interval was chosen

as 𝑇 = 𝐿/𝑐𝑠0. Equation (5.12) then yields

−
𝑑2𝐻𝜔

𝑑�̂�2∗
+ �̂� (�̂�∗)𝐻𝜔 = �̂�2𝐻𝜔, (5.25)

where the dimensionless effective potential is given by

�̂� (�̂�∗) =
1
𝑔2 [

𝑔
2
𝑑2𝑔
𝑑�̂�2∗

−
1
4 (

𝑑𝑔
𝑑�̂�∗)

2

]
. (5.26)

5.2.3 Inverse problem

The calculations above show how the nozzle shape, given by𝐴(𝑥∗), determines the wave prop-

agation in the nozzle by means of the effective potential �̂� (𝑥∗). We now want to find a nozzle

shape which mimics the effective potential �̂�BTZ for perturbations in the BTZ black hole back-

ground.

As mentioned before, all physical quantities describing the flow in the Laval nozzle can

be determined from the cross section 𝐴. On the other hand, given an effective potential, say

�̂� = �̂�BTZ, we should be able to find 𝑔 by solving Eq. (5.26). This, in turn, determines the shape

of the nozzle by means of Eq. (5.19). A boundary condition for 𝑔 is given by imposing that the

air and sound velocities are equal at the acoustic horizon, |𝑣| = 𝑐𝑠, so that, from Eq. (5.22),

𝑔 |horizon =
𝛾 + 1

2
√
2
√
𝛾 − 1

=
3√
5
. (5.27)

Before equating �̂�BTZ to the effective potential in the nozzle, we need to relate the radial

coordinate 𝑟 of the BTZ spacetime to the coordinate along the nozzle 𝑥 . In order to achieve

this, we identify the respective tortoise coordinates, 𝑑𝑟∗ = 𝑑�̂�∗. From Eqs. (5.11), (5.21) and

(5.22), we have

𝑑𝑟∗ = 𝑑�̂�∗ =
𝑐𝑠0𝑑�̂�

𝑐𝑠(1 −2)
=

√
2𝑔2 (1 −

√
1 − 𝑔−2)𝑑�̂�

1 − 2
𝛾−1 [2𝑔2 (1 −

√
1 − 𝑔−2) − 1]

, (5.28)
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so that

𝑑�̂�
𝑑𝑟∗

=
1 − 2

𝛾−1 [2𝑔
2 (1 −

√
1 − 𝑔−2) − 1]

√
2𝑔2 (1 −

√
1 − 𝑔−2)

, (5.29)

where �̂� is the nondimensional coordinate related to the coordinate along the nozzle by �̂� =

𝑥/𝐿.

Since the tortoise coordinates for the nozzle and for the BTZ spacetime were made identi-

cal, we can now equate the effective potentials, Eqs. (5.26) and (5.2), to obtain

𝑔 ′′(𝑟∗)
2𝑔(𝑟∗)

−
𝑔 ′(𝑟∗)2

4𝑔(𝑟∗)2
= �̂�BTZ(𝑟∗), (5.30)

where the prime indicates differentiation with respect to 𝑟∗, 𝑔 ′ = 𝑑𝑔/𝑑𝑟∗. This equation can be

simplified by the substitution [53]

𝑔(𝑟∗) = ℎ2(𝑟∗) (5.31)

so that

−ℎ′′(𝑟∗) + �̂�BTZ(𝑟∗)ℎ(𝑟∗) = 0. (5.32)

To obtain the configuration of the nozzle corresponding to the effective potential in Eq.

(5.2), we have to solve Eq. (5.32) and use Eq. (5.31) and the boundary condition Eq. (5.27) to

determine 𝑔 . Then, by Eqs. (5.19) and (5.29), we can find the cross section 𝐴 as a function of

the coordinate 𝑥 along the nozzle, such that the sound propagation now mimics a scalar field

propagating on the BTZ spacetime.

5.2.4 The Laval nozzle for the conformal scalar field propagating on

the BTZ black hole

To keep the calculations as simple as possible, we are going to consider the mode solution with

angular momentum 𝑚 = 0 (the case 𝑚 ≠ 0 can be treated in a similar fashion and is briefly

discussed at the end of Sec. 5.3.3). In order to solve Eq. (5.32), we change to the new variable

𝑢 = tanh 𝑟∗, (5.33)
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which turns the differential equation Eq. (5.32) into

(1 − 𝑢2)
𝑑2ℎ
𝑑𝑢2

− 2𝑢
𝑑ℎ
𝑑𝑢

+ 𝜈(𝜈 + 1)ℎ = 0, (5.34)

where we have defined 𝜈 = −1/2. The differential equation Eq. (5.34) is the well-known

Legendre’s equation and has the linearly independent solutions [84]

ℎ1(𝑢) = 𝑃𝜈(𝑢), ℎ2(𝑢) = 𝑄𝜈(𝑢), (5.35)

which are known as Legendre functions of the first and second kinds, respectively.

Returning to the coordinate 𝑟∗ 1
, we have that the general solution to the differential equa-

tion (5.32) can be expressed as a linear combination

ℎ(𝑟∗) = 𝑐1ℎ1(𝑟∗) + 𝑐2ℎ2(𝑟∗), (5.36)

where 𝑐1, 𝑐2, are constants and

ℎ1(𝑟∗) = 𝑃− 1
2
(tanh 𝑟∗), ℎ2(𝑟∗) = 𝑄− 1

2
(tanh 𝑟∗). (5.37)

Since ℎ1(𝑟∗) diverges at the horizon (𝑟∗ → −∞), we take 𝑐1 = 0. The boundary condition

Eq. (5.27) then determines 𝑐2 so that

ℎ(𝑟∗) =
2
𝜋

√
3√
5
𝑄− 1

2
(tanh 𝑟∗). (5.38)

Having obtained ℎ(𝑟∗), we use Eqs. (5.31), (5.19) and (5.29) to find the cross section 𝐴 as

a function of the coordinate along the nozzle. The lateral section of the resulting nozzle is

represented by the black solid curve in Fig. 5.1, where we also plotted the effective potential

(red dashed curve). The exterior region of the BTZ black hole corresponds to the subsonic

region (𝑥 > 0).

Figure 5.2 shows the relation between the 𝑥 coordinate along the nozzle and the radial

coordinate 𝑟 of the BTZ black hole. We observe that 𝑥 has a finite upper limit, at 𝑥end ≅

0.417306. Hence the obtained nozzle has a finite length, with the upper limit of 𝑥 beingmapped

into the spatial infinity of the BTZ black hole. In other words, this means that the exterior

1
Hereafter, we will drop the hat in 𝑟∗ to keep the notation simpler.
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end

Figure 5.1: (Black curve) Lateral section of the Laval nozzle corresponding to the conformally

coupled scalar field. The region �̂� > 0 (�̂� < 0) corresponds to subsonic (supersonic) flow. The

sonic point (where the fluid velocity equals the sound velocity) is located at the throat �̂� = 0.
(Red dashed line) Nondimensional effective potential for acoustic waves in the subsonic region.

region of the BTZ black hole is mapped into a finite region in the laboratory, with the spatial

infinity of the BTZ spacetime being mapped into the right end of the nozzle.

It follows that, in order to determine the acoustic wave propagation in the nozzle com-

pletely, it is necessary to prescribe a boundary condition at its right end. At the BTZ space-

time level, the necessity for a boundary condition at spatial infinity comes from its lack of

global hyperbolicity [95, 69, 70, 71], as we already mentioned in Chapter 3. Therefore, via

the correspondence found above, our model simulates the needed boundary conditions at the

conformal boundary of the BTZ spacetime by appropriate boundary conditions at the nozzle

(finite) right end.

The boundary conditions that are compatible with sensible dynamics for the scalar field

propagating in the BTZ spacetime were studied in [95] and are also presented in Appendix B.

In particular, for the conformally coupled scalar field, we have that Robin boundary conditions
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end

Figure 5.2: The nondimensional coordinate along the nozzle �̂� as a function of the nondimen-

sional radial coordinate 𝑟 of the BTZ spacetime. The coordinate �̂� has a finite upper limit,

�̂�end ≅ 0.417306, which means that the corresponding nozzle has a finite length. The upper

limit in the coordinate �̂� is mapped into the spatial infinity of the BTZ spacetime.

(RBCs),

𝑑𝜓/𝑑𝑟∗
𝜓

||||𝑟∗=0
= 𝛽, (5.39)

lead to an unambiguous time evolution. In this case, 𝛽 = ±∞ corresponds to the Dirichlet

boundary condition at infinity, 𝜓|𝑟∗=0 = 0, and 𝛽 = 0 corresponds to the Neumann boundary

condition, 𝑑𝜓/𝑑𝑟∗|𝑟∗=0 = 0. Aside from that, in [67], Dappiaggi et al. calculated the effect of

RBCs on the quasinormal modes of the scalar field in the BTZ black hole. In the next section,

we propose a nozzle configuration appropriate to realize QNMs obeying RBCs in the BTZ black

hole.
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5.3 RobinBoundaryConditions in theBTZAnalogNozzle

5.3.1 Nozzle extension

We have seen above that the nozzle, which mimics the BTZ spacetime, would abruptly end

at a finite distance from the throat, at 𝑥 = 𝑥end ≅ 0.417306. In what follows, we continue the

nozzle in such a way that the usual boundary condition for QNMs at its far right, 𝑥 → ∞,

induces RBCs at 𝑥end. In the 𝑟∗ coordinate, this corresponds to extending the potential 𝑉BTZ(𝑟∗)

to the region 𝑟∗ > 0 (recall that the original range of the coordinate 𝑟∗ is from −∞ to 0).

We will consider the following extension of 𝑉BTZ(𝑟∗) for 𝑟∗ ≥ 0:

𝑉eff(𝑟∗) = [
4𝑚2 +𝑀

𝑀 ] sech
2 𝑟∗ + 𝑎 𝛿(𝑟∗), (5.40)

where 𝛿(𝑟∗) is the Dirac delta function, 𝑎 is a constant, and −∞ < 𝑟∗ < ∞ . We note that, for

−∞ < 𝑟∗ < 0, this effective potential reduces to Eq. (5.2). Moreover, for 𝑟∗ → ∞, 𝑉eff goes to

zero, and we recover the plane wave behavior, typical for asymptotically flat spacetimes, for

the field (i.e., 𝜓 ∼ 𝑒±𝑖𝜔𝑟∗ , when 𝑟∗ → ∞). In particular, this implies that usual outgoing boundary

conditions for QNMs can now be imposed in the extended model. The delta function term has

the effect of producing a shape change in 𝐴(𝑥) at 𝑥 = 0 (see Fig. 5.3), which will be explored

in what follows to implement the RBCs in the BTZ spacetime.

Let us calculate the shape of the extended nozzle, which corresponds to the extended po-

tential above. We do this by solving Eq. (5.32) with 𝑉 (𝑟∗) given by Eq. (5.40).

For 𝑟∗ < 0, the calculations are identical to the case treated in the previous section. Thus,

the corresponding solution is given by Eq. (5.38). For convenience, we nowdenote this solution

by ℎ(<)(𝑟∗),

ℎ(<)(𝑟∗) =
2
𝜋

√
3√
5
𝑄− 1

2
(tanh 𝑟∗). (5.41)

For 𝑟∗ > 0, we have

ℎ(>)(𝑟∗) = 𝑐1ℎ1(𝑟∗) + 𝑐2ℎ2(𝑟∗), (5.42)
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with ℎ1(𝑟∗) and ℎ2(𝑟∗) given by Eqs. (5.37). We now have to match these solutions at 𝑟∗ = 0 to

find the constants 𝑐1, 𝑐2. First, continuity requires

ℎ(<)(𝑟∗ → 0−) = ℎ(>)(𝑟∗ → 0+). (5.43)

The other boundary condition is obtained by integrating Eq. (5.32) inside an arbitrarily small

neighborhood of 𝑟∗ = 0, which leads to

𝑑ℎ(>)

𝑑𝑟∗

||||𝑟∗=0+
−
𝑑ℎ(<)

𝑑𝑟∗

||||𝑟∗=0−
= 𝑎 ℎ(0). (5.44)

This equation shows that 𝑎 characterizes the shape change of the nozzle at 𝑥 = 0 (see Fig. 5.3).

Figure 5.3: Lateral section of the extended Laval nozzle with different values of the parameter

𝑎. Each value determines a different extension for the effective potential. Since the wave

phenomena is mainly determined by the effective potential, different values of 𝑎 will lead to

different quasinormal spectra. Notice that we have translated the �̂� axis by �̂� → �̂� − �̂�end so
that now the origin �̂� = 0 corresponds to BTZ spatial infinity, and the horizon corresponds to

�̂�ℎ = −�̂�end ≅ −0.417306.

Using Eqs. (5.43) and (5.44), we find

𝑐1 = −
√

3√
5

𝜋2𝑎
2 Γ ( 3

4)
4 , (5.45)

𝑐2 =
√

3√
5 [

2
𝜋
+

𝜋𝑎
Γ ( 3

4)
4 ]
, (5.46)
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so that

ℎ(𝑟∗) =
√

3√
5
𝑄− 1

2
(tanh 𝑟∗) 𝜃(−𝑟∗)

+
√

3√
5

{

−
𝜋2𝑎

2 Γ ( 3
4)

4𝑃− 1
2
(tanh 𝑟∗) + [

𝜋𝑎
Γ ( 3

4)
4 +

2
𝜋 ]

𝑄− 1
2
(tanh 𝑟∗)

}

𝜃(𝑟∗), (5.47)

where 𝜃(𝑟∗) stands for the Heaviside step function. The nozzle shape can then be determined

by following the steps discussed in Sec. 5.2. Figure 5.3 shows nozzle extensions obtained for

some values of the parameter 𝑎.

We note that the diverging behavior of the cross-sectional area as 𝑥 → ∞ does not spoil the

one-dimensional character of the motion because one can always make 𝐴(𝑥) vary as slowly as

desired by suitably choosing units for 𝑥 . As pointed out in [52], this is equivalent to “pulling”

the nozzle along its axis. In the present case, such a pulling means that we consider a BTZ

black hole with a larger ratio 𝑙/𝑀1/2
.

5.3.2 Quasinormal modes of the extended nozzle

Quasinormal modes are characteristic vibrations that describe the energy loss of a system after

a perturbation [45, 47, 46]. In principle, they can appear in any physical context involving open

systems (not only black holes) [77]. Quasinormal modes in a black hole background are usually

defined as mode solutions satisfying ingoing boundary conditions at the horizon (𝜓𝜔 ∼ 𝑒−𝑖𝜔𝑟∗ ,

as 𝑟∗ → −∞), and outgoing boundary conditions at spatial infinity (𝜓𝜔 ∼ 𝑒𝑖𝜔𝑟∗ , as 𝑟∗ → ∞). This

definition works perfectly well for asymptotically flat spacetimes, since the effective potential

coupled to the field vanishes at infinity. However, for asymptotically curved spacetimes, the

effective potential is not zero at infinity, and one cannot distinguish ingoing from outgoing

modes there [48, 49, 67].

As mentioned before, in contrast with the situation in asymptotically curved spacetimes,

the effective potential of our extended nozzle vanishes at 𝑟∗ → +∞. Hence one can define

QNMs by the usual asymptotic behavior

𝜓𝜔 ∼ 𝑒−𝑖𝜔𝑟∗ , 𝑟∗ → −∞, (5.48)

𝜓𝜔 ∼ 𝑒+𝑖𝜔𝑟∗ , 𝑟∗ → +∞. (5.49)



Chapter 5. BTZ Black Hole in a Laval Nozzle 69

The asymptotic conditions (5.48) and (5.49) completely determine the acoustic QNMs in the

Laval nozzle. We will refer to modes satisfying Eqs. (5.48) and (5.49) as ordinary quasinormal

modes.

Quasinormal modes obeying Robin boundary conditions in the BTZ black hole were pre-

viously analyzed in [67]. In what follows, we will use the ordinary QNMs of acoustic waves

in the nozzle to emulate QNMs of the conformal scalar field obeying RBCs in the BTZ black

hole. In order to achieve this, we now calculate the former explicitly.

First, we note that the general solution of Eq. (5.58) can be written in terms of the inde-

pendent solutions given in Eqs. (3.46) and (3.47) if we take 𝑚2
𝜉 = −3/4𝑙2, so that

𝜓𝐷𝜔 (𝑟∗) = − tanh 𝑟∗ (sech 𝑟∗)−𝑖𝜔 2𝐹1(
3
4
−
𝑖𝜔
2
,
3
4
−
𝑖𝜔
2
;
3
2
; tanh2 𝑟∗) , (5.50)

𝜓𝑁𝜔 (𝑟∗) = (sech 𝑟∗)−𝑖𝜔 2𝐹1 (
1
4
−
𝑖𝜔
2
,
1
4
−
𝑖𝜔
2
;
1
2
; tanh2 𝑟∗) . (5.51)

However, for our purposes in this chapter, it is convenient to consider another pair of linearly

independent solutions. In order to achieve this, we first write the formulas [84]

𝑃𝜎𝜌 (𝑥) = cos(
𝜋
2
(𝜌 + 𝜎))𝑤1(𝜌, 𝜎, 𝑥) + sin(

𝜋
2
(𝜌 + 𝜎))𝑤2(𝜌, 𝜎, 𝑥), (5.52)

𝑄𝜎
𝜌 (𝑥) = −

𝜋
2
sin(

𝜋
2
(𝜌 + 𝜎))𝑤1(𝜌, 𝜎, 𝑥) +

𝜋
2
cos(

𝜋
2
(𝜌 + 𝜎))𝑤2(𝜌, 𝜎, 𝑥), (5.53)

where 𝑃𝜎𝜌 (𝑥) and 𝑄𝜎
𝜌 (𝑥) are Legendre functions of the first and second kinds, respectively, and

𝑤1(𝜌, 𝜎, 𝑥) =
2𝜎Γ (

𝜌
2 +

𝜎
2 +

1
2)√

𝜋 Γ (
𝜌
2 −

𝜎
2 + 1)

(1 − 𝑥2)
−𝜎/2

2𝐹1 (−
𝜌
2
−
𝜎
2
,
𝜌
2
−
𝜎
2
+
1
2
;
1
2
; 𝑥2) , (5.54)

𝑤2(𝜌, 𝜎, 𝑥) =
2𝜎+1Γ (

𝜌
2 +

𝜎
2 + 1)

√
𝜋 Γ (

𝜌
2 −

𝜎
2 +

1
2)
𝑥 (1 − 𝑥2)

−𝜎/2
2𝐹1(

1
2
−
𝜌
2
−
𝜎
2
,
𝜌
2
−
𝜎
2
+ 1;

3
2
; 𝑥2) . (5.55)

Taking 𝜌 = −1/2, 𝜎 = 𝑖𝜔 and 𝑥 = tanh 𝑟∗ in Eqs. (5.54) and (5.55), it follows that

𝑤1(𝜌, 𝜎, 𝑥) ∝ 𝜓𝑁𝜔 (𝑟∗) and 𝑤2(𝜌, 𝜎, ) ∝ 𝜓𝐷𝜔 (𝑟∗). (5.56)

Thus, from Eqs. (5.52) and (5.53), we see that one can represent the general solution of Eq.

(5.58) in terms of the linearly independent solutions

𝜓1(𝑟∗) = 𝑃 𝑖𝜔−1/2(tanh 𝑟∗), 𝜓2(𝑟∗) = 𝑄𝑖𝜔
−1/2(tanh 𝑟∗). (5.57)
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Let us now impose the conditions at the boundaries of the system in order to determine

the QNMs. First, let us denote by 𝜓(<)
𝜔 and 𝜓(>)

𝜔 the solutions of

−
𝑑2𝜓𝜔(𝑟∗)
𝑑𝑟2∗

+ 𝑉eff(𝑟∗)𝜓𝜔(𝑟∗) = 𝜔2𝜓𝜔(𝑟∗), (5.58)

with effective potential given by Eq. (5.40), for 𝑟∗ < 0 and 𝑟∗ > 0, respectively.

For 𝑟∗ < 0, the boundary condition (5.48) implies

𝜓(<)
𝜔 (𝑟∗) = 𝜔 sinh(𝜋𝜔)Γ(−𝑖𝜔)𝜓1(𝑟∗) −

2𝑖𝜔
𝜋

cosh(𝜋𝜔)Γ(−𝑖𝜔)𝜓2(𝑟∗). (5.59)

For 𝑟∗ > 0, we have

𝜓(>)
𝜔 (𝑟∗) = 𝑐1𝜓1(𝑟∗) + 𝑐2𝜓2(𝑟∗). (5.60)

Before considering the behavior at 𝑟∗ → ∞, we match 𝜓(<)
𝜔 and 𝜓(>)

𝜔 at 𝑟∗ = 0. Continuity

requires

𝜓(<)
𝜔 (𝑟∗ → 0−) = 𝜓(>)

𝜔 (𝑟∗ → 0+). (5.61)

We also require that

𝑑𝜓(>)
𝜔

𝑑𝑟∗

||||𝑟∗=0+
−
𝑑𝜓(<)

𝜔

𝑑𝑟∗

||||𝑟∗=0−
= 𝑎𝜓(0), (5.62)

which is the condition obtained by integrating Eq. (5.58) inside an arbitrarily small neighbor-

hood of 𝑟∗ = 0.

Solving Eqs. (5.61) and (5.62), we find the constants 𝑐1 and 𝑐2 as functions of the parameter

𝑎. After that, we expand 𝜓(>)
𝜔 near 𝑟∗ → +∞,

𝜓(>)
𝜔 (𝑟∗) ∼ 𝐷(𝜔, 𝑎)𝑒−𝑖𝜔𝑟∗ + 𝐸(𝜔, 𝑎)𝑒𝑖𝜔𝑟∗ . (5.63)

The coefficients of the asymptotic expansion Eq. (5.63) are

𝐷(𝜔, 𝑎) =
𝜋csch(𝜋𝜔)Γ(−𝑖𝜔)

2𝑖Γ(𝑖𝜔) [
22𝑖𝜔𝜋𝑎

Γ ( 3
4 −

𝑖𝜔
2 )

4 +
2

Γ ( 1
2 − 𝑖𝜔)

2 ]
, (5.64)
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𝐸(𝜔, 𝑎) = −𝑖csch(𝜋𝜔) −
𝑖𝑎
4
[csch(𝜋𝜔) − 𝑖]

Γ ( 1
4 −

𝑖𝜔
2 )

2

Γ ( 3
4 −

𝑖𝜔
2 )

2 . (5.65)

Hence the quasinormal frequencies of the extended Laval nozzle are given by solutions of

𝐷(𝜔, 𝑎) = 0. (5.66)

From Eq. (5.64), we see that ordinary quasinormal frequencies can be divided into two sets.

First, since the Gamma function has poles at negative integers, the frequencies

𝜔𝑛 = −
𝑖
2
(4𝑛 + 3) , 𝑛 = 0, 1, 2, 3, … (5.67)

satisfy Eq. (5.66) for any value of 𝑎. The second set of quasinormal frequencies is given by the

solutions of

𝑎 = −
21−2𝑖𝜔Γ ( 3

4 −
𝑖𝜔
2 )

4

𝜋Γ ( 1
2 − 𝑖𝜔)

2 . (5.68)

In the following, we analyze the resulting quasinormal modes for both cases, Eqs. (5.67)

and (5.68). For convenience, we will divide the case of Eq. (5.68) in (i) 𝑎 = 0 and (ii) 𝑎 ≠ 0.

Dirichlet quasinormal modes

Let us first consider the QNMs with frequencies given by Eq. (5.67). Using the expressions for

𝜓(<)
𝜔 and 𝜓(>)

𝜔 , Eqs. (5.59) and (5.60), we find

𝜓(𝐷)
𝑛 (𝑟∗) = −Γ(−2𝑛 −

1
2)

𝑃 2𝑛+ 3
2

− 1
2

(tanh 𝑟∗) , (5.69)

which is defined in −∞ < 𝑟∗ < ∞. From the transformation formula [84]

𝑃 2𝑛+ 3
2

− 1
2

(tanh 𝑟∗) = 𝐶𝑛 sinh 𝑟∗ cosh2𝑛+
1
2 𝑟∗ 2𝐹1 (−𝑛,−𝑛;

3
2
; tanh2 𝑟∗) , (5.70)
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where

𝐶𝑛 =
(−1)𝑛22𝑛+ 5

2Γ (𝑛 + 3
2)√

𝜋Γ (−𝑛 − 1
2)

, (5.71)

we see that

𝜓(𝐷)
𝑛 (𝑟∗ = 0) = 0. (5.72)

Since 𝜓(𝐷)
𝑛 is a solution of Eq. (5.58) obeying ingoing boundary conditions at the horizon 𝑟∗ =

−∞, it follows from Eq. (5.72) that, when restricted to −∞ < 𝑟∗ ≤ 0, the ordinary QNM 𝜓(𝐷)
𝑛

can be interpreted as a QNM satisfying a Dirichlet boundary condition at BTZ spatial infinity.

Moreover, we note that these modes are odd functions with respect to the tortoise coordinate

𝑟∗, and do not depend on the value of the parameter 𝑎. We also mention that the frequencies

given by Eq. (5.67) are the known Dirichlet quasinormal frequencies in the BTZ background

given by Eq. (3.59) (with 𝑀 = 𝑙 = 1, 𝑚 = 0, and 𝑚2
𝜉 = −3/4𝑙2). Besides, the QNMs 𝜓(𝐷)

𝑛 ,

Eq. (5.69), are proportional to the Dirichlet solutions found in Chapter 3, Eq. (3.46), with 𝜔

given by Eq. (5.67). Figure 5.4 shows 𝜓(𝐷)
𝑛 for 𝑛 = 0, 1, 2.

Neumann quasinormal modes

For 𝑎 = 0, the frequencies solving Eq. (5.68) are given by

𝜔𝑘 = −
𝑖
2
(2𝑘 + 1), 𝑘 = 0, 1, 2, 3, … (5.73)

When 𝑘 is odd, 𝑘 = 2𝑛 + 1, these frequencies reduce to Dirichlet frequencies, Eq. (5.67), and

the corresponding modes are given by Eq. (5.69). On the other hand, when 𝑘 is even, 𝑘 = 2𝑛,

we have

𝜔𝑛 = −
𝑖
2
(4𝑛 + 1). (5.74)

The mode solutions in this case are given by

𝜓(𝑁 )
𝑛 (𝑟∗) = Γ(

1
2
− 2𝑛) 𝑃 2𝑛+ 1

2
− 1

2
(tanh 𝑟∗) , (5.75)



Chapter 5. BTZ Black Hole in a Laval Nozzle 73

-3 -2 -1 0 1 2 3

-20

-10

0

10

20

Figure 5.4: The spatial part of the ordinary quasinormal modes of acoustic waves in the ex-

tended nozzle as functions of the nondimensional tortoise coordinate, and frequencies given

by Eq. (5.67). These QNMs are odd functions with respect to 𝑟∗. For −∞ < 𝑟∗ ≤ 0, these mode

solutions can be interpreted as QNMs of conformally coupled scalar waves obeying a Dirich-

let boundary condition at spatial infinity of the BTZ spacetime. Note that these modes do not

depend on the parameter 𝑎. Legend: the red dashed line represents the QNM with 𝑛 = 0, the
green dotted line represents the QNM with 𝑛 = 1, and the blue dot-dashed line represents the
QNM with 𝑛 = 2.

and are defined in −∞ < 𝑟∗ < ∞. Using the transformation formula [84]

𝑃 2𝑝+ 1
2

− 1
2

(tanh 𝑟∗) = 𝐶𝑛 cosh2𝑛+
1
2 𝑟∗ 𝐹 (−𝑛,−𝑛;

1
2
; tanh2 𝑟∗) , (5.76)

where

𝐶𝑛 =
22𝑛+ 1

2Γ (𝑛 + 1
2)

2

𝜋3/2 , (5.77)

we see that 𝜓(𝑁 )
𝑛 is an even function with respect to the coordinate 𝑟∗. Moreover, from the

expressions above, it can be shown that

𝑑𝜓(𝑁 )
𝑛

𝑑𝑟∗

||||𝑟∗=0
= 0. (5.78)
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Figure 5.5: The spatial part of the ordinary quasinormal modes of acoustic waves in the ex-

tended nozzle as functions of the nondimensional tortoise coordinate, and frequencies given

by Eq. (5.74). These QNMs are even functions with respect to 𝑟∗. For −∞ < 𝑟∗ ≤ 0, these
mode solutions can be interpreted as QNMs of conformally coupled scalar waves obeying a

Neumann boundary condition at spatial infinity of the BTZ spacetime, 𝛽 = 𝑎 = 0. Legend:
the red dashed line represents the QNM with 𝑛 = 0, the green dotted line represents the QNM

with 𝑛 = 1, and the blue dot-dashed line represents the QNM with 𝑛 = 2.

Hence, when restricted to −∞ < 𝑟∗ ≤ 0, the ordinary QNMs, 𝜓(𝑁 )
𝑛 , correspond to QNMs

satisfying a Neumann boundary condition at the spatial infinity of the BTZ black hole. We

note that the frequencies given by Eq. (5.74) are the Neumann quasinormal frequencies for

the conformally coupled scalar field in the BTZ background found in Chapter 3 (Eq. (3.61)

with𝑀 = 𝑙 = 1, 𝑚 = 0, and 𝑚2
𝜉 = −3/4𝑙2). We also mention that the modes 𝜓(𝑁 )

𝑛 , Eq. (5.75), are

proportional to the solutions given by Eq. (3.47) with 𝜔 given by Eq. (5.74). Figure 5.5 shows

𝜓(𝑁 )
𝑛 for 𝑛 = 0, 1, 2.

Robin quasinormal modes

For 𝑎 ≠ 0, we cannot exactly solve Eq. (5.68) for 𝜔. Nevertheless, we still can show that the

corresponding QNMs are even functions with respect to 𝑟∗. Initially, we use Eq. (5.59) and
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substitute Eq. (5.68) into Eq. (5.60) to find

𝑑𝜓(>)
𝜔

𝑑𝑟∗

||||𝑟∗=0+
= −

𝑑𝜓(<)
𝜔

𝑑𝑟∗

||||𝑟∗=0−
= −

√
𝜋21+𝑖𝜔Γ(1 − 𝑖𝜔)
Γ ( 1

4 −
𝑖𝜔
2 )

2 . (5.79)

Let us define 𝜙(𝑟∗) in 0 ≤ 𝑟∗ < ∞ by 𝜙(𝑟∗) = 𝜓(<)
𝜔 (−𝑟∗). Since the effective potential is even, it

follows that 𝜙(𝑟∗) is a solution of Eq. (5.58) in 0 ≤ 𝑟∗ < ∞. Moreover, we have

𝜙(0+) = 𝜓(<)
𝜔 (0−), (5.80)

𝑑𝜙
𝑑𝑟∗

||||𝑟∗=0+
= −

𝑑𝜓(<)
𝜔

𝑑𝑟∗

||||𝑟∗=0−
. (5.81)

Then, by the uniqueness of the solution of Eq. (5.58) obeying conditions (5.80) and (5.81), we

conclude that 𝜓(<)
𝜔 (−𝑟∗) = 𝜙(𝑟∗) = 𝜓(>)

𝜔 (𝑟∗). The solution in the entire interval −∞ ≤ 𝑟∗ < ∞

can then be written as

𝜓(𝑅)
𝜔 (𝑟∗) = 𝜓(<)

𝜔 (𝑟∗)𝜃(−𝑟∗) + 𝜓(<)
𝜔 (−𝑟∗)𝜃(𝑟∗), (5.82)

from where it follows directly that 𝜓(𝑅)
𝜔 (𝑟∗) is an even function.

Another property of 𝜓(𝑅)
𝜔 is found by substituting Eq. (5.79) into Eq. (5.62),

𝛽 = (𝑑𝜓(<)
𝜔 /𝑑𝑟∗)
𝜓(<)
𝜔

||||𝑟∗=0−
= −

𝑎
2
. (5.83)

Hence, when restricted to −∞ < 𝑟∗ ≤ 0, we can interpret the ordinary QNM, 𝜓(𝑅)
𝜔 , as a QNM in

the BTZ black hole satisfying a Robin boundary condition at spatial infinity with 𝛽 = −𝑎/2.

Let us analyze Eq. (5.83) more closely. First, using Eq. (5.68), we can rewrite it as

𝛽 =
2−2𝑖𝜔Γ ( 3

4 −
𝑖𝜔
2 )

4

𝜋Γ ( 1
2 − 𝑖𝜔)

2 . (5.84)

Taking into account the formula [84]

Γ(2𝑧) = 𝜋−1/222𝑧−1Γ(𝑧)Γ(𝑧 +
1
2)

(5.85)
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with 𝑧 = 3/4 − 𝑖𝜔/2, we find

Γ(
1
2
− 𝑖𝜔) = 𝜋−1/22−𝑖𝜔−

1
2Γ(

1
4
−
𝑖𝜔
2 ) Γ(

3
4
−
𝑖𝜔
2 ) . (5.86)

Substituting Eq. (5.86) into Eq. (5.84), it follows that

𝛽 =
2Γ ( 3

4 −
𝑖𝜔
2 )

2

Γ ( 1
4 −

𝑖𝜔
2 )

2 , (5.87)

which agrees with the expression Eq. (3.65) for the frequencies of quasinormal modes obeying

RBCs.
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Figure 5.6: Real (Top) and imaginary (bottom) parts of the spatial component of the ordinary

quasinormal modes of acoustic waves in the extended nozzle as functions of the nondimen-

sional tortoise coordinate, and with frequencies given by solutions of Eq. (5.68). These QNMs

are even functions with respect to 𝑟∗. For−∞ < 𝑟∗ ≤ 0, these mode solutions can be interpreted

as QNMs of conformally coupled scalar waves obeying a Robin boundary condition with

𝛽 = −𝑎/2 = −2, at spatial infinity of the BTZ spacetime. The frequencies were calculated nu-

merically and sorted by increasing magnitude of the imaginary parts. Legend: the red dashed
line represents the least-damped QNM, with the frequency given by 𝜔0 = 0.628244− 1.21348𝑖;
the green dotted line represents the QNM with the frequency 𝜔1 = 0.711933 − 2.69836𝑖; the
blue dot-dashed line represents the QNM with the frequency 𝜔2 = 0.501734 − 4.54024𝑖.
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Figure 5.6 shows some ordinary QNM modes of the extended nozzle with 𝑎 = 4 and fre-

quencies given by solutions of Eq. (5.68). The quasinormal frequencies are 𝜔0 = 0.628244 −

1.21348𝑖, 𝜔1 = 0.711933−2.69836𝑖, 𝜔2 = 0.501734−4.54024𝑖. These ordinary QNMs correspond

to QNMs satisfying an RBC in the BTZ spacetime with 𝛽 = −𝑎/2 = −2.

Summarizing the results in this section, we calculated the ordinary QNMs of acoustic

waves in the extended nozzle and showed that all of them have definite parity: odd ordinary

QNMs correspond to QNMs in the BTZ black hole satisfying the Dirichlet boundary condi-

tion; even ordinary QNMs correspond to QNMs in the BTZ black hole satisfying Neumann or

Robin boundary conditions. This provides (at least in principle) a nice way to realize Robin

boundary conditions at the conformal boundary of the BTZ black hole by means of an analog

model. Notice that, since for arbitrary initial data both types of QNMs (odd and even) allowed

by Eq. (5.66) will be excited, in order to observe mode solutions corresponding to QNMs obey-

ing, say, Robin or Neumann boundary conditions, one has to consider time evolution of even

initial data.

Hence, we can interpret the QNMs as modes with (complex) frequencies having definite

parity. This is expected by the way the nozzle is extended. Such an extension has a resulting

even effective potential given by Eq. (5.40) so that, with the asymptotic behavior given by Eqs.

(5.48) and (5.49), parity is respected. Moreover, Eqs. (5.80) and (5.81) show that this extension

represents two images of the same Cauchy problem with boundary conditions

𝜓𝜔 ∼ 𝑒𝑖𝜔𝑟∗ , 𝑟∗ → ∞,

𝑑𝜓𝜔
𝑑𝑛 (𝑟∗) +

𝑎
2𝜓𝜔(𝑟∗) = 0, 𝑟∗ → 0,

where 𝑑/𝑑𝑛 represents the normal derivative pointing toward 𝑟∗ = 0. In this way, the quasi-

normal frequencies obtained in such “extended configuration” are precisely the ones found in

the BTZ spacetime, Eq. (3.65), with the correspondence 𝑎 = −2𝛽.

Before closing this section, we mention that the lack of smoothness at the junction of the

extended nozzle, resulting from the Dirac delta in the effective potential, is an idealization

that could be removed, for instance, by considering a finite potential barrier in Eq. (5.40). In

fact, taking a sufficiently small 𝜖 > 0, a barrier with width 2𝜖 and height 𝑎/2𝜖 leads to a

smooth nozzle with quasinormal frequencies arbitrarily close to the frequencies calculated

via Eqs. (5.67) and (5.68). This means that the Dirac delta in the effective potential and the

resulting nonsmooth nozzle do not represent a significant limitation of our model.
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5.3.3 Stability

For black holes in asymptotically flat spacetimes, mode solutions growing exponentially in

time (Im[𝜔] > 0) appear as a result of energy extraction from the background spacetime by

the mechanism of superradiance [96].

In the case of the rotating BTZ black hole, Dappiaggi et al. showed that exponentially

growing modes occur for a subset of RBCs [67]. There are two types of such modes: (i) modes

corresponding to superradiant instabilities, which extract energy from the black hole; and (ii)

modes arising from AdS3 bulk instabilities [97], which do not extract energy from the black

hole. In both cases, angular momentum is extracted from the black hole.

Because our model does not account for black hole rotation, no superradiant modes occur

in the quasinormal spectrum determined by Eq. (5.66). On the other hand, since in the analog

spacetime there exist exponentially growing modes that are not superradiant, we still have

reason to ask if, for some value of 𝑎, such modes are allowed in our model.

According to [67], modes with Im[𝜔] > 0 occur for RBCs with 𝛽 greater than a critical

value 𝛽𝑐,

𝛽 > 𝛽𝑐, (5.88)

which, in our case, is given by
2

𝛽𝑐 =
2 Γ2 (3/4)
Γ2 (1/4)

. (5.89)

In terms of 𝑎, this means that unstable modes are expected to appear when

𝑎 < −
4 Γ2 (3/4)
Γ2 (1/4)

= −
2
𝜋2Γ

4
(
3
4)

, (5.90)

where we have used Euler’s reflection formula, Γ(𝑧)Γ(1 − 𝑧) = 𝜋 csc𝜋𝑧, with 𝑧 = 3/4, to

establish the last equality.

From the perspective of the Laval nozzle, the expression under the square root in Eq. (5.19)

shows that the sectional area is well defined only for 𝑔 ≥ 1. One can see that this is, in fact, the

case when 𝑟∗ ≤ 0 by noting that ℎ(<) is a strictly increasing function in the interval−∞ < 𝑟∗ < 0,
2
The case of 𝑚 = 0 mode of the conformally coupled scalar field in the static BTZ black hole corresponds to

parameters 𝑘 = 0 and 𝜇2 = −3/4 in [67]. The parameter 𝛽 for RBCs used here relates to the parameter 𝜁 in [67]

by 𝛽 = − cot 𝜁 .
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and has a minimum at 𝑟∗ → −∞. Since

lim
𝑟∗→−∞

𝑄− 1
2
(tanh 𝑟∗) =

𝜋
2
, (5.91)

we see that this minimum is given by

lim
𝑟∗→−∞

ℎ(<)(𝑟∗) =
3√
5
> 1. (5.92)

Thus, we conclude that 𝑔(𝑟∗) > 1 in −∞ < 𝑟∗ ≤ 0, for any value of 𝑎.

For 𝑟∗ > 0, there are two cases to consider:

(i) 𝑎 < −
2
𝜋2Γ

4
(
3
4)

, (5.93)

(ii) 𝑎 ≥ −
2
𝜋2Γ

4
(
3
4)

. (5.94)

In Sec 5.3.4, we show that for the case (i) there always exists 𝑟∗ such that 𝑔(𝑟∗) < 1 and, hence,

our model is not well defined when 𝑎 obeys inequality (5.93). On the other hand, we show that

when 𝑎 obeys inequality (5.94), the values of 𝑔(𝑟∗) are always greater than 1 so that our model

is well defined.

From this discussion, it follows that our model is well defined only for

𝑎 ≥ 𝑎min = −
2
𝜋2Γ

4
(
3
4)

, (5.95)

and, from the discussion before and including Eq. (5.90), we conclude that unstable mode

solutions never occur in this model. This result unveils a nice feature, namely that the allowed

nozzle configurations automatically reproduce only the boundary conditions that are always

consistent with the stability condition in the BTZ spacetime.

As a last comment, we mention that although we have restricted ourselves to mode so-

lutions with zero angular momentum (𝑚 = 0), the case of 𝑚 ≠ 0 can be treated in a similar

fashion if we take the black holemass as𝑀 = 𝑚2
, which turns the effective potential of Eq. (5.2)

into �̂� (𝑟∗) = (5/4) sech2 𝑟∗. As in the case of 𝑚 = 0, the nozzle has a finite length, and one can

emulate RBCs by extending it with the addition of a delta function term 𝑎𝛿(𝑟∗) to the potential.

Our other results still hold in this case, namely: the odd (even) ordinary QNMs correspond to

QNMs obeying Dirichlet (Neumann or Robin) boundary conditions at the BTZ conformal in-
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finity; and our model is well defined for 𝑎 ≥ 𝑎min, for a certain 𝑎min. The minimum value 𝑎min

still constrains the range of allowed boundary conditions to an interval −∞ < 𝛽 ≤ 𝛽max, but

now 𝛽max is smaller than the corresponding critical value 𝛽𝑐 (and therefore the allowed noz-

zle configurations again reproduce only the boundary conditions that are consistent with the

stability condition in the BTZ spacetime).

5.3.4 Behavior of 𝑔(𝑟∗) for 𝑎 obeying inequalities (5.93) and (5.94)

In this section, we prove the claims made after inequalities (5.93) and (5.94). Initially, let us

suppose that 𝑎 satisfies Eq. (5.93). Noting that

lim
𝑟∗→+∞

𝑄− 1
2
(tanh 𝑟∗) = +∞, (5.96)

it follows that

lim
𝑟∗→+∞

ℎ(>)(𝑟∗) = −∞. (5.97)

Hence we conclude that there exists 𝑟∗ such that ℎ(>)(𝑟∗) = 0. For this 𝑟∗, we have 𝑔(𝑟∗) < 1,

and our model is not well defined for case (i).

Let us now analyze case (ii), given by inequality (5.94). From Eq. (5.47), we have that

ℎ(>)(𝑟∗) =
√

3√
5

{
2
𝜋
𝑄− 1

2
(tanh 𝑟∗) +

𝜋𝑎
Γ ( 3

4)
4 [𝑄− 1

2
(tanh 𝑟∗) −

𝜋
2
𝑃− 1

2
(tanh 𝑟∗)]

}

≥
√

3√
5
𝑃− 1

2
(tanh 𝑟∗), (5.98)

where we have used the condition (5.94) and the fact that

𝑄− 1
2
(tanh 𝑟∗) ≥

𝜋
2
𝑃− 1

2
(tanh 𝑟∗) (5.99)

for 0 ≤ 𝑟∗ < ∞. Inequality (5.99) follows from the relation [84]

𝑄− 1
2
(tanh 𝑟∗) =

𝜋
2
𝑃− 1

2
(− tanh 𝑟∗) (5.100)

and the fact that 𝑄𝜇
𝜈 is an increasing function in −∞ < 𝑟∗ < ∞.
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Since

𝑃− 1
2
(tanh 𝑟∗) ≥ 1, 0 ≤ 𝑟∗ < ∞, (5.101)

the result (5.98) implies

ℎ(>)(𝑟∗) ≥
√

3√
5
> 1. (5.102)

Thus it follows from Eq. (5.31) that 𝑔(𝑟∗) > 1 whenever the constraint (5.94) is fulfilled, which

means that our model is well defined for 𝑎 in case (ii).
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Chapter 6

Conclusion

One of the main insights of the Analog Gravity research program is the realization that the

spacetime (effective) description arises as an emergent (low-energy) feature of a much more

complex underlying physics. In this sense, studying analog models of gravity (especially based

on quantum systems) may provide hints on some of the requirements a Quantum Theory of

Gravity shouldmeet. Aside from that, this research program offers lots of ground to investigate

and test gravitational effects even at the classical level, as recent experimental observations

have shown [34, 35, 36].

On the theoretical side, after introducing some general features of the Analog Gravity pro-

gram in Chapter 2, we have employed its mathematical machinery to investigate an instance

of the very interesting class of nonglobally hyperbolic spacetimes. In such spacetimes, we

cannot characterize the solutions of the wave equation only in terms of an initial state so that

the conformal boundary of the spacetime plays a fundamental role in the determination of the

dynamics in bulk.

In this thesis, we have specifically considered the case of the static BTZ spacetime, which

represents a black hole solution of the Einstein field equations of gravity in (2+1) dimensions

with a negative cosmological constant, which was briefly introduced in Chapter 3, along with

a discussion on its quasinormal modes.

After the introductory discussion in Chapters 2 and 3, in Chapter 4, we introduced a novel

analog model for the BTZ black hole based on a unidirectional flow of a nonhomogeneous

fluid. Specifically, we have considered a barotropic fluid obeying a simple equation of state,

which corresponds to a constant local speed of sound. The physical quantities describing the

flow were considered to vary along just one direction. In particular, the flow velocity field
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pointed to a fixed direction in the laboratory reference frame. The coordinate describing the

direction of the flowing fluid was mapped into the radial coordinate of the analog spacetime.

Following the steps introduced in [58], we were naturally led to find the effective acoustic

metric as that of the well-known static BTZ black hole, Eq. (3.6).

A nice feature of our model is that the outer region of the BTZ black hole is mapped

into a finite region in the laboratory. In particular, the BTZ conformal boundary is mapped

into the boundary  at the laboratory, which is at a finite distance from the acoustic horizon.

Thus it follows that, on the analog model end, the extra boundary condition (at the conformal

boundary) required to determine the time evolution of the field uniquely can be naturally

interpreted as a boundary condition (at the boundary  ) for the sound propagation in the

laboratory.

After that, still in Chapter 4, we considered flow configurations with both small and large

deviations from the steady state. In the latter case, we numerically solved the nonlinear equa-

tions of fluid dynamics and followed an example of the formation of the acoustic BTZ black

hole. In both cases, we examined the excitation and decay of the associated QNMs.

In Chapter 5, we introduced an analog model for the BTZ black hole, which is appropriate

to analyze theQNMs resulting fromRobin boundary conditions at its corresponding conformal

infinity. Applying the procedure first introduced in [52], we found a Laval nozzle configuration

for which acoustic waves traveling on the flowing gas mimics a conformally coupled scalar

field propagating on the BTZ black hole. We found that the obtained nozzle had a finite length

and that the spatial infinity of the BTZ spacetime was mapped into one end of the nozzle.

From there on, we considered nozzle extensions corresponding to effective potentials formally

extending the BTZ black hole beyond its conformal infinity. We also noticed that, with respect

to the tortoise coordinate, the extended model represents two copies of the same initial value

problem so that the ordinary QNMs of waves in the nozzle can be obtained by extending the

BTZ mode solutions into the region beyond its spatial infinity while preserving parity.

After finding the ordinary QNMs in the extended nozzle, we showed that these modes can

be used to simulate QNMs in the BTZ spacetime satisfying Dirichlet, Neumann and Robin

boundary conditions at its conformal boundary. Finally, we showed that the range of the

parameters for which our model is well defined corresponds precisely to the range of Robin

boundary conditions that allow only stable QNMs.
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ABSTRACT

We revisit the propagation of classical scalar fields in a spacetime, which is asymptotically anti-de Sitter. The lack of global hyperbolicity
of the underlying background gives rise to an ambiguity in the dynamical evolution of solutions of the wave equation, requiring the pre-
scription of extra boundary conditions at the conformal infinity to be fixed. We show that the only boundary conditions that are compatible
with the hypothesis that the system is isolated, as defined by the (improved) energy–momentum tensor, are of Dirichlet and Neumann
types.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0078118

I. INTRODUCTION

The anti-de Sitter (AdS) spacetime is the classic solution to the vacuum Einstein equations in the presence of a negative cosmological
constant. It has the highest possible degree of symmetry since it is maximally symmetric. Despite this apparent geometric simplicity, the
AdS spacetime has remarkable properties that make it a particularly interesting background for the study of classical and quantum fields. In
particular, it is a non-globally hyperbolic spacetime, implying that the solutions of the wave equation are not fully determined from initial
data.1 This requires the prescription of extra boundary conditions at its spatial infinity in order to have a unique solution for the Cauchy
problem.2 Physically, the lack of global hyperbolicity is related to the fact that information propagating in AdS can reach spatial infinity in
finite time, which allows the energy to leak out of the spacetime. As a result, the AdS spacetime does not give rise, in general, to an isolated
system.

This problem has been addressed in Refs. 3 and 4 within the context of supergravity in (1 + 3)-dimensions. Besides analyzing the stability
of the anti-de Sitter background with respect to small scalar perturbations, these works show that the boundary conditions that make the
improved energy functional positive and conserved are restricted to the Dirichlet and Neumann types.

Given the arbitrariness on the choice of the boundary condition at the conformal boundary, Wald and Ishibashi defined in Refs. 2, 5,
and 6 a sensible prescription for obtaining the dynamics of a propagating field on AdS.7 By requiring that the field propagation respects
causality and time translation/reflection invariance and, what is most important, also has a conserved energy functional, it was shown that
the non-equivalent types of sensible dynamics are in one-to-one correspondence with the positive self-adjoint extensions of the spatial part
of the wave operator. These self-adjoint extensions are obtained by choosing suitable boundary conditions at the conformal infinity. The
resulting conserved energy functional, however, is not that extracted from the improved energy–momentum tensor Tμν. In fact, it can be
shown that it arises from the subtraction of a boundary term from the energy functional coming from Tμν.8 This boundary term van-
ishes for Dirichlet or Neumann boundary conditions, and in this case, the newly defined (conserved) energy matches the usual energy,
which is already conserved. For every other—generalized Robin—boundary condition, there is an effective contribution of the boundary
term to the newly defined (conserved) energy functional, showing that there is an effective flux of energy through the conformal boundary
of AdS.
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In any event, Robin boundary conditions have recently spawned great interest in the context of quantum field theory in asymptotically
anti-de Sitter spacetimes and several authors analyzed the consequences implied by these boundary conditions on the quantization of the
scalar field (see, for instance, Refs. 9–13 and references therein). As a matter of fact, the introduction of Robin boundary conditions is often
motivated by the desire that the system be isolated, as explicitly stated in Refs. 10, 11, and 13. One of the goals of the present work is to clarify
this issue and show that generic Robin boundary conditions are incompatible with the requirement that the spacetime be isolated.

More precisely, this paper is concerned with the Cauchy problem associated with the wave equation

(◻ −m2
ξ)Φ = 0 (1)

in an asymptotically anti-de Sitter spacetime, where m2
ξ ≡ μ2 + ξℛ and ξ is a constant, which couples the field to the curvature scalar ℛ . This

coupling modifies the usual energy–momentum tensor obtained by the variation of the action with respect to the metric. In what follows, we
use the resulting improved energy–momentum tensor to define the energy functional. Our aim is to establish the boundary conditions for
which the system spacetime + field can be considered as effectively isolated, a point which, as mentioned above, has occasionally been a source
of confusion in the literature. It turns out that this is equivalent to finding the boundary conditions for which the conserved energy functional
defined by Wald and Ishibashi is equal to the one extracted from the improved energy–momentum tensor. We emphasize that our analysis
takes into account only classical fields. In the context of quantum fields in curved spacetimes, the prescription of Wald and Ishibashi leads to
a vanishing (renormalized) energy flux ⟨Ttρ⟩ (see Ref. 13).

This paper is organized as follows. In Sec. II, we obtain an asymptotic expression for the scalar field at spatial infinity. This is done by
means of a Green function that encodes the dependence of the solution on the initial data and boundary conditions. Our analysis differs from
that in Refs. 3, 4, and 6 in that we only assume that the spacetime is asymptotically AdS; we thus make no assumption (except for certain
technicalities to be explained below) about its bulk structure. In Sec. III, we discuss the requirements on the boundary conditions at spatial
infinity for the system spacetime + scalar field to be effectively isolated. We find that the only boundary conditions that are compatible with
this assumption are the (generalized) Dirichlet and Neumann boundary conditions. Finally, in Sec. IV, we discuss our results and make our
closing remarks.

II. ASYMPTOTIC BEHAVIOR OF THE FIELD

Let M be a stationary n-dimensional spacetime, which is asymptotically AdS. We choose coordinates {t, r, θ1, . . . , θn−2} such that the
metric on M satisfies

ds2∣r→∞ ≈ ds2
AdS = −(1 + r2)dt2 + dr2

1 + r2 + r2 dΩ2
n−2, (2)

where ds2
AdS is the line element in AdSn and dΩ2

n−2 is the metric on the (n − 2)-dimensional unity sphere.
We separate variables for the scalar field and consider the ansatz

Φ(t, r, θ) =∑{ℓ}ϕℓ(r, t)Yℓ(θ), (3)

where {ℓ} represents the set of integer indices labeling the hyperspherical harmonics Yℓ(θ). The wave equation (1) can then be written as

Lrt[ϕ] = 0, (4)

where Lrt is a second order differential operator of the form

Lrt = uij(r)∂i∂j + vi(r)∂i + q(r), i, j = r, t. (5)

When dealing with problems such as (4), it is common practice to consider a time dependence of the form e−iωt and then to solve the
resulting time-independent problem. However, when considering non-conservative systems (for instance, when energy can flow through the
boundaries), with ω being a complex number, such an approach leads to extra mathematical difficulties, which, in turn, make it difficult to
physically interpret the resulting solutions.14–16 When the spacetime bulk contains a black hole, such an approach allows for the determination
of the quasinormal mode spectrum of the system. However, the quasinormal modes do not provide a complete set of eigenfunctions, and
hence, an arbitrary initial condition cannot be expressed in terms of them.

As discussed in Ref. 14, one can overcome this difficulty by taking the initial conditions into account from the beginning. A suitable
mathematical tool for implementing this strategy is the Laplace transform17
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L{ϕℓ(t, r)} = ϕ̂ℓ(ω, r) = ∫ ∞
t0

ϕℓ(t, r)eiωtdt. (6)

Applying the Laplace transform to (4), we obtain an ordinary differential equation,

P2(ω, r)∂2ϕ̂(ω, r)
∂r2 + P1(ω, r)∂ϕ̂(ω, r)

∂r
+ P0(ω, r)ϕ̂(ω, r) = I(ω, r), (7)

for each ω, with I(ω, r) taking care of the initial conditions. We omitted the index ℓ to not clutter notation.
Equation (7) can be rewritten as a Schrödinger-type equation,

d2ψ̂
dr2∗ − s(r∗)ψ̂ = f (r∗), (8)

by using a suitable change of variables

ϕ̂→ ψ̂, r → r∗, (9)

which maps r into an interval (rmin∗ , rmax∗ ). This is to be determined by the specific form of the metric. The solution of Eq. (8) can then be
found by the standard Green’s function method and can be expressed as

ψ̂(ω, r∗) = ψ̂b(ω, r∗)
W[ψ̂b, ψ̂∞]∫

rmax∗
r∗

f (ω, r′∗)ψ̂∞(ω, r′∗)dr′∗ + ψ̂∞(ω, r∗)
W[ψ̂b, ψ̂∞]∫

r∗
rmin∗

f (ω, r′∗)ψ̂b(ω, r′∗)dr′∗. (10)

Here, W[ψ̂b, ψ̂∞] is the Wronskian of the solutions ψ̂b and ψ̂∞ of the homogeneous equation associated with (8),

Wr∗[ψ̂b, ψ̂∞] = ψ̂b
∂ψ̂∞
∂r∗ − ∂ψ̂b

∂r∗ ψ̂∞. (11)

The function ψ̂b should be determined after imposing some condition at rmin∗ , deep into the bulk. This could be a regularity condition at
the “origin” r = 0 when M = AdS or a condition at the event horizon when M contains a black hole. On the other hand, the function ψ̂∞ is
determined from the boundary conditions at the conformal infinity, rmax∗ .

Assuming initial data with compact support, we find the following asymptotic approximation:

ψ̂(ω, r∗) ≈ A (ω)ψ̂∞(ω, r∗) as r → rmax∗ , (12)

with A (ω) = (1/W[ψ̂b, ψ̂∞])∫ rmax∗
rmin∗ f (ω, r′∗)ψ̂b(ω, r′∗)dr′∗. Inverting the transformation (9) leads to

ϕ̂(ω, r) ≈ A (ω)ϕ̂∞(ω, r) as r →∞, (13)

where ϕ̂∞(ω, r) is a solution of the homogeneous equation associated with (7) obeying some boundary condition at spatial infinity. The
inverse Laplace transform then yields

ϕ(t, r) ≈ 1
2π∫

+∞+iε

−∞+iε
A (ω)ϕ̂∞(ω, r)e−iωtdω (14)

as r →∞.
We note that the boundary conditions affect the resulting scalar field by means of the solutions of the homogeneous equation, ψ̂b(ω, r∗)

and ψ̂∞(ω, r∗), while the initial data are encoded in f (ω, r∗). Equivalently, the transformation (9) allows one to interpret the dependence
of the solution on the boundary conditions in terms of [the fundamental set of solutions of the homogeneous equation associated with (7)]{ϕ̂b, ϕ̂∞}, while its dependence on the initial conditions is given by I(ω, r).

Since our aim here is to study the flux of energy at the conformal boundary, we will not fix any specific conditions on the field in the
bulk other than requiring the usual regularity conditions, such as initial data with compact support and finiteness of the integrals associated
with the asymptotic approximations. As a matter of fact, the convergence of these integrals depends on the analytical structure of the Green’s
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function, which, in turn, depends on the boundary conditions deep inside the spacetime bulk. Hence, the convergence of these integrals must
be treated differently for each spacetime. Throughout this work, we will assume that it is always possible to find an approximation such as
(14) for the spacetime at hand.

III. ENERGY FLUX IN ASYMPTOTICALLY ANTI-DE SITTER SPACETIMES

We are now ready to study under what conditions the system spacetime + field is isolated, in the sense of having no energy flux through
the timelike spatial boundary at infinity. As discussed in Sec. II, the asymptotic behavior of the solutions of (1) is encoded in ϕ̂∞,ℓ(ω, r) (we,
henceforth, reinsert the ℓ index for definiteness). For each value of ℓ, this function satisfies the homogeneous equation associated with (7) in
the limit r →∞, which is given by

∂2

∂ρ2 ϕ̂∞,ℓ(ω, ρ) + (n − 2) sec ρ csc ρ
∂

∂ρ
ϕ̂∞,ℓ(ω, ρ) + [ω2 − ℓ(ℓ + n − 3)

sin2 ρ
− m2

ξ

cos2 ρ
]ϕ̂∞,ℓ(ω, ρ) = 0, (15)

where we have changed the radial coordinate to ρ, with r = tan ρ. Multiplying the last equation by (tan ρ)n−2 and performing the
transformation

ϕ̂∞,ℓ(ω, ρ) = Zℓ(ω, ρ)(tan ρ) n−2
2

, (16)

we find

∂2Zℓ(ω, ρ)
∂ρ2 + [ω2 − V(ρ)]Zℓ(ω, ρ) = 0, (17)

where the effective potencial V is given by

V(ρ) = [ℓ(ℓ + n − 3) + 1
4
(n2 − 6n + 8)]csc2 ρ + [1

4
n(n − 2) +m2

ξ]sec2 ρ. (18)

We also define

d = n − 1, ν2 = (n − 1)2

4
+m2

ξ (19)

and

a = 1
2
(d

2
+ ℓ + ν − ω), (20)

b = 1
2
(d

2
+ ℓ + ν + ω). (21)

A. A convenient fundamental set of solutions

For the sake of definiteness, let us fix a convenient set {Z(D)ℓ , Z(N)ℓ } of linearly independent solutions of (17). Following Ref. 18, we take
these functions as follows.

(i) For ν not being an integer,

Z(D)ℓ (ω, ρ) = (cos ρ) 1
2+ν(sin ρ)l+ d−1

2 2F1(a, b; 1 + ν; cos2 ρ), (22)

Z(N)ℓ (ω, ρ) = (cos ρ) 1
2−ν(sin ρ)l+ d−1

2 2F1(a − ν, b − ν; 1 − ν; cos2 ρ). (23)

(ii) For ν = 0,
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Z(D)ℓ (ω, ρ) = (cos ρ) 1
2+ν(sin ρ)l+ d−1

2 2F1(a, b; 1; cos2 ρ), (24)

Z(N)ℓ (ω, ρ) = (cos ρ) 1
2+ν(sin ρ)l+ d−1

2 {2F1(a, b; 1; cos2 ρ) ln(cos2 ρ) + ∞∑
k=1

(a)k(b)k(k!)2 (cos ρ)2k

×[ψ(a + k) − ψ(a) + ψ(b + k) − ψ(b) − 2ψ(k + 1) + 2ψ(1)]}. (25)

(iii) For ν being a positive integer,

Z(D)ℓ (ω, ρ) = (cos ρ) 1
2+ν(sin ρ)l+ d−1

2 2F1(a, b; 1 + ν; cos2 ρ), (26)

Z(N)ℓ (ω, ρ) = (cos ρ) 1
2+ν(sin ρ)l+ d−1

2 {2F1(a, b; 1 + ν; cos2 ρ) ln(cos2 ρ) + ∞∑
k=1

(a)k(b)k(1 + ν)kk!
(cos ρ)2k

× [h(k) − h(0)] − ν∑
k=1

(k − 1)!(−ν)k(1 − a)k(1 − b)k
(cos ρ)−2k}, (27)

where

ψ(x) = d
dx

ln Γ(x), (28)

h(k) = ψ(a + k) + ψ(b + k) − ψ(1 + ν + k) − ψ(k + 1). (29)

We note that, depending on the field mass μ and coupling constant ξ, the value of ν2 can be greater, less, or equal to zero. With no loss
of generality, we will consider ν > 0 in the first case and ν = iη, η > 0, in the last case.

The general solution of (17) can be written in terms of the fundamental solutions above as

Zℓ = Nℓ[cos ζ Z(D)ℓ + sin ζ Z(N)ℓ ], (30)

where Nℓ does not depend on ρ and ζ ∈ [0,π] does not depend neither on ρ nor on ℓ. We will refer to the condition ζ = 0 as the generalized
Dirichlet boundary condition and to the function Z(D)ℓ as the Dirichlet solution. The generalized Neumann boundary condition will be defined
by ζ = π/2, and we will refer to Z(N)ℓ as the Neumann solution. The other values of ζ ∈ [0,π] parameterize the generalized Robin boundary
conditions.

As shown in Ref. 6, the motivation for this terminology comes from the case of a conformally coupled field, for which we have

μ2 = 0, ξ = (n − 2)
4(n − 1) , ν = 1

2
. (31)

In this case, the effective potencial (18) is non-singular at ρ = π/2, and the ratio

∂Zℓ/∂ρ
Zℓ

∣
ρ = π

2

(32)

is well defined. The general solution (30) can be written as

Zℓ(ρ) = Gν(ρ){sin ζ + cos ζ(cos ρ)2ν + ⋅ ⋅ ⋅ } (33)

with

Gνℓ(ρ) = Nℓ (cos ρ)−ν+ 1
2 (sin ρ) n−2

2 +ℓ (34)

so that the ratio (32) becomes
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∂Zℓ/∂ρ
Zℓ

∣
ρ = π

2

= − cot ζ. (35)

We note that ζ = 0 and ζ = π correspond to Zℓ∣ρ=π/2 = 0, which is the usual Dirichlet boundary condition. On the other hand, ζ = π/2 corre-
sponds to ∂Zℓ/∂ρ∣ρ=π/2 = 0, the usual Neumann boundary condition. Other choices of ζ ∈ [0,π] correspond to Robin boundary conditions.
In the general case, the effective potential (18) diverges as ρ goes to π/2, and the ratio (dZℓ/dρ)/Zℓ is no longer well defined. Despite that, the
behavior of G−1

νℓ Zℓ as ρ goes to π/2 is dictated by sin ζ, while the behavior of ∂(G−1
νℓ Zℓ)/∂ρ is governed by cos ζ, so it seems natural to define

the “generalized Dirichlet boundary condition” as ζ = 0 and the “generalized Neumann boundary condition” by ζ = π/2. The other values of
ζ ∈ [0,π] parameterize the “generalized Robin boundary conditions.”

B. The flux at infinity

According to Weyl’s limit point and limit circle theory, the allowed boundary conditions at the endpoints of the interval where a
Sturm–Liouville problem is defined depend on the integrability of the solutions in the vicinity of these points.9,19 In the present case,
the solutions of (17) provide an approximation for the field near the point ρ = π/2. The integrability of these solutions depends on the
parameter ν.

In what follows, we are going to use the improved energy–momentum tensor of the complex scalar field,3,8

Tαβ = 1
2
(∂αΦ ∂βΦ

∗ + ∂βΦ ∂αΦ∗) − 1
2

gαβ[gρσ∂ρΦ∂σΦ∗ +m2
ξΦΦ

∗] + ξ(ℛαβ − gαβ ◻ −∇α∇β)ΦΦ∗, (36)

to calculate the energy flux. The Killing vector field k = ∂/∂t gives rise to the formally conserved energy Qα = ∣g∣1/2Tαβkβ (∂μQμ = 0), and the
energy flux across the spatial infinity is given by

ℱ∞ = − lim
ρ→π/2∫ dθ1 ⋅ ⋅ ⋅dθn−2 gρρ Qρ. (37)

The case ν2 ≥ 1

This is a simplest instance to analyze. In this case, Z(D)ℓ is square integrable near ρ = π/2, while Z(N)ℓ is not. As a result, the generalized
Dirichlet boundary condition must be chosen in this case. With this boundary condition, the energy flux across the spatial infinity turns out
to be zero. We omit the calculation since it is identical to the case 0 < ν2 < 1, treatedbelow, onceweset once we set ζ = 0.

The case 0 < ν2 < 1

In this case, both solutions are square integrable near ρ = π/2. The allowed boundary conditions are therefore of Robin type.
For these values of ν, (30) and (16) imply the following asymptotic behavior for ϕ̂∞,ℓ:

ϕ̂∞,ℓ(ω, ρ) ≈ Nℓ(ω)[cos ζ ϕ̂(D)ℓ (ω, ρ) + sin ζ ϕ̂(N)ℓ (ω, ρ)], (38)

where

ϕ̂(D)ℓ (ω, ρ) = (π
2
− ρ) d

2+ν + Jℓ(ω)(π2 − ρ)
d
2+ν+2 +O[(π

2
− ρ) d

2+ν+4], (39)

ϕ̂(N)ℓ (ω, ρ) = (π
2
− ρ) d

2−ν + Kℓ(ω)(π2 − ρ)
d
2−ν+2 +O[(π

2
− ρ) d

2−ν+4], (40)

with

Jℓ(ω) = a1(ω)b1(ω)
1 + ν − n − 1 + 6ℓ + 2ν

12
, (41)

Kℓ(ω) = a2(ω)b2(ω)
1 − ν − n − 1 + 6ℓ − 2ν

12
, (42)

as ρ→ π/2. Upon substitution of (38) into (14), we obtain the following asymptotic expression for ϕℓ:
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ϕℓ(t, ρ) ≈ cos ζ(π
2
− ρ) d

2+ν
Tℓ(t) + cos ζ(π

2
− ρ) d

2+ν+2
TD,ℓ(t) + sin ζ(π

2
− ρ) d

2−ν
Tℓ(t) + sin ζ(π

2
− ρ) d

2−ν+2
TN,ℓ(t), (43)

where

Tℓ(t) = 1
2π∫

+∞+iε

−∞+iε
Aℓ(ω)Nℓ(ω)e−iωtdω, (44)

TD,ℓ(t) = 1
2π∫

+∞+iε

−∞+iε
Aℓ(ω)Nℓ(ω)Jℓ(ω)e−iωtdω, (45)

TN,ℓ(t) = 1
2π∫

+∞+iε

−∞+iε
Aℓ(ω)Nℓ(ω)Kℓ(ω)e−iωtdω. (46)

Using the asymptotic form (43), (36), and (37), we get

ℱ∞ ∼ lim
ρ→π/2 sin ζ{cos ζ A + sin ζ B(π

2
− ρ)−2ν}⎛⎝∑{ℓ}

d
dt
∣Tℓ(t)∣2⎞⎠, (47)

where

A = d
2
− 2ξ(d + 1), (48)

B = (1
4
− ξ)(d − 2ν) − ξ. (49)

We immediately see that by imposing the Dirichlet boundary condition (ζ = 0), the flow of energy across the infinity turns out to be
zero.

On the other hand, when ζ ≠ 0, we must choose the coupling constant so that B = 0 in order that the energy flux be finite. This leads to

ℱ∞ ∼ sin ζ cos ζ A∑{ℓ}
d
dt
∣Tℓ(t)∣2. (50)

The integrals defining Tℓ(t), ℓ = 0, 1, 2 . . ., depend on the singularity structure of the functions Aℓ, which, in turn, depend on the boundary
conditions in the spacetime bulk and on the initial conditions of the system. As a result, except for very specific field configurations, we must
impose the Neumann condition (ζ = π/2) for the system to become effectively isolated. For general Robin conditions (ζ ≠ 0 and ζ ≠ π/2), the
energy flux across the conformal boundary is generically not zero.

There is a notable case where the energy flux (50) can be zero without imposing either ζ = 0 or ζ = π/2. For the propagation of a single
mode of frequency ω ∈ R, we have Tℓ(t) ∼ e−iωt , and then, d∣Tℓ(t)∣2/dt = 0, and the energy flux (50) vanishes for every Robin boundary
condition ζ ∈ [0,π]. However, for the propagation of two field modes, this conclusion is no longer true. More generally, if the scalar field is
composed of a nontrivial superposition of modes of different frequencies, then d∣Tℓ(t)∣2/dt ≠ 0.

In summary, the boundary conditions that make the system scalar field + spacetime effectively isolated in this case are as follows:

(i) ζ = 0 (Dirichlet).
(ii) ζ = π/2 (Neumann), together with ξ chosen such that B = 0.

In particular, for a minimally coupled field (ξ = 0), only the Dirichlet boundary condition gives zero energy flux across the spatial infinity
since in this case, B ≠ 0.

The case ν2 = 0

As in the previous case, both solutions are square integrable near ρ = π/2 here. The allowed boundary conditions are therefore again of
Robin type.

Moreover, the behavior of both G−1
νℓ Zℓ and ∂(G−1

νℓ Zℓ))/∂ρ are governed by sin ζ for ν = 0. Thus, one can interpret ζ = 0 (or ζ = π) as the
simultaneous imposition of generalized Neumann and Dirichlet boundary conditions. Following the same steps as in the previous case, we
find that the condition of zero flux again requires ζ = 0 together with ξ = (n − 1)/4n.

The case ν2 < 0

We now consider the case when ν2 < 0, i.e., ν = iη with η > 0. Once again, both solutions are square integrable near ρ = π/2 here. The
energy flow across the spatial infinity is now given by
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F ≈ lim
ρ→π/2∑{ℓ}(Aℓ cos 2ζ + Bℓ sin 2ζ + Cℓ), (51)

where

Aℓ = η Im{T ∗ℓ (t)dTℓ(t)
dt
}, (52)

Bℓ = 1
2

Re{[(n + 2iη)(4ξ − 1) + 1](π
2
− ρ)2iη}Re{T ∗ℓ (t)dTℓ(t)

dt
}, (53)

Cℓ = 1
2
[1 + n(4ξ − 1)]Re{T ∗ℓ (t)dTℓ(t)

dt
}. (54)

Since the functions sin 2ζ and cos 2ζ are linearly independent, we conclude that, in general, the system cannot be treated as isolated for ν2 < 0.
Once again, a notable exception is given by the propagation of a single mode with frequency ω ∈ R. In this case, we have T (t) ∼ eiωt ,

and therefore, Re{T ∗(t)[dT (t)/dt]} = 0, which implies that the coefficients B and C in (51) both vanish. Then, by choosing the boundary
condition as ζ = π/4, we can cancel out the energy flux through the conformal boundary.

It is worth mentioning that when M is not only asymptotically AdS, but M = AdS, the differential operator associated with Eq. (17) is
unbounded below for ν2 < 0. As a result, one cannot find positive self-adjoint extensions of it6 so that it is not possible to define a physically
“reasonable” time evolution in this case.20 In general, one cannot make assertions concerning the positivity of the differential operator associ-
ated with the correspondent radial equation without detailed information about the bulk structure of spacetime. Indeed, the positivity of the
differential operator may be somewhat subtle to be rigorously established even when the bulk structure is fully known.21

Finally, we note that the calculations in this section could be performed using the canonical (non-improved) energy–momentum
tensor,

T̃αβ = 1
2
(∂αΦ ∂βΦ

∗ + ∂βΦ ∂αΦ∗) − 1
2

gαβ[gρσ∂ρΦ∂σΦ∗ +m2
ξΦΦ

∗]. (55)

In this case, we find that (i) for ν2 > 0, only the Dirichlet boundary condition yields a zero energy flux across infinity and (ii) for ν2 ≤ 0, the
flux is generically nonzero even for the Dirichlet choice. These results are also what one would obtain by formally substituting ξ = 0 in the
above calculations for the improved energy–momentum tensor.

C. Mode analysis

To conclude this section, we discuss how our results fit with the existing literature. A common approach consists in considering a time
dependence given by e−iωt and to impose boundary conditions on the radial part for each field mode of frequency ω.9–13 For simplicity and in
order to make the discussion clearer, let us consider the specific case of n = 3, i.e., of a spacetime, which is asymptotically AdS3.

The allowed values of ω for the field eigenfunctions are determined from the boundary conditions in the bulk and at infinity, with ω ∈ R
or ω ∈ C, depending on the specific conditions imposed. In the following, we will consider both the energy flow due to the propagation of
a single frequency mode ω1 and the flux due to the propagation of a superposition of modes with frequencies ω1 and ω2. Since we are not
imposing any boundary condition on the spacetime bulk, we will allow ω to be complex and then specialize to the case of a real ω.

Let us consider the case when 0 < ν < 1. Let Φ1 be a mode with frequency ω1 ∈ C,

Φ1(t, ρ,φ) = ϕω1ℓ(ρ) e−iω1teiℓφ. (56)

A straightforward calculation shows that the energy flux across infinity for this specific solution is given by

F
(1) ∼ lim

ρ→π/2e2 Im(ω1) t Im(ω1) sin ζ{cos ζ (1 − 6ξ) + sin ζ B(π
2
− ρ)−2ν}, (57)

where

B = [(1
2
− 2ξ)(1 − ν) − ξ]. (58)

We immediately see that when Im(ω1) ≠ 0, only the Dirichlet and Neumann boundary conditions cancel the flux (the latter with ξ chosen
such that B = 0 as usual). On the other hand, when ω ∈ R, the energy flux is null for any Robin boundary condition (0 ≤ ζ < π), regardless of
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the coupling constant ξ. However, this is only a result of the very particular situation of a single mode solution. Considering the superposition
of even just two modes, Φ1 and Φ2, with frequencies ω1, ω2 ∈ R, we obtain the corresponding flux given by

F
(1,2) ∼ lim

ρ→π/2 sin(Δωt) sin ζ{cos ζ (1 − 6ξ) + sin ζ B(π
2
− ρ)−2ν}, (59)

where Δω = ω1 − ω2. Therefore, once again, only the Dirichlet and Neumann boundary conditions are compatible with the hypothesis that
the system is isolated (the latter with ξ chosen such that B = 0 as usual).

The analysis of the other cases of ν leads to the same conclusion. A single mode of real frequency can have zero flux at infinity while obey-
ing Robin boundary conditions. However, as soon as we consider a superposition of modes of different real frequencies (or even a single mode
of complex frequency), generic Robin boundary conditions are not compatible with zero flux at infinity and the results of Subsection III B are
recovered.

For the sake of completeness, we repeat this analysis for the case of a real scalar field in Appendix B. The results are essentially the same,
the only difference being that general Robin boundary conditions are not compatible with zero energy flux at infinity even in the case of a
single mode.

We conclude this section by noting that our results do not depend on the bulk structure of the spacetime. Regardless of the bulk, the
only boundary conditions at infinity that make the system effectively isolated are those of Dirichlet and Neumann types. Some particular field
configurations may, of course, have zero flux without conforming to this rule. This is the case of a single mode of a complex scalar field with
real frequency, for which the flux is zero irrespective of the choice of ζ.

IV. DISCUSSION

We have studied the asymptotic behavior of scalar fields in spacetimes, which are asymptotically anti-de Sitter. We determined the
boundary conditions at the spatial infinity for which there is no flow of energy at the conformal boundary. We showed that the only allowed
choices that are consistent with this requirement are the generalized Dirichlet and Neumann boundary conditions (the latter with a specific
choice of the coupling constant). This happens regardless of the theory in the spacetime bulk. The energy flux was calculated using the
improved energy–momentum tensor (36). If we had used the canonical energy–momentum tensor (55) instead, only the Dirichlet boundary
conditions would be compatible with zero flux at the conformal boundary.

In particular, Robin mixed boundary conditions, as considered, for instance, in Refs. 6 and 9–13 (although physically reasonable since
they provide a fully deterministic dynamics), are not compatible with the requirement that the spacetime is an isolated system.

The case of an asymptotically AdS2 spacetime can be treated in a similar manner. The fundamental difference is that in this case, the
spatial infinity has two distinct components so that, in order for the system to be isolated, one must demand the energy flow to be (separately)
zero at each of the boundaries. We must then impose two independent conditions at each of the two boundaries. The zero flux condition
constrains those to be, again, of Dirichlet and Neumann types.
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APPENDIX A: PRINCIPAL AND NON-PRINCIPAL SOLUTIONS

For ν ∈ R, the function Z(D)ℓ defined in Sec. III A is the only solution (up to a multiplicative factor) such that limρ→π/2[Z(D)ℓ (ρ)/Zℓ(ρ)]
= 0 for any solution Zℓ not proportional to Z(D)ℓ . A solution satisfying this condition is called a principal solution (at the endpoint ρ = π/2).
Solutions that are not proportional to Z(D)ℓ are called non-principal (at the endpoint ρ = π/2).
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We note that non-principal solutions are not unique. In fact, if Z̃ℓ is a non-principal solution, then Z̃ℓ + αZ(D)ℓ is also a solution of this
type for any α ∈ R. It is interesting to ask what would change in our analysis if we replace Z(N)ℓ of Sec. III A by another non-principal solution
Z̃(N) = Z(D) + γZ(N), γ ∈ R. In terms of the new set {Z(D), Z̃(N)}, the general solution of (17) can be expressed as

Zℓ = Nℓ[cos ζ Z(D)ℓ + sin ζ Z̃(N)ℓ ], (A1)

and the condition ζ = π/2 no longer selects the function given in (23). The value of ζ that selects that function is now

cot ζ̄ = −γ. (A2)

The energy flux calculated in terms of the new set of solutions is given by

ℱ∞ ∼ lim
ρ→π/2 sin ζ{(cos ζ + γ sin ζ)A + sin ζ B(π

2
− ρ)−2ν}⎛⎝∑{ℓ}

d
dt
∣Tℓ(t)∣2⎞⎠. (A3)

From (A3), we see that the boundary conditions that cancel the energy flux across the conformal boundary are ζ = 0 (Dirichlet) and ζ = ζ̄
(along with ξ chosen such that B = 0). Therefore, regardless of how the generalized Neumann condition is defined, the boundary conditions
associated with zero flux at infinity are those that select the solutions Z(D) and Z(N) of Sec. III A.

APPENDIX B: REAL SCALAR FIELDS

We discuss in this appendix the behavior of the energy flux across the spatial infinity for real scalar fields. The improved
energy–momentum tensor in this case is given by

Tαβ = ∂αΦ ∂βΦ − 1
2

gαβ[gρσ∂ρΦ∂σΦ +m2
ξΦ

2] + ξ(ℛαβ − gαβ ◻ −∇α∇β)Φ2. (B1)

The counterparts for real scalar fields of the real and complex frequency cases of the main text are, respectively, given as follows:

(i) cos(ωt + δ) when ω ∈ R;
(ii) eωI t cos(ωRt + δ) when ω = ωR + iωI ∈ C.

Let us consider case (i) separately. Let Φ1 be a mode with frequency ω1 ∈ R,

Φ1(t, ρ,φ) = ϕω1ℓ(ρ) cos(ω1t + δ1)[C1 cos ℓφ +D1 sin ℓφ]. (B2)

This leads to

ϕωjℓ(ρ) ≈ cos ζϕ(D)ωjℓ
(ρ) + sin ζϕ(N)ωjℓ

(ρ), (B3)

j = 1, 2, as ρ→ π/2, where

ϕ(D)ωjℓ
(ρ) = (sin ρ)ℓ(cos ρ)1+ν

2F1(a1, b1; c1; cos2 ρ), (B4)

ϕ(N)ωjℓ
(ρ) = (sin ρ)ℓ(cos ρ)1−ν

2F1(a2, b2; c2; cos2 ρ) (B5)

and

a1 = 1
2
(1 + ℓ + ν − ω1), (B6)

b1 = 1
2
(1 + ℓ + ν + ω1), (B7)

c1 = 1 + ν, (B8)
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a2 = 1
2
(1 + ℓ − ν − ω2), (B9)

b2 = 1
2
(1 + ℓ − ν + ω2), (B10)

c2 = 1 − ν. (B11)

The energy flux across the spatial infinity is then given by

F ≈ ω1 sin[2(ω1t + δ1)] sin ζ lim
ρ→π/2{cos ζ (1 − 6ξ) + sin ζ B(π

2
− ρ)−2ν}, (B12)

and we see that this is zero only for the Dirichlet boundary condition (ζ = 0) or the Neumann boundary condition (ζ = π/2) with ξ such that
B = 0. This should be compared to the corresponding result for the complex field, Eq. (57), for which the flux associated with a single mode
was found to be zero even for Robin conditions.

Now, consider the superposition of two modes [still in case (i)], Φ1 and Φ2, with

Φ1(t, ρ,φ) = ϕω1ℓ(ρ) cos(ω1t + δ1)[C1 cos ℓφ +D1 sin ℓφ], (B13)
Φ2(t, ρ,φ) = ϕω2ℓ(ρ) cos(ω2t + δ2)[C2 cos ℓφ +D2 sin ℓφ], (B14)

with ω1,ω2 ∈ R. The energy flow across the conformal infinity is now given by

F ∼ [cos(ω1t + δ1) + cos(ω2t + δ2)][ω1 sin(ω1t + δ1) + ω2 sin(ω2t + δ2)]2 sin ζ lim
ρ→π/2{cos ζ (1 − 6ξ) + sin ζ B(π

2
− ρ)−2ν}. (B15)

Since the functions sinωjt and cosωjt are linearly independent, the only boundary conditions that do not violate the isolated system hypothesis
are again of the Dirichlet and the Neumann types (the latter with ξ such that B = 0).

We end by considering case (ii). The real scalar field mode in this case (the counterpart of the complex mode with complex frequency) is
given by

Φ1(t, ρ,φ) = Re[ϕω1ℓ(ρ)]eβ1t cos(α1t + δ1)[C1 cos ℓφ +D1 sin ℓφ]. (B16)

The energy flux through infinity is now

F ≈ e2tβ1[β1 cos2(α1t + δ1) − α1 cos(α1t + δ1) sin(α1t + δ1)]2 sin ζ lim
ρ→π/2{cos ζ(1 − 6ξ) + sin ζ B(π

2
− ρ)−2ν}, (B17)

and we see again that the only conditions compatible with the hypothesis that the system is isolated are those of Neumann and Dirichlet (the
latter with ξ such that B = 0).
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Appendix B

Scalar Field Propagation in Nonglobally

Hyperbolic Spacetimes

B.1 Self-Adjoint Operators

In this section, we present the fundamental definitions and theorems needed to characterize

the self-adjoint extensions of symmetric linear operators in Hilbert spaces. We will not prove

the theorems, (the reader is referred to [98, 99, 100] for the proofs). The positive self-adjoint

extensions of symmetric operators play a central role in the framework introduced in [69].

Initially, we will establish some notation and definitions. Let be a complex Hilbert space

endowedwith an inner product denoted by ⟨⋅, ⋅⟩ , and𝐴 ∶ 𝐷(𝐴) ⊆  →  be a linear operator,

with 𝐷(𝐴) being its domain.

Definition B.1.1 (Closure of a set) Let 𝑆 ⊂ .

1. The function 𝜓 ∈  is said to be a point of closure of 𝑆 if for every 𝜖 > 0 there exists some

𝜙 ∈ 𝑆 such that ∥ 𝜙 − 𝜓 ∥< 𝜖.

2. The closure of 𝑆 is the set of all of its points of closure. We denote it by 𝑆.

It is clear from definition that 𝑆 ⊆ 𝑆.

Definition B.1.2 The operator 𝐴 is said to be densily defined in if (𝐴) is dense in, i.e.,

(𝐴) = .
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Definition B.1.3 (Closed Operator) Let {𝜙𝑛}, 𝜙𝑛 ∈ (𝐴), be a sequence in (𝐴). The operator

𝐴 is said to be closed if

lim
𝑛∈ℕ

𝜙𝑛 = 𝜙 and lim
𝑛∈ℕ

𝐴𝜙𝑛 = 𝜓

together imply that

𝜙 ∈ (𝐴) and 𝐴𝜙 = 𝜓.

Definition B.1.4 (Closure of a linear operator) The linear operator 𝐴 is said to be closable if it

has an extension which itself is a closed operator. If there exists a minimal closed extension, such

extension is called the closure of 𝐴, and we denote it by �̄�.

Definition B.1.5 (Adjoint operator) Let 𝐴 ∶ (𝐴) →  be a linear operator densily defined in

. Let us consider the set

(𝐴†) = {𝜓 ∈  || ∃ 𝜓
† ∈  s.t. ⟨𝐴𝜙, 𝜓⟩ = ⟨𝜙, 𝜓†⟩, ∀𝜙 ∈ }. (B.1)

We define the adjoint 𝐴† ∶ (𝐴†) →  of 𝐴 by

𝜓† = 𝐴†𝜓. (B.2)

Definition B.1.6 A linear operator 𝐴 ∶ (𝐴) →  densely defined in is said to be symmet-

ric if

⟨𝐴𝜙, 𝜓⟩ = ⟨𝜙, 𝐴𝜓⟩, ∀𝜙, 𝜓 ∈ (𝐴). (B.3)

It follows from this definition that if 𝐴 is symmetric, then (𝐴) ⊂ (𝐴†) and 𝐴†||(𝐴) = 𝐴 1
.

Definition B.1.7 (Self-adjoint operator) A linear operator 𝐴 ∶ (𝐴) →  is said to be self-

adjoint if:

(i) 𝐴 is symmetric,

(ii) (𝐴) = (𝐴†)
1
The notation 𝐴†||(𝐴) stands for the operator 𝐴

†
with domain restricted to the set (𝐴).
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In other words, 𝐴 is self-adjoint if 𝐴 = 𝐴†.

It is worth to notice that a self-adjoint operator is necessarily symmetric, but the converse

may not be true.

Definition B.1.8 (Essentially self-adjoint operator) A symmetric operator 𝐴 ∶ (𝐴) →  is

essentially self-adjoint if its closure �̄� is self-adjoint.

At this stage, we may ask if it is possible to turn a symmetric operator into a self-adjoint

operator. In fact, in some cases, this can be achieved by a suitable enlargement of the domain

of the symmetric operator. In particular, if the operator is symmetric and positive, then there

exists at least one self-adjoint extension, which is the so-called Friedrichs extension [100].

Before we present the theorems establishing the criteria that a given symmetric operator

needs to match in order to have a self-adjoint extension, we remark a simple important prop-

erty of self-adjoint operators. Let the linear operator 𝐴 ∶ (𝐴) →  be self-adjoint, and let

us assume that 𝐴†𝜙 = ±𝑖𝜙, then

∓𝑖⟨𝜙, 𝜙⟩ = ⟨±𝑖𝜙, 𝜙⟩ = ⟨𝐴𝜙, 𝜙⟩ = ⟨𝜙, 𝐴†𝜙⟩ = ⟨𝜙,±𝑖𝜙⟩ = ±𝑖⟨𝜙, 𝜙⟩, (B.4)

which implies that ⟨𝜙, 𝜙⟩ = 0. In other words, if 𝐴 is self-adjoint, the equation 𝐴†𝜙 = ±𝑖𝜙

admits only the trivial solution. This result indicates that when𝐴 is not a self-adjoint operator,

the spaces generated by the solutions of 𝐴†𝜙 = ±𝑖𝜙 play a significant role in the process

of determination of its possible self-adjoint extensions. This result motivates the following

definition.

Definition B.1.9 (Deficiency subspaces) We define the deficiency subspaces ± and their

deficiency indices (𝑛+, 𝑛−) by

± = {𝜙 ∈ (𝐴†)|| 𝐴
†𝜙 = ±𝑖𝜆𝜙, 𝜆 > 0} (B.5)

The following theorems show in which cases a symmetric operator 𝐴 has a self-adjoint

extension and provide a method to construct such extensions in the affirmative case.

Theorem B.1.1 Let 𝐴 ∶ (𝐴) →  be a symmetric operator with deficiency indices (𝑛−, 𝑛+).

We have three possible cases
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1. If 𝑛− = 𝑛+ = 0, then 𝐴 is essentially self-adjoint (indeed, this condition is necessary and

sufficient).

2. If 𝑛− = 𝑛+ = 𝑛 ≥ 1, then 𝐴 has infinitely many self-adjoint extensions. They are in one-to-

one correspondence to the isometries between+ and−, parametrized by an 𝑛×𝑛 unitary

matrix 𝑈 .

3. If 𝑛+ ≠ 𝑛−, then 𝐴 has no self-adjoint extensions.

The following theorem gives us a systematic procedure to construct the self-adjoint exten-

sions in the second case above.

Theorem B.1.2 Let 𝐴 ∶ (𝐴) →  be a closable symmetric operator with closure �̄� and

deficiency indices 𝑛− = 𝑛+ = 𝑛 ≥ 1. Let 𝑈 be the unitary matrix parametrizing the isometries

between− and +. Let us define the operators 𝐴𝐸 ∶ (𝐴𝐸) → 

𝐴𝐸𝜙 = 𝐴𝜙0 + 𝑖𝜙+ − 𝑖𝑈𝜙−, (B.6)

where

(𝐴𝐸) =
{
𝜙 = 𝜙0 + 𝜙+ + 𝑈𝜙+|| 𝜙0 ∈ (�̄�), 𝜙+ ∈ +

}
. (B.7)

Then, each operator 𝐴𝐸 is self-adjoint.

Having the results presented in this section at hand, we now turn to their application on

the dynamics of the scalar field in static nonglobally hyperbolic spacetimes.

B.1.1 Prescription for dynamics

Let (𝑀, 𝑔𝜇𝜈) be a static spacetime with metric

𝑑𝑠2 = −𝑉 2𝑑𝑡2 + ℎ𝑖𝑗𝑑𝑥 𝑖𝑑𝑥 𝑗 (B.8)

where 𝑉 2 = −𝜏𝛼𝜏𝛼 , and 𝜏 = 𝜕/𝜕𝑡 is a hypersurface orthogonal time-like Killing vector field.

We wish to consider the Klein-Gordon equation of motion

(□ − 𝑚2
𝜉)𝜙 = 0 (B.9)
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for a scalar field with effective mass 𝑚2
𝜉 = 𝜇2 + 𝜉𝑅, where 𝜇 stands for the field mass and 𝜉 is

the coupling constant with the scalar curvature 𝑅. Suppose we specify initial conditions on a

hypersurface Σ orthogonal to the static Killing field

𝜙||Σ = 𝜙0,

𝜏𝛼∇𝛼𝜙||Σ = �̇�0.
(B.10)

If the spacetime is globally hyperbolic, the initial data (B.10) will determine 𝜙 in the entire

spacetime. On the other hand, if the spacetime is not globally hyperbolic, the hypersurface

Σ is not a Cauchy Surface and data on Σ will determine 𝜙 only in the domain of dependence

𝐷(Σ). In such a case, we need some kind of prescription in order to determine 𝜙 everywhere

in spacetime.

Aiming to overcome this situation, we start by rewriting (B.9) as

𝜕2𝜙
𝜕𝑡2

= −𝐴𝜙, (B.11)

where the differential operator 𝐴 ∶ (𝐴) →  is formally defined by

𝐴 = −𝑉ℎ𝑖𝑗𝐷𝑗 (𝑉𝐷𝑖𝜙) + 𝑚2𝑉 2. (B.12)

The operator 𝐴 is not precisely defined because we did not specify a Hilbert space  nor a

domain (𝐴) where 𝐴 is supposed to act. In [69], Wald argues that if we define  as the

space of square-integrable functions on Σ with measure given by 𝑑𝜇 = 𝑉 −1𝑑Σ, where 𝑑Σ is

the natural volume element on Σ, and the domain of 𝐴 as the set of smooth functions with

compact support, i.e.,(𝐴) = 𝐶∞
0 (Σ), then 𝐴will be a positive

2
symmetric (but not necessarily

self-adjoint) operator.

If we now replace (B.11) by

𝑑2𝜙
𝑑𝑡2

= −𝐴𝐸𝜙 (B.13)

where 𝐴𝐸 denotes a self-adjoint extension of 𝐴, this allows us to write the solution

𝜙(𝑡) = cos (𝐴
1/2
𝐸 𝑡)𝜙0 + 𝐴−1/2

𝐸 sin (𝐴
1/2
𝐸 𝑡) �̇�0, (B.14)

2
The linear operator 𝐴 ∶ (𝐴) →  is said to positive if ⟨𝜓, 𝐴𝜓⟩ ≥ 0, for all 𝜓 ∈ .
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where the operators cos (𝐴
1/2
𝐸 𝑡) and sin (𝐴

1/2
𝐸 𝑡) are defined using the functional cauculus of

self-adjoint operators [98, 99]. We note that the solution (B.14) matches the initial data in Σ

and determines 𝜙 everywhere in spacetime. Besides, it can be shown that (B.14) coincides

with the ordinary Cauchy evolution in the domain of dependence of Σ, 𝐷(Σ), where Cauchy

evolution is well defined [69].

The prescription for defining the dynamics of 𝜙 is then given in terms of a positive, self-

adjoint extension 𝐴𝐸 of 𝐴. The allowed initial data are given by the functions 𝜙0, �̇�0 ∈ (𝐴𝐸).

In particular, all initial data with compact support 𝜙0, �̇�0 ∈ 𝐶∞
0 (Σ) are permitted, since 𝐶∞

0 (Σ) =

(𝐴) ⊂ (𝐴𝐸). If the operator 𝐴 has only one self-adjoint extension, the dynamics is then

unambiguously defined. On the other hand, if 𝐴 has more than one self-adjoint extension,

the dynamics is not completely determined until we pick a specific extension 𝐴𝐸. In the next

section, we illustrate how the process of choosing a specific extension of 𝐴 is related to the

prescription of extra boundary conditions on certain regions of spacetime. We will consider

specifically the BTZ black hole as an instance of a nonglobally hyperbolic spacetime.

B.1.2 Scalar field in the BTZ black Hole

In this section, we apply the method described in Sec. B.1.1 to the scalar field in the exterior

region of the static BTZ black hole. The spcacetime metric is given by Eq. (3.6), which we

rewrite here for convenience,

𝑑𝑠2 = −(−𝑀 +
𝑟2

𝑙2)
𝑑𝑡2 +

𝑑𝑟2

(−𝑀 + 𝑟2
𝑙2 )

+ 𝑟2𝑑𝜑2, (B.15)

where the horizon 𝑟ℎ = 𝑙
√
𝑀 determines the horizon, 𝑀 is the mass of the black hole, 𝑙 is the

anti-de Sitter curvature radius.

We start by separating the field variables with the ansatz

𝜙(𝑡, 𝑟 , 𝜑) =
1
𝑟1/2

∑
𝑚
𝑓𝑚,𝜔(𝑟)𝑒−𝑖𝜔𝑡𝑒𝑖𝑚𝜑. (B.16)

Substituting in (B.9) and changing the radial coordinate to

𝑥 = arcoth(
𝑟
𝑟ℎ)

, (B.17)
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we find the differeential equation

𝐴𝑓𝑚,𝜔 = −
𝑑2𝑓𝑚,𝜔
𝑑𝑥2

+
𝑓𝑚,𝜔

sinh2(𝑥) [
𝜈2 −

1
4]

+
𝑓𝑚,𝜔

cosh2(𝑥) [
𝜎2 +

1
4]

= 𝜔2𝑓𝑚,𝜔, (B.18)

where we have defined 𝜈2 = 1 + 𝑚2
𝜉 and 𝜎 = 𝑚𝑙/𝑟+.

Since for eigenfunctions

𝜙1,𝑚 =
1
𝑟1/2

𝑓𝜔1,𝑚𝑒
−𝑖𝜔1𝑡𝑒𝑖𝑚𝜑, 𝜙2,𝑛 =

1
𝑟1/2

𝑓𝜔2,𝑛𝑒
−𝑖𝜔2𝑡𝑒𝑖𝑛𝜑, (B.19)

the inner product is

⟨𝜙1,𝑚, 𝜙2,𝑛⟩ = ∫ 𝜙∗1,𝑚, 𝜙2,𝑛 𝑉
−1𝑑Σ ∼ 𝛿𝑚𝑛 ∫

∞

0
𝑓 ∗
𝜔1,𝑚(𝑥), 𝑓𝜔2,𝑛(𝑥)𝑑𝑥, (B.20)

we can consider the operator 𝐴 in each 𝑚-subspace separately. Thus, we will study the (clos-

able and densely defined) operator

𝐴 = −
𝑑2

𝑑𝑥2
+

1
sinh2(𝑥) [

𝜈2 −
1
4]

+
1

cosh2(𝑥) [
𝜎2 +

1
4]

(B.21)

initially defined on the set of smooth functions with compact support on Σ, i.e., 𝐶∞
0 (Σ). The

underlying Hilbert space is 𝐿2([0,∞), 𝑑𝑥).

Defining the auxiliar parameters

𝑎 = 1
2 (1 + 𝜈 + 𝑖𝜎 + 𝑖𝜔) 𝑏 = 1

2 (1 + 𝜈 + 𝑖𝜎 − 𝑖𝜔) 𝑐 = 1 + 𝜈 (B.22)

the general solution of (B.18) (for 𝑎 − 𝑏 = 𝑖𝜔 ∉ ℤ3
) can be expressed as

4

𝑓𝑚(𝑥) = 𝐵1𝑓1𝑚(𝑥) + 𝐵2𝑓2𝑚(𝑥) (B.23)

where
5

𝑓1𝑚(𝑥) = sinh𝜈+1/2(𝑥) cosh−𝜈−1/2−𝑖𝜔(𝑥) 2𝐹1 (𝑎, 𝑎 − 𝑐 + 1; 𝑎 − 𝑏 + 1; sech2𝑥) , (B.24)

𝑓2𝑚(𝑥) = sinh𝜈+1/2(𝑥) cosh−𝜈−1/2+𝑖𝜔(𝑥) 2𝐹1 (𝑏, 𝑏 − 𝑐 + 1; 𝑏 − 𝑎 + 1; sech2𝑥) , (B.25)

3
For 𝑎 − 𝑏 = 𝑖𝜔 ∈ ℤ, see [95].

4
Hereafter, we suppress the indice 𝜔 in 𝑓𝜔,𝑚.

5
The same process applied to find linearly independent solutions of Eq. (3.31) can be used here.
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𝐵1, 𝐵2 are constants and 2𝐹1(𝑎, 𝑏; 𝑐; 𝑥) is the standard hypergeometric function.

Near the horizon, we have the behavior

|𝑓1𝑚(𝑥 → ∞)| ∼ 𝑒𝑥 Im(𝜔), |𝑓2𝑚(𝑥 → ∞)| ∼ 𝑒−𝑥 Im(𝜔), (B.26)

and only one of these functions is square integrable. Which one of 𝑓1𝑚, 𝑓2𝑚 is in 𝐿2((0,∞], 𝑑𝑥)

depends on the signal of Im(𝜔). For the root of 𝜔2
with Im(𝜔) > 0 (Im(𝜔) < 0) only 𝑓2𝑚 (𝑓1𝑚)

is in 𝐿2((0,∞], 𝑑𝑥). With no loss of generality, we can take the root of 𝜔2
such that Im(𝜔) > 0

and set 𝐵1 = 0 in (B.23). Supposing 1 + 𝜈 ∉ ℤ6
and using the transformation identities for the

hypergeometric functions [85], we can rewrite (B.23) as

𝑓𝑚(𝑥) = 𝐵2 𝐺𝜈(𝑥) [sinh
2𝜈(𝑥)

Γ(𝑏 − 𝑎 + 1)Γ(𝑐 − 𝑎 − 𝑏)
Γ(1 − 𝑎)Γ(𝑐 − 𝑎)

𝜓1𝑚 +
Γ(𝑏 − 𝑎 + 1)Γ(𝑎 + 𝑏 − 𝑐)

Γ(𝑏)Γ(1 + 𝑏 − 𝑐)
𝜓2𝑚] ,

(B.27)

where

𝐺𝜈(𝑥) = sinh−𝜈+1/2(𝑥) cosh𝑖𝜎+1/2(𝑥) (B.28)

and

𝜓1𝑚 = 2𝐹1 (𝑏, 𝑎; 𝑎 + 𝑏 − 𝑐 + 1; 1 − cosh2 𝑥) , (B.29)

𝜓2𝑚 = 2𝐹1 (1 − 𝑎, 1 − 𝑏; 𝑐 − 𝑎 − 𝑏 + 1; 1 − cosh2 𝑥) . (B.30)

In order to find self-adjoint extensions of 𝐴 — by applying the theorems B.1.1 and B.1.2

— it is necessary first to calculate the deficiency indices, 𝑛+, 𝑛−. This amounts to find the

square-integrable solutions of 𝐴†𝑓 = ±𝑖𝜆𝑓 . With no loss of generality, we choose 𝜆 = 2 for

convenience. Thus, the searched solutions are given by (B.27) with 𝜔 replaced by 𝜔± = 𝑖 ± 1.

There are three cases to be considered according to the value of 𝜈2: (i) 𝜈2 ≥ 1, (ii) 0 < 𝜈2 < 1,

(iii) 𝜈2 < 0. For the case (iii), Garbaz et al. argue in [95] that the operator 𝐴 is not positive, and

since we are interested in positive extensions, this case can be ruled out. For the other cases,

we have

6
The case 1 + 𝜈 ∈ ℤ can be treated similarly; see [95] for details.
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(i) 𝜈2 ≥ 1: There are no square-integrable solutions to 𝐴†𝑓 = ±2𝑖𝑓 . In this case the defi-

ciency indices are 𝑛+ = 𝑛− = 0 and there is only one self-adjoint extension of𝐴 according

to theorem B.1.1.

(ii) 0 ≤ 𝜈2 < 1: There are two square-integrable solutions to 𝐴†𝑓 = ±2𝑖𝑓 , one for each

eigenvalue 𝜔2
± = ±2𝑖. In this case the deficiency indices are 𝑛+ = 𝑛− = 1 and, according

to theorem B.1.1, there is a one-parameter family of self-adjoint extensions of 𝐴. This

family is parametrized by a phase 𝑒𝑖𝛼 .

In case (i), the scalar field has an unambiguous time evolution since the self-adjoint exten-

sion of𝐴 is unique. On the other hand, in case (ii), there are several self-adjoint extensions, and

we must pick one such extension to completely determine the dynamics of the field. In what

follows, we will describe the relationship between the choice of a self-adjoint extension and

the imposition of boundary conditions at the conformal boundary of the BTZ black hole. This

will allow us to describe the possible evolutions of the field in bulk in terms of the boundary

conditions at the conformal boundary.

Let us focus on the case with 0 < 𝜈2 < 17. A solution 𝑓 in the extended domain (𝐴𝛼) can

be expressed as

𝑓𝑚(𝑥) = 𝑓0𝑚(𝑥) + 𝑓+(𝑥) − 𝑒𝑖𝛼𝑓−(𝑥), (B.31)

where 𝑓0𝑚 ∈ 𝐶∞
0 (Σ) and 𝑓± are given by (B.27) with 𝜔 replaced by 𝜔± = 𝑖 ± 1. The asymptotic

behavior of 𝑓𝑚 as 𝑥 → 0 (𝑟 → ∞) is dictated by 𝑓 𝛼𝑚 = 𝑓+ − 𝑒𝑖𝛼𝑓−, which is given by

𝑓 𝛼𝑚 (𝑥 → 0) = sinh−𝜈+1/2(𝑥) [𝑎𝜈 + 𝑏𝜈 sinh2𝜈(𝑥) +⋯] , (B.32)

where

𝑎𝜈 = −2Γ(𝜈)𝑒𝑖
𝛼
2
||||

Γ(1 − 𝑖𝜔−)
Γ(𝑏−)Γ(1 + 𝜈 − 𝑎−)

||||
sin(

𝛼
2
− 𝜃𝑎) , (B.33)

𝑏𝜈 = −2Γ(−𝜈)𝑒𝑖
𝛼
2
||||

Γ(1 − 𝑖𝜔−)
Γ(𝑏− − 𝜈)Γ(1 − 𝑎−)

||||
sin(

𝛼
2
− 𝜃𝑏) , (B.34)

7
The case 𝜈 = 0 can be treated similarly.
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and

sin 𝜃𝑎 = −
Re(

Γ(1−𝑖𝜔−)
Γ(𝑏−)Γ(1+𝜈−𝑎−))

|||
Γ(1−𝑖𝜔−)

Γ(𝑏−)Γ(1+𝜈−𝑎−)
|||

, sin 𝜃𝑏 = −
Re(

Γ(1−𝑖𝜔−)
Γ(𝑏−−𝜈)Γ(1−𝑎−))

|||
Γ(1−𝑖𝜔−)

Γ(𝑏−−𝜈)Γ(1−𝑎−)
|||

, (B.35)

with constants 𝑎− and 𝑏− defined using (B.22) with 𝜔 replaced by 𝜔−. We notice that the

values of 𝛼 are in a one-to-one relation with the values of the ratio 𝑏𝜈/𝑎𝜈, which can be any

real number or ±∞. In order to better interpret these boundary conditions, we consider first

the conformally coupled case (𝜈 = 1/2), for which the effective potential term in the expression

(B.21) is regular at the boundary 𝑥 = 0 and we have

(𝑑𝑓 𝛼𝑚/𝑑𝑥)
𝑓 𝛼𝑚

|||||𝑥=0
=
𝑏𝜈
𝑎𝜈
. (B.36)

We see that the choice 𝑏𝜈/𝑎𝜈 = ±∞ corresponds to theDirichlet boundary condition, 𝑓 𝛼𝑚
||||𝑥=0

= 0,

whereas the choice 𝑏𝜈/𝑎𝜈 = 0 corresponds to theNeumann boundary condition, (𝑑𝑓 𝛼𝑚/𝑑𝑥)𝑥=0 =

0. The other values of 𝑏𝜈/𝑎𝜈 correspond to Robin boundary conditions, in which a linear com-

bination of 𝑓 𝛼𝑚 and 𝑑𝑓 𝛼𝑚/𝑑𝑥 is required to vanish at the boundary.

In the general case, 𝜈 ≠ 0, the potential term in (B.21) is divergent at 𝑥 = 0 and the ratio

(𝑑𝑓 𝛼𝑚/𝑑𝑥)𝑥=0 = 0 is not well defined. In spite of that, the dominant behavior of 𝐺−1
𝜈 𝑓 𝛼𝑚 as 𝑥 → 0

is governed by 𝑎𝜈, whereas the dominant behavior of 𝑑(𝐺−1
𝜈 𝑓 𝛼𝑚 )/𝑑𝑥 is governed by 𝑏𝜈. Thus

the condition 𝑎𝜈 = 0may be defined as the "generalized Dirichlet boundary condition", whereas

𝑏𝜈 = 0 as the "generalized Neumann boundary condition", and the other possible values of 𝑏𝜈/𝑎𝜈

define the "generalized Robin boundary conditions".

Having described the possible self-adjoint extensions of the operator 𝐴 in terms of bound-

ary conditions at 𝑥 = 0, we still have to ensure that these extensions are positive for theWald’s

prescription to be well defined. Since the self-adjoint extensions of 𝐴 are in a one-to-one rela-

tionship with the values of 𝑏𝜈/𝑎𝜈, the requirement of positivity will impose some restrictions

on 𝑏𝜈/𝑎𝜈. In what follows, we examine what constraint 𝑏𝜈/𝑎𝜈 should obey in order to guarantee

the positivity of the associated self-adjoint extension 𝐴𝛼 .

Initially, we recall that it was already argued that (for 0 < 𝜈 < 1) 𝐴 is positive in the set

of compactly supported functions defined on Σ. Since the domain of an extension 𝐴𝛼 of 𝐴

is given by the sum (as vector spaces) of 𝐶∞
0 (Σ) and the one-dimensional space Span{𝑓 𝛼𝑚 }, we

have to show that 𝐴𝛼 is positive in Span{𝑓 𝛼𝑚 }. In the discussion below, we are going to find a



Appendix B. Scalar Field Propagation in Nonglobally Hyperbolic Spacetimes 118

sufficient condition for 𝐴𝛼 to be positive by finding a necessary condition 𝐴𝛼 would satisfy if

it was nonpositive. The following discussion will make this point clearer.

Firstly, let us suppose that𝐴𝛼 is not positive in Span{𝑓 𝛼𝑚 }, then there exists an eigenfunction

𝑓 ∈ Span{𝑓 𝛼𝑚 } such that

𝐴𝛼𝑓 = 𝜔2𝑓 , with 𝜔2 < 0. (B.37)

Let us take the square root 𝜔𝜆 = −𝑖𝜆, with 𝜆 > 0. The asymptotic behavior of 𝑓 is given by

𝑓 (𝑥 → 0) = sinh−𝜈+1/2(𝑥) [𝐷 𝜓2𝑚|𝜔=−𝑖𝜆 + sinh2𝜈(𝑥) 𝐸 𝜓1𝑚|𝜔=−𝑖𝜆] , (B.38)

where

𝐷 =
Γ(1 − 𝑖𝜔𝜆)Γ(𝜈)

Γ(𝑏𝜆)Γ(1 + 𝜈 − 𝑎𝜆)
, 𝐸 =

Γ(1 − 𝑖𝜔𝜆)Γ(−𝜈)
Γ(𝑏𝜆 − 𝜈)Γ(1 − 𝑎𝜆)

, (B.39)

and 𝑎𝜆, 𝑏𝜆 were defined using (B.22) with 𝜔 replaced by 𝜔𝜆 = −𝑖𝜆. Since 𝑓 ∈ Span{𝑓 𝛼𝑚 }, its

asymptotic behavior as 𝑥 → 0 have to agree with asymptotics (B.31). Hence, we should have

𝐸/𝐷 = 𝑏𝜈/𝑎𝜈, which implies

||||
Γ(𝑏𝜆)

Γ(𝑏𝜆 − 𝜈)
||||

2

=
Γ(𝜈)
Γ(−𝜈)

𝑏𝜈
𝑎𝜈
. (B.40)

From the theorem 5.2 in [101] we have that the left hand side of (B.40) has a minimum when

𝜆 = 0, which means

||||
Γ(𝑏0)

Γ(𝑏0 − 𝜈)
||||
<
||||

Γ(𝑏𝜆)
Γ(𝑏𝜆 − 𝜈)

||||
. (B.41)

From this inequality and the fact Γ(−𝜈)/Γ(𝜈) < 0 it follows that a necessary condition for 𝐴𝛼

to be nonpositive is

𝑏𝜈
𝑎𝜈

< −
||||
Γ(−𝜈)
Γ(𝜈)

||||

||||
Γ(𝑏0)

Γ(𝑏0 − 𝜈)
||||

2

. (B.42)

Thus we conclude that a sufficient condition for 𝐴𝛼 to be positive is

𝑏𝜈
𝑎𝜈

≥ −
||||
Γ(−𝜈)
Γ(𝜈)

||||

||||
Γ(𝑏0)

Γ(𝑏0 − 𝜈)
||||

2

. (B.43)
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