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Resumo

O objetivo deste trabalho é o desenvolvimento de controladores ótimos H2 por realimen-
tação de estado e saída para sistemas semimarkovianos a tempo contínuo. Assim, esse objetivo é
atingido por meio de duas abordagens distintas que resultam em técnicas baseadas em desigual-
dades matriciais lineares. A saber, a primeira abordagem está fundamentada na técnica de soma de
quadrados, enquanto a segunda é desenvolvida por meio da obtenção de um sistema markoviano
equivalente. Desse modo, a primeira parte da dissertação trata do desenvolvimento de condições
de análise e de projeto de controladores por realimentação de estado para sistemas com taxas de
transição racionais, utilizando a técnica baseada em soma de quadrados. Por fim, a segunda parte
aborda o problema de estabilidade e realimentação de saída para um sistema semimarkoviano com
tempos de permanência com distribuição Erlang, empregando a equivalência de sistemas.

Palavras-chave: Sistemas lineares, sistemas estocásticos, otimização convexa, desigualdades
matriciais lineares, soma de quadrados.



Abstract

This work addresses the H2 state- and output-feedback control problem for continuous-time
semi-Markov jump linear systems. Thus, this objective is achieved by means of two different ap-
proaches that result in techniques based on linear matrix inequalities. Namely, the first is based on
the sum-of-squares technique, while the second is developed by transforming the original system
into an equivalent Markov one. In this way, the first part of the thesis deals with the develop-
ment of analysis and state-feedback design conditions for systems with rational transition rates,
using the technique based on the sum of squares. Finally, the second part approaches the stability
and output-feedback problem involving a semi-Markov jump linear system with Erlang-distributed
dwell times, employing the equivalence of systems.

Keywords: Linear systems, stochastic systems, convex optimisation, linear matrix inequali-
ties, sum of squares.
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MJLS - Markov Jump Linear System
S-MJLS - Semi-Markovian Jump Linear System
LMI - Linear Matrix Inequality
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tr(A) - Trace of matrix A.
A ≻ (⪰) 0 - Matrix A is positive definite (semi-definite).
A ≺ (⪯) 0 - Matrix A is negative definite (semi-definite).
Sn - Set of symmetric matrices of dimension n.
Sn
+(+) - Set of positive semi-definite (definite) matrices of dimension n.
∥x(t)∥ - Euclidean norm of vector x(t).
∥ξ∥22 - Squared norm of stochastic signal ξ(t).
Lr

2 - Class of all signals of dimension r with finite squared norm.
:= - Equal by definition.
a ∧ b - Lesser of a, b.
□ - End of proof.
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CHAPTER 1

Introduction

In many application fields of control system theory, dynamic systems exhibit a kind of be-
haviour that cannot be precisely determined nor even accurately modelled. In some cases, this
behaviour is stochastic and characterised by abrupt changes, which can be caused, for instance, by
alterations in operating conditions, failure of components such as sensors and actuators, and sudden
external disturbances, among other factors [4].

One way of approaching a stochastic dynamic system consists in modelling the parameter
responsible for these random and sudden events by means of a stochastic process, which can be
defined as an indexed set of random variables [15]. Specifically, when considering continuous time,
a stochastic process {θ(t), t ≥ 0} consists of an infinite collection of random values, each of which
is associated with a certain instant of time t ∈ R+. The set of all values that a stochastic process
can assume is the state space of the process, denoted in this work byM. In general, this set can be
any subset of the reals, including the set of real numbers itself. However, this text considers only
the finite set with the form M = {1, 2, . . . , N}. Furthermore, the time lapse between the time
in which the process takes a certain value and the moment when it jumps to a new one is called
sojourn time, or also dwell time, being represented throughout this thesis by τ .
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About categorisation, one manner of classifying a stochastic process is based on the nature
of the probability distribution of its sojourn time. Thus, processes with exponentially distributed
sojourn times are termed Markov processes, whereas the others are called semi-Markov processes.
More categorically, according to [35], a semi-Markov process may be viewed as a stochastic pro-
cess that, after having entered a state i at a time Tk, randomly determines its length of stay τk for
transition out of this state sampled from a probability density function fi(τ), and also randomly
determines the next state j ̸= i based on state transition probabilities P = [pij], where

∑
j pij = 1

for all i, jumping thus to state j at time Tk+1 = Tk + τk. As mentioned above, the length of stay
τk is known as the sojourn time. Moreover, it is convenient to define T0 = 0 and for t ∈ R+, the
elapsed time since the last jump, or timer, is set as

H(t) =
∞∑
k=0

(t− Tk)1[Tk, Tk+1)(t), (1.1)

in which the indicator function 1[Tk, Tk+1)(t) is defined as

1[Tk, Tk+1)(t) :=

 1, if t ∈ [Tk, Tk+1),

0, otherwise.

That being said, considering a probability space (Ω, F , P), this work addresses stochastic
systems represented by the following mathematical model

G :

 ẋ(t) = A(θ(t), H(t))x(t) + B(θ(t))u(t) + E(θ(t))w(t),

z(t) = Cz(θ(t), H(t))x(t) +Dz(θ(t))u(t)
(1.2)

in which, ∀ t ∈ R+, x(t) ∈ Rn is the state vector, u(t) ∈ Rq is the control input vector, w(t) ∈
Rm is the external perturbation vector and z(t) ∈ Rp is the output vector to be controlled. In
addition, the state-space matrices A(θ(t), H(t)) ∈ Rn×n, B(θ(t)) ∈ Rn×q, E(θ(t)) ∈ Rn×m,
Cz(θ(t), H(t)) ∈ Rp×n and Dz(θ(t)) ∈ Rp×q depend on the continuous-time stochastic process
{θ(t), t ≥ 0} and, to ease the notation, are denoted by A(θ(t), H(t)) = Ai(h), B(θ(t)) = Bi,
E(θ(t)) = Ei, Cz(θ(t), H(t)) = Czi(h) and Dz(θ(t)) = Dzi, whenever θ(t) = i ∈ M. In this
way, the reader needs to notice that matrices Ai(h), Bi, Ei, Czi(h) and Dzi define the i-th mode of
operation of such a system.

A stochastic system is classified according to the process that drives its dynamics. Thus, semi-
Markov Jump Linear Systems, or S-MJLS, are systems represented by the above equations, with the
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particularity of θ(t) being a semi-Markov process that exhibits the aforementioned characteristics.
Hence, by the nature of the process employed in its modelling, a semi-Markov system is

capable of representing more general systems than those described in the Markov context [19] since
the sojourn time of its process can be modelled by arbitrary distributions and, therefore, distinct
from the exponential one. Nevertheless, the approach to such a system has some peculiarities, for
instance, the presence of transition rates, denoted in this text by λ(h), dependent on the sojourn
time [18]. As a result, in this setting, developing techniques used in stability analysis and synthesis
of controllers present adversities that do not exist in the Markov environment.

For that reason, the need to employ some tricks becomes evident when obtaining convex con-
ditions for analysis and synthesis. One of these artifices is the modelling of the original S-MJLS
utilising an equivalent MJLS when dealing with S-MJLS with Erlang-distributed dwell times, and
the other is the use of techniques based on sum-of-squares decomposition in a more general context,
in which probabilities distributions that yield process with rational transition rates are considered.
Thus, the approach based on the equivalence of systems aims to explore the existing relations be-
tween the distributions of interest, which, in this work, originate stochastic processes with rational
transition rates and the exponential one, to obtain an equivalent MJLS with a larger number of
modes. As will be discussed in more depth in Chapter 3, the basic idea of this transformation re-
sides in obtaining an equivalent system in which a set of modes of operation, termed a cluster,
emulates the dynamic behaviour of a single mode of the original system. As a consequence, the
application of this methodology yields linear matrix inequalities with the following structure

A′
iSik + SikAi + λi(Sik+1 − Sik) + C ′

iCi ≺ 0, (1.3)

A′
iSiki + SikiAi + λi

(
N∑
j=1

pijSj1 − Siki

)
+ C ′

iCi ≺ 0, (1.4)

which are deployed in verifying the stochastic stability of S-MJLS with the general form pre-
sented in (1.2), but with Erlang-distributed dwell times and timer-independent matrices, that is,
A(θ(t), H(t)) = A(θ(t)) and Cz(θ(t), H(t)) = Cz(θ(t)). Furthermore, the matrix variables Sij are
positive definite matrices in these inequalities.

On the other hand, the method based on sum-of-squares decomposition is based on imposing
a specific structure on the variables of the optimisation problem in such a way that when these
variables are scalars, they must be non-negative polynomials, or else, in the matrix context, matrices
composed of elements defined in this way. As a result, using this approach provides differential
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linear matrix inequalities with the form

ρi(h)di(h)
(
Ai(h)

TQi(h) +Qi(h)Ai(h) + Q̇i(h) + di(h)Czi(h)
TCzi(h)

)
−

− (ρi(h)ḋi(h) + ηi(h)di(h))Qi(h) + d2i (h)ηi(h)
∑

j∈M\{i}

pijQj(0) ≺ −ϵρi(h)d2i (h)I
(1.5)

which are applied in assessing the stability of S-MJLS represented by (1.2), considering sojourn
times with probability distributions that originate processes with rational transition rates. Accord-
ing to what will be expounded in Chapter 2, these constraints must hold for all h ∈ R+; that is, the
optimisation problems restricted by them are infinite-dimensional. The matrix variables Qi(h) are
then defined as polynomial matrices in h, making the optimisation problem convex and computa-
tionally tractable. At last, it is worth mentioning that in these inequalities, ϵ is a scalar, while ρi(h)

and di(h) are scalar polynomials in h.

1.1 Work structure

This thesis is composed of four chapters. The first one provides a brief introduction to the
problem that is the object of study, discusses how the text is structured and introduces the notation
used throughout the work.

Since the development of the thesis resulted in the production of two scientific articles, both
already published at the time of the conclusion of this text, its central chapters present these two
documents. In this way, the second chapter’s article exhibits the approach to S-MJLS with rational
transition rates based on the technique involving sum-of-squares decomposition. Thus, Section 2.1
introduces the reader to the topic and presents a brief literature review on S-MJLS. Afterwards, the
problem addressed in this work is formulated in Section 2.2, along with the introduction of some
elementary results used throughout the text. Next, Section 2.3 discusses some probability distribu-
tions that generate processes with rational transition rates, such as the Rayleigh and Weibull ones.
Later, the main results obtained are shown in Section 2.4, in which the reader will find the algo-
rithms for the computation of an upper bound for the H2 norm of the systems under study, as well
as those that provide the state-feedback gains that optimise the performance of the resulting closed-
loop systems concerning theH2 norm. Moreover, some particularities related to the computational
implementation of these algorithms are also discussed in this section. At last, the application of
these results is illustrated by introducing some numerical examples, and the article is closed with
some concluding remarks.

The third chapter presents the article concerned with the approach to S-MJLS with Erlang-
distributed dwell times using the equivalence between these systems and their equivalent MJLS.
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Similarly to the previous paper, Section 3.1 aims to contextualise the reader, which is accomplished
by introducing some results available in the literature involving MJLS and S-MJLS. Soon after,
Section 3.2 briefly presents the characteristics of the Erlang distribution, the formal definition of
an S-MJLS, some basic definitions, the construction of the equivalent MJLS and the algorithm
used to assess the stability and compute an upper bound for the H2 norm of the original S-MJLS.
Subsequently, Section 3.3 approaches the object of study of the article, that is, the output-feedback
cluster control. As a consequence, the central result of the text is contained in this section: Theorem
3.2 provides design conditions for optimal output-feedback gains that minimise theH2 norm of the
closed-loop system. For illustrative purposes, Section 3.4 presents a set of numerical examples
demonstrating the application of the results introduced in the preceding sections.

Moreover, by comparison, this section revisits one of the examples in the first article that
composes this thesis. In this way, dealing with the same numerical problem using the results of the
two papers demonstrates the subtle superiority of the methodology based on the sum of squares
due to the controllers’ dependence on the sojourn time. Lastly, the paper ends with a concluding
section in which suggestions for future works are made.

Finally, the last chapter of the thesis is dedicated to closing remarks and a brief discussion of
future works.

1.2 Notation

The notation employed in chapters two and three are discussed in their introductory sections.
However, in general, in this text, scalars, vectors and realisations of random variables are denoted
by lowercase letters, whereas matrices and random variables are represented by capital letters. The
symbol ⋆ in a partitioned symmetric matrix denotes its symmetric blocks, that is[

X ⋆

Y Z

]
=

[
X Y T

Y Z

]
. (1.6)

The norm of a stochastic signal ξ(t) ∈ Rr, with t ≥ 0, is represented by ∥ξ∥2 and defined as

∥ξ∥2 :=

√∫ ∞

0

E{ξ(t)T ξ(t)}dt. (1.7)

The other notations used in the text are more specific and, for this reason, are presented only
in the list of symbols and also in the introductory sections mentioned earlier.
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CHAPTER 2

H2 State-Feedback Control for Continuous Semi-Markov

Jump Linear Systems with Rational Transition Rates

M. de Almeida, M. Souza, A. R. Fioravanti and O. L. V. Costa

International Journal of Control, v.1, p. 1-11, 2021
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ABSTRACT

This paper presents the H2 State-Feedback Control for Continuous Semi-Markov Jump Lin-
ear Systems where the transition rates are given by the ratio of polynomials of the sojourn time.
We show that, for instance, Rayleigh-, Erlang- and a class of Weibull-distributed sojourn time can
be described by such a model. We provide Sum-of-Squares conditions for norm calculation and
state-feedback control design problems. We conclude the paper with some examples and future
directions.

KEYWORDS

Linear Systems, Stochastic Systems, Convex Optimisation, Sum-of-Squares.

2.1 Introduction

Several physical phenomena that present abrupt random changes in their dynamic behaviour
can be modelled by dynamic systems characterised by subsystems (modes of operation) which are
selected according to a stochastic process. Whenever each of the subsystems is linear and their
choice is orchestrated by a continuous-time Markov chain (that is, the modes of operation will
change state according to an exponential random variable and move to a different state as specified
by the probabilities of a transition probabilities matrix), the dynamic model is named as a Markov
jump linear system (MJLS). The theory of continuous-time MJLS has recently made considerable
progress, since these systems model, in a satisfactory manner, the behaviour of many systems of
practical interest. The reader is referred to [4, 3, 13, 10, 9, 31] and references therein for a sample
of works in this field.

In some applications, however, the length of time the process remains in each mode of oper-
ation – called sojourn time – is not memoryless and this characteristic implies that the exponential
distribution is no longer suitable to model this situation. In this case, the jump rates, represented by
λij(h), are dependent on the sojourn time h (notice that in the exponential case, the jump rates are
constant). Thus, such processes, known as semi-Markov processes [24], are used to model hybrid
phenomena in a more general setting than the ones considered by continuous-time Markov chains.

The theory of linear systems subject to semi-Markov jumps, called semi-Markov jump linear
systems (S-MJLS), still does not present the same progress as the one reached by the theory of
MJLS. Nonetheless, analysis and synthesis results for S-MJLS can be easily found in literature,
considering both time domains. For instance, both analysis and control synthesis for discrete-time
S-MJLS were investigated in [36]. Now, considering the continuous-time case, techniques of robust
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stability analysis, and robust state feedback control for S-MJLS with norm-bounded uncertainty
were developed in [19]. Still in the continuous-time setup, stability issues for S-MJLS with mode-
dependent delays were addressed in [21]. Also, techniques of state estimation and sliding mode
control for S-MJLS with mismatched uncertainties were studied in [22]. Besides, conditions to ver-
ify the stochastic stability of Ito differential equations with semi-markovian jump parameters were
presented in [17]. Finally, different approaches to the problem of stability analysis of continuous-
time S-MJLS can be found in [18] and [26], with [18] presenting a methodology based on linear
matrix inequalities.

In this paper, we provide H2 analysis and state feedback control design conditions for S-
MJLS with rational1 transition rates. Both problems listed above are computationally solved using
the sum-of-squares (SOS) technique [2], which consists of a mathematical optimisation model in
which the variables and constraints are non-negative polynomials, or else matrices whose elements
are polynomials. Specifically, the main contributions of this note are as follows:

• We present general results on the stability and on theH2 norm of S-MJLS systems (Lemmas
2.1 and 2.2).

• Testable SOS-based stability andH2 norm conditions have been developed for S-MJLS with
rational transition rates (Lemma 2.3).

• Finally, computationally viable SOS-based design conditions for the H2 state-feedback
mode-dependent control design problem for S-MJLS systems with rational transition rates
have also been devised (Theorem 2.2).

Two numerical examples point out the main theoretical and computational features of these contri-
butions.

This paper is structured as follows. The formulation of an S-MJLS and its basic properties
are presented in Section 2.2, with a brief description of some sojourn time distributions in Section
2.3. Next, Section 2.4 presents SOS-based analysis and design conditions. Furthermore, Section
2.5 presents two numerical examples that validate the main results. Finally, concluding remarks are
presented in Section 2.6.

At last, in terms of notation, for real matrices or vectors, (.)T indicates transpose. For a square
matrix X , Tr(X) denotes its trace, and for partitioned symmetric matrices, the symbol ⋆ denotes its
symmetric blocks. The set of natural numbers is denoted by N. On a probability space (Ω,F ,P), the
symbol E denotes mathematical expectation and, for A ∈ F , 1A represents the indicator function

1ratio of polynomials



19

in A, that is, 1A(ω) = 1 if ω ∈ A, 0 otherwise. For any stochastic signal ξ(t) defined in the
continuous-time domain, the quantity ∥ξ∥22 =

∫∞
0
E{ξ(t)T ξ(t)}dt is its squared norm. The class

of all signals ξ(t) ∈ Rr, t ∈ R+, such that ∥ξ∥22 is finite is denoted by Lr
2. We recall that for an

absolutely continuous function g : R+ → R there exists an integrable function X g : R+ → R such
that

g(t) = g(s) +

∫ t

s

X g(ℓ)dℓ. (2.1)

Note that X g is not unique. For simplicity we write ġ = X g. We say that an n × n matrix P (t)

is absolutely continuous in R+ if each element Pij(t) of P (t), i,j = 1, . . . ,n, is an absolutely
continuous function. We represent by XP (ℓ) the n× n matrix such that (2.1) is satisfied replacing
g(.) and X g(.) by respectively Pij(.) and XPij(.) for each i,j = 1, . . . ,n, and write Ṗ = XP .

2.2 Problem Formulation and Basic Results

According to [35], a semi-Markov process may be viewed as a stochastic process that, after
having entered a state i at a time Tk, it randomly determines its length of stay τk for transition out of
this state sampled from a probability density function fi(τ), and also randomly determines the next
state j ̸= i based on state transition probabilities P = [pij], where

∑
j pij = 1 for all i, jumping

thus to state j at time Tk+1 = Tk + τk. The length of stay τk is known as the sojourn time. In what
follows it is convenient to define T0 = 0 and for t ∈ R+, the elapsed time since the last jump, or
timer, is set as

H(t) =
∞∑
k=0

(t− Tk)1[Tk,Tk+1)(t).

On a probability space (Ω,F ,P) consider the continuous-time semi-Markovian jump linear
system (S-MJLS):

G :

 ẋ(t) = A(θ(t),H(t))x(t) + E(θ(t))w(t),

z(t) = Cz(θ(t),H(t))x(t)
(2.2)

where x(t) ∈ Rn is the state vector, w(t) ∈ Rm is the external perturbation vector, z(t) ∈ Rp is the
output vector to be controlled, and {θ(t), t ≥ 0} is a semi-Markovian continuous-time process that
takes value in the finite setM = {1,2, . . . ,N}. For h ∈ R+, i ∈ M, the timer-dependent state-
space matrices A(i,h) ∈ Rn×n and output matrices Cz(i,h) ∈ Rp×n are continuous and uniformly
bounded in h, and E(i) ∈ Rn×m. For notation simplicity, it is set A(θ(t),h) = Ai(h), E(θ(t)) = Ei,
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Cz(θ(t),h) = Czi(h), whenever θ(t) = i ∈ M. We also assume that the system starts at t = 0

from x(0) = x0, and the probability distribution of the Markov process at the initial time is given
by µ = (µ1, . . . ,µN) in such a way that Prob{θ(0) = i} = µi.

Notice that for a semi-Markov process {θ(t), t ≥ 0} we have that

Prob{θ(t+∆) = j|θ(t) = i,H(t) = h} =

λij(h)∆ + o(∆), ∀i ̸= j,

1 + λii(h)∆ + o(∆), i = j,
(2.3)

where lim∆→0 o(∆)/∆ = 0, and λij(h) ≥ 0 for i ̸= j, λii(h) = −
∑

j∈M\{i} λij(h) are given
transition rates. Notice also that a conventional MJLS is a particular case of the S-MJLS, obtained
whenever the transition probabilities are timer independent.

Associated with the S-MJLS (2.2) there are two important issues to be analysed related to the
stability and the H2 norm. The definitions of stability and the H2 norm for (2.2), introduced next,
are similar to the ones presented in [4] for MJLS.

Definition 2.1. Consider the autonomous version of the system G, that is, with w := 0. We have
the following concepts of stability:

a) G is stochastically stable if there exists a positive definite matrix M > 0 such that

E
[∫ ∞

0

xT (t)x(t)dt | θ0, x0

]
≤ xT

0Mx0

for any initial condition x(0) = x0 and θ(0) = θ0.

b) G is mean square stable if

lim
t→∞
E
[
xT (t)x(t) | θ0, x0

]
= 0

for any initial condition x(0) = x0 and θ(0) = θ0.

c) G is exponentially mean square stable if there exist α > 0 and β > 0 such that

E
[
xT (t)x(t) | θ0, x0

]
≤ β∥x0∥2e−αt (2.4)

for any initial condition x(0) = x0 and θ(0) = θ0.

It is clear that c) implies a) and b)
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Definition 2.2. Consider a stochastically stable version of system G. We denote by ∥G∥2 the H2

norm of G, which can be calculated by

∥G∥22 =
∑
i∈M

m∑
s=1

µi∥zs,i∥22, (2.5)

in which zs,i is the output generated by the impulsive input w(t) = esδ(t) and by the initial condi-
tions x(0) = 0 and θ0 = i; here, es is the s-th column of the identity matrix of order m.

We are going to use the theory of the piecewise deterministic Markov processes (PDMPs) to
provide testable conditions for Definitions 2.1 and 2.2. We recall that PDMPs consist of a general
family of non-diffusion stochastic models introduced in [6] and [7]. PDMPs are characterised by
three local parameters: the flow ϕ, the jump rate λ, and the transition measure Q. The main idea
is that the motion of a PDMP starting at the initial state X0 = (i,ξ) follows a deterministic flow
ϕi(ξ,t) until the first jump time T1, which occurs either spontaneously in a Poisson-like fashion with
rate λ or when the flow ϕi(ξ,t) hits the boundary of the state space. In either case, the post-jump
location of the process is selected by the transition measure Q(.|ϕi(ξ,T1)), and the motion restarts
from this new point afresh.

Let U be the extended generator for a PDMP without boundaries and D(U) the domain of U .
From Theorem 26.14 in [7] if f ∈ D(U) then, for X = (i,ξ), ξ = (h,x), we have that f(i,ϕi(ξ,t))

is absolutely continuous in R+, and

Uf(X) = X f(X) + λ(X)

∫
E

(f(Y )− f(X))Q(dY |X). (2.6)

The following result can be obtained (see Fact 37 and Theorem 70 in Chapter 2 of [1]).

Theorem 2.1. For each i ∈ M and all t0 ∈ R+ there exists a unique continuous matrix func-

tion (called state transition matrix) Ψi(.,t0) solution of the homogeneous linear matrix differential

equation

∂Ψi(t,t0)

∂t
= Ai(t)Ψi(t,t0),

Ψ(t0,t0) = I.

Moreover the unique solution x(t) of ẋ(t) = Ai(t)x(t), x(t0) = x0 is given by x(t) = Ψi(t,t0)x0

Remark 2.1. For the case in which Ai is constant we have that the state transition matrix is given
by Ψi(t,t0) = eAi(t−t0).
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We show next that system (2.2) is a particular case of a PDMP without boundaries. For that
we define the state space of the PDMP {X(t)} as E =M× R+ × Rn, and the PDMP is defined
as follows:

X(t) = (θ(t),ξ(t)), ξ(t) = (h(t),x(t))

where h(t) represents the elapsed time since the last jump. The three local parameters, the flow ϕ,
the jump rate λ, and the transition measure Q, are defined as follows: for X0 = (i,ξ0), ξ0 = (h0,x0),
the flow is given by

ϕi(ξ0,t) = (h0 + t,Ψi(t+ h0,h0)x0),

the jump rate by (see (2.3))

λ(X0) = λ(i,ξ0) = λ(i,(h0,x0)) = −λii(h0)

and, for any measurable function f : E → R, the transition measure Q(.|X0) is defined as

Qf(X0) = Qf(i,ξ0) = Qf(i,(h0,x0)) =
∑

j∈M,j ̸=i

pij(h0)f(j,(0,x0))

where pij(h0) is defined as

pij(h0) =

{
λij(h0)

−λii(h0)
if λij(h0) > 0;

0 otherwise .

Notice that, according to Q defined above, after a jump, the inter-arrival time is set to zero (that is,
h(Tk) = 0). Between jumps h(t) represents the elapsed time since the last jump. We introduce next
a standard assumption related to the PDMPs.

Assumption (24.3) in [7]: For all t ∈ R+, we have that

EX

(∑
k

1{Tk≤t}

)
<∞. (2.7)

From Proposition 24.6-1 in [7] we have that this Assumption is satisfied if for some c > 0 we have
that −λii(h) ≤ c for all i ∈M and h ≥ 0.

Suppose now that there exists timer dependent matrices Pi(h), with i ∈M, h ≥ 0, such that:
Pi(h) > 0, Pi(h) is absolutely continuous in R+ and uniformly bounded in h, that is, for some
d > 0,

Pi(h) ≺ dI. (2.8)
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Consider a function v(X), with X = (i,ξ), ξ = (h,x), defined as

v(X) = v(i,(h,x)) = xTPi(h)x. (2.9)

We recall that the Condition (31.2) in [7] holds if for each t ≥ 0 and any X = (i0,(h0,x0)) we have
that

EX

 ∑
{Ti≤t}

|v(X(Ti))− v(X(T−
i ))|

 <∞. (2.10)

In what follows we set µmax = supi∈M,h∈R+
∥Pi(h)∥. Notice that µmax ≥ µ(Ai(h)) where µ(.)

represents the matrix measure (see [12]).

Proposition 2.1. For the function v defined in (2.9) we have that Condition (31.2) in [7] is satisfied.

Proof: We need to show that (2.10) holds. We notice that on the set {Tk ≤ t},

v(X(Tk))− v(X(T−
k )) = x(Tk)

T (Pθ(Tk)(0)− Pθ(Tk−1)(Tk − Tk−1))x(Tk) (2.11)

and from (2.8) and (2.11) we get that

|v(X(Tk))− v(X(T−
k ))| ≤ 2d∥x(Tk)∥2. (2.12)

Notice now that on the set {Tk ≤ t} we have that x(X(Tk)) = x(X(Tk ∧ t)). Set

h(s) =
k−1∑
j=0

1{Tj≤s<Tj+1}(s− Tj).

From Theorem 27 in [12],

∥x(Tk ∧ t)∥2 ≤ ∥x0∥2e
∫ Tk∧t
0 µ(A(θ(s),h(s)))ds ≤ ∥x0∥2eµmaxt (2.13)

since µ(A(θ(s)),h(s)) ≤ µmax. Therefore from (2.12), on the set {Tk ≤ t},

|v(X(Tk))− v(X(T−
k ))| ≤ 2d∥x0∥2eµmaxt, (2.14)

and from (2.14) and (2.7)

EX

 ∑
{Ti≤t}

|v(X(Ti))− v(X(T−
i ))|

 ≤ EX (∑
k

1{Tk≤t}

)
2d∥x0∥2eµmaxt <∞,
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completing the proof.

Proposition 2.2. We have that v ∈ D(U) and for X = (i,ξ), ξ = (h,x),

Uv(X) = xT
(
Ai(h)

TPi(h) + Pi(h)A(h) + XPi(h) +
∑

j∈M\{i} λij(h)Pj(0)+

+λii(h)Pi(h)
)
x

(2.15)

Proof: From Proposition 2.1 we have that v ∈ D(U) (see [7], page 70). From the definition of the
flow ϕ, we notice that

v(i,(ϕi(ξ,t))) = (Ψi(t+ h,h)x)TPi(h+ t)Ψi(t+ h,h)x

and thus, from Theorem 2.1,

X v(i,ξ) = xT (Ai(h)
TPi(h) + Pi(h)Ai(h) + XPi(h))x.

We also have that
Qv(i,ξ) = xT (

∑
j∈M,j ̸=i

λij(h)Pj(0))x.

Combining these results and from (2.6) we obtain (2.15).

Proposition 2.3. Let X0 = (θ0,(0,x)), where P (θ0 = i) = µi, i ∈M, and x ∈ Rn. We have that

E(v(X(t)))− E(v(X0)) = E(v(X(t)))−
∑
i∈M

µix
TPi(0)x = E

(∫ t

0

Uv(X(s))ds
)
. (2.16)

Proof: Equation (2.16) follows from the PDMP differential formula presented in Theorem 31.3 in
[7], combined with Proposition 2.1.

We are now in a position to state and prove the following lemma, which provides a matrix
inequality based condition able to guarantee stability for the S-MJLS (2.2).

Lemma 2.1. Consider the autonomous version of S-MJLS (2.2) with given timer-dependent tran-

sition rates (2.3). For any given ϵ > 0, if there exist timer-dependent positive definite matrices

Pi(h) ≻ ϵI absolutely continuous in R+ and uniformly bounded in h such that

Ai(h)
TPi(h) + Pi(h)Ai(h) + Ṗi(h) +

∑
j∈M\{i}

λij(h)Pj(0) + λii(h)Pi(h) ≺ −ϵI, (2.17)

for all (i,h) ∈M× R+, then the system is exponentially mean square stable.
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Proof. Set f(t) = E
(
v(X(t))

)
. As before, uniform boundedness of Pi implies there exists d > 0

(as in (2.8)) such that Pi(h) ≺ dI holds for all h ≥ 0 and all i. Taking this bound together with
(2.15), (2.16) and (2.17) we obtain that

ḟ(t) = E
(
Uv(X(t))

)
≤ − ϵ

d
f(t),

which implies that f(t) ≤ f(0)e−αt, for α = ϵ/d. From the fact that Pi(h) ≻ ϵI we get that f(t) ≥
ϵE
(
∥x(t)∥2

)
and this allows us to define β = d

ϵ
, which yields (2.4), showing the exponential mean

square stability as desired.

The following lemma provides a matrix inequality based condition able to provide an upper-
bound for ∥G∥2.

Lemma 2.2. Consider an S-MJLS (2.2) with given timer-dependent transition rates (2.3). For any

given ϵ > 0, if there exist timer-dependent positive definite matrices Pi(h) ≻ ϵI absolutely contin-

uous in R+ and uniformly bounded in h such that

Ai(h)
TPi(h) + Pi(h)Ai(h) + Ṗi(h) +

∑
j∈M\{i} λij(h)Pj(0) + λii(h)Pi(h)+

+Czi(h)
TCzi(h) ≺ −ϵI,

(2.18)

for all (i,h) ∈ M× R+, then the system is exponentially mean square stable. In this case, for any

given initial distribution µ, theH2 norm of (2.2) is limited by

∥G∥22 ≤
∑
i∈M

µitr(E
T
i Pi(0)Ei). (2.19)

Proof. Notice that whenever the conditions of the present lemma are satisfied, the exponential mean
square stability is guaranteed. Moreover, for x(0) = 0, an impulse input w(t) = eiδ(t) defines a
discontinuity at t = 0, in such a way that x(0+) = Eθ0es, so that, combining (2.15), (2.16) and
(2.18) we obtain that

E
(∫ t

0

∥zs,θ0(s)∥2ds
)
≤
∑
i∈M

µi(Eies)
TPi(0)Eies. (2.20)

Taking the sum for s = 1 to m and making the limit as t→∞ it follows from (2.20) that ∥G∥2 ≤∑
i∈M µitr(E

T
i Pi(0)Ei), concluding the proof.

Clearly, when trying to obtain the least upper bound, one can define an optimisation problem
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with respect to the decision variables ϵI ≺ Pi(h) ≺ ϵ−1I , using (2.19) as objective function and
(2.18) as constraints. Nonetheless, in such a case, the resulting optimisation problem is infinite-
dimensional, so that to make it computationally tractable, some relaxation must be performed.

Remark 2.2. For the MJLS case, one can take constant positive definite matrices Pi in Lemma 2.1
and in Lemma 2.2. Moreover, in this case, the conditions are also necessary [4].

2.3 Processes with Rational Transition Rates

In this section, we will discuss some of the continuous probability distributions with support
in [0,∞) that define rational transition rates. This aspect will be of great importance when deriving
efficient computational methods able to test the conditions from Lemmas 2.1 and 2.2. The reader
may refer to [29] for details.

It is important to notice that the transition rates λij(h) have the structure

λij(h) = pij
fi(h)

1− Fi(h)
(2.21)

for (i,j) ∈M×M, i ̸= j, where pij is the jump probability from mode i into mode j after the end
of its sojourn time, fi(h) is the i − th mode probability density function for the sojourn time, and
Fi(h) its correspondent cumulative distribution function.

2.3.1 Exponential Distribution

The exponential distribution has one rate parameter and is the standard sojourn time distri-
bution for the classic MJLS, as it is the probability distribution of the time between events in a
Poisson point process, that is a process in which events occur continuously and independently at a
constant average rate. It is the only continuous distribution that presents the memorylessness prop-
erty, meaning that the distribution of the remaining sojourn time in one specific mode does not
depend on how much time the mode is already active.

The probability density function and the cumulative distribution function of the Exponential
distribution with parameter Λ > 0 are, respectively

f(x; Λ) =

{
0, x < 0

Λe−Λx, x ≥ 0
F (x; Λ) =

{
0, x < 0

1− e−Λx, x ≥ 0

from where it is clear that the transition rates (2.21) calculated to this specific case provide constant
terms.
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Notice that whenever considering that all modes have exponentially distributed sojourn times,
and the state-space matrices are timer-independent, we recover the classic MJLS results for stability
and H2 norm calculation simply by considering that the Pi matrices in Lemmas 2.1 and 2.2 are
timer-independent.

2.3.2 Rayleigh Distribution

The Rayleigh Distribution normally appears in two-dimensional (or complex) problems,
whenever we are interested in the magnitude (or the absolute value) when each component is un-
correlated, normally distributed with equal variance, and zero mean. It presents one scale parameter
σ > 0, and probability density function and the cumulative distribution function

f(x; σ) =

{
0, x < 0

x

σ2
e−x2/(2σ2), x ≥ 0

F (x; σ) =

{
0, x < 0

1− e−x2/(2σ2), x ≥ 0

which implies that, for this case, the transition rates (2.21) are of the form λij(h) = (pij/σ
2
i )h.

Thus, the transition rate, from mode i to mode j, for a Rayleigh distributed sojourn time is not
timer-independent, but linearly increasing with slope pij/σ

2
i .

2.3.3 Erlang Distribution

The Erlang distribution is a two-parameter family of continuous probability distributions. The
two parameters are a positive integer k, which defines the overall structure of the distribution, and
another positive real number Λ, which defines its rate of decay. For the specific case of k = 1, the
Erlang distribution reduces itself to the exponential distribution with parameter Λ. Moreover, for
the general case, it is the distribution of a sum of k independent exponential variables with the same
parameter Λ each.

The probability density function and the cumulative distribution function of the Erlang dis-
tribution are, respectively

f(x; k,Λ) =

 0, x < 0

Λkxk−1e−Λx

(k − 1)!
, x ≥ 0

F (x; k,Λ) =


0, x < 0

1−
k−1∑
n=0

1

n!
e−Λx(Λx)n, x ≥ 0

where (λx)n := 1 for (x,n) = (0,0).
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Thus, the transition rate, from mode i to mode j, for an Erlang distributed sojourn time is

λij(h) = pij
Λki

i h
ki−1

(ki − 1)!
∑ki−1

n=0 (Λih)n/n!
. (2.22)

2.3.4 Chi Distribution

The Chi Distribution is a generalisation for the Rayleigh distribution. It has one natural pa-
rameter k representing the degrees of freedom (k = 2 for Rayleigh). When k is an even number,
that is, k = 2m for some natural number m, then the corresponding transition rate is rational.

To check this fact, we start with the probability density function and the cumulative distribu-
tion function of the Chi distribution

f(x; k) =


0, x < 0

xk−1e−x2/2

2(k/2)−1Γ(k/2)
, x ≥ 0

F (x; k) =

{
0, x < 0

P (k/2,x2/2), x ≥ 0

where Γ(·) and P (·,·) are the Gamma and the Regularised Gamma functions, respectively. When-
ever m = k/2 is a natural number, we have

P (m,x) = 1−
m−1∑
ℓ=0

xℓe−x

ℓ!
(2.23)

and thus, setting mi as the parameter associated to the Chi Distribution at the mode of operation i,
the corresponding transition rates are

λij(h) = pij
h2mi−1

2mi−1(mi − 1)!
∑mi−1

ℓ=0 (h2/2)ℓ/ℓ!
. (2.24)

2.3.5 Weibull Distribution

The Weibull distribution is widely used in reliability engineering for time-to-failure mod-
elling. Therefore, there exists a valuable practical appeal to consider Weibull distributed sojourn
time for damage-tolerant control problems.

The Weibull distribution has two parameters, k > 0 known as the shape parameter, and Λ > 0

called the scale parameter. For the transition rate to be rational, we need to impose that k ∈ N. This
implies that we may only model the more usual cases where the failure rate increases with time,
that is, an ageing process causes the parts to be more likely to fail as time passes.
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The probability density function and the cumulative distribution function of the Weibull dis-
tribution are

f(x; k,Λ) =

 0, x < 0
k

Λ

(x
Λ

)k−1

e−(x/Λ)k , x ≥ 0
F (x; k,Λ) =

{
0, x < 0

1− e−(x/Λ)k , x ≥ 0

which implies that, setting ki as the parameter associated to the Weibull Distribution at the mode
of operation i, the transition rate from modes i to j is

λij(h) = pij
kih

ki−1

Λki
i

(2.25)

that is rational (more specifically, polynomial) in h whenever ki ∈ N.

2.4 Sum-of-Squares Optimisation

In this section, we provide an approach to developing stability andH2 performance conditions
for an S-MJLS with rational sojourn times. It is based on the so-called Sum-of-Squares (SOS)
Optimisation (see for instance [2] and references therein). For that, we assume that

λij(h) = pij
ηi(h)

ρi(h)
(2.26)

for all (i,j) ∈M×M, i ̸= j, where ηi(h) and ρi(h) are polynomial functions in h with ρi(h) > 0

for all h ≥ 0. Clearly, pii = 0, pij ≥ 0,
∑

j∈M\{i} pij = 1 and λii(h) = −
∑

j∈M\{i} λij(h).

2.4.1 H2 Norm Calculation

One commonly used solution to Differential Inequalities, such as the ones that appear in
Lemmas 2.1 and 2.2, is to discretise the timer domain h ≥ 0 into a grid of points and approximate
the derivative term inside the grid. This method is applied, for example, in [16] and [5]. One should
notice that with the correct application of multiples inequalities per grid point, one might be able
to apply robust stability arguments and show that stability (and guaranteed cost) is obtained for the
whole timer domain.

Another interesting approach is to use SOS Optimisation. As we shall see in the sequel, such
an approach requires a particular structure for matrices Pi(h) in (2.18); in particular, that they must
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be themselves ratio of polynomials. Given this, we assume that

Pi(h) = Qi(h)/di(h) (2.27)

where Qi(h) are timer-dependent differentiable (but not yet polynomial) positive definite matrices
and di(h) are scalar polynomials in h, with di(h) > 0 for all h ≥ 0. In order to ease further
notation, we will also assume that di(0) = 1. Notice that di(h) are differentiable since they are
scalar polynomials in h.

Lemma 2.3. Consider the S-MJLS (2.2) with given timer-dependent transition rates (2.26). Given

any ϵ > 0 and N scalar polynomials di(h) such that di(h) > 0 for all h ≥ 0 and di(0) = 1, if

there exist timer-dependent positive definite matrices Qi(h) absolutely continuous in R+ such that

Qi(h)/di(h) < ϵ−1I and Qi(h)/di(h) > ϵI for all h ≥ 0 and

ρi(h)di(h)
(
Ai(h)

TQi(h) +Qi(h)Ai(h) + Q̇i(h) + di(h)Czi(h)
TCzi(h)

)
−

− (ρi(h)ḋi(h) + ηi(h)di(h))Qi(h) + d2i (h)ηi(h)
∑

j∈M\{i}

pijQj(0) ≺ −ϵρi(h)d2i (h)I
(2.28)

for all (i,h) ∈M×R+, then the S-MJLS is exponentially mean square stable. In this case, for any

given initial distribution µ, theH2 norm of (2.2) is limited by

∥G∥22 ≤
∑
i∈M

µitr(E
T
i Qi(0)Ei). (2.29)

Proof. This is a direct application of the results from Lemma 2.2 assuming the particular structure
of the matrices given in (2.27). For that, just recall that di(h) > 0, di(0) = 1 and ρi(h) > 0 for all
h ≥ 0.

Remark 2.3. For ϵ > 0 and N scalar polynomials di(h) as in Lemma 2.3 set S such that{
Qi(h)

}
∈ S if for every i = 1, . . . ,N , Qi(h) satisfy the conditions of Lemma 2.3. From the

timer-dependent constraints (2.28) and the upper bound in (2.29) we can set the following optimi-
sation problem:

ζ∗ = inf
{Qi(h)}∈S

{∑
i∈M

µitr(E
T
i Qi(0)Ei)

}
, (2.30)

so that from (2.29) we get that ∥G∥22 ≤ ζ∗. In Section 2.4.3, we present more detail on the numerical
solution of (2.30) using an SOS approach.
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2.4.2 H2 State Feedback Design

We now focus on extending the previous results to the H2 state feedback control design
problem. To that end, we consider a timer-independent version of system (2.2), that is

Gc :

 ẋ(t) = A(θ(t))x(t) + B(θ(t))u(t) + E(θ(t))w(t),

z(t) = Cz(θ(t))x(t) +Dz(θ(t))u(t)
(2.31)

where, additionally to the signals and matrices described in (2.2), u(t) ∈ Rq is the control input
and B(θ(t)) ∈ Rn×q and Dz(θ(t)) ∈ Rp×q also depend on the semi-Markovian continuous-time
process {θ(t), t ≥ 0}. For notation simplicity, we also denote B(θ(t)) = Bi, Dz(θ(t)) = Dzi

whenever θ(t) = i ∈M.

Theorem 2.2. Consider the MJLS Gc given by (2.31) with transition rates given by (2.26) and zero

initial conditions x(0) = 0. For some given ρ > 0, ϵ > 0 and positive scalar polynomial functions

di(h) > 0, di(0) = 1, Gc is stochastically stabilisable by a timer-dependent state-feedback control

law

u(t) = Kθ(t)(h)x(t) (2.32)

and the closed-loop system performance is upper-bounded by ∥Gc∥22 < ρ if, for all h ≥ 0,

there exist timer-dependent symmetric matrices Xi(h) ≻ 0, Zij(h) ≻ 0, symmetric matrices

Wi ≻ 0, and timer-dependent matrices Yi(h) with Yi(h)Xi(h)
−1 uniformly bounded, such that

ϵI ≺ Xi(h)di(h) ≺ ϵ−1I , the matrix inequalities

∑
i∈M

µitr(Wi) < ρ,

[
Wi ⋆

Ei Xi(0)

]
≻ 0, (2.33a)

and the timer-dependent matrix inequalities

[
Zij(h) ⋆

Xi(h) Xj(0)

]
≻ 0,

 Ξi(h) ⋆ ⋆

ρi(h)(CziXi(h) +DziYi(h)) −ρi(h)I ⋆

ρi(h)Xi(h) 0 −ρi(h)ϵ−1I

 ≺ 0 (2.33b)

where

Ξi(h) =di(h)ρi(h)(AiXi(h) +Xi(h)A
T
i +BiYi(h) + Yi(h)

TBT
i − Ẋi(h))+

+ (ρi(h)ḋi(h)− ηi(h)di(h))Xi(h) + ηi(h)
∑

j∈M\{i}

pijZij(h),
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hold for all h ≥ 0. In the feasible case, the aforementioned control gains can be obtained by

Ki(h) = Yi(h)Xi(h)
−1.

Proof. Let us assume that, for given ρ and di(h) ≥ 0, with di(0) = 1, (2.33a) and (2.33b) are
feasible. Then from inequality (2.33b), using Schur Complement, we have that

Zij(h)−Xi(h)X
−1
j (0)Xi(h) ≻ 0

Ξi(h) + ρi(h)(CziXi(h) +DziYi(h))
T (CziXi(h) +DziYi(h)) ≺ −ϵρi(h)Xi(h)

2.

Pre- and post-multiplying both previous inequalities by di(h)Xi(h)
−1, denoting

Qi(h)/di(h) = di(h)Xi(h)
−1, and recalling that Yi(h) = Ki(h)Xi(h), provides

Qi(h)

di(h)
Zij(h)

Qi(h)

di(h)
≻ di(h)

2Qj(0)

Ξ̂i(h) + di(h)
2ρi(h)(Czi +DziKi(h))

T (Czi +DziKi(h)) ≺ −ϵρi(h)d2i (h)I
(2.34)

where

Ξ̂i(h) = di(h)ρi(h)(Qi(h)(Ai +BiKi(h)) + (Ai +BiKi(h))
TQi(h) + Q̇i(h))−

− (ρi(h)ḋi(h) + di(h)ηi(h))Qi(h) + ηi(h)
∑

j∈M\{i}

pij
Qi(h)

di(h)
Zij(h)

Qi(h)

di(h)

(2.35)

and noticing that substituting Qi(h)Zij(h)Qi(h)/di(h)
2 by di(h)

2Qj(0) in (2.35) does not change
the sign of the second inequality in (2.34). But now this inequality is exactly (2.28) when replacing
the open-loop matrices by the closed-loop ones: Ai(h) ← Ai + BiKi(h) and Czi(h) ← Czi +

DziKi(h). Moreover, as it was assumed that Yi(h)Xi(h)
−1 = Ki(h) are uniformly bounded, so are

the closed-loop matrices Ai(h) and Czi(h).
Finally, from (2.33a), we have that∑

i∈M

µitr(E
T
i Qi(0)Ei) <

∑
i∈M

µitr(Wi) < ρ

showing that ∥G∥22 < ρ, and thus concluding the proof.

Remark 2.4. For ϵ > 0 and N scalar polynomials di(h) as in Theorem 2.2 set Sc
such that

{
Xi(h), Yi(h), Zij(h),Wi, ρ

}
∈ Sc if for every i,j = 1, . . . ,N , we have that

Xi(h), Yi(h), Zij(h),Wi,ρ satisfy the conditions of Theorem 2.2. The least upper-bound of the
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closed-loopH2 norm of G can be obtained by solving the optimisation problem

ρ∗ = inf{
Xi(h),Yi(h),Zij(h),Wi,ρ

}
∈Sc

ρ . (2.36)

From Theorem 2.2 we have that ∥G∥22 ≤ ρ∗. Notice that, for fixed di(h), the objective function and
the constraints are affine with respect to the decision variables.

Remark 2.5. The state-feedback control gains developed in this subsection are timer-dependent.
If Xi and Yi are forced to be timer-independent, the designed gains became timer-independent.
Nonetheless, this might induce a great level of conservatism.

2.4.3 Implementation Details

In this brief subsection, we point out some aspects of the numerical implementation of the
timer-dependent optimisation problems presented in this section. As stated before, our main nu-
merical approach is based on SOS optimisation [2] and this motivated the structure imposed to the
positive matrices Pi presented in (2.27). Yet another assumption must be made so that to make the
optimisation problems like (2.30) or (2.36) convex and, therefore, numerically solvable: all vari-
ables must be polynomial with a given degree. Hence, all matrix variables, that is, Qi in (2.30) and
Xi, Yi and Zij in (2.36) are polynomial matrices in h for all i,j.

Sum-of-squares problems, albeit still not as common as linear matrix inequalities optimi-
sation problems, can be efficiently parsed and solved by a selection of software available in the
literature. Indeed, algorithms implemented in parsers such as SOSTools [27] and Yalmip [23] con-
vert SOS constraints with polynomial decision variables into a semidefinite optimisation problem,
which, in turn, can be solved by several optimisation solvers, such as Mosek [25]. Hence, generally
speaking, solving SOS or SDP problems can be seen as equivalent tasks and both can be quite
challenging when dealing with dynamic systems with a large number of states or modes. In the
examples of this note, we used Yalmip and Mosek [25] to solve the SOS optimisation problems.

In what follows, we present some specific remarks on the numerical implementation of the
SOS problems proposed here.

Remark 2.6. One of the main parameters of the proposed approach is the degree of the polynomial
variables. Indeed, higher degrees typically yield better solutions at the expense of computational
time. It is important, however, to note that such degrees are not completely free for the designer
to chose, as all variables are linked by the same constraints. For instance, the inequalities ϵI ≺
Qi(h)/di(h) ≺ ϵ−1I , which must hold for all h ≥ 0, imply that deg(Qi) = deg(di). We must also
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have that deg(Zij) = 2deg(Xi), deg(Yi) ≤ deg(Xi) and deg(Xi) = deg(di) in order to ensure the
feasibility of the constraints in (2.36).

Remark 2.7. Whenever all timer-dependent variables are polynomial matrices in h, the design
conditions presented in the paper are matrix polynomial inequalities in h ≥ 0. Therefore, through
some usual arguments based on the Positivstellensatz [30], one might test its negativity inside the
required domain through a convex optimisation problem involving its sum of squares decompo-
sition, which is a convex optimisation problem, and thus computationally tractable. Indeed, the
condition

Φi(h) ≺ 0, forh ≥ 0

may be replaced by
Φi(h) ≺ −hΓi(h)

for some Γi(h) ≻ 0 for all h. Hence, computationally, we search for an SOS decomposition of
−Φi(h) − hΓi(h) for some additional SOS polynomial variable Γi(h). Note that, as to ensure the
feasibility of the last inequality for h → ∞, it is necessary that deg(Γi) ≤ deg(Φi) − 1, which
means that results do not improve if deg(Γi) is increased beyond this point.

Remark 2.8. In the proposed formulation, the polynomial denominators di(h) are not decision
variables, but instead, they should be given to the optimisation method. This could be modified, in
the expectation that better results are obtained, but with the additional cost of solving the resulting
multi-convex problem in a block coordinate descent method.

Remark 2.9. If the realisation matrices Ai and Ci are themselves rational functions on h with
positive denominators for h ≥ 0, the results presented here can still be applied with minor modifi-
cations.

2.5 Numerical Examples

Example 2.1. To illustrate the results developed in this note, we consider a two-mode semi-
Markovian jump system with realisation given by the state-space matrices

A1 =

[
0.7 −4
0 −7

]
, A2 =

[
−7 4

0 0.7

]
, E1 = E2 =

[
1

1

]
, C1 = C2 = I2.

Notice that both matrices A1 and A2 are not Hurwitz. For this example, we consider that µ =[
1 0

]
, Qi(h) is a fourth-order matrix polynomial, and di(h) = 1 + h4.
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Three possible distribution scenarios are considered for the sojourn time: Exponential,
Rayleigh, and Erlang. Our first goal is to compare the H2 guaranteed quadratic cost (squared norm)
attained in each of these three cases considering the same mean sojourn time St for all distributions.
Hence, we take Λi = St

−1
for the Exponential case, σi = St

√
2/π for the Rayleigh distribution

and Λi = ki/St for the Erlang scenario; we take ki = 3 for both modes in this last case.
The SOS optimisation problem presented in Lemma 2.3 was solved for each distribution (for

the Exponential case, we used equivalent LMI-based conditions [4]), yielding the results shown in
Figure 2.1. As each mode is itself unstable, it is expected that the H2 performance index should
increase with the mean sojourn time. For the Exponential case, this growth is monotonic, and
at around St ≈ 0.65 the markovian system becomes unstable. For the Erlang case, the system
becomes unstable at around St ≈ 1.90 which, as expected, is less than ki = 3 times the value
for which the markovian system becomes unstable. Finally, for the Rayleigh case, the system is
stable for the whole interval considered here. As, in the present Erlang case, we have Λi = 3/St,
we considered only the scenarios where St ≥ 0.1 to minimise possible numerical issues of having
large parameters.

0.1 0.5 1 1.5 2

100

101

102

Exponential

Rayleigh

Erlang

Figure 2.1: H2 quadratic guaranteed cost (squared norm for the Exponential Distribution)
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Considering St = 0.6, the corresponding Qi matrices for the Rayleigh distributed case are

Q1(h) =

[
Q1,11(h) Q1,12(h)

Q1,12(h) Q1,22(h)

]
, Q2(h) =

[
Q2,11(h) Q2,12(h)

Q2,12(h) Q2,22(h)

]

where

Q1,11(h) = 0.828h4 − 2.303h3 + 3.856h2 − 3.039h+ 1.457

Q1,12(h) = −1.726h4 + 3.064h3 − 2.243h2 + 1.38h− 0.7059

Q1,22(h) = 7.392h4 + 0.4102h3 + 2.492h2 + 0.09725h+ 0.4821

Q2,11(h) = 1.798h4 − 0.5252h3 − 0.04118h2 + 0.4058h+ 0.1007

Q2,12(h) = −0.8662h4 + 0.2221h3 + 0.08897h2 − 0.2394h+ 0.02569

Q2,22(h) = 2.015h4 − 3.991h3 + 5.324h2 − 3.714h+ 1.791

To validate the results obtained so far, we performed a Monte Carlo statistical test, which involved
Nsim = 30000 simulations, where we again considered the mean sojourn time St = 0.6.

Parameters Guaranteed Cost Sample Mean Sample Variance
Rayleigh σ = 0.6

√
2/π 0.5270 0.5223 0.0787

Erlang (k,Λ) = (3,5) 0.5458 0.5411 0.1838

Table 2.1: Monte Carlo simulation results for Rayleigh- and Erlang-distributed sojourn times. Both
the sample mean and the sample variance values refer to the H2 cost computed in the 30000 simu-
lations.

As pointed out in Table 2.1, the results obtained are consistent with the guaranteed cost
calculated using Lemma 2.3, that is, the sample mean cost yielded by the 30000 Monte Carlo
simulations performed is smaller than the guaranteed cost, as expected.

For the second part of the example, we focus only on the Rayleigh distribution and aim now
to devise state-feedback control gains. We assume the same system as before, replacing the C

matrices and constructing the B and D matrices as

B1 = B2 =

[
0

1

]
, C1 = C2 =

[
I2

01×2

]
, D1 = D2 =

[
02×1

0.5

]
.

Taking a mean sojourn time of 0.6, we design a timer-dependent state-feedback control law choos-
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ing the degrees of X and Y as 4 and 3, respectively. Finally, following the same strategy from the
analysis part, we chose di(h) = 1 + h4.

Solving the optimisation problem described in (2.36) provides a closed-loop guaranteed
quadratic H2 cost of 0.4480. Figure 2.2 shows the behaviour of the designed feedback gains with
respect to the timer h ∈ [0,2]. For the given distribution and parameter σ, the probability of a
sojourn time larger than 2 seconds is lower than 2× 10−4.
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Figure 2.2: State-Feedback Gains

We conclude the Example by performing again a Monte-Carlo Simulation with Nsim =

30000 simulations for the closed-loop system. The resulting sample mean is 0.4460 with a sample
variance of 0.0154, which, once again, is consistent with the values obtained by the SOS program.

Example 2.2. As the second example, inspired by [11], we adapted the linearized model of the un-
stable lateral dynamics of the unmanned aircraft model from [14]. The nominal state-space matrices
are

Â =


−11.4540 2.7185 −19.4399 0

0.5068 −2.9875 23.3434 0

0.0922 −0.9957 −0.4680 0.3256

1.0000 0.0926 0 0

 , B̂ =


78.4002 −2.7282
−3.4690 13.9685

0 0

0 0

 .
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and Ê = I4. See the aforementioned works for more information about this model.
We considered N = 3 modes of operation, where θ(t) = 1 defines the nominal one, thus

(A,B,E)1 = (Â,B̂,Ê). Mode 2 considers a complete failure of the first actuator and mode 3
considers both a complete failure of the first actuator and a partial failure the second one. Thus
(A,B,C)2 = (Â,B2,Ê) and (A,B,E)3 = (Â,B3,Ê), where

B2 = B̂

[
0 0

0 1

]
, B3 = B̂

[
0 0

0 1/2

]
.

Finally, we also considered

Ci =

[
I2 0

0 0

]
, Di =

[
0 0

0 I2

]
, i ∈ {1,2,3}.

We assumed that the transition rates between the modes increase linearly, that is λij(h) =

(pij/σ
2
i )h, which corresponds to Rayleigh distributed sojourn times. Specifically, we used the tran-

sition probability matrix Π = [pij] where

Π =

 0 2/3 1/3

11/15 0 4/15

1/2 1/2 0


and (σ1,σ2,σ3) = (10/3, 2/3, 1/2)×

√
2/π. Lastly, we take that θ(0) = 1 with probability one.

For different orders of the polynomial matrices Qi(h), we solved the state-feedback design
problem and obtained the guaranteed costs presented in Table 2.2. In the same table, we provide
the parser and the solver time of the corresponding semi-definite optimisation problem in an Intel
Core i7-8750H CPU, 2.20 GHz, 16Gb RAM, running Windows 10 and Matlab R2020a. Parsing of
the problem was performed by Yalmip [23] and solved by Mosek [25].

d = 2 d = 4 d = 8 d = 16

H2 Guaranteed Cost 1.3529 1.3378 1.2221 1.1301
Parser Time (a) 4.4590 4.5616 6.1803 12.2217
Solver Time (b) 4.7020 9.2894 34.8857 165.7873
Total Time (a+b) 9.161 13.851 41.0660 178.0090

Table 2.2: Guaranteed cost for the closed-loop H2 performance, parser- and solver-time (in sec-
onds), where deg(Qi(h)) = d.
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One could argue that the true distribution of the sojourn time is not very relevant for the
global performance of such system, and only its mean value is of importance. For testing such
conjecture, we can propose a heuristic where we construct a Markov Jump Linear System with the
same state-space matrices, but where the transition rates are now constant. That implies that the
new sojourn time is exponentially distributed. We keep the same transition probability matrix Π

and we choose the parameters of the exponential distribution in such a way that the mean sojourn
times are the same as in the true Rayleigh case. For this case, we calculate the (timer-invariant)
optimal H2 state-feedback control law through standard LMIs.

Closing the loop with such controller, we performed Nsim = 30000 Monte-Carlo simulation
of the original system where the sojourn time is Rayleigh distributed. The H2 cost was estimated
to be 1.3390. Observe that the proposed SOS design procedure in the present paper provides a
guaranteed cost better than such value for any d ≥ 4. In particular, for d = 16, our result provides a
cost at least 15.6% smaller than such heuristic. Thus, the given argument that only the mean value
of the sojourn time is of interest does not hold for this case.

2.6 Conclusions

In this paper, we presented convex optimisation based solutions for the H2 State-Feedback
Control problem considering Continuous Semi-Markov Jump Linear Systems with rational transi-
tion rates. Some comparisons are provided. Future works will focus on more general sojourn time
distributions, timer-independent gains,H∞ norm, and filter and output-feedback problems.
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ABSTRACT

This paper addresses the H2 output-feedback control problem for continuous-time semi-
Markov jump linear systems (S-MJLS) with Erlang dwell times. To this end, we exploit the fact
that any Erlang-distributed variable may be expressed as the sum of exponential random variables
to devise a Markov-jump system equivalent to the original S-MJLS. This equivalence allows us
to derive finite-dimensional control design conditions for Erlang S-MJLS. Numerical examples
illustrate the main features of the results presented in the paper.

INDEX TERMS

Stochastic Systems, semi-Markov jump linear Systems,H2 control.

3.1 Introduction

Markov jump linear systems (MJLS) are stochastic dynamic models of great practical interest
in several applications [4]. Such systems are composed of several modes of operation – or subsys-
tems – which are selected by a random variable that jumps amongst these subsystems. There are
two key stochastic properties these systems present: (1) jumps occur with probabilities that only
depend on the current mode, as in a Markov chain, and (2) the dwell times, which correspond to the
time a subsystem remains active (between two consecutive jumps), are random variables described
by exponential distributions. Thus, both aspects present the memoryless property in this class of
systems.

A more general class of stochastic systems is the one composed of semi-Markov jump linear
systems (S-MJLS). In this class, dwell times may be modelled by arbitrary probability distributions
whilst the stochastic process still respects the Markov property. Consequently, S-MJLS can be
applied to a broader range of practical situations than those described by MJLS. However, this
flexibility comes together with an increase in complexity, such as that the jump rates of S-MJLS
are now dependent on the dwell time. Consequently, analysis and synthesis conditions for these
systems become more challenging.

Among the distributions that can be used for the dwell times in S-MJLSs, the Erlang one
draws attention due to its close relationship with the exponential distribution [28]. This paper ex-
ploits this relationship to devise an equivalent MJLS to an S-MJLS with Erlang distributed dwell
times. As far as the authors are aware of, this is the first time that the control problem of Erlang
S-MJLSs has been tackled considering this equivalence with MJLSs. We highlight next the main
novelties with respect to existing results.
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1) Our development leads to necessary and sufficient LMI-based stability and H2 performance
conditions as well as LMI-based H2 control design conditions for Erlang S-MJLSs. In this
sense, our results are less conservative than the ones presented in [33, 34], which provide
only sufficient conditions for the stability problem, and than the ones in [33], which consider
the state-feedbackH2 control problem.

2) Our approach allows us to tackle the H2 static output feedback cluster control design prob-
lem, based on LMI optimisation problems. In this case, it is assumed that the state space of
the semi-Markov process can be written as the union of disjoint sets (clusters), and the only
information available to the controller is to which cluster the semi-Markov model belongs,
as well as an output of the system. These assumptions make the problem more challenging
and realistic from the practical point of view.

3) For the particular mode-dependent state-feedback case, the design conditions presented here
are simpler than the ones proposed in [8], as this particular S-MJLS can be transformed
into an equivalent MJLS with a larger number of modes. Hence, the resulting system can be
analysed using the techniques available in the literature related to MJLS, for instance, [4],
[9], and [3].

4) When compared with the approach in [20], it should be noticed that, although the phase-
type approximation for holding-time distributions is rather general since it can be applied to
any distribution on non-negative reals, it suffers from the fact it may need a vast number of
phases, so that the control design and analysis of S-MJLS can be computationally infeasible
(see [20]). On the other hand, the approach presented in this paper, being specific to the
Erlang distribution, leads to very computationally efficient tools for the control design and
analysis problems.

This paper is structured as follows. The formulation of an S-MJLS and its basic properties are
presented in Section 3.2, together with a brief description of the Erlang distribution. This section
also shows how stability and H2 performance conditions for an S-MJLS are obtained by solving a
convex problem for an MJLS equivalent system, which is the approach proposed in this paper. In
Section 3.3 the problem of H2 output feedback design for S-MJLS with Erlang distributed dwell
times is addressed by using the equivalent MJLS approach and cluster-dependent design conditions.
Then, illustrative examples are introduced in Section 3.4 to validate the main results presented in
the previous sections. Finally, concluding remarks are presented in Section 3.5.

At last, the notation used throughout the text is now discussed. The transpose of real matrices
or vectors is indicated by (.)′. The trace of a square matrix X is denoted by tr(X), and the symbol •
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represents the symmetric blocks in a partitioned matrix. For a square matrix G we define He(G) =

G+G′. The set of natural numbers is denoted by N. On a probability space (Ω, F , P), the symbol
E indicates mathematical expectation and, for A ∈ F , 1A represents the indicator function in A,
that is, 1A(ω) = 1 if ω ∈ A, 0 otherwise. In addition, for any stochastic signal ξ(t) defined in the
continuous-time domain, the quantity ∥ξ∥22 =

∫∞
0
E
[
ξ(t)′ξ(t)

]
dt is its squared norm. The class of

all signals ξ(t) ∈ Rr, with t ∈ R+, such that ∥ξ∥22 is finite is denoted by Lr
2. Finally we denote by

o(h) any function such that limh→0 o(h)/h = 0.

3.2 Erlang Distribution, Semi-MJLS and Equivalent MJLS

3.2.1 Erlang Distribution and Semi-MJLS

We begin this sub-section by recalling some properties of the Erlang distribution with pa-
rameters (κ,λ) [28]. These two positive parameters define a family of continuous probability dis-
tributions with support x ∈ R+. The parameter κ is a positive integer that specifies the structure
of the distribution, and the positive real number λ defines its rate of decay. The probability density
function of the Erlang distribution is

f(x; (κ,λ)) =

 0, x < 0

λκxκ−1e−λx

(κ− 1)!
, x ≥ 0.

where (λx)n := 1 for (x,n) = (0,0). For the specific case of κ = 1, the Erlang distribution reduces
itself to the exponential distribution with parameter λ. Moreover, for the general case, it is the
distribution of the sum of κ independent exponential variables with the same parameter λ each.
This is the key property that will be exploited in the sequel.

Let us now define the continuous semi-Markov jump linear system with Erlang dwell times
that will be considered in this paper. According to [35], a semi-Markov process may be viewed as a
stochastic process {θ(t); t ≥ 0} that, after having entered a state i at a time Tk, randomly determines
its length of stay τk for transition out of this state sampled from a probability density function fi(τ),
and also randomly determines the next state j ̸= i based on state transition probabilities P = [pij],
where

∑
j pij = 1 for all i, pii = 0, jumping thus to state j at time Tk+1 = Tk + τk. The length of

stay τk is known as the dwell time.
In what follows we will assume that {θ(t); t ≥ 0} is a semi-Markov process taking values

in a finite set N = {1,2, . . . ,N} such that for each i ∈ N , the dwell time after a jump to the
state i has an Erlang distribution with parameters (κi,λi) (that is, fi(τ) = f(τ ; (κi,λi))). Therefore
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{θ(t); t ≥ 0} is characterised by the positive integer parameters κi, jump rates λi, i ∈ N , and
transition probability matrix P = [pij]. The initial probability distribution of θ(0) will be defined
by µ = (µ1, . . . ,µN), so that Prob{θ(0) = i} = µi.

On a probability space (Ω,F ,P) consider the continuous-time semi-Markovian jump linear
system (S-MJLS):

G :

 ẋ(t) = Aθ(t)x(t) + Eθ(t)w(t),

z(t) = Cθ(t)x(t)
(3.1)

where x(t) ∈ Rn is the state vector, w(t) ∈ Rm is the external perturbation vector, z(t) ∈ Rp is
the output vector to be controlled, and {θ(t), t ≥ 0} is a semi-Markovian continuous-time process
with Erlang dwell times as defined above. For each i ∈ N , we have that Ai ∈ Rn×n, Ci ∈ Rp×n

and Ei ∈ Rn×m. Notice that a conventional MJLS is a particular case of the S-MJLS, obtained
whenever κi = 1 ∀i ∈ N .

Associated with the S-MJLS (3.1) there are two important definitions: stochastic stability and
theH2 norm.

Definition 3.1. Consider the autonomous version of system G, that is, w := 0. If ∥x∥22 =∫∞
0
E(∥x(t)∥2))dt < ∞ for any initial condition x(0) = x0 and θ(0) = θ0, then we say that G

is stochastically stable.

Definition 3.2. Consider that G is stochastically stable. We define ∥G∥2, theH2 norm of G, as

∥G∥22 =
∑
i∈N

m∑
s=1

µi∥zs,i∥22, (3.2)

in which zs,i(t) is the output z(t) in (3.1) generated by the impulsive input w(t) = esδ(t) and by
the initial conditions x(0) = 0 and θ0 = i; here, es is the s-th column of the identity matrix of order
m.

3.2.2 Equivalent MJLS

Based on the fact that the Erlang distribution is the sum of independent exponential dis-
tributions, our approach to developing stability and performance conditions for an S-MJLS with
Erlang-driven dwell times G is to devise an equivalent MJLS G′ and use it to evaluate stability and
performance, as such properties are widely available for such stochastic systems [4]. We begin by
defining the equivalent Markov process to an Erlang Semi-Markov process.
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Definition 3.3. Let {θ(t); t ≥ 0} be the Erlang semi-Markov process taking values in N as de-
fined in sub-section 3.2.1, with parameters (κi,λi) and transition probability matrix P = [pij].
Set λij = λipij for i,j ∈ N , i ̸= j, and λii = −λi. Consider the new state space NZ =

{(1,1), . . . ,(1,κ1), . . . ,(N,1), . . . ,(N,κN)} and define the equivalent continuous-time Markov pro-

cess Z(t) = (Z1(t),Z2(t)) taking values in NZ as follows. For i ∈ N , s = 1, . . . ,κi − 1, the
transition probabilities of Z(t) are

Prob{Z(t+ h) = (i,k) | Z(t) = (i,s)} =

=


λih+ o(h), k = s+ 1

1− λih+ o(h), k = s

0, otherwise,

(3.3)

and, for s = κi,

Prob{Z(t+ h) = (j,ℓ) | Z(t) = (i,κi)} =

=


λijh+ o(h), j ̸= i, ℓ = 1

1− λih+ o(h), j = i, ℓ = κi

0, otherwise.

(3.4)

According to Definition 3.3, whenever the process is Z(t) = (i,s), s = 1, . . . ,κi − 1, a jump
to (i,s+ 1) will occur with jump rate λi, and if Z(t) = (i,κi), a jump to (j,1) will occur with jump
rate λij = pijλi. Therefore, with Z(t) = (Z1(t),Z2(t)), we have that θ(t) = Z1(t) represents the
mode of the semi-Markov model, and Z2(t) represents the counter of the exponential jumps that
have occurred since the last jump to Z1(t). Notice that if Z(t) = (i,κi) then the next jump will
occur at the rate λi to a state j with probability pij and the counter on the number of exponential
jumps is re-set to 1. Thus, by coupling the state i with a counter of the κi exponentially distributed
jump times with rate λi, we emulate the behaviour of semi-Markov process {θ(t)} with Erlang
distributed dwell times with parameters (κi,λi), as θ(t) = Z1(t). This is the key idea behind the
Definition 3.3.

Example 3.1. Let us consider an Erlang semi-Markov process with 3 modes, that is,N = {1,2,3}.
Suppose that the Erlang distributed dwell times associated with these modes have parameters
λ1 = 5, λ2 = 8, λ3 = 4 and κ1 = 1, κ2 = 2, κ3 = 3. Therefore for this case we have
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NZ = {(1,1),(2,1),(2,2),(3,1),(3,2),(3,3)}. The transition matrix is given by

P =

 0 0.7 0.3

0.4 0 0.6

0.5 0.5 0

 .

and the transition rate matrix ΛZ for the Markov process Z(t), as defined in (3.3) and (3.4), is given
by

ΛZ =



−5 3.5 0 1.5 0 0

0 −8 8 0 0 0

3.2 0 −8 4.8 0 0

0 0 0 −4 4 0

0 0 0 0 −4 4

2 2 0 0 0 −4


.

Figure 3.1 shows the Markov diagram of Z(t) where S1 = S ′
1 = (1,1), S ′

2 = (2,1), S ′
3 = (2,2),

S2 = S ′
2 ∪ S ′

3, S
′
4 = (3,1), S ′

5 = (3,2), S ′
6 = (3,3), S3 = S ′

4 ∪ S ′
5 ∪ S ′

6.

S1

S2S3

S′1

S′2

S′3

S′4

S′5

S′6

p12

p13

p21

p23

p31

p32

Figure 3.1: Markov diagram of the process Z(t) presented in Example 3.1. The Erlang semi-
Markov process θ(t) = Z1(t) is represented by the red dashed “supermodes” S1,S2 and S3 and
by the transition probabilities pij (remember that at the state Si the dwell time for the next jump has
an Erlang distribution with parameters κi and λi). The Markov process Z(t) is represented by the
round modes S ′

1, · · · ,S ′
6, which now have exponentially distributed dwell times. Note that the inner

arrows, i.e., the arrows that link modes associated with the same “supermode” Si, are transitions
with probability one, counting the number of exponentially distributed jumps.
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Remark 3.1. It is important to note that this equivalence relationship has a trade-off in complexity.
Indeed, the original Erlang semi-Markov process θ(t) has a smaller number of nodes but more com-
plex stochastic properties; on the other hand, the Markov process Z(t) has much simpler stochastic
properties, but this gain comes with a toll of dealing with a more significant number of modes. Con-
vex optimisation techniques allow us to deal with both the original formulation, as done in [8] with
SoS-based conditions, as well as the MJLS-equivalent, as will be done in the sequel with LMIs.

Bearing Definition 3.3 in mind, and defining Āik = Ai, Ēik = Ei, C̄ik = Ci, (i,k) ∈ NZ , we
can re-write system (3.1), now in terms of the Markov process Z(t), as follows:

G′ :

 ẋ(t) = ĀZ(t)x(t) + ĒZ(t)w(t),

z(t) = C̄Z(t)x(t).
(3.5)

Notice that if the initial condition µ′
ik for Z(t) satisfies

µ′
i1 := Prob{Z(0) = (i,1)} = µi = Prob{θ(0) = i},

µ′
ik := Prob{Z(0) = (i,k)} = 0, k = 2, . . . ,κi,

(3.6)

then θ(t) = Z1(t) for all t ≥ 0, so that ĀZ(t) = AZ1(t) = Aθ(t), and similarly ĒZ(t) = Eθ(t),
C̄Z(t) = Cθ(t) for all t ≥ 0. Therefore we conclude that system G and G′ are equivalent in the
sense that the dynamics of x(t) and z(t) can be equivalently described by (3.1) or (3.5) with initial
condition given in (3.6). Finally, notice that, as the system dynamic behaviour does not change
inside each cluster, such equivalences could be extended to a more general nonlinear scenario.

Conditions for the stochastic stability of (3.1) and to calculate an upper bound for the H2

norm are derived next, based on the results for continuous-time MJLS.

Theorem 3.1. For some given ρ > 0, system G in (3.1) is stochastically stable and ∥G∥22 < ρ iff

there exist Sik ≻ 0, (i,k) ∈ NZ , such that the linear matrix inequalities below are satisfied:∑
i∈N

µitr(E
′
iSi1Ei) < ρ, (3.7)

and for i ∈ N , k = 1, . . . ,κi − 1,

A′
iSik + SikAi + λi(Sik+1 − Sik) + C ′

iCi ≺ 0, (3.8)

A′
iSiκi

+ Siκi
Ai + λi

(
N∑
j=1

pijSj1 − Siκi

)
+ C ′

iCi ≺ 0. (3.9)
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Proof: From Lemma 3.37 and Theorem 5.4 in [4], considering the MJLS (3.5) with transition rates
as in (3.3), we have that there exist Sik ≻ 0, (i,k) ∈ NZ satisfying∑

(i,k)∈NZ

µ′
iktr(Ē

′
ikSikĒik) < ρ, (3.10)

He
(
SikĀik

)
+ λi(Sik+1 − Sik) + C̄ ′

ikC̄ik ≺ 0, k = 1,...,κi − 1, (3.11)

He
(
Siκi

Āiκi

)
+ λi

(
N∑
j=1

pijSj1 − Siκi

)
+ C̄ ′

iκi
C̄iκi
≺ 0, (3.12)

iff G′ is stochastically stable and ∥G′∥22 < ρ. From Āik = Ai, Ēik = Ei, C̄ik = Ci, (i,k) ∈ NZ ,
and the initial condition (3.6), it is immediate to see that (3.10), (3.11), (3.12) can be re-written
respectively as in (3.7), (3.8), (3.9). From the equivalence between the systems G′ and G we have
that G′ is stochastically stable iff G is stochastically stable. From Definition 3.2 and considering
the initial condition as in (3.6), (3.2) implies that

∥G′∥22 =
∑

(i,k)∈NZ

m∑
s=1

µ′
ik∥zs,(i,k)∥22 =

∑
i∈N

m∑
s=1

µi∥zs,(i,1)∥22 = ∥G∥22,

so that ∥G∥22 = ∥G′∥22, completing the proof. 2
Remark 3.2. Note that the analysis conditions for Erlang S-MJLS presented in Theorem 3.1 de-
pend on the symmetric matrices Sik, (i,k) ∈ NZ . If one wishes to work with less variables, more
conservative conditions can be restated by imposing Sik+1−Sik = ∆i, k = 1, · · · ,κi− 1, to (3.11)
and (3.12). In this case, the design variables become Si1 and ∆i, i ∈ N . The same argument can be
adapted for the design conditions.

3.3 Output H2 Control for Erlang S-MJLS

In this section we consider the following controlled representation of system (3.1),

Gc :


ẋ(t) = Aθ(t)x(t) + Bθ(t)u(t) + Eθ(t)w(t),

y(t) = Fθ(t)x(t)

z(t) = Cθ(t)x(t) +Dθ(t)u(t)

(3.13)

where u(t) ∈ Rr is the control vector and y(t) ∈ Rs is the measurable output vector (n ≥ s). For
each i ∈ N , we have that Bi ∈ Rn×r, Fi ∈ Rs×n and Di ∈ Rp×r. We recall that {θ(t), t ≥ 0} is
the Erlang semi-Markovian continuous-time process as defined in Section 3.2.
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We will consider here an output cluster-dependent control problem for Erlang S-MJLS. By
cluster we mean thatN can be written as the union of M disjoint setsNi (clusters), with 1 ≤M ≤
N , that is, N = ∪M

i=1Ni, with Ni ∩ Nj = ∅, i ̸= j. We set M = {1, . . . ,M} and the function
g : N → M such that g(i) = ℓ whenever i ∈ Nℓ, that is, g(i) =

∑M
ℓ=1 ℓ1Nℓ

(i). In other words,
g(θ(t)) represents the cluster where the semi-Markov process θ(t) belongs to at time t. We will
assume that the controller u(t) will only have access to y(t) and g(θ(t)), in the following form:

u(t) = Kg(θ(t))y(t) = Kg(θ(t))Fθ(t)x(t), (3.14)

where Kℓ ∈ Rr×s, ℓ ∈M, are the feedback gains to be designed.

Remark 3.3. Note that the cluster control problem considered here includes, as particular cases,
the following setups:

• Mode-dependent control if M = N , Ni = {i};

• Mode-independent control if M = 1 and g(i) = 1 ∀i ∈ N .

Furthermore, the state-feedback control problem can also be recovered whenever one has Fi = I ,
i ∈ N .

Let us now introduce the following notation, for i ∈ N :

Ãi = Ai +BiKg(i)Fi, C̃i = Ci +DiKg(i)Fi (3.15)

so that (3.13) can be re-written as

Gc :

 ẋ(t) = Ãθ(t)x(t) + Eθ(t)w(t),

z(t) = C̃θ(t)x(t).
(3.16)

TheH2 output cluster-dependent control problem we want to study is as follows.
H2 output cluster-dependent control problem: Find {Kℓ; ℓ ∈ M} such that system Gc as

defined in (3.16) is stochastically stable and ∥Gc∥22 < ρ for some given ρ > 0.

Remark 3.4. Optimal H2 mode-dependent state-feedback control design conditions for MJLSs
have been known for about 20 years (see for instance [3, 4] and references therein). As our main
goal is to provide H2 optimal control design conditions for Erlang S-MJLS, it seems natural to
exploit once again the relationship between an S-MJLS and its MJLS-equivalent to that end, as
proposed in Section 3.2. However, each mode in the S-MJLS G is mapped onto κi modes in its
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MJLS-equivalent G′. That means the same feedback gain must be designed for those κi modes in
this equivalent-based control design approach, as these subsystems are indistinguishable from the
original problem.

The following assumption will be required to design the output cluster-dependent controller.

Assumption 3.1. For each i ∈ Nℓ, there exist a non-singular matrix Tℓ such that

FiTℓ =
[
Is 0

]
. (3.17)

Notice that Assumption 3.1 will be satisfied if Fi is the same for each i ∈ Nℓ (that is, the
output matrices Fi are the same within each cluster Nℓ) and has full-row rank. The full-row rank
condition is standard in output-feedback design problems. In the mode-dependent control setting,
(3.17) is satisfied if Fi has full-row rank for all i ∈ N .

Before presenting our LMI design conditions, we must introduce the following notation.
Consider n× n matrices Xik ≻ 0, (i,k) ∈ NZ , and set for each i ∈ N ,

Πi =
[√

λipi1I · · ·
√

λipii−1I
√
λipii+1I · · ·

√
λipiNI

]
,

Di = diag(X11, . . . ,Xi−11,Xi+11, . . . ,XN1).

Notice that (recall that pii = 0)

ΠiD
−1
i Π′

i − λiX
−1
iκi

= λi(
N∑
j=1

pijX
−1
j1 −X−1

iκi
). (3.18)

Theorem 3.2. For some given ρ > 0, suppose that there exist matrices Xik ≻ 0, (i,k) ∈ NZ ,

Wi ≻ 0, i ∈ N , Gℓ and Vℓ, ℓ ∈ M, and scalars ϵik > 0 such that the following inequalities are

satisfied (LMIs for ϵik > 0 fixed): ∑
i∈N

µiTr(Wi) < ρ, (3.19)[
Wi •
Ei Xi1

]
≻ 0, (3.20)
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−λiXiκi

• • •
0 −I • •

Xiκi
0 0 •

Π′
iXiκi

0 0 −Di

+He




AiTg(i)Gg(i) − Bi

[
Vg(i) 0

]
CiTg(i)Gg(i) −Di

[
Vg(i) 0

]
−Tg(i)Gg(i)

0



ϵiκi

I

0

I

0


′
 ≺ 0, (3.21)

and for k = 1, . . . ,κi − 1,


−λiXik • • •

0 −I • •
Xik 0 0 •
√
λiXik 0 0 −Xik+1

+He




AiTg(i)Gg(i) − Bi

[
Vg(i) 0

]
CiTg(i)Gg(i) −Di

[
Vg(i) 0

]
−Tg(i)Gg(i)

0



ϵikI

0

I

0


′
 ≺ 0, (3.22)

with Gℓ, for ℓ ∈M, as

Gℓ =

[
Gℓ1 0

Gℓ2 Gℓ3

]
. (3.23)

Then system Gc in (3.16) is stochastically stable and ∥Gc∥22 < ρ whenever the output cluster-

dependent controller (3.14) is applied with the feedback controller matrices Kℓ given by

Kℓ = −VℓG
−1
ℓ1 , ℓ ∈M. (3.24)

Proof: From (3.21) (or (3.22)) it follows that TℓGℓ + G′
ℓT

′
ℓ ≻ 0 and, since Tℓ is non-singular, we

get that Gℓ is non-singular. Therefore we have that Gℓ1 is non-singular as well, so that the inverse
in (3.24) is well defined. From (3.24) we have that Vℓ = −KℓGℓ1 so that (3.23) yields

Kℓ

[
Is 0

]
Gℓ =

[
Kℓ 0

]
Gℓ =

[
−Vℓ 0

]
. (3.25)

Combining (3.17) with (3.25), and recalling (3.15), it follows that

AiTg(i)Gg(i) − Bi

[
Vg(i) 0

]
= AiTg(i)Gg(i) +BiKg(i)

[
Is 0

]
Gg(i)

= AiTg(i)Gg(i) +BiKg(i)FiTg(i)Gg(i)

= (A+BiKg(i)Fi)Tg(i)Gg(i) = ÃiTg(i)Gg(i).

By using the same arguments as above we get that CiTg(i)Gg(i) − Di

[
Vg(i) 0

]
= C̃iTg(i)Gg(i).
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From this we can re-write (3.21) as

Φi +He
(
WiTg(i)Gg(i)J ′

iκi

)
≺ 0, (3.26)

where

Φi =


−λiXiκi

• • •
0 −I • •

Xiκi
0 0 •

Π′
iXiκi

0 0 −Di

 , Jiκi
=


ϵiκi

I

0

I

0

 , Wi =


Ãi

C̃i

−I
0

 .

By defining

Wi =


I 0 0

0 I 0

Ã′
i C̃ ′

i 0

0 0 I

 , (3.27)

we get that Wi has full rank and that W ′
iWi = 0. Therefore from (3.26) it follows that W′

iΦiWi ≺ 0,
which allows us to conclude that−λiXiκi

+ ÃiXiκi
+Xiκi

Ã′
i • •

C̃iXiκi
−I •

Π′
iXiκi

0 −Di

 ≺ 0. (3.28)

By applying the Schur’s complement in (3.28) we get that

−λiXiκi
+ÃiXiκi

+Xiκi
Ã′

i +Xiκi
ΠiD

−1
i Π′

iXiκi
+

+Xiκi
C̃ ′

iC̃iXiκi
≺ 0.

(3.29)

Multiplying (3.29) on the left and right hand side by X−1
iκi

it follows, from (3.18), that (3.9) holds,
after considering Si1 = X−1

i1 , Siκi
= X−1

iκi
. By repeating the same arguments as above we get from

(3.22) that

Φik +He
(
ŴiTg(i)Gg(i)Ĵ ′

ik

)
≺ 0, (3.30)
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where

Φik =


−λiXik • • •

0 −I • •
Xik 0 0 •
√
λiXik 0 0 −Xik+1


and Ŵi, Ĵik are defined similarly to Wi, Jiκi

, after appropriately changing the dimension of the zero
blocks, and replacing ϵiκi

by ϵik. Defining Ŵi as in (3.27), appropriately changing the dimension
of the identity matrix in the 4× 3 block, we get, as before, that Ŵ′

iΦikŴi ≺ 0, implying that−λiXik + ÃiXik +XikÃ
′
i • •

C̃iXik −I •
√
λiXik 0 −Xik+1

 ≺ 0. (3.31)

Applying the Schur’s complement in (3.31) results into

−λiXik + ÃiXik +XikÃ
′
i + λiXikX

−1
ik+1Xik +XikC̃

′
iC̃iXik ≺ 0. (3.32)

Multiplying (3.32) on the left and right hand side by X−1
ik it follows that (3.8) holds, after consid-

ering Sik = X−1
ik , Sik+1 = X−1

ik+1. Finally, by applying the Schur’s complement in (3.20) we get
that Wi ≻ E ′

iX
−1
i1 Ei = E ′

iSi1Ei so that from (3.19) we get that (3.7) is satisfied. Summing up, we
have shown that for Sik = X−1

ik , the inequalities (3.7), (3.8) and (3.9) are satisfied, so that the result
follows from Theorem 3.1. 2
3.4 Examples

We present here several examples to illustrate the results obtained in the previous section.

Example 3.2. Let us consider the same S-MJLS presented in Example 3.1 with the matrices

A1 =

[
0 1

0.2 −0.8

]
, A2 =

[
0 1

−0.5 −0.5

]
, A3 =

[
0 1

−1 −0.3

]
,

Ci = I and Ei =
[
1 1

]′
for i ∈ {1,2,3}. Let µ =

[
1 0 0

]
denote the distribution of the initial

mode, that is, µi = Prob(θ(0) = i). Note that the first mode in this system is unstable. In order to
assess the stability of G and calculate itsH2 norm, we use Theorem 3.1 to the MJLS-equivalent G′

and consider an LMI optimisation problem in which it is desired to minimise ρ over the variables
Sik ≻ 0, ρ > 0, satisfying (3.7)-(3.9). Solving this optimisation problem we obtain ∥G′∥22 =
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8.7862, implying that the S-MJLS G is stochastically stable and is such that ∥G∥22 = 8.7862.

Example 3.3. Let us reconsider Example 3.2, including one state-feedback control input (Fi = I)
such that B1 =

[
0 1

]′
, B2 =

[
1 1

]′
, and B3 =

[
1 0

]′
. We also include one extra output

channel, affected only by the control input, in a way that Di =
[
0 0 1

]′
, i ∈ {1,2,3}. We can

again define an MJLS equivalent system, similarly to what was done in Example 3.2. For the design
procedure, we have NZ with 6 virtual modes. From the results of Theorem 3.2, we solve the LMI
optimisation problem in which it is desired to minimise ρ over the variables Xik ≻ 0, (i,k) ∈ NZ ,
Wi ≻ 0, i ∈ N , Gi and Vi, i ∈ N , satisfying (3.19)-(3.22). This yields

K1 =

[
−0.1740
−0.9073

]′
, K2 =

[
−1.0238
−1.1440

]′
, K3 =

[
−1.0786
−0.0613

]′

and a guaranteed H2 cost of ∥G′
c∥22 ≤ 2.5771, whenever we take ϵ11 = 5, ϵ2k = 3, k = 1,2, and

ϵ3k = 15, k = 1,2,3. Closing the loop of the S-MJLS with these mode-dependent gains provide
∥Gc∥22 = 2.5342. We can also devise a mode-independent controller by imposing M = 1 and
g(i) = 1∀i ∈ N to the LMI optimisation problem described before. In this case, the design condi-
tions yield the controller gain K =

[
−0.9884 −0.2235

]
and the bound ∥G′

c∥22 ≤ 2.9698, when-
ever we take ϵ11 = 12, ϵ2k = 18, k = 1,2, and ϵ3k = 18, k = 1,2,3. For this gain, ∥Gc∥22 = 2.7348.

Example 3.4. Finally, let us consider the two-mode S-MJLS described in [8], with realisation
matrices

A1 =

[
0.7 −4.0
0.0 −7.0

]
, A2 =

[
−7.0 4.0

0.0 0.7

]
, E1 = E2 =

[
1

1

]
,

B1 = B2 =

[
0

1

]
, C1 = C2 =

[
I2

01×2

]
, D1 = D2 =

[
02×1

0.5

]
.

Following [8], we consider Erlang dwell times with parameters κ1 = κ2 = 3 and λ1 = λ2 = 5;
note that p12 = p21 = 1 in this example. We also take µ = [1 0].

Let us first compare the state-feedback design conditions proposed in this paper to the SOS-
based ones presented in [8]. As before, we solve the optimisation problem associated with Theorem
3.2 for ϵ11 = 2, ϵ12 = ϵ13 = 3, ϵ2k = 12, k = 1,2,3, and obtain the bound ∥G′

c∥22 ≤ 0.4773, ensured
by

K1 =
[
1.2127 −0.4145

]
, K2 =

[
0.0777 −2.5930

]
.

These gains yield the closed-loop performance ∥Gc∥22 = 0.4539. Thus, even using simpler, static
gains, we achieved performance similar to the one attained by the timer-dependent gains in [8],
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which ensured a guaranteedH2 cost of 0.4480 to the closed-loop system, validated by simulation.
In this example, we also illustrate the output-feedback problem. To this end, we consider the

outputs associated with F1 = −[1 0] and F2 = [1 1]. In this scenario, optimising the design
conditions in Theorem 3.2 for ϵ1k = 35, k = 1,2,3, ϵ21 = 5, ϵ22 = ϵ23 = 10, yields the guaranteed
cost ∥G′

c∥22 ≤ 1.8860, achieved by the gains K1 = −2.2677, K2 = −0.4890. When we close the
loop with these gains, we obtain the H2 norm of ∥Gc∥22 = 0.5855, which is consistent with the
performance bound obtained before.

3.5 Conclusions

In this paper, we presented a convex-optimisation based solution to theH2 Output and State-
Feedback Control problem considering Continuous Semi-Markov Jump Linear Systems with Er-
lang dwell time. Our method is based on an equivalent MJLS and provides (static) output state
feedback cluster-time-independent gains (when the only information for the process is on which
cluster it belongs to). Using an academic example, we show the output-feedback design conditions
proposed here can be applied to the state-feedback control problem and may obtain similar results
to the timer-dependent state-feedback control gains provided by SOS-based design conditions. Fu-
ture works will focus on more general dwell time distributions, theH∞ norm, the filter and dynamic
output-feedback problems, or the discrete-time semi-Markov case (see, for instance [32]).
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CHAPTER 4

Conclusions

The results obtained throughout the development of the research that culminated in this thesis
show that it is possible to develop control strategies for an S-MJLS with rational transition rates in
two different ways. The first one, introduced in Chapter 2, is straightforward and performed using
sum-of-squares optimisation. In this method, the imposition of structure (2.27), with polynomial
matrices Qi(h), results in the analysis conditions of Lemma 2.3, which provide an upper bound for
the H2 norm of the system. Note that, in a similar way as demonstrated in Example 2.2, although
the application of such conditions results in some level of conservatism, this can be attenuated by
increasing the degree of the polynomial elements that form the matrices Qi(h). Furthermore, the
structure mentioned above also enables the design of state-feedback control with gains that depend
not only on the mode of the system but also on its sojourn time, which is achieved by employing the
results of Theorem 2.2. Nevertheless, in the same way, as in the analysis, the application of these
results generates conservatism, which can again be reduced by raising the degrees of the polyno-
mials that constitute the matrix variables, as illustrated in Example 2.2. Moreover, the Example 2.1
shows that the dependence of the gains on the sojourn time, associated with the use of a suitable
degree for the polynomials, provides a controller that presents a performance subtly superior to that
designed applying the method based on equivalent MJLS.

The second approach, developed in Chapter 3, enables the stability analysis, the computation
of a guaranteed H2 cost, and the design of output-feedback control for an S-MJLS with Erlang-
distributed dwell times using the analysis and synthesis of an equivalent MJLS. Thus, even though
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the equivalent system has a more significant number of modes, as evidenced in Example 3.1, it has
more elementary stochastic properties, which allows obtaining the analysis technique presented
in Theorem 3.1, derived from the classical and computationally efficient results available in the
literature related to MJLS. In addition, the existing relationship between the equivalent system and
the original one permits the development of the output-feedback design conditions presented in
Theorem 3.2, which provide cluster-dependent controllers.

Therefore, although each of these approaches has its particularities, advantages and limita-
tions, both enable the stability analysis, the determination of an upper limit for the H2 norm and
the design of controllers for S-MJLS with rational transition rates, which constitute a more general
class of stochastic systems and, due to this, present a structure that increases the complexity of the
development process of these techniques. Moreover, both methodologies result in convex optimi-
sation problems, which can be solved efficiently using the methods already available for this class
of optimisation problems.

Finally, the results presented in this thesis expand the horizon of possibilities for future works.
For example, further research may extend the results developed here to the H∞ norm context and
address the filter problem. Furthermore, the interested reader can evaluate the possibility of obtain-
ing equivalent MJLS from S-MJLS with dwell times distributed according to distributions different
from the Erlang one, such as the Weibull distribution. At last, it is still possible to consider the
application of these methods in more general S-MJLS, that is, in those with non-rational transition
rates.
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