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Abstract: We use a coupled-wave theory analysis to describe an atomic

phase grating based on the giant Kerr nonlinearity of an atomic medium

under electromagnetically induced transparency. An analytical expression is

found for the diffraction efficiency of the grating. Efficiencies greater than
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1. Introduction

An electromagnetically induced grating (EIG) can diffract a probe beam into high order di-

rections. An EIG is formed when a standing wave pattern is imprinted on an atomic sample,

modulating the absorption or index of refraction of the atoms. In the former, the EIG is an am-

plitude grating, and in the latter, a phase grating. In either case, the main physical phenomenon

responsible for the grating is electromagnetically induced transparency (EIT) [1]. Under EIT,

an atomic medium becomes transparent to a resonant probe field by means of a stronger cou-

pling field acting on a linked transition. The atom also experiences a very steep dispersion near

resonance. Electromagnetically induced gratings find applications in all optical switching and

routing [2] and light storage [3, 4].

An atomic absorption grating was theoretically proposed for the first time in [5] and then ex-

perimentally demonstrated in cold [6, 7] and hot [2] atomic samples. In an electromagnetically-

induced absorption grating, alternating regions of high transmission and absorption are created

in the atomic sample, which act as an amplitude grating. Amplitude gratings in general are well

known for having a low diffraction power, as opposed to a phase grating, which disperses en-

ergy into higher diffraction orders much more efficiently [8]. A phase modulation can be added

to an atomic amplitude grating by detuning the probe field away from resonance, thus creating

a mixed grating [5].

For high diffraction efficiency, an ideal phase grating should, however, consist of a medium

that is completely transparent to the probe beam, but capable of imparting a π phase shift

across the probe beam. An atomic phase grating, based on cross phase modulation (XPM) of

the probe beam, was recently proposed by one of the authors [9]. By modulating the giant Kerr

nonlinearity the atomic medium experiences under EIT [10], the grating of Ref. [9] imparts a π
phase modulation to the probe field while simultaneously maintains a high probe transmission.

This phase grating was shown to diffract light efficiently, approaching the performance of an

ideal sinusoidal phase grating [8]. Furthermore, the phase grating can be created with weak

fields, possibly finding application in all-optical switching at low light levels. Alternatively, a

phase grating can also be induced in an atomic sample by modulating a weak microwave field

applied to a double dark-state system [11] or by using intensity-modulated images to create a

blazed transmission grating [12].

In the work described in [9], the atomic grating was treated in the Raman-Nath regime with

the probe beam entering the grating at normal incidence and producing several diffracted waves.

Diffraction efficiencies approaching 30% into the ±1 orders were predicted for a grating thick-

ness ℓ ≈ 160z0, where z0 = h̄ε0λγc/4πNµ2
ac is the linear absorption length in the absence of

EIT; N is the atomic density, µac is the electric dipole moment, and γc is the natural linewidth

of the atomic transition. For N = 1018 m−3, µac = 2.49× 10−29 Cm and γc = 2π × 9.8 MHz,

then ℓ ≈ 2 mm, which is three orders of magnitude larger than the grating period Λ ≈ 2 µm for

a probe wavelength λ = 589 nm, suggesting the grating is thick.

In the holographic and acoustic grating literature, a grating is considered thick if the parame-

ter Q of Klein and Cook [13], defined as Q = 2πλℓ/Λ2, is greater than 10. In the atomic grating

of Ref. [9], Q ≈ 1850. Therefore, that grating, in fact, can be considered thick. It should show

Bragg behavior and produce only one diffracted beam for Bragg angle incidence. Therefore,

even higher diffraction efficiencies than originally predicted in Ref. [9] should become possible

if the Bragg phase-matching condition is satisfied. Propagation of the incident and diffracted

light fields inside a thick grating, in the Bragg regime, is best described in terms of a coupled

wave analysis [14].

In this paper, we study the atomic phase grating described in Ref. [9] in light of coupled wave

theory. We derive an analytical expression for the diffraction efficiency of the grating and study

how the efficiency depends on the excitation parameters. To the best of our knowledge, this
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is the first time coupled wave theory is applied to describe an EIG. The paper is organized as

follows. In section 2 we discuss the atomic model for creating an electromagnetically-induced

phase grating. In section 3, we apply the coupled wave analysis to the atomic phase grating. We

present our results and discussion in section 4. Section 5 concludes the paper.

2. Atomic model for an electromagnetically-induced phase grating

Figure 1a illustrates the atomic model. It consists of a type N four-level atom being driven by

three cw lasers. Levels |c〉 and |d〉 are excited states that decay at rates γc and γd , respectively.

Level |a〉 is the ground state and |b〉 is a metastable state with negligible decay rate (γb ≈ 0).

These levels could be, for example, two hyperfine-split states of an alkaline atom. Levels |a〉
and |c〉 are connected by a probe beam with Rabi frequency Ωp and wavelength λ , while the

|b〉→ |c〉 transition is driven by a coupling beam (Rabi frequency Ωc). Both coupling and probe

beams are resonant with their respective transitions. The signal beam (Ω) is detuned from the

|b〉→ |d〉 transition by δ = ωbd −ω , where ωbd is the atomic transition frequency, and ω is the

signal optical frequency. We consider a homogeneously broadened medium.

The main element in the atomic model is the Λ type subsystem formed by levels |a〉, |b〉,
and |c〉. In the absence of the signal field, if γc > Ωc ≫ Ωp, two indistinguishable pathways to

probe absorption are created that interfere destructively. Probe absorption is canceled, and the

atomic medium becomes transparent to the probe field [1]. Furthermore, probe transparency is

accompanied by an increased steepness in the dispersion around resonance.
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Fig. 1. (a) The atomic model: An open four-level atom interacting with three laser beams:

probe (Ωp), coupling (Ωc) and signal (Ω). (b) Sketch of the probe- and signal-beam spatial

configuration with respect to the atomic sample showing the zeroth and first diffraction

orders. The coupling beam (not shown) is parallel to the incident probe beam.

With the signal field present, level |b〉 suffers an ac-Stark shift, which, because of the steep

dispersion, leads to a large change in the index of refraction at the probe frequency [1, 10]. It

can be shown that the induced polarization component at the probe frequency ωp is P(ωp) =
ε0χ(ωp)Ep(ωp), where [9, 10]

Re[χ] = (2Nµ2
ac/h̄ε0)

2(Ω/Ωc)
2δ

4δ 2 +[γd + γc(Ω/Ωc)2]2
,

Im[χ] = (2Nµ2
ac/h̄ε0)

γd(Ω/Ωc)
2 + γc(Ω/Ωc)

4

4δ 2 +[γd + γc(Ω/Ωc)2]2
. (1)

In deriving Eqs. (1) no approximations were made with respect to the magnitude of Ω, Ωc or δ .

The nonlinear atomic susceptibility χ is a function of two externally controllable parameters:

the signal detuning δ and the ratio of signal to coupling Rabi frequencies Ω/Ωc.

To simplify the notation, we define ∆ = δ/γc, R = Ω/Ωc, and Γ = γd/γc. In the limit of large
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signal detunings (∆ ≫ R,Γ), Eqs. (1) become:

Re[χ] = A
R2

2∆
,

Im[χ] = A
ΓR2 +R4

4∆2
, (2)

where A = 2Nµ2
ac/γch̄ε0.

As discussed in Ref. [10], in the limit that R≪ 1, this excitation scheme is capable of yielding

giant Kerr nonlinearities while keeping the linear susceptibilities identically zero for all fields.

The XPM phase shift induced on the probe by the signal field is ϕ = (πℓ/λ )Re[χ], where ℓ
is the medium length. The scheme is limited only by the small nonlinear absorption given by

α = (2π/λ )Im[χ], and long medium lengths are then possible. Phase shifts of the order of π
with single photons in the signal field were proposed. But large nonlinearities at low light levels

are also possible for short medium lengths if R & 1 as was experimentally observed in cold Rb

atoms in a magneto-optical trap under this same excitation scheme [15].

If now the signal field is composed of two waves overlapping at the atomic sample at an an-

gle, as shown in Fig. 1b, a standing wave is formed in the x direction. The signal Rabi frequency

becomes:

Ω(x) = Ωsin(πx/Λ), (3)

where π/Λ is the spatial frequency of the standing wave modulation, which is controlled by

the angle at which the two signal beams intersect. Throughout our analysis, we will consider

Λ = 4λ , without loss of generality. The signal-to-coupling Rabi frequency ratio R also becomes

modulated at this same spatial frequency. As a result, a spatial modulation is introduced to the

atomic susceptibility: χ = χ(x), creating a grating on which the probe beam can diffract.

Substituting Eqs. (3) into (2), we find

Re[χ] = Aσsin2(πx/Λ), (4)

Im[χ] = Aα2sin2(πx/Λ)+Aα4sin4(πx/Λ), (5)

where σ = R2/2∆ is related to the XPM phase shift ϕ , while α2 = ΓR2/4∆2 and α4 = R4/4∆2

are related to the nonlinear absorption coefficient α . Both the real and imaginary parts of the

susceptibility are modulated by the signal standing wave. Since Im[χ] determines the absorp-

tion, modulation of Im[χ] gives rise to an amplitude grating in the atomic sample. Re[χ] is

related to the index of refraction, and a modulation in Re[χ] generates a phase grating.

3. Coupled wave analysis

To calculate the diffraction efficiency of the EIG, we apply the coupled wave analysis developed

for thick hologram gratings by Kogelnik [14]. This analysis considers a monochromatic light

incident on the hologram grating at or near the Bragg angle. Similarly to Ref. [14], we write

the total probe field inside the atomic grating as the sum of a fundamental mode S0(z) and a

first-order diffracted mode S1(z):

E(x,z) = S0(z)e
i~ρ0·~x +S1(z)e

i~ρ1·~x, (6)

where ~ρ0,1 are the propagation vector of the zeroth (first) diffracted order, respectively. The

two waves exchange energy as they propagate inside the atomic sample, and their complex

amplitudes S0,1 vary along z.

The coordinate axes are defined as shown in Fig. 2a. Both x and z axes are in the plane of

incidence and the y-axis is perpendicular to the paper. The grating vector K is oriented along
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the x-axis. Although the signal standing wave is modulated at a spacial frequency equal to π/Λ,

the atomic susceptibility (and consequently, the grating) is modulated at twice that frequency

as can be seen by making use of the trigonometric identity sin2 u = (1− cos2u)/2 in Eq. (5).

Therefore, the length of the grating vector is K = 2π/Λ. The probe beam enters the grating at

an angle θ , with respect to the z axis, at or near Bragg incidence. The probe field is polarized

perpendicularly to the plane of incidence, along the y-axis. Figure 2b shows the propagation

(a) (b)
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S
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Fig. 2. (a) Illustration of the thick atomic grating showing the probe’s angle of incidence θ ,

the grating vector ~K, the grating period Λ, and the grating thickness ℓ. (b) Vector diagram

showing the relation between the zeroth- and first-order propagation vectors and the grating

vector.

vectors ~ρ0,1, defined as

~ρ0 =





ρ0x

0

ρ0z



 = β





sinθ
0

cosθ



 (7)

and

~ρ1 =





ρ1x

0

ρ1z



 = β





sinθ −K/β
0

cosθ



 , (8)

where β = 2π/λ is the free-propagation wave number. Forced by the grating, the two vectors

satisfy

~ρ1 =~ρ0 −~K. (9)

For incidence at the Bragg angle θB, where

sinθB = K/2β = λ/2Λ, (10)

the length of the two vectors will be equal to the free propagation constant: ρ0 = ρ1 = β . For

Λ = 4λ , the Bragg angle is θB ≈ 7.2◦.

Inside the atomic medium, the probe electric field E(x,z) satisfies the scalar wave equation

∇2E +β 2(1+ χ)E = 0. (11)

The coupled wave equations for the S0 and S1 fields are obtained by substituting Eq. (6) into

(11), combined with (9). We then compare terms with equal exponentials (ei~ρ0·~x and ei~ρ1·~x).

Neglecting terms in ~ρ0 +~K, ~ρ1 −~K and the other higher diffraction orders, after much algebra,

we find

S
′′

0 +2iρ0zS
′

0 +(2κβ + iβψ1)S0 = (κβ + iβψ2)S1,

S
′′

1 +2iρ1zS
′

1 +[2κβ + iβψ1 +(β 2 −ρ2
1 )]S1 = (κβ + iβψ2)S0, (12)

#139048 - $15.00 USD Received 1 Dec 2010; revised 12 Jan 2011; accepted 12 Jan 2011; published 18 Jan 2011

(C) 2011 OSA 31 January 2011 / Vol. 19,  No. 3 / OPTICS EXPRESS  1940



where κ = σ/4z0, ψ1 = (α2 +3α4/4)/2z0 and ψ2 = (α2 +α4)/4z0.

Assuming a slow transfer of energy between the two diffraction orders, the second derivatives

in Eqs. (12) can be neglected. And the coupled wave equations become

(cosθ)S
′

0 +αAS0 = −iκAS1, (13)

(cosθ)S
′

1 +(αA − iϑ)S1 = −iκAS0. (14)

where κA = (κ + iψ2)/2, αA = (−2iκ +ψ1)/2 and ϑ = (β 2 −ρ2
1 )/2β . The coupling constant

κA is main parameter in the coupled wave analysis since it couples the propagation dynamics of

the two waves. It depends on both the XPM phase shift through σ and the nonlinear absorption

through α2,4. Because of the coupling, the two waves exchange energy as they propagate inside

the grating. In the absence of the signal field (R = 0), there is no coupling between S0 and

S1 (κA = 0), and therefore no diffraction. Changes of wave amplitude because of absorption

are related to Re[αA], while Im[αA] changes the phase of the waves due to XPM between the

signal and probe fields. When the incident probe field enters the atomic sample at an angle

different from the Bragg angle (θ 6= θB), the diffracted wave S1 is shifted out of phase with

S0 by an amount proportional to ϑ , thus decreasing the interaction between the two waves. At

Bragg incidence ϑ = 0, and the two waves propagate in phase. Our analysis of the atomic phase

grating is based on these coupled equations, which govern the propagation of the zeroth and

first diffracted orders inside the atomic grating.

Solutions to Eqs. (13) and (14) are of the form

S0(z) = A0 exp(ξ0z)+B0 exp(ξ1z), (15)

S1(z) = A1 exp(ξ0z)+B1 exp(ξ1z), (16)

where A0,1 and B0,1 are constants. Substituting Eqs. (15) and (16) into the coupled wave equa-

tions, we obtain the wave numbers

ξ0,1 =
(iϑ −2αA)± i

√

ϑ 2 +4κ2
A

2cosθ
, (17)

with the plus sign corresponding to ξ0 and the minus sign to ξ1.

To determine the constants A0,1 and B0,1, we need to specify the boundary conditions. We

take the amplitude of the incident wave to be unity S0(0) = 1 and that of the diffracted wave to

be zero S1(0) = 0 at z = 0. From these conditions, we find

A1 = −B1 = −
κA

√

ϑ 2 +4κ2
A

. (18)

At the Bragg angle, A1 = −B1 = −1/2.

Substituting Eqs. (18) and (17) into (16), we obtain a general expression for the amplitude of

the diffracted wave at the output (z = ℓ) of the atomic sample:

S1(ℓ) = −2i
κA

√

ϑ 2 +4κ2
A

eiϑℓ/2cosθ e−αAℓ/cosθ sin

[

√

ϑ 2 +4κ2
A(ℓ/2cosθ)

]

. (19)

This result is valid for an angle of incidence at or near the Bragg angle. Defining the diffraction

efficiency as

η = S1S∗1, (20)
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it is straightforward to substitute Eq. (19) into (20) to find η . At Bragg incidence,

η = exp [−(α2 +3α4/4)ℓ/2z0 cosθ ]
{

sin2[σℓ/8z0 cosθ ]+ sinh2[(α2 +α4)ℓ/8z0 cosθ ]
}

.
(21)

Equation (21) is the main result of this paper. In contrast to the approach of Ref. [9], the

coupled wave analysis provides an analytical expression for the grating’s diffraction efficiency.

Equation (21) shows the atomic grating is a lossy mix of a phase and an amplitude gratings. The

effect of the phase grating is given by the first term inside the curly braces, which depends on

the XPM modulation phase shift through σ . The effect of the amplitude grating is described by

the second term, dependent on the nonlinear absorption through α2 and α4. The total diffracted

intensity is a simple addition of the intensities diffracted by the phase and the amplitude grat-

ings. The exponential, which depends on the coefficients α2 and α4, is an absorption term that

limits the total diffraction efficiency, and it insures that Eq. (21) does not yield an efficiency

larger than 1. However, as we will discuss in the next section, the phase grating contribution to

diffraction is much larger than the amplitude grating contribution.

By inspecting Eq. (19) it can be seen that the diffracted intensity varies with the angle of

incidence θ . Away from the Bragg condition, the diffraction efficiency will be smaller than that

given by Eq. (21) by a factor of at least |κA/(ϑ 2 + 4κ2
A)1/2|2, where ϑ increases as θ deviates

from θB.

4. Numerical results and discussion

In what follows, we consider typical atomic parameters for the D2 line of Na at λ = 589 nm as

an example of an atomic system suitable for implementing the EIG under consideration here.

In this case, γd = γc = 2π ×9.8 MHz, µac = 2.49×10−29 Cm. We also take N = 1012 cm−3.

Figure 3 shows the first-order diffraction efficiency η = S1S∗1 as a function of medium length

(grating thickness). The medium length ℓ is given in units of the linear absorption length z0.

Bragg incidence is assumed, so η is calculated from Eq. (21). The diffraction efficiency varies

with the medium length as the signal-probe XPM phase shift changes. For a signal detuning

∆ = 140, a peak diffraction efficiency of approximately 70% at ℓ ≈ 153z0 is predicted. This

efficiency is significantly higher than the 30% efficiency reported in the Raman-Nath regime

in Ref. [9]. Because the nonlinear absorption decreases faster than the XPM phase shift with

signal detuning, increasing ∆ to 240 allows a higher peak diffraction efficiency: η ≈ 80%, at the

expense of a longer medium. The small nonlinear absorption prevents the grating from reaching

a 100% diffraction efficiency into the first order.

1000 300200 400

20

0

60
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80

h
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%
)

ℓ/z0

D = 140

D = 240

Fig. 3. The diffraction efficiency η as a function of medium length ℓ, in units of z0. A

signal detuning ∆ = 140 corresponds to approximately 2π ×1.4 GHz in Na. The signal-to-

coupling Rabi frequency ratio was set to R = 4.6.
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We next estimate the individual contributions from the phase and amplitude gratings to

the total diffraction efficiency. For ℓ = 153z0 and ∆ = 140, then σℓ/8z0 cosθ ≈ π/2 and

(α2 + α4)ℓ/8z0 cosθ ≈ 0.12. As a result, the diffracted intensity from the phase component

of the atomic grating is exp[−(α2 + 3α4/4)L/2z0 cosθ ]sin2[σℓ/8z0 cosθ ] ≈ 0.700, while that

of the amplitude component is exp[−(α2 + 3α4/4)ℓ/2z0 cosθ ]sinh2[(α2 + α4)ℓ/8z0 cosθ ] ≈
0.009. The small contribution of the latter is because, although the imaginary part of the

atomic susceptibility is also spatially modulated, its amplitude is very small. The reason is

that Im[χ] ∝ 1/∆2, while Re[χ] ∝ 1/∆. For a large enough signal detuning, the contribution of

the amplitude modulation can be significantly reduced, while that of the phase modulation is

kept relevant, particularly at large ℓ. As we previously pointed out, this atomic grating is mostly

a phase grating.

Figure 4a illustrates how the first-order diffraction efficiency depends on the ratio of signal-

to-coupling Rabi frequencies R. An optimum ratio appears to exist around R = 4.6 that max-

imizes the diffraction efficiency. A secondary ratio also exists that maximizes the efficiency,

but at a much smaller value. A similar result was also observed in the Raman-Nath regime [9].

But the analytical expression for the diffraction efficiency allows us to understand this result.

In Fig. 4b, the solid red line shows the modulation component of η [terms within braces in

Eq. (21)], while the dashed blue line shows only the absorption component [exponential in

Eq. (21)]. The diffraction efficiency plot in Figure 4a is obtained by multiplying the two curves

in Fig. 4b. Without absorption, there are several values of R for which σL/8z0 cosθ = mπ/2

(where m = 1,3,5, · · · ) and that maximizes η . The non-sinusoidal shape of the curve is due to

the R2 dependence of σ . But absorption of the probe beam (both zeroth and first order waves)

also increases with R. This is because if the signal field becomes too strong with respect to the

coupling field, the atom is shifted out of the EIT condition, causing it to absorb the probe beam.

At R ≈ 4.6, the signal beam is such that it optimizes the XMP phase shift to maximize diffrac-

tion without introducing a significant amount of absorption. But at R ≈ 8, when the second

maximum in the diffraction efficiency occurs, absorption is severe, limiting the efficiency.

In order for EIT to occur, the coupling field must satisfy |Ωc|
2 > γcγb. In the limit that the

ground state decoherence γb ≈ 0, the coupling field can be made arbitrarily weak. From the

results shown above, Ω & Ωc. So the atomic phase grating can be created with very weak

signal fields. In a real atomic sample, such as those in a magneto-optical trap, γb ≈ 2π ×1 KHz.

Therefore, a grating created with a signal field with Rabi frequency Ω > 2π × 455 KHz, will

efficiently diffract a weak probe beam. This signal level is well below saturation level and even

below the typical linewidth of lasers used in many EIT experiments, which would ultimately

limit Ω.
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Fig. 4. (a) The first-order diffraction efficiency η as a function of the ratio of signal-to-

coupling Rabi frequencies R for ℓ = 135z0, ∆ = 140γc. (b) Absorption (dashed blue line)

and modulation (solid red line) components of η as a function of R.
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And finally, we investigated how the diffraction efficiency depends on the angle of incidence.

Figure 5 shows the efficiency of the atomic grating as a function of angular deviation ∆θ ≡
θB−θ from the Bragg angle. It is seen that the grating is very sensitive to the angle of incidence;

with a deviation of less than 2 mrad from Bragg incidence, the efficiency drops to half its value

at Bragg angle. From [14], the acceptance angle (full width at half maximum) of a thick grating

can be estimated as 2∆θ ≈ Λ/ℓ. Because our grating thickness ℓ is very much larger than

its period Λ, its acceptance angle is very small. However, the angle between the two signal

beams that form the atomic grating may be adjusted to increase the grating period, increasing

the acceptance angle. The Bragg angle will decrease, but because cosθB ≈ 1, the diffraction

efficiency [Eq.(21)] will not be affected.
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Fig. 5. Diffraction efficiency η as a function of angular deviation ∆θ from Bragg incidence.

Here, R = 4.6, ∆ = 140 and ℓ = 153z0.

5. Conclusion

We investigated theoretically the properties of an electromagnetically-induced phase grating by

means of a coupled-wave theory analysis. The phase grating relies on the giant Kerr nonlinearity

an atom experiences under electromagnetically induced transparency. We derived an analytical

expression for the diffraction efficiency of the grating and showed that high diffraction effi-

ciencies (> 70%) of a resonant probe beam are possible. The large efficiencies are obtained

for Bragg incidence of the probe beam, and the diffraction efficiency decreases rapidly with

angular deviations from the Bragg angle.

To obtain the large diffraction efficiencies predicted in the theory, large optical depths

(> 150) are required. Such optical depths are easily obtained in atomic vapor cells, although

the effect of Doppler broadening would need to be included in the model for more precise pre-

dictions. We note, however, that our model can be applied to those cells in which the atomic

density is so high that the transitions become homogeneously broadened by collisions. Optical

depths as high as 160 have been observed experimentally in “dark-spot” sodium magneto-

optical traps [16], and optical depths approaching 300 in cold atomic Rb samples have been

recently produced by combining rapid, high-flow vapor injection with buffer gas cooling [17].

So the grating described here can be implemented with existing technology.
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