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RESUMO

PEREIRA, Rodrigo Lima. Otimização Topológica Acústica Multidomínio e Multimaterial

Baseada em uma Abordagem Evolucionária. 2023. Tese (Doutorado). Faculdade de Engen-

haria Mecânica, Universidade Estadual de Campinas, Campinas, Brasil.

O projeto de estruturas para atenuação sonora é um ramo relevante da engenharia, sendo de fun-

damental importância para a promoção do bem-estar das pessoas, principalmente após a indus-

trialização. Em grande parte das aplicações, cavidades internas a paredes de edifícios, aviões,

automóveis ou trens, por exemplo, são totalmente preenchidas com materiais porosos, visando

o aumento da dissipação de energia sonora no interior dos poros. No entanto, essa abordagem

nem sempre é a solução mais eficaz, já que a maioria desses meios atenua o som principalmente

em altas frequências. Ademais, o desenvolvimento de algoritmos de otimização topológica vem

recebendo muita atenção nos setores acadêmico e industrial, uma vez que a grande parte das

estruturas otimizadas são altamente eficazes, apresentando design contra-intuitivo e arquitetura

instigante. A reestruturação completa do domínio de projeto inicial ao longo da maximização

ou minimização de alguma função específica, respeitando restrições, é um dos aspectos mais

interessantes de tais abordagens. Com base nisso, este trabalho detalha uma nova metodologia

de otimização topológica acústica com aplicações no projeto de sistemas de isolação sonora

compostos por materiais rígidos, pororígidos (ou fluido equivalente), elásticos e poroelásti-

cos. Várias extensões para a abordagem Bi-directional Evolutionary Structural Optimization

(BESO) são propostas, a fim de levar em conta as particularidades das composições elasto-

poroelasto-acústicas e rígido-pororígido-acústicas aqui investigadas. A metodologia proposta

utiliza o método dos elementos finitos em todos os procedimentos numéricos, enquanto con-

sidera novos esquemas de interpolação material nas otimizações bifásicas e multifásicas. Neste

último cenário, as equações de Helmholtz e de Biot são consideradas, dependendo da aplicação.

Funções objetivo como nível de pressão sonora, coeficiente de absorção, perda de transmis-

são e potências dissipadas são aqui tratadas, respectivamente, no projeto de metassuperfícies

rígido-acústicas, sistemas poro-acústicos, silenciadores multi-câmaras e sistemas fechados de

atenuação sonora. Vários exemplos bidimensionais são apresentados e amplamente discutidos.

Palavras–chave: Otimização topológica, BESO, Material poroso, Sistemas Multifísicos,

Vibroacústica



ABSTRACT

PEREIRA, Rodrigo Lima. Multimaterial and Multidomain Acoustic Topology Optimization

Based on an Evolutionary Approach. 2023. Thesis (Ph.D.). School of Mechanical Engineering,

University of Campinas, Campinas, Brazil.

The design of structures for sound attenuation is a relevant engineering branch, as it is of funda-

mental importance for the promotion of people’s well-being, especially after industrialization.

In the majority of applications, cavities inside walls of buildings, airplanes, automobiles or

trains, for example, are fully filled with porous materials, aiming at the increase of sound en-

ergy dissipation inside the pores. However, this approach may not always be the most effective

solution, as much of these medium attenuate sound mainly at high frequencies. In addition to

this, the development of topology optimization algorithms has been receiving a lot of attention

in the academic and industrial sectors, since many designs are highly effective, counter-intuitive

and architecturally exciting. The complete restructuring of the initial design domain to max-

imize or minimize some specific function, while respecting constraints, is one of the mainly

interesting aspects of these approaches. On that basis, this work details a new acoustic topology

optimization methodology with applications on the design of soundproof systems composed

of rigid, pororigid (or equivalent fluid), elastic and poroelastic materials. Several extensions

to the Bi-directional Evolutionary Structural Optimization (BESO) approach are proposed, in

order to account for the particularities of the elastic-poroelastic-acoustic and rigid-pororigid-

acoustic investigated compositions. The proposed methodology uses the Finite Element Method

(FEM) along all numerical procedures, while establishes new material interpolation schemes in

the biphase and multiphase optimizations. In the later, Helmholtz and Biot’s expressions are

considered, depending on the application. Objective functions such as Sound Pressure Level

(SPL), absorption coefficient, Transmission Loss (TL) and Dissipated Power Levels (PLD) are

here treated in the design of acoustic-rigid metasurfaces, poro-acoustic systems, multi-chamber

mufflers and closed-space structures for sound attenuation, respectively. Several bidimensional

examples are presented and thoroughly discussed.

Keywords: Topology optimization, BESO, Porous materials, Multiphysics Systems,

Vibroacoustics
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1 | Introduction

In general terms, noise can be understood as an unpleasant, undesirable, unexpected or

unwanted sound, mainly originated from human activities (Singh; Davar, 2004) and dependent

on the excitation frequency of the source, the proximity to the receiver, the exposure duration,

among other factors (Bala; Verma, 2020). If divided into indoor and outdoor noise pollutants,

one can cite the sound emitted from televisions, refrigerators, blenders, vacuum cleaners and

washing machines as indoor, while the outdoor ones may come from road traffic, jet planes,

garbage trucks, construction sites, manufacturing processes, religious ceremonies, etc (Birgitta;

Lindvall, 1995; Bala; Verma, 2020).

Following a report from EEA (2019), around 12000 premature deaths and 48000 new

cases of ischemic heart disease per year may be attributed to long-term exposure to hazardous

noise levels in Europe alone. In this same region, chronic high annoyance is reported by 22

million people, while 6.5 million are said to have sleep disturbances. According to the same re-

port, mitigation actions are most effective at the source, being railroads or airports for example,

followed by combined policies to reduce air pollution and environmental noise. As specified

by Cavalcante et al. (2013), in Brazil, noise levels above 85 dB are considered to be an im-

minent risk to the health of workers, if no appropriate protection is used. Nevertheless, these

researchers have found that some lumber and metallurgical companies commonly reach more

than 100 dB in its industrial activities, exposing more than half of its workers to these damaging

noises.

As another example, military vehicles, aircrafts and ships mostly lack in noise control

treatments (Jokel et al., 2019), as well as offshore platforms in general. The reasons range from

the increase of carrying capacity, to reductions of weight for fuel savings. Consequently, in such

platforms, most of the crew is subjected to noise levels greater than 85 dB for about 8 hours a

day, reaching up to 110 dB on a daily basis. On board of typical military ships, the personnel

is also subjected to highly noisy environments (exceeding 100 dB), even when running basic

activities, such as doing laundry, getting meals or even sleeping.
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Despite the individual hearing protection that is usually applied by the companies and

military, and some Hearing Conservation Programs placed by Governments, it is perceptive that

more effective methods of noise reduction should be implemented for a better quality of life.

This can be achieved by using porous materials properly arranged over movable and immovable

compositions, as well as by building structures that prioritize Sound Pressure Level (SPL) re-

ductions in specific locations, while maintaining ventilation, such as in residential facades and

hospitals. But how these porous materials should be arranged to reduce noise levels in these

working places? How elastic/rigid structures should be built to increase acoustic comfort, while

maintaining permissibility? Topology optimization methods may offer some insight.

1.1 Structural Optimization

In an optimization problem, the main goal is to find the best possible solution among

the ones that satisfy a set of previously imposed constraints. It goes without saying that such

optimal result depends on the problem itself, which can be the minimization of costs of a fac-

tory or the maximization of efficiency of a specific machine, for example (Arora, 2015). In

an engineering perspective, the objective is to find the best performance of a particular struc-

ture, such as a bridge or space vehicle, while constrained by a certain weight, load capacity,

displacements, geometry, and so on (Xie; Steven, 1997).

To give a broader view of the optimization stage in the design process, Kirsch (1993)

presented the following roadmap:

(a) Formulation: Establishment of functional requirements that are paramount to the correct

use of the final structure.

(b) Conceptualization: The designer chooses the overall topology, material and type of struc-

ture to achieve the predefined functionalities.

(c) Optimization: Within the scope of the ideas gathered and the decisions made in the previ-

ous steps, the designer seeks, at this level, to find the best possible solution to the problem

at hand, while respecting the imposed constraints. Many are the ways to conduct this step;

by try-and-error or by the use of numerical simulations, for example.

(d) Detailing: Here the experience of the engineer is crucial to judge if the optimal result

fulfills the expectations of the company, the market and the regulatory institutions. If

necessary, the design should return to one of the previous steps for improvements.
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In any structural design optimization, the best possible solution is obtained by the

maximization or minimization of a performance function, e.g., mean compliance, stress norm

or vibration characteristics, named as objective function, Φ. The constraints are restriction

functions imposed to the optimization problem, being usually set in a form of inequality, g, or

equality, h, equations. The working domain is than described by the design variables, x, which

can change along the entire optimization process, beyond being continuous or discrete values

(Christensen; Klarbring, 2009; Arora, 2015). Therefore, a typical optimization problem can be

stated as,

Minimize: Φ, (1.1)

Subjected to:


g(x) ≤ 0,

h(x) = 0,

xl ≤ x ≤ xu,

(1.2)

where Φ, g = [g1(x), g2(x), ..., gng(x)]
T , h = [h1(x), h2(x), ..., hnh

(x)]T and x = [x1, x2, ..., xnx ]
T

are defined on <nx . The number of inequality and equality constraints are ng and nh, respec-

tively, while nx is the number of design variables; xl and xu are the lower and upper bounds of

x. (Bazaraa et al., 2006; Kim et al., 2002).

1.1.1 Types of Structural Optimization

Based on the geometrical and structural characteristics of the body to be optimized,

three are the types of structure optimization that are usually considered: size, shape and topol-

ogy, as illustrated in Fig. 1.1.

Figure 1.1 – The three optimization types, (a) size, (b) shape and (c) topology (Bendsøe; Sig-
mund, 2004)
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Particularly, size optimization concerns with changing the lengths and cross sectional

geometric properties of beams, trusses and frames, that are part of a larger structure, aiming to

enhance the observed system characteristic (Fig. 1.1(a)). This is the earliest form of structural

optimization, in a way that the domain is fixed and the finite element model of the structure do

not need to be modified (Bendsøe; Kikuchi, 1988; Rozvany et al., 1995).

In shape optimization (Fig. 1.1(b)), the contours of the structure are changed as to

promote the maximization or minimization of the objective function. In this case, the boundaries

are not broken, nor are new ones formed, in a way that the structural connectivity remains the

same (Christensen; Klarbring, 2009). Besides that, shape optimization is way more flexible

than the one based on sizing, as the finite elements need to be integrated to the course of the

optimization procedure (the domain changes, but the topology does not) (Haftka; Grandhi,

1986; Ding, 1986).

Not only combining both optimization types previously cited, but also expanding the

concept of “the best solution available”, the structural topology optimization (Fig. 1.1(c)) pro-

motes the search for the optimal distribution of material within the limits of the design domain,

while allowing the appearance and modification of internal cavities. In this scenario, it is com-

mon for the resulted design to be completely different from the initial one.

1.1.2 Structural Topology Optimization

With the possibility of using several iterative algorithms, structural topology optimiza-

tion techniques may provide the optimal material arrangement of a closed design space, even

thought its initial form is of arbitrary nature. The advantages of such approach are diverse,

ranging from economic savings (reductions of time invested in try-and-error simulations and in

raw materials used) to the improvement of basic structural aspects (increase of global stiffness

or a better distribution of stresses, for example) (Das et al., 2011).

Combining the use of homogenization techniques with structural optimization meth-

ods, Bendsøe and Kikuchi (1988) lead the field of topology optimization research in the late

1980s with its landmark paper entitled “Generating optimal topologies in structural design us-

ing a homogenization method”. Here, the idea of turning the optimization approach into a

material distribution problem emerged (Maute et al., 1999). From this groundbreaking work,

a high number of methodologies emanated such as the ones based on density (Bendsøe, 1989;

Zhou; Rozvany, 1991), level-set functions (Allaire et al., 2002; Wang et al., 2003), topological

derivative (Sokolowski; Zochowski, 1999), phase field (Bourdin; Chambolle, 2003), evolution-
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ary procedures (Xie; Steven, 1992; Yang et al., 1999), among several others (Sivapuram; Picelli,

2018; Ramamoorthy et al., 2021).

An important example among the ones cited is the density-based class of methods. In

these approaches, the entire domain, in which the topology optimization problem is based, is

discretized into several finite elements, with elemental or nodal design variables, xi, describing

the disposition of material along the given area, as can be seen in Fig. 1.2. The presence of a

material is treat as “full” (xi = 1) and its absence as “void” (xi = 0). Besides, the variable xi
is often called as density, or pseudo-density, and should not be confused with a true property,

such as the mass density (Dilgen et al., 2019).

full

Design domain

(xi = 0)(xi = 1)
void

Figure 1.2 – Basic example of a 0 – 1 topology (Maute et al., 1999)

By the definition of a power-law interpolation scheme, e.g. U(xi) = xζiU0, where

U(xi) is an investigated material property, ζ is a penalty coefficient, and xi is redefined as a

continuous design variable (0 ≤ xi ≤ 1), the Solid Isotropic Material with Penalization (SIMP)

method (Bendsøe, 1989) was able to simplify the homogenization approach and enhance the

convergence for full-void solutions. Nevertheless, in light of the relaxation of the original dis-

crete optimization problem to a continuous one, regions with intermediate materials, known

as gray areas, were also a common trait of the SIMP approach, despite of the penalization of

intermediate densities (ζ > 1 for most cases) (Sigmund; Maute, 2013).

Furthermore, the adoption of linear elements of low-order caused a few numerical is-

sues, such as the appearance of checkerboard patterns (Jog; Haber, 1996) and mesh dependence

(Sigmund, 1997), presenting challenges in the generation of reasonably manufacturable topolo-

gies. Propositions such as the use of numeric filters and stabilization schemes (Zhou; Rozvany,

1991; Bendsøe; Sigmund, 1999; Jog; Haber, 1996; Sigmund, 1997; Sigmund; Petersson, 1998)

were made in order to circumvent these problems. The relative success of this combination of

ideas revolutionized the field of research in topology optimization and propelled these numeri-

cal methods to be used in a wide range of applications, such as the design of a complete airplane

wing using more than 1 billion three-dimensional elements, carried out by Aage et al. (2017).

Also based on density, the methods entitled Evolutionary Structural Optimization (ESO),
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and Bi-directional Evolutionary Structural Optimization (BESO), have been widely considered

in applications concerning structural topology optimization due to their discrete behavior, ro-

bustness and ease of computational implementation. Being considered by Sigmund and Maute

(2013) as a discrete variation of the SIMP approach, these evolutionary class of methods also

make use of power-law interpolations and numeric filters for the calculation of the objective

function gradients. As a consequence, the generated topologies have well-defined boundaries,

despite of some convergence difficulties due to the discrete density updates.

As the BESO approach allows that materials be reintroduce into the design domain

if considered advantageous to the objective function, which is an enhancement to the ESO

approach that only removes material, and considering the expertise of the Laboratoy of Topol-

ogy Optimization and Multiphysics Analysis of UNICAMP on this topic of study, this work

proposes several modifications to the BESO basic algorithm (Huang; Xie, 2010a) in order to

consider acoustic, rigid, pororigid, elastic or poroelastic material elements in the design of

general soundproof system settings. Besides, many are the gaps that still exist in the implemen-

tation of topology optimization techniques involving multiple materials, domains, restrictions

and frequencies to achieve a greater proximity to real-world applications. This is even more

pronounced when considering evolutionary procedures applied in the design of soundproof sys-

tems. Thus, many of these gaps are here faced with the goal of generating systematic and

functional solutions for such situations.

1.2 Goals and Contributions

Since the main goal of this work is to contribute to the development of evolutionary

acoustic topology optimization methodologies in the design of general soundproof system set-

tings, three different BESO-based topology optimization studies are presented in paper-based

formats, shown in Chapters 4, 5 and 6. Most of these works were published in international

journals with the following bibliographic descriptions:

� International Journal Papers

Chapter 4: Pereira, R. L.; Lopes, H. N.; Pavanello, R. Topology optimization of acoustic sys-

tems with a multiconstrained BESO approach. Finite Element in Analysis and De-

sign, v. 201, p. 103701, 2022. https://doi.org/10.1016/j.finel.2021.103701

Chapter 5: Pereira, R. L.; Lopes, H. N.; Moura, M. S.; Pavanello R. Multi-domain acoustic

topology optimization based on the BESO approach: applications on the design of
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multi-phase material mufflers. Structural and Multidisciplinary Optimization, v. 66,

p. 25, 2023. https://doi.org/10.1007/s00158-022-03479-4

Chapter 6: Pereira, R. L.; Anaya-Jaimes, L. M.; Pavanello, R. Evolutionary topology opti-

mization approach to design multiphase soundproof systems with poroelastic media

(Manuscript submitted for publication), 2023.

On that basis, the original contributions may be synthesized as,

• Contribute to the dissemination of information about evolutionary topology optimization

techniques and the use of semi-phenomenological porous models in this context;

• Implement the Virtual Temperature Method (VTM) in the multiconstrained BESO algo-

rithm for connectivity of acoustic systems;

• Develop the multidomain BESO algorithm (mdBESO) and apply it in the design of mul-

tiphase muffler chambers;

• Adapt the BESO technique to be applied in the design of fully coupled acoustic, poroe-

lastic and elastic systems;

• Propose new material interpolation schemes to account for acoustic-pororigid-rigid and

acoustic-poroelastic-elastic relations;

• Propose several designs of soundproof systems with clearly defined topologies.

Moreover, beyond the aforementioned works produced in the current PhD period, a few

publications on international conferences were also made, usually prior to the journal papers.

Hence, these conference contributions are not comprised on the main body of the thesis due to

content overlap with the included ones, but being added to Appendix B in a chronological order

of publication. The bibliographic descriptions for these works are:

� International Conference Papers

• Pereira, R. L.; Anaya-Jaimes, L. M.; Pavanello, R. Design of periodic noise barriers

using the bi-directional evolutionary optimization method. In: e-Forum Acusticum.

v. 1, p.209–215, 2020. https://doi.org/10.48465/fa.2020.1068.

• Pereira, R. L.; Anaya-Jaimes, L. M.; Pavanello, R. Topology optimization of acoustic-

poroelastic-elastic structures for sound attenuation. In: 15th World Congress on

Computational Mechanics & 8Th Asian Pacific Congress on Computational Me-

chanics, 2022. https://doi.org/10.23967/wccm-apcom.2022.117
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• Pereira, R. L.; Pavanello, R. Topology optimization design of acoustic-poroelastic-

elastic structures by the BESO Approach. In: 8th International Symposium on Solid

Mechanics, 2022. https://doi.org/10.26678/ABCM.MECSOL2022.MSL22-0197

It is highlighted that the part of this work regarding the publication: Pereira, R.L.;

Lopes, H.N.; Pavanello, R. Topology optimization of acoustic systems with a multiconstrained

BESO approach. Finite Element in Analysis and Design, v. 201, p. 103701, (2022), is re-

produced with permission of Elsevier. Also, part of this work referring to the publication:

Pereira, R.L.; Lopes, H.N.; Moura, M.S.; Pavanello R. Multi-domain acoustic topology op-

timization based on the BESO approach: applications on the design of multi-phase material

mufflers. Structural and Multidisciplinary Optimization, v. 66, p. 25 (2023), is reproduced with

permission of Springer Nature (see Appendix C for a complete description of the copyright

clearances).

1.3 Thesis Organization

The organization of this thesis is presented as follows: In Chapter 1 the introduction

is given, with basic presentations of structural optimization types, their definitions and applica-

tions. In Chapter 2 the governing equations and the FEM procedures employed in the simula-

tion of Helmholtz, Biot and fluid-structure based domains are thoroughly detailed. Chapter 3

introduces the Bi-directional evolutionary Structural Optimization method following the mini-

mization of compliance example. General steps for the computational implementation are also

provided. A multiconstrained optimization methodology is presented in Chapter 4. Here, the

BESO algorithm is employed to solve two different acoustic topology optimization problems,

while considering the Virtual Temperature Method (VTM) to avoid seclusion of air holes inside

rigid and pororigid structures.

Chapter 5 displays the multiphase BESO-based methodology for the design of multido-

main systems, named as mdBESO. Acoustic-rigid and acoustic-pororigid material phases are

considered in the topology optimization of one-chamber mufflers, while the acoustic-pororigid-

rigid case is combined with the one, two and three-chamber scenario. In Chapter 6 the design

of closed-space systems for sound attenuation is treated, with acoustic, poroelastic, and elas-

tic material elements being part of the design process. The optimization problem is posed as

to maximize dissipated power levels, and different combinations of its structural, viscous and

thermal partitions, throughout single and multiple frequencies. Chapter 7 introduces further

discussions on the topics brought in previous chapters. Conclusions are drawn in Chapter 8.
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2 | Vibroacoustic Systems Governing
Equations

It is common to find in nature examples of interaction between bodies, at different

temperatures, subject to oscillatory pressures and even at unequal phases. In the same way, there

are many approaches to simulate such encounters, being purely numerical or using experimental

data. One of the most popular numerical approaches for solving complex structural problems is

called the Finite Element Method (FEM) (Cook et al., 2001). This technique consists in finding

the solution of a field problem, that is, a spatial distribution of one or more dependent variables

that are usually described in a form of differential or integral expressions. To apply the FEM, the

intricate observed domain is first subdivided into small parts, with well-defined geometry and

material characteristics, called elements. For these reduced regions, governing mathematical

equations are constructed with various boundary conditions, in order to contemplate the most

diverse relations between bodies. Many are the numerical simulations that can be performed,

even for multiphysics systems subjected to different loads at distinct moments. The possibilities

are very broad, being the bases of several works in sciences and engineering (Aage et al., 2017).

On that scenario, this chapter introduces the governing equations and the mathemat-

ical procedures employed in the discretization of Helmholtz, Biot and fluid-structural based

domains. In a step-wise manner, the Weighted Residuals Method is applied to these fundamen-

tal expressions, generating their weak forms (or variational formulations), to only then include

Galerkin’s procedures and the FEM to find the elemental information. Even though this chapter

has similar discussions to those found in sections number 2 of the embedded papers (Chapters

4, 5 and 6), the author has chosen to expand this theoretical background due to its key impor-

tance for a complete understanding of the methodologies proposed. Finally, it is remarked that

the properties of acoustic, poroelastic and elastic regions are mostly referred, in this chapter, by

the subscripts (·)a, (·)p and (·)e, respectively. The structural and fluid phases of the poroelastic

domain are subjected to the subscripts (·)s and (·)f .
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2.1 Helmholtz-based Media Formulation

In the frequency domain, the equation that governs a steady-state perfect fluid (invis-

cid, incompressible, homogeneous and isotropic) region, Ωa, with sound pressure as a time-

harmonic function (e jωt), may be written as the following scalar Helmholtz equation (Atalla;

Sgard, 2015),

∇ ·
(
∇pa
ρa

)
+
ω2

κa
pa = 0 with κa = ρac

2
a in Ωa, (2.1)

where ρa is the density, κa is the bulk modulus, pa is the pressure in an Eulerian field, ca is the

speed of sound, j is the imaginary unit (j2 = −1), ω is the angular frequency, t is time and ∇
is the gradient operator.

As a general aspect, the pressure field can be solved by the combination of equation

(2.1) with some of the following boundary conditions (Yoon, 2013),

Pressure → pa = p̄, over Γ1, (2.2)

Rigid wall → ∇pa · na = 0, over Γ2, (2.3)

Impedance → ∇pa · na
ρa

= −jωpa
Z0

, over Γ3, (2.4)

Particle acceleration → ∇pa · na
ρa

= ā, over Γ4, (2.5)

Particle velocity → ∇pa · na
ρa

= −jωv̄, over Γ5, (2.6)

where na is the outward unit normal vector to the acoustic domain; p̄, v̄ and ā are the imposed

pressure, particle velocity and particle acceleration, respectively. The symbols Γ1 to Γ5 refer to

the different boundary types of Ωa, in which Eqs. (2.2) to (2.4) are valid. The air characteristic

impedance is represented by Z0 = ρaca. The impedance matching between the inner and outer

acoustic fluids is simulated by a termination with practically no reflection of incident waves

(Eq. (2.4)), known as anechoic (Munjal, 2014).

The weak form of the boundary value problem defined by Eqs. (2.1) to (2.4) can then

be obtained by the adoption of the Weighted Residuals Method and the Divergence Theorem,

1

ρa

∫
Ωa

∇pa · ∇δpa dΩa −
ω2

κa

∫
Ωa

paδpa dΩa +

∫
Γ3

jωpa
Z0

δpa dΓ3

−
∫
Γ4

āδpa dΓ4 +

∫
Γ5

jωv̄δpa dΓ5 = 0,

(2.7)

where δpa is the test function. Usually, in the finite element implementation, the kinematic

boundary (Eq. (2.2)) is explicitly imposed on Γ1, while the rigid wall condition (Eq. (2.3)) is

automatically satisfied, hence not appearing in the above expression.
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The discretization of the field variable, pa, is established by the consideration of the

following forms,

pa =

Nel∑
i=1

Nap̂
i
a, (2.8)

∇pa =
Nel∑
i=1

(∇Na)p̂
i
a, (2.9)

where Na is the elemental shape function matrix regarding the fluid element domain, Ωi
a, and

p̂ia is the elemental pressure vector. The gradient operator ∇ is mathematically defined, in a

bidimensional perspective, as,

∇ =

{
∂/∂x

∂/∂y

}
. (2.10)

Following Galerkin’s approach, the test function and its gradient can be written in a similar

manner,

δpa =

Nel∑
i=1

Naδp̂
i
a, (2.11)

∇δpa =
Nel∑
i=1

(∇Na)δp̂
i
a, (2.12)

with δp̂ia being the test function vector defined in Ωi
a and Nel the number of elements contained

in the global domain. Applying the elemental forms of Eqs. (2.8) to (2.12) into (2.7), the kinetic

energy, compression and damping matrices are respectively obtained, in Ωi
a, as

Hi
a =

1

ρa

∫
Ωi

a

(∇Na)
T∇Na dΩ

i
a, (2.13)

Qi
a =

1

κa

∫
Ωi

a

NT
aNa dΩ

i
a, (2.14)

Di
a =

1

Z0

∫
Γi
3

NT
aNa dΓ

i
3. (2.15)

Also, the element load vector defined in Γi4 and Γi5 boundaries of Ωi
a is,

f̂ ia = ā

∫
Γi
4

NT
a dΓ

i
4 − jωv̄

∫
Γi
5

NT
a dΓ

i
5. (2.16)
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Following the standard finite element assembly procedure,

Ha =
Nel

A
n=1

Hi
a, (2.17)

Qa =
Nel

A
n=1

Qi
a, (2.18)

Da =
Nbc

A
n=1

Di
a, (2.19)

f̂a =
Nbc

A
n=1

f̂ ia, (2.20)

the acoustic dynamic system can finally be written,

(Ha + jωDa − ω2Qa)︸ ︷︷ ︸
Z

p̂a = f̂a, (2.21)

where ANel
n=1 and ANbc

n=1 are assembly operators, Nel is the total number of elements in the fluid

domain and Nbc is the total number of elements in the considered boundary. The global kinetic

energy, compression and damping matrices are represented by Ha, Qa and Da, while the global

fluid load and pressure vectors are f̂a and p̂a, respectively.

2.2 Poroelastic Media Formulation

According to the works of Biot (1956a) and Biot (1956b), a poroelastic media may

be viewed as a collection of fluid and structural phases superimposed in a homogenized man-

ner. In this theory, the existing pores are considered to be fully saturated with air, with the

elastic skeleton subjected to small displacements, and the entire poroelastic domain modeled as

isotropic. Since the mixed u/p approach, as proposed by Atalla et al. (1998) and later enhanced

by Atalla et al. (2001), is based on the macroscopic interstitial fluid phase pressures, pf , and

solid phase displacements, us, the porous medium may then be treated as homogeneous (Silva

Júnior, 2007; Bécot; Jaouen, 2013; Atalla; Sgard, 2015). Hence, for a time-harmonic motion,

the wave behavior is described, in the poroelastic medium, by the following relations,

∇ ·
¯
σ̂s + ω2ρ̃us + γ̃∇pf = 0, (2.22)

∇2pf + ω2 ρ̃22

R̃
pf − ω2 ρ̃22

φ2
γ̃∇ · us = 0, (2.23)

where the tilde symbol indicates a frequency-dependent and complex valued variable, ρ̃ is the

combined effective density, γ̃ is the coupling coefficient,
¯
σ̂s is the stress tensor of the porous

material in vacuum, ρ̃22 is related to the saturated fluid effective density, R̃ is the coupling

coefficient that account for volumetric changes in the fluid phase and φ is the porosity. To find
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the combined effective density, ρ̃, and the coupling coefficient, γ̃, one may write,

ρ̃ = ρ̃11 −
ρ̃212
ρ̃22

, (2.24)

γ̃ = φ

(
ρ̃12
ρ̃22

− Q̃

R̃

)
, (2.25)

with the individual effective densities being defined as,

ρ̃11 = ρ11 +
b̃

jω
, (2.26)

ρ̃22 = ρ22 +
b̃

jω
, (2.27)

ρ̃12 = ρ12 −
b̃

jω
. (2.28)

The homogenized densities ρ11 and ρ22 account for the inertia effects in the structural

and fluid phases, while ρ12 considers the interactions between the inertia forces of both phases.

The physical interpretation of b̃ may be divided into two aspects, depending on its real and

imaginary parts. The first is related to the dissipative effect of viscous forces, and the second to

the added mass effect that happens due to these same viscous interactions (Dazel et al., 2008).

Following Allard and Atalla (2009), these homogenized densities may also be expressed as,

ρ11 = (1− φ)ρs − ρ12, (2.29)

ρ22 = φρf − ρ12, (2.30)

ρ12 = − φρf (α∞ − 1), (2.31)

and,

b̃ = φ2σG̃, (2.32)

where φ is the porosity, α∞ is the tortuosity, σ is the static flow resistivity, ρf is the fluid phase

density and ρs is the solid phase density. As G̃ defines b̃, it also accounts for viscous effects.

Based on Johnson et al. (1987), this variable is stated as,

G̃ =

√
1 + j

4α2
∞η0ρfω

σ2Λ2φ2
, (2.33)

with Λ being the viscous characteristic length and η0 the dynamic viscosity of the interstitial

fluid. Related only to the structural skeleton, the stress tensor of the porous material in vacuum,

¯
σ̂s, also has a mathematical expression associated to it,

¯
σ̂s =

(
Ã− Q̃2

R̃

)
︸ ︷︷ ︸

Â

∇ · usI+ 2Ñ
¯
εs, (2.34)
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where I is the identity tensor,
¯
εs is the structural phase strain tensor, Ã is the first Lamé constant

of the poroelastic material and Ñ is the shear modulus of the poroelastic material. The variables

Q̃ and R̃ are the coupling coefficients that account for volumetric changes in structural and fluid

phases, and Â is the first Lamé constant of the structural phase (poroelastic material in vacuum).

The complete description of the variables Ñ , Ã, Q̃ and R̃ have been obtained by Biot

and Willis (1957), which suggested the “Gendaken Experiments”. Being divided into three

parts, the first Gendaken Experiment consisted of subjecting the poroelastic material to a pure

shear stress, leading to the confirmation that Ñ is indeed the shear modulus of the elastic skele-

ton, as that is no contribution from the fluid phase to the shear restoring force. The second

experiment placed the studied material under a constant hydrostatic pressure, which provided

the definition of the bulk modulus of the frame at constant air pressure, Kb. Finally, in the third

experiment, the material was subjected to an increasing pressure, without the help of a jacketed

support. At this moment, two more variables were defined, being Ks the bulk modulus of the

elastic material from which the porous skeleton is made, and K̃f the bulk modulus of the fluid

in the pores (Allard; Atalla, 2009). On that basis, the aforementioned variables can now be

described as,

Ã =

(1− φ)

(
1− φ− Kb

Ks

)
Ks + φ

Ks

K̃f

Kb

1− φ− Kb

Ks

+ φ
Ks

K̃f

− 2

3
Ñ, (2.35)

Q̃ =

(
1− φ− Kb

Ks

)
φKs

1− φ− Kb

Ks

+ φ
Ks

K̃f

, (2.36)

R̃ =
φ2Ks

1− φ− Kb

Ks

+ φ
Ks

K̃f

, (2.37)

Ñ =
Ep(1 + jηp)

2(1 + νp)
, (2.38)

with Ep, ηp and νp being the Young’s modulus, the loss factor and the Poisson’s ratio of the

poroelastic material, respectively.

Since, in many cases, Ks is not available due to difficulties in determine the Youngs

modulus of the base elastic material by measurement, the variables Ã, Q̃ and R̃ can be rewritten

in a simplified manner (Lee, 2009),
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Ã =
νpEp(1 + jηp)

(1 + νp)(1− 2νp)
, (2.39)

Q̃ = (1− φ)K̃f , (2.40)

R̃ =φK̃f . (2.41)

As an alternative to this, Yamamoto et al. (2009) considered the Hashin-Shtrikman’s bounds

(Hashin; Shtrikman, 1963) to find an estimated value for Ks. Nevertheless, as the majority

of poroelastic media has high porosity values, Eqs. (2.39), (2.40) and (2.41) in fact become a

suitable choice for the current formulations.

Furthermore, as highlighted by Cao et al. (2018), one of the most used models to

account for thermal losses inside porous domains is attributed to Champoux and Allard (1991),

due to the reduced amount of variables introduced in the formulations. So, with the adoption of

this model in the present work, K̃f can finally be defined,

K̃f = γ0P0

γ0 − (γ0 − 1)

(
1− j

8η0
Λ′2Pdρfω

√
1 + j

Λ′2Pdρfω

16η0

)−1
−1

, (2.42)

where γ0 is the specific heat ratio, Pd is the Prandtl number, P0 is the atmospheric pressure and

Λ′ is the thermal characteristic length.

Again, the variational formulation of the coupled problem stated in Eqs. (2.22) and

(2.23) may be obtained by the Weighted Residuals Method and the application of the Divergence

Theorem, ∫
Ωp

{
¯
σ̂s(us) :

¯
εs(δus)− ω2ρ̃us · δus − γ̃∇pf · δus

}
dΩp

−
∫
Γp

{
¯
σ̂s(us) · np} · δus dΓp = 0,

(2.43)

∫
Ωp

{
φ2

ω2ρ̃22
∇pf · ∇δpf −

φ2

R̃
pfδpf − γ̃∇δpf · us

}
dΩp

+

∫
Γp

{
γ̃us · np −

φ2

ω2ρ̃22
∇pf · np

}
δpf dΓp = 0,

(2.44)

where Γp represents the outer boundary of the poroelastic domain Ωp, np is outward unit normal

vector to Γp, and δus and δpf are admissible functions (Atalla et al., 1998). An alternative way

to rewrite the above equations was given by Atalla et al. (2001), who considered only physical

quantities that can be directly specified on the surface of two distinct poroelastic materials.

Knowing that the total stress tensor,
¯
σt, and the average relative displacement vector, φ(Uf −
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us), are related to,

¯
σt · np =

¯
σ̂s · np − φ

(
1 +

Q̃

R̃

)
pfI · np, (2.45)

φ(Uf − us) · np = −γ̃us · np +
φ2

ω2ρ̃22
− φ

(
1 +

Q̃

R̃

)
us · np, (2.46)

(see Atalla et al. (1998) for the origin of these expressions), the Divergence Theorem can again

be applied to the surface integrals of Eqs. (2.43) and (2.44), together with the vector relation:

∇ · (uh) = ∇u · h + u∇ · h, enhancing the aforementioned weak form to the following set of

expressions (Atalla et al., 2001; Rigobert et al., 2003; Allard; Atalla, 2009),∫
Ωp

{
¯
σ̂s(us) :

¯
εs(δus)− ω2ρ̃us · δus − (γ̃ + ξ̃)∇pf · δus

−ξ̃pf∇ · δus
}
dΩp −

∫
Γp

(
¯
σt · np) · δus dΓp = 0,

(2.47)

∫
Ωp

{
φ2

ω2ρ̃22
∇pf · ∇δpf −

φ2

R̃
pfδpf − (γ̃ + ξ̃)∇δpf · us

−ξ̃δpf∇ · us
}
dΩp −

∫
Γp

φ(Uf − us) · npδpf dΓp = 0,

(2.48)

where ξ̃ = φ(1 + Q̃/R̃) is a coupling coefficient introduced for conciseness (Lee et al., 2012).

An interesting aspect of Eqs. (2.47) and (2.48) is that the coupling between the structural and

fluid phases are of volumetric nature, while the boundary quantities
¯
σt ·np and φ(Uf−us) allow

a natural coupling between poroelastic-elastic domains, as well as two dissimilar poroelastic

materials. Nonetheless, special treatments are needed to correctly simulate acoustic-poroelastic

interfaces (see Section 2.3.1).

In this scenario, the Finite Element Method (FEM) has been employed in the dis-

cretization of Eqs. (2.47) and (2.48). Knowing that p̂if and ûis are the nodal pressure and dis-

placement vectors regarding the poroelastic element i, and that both fluid and structure elemen-

tal shape function matrices are respectively denoted as Na and Ne, the fields pf and us may

finally be stated,
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pf =

Nel∑
i=1

Nap̂
i
f , (2.49)

us =

Nel∑
i=1

Neû
i
s, (2.50)

∇pf =
Nel∑
i=1

(∇Na)p̂
i
f , (2.51)

∇us =

Nel∑
i=1

(∇̄Ne)û
i
s, (2.52)

where the differential operator ∇̄ may be written, in a bidimensional perspective, as,

∇̄ =


∂/∂x 0

0 ∂/∂y

∂/∂y ∂/∂x

 . (2.53)

By Garlekin’s approach, all admissible functions of pressure and displacement are

respectively similar to p, u and their gradients,

δpf =

Nel∑
i=1

Naδp̂
i
f , (2.54)

δus =

Nel∑
i=1

Neδû
i
s, (2.55)

∇δpf =
Nel∑
i=1

(∇Na)δp̂
i
f , (2.56)

∇δus =
Nel∑
i=1

(∇̄Ne)δû
i
s, (2.57)

which leads to the following system of equations, K̃p − ω2M̃p −(C̃p1 + C̃p2)

−(C̃p1 + C̃p2)
T H̃p/ω

2 − Q̃p

ûs

p̂f

 =

 f̂s

f̂f/ω
2

 . (2.58)

Here, K̃p, M̃p, H̃p and Q̃p are the global poroelastic stiffness, mass, kinetic and compression

matrices, respectively, while the poroelastic phases are coupled with the help of the matrices

C̃p1 and C̃p2 . The global displacement and pressure vectors are ûs and p̂f , where f̂s and f̂f are

their correspondent global load vectors.
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In an elemental view, Ωi
p and Γip, the above matrices and load vectors assume the

following forms,

K̃i
p =

∫
Ωi

p

(∇̄Ne)
TEp∇̄Ne dΩ

i
p, (2.59)

M̃i
p =

∫
Ωi

p

ρ̃NT
eNe dΩ

i
p, (2.60)

H̃i
p =

∫
Ωi

p

φ2

ρ̃22
(∇Na)

T∇Na dΩ
i
p, (2.61)

Q̃i
p =

∫
Ωi

p

φ2

R̃
NT
aNa dΩ

i
p, (2.62)

C̃i
p1 =

∫
Ωi

p

φ

α̃
NT
e∇Na dΩ

i
p, (2.63)

C̃i
p2 =

∫
Ωi

p

φξ̃(∇ ·Ne)
TNa dΩ

i
p, (2.64)

f̂ is =

∫
Γi
p

NT
e (¯
σt · np) dΓip, (2.65)

f̂ if =

∫
Γi
p

φ(Uf − us) · npNT
a dΓ

i
p, (2.66)

with Ep being the elasticity matrix of the poroelastic domain,

Ep =


Â+ 2Ñ Â 0

Â Â+ 2Ñ 0

0 0 Ñ

 , (2.67)

and,

α̃ = α∞ − j
φσG̃

ωρf
, (2.68)

being the dynamic tortuosity variable introduced by Johnson et al. (1987). Finally, according to

Sgard et al. (2005), Lee et al. (2015) and Allard and Atalla (2009) the following relations are

also valid,
φ

α̃
= γ̃ + ξ̃ =

φ(ρ̃12 + ρ̃22)

ρ̃22
=
φ2ρf
ρ̃22

. (2.69)

2.3 General Fluid-Structure Interactions: Governing Equations

As this work also deals with interactions of explicit acoustic-elastic regions (not to be

confused with the implicit kind of poroelastic media), the linear elastodynamic equation, as well

as the boundary conditions applied over the elastic domain, Ωe, are respectively introduced, for

time-harmonic motion (ejωt), as (Atalla; Sgard, 2015; Vicente et al., 2015),

∇ ·
¯
σe + ρeω

2ue = 0 in Ωe, (2.70)
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and,

Displacements imposition → ue = ū over Γe1, (2.71)

External load distribution →
¯
σe · ne = fe over Γe2, (2.72)

Equilibrium of loads →
¯
σe · ne = pana over Γae. (2.73)

Here,
¯
σe is the elastic stress tensor, ū is the imposed displacement and ne is the outward unit

normal vector to the elastic region (ne = −na). The symbols Γe1 and Γe2 refer to the different

boundary types of Ωe (Dirichlet and Neumann, respectively), where Eqs. (2.71) and (2.72) are

valid. Finally, Γae concerns to the common acoustic-elastic frontier (Eq. (2.73)).

In the acoustic side, the coupling boundary condition applied over Γae also has a math-

ematical contributor,

Displacements continuity → ∇pa · na
ρa

= ω2ue · na over Γae. (2.74)

Following similar procedures to those performed for poroelastic and acoustic mate-

rials, adding Eq. (2.74) to the variational form of Helmholtz-based domains (Eq. (2.7)), and

combining Eqs. (2.70) to (2.73) together, the weak forms of the coupled acoustic-elastic do-

mains are respectively presented,

1

ρa

∫
Ωa

∇pa · ∇δpa dΩa −
ω2

κa

∫
Ωa

paδpa dΩa +

∫
Γ3

jωpa
Z0

δpa dΓ3

−
∫
Γ4

āδpa dΓ4 +

∫
Γ5

jωv̄δpa dΓ5 − ω2

∫
Γae

ue · naδpa dΓae = 0,

(2.75)

∫
Ωe

¯
σe(ue) :

¯
εe(δue) dΩe −

∫
Ωe

ρeω
2ue · δue dΩe

−
∫
Γe2

fe · δue dΓe2 −
∫
Γae

pana · δue dΓae = 0,

(2.76)

where fe is a load vector applied over Γe2,
¯
εe is the elastic strain tensor and both δpa, δue are

admissible functions. Once more, the kinetic condition (Eq. (2.71)) is explicitly applied over

Γe1 in the finite element implementation.

2.3.1 Coupled Acoustic-Poroelastic-Elastic Boundary Conditions

As treated in the works of Atalla et al. (2001), the main coupling conditions in-

volving poroelastic media are of four types, that is poroelastic-poroelastic, poroelastic-elastic,

poroelastic-acoustic and poroelastic-septum, together with the two loading conditions of im-

posed pressure and displacements. Considering the current weak form of the mixed u/p ex-

pressions, Eqs. (2.47) and (2.48), the poroelastic media couples to others through the following
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boundary terms,

Ip = −
∫
Γp

(
¯
σt · np) · δus dΓp −

∫
Γp

φ(Uf − us) · npδpf dΓp. (2.77)

In this section, only the first three coupling cases are shown, since these are the condi-

tions used in the problems investigated, together with the acoustic-elastic one presented previ-

ously. It is emphasized that a complete overview of the many ways to simulate porous materials

are presented in the works of Allard and Atalla (2009).

2.3.1.1 Poroelastic-Elastic

Knowing that the elastic media couples with the following surface integral expression

(shown in Eqs. (2.72) and (2.76)),

Ie = −
∫
Γe

(
¯
σe · ne) · δue dΓe, (2.78)

where ne = −np, the combination of both Eqs. (2.77) and (2.78) may be written as,

Ip+Ie = −
∫
Γep

(
¯
σt·np)·δus dΓep−

∫
Γep

φ(Uf−us)·npδpf dΓep+

∫
Γep

(
¯
σe·np)·δue dΓep. (2.79)

The coupling conditions at the common boundary Γep are defined in a way that the

continuity of the total stress, the lack of relative mass flux through the impervious wall and the

continuity of the solid phase vectors at such interface are all ensured. Mathematically, this can

be respectively stated as,

¯
σt · np =

¯
σe · np, (2.80)

φ(Uf − us) · np = 0, (2.81)

us = ue. (2.82)

Substituting Eqs. (2.80), (2.81) and (2.82) into Eq. (2.79) one may find that Ip + Ie = 0,

which means that the poroelastic-elastic coupling is natural (no additional efforts are necessary).

Nevertheless, the kinematic boundary condition, Eq. (2.82), needs to be explicitly imposed in

Γep, which may be done automatically by the FEM.
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2.3.1.2 Poroelastic-Acoustic

Consider that the weak form of the scalar Helmholtz expression, Eq. (2.7), has been

rewritten as the following,

1

ρa

∫
Ωa

∇pa · ∇δpa dΩa −
ω2

κa

∫
Ωa

paδpa dΩa −
∫
Γa

∇pa · na
ρa

δpa dΓa = 0, (2.83)

where Γa = Γ2 ∪ Γ3 ∪ Γ4 ∪ Γ5. Hence, the surface integral of such equation is,

Ia = −
∫
Γa

∇pa · na
ρa

δpa dΓa, (2.84)

which leads to,

Ip + Ia = −
∫
Γap

(
¯
σt · np) · δus dΓap −

∫
Γap

φ(Uf − us) · npδpf dΓap

+

∫
Γap

∇pa · np
ρa

δpa dΓap,

(2.85)

for na = −np.

In the common Γap boundary, the interface conditions are,

¯
σt · np = −panp, (2.86)

∇pa · np
ρa

= us · np + φ(Uf − us) · np, (2.87)

pf = pa, (2.88)

where the continuity of all normal stresses, acoustic and total poroelastic displacements, and

pressure are respectively represented, across Γap, by Eqs. (2.86), (2.87) and (2.88). Substituting

these later expressions in Eq. (2.85), one gets,

Ip + Ia =

∫
Γap

δ(panp · us) dΓap, (2.89)

which is the standard acoustic-elastic coupling term. Once again, the kinematic boundary con-

dition, Eq. (2.88), needs to be explicitly imposed in Γap. This may be done automatically by the

FEM.
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2.3.1.3 Poroelastic-Poroelastic

Let two different poroelastic materials be identified by the subscript numbers (·)1 and

(·)2. Therefore, in the common Γpp boundary,

Ip1 + Ip2 = −
∫
Γpp

(
¯
σt

1 · np1) · δus1 dΓpp −
∫
Γpp

φ(Uf1 − us1) · np1δpf1 dΓpp

+

∫
Γpp

(
¯
σt

2 · np1) · δus2 dΓpp +

∫
Γpp

φ(Uf2 − us2) · np1δpf2 dΓpp,

(2.90)

for np2 = −np1 . To proper couple two dissimilar poroelastic materials, the conditions are of

four types. The first one concerns to the continuity of normal stresses, while the second ensures

continuity of mass flow across the boundary. The third and fourth ones also establish the solid

phase displacements and pore fluid pressure fields across Γpp. In a mathematical point of view,

these conditions are,

¯
σt

1 · np1 = ¯
σt

2 · np1 , (2.91)

φ(Uf1 − us1) · np1 = φ(Uf1 − us1) · np1 , (2.92)

us1 = us2 , (2.93)

pf1 = pf2 . (2.94)

The combination of Eqs. (2.91), (2.92), (2.93) and (2.94) with (2.90) leads to Ip1+I
p
2 = 0, which

represents a natural coupling between both media. Same as before, the kinematic conditions,

Eqs. (2.93) and (2.94), need to be explicitly imposed in Γpp. In a finite element implementation,

this may be done automatically through assembling.

2.3.2 Coupled Acoustic-Poroelastic-Elastic Equilibrium Equations

Considering the structural layouts and topologies investigated throughout this work,

whenever poroelastic materials are treated, acoustic and elastic domains are also present. There-

fore, it is convenient to introduce the fully coupled acoustic-poroelastic-elastic equilibrium

equations at this point. Again, with the adoption of the FEM, Eqs. (2.47), (2.48), (2.75) and

(2.76) can be discretized by following similar procedures as the ones adopted in Eqs. (2.49) to

(2.57), which generates,
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
Ke − ω2Me 0 0 −Lae

0 K̃p − ω2M̃p −(C̃p1 + C̃p2) −Lap

0 −(C̃p1 + C̃p2)
T H̃p/ω

2 − Q̃p 0

−LTae −LTap 0 Ha/ω
2 + jDa/ω −Qa


︸ ︷︷ ︸

Z̃



ûe

ûs

p̂f

p̂a

︸ ︷︷ ︸
θ̂

=



f̂e

f̂s

f̂f/ω
2

f̂a/ω
2

︸ ︷︷ ︸
f̂

.

(2.95)

The introduced global elastic stiffness and mass matrices are denoted as Ke and Me,

respectively, with Lae and Lap being the standard acoustic-elastic coupling matrices at Γae and

Γap, respectively. In the Ωi
e domain, and boundaries Γiae and Γiap, these matrices are described

as,

Ki
e =

∫
Ωi

e

(∇̄Ne)
TEe∇̄Ne dΩ

i
e, (2.96)

Mi
e =

∫
Ωi

e

ρeN
T
eNe dΩ

i
e, (2.97)

Liae =

∫
Γi

ae

NT
e naNa dΓ

i
ae, (2.98)

Liap =

∫
Γi

ap

NT
e naNa dΓ

i
ap, (2.99)

and,

f̂ ie =

∫
Γi

e2

NT
e fe dΓ

i
e2, (2.100)

where Ee is the elasticity matrix related to Ωe.

As previously stated, the adopted poroelasticity equations do not require coupling

matrices to connect dissimilar poroelastic or poroelastic-elastic domains. However, for the

acoustic-poroelastic case, a Lap fluid-structural coupling matrix need to be implemented for the

correct description of forces that are exchanged between both media. To comply with this, two

methodologies can be used. The first consists of tracking the boundaries between the different

materials throughout the optimization process, in order to implement the Lae and Lap matrices

in all acoustic-elastic and poroelastic-acoustic boundaries. The second methodology avoid such

time consuming calculations by ignoring the tracking of borders, as Biot’s equations are used to

simulate all acoustic, elastic and poroelastic elements by the manipulation of specific variables.

This last approach, named as Unified Multiphase (UMP) modeling technique (Lee, 2009; Lee

et al., 2012; Lee et al., 2015), is the one adopted in the optimization procedure presented in

Chapter 6. Moreover, the descriptions related to the scalar Helmholtz equation given in Section

2.1 are thoroughly used in the works brought by Chapters 4 and 5.
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3 | Bi-directional Evolutionary Structural
Optimization Method

First introduced by Xie and Steven (1992), Xie and Steven (1993), the Evolutionary

Structural Optimization (ESO) methodology aims to gradually remove inefficient material from

the structure, evolving the design towards an optimal form. Since this is a density-based opti-

mization process, the design domain is usually discretized into finite elements, describing the

structure through the attribution of pseudo-densities, also called design variables. In this partic-

ular approach, there is no possibility of returning elements (only full elements could be turn into

void ones), meaning that the optimization procedure is somewhat biased by the first iterations

or the initial guess design.

A natural ESO evolution would then be to allow the reentry of material (or the trans-

formation of void elements into full ones), which was proposed by Querin et al. (1998), Querin

et al. (2000). Here, the ESO algorithm was modified to allow the addition of material to regions

with high local stresses. Such numerical procedure gave rise to the Bi-directional ESO method-

ology, or simply BESO, being latter applied to stiffness optimizations by Yang et al. (1999).

Following the works of Sigmund and Maute (2013), who described the BESO algorithm as a

discrete version of the SIMP methodology, and Cunha et al. (2021), who proposed several finite

variation sensitivity analysis for discrete methods, these evolutionary approaches present clear

boundaries between different domains, which exclude the need for post-processing to classify

gray areas; generate multiple possible solutions throughout the optimization procedure, as valid

candidates are obtained in every iteration; and can be implemented with relatively low effort if

starting from the SIMP algorithm (Sigmund, 2001).

In this chapter, the Bi-directional Evolutionary Structural Optimization approach uti-

lizing the material interpolation scheme with penalization (Huang; Xie, 2009; Huang; Xie,

2010a; Huang; Xie, 2010c) is briefly introduced. Discussions concerning the sensitivity analy-

sis of the mean compliance problem, as well as the presentation of the mesh-independent pro-
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jection filter, stabilization procedures, and the heuristic update schemes are presented. Finally,

a flowchart of the BESO method is provided.

3.1 Topology Optimization Problem: Structural Compliance Minimization

One of the most common problems of structural topology optimization is the mini-

mization of compliance. Hence, in this section, the BESO methodology is considered in its

solution, with the statement of the problem being (Huang; Xie, 2010a),

Minimize: C =
1

2
ˆ̄fT ˆ̄u, (3.1)

Subjected to:


Kˆ̄u = ˆ̄f ,

V ∗ −
∑NelD

i=1 Vixi = 0,

xi = xmin or 1,

(3.2)

whereC is the mean compliance, V ∗ is the prescribed final volume fraction and
∑NelD

i=1 Vixi is the

design volume fraction obtained in each iterative step. NelD is the total number of elements of

the design domain. The expression Kˆ̄u = ˆ̄f represents a static linear elastic system of equations,

with K being the global stiffness matrix of the structure; ˆ̄u and ˆ̄f are the displacements and load

global vectors. The equality constraint imposed by the volume fractions is a common trait

of evolutionary algorithms as the volume generally changes throughout the optimization. The

equilibrium equation is another important characteristic of most optimizers, being also possible

to consider acoustic, thermic, electric or even multiphysics systems in the problem composition.

The design variable is here represented by xi, assuming only discrete values of bounds

xmin and 1. In the early ESO algorithms, xmin was set to 0, meaning that the void element would

be completely removed from the design domain. In this approach, the gains are substantial,

since the elements/nodes are not accounted for in the subsequent iterations, reducing the overall

computational costs. However, these so called hard-kill methods sometimes lead to non-optimal

solutions, or presented convergence difficulties (Zhou; Rozvany, 2001; Huang; Xie, 2010a;

Huang; Xie, 2010c; Sigmund; Maute, 2013). In the works of Rozvany and Querin (2002) the

consideration of a Sequential Element Rejection and Admission (SERA) method was defined, in

a way that void elements would be replaced by a soft material with very low density, introducing

the concept of soft-kill (0 < xmin << 1). Later, Huang and Xie (2009) considered a power-law,

similar to the one used in SIMP, together with the soft-kill strategy, to calculate the gradients

of the objective function instead of the its approximate variations. This procedure is presented

next.
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3.2 Sensitivity Analysis

Aiming to obtain a full–void design, the material interpolation scheme is presented,

E(xi) = Eex
ζ
i , (3.3)

leading to,

K =

NelD∑
i=1

xζiK
i
e, (3.4)

where E is the Young’s modulus of the structure, Ee is the Young’s modulus of the elastic

material, ζ is a penalty coefficient and Ke is the global stiffness matrix of the elastic material.

Elemental variables are defined with the subscript/superscript i.

When an element is added or removed from the design domain the objective function is

modified as a result of such structural change. This alteration is generally referred as sensitivity

number, αi, and is attributed to the modified element. In the soft-kill BESO approach, these

sensitivities are based on the gradient of the objective function, hence,

dC

dxi
=

1

2

d

dxi
(̂̄fT ˆ̄u) =

1

2

(
∂ˆ̄fT

∂xi
ˆ̄u+ˆ̄fT

∂ ˆ̄u

∂xi

)
. (3.5)

As ∂ ˆ̄u/dxi is unknown, the adjoint method (Tortorelli; Michaleris, 1994) is applied by the

introduction of a Lagrange multiplier vector in Eq. (3.1),

L =
1

2
ˆ̄fT ˆ̄u+ λT (̂̄f −Kˆ̄u). (3.6)

Considering ∂ˆ̄f/∂xi = 0, one gets,

dL

dxi
=

(
1

2
ˆ̄fT − λTK

)
∂ ˆ̄u

∂xi
− λT

∂K

∂xi
ˆ̄u. (3.7)

To eliminate the unknown variable, ∂ ˆ̄u/dxi, from Eq. (3.7), λ may be chosen such that,

1

2
ˆ̄fT − λTK = 0. (3.8)

From the mechanical equilibrium equation,

ˆ̄fT = ˆ̄uTKT = ˆ̄uTK, (3.9)

hence,

λ =
1

2
ˆ̄u, (3.10)

and,
dL

dxi
= −1

2
ˆ̄uT
∂K

∂xi
ˆ̄u. (3.11)
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With the help of the material interpolation scheme, Eq. (3.4), the following is obtained,

αi = −1

2
ζxζ−1

i (ˆ̄ui)
TKi

e
ˆ̄ui. (3.12)

Knowing that the BESO method is of discrete nature, Eq. (3.12) can be rewritten as,

αi = −1

ζ

∂L

∂xi
=


1

2
(ˆ̄ui)

TKi
e
ˆ̄ui when xi = 1,

xζ−1
min

2
(ˆ̄ui)

TKi
e
ˆ̄ui when xi = xmin,

(3.13)

where the exponent ζ penalizes only void elements. In most cases, xmin = 0.001 is set.

The presented gradient-based soft-kill approach facilitates the sensitivity analysis of

several discrete optimization algorithms, especially those involving multiple materials (Huang;

Xie, 2009; Anaya-Jaimes et al., 2022; Pereira et al., 2023) and constraints (Huang; Xie, 2010b;

Zuo et al., 2012; Munk et al., 2018; Pereira et al., 2022), and has been used in several works

over the past decade, such as in the optimization of natural frequencies (Picelli et al., 2015;

Lopes et al., 2021), piezoelectric energy harvesters (Almeida et al., 2019), muffler chambers

(Azevedo et al., 2018), fluid-structure based systems (Vicente et al., 2015; Vicente et al., 2016;

Kook, 2019; Dilgen et al., 2019), multi-objective and multiscale approaches (Yan et al., 2015),

non-linear structures (Xia; Breitkopf, 2017), among others (Zhao, 2014; Xia et al., 2018).

3.3 Mesh-Independent Filter Scheme

When discretizing a continuous domain with low-order bilinear (2D) or trilinear (3D)

finite elements few issues may arise due to the possibility of the sensitivity numbers become C0

discontinuous across the element boundaries (Huang; Xie, 2007). Between them are checker-

board patterns (Jog; Haber, 1996) and mesh dependency (Sigmund, 1997), which may be dealt

with the adoption of numeric filters. As discussed by Dilgen et al. (2019), convolution (Bruns;

Tortorelli, 2001) and Helmholtz (Lazarov; Sigmund, 2011) type density filters can be thought as

valid choices for the solution of the aforementioned problems. Another common way is based

on the projection of the nodal sensitivity numbers along the design domain. A particular form

of this last one has been introduced by Huang and Xie (2009), Huang and Xie (2010a), for

applications regarding BESO-based optimizations. Therefore, it has been chosen in the current

work.

The overall procedure starts with the distribution of the elemental sensitivity numbers

between the nodes. As these have no physical meaning, averaged elemental sensitivity numbers

must be retrieved. For this, a mesh independent filter radius, rmin, is placed at the center of each
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element. All nodes within this radius are then considered contributors to the sensitivity number

that finally result. The rmin subdomain created in the ith element is illustrated in Fig. 3.1.

rmin
i

Figure 3.1 – rmin subdomain created in the ith element

Considering αnd
the ndth node sensitivity number, M the amount of elements con-

nected to the ndth node, wi a weight factor regarding the ith element (Eq. (3.15)) and rin the

distance from the centroid of the ith element to the ndth node, the nodal sensitivity numbers

may be expressed as,

αnd
=

M∑
i=1

wiαi, (3.14)

with,

wi =


1 if M = 1,

1

M − 1

(
1− rin∑M

i=1 rin

)
if M > 1.

(3.15)

Eq. (3.15) indicates that closer nodes to the ith element have a stronger contribution in obtaining

the nodal sensitivity numbers than far ones. Finally, the smoothed elemental sensitivities are,

αi =

∑I w(rin)αnd∑I w(rin)
, (3.16)

with I defined as a list of the nodes that are inside the rmin subdomain and w(rin) = rmin − rin

being a linear weight factor.

3.4 Sensitivity Stabilization Procedure and Normalization

To increase the stability of the optimizer, one common approach is to adopt an addi-

tional sensitivity historical averaging, which can be,

α
(r)
i =

α
(r−1)
i + α

(r)
i

2
, (3.17)
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with the superscript (·)(r) referring to the ongoing iteration of the topology optimization algo-

rithm.

Another stabilization procedure was proposed by Zhou et al. (2021), regarding a Min-

Max scaling methodology for normalization of values. In many situations, this additional step

is recommend to be applied on the sensitivities, as those are filled with positive and negative

numbers, hence,

α
(r)
i =

α
(r)
i − α

(r)
min

α
(r)
max − α

(r)
min

, (3.18)

where α(r)
max and α(r)

min are the maximum and minimum sensitivity number values of the current

iteration, respectively.

3.5 Heuristic Design Update and Stop Criterion

To update the design variables it is imperative to first define the target volume for the

next iteration. With the use of the Evolutionary Rate (ER) as the change in volume for each

iterative step, one may write the expression that relates the volume fraction of the current, Vr,

and next, Vr+1, iterations,

Vr+1 = Vr(1± ER). (3.19)

In evolutionary optimization methods, the sensitivity numbers are local indexes that

can be sorted from highest to lowest, leading the material types to be changed accordingly; in

other words, the definition of Vr+1 establishes a threshold in the sorted sensitivity vector that

defines the amount of elements that will be void (xi = xmin) and full (xi = 1), hence,

αi ≤ αth as void elements, (3.20)

αi > αth as full elements, (3.21)

where αth is the threshold sensitivity number. Seeing that BESO is a bi-directional procedure,

the addition of elements is also possible. The Addition Ratio (AR) is the variable that defines the

amount void/full elements that can become full/void. However, in order to control this quantity,

the maximum Addition Ratio (ARmax) is required as one of the inputs of the method. If the case

AR > ARmax happens, the restriction AR = ARmax has to be enforced. This fact results in the

imposition that some elements with the lowest αi become void, and some with the highest αi
become full (Picelli et al., 2015).
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At last, the stop criterion is stated,

err =

∣∣∣∣∣
∑N

m=1Cr−m+1 −
∑N

m=1Cr−N−m+1∑N
m=1Cr−m+1

∣∣∣∣∣ ≤ τ, (3.22)

where τ refers to the tolerance and N to the number of iterations considered in the historical

average. It is remarkable that when the final volume fraction, V f , is reached, V can no longer

change until the optimization process is terminated by the fulfillment of Eq. (3.22).

3.6 BESO Algorithm

This section presents the overall BESO procedure, which can be expanded to several

optimization problems, as shown in the following chapters. The steps are:

Step 1: Discretize the entire domain, assign proper design variables to the elements of the initial

guess design and define BESO parameters in accordance with the optimization problem

under investigation;

Step 2: Execute the finite element procedure (see Chapter 2 for a complete description of various

systems governing equations);

Step 3: Carry out the sensitivity analysis (see Section 3.2 for the compliance problem example).

In all the cases presented in this work, the sensitivity numbers were validated by the finite

differences method;

Step 4: Apply the mesh-independent filter scheme to the sensitivity numbers, following Section

3.3;

Step 5: Apply the sensitivity historical averaging procedure and the Min-Max scaling methodol-

ogy to the sensitivity numbers, as established in Section 3.4;

Step 6: Define the volume target for the next iteration, Eq. (3.19);

Step 7: Add and delete elements according to the update scheme shown in Section 3.5;

Step 8: Repeat steps 2 to 7 until the final volume is reached and the stop criteria, Eq. (3.22), is

satisfied.

Fig. 3.2 illustratively shows the flowchart of the BESO method.
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Execute the finite 
element procedure

Carry out the 
sensitivity analysis

Apply the filtering of 
sensitivity numbers

Define volume for 
the next iteration

Add and remove 
elements

Final volume 
reached?

Stop criteria 
satisfied?

End

Yes

No

Yes

Start

Define domains and 
boundaries. Assembly the

finite element mesh.

No

Figure 3.2 – Flowchart of the BESO method

3.7 Acoustic Topology Optimization Based on the BESO Approach

In this work, a set of methodologies implemented to solve different Acoustic Topol-

ogy Optimization (ATO) problems is proposed. Based on BESO method, a multiconstrained

approach is investigated in Chapter 4, where the Virtual Temperature Method (VTM) (Liu et

al., 2015) has been adapted for use in acoustic domain problems. In Chapter 5, the optimization

of multichamber mufflers is investigated, while promoting the addition of poro-rigid and rigid

structures within the design domain. For this, a new multiphase material interpolation scheme

is proposed, adapting the BESO method for the introduction of more than one material per iter-

ation. In Chapter 6, the multiphysics involving fully modeled acoustic, poroelastic and elastic

domains are targeted in the optimization of closed-space soundproof systems. Here, the newly

introduced material interpolation scheme of Chapter 5 is modified to account for such complex

interactions, leading to the proposition of a new evolutionary methodology.

Furthermore, it is important to note that the BESO algorithm presented in this chapter

for the purely structural case of minimizing static compliance can be fully converted to op-

timizations involving various other physics, such as acoustics, electrical, thermal, and so on.
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By implementing the finite element method in systems that describe these different physical

models, their respective field problems are solved independently, thus obtaining characteristic

field variables such as pressures, potential energies, and temperatures. These results are then

provided as input to the BESO algorithm, as well as the objective functions, initiating the evolu-

tionary optimization procedure. It should also be emphasized that sensitivities directly depend

on the chosen objective function and therefore need to be calculated accordingly. In this work,

the objective functions are Sound Pressure Levels (SPL), absorption coefficient, Transmission

Losses (TL) and Dissipated Power Levels (PLD), being thoroughly derived in all sensitivity

analysis sections, as they are constantly adopted in vibroacoustic investigations. The BESO

algorithm described in this thesis was implemented in the MATLAB® software, for the applica-

tions presented in Chapters 4 and 5, and in Python, for the study shown in Chapter 6.
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4 | A Multiconstrained Evolutionary
Approach

In this chapter, the original research article entitled “Topology optimization of acoustic

systems with a multiconstrained BESO approach” by Rodrigo Lima Pereira, Heitor Nigro Lopes

and Renato Pavanello, is presented with permission from Elsevier (see Appendix C for the

correspondent copyright clearance). The paper has been published in the Finite Elements in

Analysis and Design, v. 201, p. 103701, 2022. DOI: 10.1016/j.finel.2021.103701.

The article establishes a new methodology to design simply-connected acoustic sys-

tems using the modified Virtual Temperature Method for acoustic applications as an additional

constraint, hence configuring a multiconstrained topology optimization approach. This pro-

cedure is applied in two completely different acoustic systems, considering porous and rigid

materials. Despite the reduced space of solutions imposed by the additional constraint, most of

the structures here obtained present highly manufacturable topologies, free of air hole seclusion,

and enhanced acoustic characteristics.

Chapter 7 presents further discussions on the topics and results given here and Ap-

pendix A displays detailed extensions of the procedures introduced in the sensitivity analysis

sections.
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A B S T R A C T

This work details a new acoustic topology optimization methodology with applications on the design of
systems composed of rigid and porous materials. The Bi-directional Evolutionary Structural Optimization
(BESO) algorithm is combined with the Virtual Temperature Method to minimize the occurrence of air
cavities and rough surfaces inside rigid and porous domains, hence configuring a multiconstrained optimization
approach. The modeling of porous materials is done by the Johnson–Champoux–Allard (JCA) formulation,
while the Finite Element Method is used to approximate the governing equations of the physical system. Two
different optimization problems are considered separately: first, a rigid–acoustic metasurface is optimized to
reduce regional sound pressure levels (SPL) in a set of observed frequencies, while also considering wind
permeability through the structure. Secondly, a coupled poro-acoustic absorptive system is treated in order
to enhance the sound absorption coefficient in the low frequency range. Both problems are systematized by
the implementation of acoustic–rigid and acoustic–porous material interpolation schemes, respectively. The
effectiveness of the proposed approach is explored through numerical examples. Here, it is remarked that
the methodology maintains the uniformity of rigid barriers, by guaranteeing the absence of internal holes to
them. In addition, well-defined cavities are formed in porous domains, increasing their absorption coefficients,
but without inflicting macroscopic closed spaces within such structures. In these cases, comparison with
appropriate literature is also provided.

1. Introduction

With the growing demand for efficient engineering projects, efforts
have been made to reduce the use of raw materials when manufacturing
structures, while enhancing some characteristics of the physical system
as a whole. Structural optimization emerged with the goal of assisting
engineers in the design of such complex compositions under a series of
previously imposed constraints. Combining homogenization techniques
with structural optimization methods, Bendsøe and Kikuchi [1] led the
field of topology optimization research in the late 1980s. From that
moment on, this technique gave rise to a broad range of methods [2–5].

As highlighted by Sigmund and Maute [6] and Xia et al. [7], an
important branch of gradient-based topology optimization techniques
is the evolutionary one, represented by the Evolutionary Structural
Optimization (ESO) and the Bi-directional ESO (BESO) methodologies.
Proposed by Xie and Steven [4,8], the ESO method aims at the gradual
removal of inefficient material from the structure to improve a chosen
objective function.

Nevertheless, since the ESO algorithm only removes material, the
optimization procedure is somewhat biased by the first iterations. With

∗ Corresponding author.
E-mail addresses: pereira@fem.unicamp.br (R.L. Pereira), lopes@fem.unicamp.br (H.N. Lopes), pava@fem.unicamp.br (R. Pavanello).

that in mind, Yang et al. [5] proposed the BESO method by includ-
ing the possibility of material addition to the system. As a gradient-
based topology optimization approach, the sensitivity analysis must be
performed in all optimization problems. In this context, elementary
sensitivity can be understood as the discrete variations that an element
would cause in the objective function, when being added or removed
from the structure. Thus, elements with lower and higher sensitivity
numbers are respectively removed and added to the design domain, in
order to make the structure evolve to an optimal topology.

Afterwards, Querin et al. [9] used this newly implemented idea
to optimize structures according to their von Mises stress levels, en-
abling the addition of material to regions with high local stress. It
is worth mentioning, however, that the BESO approach had some
numerical problems such as checkerboard pattern [10], mesh depen-
dency [11] and unconnected variables for addition and rejection of
material. These adversities motivated Huang and Xie [12] to pro-
pose the new BESO algorithm, by including sensitivity filters [11,
13], evolutionary stabilization procedures [14] and material interpo-
lations schemes [15] to the methodology. This approach has been

https://doi.org/10.1016/j.finel.2021.103701
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extensively used over the past decade in the optimization of several
multiphysical systems, including natural frequencies [16,17], piezo-
electric energy harvesters [18] and fluid–structure interactions [19–
21]; and motivated the rise of a new range of optimization procedures
such as the nodal design variable ESO/BESO method based on Shepard
interpolation [22].

The conceptualization of acoustic projects has been largely com-
bined with the use of topology optimization algorithms. Wadbro and
Berggren [23] were the first to use such methods to design an acous-
tic horn, with the goal of enhancing its sound radiation properties.
All the acoustic environment was simulated by the scalar Helmholtz
equation. Dühring et al. [24] used the SIMP method to optimize indoor
and outdoor rigid sound barriers, aiming to reduce the mean squared
pressure amplitude in an observed region. For this, the inverses of mass
density and bulk modulus were considered as the main variables in the
proposed material interpolation scheme.

Lee and Kim [25,26] applied topology optimization techniques to
various acoustic systems, being the first to consider such methodologies
in the design of internal partitions of reactive mufflers. Oh and Lee [27]
optimized an automotive muffler under the influence of temperature
gradients. Kook et al. [28] adopted the Zwicker’s loudness model [29]
as the objective function for the design of rigid sound barriers, while
Miyata et al. [30] used the same function for the optimization of
multifunctional metasurfaces. Finally, Hu et al. [31] used an ersatz
material model, together with a floating projection optimizer, to design
dynamic acoustic–mechanical structures without the need for boundary
tracking.

To avoid the multiphysical complexities involved in Biot’s equa-
tions, several studies have adopted simplified porous material formu-
lations when dealing with topology optimization procedures. Silva and
Pavanello [32,33] and Yoon et al. [34] adopted equivalent fluid mod-
els, such as the Johnson–Champoux–Allard (JCA) [35,36], to describe
complex equations for the effective density and bulk modulus of the
optimized structures. Furthermore, Yoon [37] and Ferrándiz et al. [38]
used the empirical Delany–Bazley formulation [39] to describe the
behavior of fibrous materials with porosities close to the unit. However,
none of these acoustic topology optimization (ATO) researches adopted
the BESO approach as optimizer.

In the BESO context, Picelli et al. [16] and Vicente et al. [19]
studied free vibration problems involving acoustic-structural effects.
Kook [21] and Dilgen et al. [40] combined the BESO with the mixed
(𝑢∕𝐩) formulation for fluid–structure interactions [41]. Huang and
Xie [42] minimized static compliance with an additional displace-
ment constraint for a continuum structure, while Zuo et al. [43] con-
sidered multiple displacement and frequency constraints, and Munk
et al. [44] adopted additional smart normal constraint to the evolution-
ary method. Shortly thereafter, Azevedo et al. [45] designed internal
partitions of an automotive muffler to maximize sound transmission
losses at target frequencies. Here, the authors considered rigid mate-
rials to compose the acoustic barriers that appeared in the reactive
expansion chamber.

As manufacturing is a crucial part in the design of structures, Liu
et al. [46] proposed a connectivity procedure called Virtual Tem-
perature Method (VTM), aiming to avoid enclosed voids inside solid
materials. The main idea is that solid materials are considered as
thermal insulators, while voids are treated as heat sources and thermal
conductors. This virtual composition allows for sudden increases of the
system temperature once enclosed voids appear in the design domain.
Based on that, one way to provide simply-connected topologies is by
constraining the system temperature throughout the entire optimiza-
tion process. Despite the relative success obtained by this method in
mechanical applications [46–48], it appears necessary to verify how
acoustic systems behave with the addition of such connectivity con-
straints in a context of discrete topology optimization treatments. This
paper is focused on such investigations.

That being said, the BESO algorithm is employed in this work
to solve two different ATO problems, while considering the acoustic
VTM to avoid seclusion of air holes inside rigid and porous struc-
tures, hence configuring a multiconstrained optimization methodology.
Particularly, problem 1 (P1) aims to optimize rigid-acoustic metasur-
faces that are able to reduce regional sound pressure levels (SPL)
in four different target frequencies, while considering wind perme-
ability through the structure. Problem 2 (P2) proposes the design of
coupled poro-acoustic absorptive systems for maximizing the sound
absorption coefficient at low frequency range. Since our main goal is
to establish a new methodology to design simply-connected acoustic
systems, pertinent optimization aspects are explored through numerical
examples, such as the evolutionary behavior of acoustic functions in a
multiconstrained optimization approach and the manufacturability of
the resulting topologies.

The organization of this paper is presented as follows: In Section 2,
the acoustic problem is formulated using the finite element approach.
In Section 3, the properties of acoustic, porous and rigid materials are
discussed, together with the Johnson–Champoux–Allard (JCA) model.
Also in this section, appropriate material interpolation schemes are
defined for problems 1 and 2. Section 4 introduces the modified Virtual
Temperature Method (VTM) for acoustic applications, and in Section 5
the multiconstrained BESO approach is described in detail. Numerical
examples and their thorough examinations are provided in Section 6.
Finally, conclusions are drawn in Section 7.

2. Finite element formulation of acoustic systems

The equation that governs a steady-state inviscid fluid domain 𝛺,
with sound pressure as a time-harmonic function (𝑝(𝑥, 𝑦, 𝑡) = 𝑝(𝑥, 𝑦)ej𝜔𝑡),
can be written, in the frequency domain, as the following scalar
Helmholtz equation,

∇ ⋅
(

∇𝑝(𝑥, 𝑦)
𝜌

)

+ 𝜔2

𝜅
𝑝(𝑥, 𝑦) = 0 with 𝜅 = 𝜌𝑐2 in 𝛺, (1)

where 𝜌 is the density, 𝜅 is the bulk modulus, 𝑝(𝑥, 𝑦) is the pressure in a
bidimensional Eulerian field (𝑥, 𝑦), 𝑐 is the speed of sound in the fluid,
j =

√

−1 is the complex variable, 𝜔 is the angular frequency, 𝑡 is time
and ∇ is the gradient operator. For simplicity, the pressure field 𝑝(𝑥, 𝑦)
will be referred only as 𝑝.

As a general aspect, Eq. (1) can be solved when combined with the
following boundary conditions [49],

𝑝 = 𝑝̄ in 𝛤1, (2)

∇𝑝 ⋅ 𝐧 = 0 in 𝛤2, (3)

∇𝑝 ⋅ 𝐧 = 𝑎̄𝑛 in 𝛤3, (4)

where 𝐧 refers to the outward unit normal vector, 𝑝̄ to imposed pres-
sures and 𝑎̄𝑛 to imposed particle accelerations. The symbols 𝛤1, 𝛤2 and
𝛤3 refer to the different boundary types in which Eqs. (2), (3) and
(4) are valid. The weighted residuals approach is combined with the
divergence theorem to yield the weak form of the scalar Helmholtz
equation,

1
𝜌 ∫𝛺

∇𝑝 ⋅ ∇𝛿𝑝 d𝛺 − 𝜔2

𝜅 ∫𝛺
𝑝𝛿𝑝 d𝛺 − ∫𝛤

𝑎̄𝑛𝛿𝑝 d𝛤 = 0, (5)

where 𝛿𝑝 is the test function and 𝛤 is the boundary of 𝛺.
To provide a discrete approximation of the continuous problem, the

Finite Element Method (FEM) is considered [49,50]. The pressure field
and its gradient can be expressed, in the element domain 𝛺𝑒, as,

𝑝 = 𝐍𝑒𝐩𝑒, (6)

∇𝑝 = 𝐁𝑒𝐩𝑒, (7)

where 𝐍𝑒 and 𝐁𝑒 are the shape function matrix and its gradient,
respectively, with the elemental acoustic pressure vector represented

56



Finite Elements in Analysis & Design 201 (2022) 103701

3

R.L. Pereira et al.

by 𝐩𝑒. Following Galerkin’s method, the test function and its gradient
can be written in a similar manner,

𝛿𝑝 = 𝐍𝑒𝛿𝐩𝑒, (8)

∇𝛿𝑝 = 𝐁𝑒𝛿𝐩𝑒, (9)

with 𝛿𝐩𝑒 denoting the test function vector of the 𝑒th element. Applying
Eqs. (6), (7), (8) and (9) into (5), the acoustic stiffness and mass
matrices in 𝛺𝑒 are obtained,

𝐊𝑒 =
1
𝜌 ∫𝛺𝑒

𝐁𝑇𝑒 𝐁𝑒 d𝛺𝑒, (10)

𝐌𝑒 =
1
𝜅 ∫𝛺𝑒

𝐍𝑇𝑒 𝐍𝑒 d𝛺𝑒, (11)

together with the element load vector defined in the 𝛤𝑒 boundary of
𝛺𝑒,

𝐟𝑒 = 𝑎̄𝑛 ∫𝛤𝑒
𝐍𝑇𝑒 d𝛤𝑒. (12)

Following the standard finite element assembly procedure,

𝐊 =
𝑁el
𝐴
𝑒=1

𝐊𝑒, (13)

𝐌 =
𝑁el
𝐴
𝑒=1

𝐌𝑒, (14)

𝐟 =
𝑁bc
𝐴
𝑒=1

𝐟𝑒, (15)

the acoustic dynamic system can be finally written,

𝐙𝐩 = (𝐊 − 𝜔2𝐌)𝐩 = 𝐟 , (16)

where 𝐴𝑁el
𝑒=1 and 𝐴𝑁bc

𝑒=1 are assembly operators, 𝑁el is the total number of
elements in the fluid domain and 𝑁bc is the total number of elements
in the considered boundary. The global acoustic stiffness and mass
matrices are represented by 𝐊 and 𝐌, while the global acoustic load
and pressure vectors are 𝐟 and 𝐩, respectively.

3. Properties of acoustic, porous and rigid materials

The main goal of this work is to establish a new methodology to
design simply-connected acoustic systems by using a multiconstrained
BESO approach in two different ATO problems. For this reason, it is
important to clearly define which materials are considered and how
they influence the optimization process. According to Lee and Kim [25],
it is common practice to consider only density, 𝜌, and bulk modulus,
𝜅, as functions of the design variables. This simple approach greatly
facilitates the optimization process, as it allows the materials to be
continuously governed by the scalar Helmholtz equation, and thus,
avoids the complexities involved in fluid–structure formulations. So,
apart from air, rigid materials and porous materials with rigid frame
(also known as poro-rigid or equivalent fluids) are adopted in this work.

Following many researchers [24,25,34,51], a body can be consid-
ered as rigid when a high acoustic impedance is assigned to it, hence
resulting in a greatly amplification of the air density and bulk modulus.
In order to avoid erroneous values in this approximation, Lee and
Kim [25,26] studied simple acoustic settings and concluded that the
combination of 𝜌𝑟 ≥ 105𝜌𝑎 and 𝑐𝑟 ≥ 101𝑐𝑎 is a safe choice for most
problems, where the subscripts 𝑎 and 𝑟 refer to acoustic and rigid
material properties, respectively. With that in mind, the following data
are adopted in this work,

𝜌𝑎 = 1.21 kg m−3 and 𝜅𝑎 = 1.42 ⋅ 105 Pa, (17)

𝜌𝑟 = 107𝜌𝑎 kg m−3 and 𝜅𝑟 = 109𝜅𝑎 Pa. (18)

According to Allard and Atalla [52], many semi-phenomenological
models are used to describe the propagation of sound in porous bodies,
since it is not possible to account for a complete description of their mi-
crostructure. A recurring feature of these models is the equivalent fluid

Table 1
Parameters related to the JCA model [32,33].

Rock-wool parameters Values

Porosity 𝜙 0.94
Tortuosity 𝛼∞ 2.1
Static flow resistivity 𝜎 (N s m−4) 135,000
Viscous characteristic length 𝛬 (μm) 49
Thermal characteristic length 𝛬′ (μm) 166

Air (20 ◦C) Parameters Values

Kinematic viscosity 𝜂 (kg m−1s−1) 1.84 ⋅ 10−5

Specific heat ratio 𝛾 1.401
Prandtl number 𝑃𝑟 0.710
Atmospheric pressure 𝑃0 (Pa) 101,325

simplification, that considers the long-wavelength condition by stating
that the pores are considerably smaller than the wavelength, allowing
the porous frame to be set as motionless. Despite that, the visco-inertial
and thermal effects are still considered by setting frequency-dependent
and complex valued equations to define the effective density, 𝜌𝑝, and
effective bulk modulus, 𝜅𝑝 of porous structures, being the only two
descriptive variables in an equivalent fluid interpretation.

Taking that into account, the Johnson–Champoux–Allard (JCA) [35,
36] formulations are the ones adopted in this work,

𝜌𝑝(𝜔) =
𝛼∞𝜌𝑎
𝜙

⎛

⎜

⎜

⎝

1 +
𝜎𝜙

j𝜔𝜌𝑎𝛼∞

√

1 + j
4𝛼2∞𝜂𝜌𝑎𝜔
𝜎2𝛬2𝜙2

⎞

⎟

⎟

⎠

, (19)

𝜅𝑝(𝜔) =
𝛾𝑃0
𝜙

⎡

⎢

⎢

⎢

⎣

𝛾 − (𝛾 − 1)
⎛

⎜

⎜

⎝

1 − j 8𝜂
𝛬′2𝑃𝑟𝜌𝑎𝜔

√

1 + j
𝛬′2𝑃𝑟𝜌𝑎𝜔

16𝜂

⎞

⎟

⎟

⎠

−1
⎤

⎥

⎥

⎥

⎦

−1

, (20)

where five intrinsic parameters of porous structures are introduced,
being 𝜙 the porosity, 𝛼∞ the tortuosity, 𝛬 the viscous characteristic
length, 𝛬′ the thermal characteristic length and 𝜎 the static flow
resistivity. Furthermore, the thermodynamic properties of the air that
saturates the porous medium can also be described as the kinematic
viscosity 𝜂, the specific heat ratio 𝛾, the Prandtl number 𝑃𝑟, and the
atmospheric pressure 𝑃0. Table 1 lists the parameters related to the JCA
model for rock-wool, the chosen porous material, and air at 20 ◦C.

3.1. Material interpolation scheme

It is quite common to use material interpolation schemes (MIS)
in topology optimization problems to change material properties in
a systematic manner. In density-based procedures, this interpolation
is treated as a polynomial function of the design variables, that vary
continuously between 0 and 1. Additionally, these functions can have
penalty variables, which work as degrees of the polynomial, in order to
assist the solution to nearly full-void designs [12,15]. It is interesting to
note, however, that such MIS were introduced to impose an additional
relaxation in the original topology optimization discrete problems,
transforming those design variables into continuum ones.

Since one of the key features of the BESO approach is related with
its discrete nature, one may not be obliged to use a MIS in order to
obtain clearly defined topologies. However, many works have been
using this resource in order to avoid numerical singularities and to
reduce computational costs involved in structural and fluid–structural
optimization procedures [12,16,19,20]. These researches have shown
that the adoption of an appropriate MIS can even bring stability to
the evolutionary process and increase the manufacturability of the
optimized topologies, since they enable the evaluation of the objective
function gradient [21].

This paper presents two distinct ATO problems, related with the
BESO approach, that aims to demonstrate the capabilities of the chosen
methodology. The first problem (P1) intends to achieve an optimized
metasurface which reduces SPL values by considering rigid and acoustic
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Fig. 1. Finite element model of an acoustic system divided into design, 𝛺𝑑 , and non-design, 𝛺nd, domains, with highlight of the material types and design variable limit values
for P1 and P2.

elements in the optimization process. As for the second one (P2), an
absorptive system is studied to optimize the absorption coefficient at
the low frequency range, with porous and acoustic elements allowed
in the design domain.

In this sense, and knowing that the inverses of density and bulk
modulus are the variables that multiply directly the acoustic element
matrices in a finite element methodology, the set of Eqs. (21) and
(22) presents, respectively, the MIS considered in the aforementioned
situations,

P1 →

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
𝜌(𝛾𝑒)

= 1
𝜌𝑎

+ 𝛾𝜓𝑒

(

1
𝜌𝑟

− 1
𝜌𝑎

)

,

1
𝜅(𝛾𝑒)

= 1
𝜅𝑎

+ 𝛾𝜓𝑒

(

1
𝜅𝑟

− 1
𝜅𝑎

)

,
(21)

P2 →

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
𝜌(𝛾𝑒)

= 1
𝜌𝑎

+ 𝛾𝜂𝑒

(

1
𝜌𝑝

− 1
𝜌𝑎

)

,

1
𝜅(𝛾𝑒)

= 1
𝜅𝑎

+ 𝛾𝜂𝑒

(

1
𝜅𝑝

− 1
𝜅𝑎

)

,
(22)

with 𝛾𝑒 representing the design variable, the superscripts 𝜓 and 𝜂 being
the penalty variables, and the subscripts 𝑎, 𝑝 and 𝑟 referring to acoustic,
porous and rigid materials, respectively. Since the BESO method uses
discrete design variables, as stated previously, an investigation was
conducted in order to define the limit values of 𝛾𝑒 that would bring
stability to the optimization process. So, for all the problems here
presented, 𝛾𝑒 = 𝛾min = 0.001 or 𝛾𝑒 = 1 are adopted together with
𝜓 = 𝜂 = 2.

Fig. 1 illustrates that each optimization problem in consideration
allows for specific types of finite elements to be treated in the design
domain, 𝛺𝑑 , while in the non-design domain, 𝛺nd, the elements are
always kept as air (acoustic elements). The limit values of the design
variables and its corresponding element types are also presented, which
may be directly related to Eqs. (21) and (22) for both P1 and P2
problems.

4. Connectivity procedure: modified Virtual Temperature Method
for acoustic applications

Introduced by Liu et al. in 2015 [46], the Virtual Temperature
Method (VTM) is a temperature based procedure, in which the man-
ufacture constraints are taken into account. Such approach consists in
converting the connectivity restrictions into an equivalent maximum
temperature constraint through the sudden increase of the system
temperature, whenever an internal hole appears [47]. As shown at the
left side of Fig. 2, air holes are considered to be thermal conductors and
active heat sources, which can provoke sudden increases in the system
temperature if they are secluded in the insulated material (also referred

as dominant). In the event that these air holes come into contact with
the zero temperature boundaries, then, through conduction, the heat
from these regions dissipate, lowering their temperatures, as also shown
at the right side of Fig. 2.

In this same illustration, variables 𝑄 and 𝑘𝑡 represent the rate of
internal heat generation and the thermal conductivity, while 𝑄0 and 𝑘𝑡0
are user defined constants. In addition, the superscripts 𝑑 and ℎ refer to
the dominant material and the air holes, respectively. To represent an
inactive heat source and avoid singularities, a small number 𝜉 = 10−6

is adopted, while 𝛾𝑒 can only have two discrete values: 𝛾min = 0.001 for
the dominant material or 1 for the air holes. In this work, the dominant
material is considered to be rigid in the first problem and porous in the
second one.

Since the adopted methodology aims to achieve a simply-connected
structure based on a maximum temperature constraint, the following
expression can be written,

𝑇𝑗 − 𝑇 ∗ ≤ 0, (23)

where 𝑇𝑗 is the maximum temperature of the system and 𝑇 ∗ is the ad-
missible temperature. The Virtual Scalar Field concept [47] is then par-
ticularized to the steady-state temperature field case, which is governed
by the heat equation,

∇ ⋅ (𝑘𝑡∇𝑇 ) +𝑄 = 0, (24)

where 𝑇 is the temperature field variable.
The generally adopted boundaries are typified as insulated, 𝛤𝑖, and

free, 𝛤𝑓 , conditions, as follows,

𝑇 = 0, in 𝛤𝑖, (25)

𝑘𝑡∇𝑇 ⋅ 𝐧 = 0, in 𝛤𝑓 , (26)

with the FEM being the numerical procedure adopted to solve the above
equations. In this way, the heat system expression is also written,

𝐊𝑇𝐓 = 𝐪, (27)

where 𝐊𝑇 is the global heat conduction matrix, 𝐓 is the nodal temper-
ature vector and 𝐪 is the thermal load vector [47].

Lastly, the basic procedures adopted to choose the user defined vari-
ables and the related boundary conditions should be highlighted. It was
observed that a free boundary type, Eq. (26), would be an appropriate
condition for the up bound surface of both problem domains, while
keeping all other boundaries insulated (Eq. (25)). Such choices were
made considering the stability of the system, as well as the regions in
which the internal voids usually appeared.

Furthermore, several user defined values were considered in order
to observe the behavior of 𝑇𝑗 . In these cases, the maximum temperature
of the system was expected to be so high in the presence of an internal
air hole, as to configure a break in the connectivity constraint. How-
ever, 𝑇𝑗 should be low enough not to lengthen the optimization process.

58



Finite Elements in Analysis & Design 201 (2022) 103701

5

R.L. Pereira et al.

Fig. 2. Virtual Temperature Method illustrated.

This crucial trade-off is particular to any system in consideration and,
therefore, should be assessed separately for P1 and P2 problems. The
chosen values are presented in Sections 6.1.1 and 6.2.1, respectively.

5. Multiconstrained evolutionary approach

Due to the clear identification of element boundaries throughout
the iterative process, discrete topology optimization methods showed
to be well suited for applications that involve the avoidance of in-
ternal air holes in structures. Based on that, this section presents
the multiconstrained BESO method for the optimization of two-phase
structures (referred here as full-void systems), as proposed by Huang
and Xie [12,14] and Zuo et al. [43]. Consider a design problem where
the goal is to maximize an objective function, 𝛷, while respecting
equilibrium equations, as well as volume and connectivity constraints,

Maximize: 𝛷, (28)

Subjected to:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐙𝐩 = 𝐟 ,
𝐊𝑇𝐓 = 𝐪,
𝑉 ∗ −

∑𝑁el
𝑒=1 𝑉𝑒𝛾𝑒 = 0,

𝑇𝑗 − 𝑇 ∗ ≤ 0,
𝛾𝑒 = 𝛾min or 1,

(29)

with 𝛷 specified in Sections 6.1 and 6.2 for P1 and P2, respectively.
In the set of Eq. (29), the volume constraint is described by the

relation between the prescribed final volume fraction, 𝑉 ∗, and the
design domain volume fraction, represented by ∑𝑁el

𝑒=1 𝑉𝑒𝛾𝑒. This is valid
since 𝛾𝑒 can only assume discrete values, with bounds 𝛾min and 1, as
summarized in Fig. 1. To ensure a simply-connected structure, the
VTM is implemented in the form of a thermal inequality expression
𝑇𝑗 − 𝑇 ∗ ≤ 0 (Eq. (23)), which has been described in Section 4. Finally,
the expressions 𝐙𝐩 = 𝐟 and 𝐊𝑇𝐓 = 𝐪 refer to the linear system of
acoustic and thermal Eqs. (16) and (27), being solved by the finite
element approach.

5.1. Sensitivity analysis

The sensitivity analysis is carried out via differentiation of the
objective function. Since this algorithm refers to a multiconstrained
optimization problem, the objective function is first transformed into
an equivalent Lagrange function of the form [42],

𝐿 = 𝛷 + 𝜆(𝑇𝑗 − 𝑇 ∗ + 𝑆2
𝑘 ), (30)

where 𝜆 is the Lagrange multiplier and 𝑆2
𝑘 is a slack variable used

to turn an inequality into equality. The sensitivity analysis is now

performed with the differentiation of 𝐿,

𝛼𝑒 =
d𝐿
d𝛾𝑒

= 𝜕𝛷
𝜕𝛾𝑒

+ 𝜆
𝜕(𝑇𝑗 − 𝑇 ∗ + 𝑆2

𝑘 )
𝜕𝛾𝑒

, (31)

where 𝛼𝑒 denote the sensitivity number of the 𝑒th element.
Considering that 𝛷 is defined differently in problems 1 and 2, the

first term of the right-hand side of Eq. (31) will be discussed later in
Sections 6.1 and 6.2 . However, the second term is the same for P1 and
P2, allowing a single description for both problems. With this in mind,
consider Eq. (30) rewritten in the following form,

𝐿 = 𝛷 + 𝜆(𝑔𝑘 + 𝑆2
𝑘 ), (32)

where 𝑔𝑘 = 𝑇𝑗 − 𝑇 ∗. The sensitivities related with the additional
variables 𝜆 and 𝑆𝑘 are,
𝜕𝐿
𝜕𝜆

= 𝑔𝑘 + 𝑆2
𝑘 , (33)

𝜕𝐿
𝜕𝑆𝑘

= 2𝜆𝑆𝑘. (34)

The Karush–Kuhn–Tucker (KKT) condition states that Eqs. (33) and
(34) need to vanish in order to fulfill one of the necessary requirements
for local optima [43]. For this reason, an initial trend for the value of
𝜆 can be set by considering these additional equations and the KKT
condition.

In a close examination of Eq. (33), one may notice that if 𝑔𝑘 is
positive, then 𝑔𝑘 + 𝑆2

𝑘 > 0, which establishes that 𝜆 needs to increase
in order to maximize the Lagrange function, and vice versa. However,
in the event that Eq. (34) goes to zero, 𝜆 will necessarily vanish, since
𝑆𝑘 ≠ 0. In conclusion, if 𝑔𝑘 ≤ 0, then the constraint is satisfied and 𝜆
will not contribute for the maximization of the Lagrange function [44].

Differently from the design variables, the Lagrange multiplier is a
continuous non-negative scalar function. So, to turn the search for a
solution feasible, Zuo et al. [43] proposed to define 𝜆 through a scale
function of replacement factors, 𝛽, that varies in the [0,1) domain,

𝜆 =
𝛽

1 − 𝛽
with 𝛽 ∈ [0, 1). (35)

It is quite clear that when 𝛽 = 0, 𝜆 = 0 and when 𝛽 approaches 1, 𝜆 goes
to infinity. Algorithm 1 shows the procedure adopted to find opportune
values of 𝛽, and consequently 𝜆, throughout this work.

In Algorithm 1, 𝜖 = 0.1% is used to regulate the amount of incre-
ment allowed in the Lagrange multiplier variable in each step of the
optimization procedure.

Also in the second term of the right-hand side of Eq. (31), it is
noted that 𝑇 ∗ and 𝑆2

𝑘 are constant variables, while 𝑇𝑗 depends on 𝛾𝑒.
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Algorithm 1: Lagrange multiplier determination procedure [43,
44]

Input: 𝑇 ∗ and 𝜖
if 𝑇𝑗 − 𝑇 ∗ > 0 then

if (𝑇𝑗 − 𝑇 ∗)∕𝑇 ∗ > 𝜖 then
𝛽 = 𝛽 + 𝜖

else
𝛽 = 𝛽 + (𝑇𝑗 − 𝑇 ∗)∕𝑇 ∗

end
𝜆 = 𝛽∕(1 − 𝛽)

else
𝜆 = 0

end
Output: 𝜆

To find the derivative of 𝑇𝑗 , consider the adjoint load vector 𝜕𝑇𝑗∕𝜕𝐓
of size [dof, 1], where dof is the total number of degrees of freedom
of the system. Since 𝑇𝑗 is the maximum temperature of the system,
located in a specific dof, 𝜕𝑇𝑗∕𝜕𝐓 is completely full of zeros, except at
the degree of freedom referred to 𝑇𝑗 , where a value of 1 is placed [53].
The differentiation of 𝑇𝑗 can then be written,

𝜕𝑇𝑗
𝜕𝛾𝑒

=
( 𝜕𝑇𝑗
𝜕𝐓

)𝑇
𝜕𝐓
𝜕𝛾𝑒

. (36)

Considering Eq. (27), the temperature vector differentiation is easily
obtained,
𝜕𝐓
𝜕𝛾𝑒

= −𝐊−1
𝑇
𝜕𝐊𝑇
𝜕𝛾𝑒

. (37)

Substituting Eq. (37) in Eq. (36), then,
𝜕𝑇𝑗
𝜕𝛾𝑒

= −𝐓𝑇𝑗
𝜕𝐊𝑇
𝜕𝛾𝑒

𝐓, (38)

where 𝐓𝑗 = 𝐊−1
𝑇 (𝜕𝑇𝑗∕𝜕𝐓). Finally, the expression 𝜕𝐊𝑇 ∕𝜕𝛾𝑒 can be solved

by the definition of a particular material interpolation scheme for the
VTM case,

𝑘𝑡(𝛾𝑒) = 𝑘𝑑𝑡 + 𝛾
2
𝑒 (𝑘

ℎ
𝑡 − 𝑘

𝑑
𝑡 ), (39)

with all the thermal variables already defined in Section 4 (see Fig. 2).

5.2. Filter scheme and sensitivity stabilization procedure

Due to the 𝐶0 discontinuity of the sensitivity numbers, a few design
issues may arise, such as checkerboard patterns [10] and mesh depen-
dency [11]. As a solution, a projection filter scheme is implemented,
with a previous step being the determination of the nodal sensitivity
numbers [14],

𝛼𝑛 =
𝑀
∑

𝑒=1
𝑤𝑒𝛼𝑒, (40)

𝑤𝑒 =
1

𝑀 − 1

(

1 −
𝑟𝑒𝑛

∑𝑀
𝑒=1 𝑟𝑒𝑛

)

, (41)

where 𝛼𝑛 refers to the sensitivity number of the 𝑛th node, 𝑀 corre-
sponds to the number of elements connected to the 𝑛th node, 𝑤𝑒 is
the weight factor of the 𝑒th element, with ∑𝑀

𝑒=1𝑤𝑒 = 1, and 𝑟𝑒𝑛 is the
distance from the centroid of the 𝑒th element to the 𝑛th node.

Then, since these nodal sensitivities have no physical meaning,
elemental sensitivity numbers must be retrieved. For this, a filter radius,
𝑟min, centered in the 𝑒th element is chosen to identify the nodes that
influence in its sensitivities. Since 𝑟min is exclusively size based, it
does not vary with different meshes. For 𝑤(𝑟𝑒𝑛) = 𝑟min − 𝑟𝑒𝑛 being a
linear weight factor that can be applied to all 𝐻 nodes inside the 𝑟min
subdomain, the filtered 𝛼𝑒 is written as,

𝛼𝑒 =
∑𝐻
𝑛=1𝑤(𝑟𝑒𝑛)𝛼𝑛
∑𝐻
𝑛=1𝑤(𝑟𝑒𝑛)

. (42)

Afterwards, the sensitivity historical averaging procedure is em-
ployed as an effort to increase the stability of the iterative process,

𝛼𝑒 =
(𝛼𝑒)𝑖−1 + (𝛼𝑒)𝑖

2
, (43)

where the subscript 𝑖 refers to the current iteration.

5.3. Design variable update and stop criterion

To update the design variables it is imperative to first define the
target volume for the next iteration. With the use of the Evolutionary
Rate (ER) as the change in volume for each iterative step, one may
write the expression that relates the volume fraction of the current, 𝑉𝑖,
and next, 𝑉𝑖+1, iterations,

𝑉𝑖+1 = 𝑉𝑖(1 ± ER). (44)

The sensitivity numbers are then sorted from highest to lowest
and the material types are changed accordingly. The definition of 𝑉𝑖+1
establishes a threshold, in the sorted sensitivity vector, that defines the
amount of elements that will be void (𝛾 = 𝛾min) and full (𝛾 = 1) by
setting,

𝛼𝑒 ≤ 𝛼th as void elements, (45)

𝛼𝑒 > 𝛼th as full elements, (46)

where 𝛼th is the threshold sensitivity number. Seeing that BESO is a
bi-directional procedure, the addition of elements is also possible. The
Addition Ratio (AR) is the variable that defines the amount void/full
elements that can become full/void. However, in order to control this
quantity, the maximum Addition Ratio (ARmax) is required as one of the
inputs of the method. If the case AR > ARmax happens, the restriction
AR = ARmax has to be enforced. This fact results in the imposition
that some elements with the lowest 𝛼𝑒 become void, and some with
the highest 𝛼𝑒 become full [16].

Finally, the stop criterion is stated,

|

∑𝑁
𝑚=1𝛷𝑖−𝑚+1 −

∑𝑁
𝑚=1𝛷𝑖−𝑁−𝑚+1|

∑𝑁
𝑚=1𝛷𝑖−𝑚+1

≤ 𝜏, (47)

where 𝜏 represents the tolerance and 𝑁 refers to the number of itera-
tions considered in the historical average. It is also important to remark
that when the final volume fraction, 𝑉 ∗, is reached, 𝑉 can no longer
change until the optimization process is terminated by the fulfillment
of Eq. (47). Throughout this work, the values of 𝜏 and 𝑁 are considered
to be 0.1% and 10, respectively.

6. Topology optimization design of acoustic systems

This section presents numerical examples regarding the use of the
multiconstrained BESO methodology, being divided in two distinct ATO
problems. The first one (P1) is illustrated in Fig. 3(a). A certain trade-
off is in place by relating the amount of wind and sound (acoustic
waves) that are allowed to pass through the air holes. If the holes
are too large, the structure will be highly permeable to the wind,
but good soundproofing will be hard to achieve [30]. Considering
that, the goal of P1 is to use the BESO method, with and without
active connectivity constraints, to design rigid-acoustic metasurfaces
with optimized soundproofing characteristics, as demonstrated at the
right side of Fig. 3(a). Lastly, in this case, the issue regarding the
appearance of internal air holes in the rigid structure is also explored.

The second problem (P2), shown in Fig. 3(b), is stated as the
design of a coupled poro-acoustic absorptive system composed of a
periodic arrangement of porous layers backed by a rigid wall. In this
application, the porous material is rock-wool (see Table 1), modeled by
the JCA formulations (Eqs. (19) and (20)). Here, cases with active con-
straints are considered, aiming to provide manufacturable topologies
with enhanced sound absorption coefficient values in the low frequency
spectrum.
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Fig. 3. Schematic representation of P1 and P2. (a) Minimization of regional sound pressure levels by topology optimization of an acoustic metasurface and (b) maximization of
sound absorption characteristics of porous materials backed by a rigid wall.

6.1. Problem 1: Design of acoustic metasurfaces

According to Torresin et al. [54] and Miyata et al. [30], natural
ventilation reduces energy consumption in cooling and ventilation of
buildings, providing pleasant thermal environments at relatively low
cost. As the main connection between indoor–outdoor environments
is made through window openings and ventilation apertures, external
sounds are, sometimes, a big issue in the design of building façades
and even in internal partitions of a residential environment. In this
context, the particularization of the procedures shown in Section 5 for
the design of wind permeable acoustic metasurfaces can be written as
follows,

Maximize: 𝛷P1 = − 1
𝑁𝑓

𝑁𝑓
∑

𝑛=1
SPL𝑛, (48)

Subjected to:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐙𝐩 = 𝐟 ,
𝐊𝑇𝐓 = 𝐪,
𝑉 ∗ −

∑𝑁el
𝑒=1 𝑉𝑒𝛾𝑒 = 0,

𝑇𝑗 − 𝑇 ∗ ≤ 0,
𝛾𝑒 = 𝛾min or 1,

(49)

where the objective function 𝛷P1 corresponds to the arithmetic mean
of the SPL values for 𝑁𝑓 target frequencies. In Eq. (48), the negative
sign is used to turn a maximization problem into a minimization
one [12]. Considering the reference pressure equal to 𝑃ref = 20 μPa, the
mathematical expression for the frequency dependent SPL calculation

is presented by,

SPL = 10 log10

(

𝑃 2
avg

𝑃 2
ref

)

, (50)

where the average squared pressure amplitude is [24,28],

𝑃 2
avg = 1

∫𝛺𝑟 d𝛺𝑟 ∫𝛺𝑟
|𝑝(𝜔, 𝛾𝑒)|

2 d𝛺𝑟. (51)

In the equation above, 𝛺𝑟 corresponds to the receiver domain, the
region in which the SPL values must be minimized (see Fig. 4).

Since, in this case, 𝛷 = 𝛷P1, the sensitivity analysis can now be
completely described by solving the first term of the right-hand side of
Eq. (31). In this way, one may write,

𝜕𝛷
𝜕𝛾𝑒

= d𝛷P1

d𝛾𝑒
= − 1

𝑁𝑓

𝑁𝑓
∑

𝑛=1

[

10
ln10

(

d𝑃 2
avg∕d𝛾𝑒
𝑃 2

avg

)]

, (52)

with,
d𝑃 2

avg

d𝛾𝑒
=
𝜕𝑃 2

avg

𝜕𝛾𝑒
+ 2Re

[

𝜆𝑇1

(

𝜕𝐙
𝜕𝛾𝑒

𝐩 − 𝜕𝐟
𝜕𝛾𝑒

)]

. (53)

To find the Lagrange multiplier, 𝜆1, the following adjoint system needs
to be solved,

𝐙𝜆1 = −1
2

(

𝜕𝑃 2
avg

𝜕Re(𝐩) − j
𝜕𝑃 2

avg

𝜕Im(𝐩)

)𝑇

, (54)

where,
𝜕𝑃 2

avg

𝜕Re(𝐩) − j
𝜕𝑃 2

avg

𝜕Im(𝐩)
= 1

∫𝛺𝑟 d𝛺𝑟
(2Re(𝐩)𝑇 − j2Im(𝐩)𝑇 )∫𝛺𝑟

𝐍𝑇𝑒 𝐍𝑒 d𝛺𝑟, (55)
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Fig. 4. Representation of unit cells (a) with periodic and (b) symmetric conditions. The design domain is equally divided into acoustic (white hatched 𝛺𝑑 area) and rigid (black
𝛺𝑑 area) elements, with the receiver domain represented by 𝛺𝑟 (green area). Only symmetry conditions are adopted in the numerical simulations. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

with Re(𝐩) and Im(𝐩) denoting the real and imaginary parts of 𝐩.
Finally, 𝜕𝐙∕𝜕𝛾𝑒 can be found by the use of the MIS presented in Eq. (21).

6.1.1. Numerical results of P1
Fig. 4 presents the main geometrical aspects adopted in the analysis,

being similar to the one considered by Miyata et al. in 2018 [30],
where a multifunctional acoustic metasurface was designed using the
level set method. It is noted, through Fig. 4(a), that the cell is initially
considered as vertically periodic, comprising equal amounts of rigid
and acoustic elements in its design domain (𝛺𝑑). Additionally, plane
waves are incident in its left side boundary, while rigid wall condition
is imposed in the right side. In this general disposition, equal values of
sensitivity numbers and nodal pressure would be observed in the upper
and lower parts of the domain, due to the symmetry of the system. With
this in mind, a symmetric unit cell is adopted, as shown in Fig. 4(b).

The entire fluid domain is discretized into 584 × 30 first order
quadrilateral elements, which is way above the minimum recom-
mended per wavelength [49], with 𝛺nd and 𝛺𝑟 (green area) composed
exclusively of acoustic elements. The symmetric cell has 730 mm of
length and 45 mm of height, with a receiver region of 100 × 45 mm2.
If the individual region lengths were considered (300 mm after and
before 𝛺𝑑 , with 100 mm of 𝛺𝑟) a 3:3:1 ratio would be observed, which is
approximately the wavelengths that acoustic waves would have in these
domains for a frequency around 3000 Hz. In addition, 𝛺𝑑 has 30 mm
of length, which is approximately 10 times less than the wavelength,
and 36 mm of height, holding a 4:1 ratio if compared with the smallest
allowable air gap in the metasurface. Finally, the initial topology is set
to start from a guess design, with acoustic and rigid elements equally
divided in the upper (white hatched area) and lower (black area) 𝛺𝑑
parts, respectively. For this composition, the ratio between the rigid
and the through hole areas is 2:3.

For this design problem, the BESO parameters are set as ER =
ARmax = 0.5% and 𝑟min = 5.5 mm, with constant volume fraction of
0.5. The four target frequencies that compose the objective function are
3011 Hz, 3270 Hz, 3480 Hz and 3660 Hz, chosen due to their proximity
to peaks in the SPL curve (see Fig. 7). Fig. 5 presents the evolution-
ary history of mean SPL values, with intermediate designs, while the
volume fraction is kept constant and the connectivity constraint is
disregarded. From early stages of the optimization process, it is clear
that the rigid material tends to migrate to the left side of the design
domain, increasing the acoustic shielding effect at the front cavity of
the metasurface, but with little reduction to its structural disposition at
the back.

Due to the small amount of rigid material that is allowed in 𝛺𝑑 , this
tendency induces the formation of air holes inside the rigid structure,
but without ever breaching it. From a bidimensional point of view,

Fig. 5. Evolutionary history of mean SPL values and volume fraction without
considering VTM.

the manufacturing processes of solid structures are mainly conducted
through extrusion of the given design plane and, at first analysis, would
not be harmed by the presence of internal air holes. However, since
no waves are allowed to pass through a rigid barrier, regardless of
its thickness, a thin outer layer can present a violation on the rigid
material hypothesis, generating issues regarding the accuracy of the
material formulation (e.g. the increase of vibrations) and violations of
volume constraints.

As a solution to such problems caused by the emergence of air
holes, the VTM is considered. Fig. 6 shows the evolution of the mean
SPL values with the connectivity constraint set as active. Here, the
behavior of the volume fraction and the maximum temperature are also
explored. It can be seen that the objective function tends to decrease
until the connectivity constraint is breached by the appearance of an
internal air hole. A sudden increase of the maximum temperature of
the system is then provoked, acting on the sensitivity numbers, so as
to immediately redirect rigid materials to fill the hole, also visible in
the several intermediate topologies highlighted. This material reorien-
tation, however, causes a momentary increase in the objective function,
leading to a sawtooth wave-like evolution that eventually converges to
a local minimum.

In all metasurface optimization cases, the VTM variables were set
to be 𝑘𝑡0 = 1, 𝑄0 = 10 and 𝑇 ∗ = 10 as an effort to concentrated the
study on the influence that the frequencies would have on the final
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Fig. 6. Evolutionary history of mean SPL values and volume fraction with VTM set as active.

topologies. Such a methodology indeed provided topologies with higher
manufacturability and, in many cases, better soundproofing abilities
if compared to the ones without active connectivity constraints (see
Table 2), but also contributed to the erratic evolutionary behavior
that is presented in Fig. 6. This result indicates that particular VTM
variables should be set to each optimization procedure considering
rigid elements, but that the chosen set of variables also succeeds in
avoiding air hole seclusion.

In order to verify the effects of this optimization at the studied
frequency range, Fig. 7 is presented. The BESO method succeeds in
minimizing SPL values in all four target frequencies at the same time,
considering both applications. If one compares only these results, the
active VTM case is better than the one without connectivity constraints,
presenting the lowest observed SPL values in all targeted frequencies.

Since this optimization problem is of non-convex nature, the BESO
method tends to converge to a local minimum, with or without ad-
ditional restrictions in the space of solutions, as shown in the objec-
tive function evolutionary histories (Figs. 5 and 6). This fact helps
in the understanding of why some of the active VTM cases present
more enhanced soundproofing characteristics than the ones without it.
With additional constraints, the original optimization problem changes,
presenting a reduced space of solutions with particular local minima.

Such statements are also verified by observing the pressure fields
at 3011 Hz, 3270 Hz, 3480 Hz and 3660 Hz for both cases, as shown
in Fig. 8. A common aspect of all observed fields is the appearance
of evanescent waves at the back cavity of the metasurfaces. They are
specially noticeable in the pressure fields from Fig. 8(b), (c), (e) and
(g), where relatively high pressure values can be observed.

Evanescent waves are exponentially decaying disturbances that ap-
pear due to the reflection of sinusoidal waves at the interfaces between
mediums, combined with the boundary continuity condition imposed
on them. This aspect was also present in previous works regarding the
design of negative effective-mass density acoustic metamaterials [55],
acoustic metasurfaces with angular asymmetric-absorption [56] and
many other applications on periodic structures. The combination of
such mechanisms with the diffraction of incident waves can generate
significant pressure drops in the regions after the metasurface, as
clearly visible in Fig. 8(d), (g) and (h).

In order to analyze the influence of the target frequency, the op-
timization procedure is performed for each one of them individually,
while keeping the other parameters unchanged. Table 2 presents the
optimized topologies, along with the results for the arithmetic mean
SPL case. The topologies are displayed inside a rectangle that symbol-
izes the design domain, with the outside up and down vertical lines
representing the periodic bounds associated to each observed region.

Fig. 7. Sound pressure level responses of the initial and optimized topologies regarding
the arithmetic mean SPL case.

In all considered scenarios, the iterative procedure is conducted with
and without the connectivity constraints.

For the first three frequencies, it is clear that the VTM did not
interfere in the optimization process, since no internal air holes ap-
peared along the iterations. The results, in each of these cases, are
therefore identical with and without the activation of the connectivity
constraint. Table 2 also shows the initial and final objective function
values, along with the number of iterations required until the end of
the process (as a subscript of 𝛷 in the assigned topology). In all the
aforementioned frequencies, the final topologies converged around 60
iterations, showing significant objective function reduction, specially in
the 3011 Hz case that presented a 60.35% SPL decrease.

Analyzing the optimized topologies, it is noticeable that the rigid
material tends to vertically extend its shape within the design domain,
changing the rigid-air disposition to a 4:1 ratio. Such findings are
common for all final designs, except for the 3660 Hz case with active
VTM, where the topology presents slightly pronunciations in its front
cavity. Still, it is remarked that the convergence occurred faster in
this case than any other, being mainly attributed to the choice of
BESO variables and the reduced space of solutions introduced by the
additional constraint application. Despite that, the obtained topology
presents a 50.30% SPL reduction and no internal air holes.
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Fig. 8. Pressure fields considering optimized topologies with and without VTM in (a), (e) 3011 Hz, (b), (f) 3270 Hz, (c), (g) 3480 Hz and (d), (h) 3660 Hz for the arithmetic
mean SPL case. (For better visualization, three periodic unit cells were used).

6.2. Problem 2: Design of poro-acoustic systems

Following a similar procedure adopted in Section 6.1, the ATO
problem for the design of porous structures can be written as,

Maximize: 𝛷P2 = 1 − |𝑅|2, (56)

Subjected to:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐙𝐩 = 𝐟 ,
𝐊𝑇𝐓 = 𝐪,
𝑉 ∗ −

∑𝑁el
𝑒=1 𝑉𝑒𝛾𝑒 = 0,

𝑇𝑗 − 𝑇 ∗ ≤ 0,
𝛾𝑒 = 𝛾min or 1,

(57)

where the objective function 𝛷P2 is the sound absorption coefficient
of the considered porous material and 𝑅 is the reflection coefficient,
which in turn can be represented by the following frequency dependent
expression [57],

𝑅 =
−𝑝2 exp(−j𝑘𝑎𝑥1) + 𝑝1 exp(−j𝑘𝑎𝑥2)
𝑝2 exp(j𝑘𝑎𝑥1) − 𝑝1 exp(j𝑘𝑎𝑥2)

, (58)

where 𝑝1 and 𝑝2 are pressure amplitudes measured in positions 𝑥1 and
𝑥2 (see Fig. 9), and 𝑘𝑎 = 𝜔∕𝑐𝑎 is the air wavenumber.

Knowing that 𝛷 = 𝛷P2, the first term of the right-hand side of
Eq. (31) can be specified as,

𝜕𝛷
𝜕𝛾𝑒

= −2
(

Re(𝑅) 𝜕Re(𝑅)
𝜕𝛾𝑒

+ Im(𝑅)
𝜕Im(𝑅)
𝜕𝛾𝑒

)

, (59)

with Re(𝑅) and Im(𝑅) denoting the real and imaginary parts of 𝑅. After
a series of mathematical manipulations, the derivative of 𝑅 can be
found [57],

𝜕𝑅
𝜕𝛾𝑒

=

[

− 𝜕𝑝2
𝜕𝛾𝑒

exp(−j𝑘𝑎𝑥1) +
𝜕𝑝1
𝜕𝛾𝑒

exp(−j𝑘𝑎𝑥2)
]

[

𝑝2 exp(j𝑘𝑎𝑥1) − 𝑝1 exp(j𝑘𝑎𝑥2)
]

[

𝑝2 exp(j𝑘𝑎𝑥1) − 𝑝1 exp(j𝑘𝑎𝑥2)
]2

−

[

−𝑝2 exp(−j𝑘𝑎𝑥1) + 𝑝1 exp(−j𝑘𝑎𝑥2)
]

[

𝜕𝑝2
𝜕𝛾𝑒

exp(j𝑘𝑎𝑥1) −
𝜕𝑝1
𝜕𝛾𝑒

exp(j𝑘𝑎𝑥2)
]

[

𝑝2 exp(j𝑘𝑎𝑥1) − 𝑝1 exp(j𝑘𝑎𝑥2)
]2

,

(60)

Table 2
Topology designs obtained by BESO, with and without VTM, for different target
frequencies. The corresponding objective function values and iterations are also given.

with 𝜕Re(𝑅)∕𝜕𝛾𝑒 and 𝜕Im(𝑅)∕𝜕𝛾𝑒 obtained by taking the real and imag-
inary parts of 𝜕𝑅∕𝜕𝛾𝑒. To find 𝜕𝑝1∕𝜕𝛾𝑒 and 𝜕𝑝2∕𝜕𝛾𝑒, similar procedures
adopted in the calculation of 𝑇𝑗 can be used, as stated in Eqs. (36), (37)
and (38). Lastly, 𝜕𝐙∕𝜕𝛾𝑒 is obtained by the use of the appropriate MIS,
as presented in Eq. (22).

6.2.1. Numerical results of P2
Fig. 9 shows the 2D arrangement considered in this optimization

problem. Similarly to P1, the poro-acoustic system is vertically periodic,
with rigid wall conditions imposed on the right side boundary, as can be
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Fig. 9. Illustration of P2 unit cells (a) with periodic and (b) symmetric vertical boundaries. The design domain, 𝛺𝑑 , is represented by the hatched area, with porous material in
gray color. The acoustic non-design domain, 𝛺nd, is represented in white. Only symmetry conditions are adopted in the numerical simulations.

Fig. 10. Evolutionary history of the objective function and constraints for 300 Hz as target frequency, as well as presentation of intermediate topologies of interest.

seen in Fig. 9(a). Additionally, plane waves are simulated by Dirichlet
conditions (Eq. (2)) and enforced on the left surface of the system. Such
combination of settings allows for simpler representation of the porous
grid by using a single bidimensional porous strip with upper and lower
boundaries treated as symmetric (Fig. 9(b)).

The rock-wool fills an area of 60 × 42.5 mm2, which is considered as
the design domain, while the non-design domain, composed exclusively
of acoustic elements, has 120 mm of length by 42.5 mm of height.
After several tests, the authors considered that a 2:1 ratio, between
the area of acoustic and porous elements, is sufficient to simulate a
plane wave propagating in an infinitely long acoustic tube. The entire
mesh is composed of 180 × 85 first order quadrilateral elements, while
the microphone positions are considered to be 𝑥1 = 50 mm and 𝑥2 =
70 mm from the origin. Finally, a small air inclusion of 6 × 1.5 mm2 is
introduced in the symmetric porous design domain, shown in Fig. 9(b),
as an initial guess.

Poro-acoustic systems were also investigated by Silva and Pavanello
[32,33], which adopted the ESO method as optimizer. The current
methodology uses different features such as sensitivity filters, connec-
tivity constraints and a bi-directional evolutionary approach to create
more manufacturable topologies.

For this particular scenario, the BESO variables are considered to
be ER = 0.1%, ARmax = 0.05%, 𝑟min = 10 mm, 𝑉0 = 0.9965 and 𝑉 ∗ =
0.9, representing a reduction of 9.965% in volume, since the initial
volume is not 1 due to the air inclusion. Two target frequencies are

treated separately, 300 Hz and 500 Hz, which configures two different
optimization procedures. Figs. 10 and 11 show the evolution of the
objective function, volume fraction and maximum temperature over the
optimization, while some intermediate topologies of interest are also
highlighted.

Looking at Fig. 10, which deals with the optimization in 300 Hz,
one may notice that the maximum temperature is only relevant to the
optimization procedure when air regions are trapped inside the porous
material, as evidenced when visualizing the intermediate topologies.
Comparing these results to the ones from P1 (Fig. 6), the effectiveness
of the connectivity procedure in closing secluded air regions is equally
observed.

For both P2 optimizations, the VTM variables are defined as 𝑘𝑡0 = 1,
𝑄0 = 100 and 𝑇 ∗ = 10. In such cases, the VTM is usually activated
whenever the objective function suddenly decreases, due to the appear-
ance of an internal air hole. This evolutionary behavior combined with
the sensitivity historical averaging procedure and the relatively small
addition/removal of material create a stabilization level that endures
for a significant number of iterations, but that does not reverse the
enhancements already achieved.

Such behavioral differences of 𝛷P1 and 𝛷P2 are partly due to dis-
tinctions in the objective function themselves (𝛷P1 ≠ 𝛷P2), but mainly
due to the materials involved in the optimizations. In other words, a
greater number of porous elements are needed to influence the objec-
tive function than rigid ones, since the latter are constitutionally closer
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Fig. 11. Evolutionary history of the objective function and constraints for 500 Hz as target frequency, as well as presentation of intermediate topologies of interest.

to acoustic elements than the former. These findings are reinforced by
the analysis of Fig. 11, as a similar 𝛷P2 performance is observed for the
500 Hz case, compared with the 300 Hz scenario.

Figs. 12 and 13 present a direct comparison between the sound
absorption coefficient results found by Silva [32] and by the proposed
methodology, for optimizations in 300 Hz and 500 Hz, respectively. In
Fig. 12, the topology from Silva presents a significant increase of the
sound absorption coefficient around the target frequency, roughly from
0.37 to 0.94; however, it drops considerably for frequencies higher
than 400 Hz. In the optimal topology obtained here, an increase is
also observed at the target frequency, albeit lower (from 0.37 to 0.87),
and the peak only occurs around 480 Hz. Despite that, the obtained
topology allows for greater improvements of 𝛷P2 from 380 Hz up until
the end of the observed frequency range, by maintaining the absorption
coefficient around 0.8.

It is perceptive that the root-like topology from Silva increases the
sound absorption coefficient at the target frequency more, however,
the concentrated air inclusion in the center of the optimal topology
obtained, for the 300 Hz case, allows for greater 𝛷P2 enhancements in
a broader range of frequencies. For the 500 Hz scenario (Fig. 13), 𝛷P2

differences between both topologies become less visible, since the pro-
posed structure is composed of multiple air inclusions, approximating
itself to the root-like topology of Silva.

Despite of the reduced space of solutions introduced by the addi-
tional VTM constraint, the results show major enhancements of the
sound absorption coefficient in the overall frequency range, in addition
to the increase of the manufacturability of the final topologies.

Finally, it should be remarked that most P2 topologies presented
disconnected partitions when considering the proposed approach. Since
the standard way to manufacture structures from 2D settings is by
extrusion (or by cutting machines for foams), two frames could be
added at the edged of the extrusion direction to support the loose parts,
therefore not being a manufacturing issue. In addition, the imposition
of another VTM constraint considering the dominant material as an
active heat source and the acoustic domain as inactive could be a viable
solution for general three-dimensional optimizations.

7. Conclusions

In this work, a multiconstrained BESO method was applied in two
different acoustic systems, aiming to provide topologies that could
enhance certain system characteristics, while respecting imposed con-
straints. The first problem dealt with the optimization of rigid-acoustic
metasurfaces, being able to provide SPL reductions up to 60.35% when

Fig. 12. Behavior of sound absorption coefficient, along low to mid range of
frequencies, for the optimization in 300 Hz.

considering the 3011 Hz case. In these analyses, however, some opti-
mized topologies presented internal air holes, which brought problems
concerning the rigid material hypothesis and the manufacturability of
the obtained structures.

To solve this issue, the modified Virtual Temperature Method (VTM)
for acoustic applications was used as a connectivity constraint. The
results presented well defined topologies, with no air inclusions, high
manufacturability and reduced SPL values in the frequencies targeted.
Additionally, the trade-off between the amount of wind that is able to
pass through the metasurface holes and its soundproofing effects was
successfully established for all cases.

The second problem regarded the optimization of a coupled poro-
acoustic absorptive system, aiming to maximize the sound absorp-
tion coefficient of the considered porous material, while adopting
the VTM as a connectivity constraint. The Johnson–Champoux–Allard
(JCA) model was used in this work to simulate the behavior of the
porous structure as an equivalent fluid. The results showed well defined
topologies with sound absorption coefficients greater than 0.8 in the
observed frequency range. Also, a direct comparison with the available
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Fig. 13. Behavior of sound absorption coefficient, along low to mid range of
frequencies, for the optimization in 500 Hz.

literature was performed. In this respect, it was noted that the ob-
tained topologies presented slightly lower sound absorption coefficient
values in the target frequencies of optimization, due to the additional
constraint imposed by the VTM. Nonetheless, this same fact also con-
tributed to the improved performances of the obtained topologies in
low-to-mid frequency ranges.

A common feature of most multiconstrained problems here pre-
sented regards the increase of the iterations required to convergence.
The material reorganization that was imposed by VTM proved to be
computationally expensive, and, especially when rigid materials were
involved, difficult to converge. However, the method succeeded in
provide topologies free of air hole seclusions, easy to manufacture and
with enhanced characteristics in all the applications considered. This
implies that future research should focus in obtain global values of VTM
variables, in order to broaden the applications of such approach for
other acoustic settings and to reduce the overall computational costs
here noticed.
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5 | An Evolutionary Multidomain Method
Applied to Multiphase Mufflers

In this chapter, the original research article entitled “Multi-domain acoustic topology

optimization based on the BESO approach: applications on the design of multi-phase material

mufflers” by Rodrigo Lima Pereira, Heitor Nigro Lopes, Marcio da Silva Moura and Renato Pa-

vanello, is presented with permission from Springer Nature (see Appendix C for the correspon-

dent copyright clearance). The paper has been published in the Structural and Multidisciplinary

Optimization, v. 66, p. 25, 2023. DOI: 10.1007/s00158-022-03479-4.

The article establishes a new methodology to design reactive and dissipative multi-

chamber mufflers for transmission loss maximization, while based on a multi-domain BESO

algorithm, named as mdBESO. In this approach, acoustic, porous and rigid materials are con-

sidered simultaneously along up to three design domains, and optimized in a wide frequency

range. The obtained topologies shown to be correspondent with literature results, in the com-

parable cases, and quite effective in providing enhanced transmission loss values for all the

observed scenarios.

Chapter 7 presents further discussions on the topics and results given here and Ap-

pendix A displays detailed extensions of the procedures introduced in the sensitivity analysis

section.
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Abstract
Since the early 1920s, the design of mufflers has become an influential topic of study among engineers, as they have the 
ability to reduce noise from industrial machinery, combustion engines, refrigerators, etc. However, since its applications 
are strongly dependent on the target frequencies and the adopted geometries, efficient muffler design methods are still under 
investigation up to this day. With that in mind, this paper presents a multi-domain acoustic topology optimization methodol-
ogy applied to the design of reactive and dissipative expansion chamber mufflers. Based on the Bi-directional Evolutionary 
Structural Optimization (BESO) algorithm, the proposed approach also uses a novel material interpolation scheme that 
considers acoustic, porous and rigid domains during the optimization process, hence configuring a multi-phase procedure. 
The simulation of porous materials is performed by the Johnson–Champoux–Allard (JCA) mathematical formulations, while 
the numerical solution is obtained by the finite element method. To further compose the study, the objective function is 
defined as the mean value of the sound Transmission Losses (TL) obtained along one, two or three different frequency bands, 
while the proposed multi-domain BESO (mdBESO) algorithm is applied to the design of single and multi-chamber mufflers. 
Here, more than one muffler per BESO iteration is considered, being also possible to optimize for specific frequency bands 
in predefined chambers. The effectiveness of both, the novel material interpolation scheme and the mdBESO algorithm, are 
highlighted, showing considerable TL enhancements in the broad range of frequencies chosen, while also presenting clear 
optimized partitions as result.

Keywords  Topology optimization · BESO · Mufflers · Multi-phase optimization · Multi-domain optimization · Porous 
materials

1  Introduction

The design of mufflers (or silencers) have become an impor-
tant topic over the years, having started in the 1920s, with 
strong growth around the 1970s, due to the general concern 
with the socio-environmental quality of the cities (Munjal 
2014). The crucial importance of such systems is clear: to 
promote the reduction of noise from machinery, exhaust 

pipes and other acoustic polluters. To do that, two main 
physical compositions are generally used, causing the reduc-
tion of the net energy flow of the component when in contact 
with acoustic barriers (Fahy 2000), or the conversion of the 
overall sound energy into heat, when absorptive structures 
are in place (Ferrándiz et al. 2020). These configurations 
may be, respectively, identified as reactive and dissipative 
mufflers, where the combination of the two is commonly 
referred as hybrid (Selamet et al. 2003).

An interesting point to note is that both dissipative and 
reactive mufflers have advantages, such as good sound 
attenuation performances in high-to-mid and low-to-mid 
frequency ranges, respectively. Nevertheless, they also 
have disadvantages, in a way that the first application may 
be harmed by the fluid flow drag, and the second may 
produce more engine exhaust backpressure (Panigrahi and 
Munjal 2005). In this sense, hybrid mufflers have been 
growing in demand as they combine the aforementioned 

Responsible Editor: Jianbin Du

 *	 Rodrigo L. Pereira 
	 pereira@fem.unicamp.br

1	 Department of Computational Mechanics, School 
of Mechanical Engineering, University of Campinas, Rua 
Mendeleyev 200, Campinas, São Paulo 13083‑860, Brazil

2	 R & D Engineering, Tenneco Inc, Vereador Marcos Portiolli 
Square 26, Mogi Mirim, São Paulo 13807‑900, Brazil

70



	 R. L. Pereira et al.

1 3

   25   Page 2 of 22

advantages to increase the system performance in a 
broader frequency range, while reducing its drawbacks 
(Panigrahi and Munjal 2005). More specifically, this muf-
fler type may provide enhancements in Transmission Loss 
(TL) values, given that a simple (or empty) expansion 
chamber cannot reduce sound effectively when close to 
its x-axial eigenfrequencies (Lee and Kim 2009b).

In addition to the conventional methods of extending 
the inlet/outlet tubes inside chambers (Munjal 2014) or 
combining rigid barriers with porous linings in a para-
metric way (Panigrahi and Munjal 2005), optimization 
techniques have been widely used in the development of 
mufflers, as they provide innovative and effective designs 
for noise attenuation. There are three types of optimization 
techniques applied to the design of multi-physical systems, 
namely size, shape and topology (Huang and Xie 2010). 
The first one concerns with finding the optimal dimensions 
of the structure, while the second regards the modification 
of the contours of engineered parts. Finally, the third dic-
tates how the general structures are spatially distributed 
and connected, fact that promotes the greatest freedom of 
designs among the techniques cited. Nevertheless, in all 
these three approaches, constraints are usually imposed by 
the designers before the procedure starts, being one of the 
ways of influencing the iterative processes.

In this context, a large number of articles about design 
methods for active and reactive mufflers have been pub-
lished. Chang and Chiu (2008) used numerical decoupling 
methods in conjunction with simulated annealing schemes 
to design optimal plug/non-plug muffler shapes under a 
limited space. Barbieri and Barbieri (2006) considered 
shape optimization and the Zoutendijk’s feasible direc-
tions method (Zoutendijk 1960) to find the optimal dimen-
sions of an acoustic muffler for TL maximization. Size and 
shape optimizations were studied by de Lima et al. (2011), 
jointly with genetic algorithms, in the making of reactive 
silencers. Afterwards, this last approach was again adopted 
by Chiu (2011) regarding hybrid mufflers.

After the introduction of topology optimization tech-
niques by Bendsøe and Kikuchi (1988), and its first acous-
tic application on the maximization of sound radiation 
properties of a horn (Wadbro and Berggren 2006), silencer 
compositions were then treated in the studies conducted by 
Lee and Kim (2009b). Here, the authors designed internal 
partitions of reactive mufflers with the help of the density-
based Solid Isotropic Material with Penalization (SIMP) 
approach, while considering the scalar Helmholtz equa-
tion to simulate the acoustic domain. Besides, the over 
amplification of acoustic properties was also adopted in 
the description of rigid barriers (Dühring et al. 2008), 

fact that helped avoiding further difficulties regarding 
fluid-structure formulations. Later, a similar approach for 
achieving target transmission loss in the design of reactive 
mufflers was again conducted and validated with experi-
ments (Lee 2015).

Further studies involved the addition of temperature gra-
dients (Oh and Lee 2017), fluid flow characteristics (Lee 
and Jang 2012) and even the influence of perforated tubes 
(Yedeg et al. 2016) along the optimization of automotive 
silencers, in order to bring these multi-objective problems 
even closer to real applications. In the works of Ferrándiz 
et  al. (2020), the aforementioned characteristics were 
mostly covered, as the interface of perforated tubes with 
the general acoustic domain was simulated by impedance 
matching, while the axial fluid flow and thermal gradients 
were considered by the adoption of Finite Element Method 
(FEM) based formulations proposed by Denia et al. (2015). 
At last, the authors investigated hybrid muffler compositions, 
where porous structures were simulated by the empirical 
Delany–Bazley model (1970).

Before that, the above model had already been adopted 
by Yoon (2013) in the description of porous structures with 
porosity close to unit. His research showed that by combin-
ing acoustic, porous and rigid elements in the muffler cham-
ber, sound attenuation performances were greatly improved, 
but additional steps were necessary to guarantee the attach-
ment of rigid and porous materials. Another groundbreaking 
work was performed by Lee et al. (2015), who dealt with the 
optimization of these same kinds of systems, but now using 
the Unified Multiphase (UMP) modeling technique (Lee 
et al. 2012). This approach simulates acoustic, poro-elastic 
and elastic materials by manipulating the enhanced Biot’s 
equations (Atalla et al. 2001), while also removing the need 
for boundary tracing throughout the procedure.

Still, it is remarked that the above researches treated only 
one-chamber mufflers with the SIMP model, leaving a gap 
for the consideration of other methodologies, such as the 
discrete Evolutionary Structural Optimization (ESO) (Xie 
and Steven 1993) and the Bi-directional Evolutionary Struc-
tural Optimization (BESO) (Yang et al. 1999; Huang and 
Xie 2010), in addition to the investigation of multi-domain 
compositions, that is, design domains that can be treated as 
a whole or divided in geometrically identical parts. Further-
more, formulations completely based on empirical aspects, 
as the Delany-Bazley, or on fully-coupled phenomenological 
characteristics, such as the ones based on Biot’s equations 
(Atalla et al. 1998), may respectively add drawbacks, due 
to the limitations imposed by working frequencies and high 
porosity (Bo and Tianning 2009), or further difficulties, as 
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a result of a greater number of acoustic parameters (Cao 
et al. 2018) and multi-physical interactions (Lee et al. 2012), 
in the design of porous materials. Nevertheless, it must be 
pointed out that Azevedo et al. (2018) performed several 
analyzes with the BESO method, including two-chamber 
muffler optimizations for TL maximization, while Pereira 
et al. (2022), conducted topology optimizations of porous 
domains with this same approach, aiming to enhance the 
system absorption characteristics. Despite of these various 
studies, only bi-material optimizations were investigated.

Based on the above accounts, a multi-phase BESO-based 
methodology for the design of multi-domain systems, named 
as mdBESO, is proposed and applied in this paper. Particu-
larly, Acoustic-Rigid (AR) and Acoustic-Porous (AP) mate-
rial phases are considered in the topology optimization of 
one-chamber mufflers, while the Acoustic-Porous-Rigid 
(APR) case is combined with the one, two and three-cham-
ber scenario, as a new multi-phase material interpolation 
scheme is introduced. Rigid and porous materials with 
rigid frame are approximated by the over amplification of 
acoustic properties and by the Johnson–Champoux–Allard 
(JCA) mathematical formulations, respectively, being the 
latter the most used semi-phenomenological model in the 
description of poro-rigid structures (Cao et al. 2018). The 
mean transmission loss is treated as the objective function, 
which, in turn, is maximized over a wide frequency range. 
The proposed approach also allows for the combination of 
specific domains, according to its previously targeted bands, 

to broaden the effects of the resulted topologies (Dong et al. 
2020, 2022).

The paper is organized as follows: In Sect. 2, the FEM is 
introduced, together with the corresponding boundary condi-
tions. Section 3 defines acoustic, porous and rigid material 
properties, with special attention given to the Johnson–Cham-
poux–Allard (JCA) formulations. Also, material interpolation 
schemes are defined for the AR, AP and APR configurations. 
Section 4 presents the multi-domain BESO algorithm, beyond 
showing the basic features of the discrete topology optimiza-
tion approach. In Sect. 5, numerical examples and their discus-
sions are treated, with conclusions drawn in Sect. 6.

2 � Finite element formulation for acoustic 
muffler systems

In this work, the goal is to optimize muffler systems as 
generally illustrated in Fig. 1a. To that end, it is modeled a 
bidimensional symmetric expansion chamber muffler com-
posed of one inlet/outlet tube and filled with an inviscid 
fluid of negligible flow velocity, as schematically shown in 
Fig. 1b. For the case of time-harmonic pressure variations 
( p(x, y, t) = p(x, y) exp(j�t) ), the system can be described, in 
the frequency domain, by the subsequent scalar Helmholtz 
equation,

(1)∇ ⋅

(
∇p(x, y)

�

)
+

�2

�
p(x, y) = 0 in Ω,

Fig. 1   General representation 
of a muffler system. a Tridi-
mensional muffler model and b 
bidimensional nominal chamber 
composition with design details. 
The acoustic domain, Ω , is 
composed of both design, Ω

d
 , 

and non-design, Ω
nd

 , domains, 
while the symbols A  , B  and 
C  correspond to two Neumann 

and one Robin boundary condi-
tion types, respectively
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where the introduced variables are the density � , the bulk 
modulus � = �c2 , the speed of sound in the fluid c, the unit 
imaginary number j2 = −1 , the radial frequency � , the 
time t and the vector differential operator ∇ . The acoustic 
domain, Ω , is composed of both design, Ωd , and non-design, 
Ωnd , domains, which, in turn, are chosen in order to avoid 
trivial solutions in a topology optimization process (barrier 
blockade). Throughout this work, the pressure p(x, y) in a 
bidimensional Eulerian field (x, y) is mentioned only as p.

As also highlighted in Fig. 1b, two Neumann and one Robin 
boundary condition types are, respectively, identified by the 
symbols A  , B  and C  . Particularly, A  concerns with the 
input of plane waves by the assignment of normal particle 
velocities, v̄n , to the inlet section, B  describes the rigid wall 
condition that is enforced in the surfaces of the muffler and C  
characterizes the output termination as anechoic, that is a non-
reflecting component, by the impedance matching between the 
inner and outer acoustic fluids (Munjal 2014). Mathematically, 
such conditions may be written as,

where n is the outward unit normal vector and Z0 = �aca is 
the air characteristic impedance, with the subscript a refer-
ring to the acoustic material (air).

The weak form of the boundary value problem defined by 
Eqs. (1) to (4) can then be obtained by the combination of 
the Weighted Residuals Method and the Divergence Theorem,

with Γ1 and Γ2 being, respectively, the boundaries of Ω where 
conditions A  and C  (Eqs. (2) and (4)) are valid, and �p is 
the test function. Since condition B  (Eq. (3)) is homogene-
ous, the rigid wall boundary integral vanishes from Eq. (5). 
The FEM (Atalla and Sgard 2015) is chosen to approximate 
the continuous problem into a discrete one. By the adoption 
of Galerkin’s approach, the pressure field and its gradient, 
together with the test function information, can be written, 
in the element domain Ωe , as,

(2)A ∶
∇p ⋅ n

𝜌
= −j𝜔v̄n,

(3)B ∶ ∇p ⋅ n = 0,

(4)C ∶
∇p ⋅ n

�
= −

j�p

Z0
,

(5)

1

𝜌 ∫
Ω

�p ⋅ �𝛿p dΩ −
𝜔2

𝜅 ∫
Ω

p𝛿p dΩ

+ ∫
Γ1

j𝜔p

Z0
𝛿p dΓ1 + ∫

Γ2

j𝜔v̄n𝛿p dΓ2 = 0,

(6)p = Nepe and �p = Ne�pe,

where Ne is the shape function matrix, with Be being its 
gradient, and pe is the acoustic pressure vector. The variables 
preceded by � are considered to be test function related.

Placing Eqs. (6) and (7) into Eq. (5), the elemental acous-
tic stiffness, Ke , mass, Me , and damping, Ce , matrices, in 
addition to the element load vector, fe , are reached,

where Γe1
 and Γe2

 can be thought as elemental partitions of 
Γ1 and Γ2 , respectively. After the standard finite element 
assembly procedure is conducted, the acoustic dynamic sys-
tem can be obtained,

where K , M and C are the global acoustic stiffness, mass and 
damping matrices, with f and p being the global acoustic 
load and pressure vectors, respectively.

Lastly, it is noted that the investigated system (Fig. 1b) 
and the frequency spectrum considered in this work (below 
the cut off frequency) allow for the assumption of plane 
waves, not only at the inlet, but also at the outlet regions, 
where the sound pressure amplitudes ( p1 , p2 and p3 ) are 
collected and used in the calculation of vibroacoustic indica-
tors, e.g. Transmission Loss (TL). The muffler dimensions, 
such as chamber length, L, and height, D, as well as the 
distance x12 and the pipe height, d, are defined later, in the 
numerical examples section.

3 � Target material characterization

In this work, rigid and poro-rigid materials are treated as 
modified fluids, so as to be described by the scalar Helmholtz 
expression while also avoiding the intricacies related to fluid-
structure interactions. The rigid material may be viewed as a 

(7)�p = Bepe, and ��p = Be�pe,

(8)Ke =
1

� ∫
Ωe

BT

e
Be dΩe,

(9)Me =
1

� ∫
Ωe

NT

e
Ne dΩe,

(10)Ce =
1

Z0 ∫Γe1

NT

e
Ne dΓe1

,

(11)fe = −j𝜔v̄n ∫
Γe2

NT

e
dΓe2

,

(12)Zp = (K + j�C − �2M)p = f,
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non-vibrating structure, with infinite specific acoustic imped-
ance and total reflective boundaries. In a mathematical per-
spective, this can be achieved by the over amplification of the 
density and bulk modulus of the air, as done in previous works 
(Dühring et al. 2008; Lee and Kim 2009a). In a similar man-
ner, the poro-rigid structure can be derived from an equivalent 
fluid simplification by the adoption of the long-wavelength 
condition. Here, the pores are considered to be much smaller 
than the wavelength, in a way that the porous frame may be 
treated as motionless. Nevertheless, thermal and visco-inertial 
effects are still under consideration when the basic features of 
these poro-rigid materials, such as the effective density, �p , and 
the effective bulk modulus, �p , are described by frequency-
dependent and complex valued equations (Allard and Atalla 
2009).

In the researches conducted by Lee and Kim (2009a), the 
use of rigid materials in simple acoustic settings was investi-
gated, aiming to determine the proper lower limit values of 
its density, �r , and bulk modulus, �r . They concluded that 
the values of �r ≥ 105�a and cr ≥ 101ca can avoid physically 
spurious solutions when used in muffler systems, where the 
subscripts a and r refer to acoustic and rigid material proper-
ties, respectively. Based on this approximation, the following 
data are adopted,

In addition, the semi-phenomenological model of John-
son–Champoux–Allard (JCA) (Johnson et al. 1987; Cham-
poux and Allard 1991) is also considered in the simulation 
of poro-rigid materials,

where the porosity is denoted by � , the tortuosity is �
∞

 , the 
static flow resistivity is � , the viscous characteristic length is 
Λ and the thermal characteristic length is Λ� . The four ther-
modynamic parameters of the air that saturates the pores are 
also introduced, with � being the kinematic viscosity, � the 
specific heat ratio, Pr the Prandtl number, and P0 the atmos-
pheric pressure. Table 1 shows the JCA model parameters 
of rock-wool, as the porous material chosen, and air at 20◦C.

(13)�a = 1.21 kg m−3; �a = 1.42 × 105 Pa,

(14)�r = 107�a kg m
−3; �r = 109�a Pa.

(15)�p =
�
∞
�a

�
+

�

j�

√
1 + j

4�2
∞
��a�

�2Λ2�2
,

(16)
�p =

�P0∕�

� −
� − 1

1 − j
8�

Λ�2Pr�a�

√
1 + j

Λ�2Pr�a�

16�

,

3.1 � Multi‑phase material interpolation scheme

Before presenting the three-phase Material Interpolation 
Scheme (MIS) proposed in this work, two bi-material ones, 
comprising Acoustic-Rigid (AR) and Acoustic-Porous (AP) 
relations, are introduced by the set of Eqs. (17) and (18),

where �e represents the design variable, with the superscripts 
�1,2 and �1,2 being penalty variables, and the subscripts a, 
p and r referring to acoustic, porous and rigid materials, 
respectively.

Following Pereira et al. (2022), a recurring practice is 
to consider �e = �min = 0.001 for acoustic and �e = 1 for 
rigid/porous materials. However, in this case, the acoustic 
properties must switch place with the rigid and porous 
ones, to guarantee an initial domain full of acoustic ele-
ments; hence �e = �min = 0.001 is adopted for rigid/porous 
materials, while �e = 1 is set for the acoustic. In discrete 
topology optimization algorithms, MIS are often used to 
enhance the stability of the evolutionary process, as it ena-
bles the evaluation of the objective function gradient. In 
this particular case, Eqs. (17) and (18) are chosen based 
on the fact that the elemental matrices are proportional to 
the inverse of the density and bulk modulus (Yoon 2013), 
as can be seen in Eqs. (8) and (9).

(17)

⎧⎪⎨⎪⎩

1

�(�e)
=

1

�r
+ �

�1

e

�
1

�a
−

1

�r

�
,

1

�(�e)
=

1

�r
+ �

�2

e

�
1

�a
−

1

�r

�
,

(18)

⎧⎪⎪⎨⎪⎪⎩

1

�(�e)
=

1

�p
+ �

�1
e

�
1

�a
−

1

�p

�
,

1

�(�e)
=

1

�p
+ �

�2
e

�
1

�a
−

1

�p

�
,

Table 1   JCA model parameters

Parameters of Rock-wool Value

Porosity � 0.94
Tortuosity �

∞
2.1

Static flow resistivity � (N s m −4) 135, 000
Viscous characteristic length Λ (μm) 49
Thermal characteristic length Λ� (μm) 166
Thermodynamic Parameters of Air at 20◦C Value
Kinematic viscosity � (kg m −1s−1) 1.84 × 10

−5

Specific heat ratio � 1.401
Prandtl number Pr 0.710
Atmospheric pressure P

0
 (Pa) 101, 325
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Nevertheless, one of the issues regarding Eq. (17) is 
due to the considerable differences between the values 
adopted for �r and �r compared to �a and �a . As the rigid 
material density and bulk modulus are too large (more 
than 107 times the air property values), its inverses are too 
small, therefore, resulting in interference from the acoustic 
portion into the rigid one, when considering �min = 0.001 
together with penalty variables smaller than 4. Such fact 
goes against the expectations regarding the capacity of 
the chosen MIS be able to address all individual material 
forms, with as minimum influence of the other phases as 
possible, when starting from a purely acoustic domain. 
Based on that, two additional variables ( Θ1,2 ) are intro-
duced in Eq. (17) as an effort to reduce the aforementioned 
numerical issues,

where,

From Eqs. (19), (20) and (21) it is perceptive that no fur-
ther interference is considered over the rigid portion when 
�min = 0.001 , while the acoustic phase is also correctly 
described when �e = 1 (interference of order of 0.001�1,2).

Following a similar idea, the multi-phase MIS for the 
Acoustic-Porous-Rigid (APR) problem can finally be 
introduced,

with,

where �1,2 are the problem design variables and �1,2,3,4 
are its corresponding penalizers. In addition, acous-
tic, porous and rigid structures can be clearly obtained 

(19)

⎧⎪⎨⎪⎩

1

�(�e)
= Θ1 + �

�1

e

�
1

�a
−

1

�r

�
,

1

�(�e)
= Θ2 + �

�2

e

�
1

�a
−

1

�r

�
,

(20)Θ1 =
1

�r
− �

�1

min

(
1

�a
−

1

�r

)
,

(21)Θ2 =
1

�r
− �

�2

min

(
1

�a
−

1

�r

)
.

(22)

⎧⎪⎨⎪⎩

1

�(�e1, �e2)
= Θ3(1 − �

�2
e2
) +

1

�p
(�

�2
e2
− �

�1
e1
) + �

�1
e1

1

�a
,

1

�(�e1, �e2)
= Θ4(1 − �

�4
e2
) +

1

�p
(�

�4
e2
− �

�3
e1
) + �

�3
e1

1

�a
,

(23)Θ3 =
1

�r
−

[
1

�p
(�

�2
min

− �
�1
min

) + �
�1
min

1

�a

]
,

(24)Θ4 =
1

�r
−

[
1

�p
(�

�4
min

− �
�3
min

) + �
�3
min

1

�a

]
,

by setting (�e1, �e2) = (1, 1) , (�e1, �e2) = (�min, 1) and 
(�e1, �e2) = (�min, �min) , respectively. To make matters 
clearer, Table 2 presents the design variable limiting val-
ues according to its corresponding element types, being 
directly associated with the AR, AP and APR interpolations 
(Eqs. (19), (18) and (22), respectively). Since the values of 
�1,2 , �1,2 and �1,2,3,4 are problem dependent, they are pre-
sented in Sect. 5.

4 � Topology optimization of multi‑phase 
mufflers: a BESO‑based multi‑domain 
methodology

A topology optimization problem consists in changing 
the material configuration inside the design domain, Ωd , 
with the goal of enhancing some objective function, while 
respecting equilibrium equations and predefined constraints. 
In density-based optimizations, a design variable is assigned 
to each Ωd finite element, representing the current material 
type at that specific Ωd location (see Table 2). Sensitivity 
numbers are then defined as the derivative of the objective 
function with respect to the design variables. In a discrete 
BESO context (Huang and Xie 2010), for example, elements 
with lower sensitivity numbers are removed from the design, 
while the ones with higher values are added, thus maximiz-
ing the objective function chosen.

As a particularization, consider a topology optimization 
problem where the goal is to maximize the mean transmis-
sion loss, Φ , over the angular frequency range [ �(1)

s
 , �(m)

f
 ], 

when subjected to the acoustic equilibrium system Eq. (12) 
and n − 1 volume constraints,

(25)max.: Φ =
1

�
(m)

f
− �

(1)
s

(
m∑
i=1

∫
�
(m)

f

�
(m)
s

TL dΩdm

)
,

Table 2   Design variable limiting values according to its correspond-
ing element types and problems under investigation

Problem Variable Value Type

AR
(2 phases)

�
e

1 Acoustic
�
min

Rigid
AP
(2 phases)

�
e

1 Acoustic
�
min

Porous
APR
(3 phases)

(�
e1
, �

e2
) (1, 1) Acoustic

(�
min

, 1) Porous
(�

min
, �

min
) Rigid
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In the above equations, m is the number of design domains 
(or muffler chambers) considered in the optimization, while 
Ωdm refers to the specific domain where the mean TL is cal-
culated over the [ �(m)

s
 , �(m)

f
 ] frequency range. Additionally, 

n indicates the number of material phases treated in the itera-
tive procedure, which are controlled by the relations between 
the prescribed final volume fractions, V∗ , and the design 
domain volume fractions, 

∑Nel

e=1
Ve�e . Nel is the total number 

of elements in the fluid domain. Furthermore, the general 
design domain matrix, � , encompass all the column design 
domain vectors, � , of each individual material phase. Table 2 
shows the number of material phases and the limit values of 
the elemental design variables, �e , considered in the prob-
lems here investigated, while Fig. 2 presents the multi-cham-
ber disposition for up to m = 3.

Considering the same cross sectional areas of the inlet and 
outlet tubes, and knowing that only plane waves propagate 
themselves in those regions, the TL formula can be obtained 
with the help of the three-point methodology (Wu and Wan 
1996),

where the air wavenumber is denoted by ka = �∕ca , the 
sound pressure amplitudes measured at the inlet receivers are 
p1 and p2 , being located x12 from each other (see Fig. 1b), 
and the sound pressure amplitude taken from the outlet end 
is p3 . According to Bilawchuk and Fyfe (2003), and Lee 
(2015), the compactness of Eq. (27) allows for easier numer-
ical implementation, besides being computationally cheaper, 
when compared with more traditional methods, such as the 
4-pole transfer matrix approach (Young and Crocker 1975).

(26)s.t.:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Zp = f,

⎧⎪⎨⎪⎩

V∗

1
−

�∑Nel

e=1
Ve�e

�
1

⋮

V∗

n−1
−

�∑Nel

e=1
Ve�e

�
n−1

⎫⎪⎬⎪⎭
=

⎧
⎪⎨⎪⎩

0

⋮

0

⎫⎪⎬⎪⎭
,

� =

⎡⎢⎢⎢⎣

⎧⎪⎨⎪⎩

�1
⋮

�Nel

⎫⎪⎬⎪⎭1

,… ,

⎧⎪⎨⎪⎩

�1
⋮

�Nel

⎫⎪⎬⎪⎭n−1

⎤⎥⎥⎥⎦
.

(27)TL = 20 log10

(||||
1

p3

p1 − p2 exp(−jkax12)

1 − exp(−j2kax12)

||||
)
,

4.1 � Sensitivity analysis

As previously highlighted, the contribution of each finite ele-
ment must be taken into account, in order to maximize the 
considered objective function. In this muffler optimization 
problem, such calculation is done by the derivation of Φ with 
respect to �e,

where �e is the sensitivity number of the eth element. To 
properly solve Eq. (28), one may first calculate the partial 
TL derivative (Lee and Kim 2009b),

where

and,

(28)�e =
1

�
(m)

f
− �

(1)
s

(
m∑
i=1

∫
�
(m)

f

�
(m)
s

�TL

��e
dΩdm

)
,

(29)
�TL

��e
=

10

ln10

(
�|pin|2
��e

1

|pin|2
−

�|pout|2
��e

1

|pout|2
)
,

(30)

|pin|2 =
[Re(p

1
) − Re(p

2
) cos(kax12) − Im(p

2
) sin(kax12)]

2

[1 − cos(2kax12)]
2 + [sin(2kax12)]

2

+
[Im(p

1
) − Im(p

2
) cos(kax12) + Re(p

2
) sin(kax12)]

2

[1 − cos(2kax12)]
2 + [sin(2kax12)]

2
,

(31)|pout|2 = Re(p3)
2
+ Im(p3)

2,

(32)

�|p
in
|2

��e
=

2
[
Re](p

1
) − Re(p

2
) cos(kax12) − Im(p

2
) sin(kax12)

]
[1 − cos(2kax12)]

2 + [sin(2kax12)]
2

×

[
�Re(p

1
)

��e
−

�Re(p
2
)

��e
cos(kax12) −

�Im(p
2
)

�e
sin(kax12)

]

[1 − cos(2kax12)]
2 + [sin(2kax12)]

2
+

2
[
Im(p

1
) − Im(p

2
) cos(kax12) + Re(p

2
) sin(kax12)

]
[1 − cos(2kax12)]

2 + [sin(2kax12)]
2

×

[
�Im(p

1
)

��e
−

�Im(p
2
)

��e
cos(kax12) +

�Re(p
2
)

�e
sin(kax12)

]

[1 − cos(2kax12)]
2 + [sin(2kax12)]

2
,

(33)
�|pout|2
��e

= 2
�Re(p3)

��e
Re(p3) + 2

�Im(p3)

��e
Im(p3).

Fig. 2   General configurations of 
a muffler system with one, two 
and three expansion chambers
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In Eqs. (30) to (33), Re(pj ) and Im(pj ) denote the real and 
imaginary parts of the jth pressure amplitude, with the val-
ues of �Re(pj)∕��e and �Im(pj)∕��e obtained by, respectively, 
taking the real and imaginary parts of �pj∕��e.

By defining an adjoint load vector of form �pj∕�p and 
size [dof, 1], where dof refers to the total number of degrees 
of freedom of the system, the investigated nodal pressure, pj , 
is then considered to be addressed to a specific dof, allowing 
�pj∕�p to be filled with zeros, with the exception of the uni-
tary value that is placed in the dof referred to pj (Lee et al. 
2015). With this, and the help of Eq. (12), the differentiation 
of pj can be written,

where,

Applying Eq. (35) into Eq. (34), and considering 
pj = Z−1

(�pj∕�p) , the targeted expression is obtained,

As a final action, one may calculate �Z∕��e by the assis-
tance of the acoustic finite element equation, Eq. (12), and 
the appropriated material interpolation scheme. Since this 
work deals with multi-phase topology optimization prob-
lems, all the three MIS expressions Eqs. (18), (19) and (22) 
are considered when dealing with acoustic-porous, acoustic-
rigid and acoustic-porous-rigid compositions, respectively. 
These expressions have been validated via finite differences 
method.

4.2 � Projection filter

When discretizing a continuous domain with the FEM, 
a few issues may arise due to the C0 discontinuity across 
element boundaries. Between them are checkerboard 
patterns (Jog and Haber 1996) and mesh dependency 
(Sigmund 1997), which may be dealt with the adop-
tion of numeric filters. As discussed by Dilgen et al. 
(2019), convolution (Bruns and Tortorelli 2001) and 
Helmholtz (Lazarov and Sigmund 2011) type density 
filters can be thought as valid choices for the solution 
of the aforementioned problems. Another common way 
is based in the projection of the nodal sensitivity num-
bers along the design domain. A particular form of this 
last one has been introduced by Huang and Xie (2007) 

(34)
�pj

��e
=

(
�pj

�p

)T
�p

��e
,

(35)
�p

��e
= −Z−1 �Z

��e
p.

(36)
�pj

��e
= −pT

j

�Z

��e
p.

for applications regarding BESO-based optimizations. 
Therefore, it has been chosen in the current work.

The overall procedure consists in distributing the ele-
mental sensitivity numbers between the nodes. After-
wards, a mesh independent filter radius, rmin , is placed at 
the center of each element. All nodes within this radius 
are then considered contributors to the averaged elemen-
tal sensitivity numbers that finally result. Based on that, 
one may write the nodal sensitivity numbers expression 
as,

where �n is the nth node sensitivity number, M is the amount 
of elements connected to the nth node, we is the weight factor 
of the eth element and ren is the distance from the centroid of 
the eth element to the nth node. The filtered sensitivities are,

with H defined as a list of the nodes that are inside the rmin 
subdomain and w(ren) = rmin − ren being a linear weight 
factor.

At last, to increase the stability of the optimizer, an addi-
tional sensitivity historical averaging procedure is adopted,

with the superscript i referring to the ongoing iteration of 
the topology optimization algorithm.

4.3 � Multi‑phase design update

To continue the optimization process, the target volume of 
the following iteration has to be defined. For this, the Evo-
lutionary Rate (ER) is prescribed as the change in volume 
fraction between the next, V (i+1) , and the current, V (i) , itera-
tions, that is,

(37)�n =

M∑
e=1

we�e,

(38)we =

⎧⎪⎨⎪⎩

1 if M = 1,

1

M−1

⎛⎜⎜⎝
1 −

ren
M∑
e=1

ren

⎞⎟⎟⎠
if M > 1,

(39)�e =

∑H
w(ren)�n∑H
w(ren)

,

(40)�e =
�(i−1)
e

+ �(i)
e

2
,

(41)V (i+1)
= V (i)

(1 ± ER).
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After sorting the sensitivity number values from highest to 
lowest and considering the threshold established by V (i+1) , 
the elements are modified by the following relation,

where �th is the threshold sensitivity number. When �e ≤ �th 
the so-called void material is assign to that specific element 
by the imposition of �e = �min . For the case of 𝛼e > 𝛼th , the 
full material is then placed. In a multi-phase optimization 
setting, such element types vary according to the particular 
materials described by the sensitivity vector under consid-
eration (Huang and Xie 2009, 2010).

As an example, in the APR material configuration 
n = 3 and � = [�1, �2] . This means that two different sen-
sitivity analysis would have to be considered, in order 
to relate acoustic to porous and then to rigid elements. 
Such procedure is done with the help of the expressions 
shown in Sect. 4.1 and the MIS described by Eq. (22). 
With the derivation of this material interpolation with 
respect to the elemental design variables, (�e1, �e2) , two 
sets of sensitivity numbers are generated, becoming then 
subject to the relations imposed by Eqs. (42) and (43). 
For a single finite element, the resulted combination of 
(�e1, �e2) = (1, 1) describes air, while (�e1, �e2) = (�min, 1) 
or (�min, �min) characterizes porous or elastic materials, 
respectively (see Table 2 for completeness). Such pat-
tern can be repeated for the n − 1 phase materials, in a 
general case, if more sensitivity vectors are considered 
and comprehensive MIS are constructed.

One important aspect concerns the meaning of the 
ER in a multi-phase optimization procedure. While this 
variable establishes the proportion of volume reduction 
of the initial structure, composed of material 1, it also 
controls the increase of the alternative one, material 2. 
As Eq. (26) restricts the amount of each material volume 
fraction throughout the optimization, it is understood that 
material 2 gradually increases, with the reduction of the 
first, until reaching V∗

2
 . Then, such volume is kept con-

stant, while material 3 starts to increase. After V∗

3
 is also 

reached, the next material takes its place, up until all the 
multiple structures have attain its final volume fractions 
(Huang and Xie 2009, 2010).

Another important point to note refers to the defini-
tion of a variable that allows changes of void/full to full/
void elements. This possibility of return of materials (or 
addition) is controlled by the Addition Ratio (AR), hence 
representing the bi-directionality of the BESO approach. 
To apply limitations to this procedure, the maximum 
Addition Ratio (ARmax ) is established. If the case where 
AR > ARmax arises, then the AR = ARmax regulation is 

(42)�e ≤ �th as void elements (�e = �min),

(43)𝛼e > 𝛼th as full elements (𝛾e = 1),

imposed to fulfill Vi+1 . This entails in the fact that some 
of the lowest �e elements are set to be void and others, 
with the highest �e , to be full.

4.4 � Multi‑domain evolutionary algorithm

As one of the novelties of the current work, the multi-
domain BESO (or mdBESO) method is introduced in 
Algorithm 1. Initially, all the aforementioned geometry 
and BESO variables should be imputed to the system, as 
well as boundary conditions and mesh information. Addi-
tionally, the proper number of domains, m, and material 
phases, n, are expected to be known beforehand. In the 
acoustic topology optimization problems here explored, 
three types of material configuration are considered, 
being two bi-phase (AR and AP) and one three-phase 
(APR), with this last one being also treated in multi-
chamber mufflers. The results from such investigations 
can be found in Sects. 5.1, 5.2 and 5.3.

The natural next step of the mdBESO proposition con-
sists in solving the dynamic equilibrium system, Eq. (12), 
in order to find the nodal pressure values needed to start 
the iterative process. At this point, sensitivity analysis, 
filtering, and multi-phase design update procedures are 
performed, as previously discussed in Sects.  4.1, 4.2 
and 4.3, respectively. However, the new design update 
matrix and its corresponding volume fraction informa-
tion are just allowed to changed outside the multi-domain 
loop. This methodological decision aims to enhance the 
stability of the system along the iterative process, since 
the topological modifications of a chamber will not inter-
fere in the design of the next chamber in the same itera-
tion. Afterwards, the nodal pressure vector is once again 
obtained, to update the objective function values.

In the current scenario of multi-domain optimizations, 
it was observed that the superposition of different fre-
quency bands from multiple domains helps to enlarge the 
frequency spectrum comprised by the optimized structure, 
fact that justifies the current form of Eq. (25), that is, each 
frequency range [ �(m)

s
 , �(m)

f
 ] is initially considered only in 

its corresponding design domain, Ωdm . This approach has 
found inspiration in the studies related to the acoustic rain-
bow trapping phenomenon, which allows broadband trap-
ping of sound by spatial-spectral modulation (Liu et al. 
2018), and in the broadband double negativity structures 
(Dong et al. 2020, 2022), that make use of subwavelength 
cavities of acoustic metasurfaces/metamaterials to increase 
the control of certain aspects of the target domains. 
Finally, the procedure ends when the stop criterion, rep-
resented by Eq. (44), and the final volume fractions, V∗ , 
are reached.
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Figure 3 shows an example of the proposed approach applied 
to the topology optimization of a bi-chamber muffler ( m = 2 ). 
As can be seen, acoustic, porous and rigid material elements 
are allowed in the design domains, Ωd , while in the non-design 
domains, Ωnd , the elements are always kept as air (acoustic 
elements); therefore, multi-phase applications ( n = 3 ) are also 
considered here. After the inputs are given to the mdBESO 
algorithm, the sensitivity analysis and filtering are performed, 
as well as both design and volume fraction updated information 
are gathered in the current design domain, cD, along iteration i. 
Despite of the two chambers being treated separately inside the 
multi-domain loop, when it ends, they are updated simultane-
ously, so that the next iteration can consider the new topological 
system settings. At last, it should be remarked that the multi-
chamber mufflers considered in this work are always treated 
as one single entity, meaning that p3 values are consistently 
collected at the outlet tube, even though such position may vary 
with the number of domains under investigation.

5 � Numerical examples

In this section, three major groups comprise the results 
obtained by the proposed methodology. The first one 
deals with optimizations of one-chamber mufflers, while 

allowing Acoustic–Rigid (AR) or Acoustic–Porous 
(AP) material phases in the design domain. The sec-
ond one expands such approach by considering Acous-
tic–Porous–Rigid (APR) phases in this same type of 
system. Finally, the third, acknowledges two and three-
chamber mufflers, together with the APR case, aiming to 
investigate a multi-domain optimization problem with a 
multi-phase material configuration. Here, the periodicity 
of the system is also examined, highlighting the conse-
quences of such dispositions on TL values.

Figure 1b shows the nominal (or the simple chamber) 
muffler considered in the current work. Such system has a 
chamber length of L = 500 mm and height of D = 150 mm. 
The inlet and outlet terminations are partitions of the same 
tube, which has d = 30 mm, while the distance between 
both inlet microphones is chosen to be x12 = 10 mm. As 
stated previously, plane waves are imposed at the inlet 
boundary by the enforcement of unitary particle velocities 
on it, while the outlet surface is defined as anechoic. In 
addition, only the symmetric upper-half chamber struc-
ture is considered, as an effort to reduce the computational 
costs involved in the FEM calculations. Finally, all the 
other boundaries are set as rigid walls.

Moreover, 3120 first order quadrilateral elements of 
size 5 mm compose the finite element mesh of the one-
chamber muffler system, being numerically above the 
minimum suggested per wavelength (Atalla and Sgard 
2015). To ensure fluid passage, the all acoustic non-design 
domain, Ωnd , covers the inlet, outlet and expansion cham-
ber middle areas. On the other hand, the design domain, 
Ωd , may allow porous and rigid structures to be placed on 
it, by following the procedures stated in Sects. 3 and 4. 
An interesting point to note is that, when it comes to the 
expansion of any kind of domains in a topology optimiza-
tion process, some issues may arise such as the number of 
elements that will be considered in the augmented design 
domain, the computational costs involved, the behavior of 
the new system prior to the optimization (the eigenmodes 
of the structure may change, as well as the choice of the 
target frequency), the new boundary conditions set up for 
the study, the position of the microphones (or nodes in a 
numerical study) to collect pressure/displacement instan-
taneous values, among others. Here, as the mdBESO has 
a broader sense of applicability, the geometry and mesh 
configurations are always kept the same regardless of the 
number of chambers investigated, that is, the nominal muf-
fler (and its elements) is repeated two and three times, in a 
series composition, for the two and three-chamber muffler 
cases, respectively (see Fig. 2). Moreover, the considered 
inlet/outlet tube lengths comply with the recommendations 
of Bilawchuk and Fyfe (2003), by being no less than 10% 
of L.
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A known behavior of transmission loss curves calculated 
in expansion chamber mufflers is related to its dome-like dis-
position, when considering a low-to-mid frequency domain, 
as shown in Fig. 4. Due to this configuration, TL values 
almost vanish close to the so called valley frequencies, 
fact that motivates the design of structures that avoid such 
kind of performance in the frequencies of interest. Besides, 
x-axial eigenfrequencies seem to be quite close to these val-
leys, being one of the main indicators of it (Munjal 2014). 
Based on that, three different bands are chosen in a way that 
each of then comprise one of the three first x-axial eigenfre-
quencies of a nominal expansion chamber muffler, that is, 
B1: [180, 520] Hz, B2: [520, 860] Hz and B3: [860, 1200] 
Hz. Initially, in the one-chamber optimization case, these 
bands are considered individually, but then, in the multi-
domain setting, they are combined, broadening the range 
of frequencies treated by the optimizer, as can also be seen 
in Fig. 4.

To properly calculated the integrals presented in Eq. (25), 
the composite Simpson’s numerical integration rule (Atkinson 
1989) is considered, with frequency step of 10 Hz. In addi-
tion, the BESO parameters are set to vary as little as possible 
between these different multi-chamber optimizations, while 

still maintaining the particularities of each problem under 
investigation. With that being said, Table 3 presents all such 
parameters for these different aforementioned applications.

Fig. 3   Visual representation of 
an ith iteration of the mdBESO 
algorithm, when considering 
two design domains and three 
material phases

Fig. 4   TL behaviors of one, two and three empty expansion cham-
bers, together with the frequency bands targeted
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5.1 � Single‑chamber muffler design: the AR and AP 
cases

With the goal of investigating the general design trends and 
dispositions resulting from the application of the proposed 
approach over a single-chamber muffler system ( m = 1 ), 
while also checking for the validity of Eqs. (17) and (19), 
two bi-phase ( n = 2 ) optimization problems comprising 

acoustic-rigid and acoustic-porous materials are treated 
here. Initially, it is interesting to note that the mdBESO 
algorithm degenerates to a standard BESO approach when 
dealing with m = 1 cases. Based on these terms, Fig. 5a–c 
show the final topologies obtained from the analysis of the 
AR scenario, when considering the frequency bands B1, B2 
and B3, respectively. In the same way, Fig. 5d–f presents the 
optimized topologies of the AP configuration.

The obtained designs seem to be arranged in a corre-
sponding manner, by looking at the pair of items a–d for B1, 
b–e for B2 and c–f for B3. These optimized configurations 
are indeed expected as the barriers break the formation of 
the modes in the frequencies of interest, enhancing TL val-
ues as a result (Lee and Kim 2009b; Lee et al. 2015), shown 
in Fig. 5g and h. Besides, pure reactive mufflers appear to 
be effective TL enhancers at low-to-mid frequencies, while 
dissipative ones tend to perform better as the frequency 
increases (Panigrahi and Munjal 2005).

Although these findings appear to be sufficient to con-
firm the effectiveness of the proposed AR and AP material 
interpolation schemes Eqs. (17) and (19), differences were 
observed when comparing the AR designs of the current 
analysis with the ones from Azevedo (2017) and Azevedo 
et al. (2018), despite of the use of a similar BESO approach 
in both works. Such contrasting topologies, presented in 

Table 3   BESO parameters adopted in the single and multi-chamber 
muffler optimizations

BESO Parameters Single-chamber Multi-chamber

AR AP APR APR

ER 0.1% 0.1% 0.1% 0.1%
AR

max
0.1% 0.1% 0.1% 0.1%

r
min

0.03 m 0.03 m 0.03 m 0.03 m
� 0.1% 0.1% 0.1% 0.1%
V
∗

a
96% 80% 76% 76%

V
∗

p
– 20% 20% 20%

V
∗

r
4% – 4% 4%

(�
1
,�

2
) (2, 2) – – –

(�
1
, �

2
) – (2, 1) – –

(�
1
, �
2
, �
3
, �
4
) – – (2, 1, 2, 1) (2, 1, 2, 1)

Fig. 5   Optimized designs regarding the a AR-B1, b AR-B2, c AR-B3, d AP-B1, e AP-B2 and f AP-B3 cases, with the g AR and h AP corre-
sponding transmission loss curves
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Fig. 6, are mainly due to the distinctions found between the 
values chosen for �r and �r in the investigations here con-
ducted if compared to the aforementioned interrelated analy-
sis, the supplementary material quantity considered by the 
researchers and their choice for specific target frequencies. 
In their study, for example, the rigid structure was somewhat 
softer (or less rigid) than the ones considered here, lead-
ing them to find major material concentrations in the areas 
of interest. Despite that, all the designs presented in Fig. 6 
seem to agree with literature results (Lee and Kim 2009b; 
Lee et al. 2015), having rigid partitions in almost the same 
vertical locations.

Another point of interest regards the amount of rigid and 
porous materials chosen in the composition of the design 
problems investigated in this paper. After several numerical 
studies, the authors considered that 4% of rigid would be suf-
ficient to demonstrate the plate-like design disposition in all 
the frequencies of interest, while also respecting the general 
trends of each of the topologies found. For porous structures, 
however, a few more aspects should be accounted for when 
deciding the amount of material that are to be adopted in 
an optimization process. From the five different JCA model 
parameters presented in Table 1, the static flow resistivity 
seems to be the most influential in the calculation of trans-
mission loss values. This observation has found support 
in the works of Magliacano et al. (2020), who noted that 
by increasing � , TL numbers also grow, meaning that flow 
resistivity can be viewed as an “acoustic hardness” of Biot-
modeled foams. A similar statement was also made by Yoon 
(2013), when considering porous materials modeled by the 
empirical Delany-Bazley formulations.

Based on the above accounts, the authors investigated 
several quantities of porous materials along different opti-
mization processes, as shown in Fig. 7. Here, final volume 
fractions of 10%, 15%, 20%, 25% and 30% are presented, 
for the AP-B2 case, aiming to make known the similari-
ties of the obtained topologies. Therefore, a representative 
amount of material that actually comprises the above find-
ings, but that does not provoke major computational cost 

increase is obtained when the final volume fraction of 20% 
is considered.

5.2 � Single‑chamber muffler design: the APR case

In this multi-phase APR scenario, Fig. 8 shows the optimal 
designs resulted from the solution of Eqs. (25) and (26), 
when adopting m = 1 and n = 3 , while also presenting its 
corresponding TL curves. In the B1, B2 and B3 bands here 
treated, items a, b and c respectively, a clear combination 
between the AR and AP configurations is noticeable, pre-
senting porous materials attached to rigid structures without 

Fig. 6   AR optimal topologies for the a B1 and b B2 frequency bands 
in the present approach, together with the AR results from Azevedo 
(2017) in c 346 Hz and d 690 Hz

Fig. 7   Optimized designs of the AP-B2 case comprising final volume 
fractions of a 10%, b 15%, c 20%, d 25% and e 30% of porous materi-
als

Fig. 8   Optimized designs regarding the a APR-B1, b APR-B2 and c 
APR-B3 cases, with d its corresponding transmission loss curves
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the need for further manipulations. If one only focus on the 
AP case (Fig. 5d–f), it is perceptive that little balance is 
given to the rock-wool when stacking it vertically inside the 
system, making such AP configuration very difficult to build 
and sustain (Yoon 2013). In this way, a common procedure 
to proper support porous materials is to connect them to 
stiffer structures, as naturally resulted from the proposed 
approach, in addition to using a grid to prevent drag by the 
fluid flow (Ferrándiz et al. 2020).

To further illustrate the correlations between the response 
behaviors of the AR, AP and APR designs, Fig. 9 is given. 
Here, only the partitions regarding the B1, B2 and B3 trans-
mission loss curves of the AR (Fig. 5g), AP (Fig. 5h) and 
APR (Fig. 8d) cases are presented. It is clear that the APR 
approach takes the upper-hand in relation the AR and AP 
cases alone, as the hybrid chamber combines their respective 
reactive and dissipative characteristics. This is especially 
observed in higher frequency bands, such as B3, when the 
dissipative attributes are more pronounced, helping to boost 
the overall sound attenuation performance.

Furthermore, Fig. 10 presents the evolutionary history 
of mean TL values calculated in the B1, B2 and B3 fre-
quency bands, while also showing intermediate design con-
figurations gathered in the identifiable iterations 1  to 6  . 
From early stages, it is clear that porous materials are first 
introduced in the design until the previously set V∗

p
 value is 

reached. Then, rigid structures are brought into Ω , but only 
inside the regions immediately after being occupied by the 
porous bodies. This methodological approach, in addition to 
the sensitivity historical average procedure adopted and the 
relatively small addition/removal of material per iteration, 
enhances the stability of the iterative process, especially 
when rigid elements are introduced in the design domain. 

Despite that, expressive mean TL variations are still vis-
ible at the final stages of the evolution, due to the major 
impact that a simple porous-rigid change may provoke in 
the objective function. Such feature can be considered as a 
typical behavior of discrete optimizers, as has been observed 
before in the design of acoustic-rigid metasurfaces (Pereira 
et al. 2022).

Lastly, a compelling facet that is worth investigating 
regards the mesh size information adopted in the current 
methodology. Based on that, Fig. 11 shows the optimized 
topologies obtained from the APR optimization case, with 
element sizes of 5.0 mm, 2.5 mm and 1.0 mm, while also 
considering B1, B2 and B3 frequency bands in the objective 
function determination. Beyond the clear designs obtained 
in all investigated scenarios, it is insighted that the chosen 
projection filter accomplishes its role in aggregating rigid 
and porous materials, in addition to providing closely related 
topologies in these frequency based optimizations, despite 
of the considered mesh variations.

Delving further into the details of the topologies found, 
one can note that porous materials are placed in different 
chamber locations, especially when looking at its sidewalls, 
in practically all the cases here presented. This is due to 
the marginal acoustic attenuation effects that such structures 
have when attached to any of the sides of a single cham-
ber muffler (Panigrahi and Munjal 2005). Hence, it may be 
inferred that, in the case of the impossibility of placement of 
a large amount of porous elements in such regions, the algo-
rithm may change their sidewall locations without inflicting 
great variations on the objective function values. Finally, it 
is important to point out that minor variations are noted in 
the middle parts of the chamber; regions in which the inter-
ference of porous/rigid materials in the sound attenuation is 
more pronounced.

5.3 � Multi‑chamber muffler design with the APR 
system settings

This last group of analyses considers a combination of multi-
domains and multi-phase materials to maximize transmis-
sion loss values in a broad range of frequencies. For this, the 
internal partitions of two and three-chamber mufflers ( m = 2 
and m = 3 , respectively) are designed by the mdBESO 
approach, as presented in Algorithm 1, while also letting 
acoustic, porous and rigid ( n = 3 ) elements to be introduced 
in the design domain. To further enrich the study, not only 
mdBESO-based results are shown, but also two more BESO 
related concepts are explored. The first one consists in the 
union of separately investigated domains, according to the 
observed frequency band, in order to compose the required 
multi-chamber composition. The second one simply consid-
ers the optimization of a bigger Ωd , which encompass two, 
for m = 2 , or three, for m = 3 , muffler chambers in an unified Fig. 9   The AR, AP and APR response comparison
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manner. These approaches are here referred as BESO-C (as 
in “Coupled”) and BESO-F (as in “Full”), respectively.

5.3.1 � Two‑chamber muffler design

Figure 12 presents a direct comparison between the two-
chamber mdBESO, BESO-C and BESO-F approaches, 

with its optimal topologies given, in a respectively man-
ner, thorough items a, b and c. The TL final values and the 
objective function evolutionary behaviors are bestowed in 
items d and e. These studies clearly show similarities in the 
optimal results regarding the mdBESO and BESO-C tech-
niques, items a and b, being apparent that B1 and B2 bands 
have been particularly targeted by the optimization in the 

Fig. 10   Evolutionary history of the objective function calculated in the B1, B2 and B3 frequency bands, as well as intermediate topologies of 
interest

Fig. 11   Optimized topologies 
obtained from the APR optimi-
zation case, with meshes of 5.0 
mm, 2.5 mm and 1.0 mm, while 
considering the B1, B2 and B3 
frequency bands in the objective 
function determination
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first and second chambers, from a left to right disposition, 
respectively. As previously mentioned, the main differences 
between the two results are due to the adoption of distinct 
approaches; while the first uses the mdBESO algorithm to 
consider the B1 and B2 bands simultaneously, the second 
simply joins two single chamber mufflers together, where 
the optimization for APR-B1 is placed on the left domain 
(see Fig. 8a) and for APR-B2 is connected to the right (see 
Fig. 8b).

In relation to the results found for BESO-F, it is visible 
that the influence of B2 surpass B1 regarding the final topol-
ogy obtained, as can be seen by the spatial arrangement of 
rigid plates and its porous wraps, presented in Fig. 12c. 
Similarly to the mdBESO, this case also treats B1 at the 
same time as B2, but without restricting the design domain, 
that is, the elements are always free to enter the left and 
right chambers, following the mean TL values calculated in 
each iteration step. In this sense, the higher the frequencies 
considered, the greater the influence over topologies that 
break the formation of higher horizontal eigenmodes at the 
expense of the minors.

This finding is reinforced by the observation of Fig. 12d, 
which shows that the final TL curve of the BESO-F topol-
ogy is the largest in the range encompassed by B2, but the 

lowest in B1. It is also worth noting that, due to the nodal 
lines that appear in the connecting tube of both chambers 
(see Fig. 14), the mdBESO-Left topology seems to have 
been pushed laterally, resulting in a TL decrease in B1, but 
with an increase in B2, when compared to the BESO-C case. 
Lastly, Fig. 12e shows that the BESO-F case in fact leads 
to greater objective function values, but at the cost of the 
evolutionary process stability.

Furthermore, a complementary scenario is presented in 
Fig. 13, as the B2 and B3 frequency bands are contemplated 
along the iterations. In items a and c, for example, closely 
related topologies are found, since, in the mdBESO case, an 
additional vertical barrier is created at the zone dominated 
by B2. However, in the BESO-F approach, a mischaracteri-
zation of porous materials is perceived by its scatteredness 
throughout Ωd . Such observations are reflected in the cal-
culation of the optimized TL, Fig. 13d, with the results of 
mdBESO and BESO-F being very close to each other and 
way more advantageous than the one found by the BESO-C 
methodology. Nevertheless, the greatest evolutionary insta-
bilities are attributed to the BESO-F, as shown in Fig. 13e.

To emphasize the influence that the x-axial eigenfrequen-
cies have under the mdBESO topology results, Fig. 14 is dis-
played. The TL curve is obtained for an empty two-chamber 

Fig. 12   Optimized designs regarding the a mdBESO, b BESO-C and c BESO-F methodologies when considering the B1–B2 frequency band 
configuration, in addition to d its corresponding transmission loss curves and e objective function evolutionary behaviors
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muffler, where its eigenfrequencies have been pointed out 
by the numbers 1  and 2  for B1, 3  and 4  for B2, and 5  
and 6  for B3. The related eigenmodes have also been pre-
sented. Since the inlet/outlet tubes have marginal effect on 
the behavior of the investigated acoustic modes, the authors 
chose to replace them by rigid walls as a way to simplify 
the analysis (Lee and Kim 2009b). As a consequence, all 
the boundary conditions described by Eqs. (2) and (4) have 
been changed to the one of Eq. (3). In a general sense, the 
main observations are related to the similar impedance 
characteristics found near the ends of the muffler, allowing 
energy to be transmitted from one side to the other almost 
without losses, and the consequent nodal lines (blue lines) 
that appear in the maximum particle velocity regions (Lee 
and Kim 2009b; Lee et al. 2015).

Another interesting finding is done by looking at the pairs 
of modes located close to the valley frequencies comprised 
by B1, B2 and B3. In this particular bi-chamber case, the 
two modes of each pair are very close to each other, in the 
frequency spectrum, and quite similar in form, being the 
main difference attributed to the additional nodal line that 
appears in the connecting tube of chambers. These charac-
teristics may lead the mdBESO to a certain instability in 
the optimization procedure when compared to the BESO-C 

case, since more than one acoustic mode directly influence 
the design process of the considered mufflers. However, 
these same attributes are also responsible for a superior per-
formance in many situations, as shown in the B2-B3 case 
(Fig. 13d), for example.

The methodological choice of considering the domains 
separately in each iterative step, but simultaneously in the 
overall optimization process, lead the mdBESO to be way 
more stable than the BESO-F approach (see Figs. 12e, 13e). 
Finally, it is remarked that such peculiar acoustic mode 
aspects are also observed for the empty three-chamber sys-
tem, where three related acoustic modes are obtained in each 
TL valley. These results have not been shown here due to 
close similarities to the empty two-chamber setting.

5.3.2 � Three‑chamber muffler design

One additional aspect that may be considered in the optimi-
zation of multi-chamber mufflers is related to the arrange-
ment of the domains treated in the analysis. Based on that, 
Figs. 15 and 16 present comparisons between the mdBESO, 
BESO-C and BESO-F applications for the design of three-
chamber mufflers. The TL values are maximized in the first, 
second and third domains (in a left to right disposition) 

Fig. 13   Optimized designs regarding the a mdBESO, b BESO-C and c BESO-F methodologies when considering the B2-B3 frequency band 
configuration, in addition to d its corresponding transmission loss curves and e objective function evolutionary behaviors

86



	 R. L. Pereira et al.

1 3

   25   Page 18 of 22

by considering the following order of bands: B1–B3–B2, 
Fig. 15, and B3–B2–B1, Fig. 16. The mdBESO approach 
successfully allocates 4% of rigid and 20% of porous mate-
rials in each Ωd considered, beyond providing topologies 
that are able to enhance the objective function in all investi-
gated scenarios. Nevertheless, it is perceived that the B2–B3 
relations led to designs with three plate-like barriers in the 
domains targeted by these both bands, similarly to the one 
shown in Fig. 13. While this disposition enhances TL in 
these bands, it may also provide decrease in the overall val-
ues comprised by B1.

Furthermore, one may note that TL values of the 
mdBESO-B1-B3-B2 configuration, Fig. 15d, are greater 
than the ones from the mdBESO-B3-B2-B1, Fig. 16d, while 
all the others remain practically the same. This observation 
allows the idea of considering not only the maximization of 
the objective function in specific domains, but also of includ-
ing the search for the optimal configuration of domains in 

the optimization problem. As this work deals with the design 
of multi-domain systems composed of multi-phase materi-
als for enhancement of transmission loss values in a broad 
range of frequencies, the authors chose to let this even more 
challenging multi-objective scenario to be explored in future 
research.

In both Figs. 15c and 16c, the BESO-F optimal topology 
is organized with the aim of generate three vertical barri-
ers in all considered chambers, making use of almost the 
entirety of porous materials in just one place to increase 
the stiffness of the composition. This corroborates with the 
fact that BESO-F tends to produce topologies that greatly 
contributes to the breakage of higher x-axial eigenmodes 
at the cost of the minors. Finally, it is also noticeable that, 
due to the presence of the two connecting tubes in the three-
chamber scenario, the nodal lines that appear inside of these 
tubes seem to push away the left and right chamber lines 
further from its center, causing a small barrier to appear in 
the first half of the chamber target by B1. A similar effect is 
also visible in Fig. 14, for the two domain setting, especially 
in the pair 1 − 2 .

5.3.3 � Investigations on the periodicity of the muffler 
configuration

A final attention factor treated in this work concerns with the 
periodic nature that the topologies may present when mul-
tiple domains are considered, but only one frequency band 
is applied. Based on that, Fig. 17 is bestowed, which shows 
the transmission loss responses of one, two and three empty, 
and mdBESO optimized chambers, when the B2 frequency 
band is considered (item d). The correspondent optimized 
designs are also shown in items a, b and c. Here, the main 
TL curve indications are maintained in both empty and opti-
mized domains, in a way that almost the same responses 
appear to be repeated, when considering the empty from 
the optimized cases, but with greater TL intensification for 
larger chamber numbers. These results suggest that it is pos-
sible to use multiple periodic chambers optimized only once 
at a target frequency band, without the need to generate new 
topologies, if the design goal is to locally boost TL values. 
Yet, the system will significantly increase its global size, 
being the main setback of said application.

6 � Conclusions

The design of internal partitions of acoustic mufflers for 
transmission loss maximization has been addressed in 
many works over the years. When it comes to the adoption 
of topology optimization techniques, such specific appli-
cation has also been well covered, since these numerical 
methods can provide non-intuitive results regarding the 

Fig. 14   a Transmission loss curve of an empty two-chamber muffler, 
with highlight of the eigenfrequencies encompassed by the B1, B2 
and B3 bands. b Related eigenmodes and eigenfrequency values
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Fig. 15   Optimized designs regarding the a mdBESO, b BESO-C and c BESO-F methodologies when considering the B1–B3–B2 frequency 
band configuration, in addition to d its corresponding transmission loss curves and e objective function evolutionary behaviors

Fig. 16   Optimized designs regarding the a mdBESO, b BESO-C and c BESO-F methodologies when considering the B3–B2–B1 frequency 
band configuration, in addition to d its corresponding transmission loss curves and e objective function evolutionary behaviors
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overall disposition and form of the treated system. Never-
theless, the design of multi-chamber mufflers composed 
of multi-phase materials for enhancement of transmission 
loss values in a broad range of frequencies is still rare, 
being, therefore, the purpose of this study.

To achieve this goal, the multi-phase Bi-directional 
Evolutionary Structural Optimization (BESO) methodol-
ogy was combined with a novel multi-domain algorithm, 
named as mdBESO. Here, the standard BESO approach 
was modified to consider multi-chambers simultaneously 
throughout the global iterative procedure, but without 
allowing interference between these chambers in the same 
iteration.

Before that, the simulation of the acoustic muffler com-
position occurred with the adoption of the finite element 
method to solve the Helmholtz equation that, in turn, 
described the system. In this scenario, a new multi-phase 
material interpolation scheme was introduced, being able 
to systematically reproduce acoustic, porous and rigid mate-
rial phases according to the need imposed by the optimiza-
tion process. At this point, rigid and porous materials with 
rigid frame were approximated by the over amplification of 

acoustic properties and by the Johnson–Champoux–Allard 
(JCA) formulations, respectively.

The optimization problem was then established as to 
maximize mean transmission loss values in one, two and 
three reactive/dissipative chamber mufflers, considering 
multiple materials and domains, but keeping only volume 
constraints in this case. A common trait of these analyzes 
regarded the consideration of three different frequency bands 
in the objective function calculation, being chosen in a way 
that each of them comprised one of the three first horizontal 
eigenfrequencies of a nominal expansion chamber muffler.

Particularly, in the mono-domain scenario, the AR and 
AP optimization results showed to be strongly depend on 
the valley frequencies comprehended by the corresponding 
target bands, being, therefore, consistent with results from 
the literature. Furthermore, the APR designs presented clear 
combinations of the AR and AP ones, without the need for 
further manipulations to obtain porous materials wrapped 
around rigid structures. In all these outcomes, the breakage 
of acoustic modes was perceptive, leading the topologies to 
deviate the valley frequencies to regions far from the ones 
of interest.

Fig. 17   mdBESO optimized 
designs regarding a one, b two 
and c three muffler chambers, 
with d TL responses of the 
same one to three empty and 
optimized domains, when 
only the B2 frequency band is 
considered
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The multi-phase analyses were then conducted with the 
help of the mdBESO methodology and compared with two 
additional BESO-based settings, named as BESO-C and 
BESO-F. The first one was composed by the union of sepa-
rately optimized chambers and, the second, by the design 
of a bigger domain, comprising two or three chambers. 
Due to the influence of the connecting tube nodal lines, the 
mdBESO optimized topologies succeeded in attenuate sound 
more effectively than BESO-C, while also being more stable 
than BESO-F.

Finally, the periodic nature of the topologies resulted 
from a multi-chamber, mono-band, optimization was also 
investigated. In this case, TL values presented predictable 
patterns, with strong influence of the number of domains as 
a way to boost them, however causing the system to increase 
its size. Therefore, it can be concluded that the mdBESO 
algorithm is a viable choice in the design of internal parti-
tions of reactive and dissipative mufflers, in a general sense. 
Besides, it is worth noting that the inclusion of the search for 
the optimal configuration of domains was left to be treated in 
future research, as well as the investigation of three-dimen-
sional domains with axisymmetry or even under asymmetric 
conditions.
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6 | Evolutionary Design of Mutiphysics
Systems with Poroelastic Materials

In this chapter, the original research article entitled “Evolutionary topology optimiza-

tion approach to design multiphase soundproof systems with poroelastic media” by Rodrigo

Lima Pereira, Lidy Marcela Anaya Jaimes and Renato Pavanello is presented. The paper is

currently under review.

The work proposes a novel evolutionary approach to design closed-space structures

for sound attenuation, including combinations of acoustic, poroelastic and elastic domains in

the composition. The multiphysics involved in the analysis are fully detailed by the use of

Helmholtz, Biot and elastodynamic equations, together with the Unified Multiphase method-

ology. New material interpolation schemes are also proposed to deal with such multiphysics

scenario. Moreover, the objective function contemplates different combinations of structural,

viscous and thermal dissipated power levels in its application. The resultant topologies present

high manufacturability and dissipative effects.

Chapter 7 presents further discussions on the topics and results given here and Ap-

pendix A displays detailed extensions of the procedures introduced in the sensitivity analysis

section.
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Abstract

With the constant development of cities, noise sources have become increasingly present
inside and outside living environments. Consequently, soundproof systems comprised
of porous materials have been widely adopted as filling fabric of closed-space struc-
tures, such as in the components of buildings, airplanes or automobiles. However,
in many situations, simply filling spaces may not be the most effective approach.
In that scenario, this work introduces a multiphase acoustic topology optimization
methodology to design closed-space structures for sound attenuation. Based on the Bi-
directional Evolutionary Structural Optimization (BESO) algorithm, the proposed ap-
proach combines Biot’s poroelasticity equations, expressed in the mixed u/p form, and
the Unified Multiphase (UMP) technique to fully describe the multiphysics involved
in the acoustic, poroelastic and elastic model relations. An objective function contem-
plating different combinations of structural, viscous and thermal dissipated powers is
maximized over multiple frequencies. Volume constraints in each material phase and
a novel material interpolation scheme are also considered. The resultant topologies
present enhanced dissipated power levels and manufacturability, even when compared
with various baseline configurations of similar volume fractions.

Keywords: Topology optimization, Multiphase optimization, BESO, Poroelastic
materials, Multiphysics

1. Introduction

Despite sound being a social mechanism used for communication, recognition,
avoidance of dangerous situations, etc, when in excess or inadequate, it may be per-
ceived negatively and defined as noise. Although such concept relies on the preferences
of people and societies, the sounds emitted by washing machines, vacuum cleaners,5

blenders, roads of high traffic, jet planes, garbage trucks or construction sites are often
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noted as harmful [1]. As a consequence, health issues may arise, such as high annoy-
ance, tinnitus, hearing loss, sleep disturbances, learning disorders and even ischemic
heart diseases [2].

In light of these challenges, porous materials have been commonly used for sound10

absorption applications, especially at high frequencies and inside enclosures [3]. The
sound waves are generally trapped in the many interconnected openings and apertures
of its basic cellular (as in foams) or fibrous compositions, entailing structural, viscous,
and thermal energy losses [4]. In more detail, the fluid phase placed in the pores and
external surfaces are overly excited when a sound wave impinges these structures. This15

physical phenomenon leads to greater contact between the fluid and the pore walls,
increasing frictions and vibrations. Besides, the sound energy is also affected by the
structural damping effect, common to its solid phase.

Porous structures can be simulated by a great deal of semi-phenomenological and
empirical formulations that may or may not consider these dissipative effects [5]. Ac-20

cording to Cao et al. [6], among the empirical models, the one proposed by Delany
and Bazley [7] is the most adopted because it only requires flow resistivity data of the
porous material as input. However, no thermal or structural aspects are considered in
this proposition, limiting the accuracy of predictions. On the other hand, the Johnson–
Champoux–Allard (JCA) [8, 9] methodology is the most employed of the equivalent25

fluid approaches. Such formulation encompasses both thermal and viscous effects, but
since it treats the solid phase as rigid, prediction errors in the low-frequency spectrum
are often obtained [10]. In a more general view, the poroelastic model may be thought
of as a collection of fluid and structural phases superimposed in a homogenized man-
ner. Being formulated by Biot [11, 12] to gather the main multiphysical aspects of30

such porous structures, this theory comprises all three dissipative aspects, in addition
to deeming the pores to be fully saturated with fluid (air) and the entire poroelastic
domain as isotropic [13].

From an engineering point of view, many are the ways to design and manufacture
noise-controlling structures, with and without porous materials. Noise barriers, for ex-35

ample, have been considered in many different scenarios [14], followed by the use of
Helmholtz resonators [15], perforated panels [16], acoustic metasurfaces/metamaterials
[17, 18] and piezoelectric combined devices [19]. The use of such structures aims to
broaden not only frequency bands with it but also different problem specificities. Nev-
ertheless, such applications are generally based on try-and-error studies that demand40

complex experimental apparatuses for their verification.
An interesting alternative presented over the last few decades is the adoption of

topology optimization techniques to design sound-related structures. Since the pio-
neering study of Bendsøe and Kikuchi [20] and the later developments of the field
regarding the use of continuous [21, 22] and discrete design variables [23, 24], Wadbro45

and Berggren [25] were the first to publish results combining topology optimization ap-
proaches with Helmholtz-based systems to enhance the sound radiation characteristics
of an acoustic horn. Afterwards, several sound barrier configurations were also inves-
tigated [26, 27], as well as rigid/elastic multifunctional metasurfaces [28, 29], muf-
flers/silencers [30, 31, 32, 33], poro-rigid systems [34, 35, 36], among others [37, 38].50

Within the field of multiphysics interactions, groundbreaking works have been per-
formed by Yamamoto et al. [39] and Lee et al. [40, 41], who developed methodologies
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to avoid boundary tracking along the optimization of poroelastic structures. In their
study, Yamamoto et al. [39] considered three different poroelastic materials, where
one was to be degenerated to air (following Helmholtz equations), the other to an elas-55

tic structure (governed by elastodynamic expressions), and the last would remain in
a Biot’s like form. In the set of analyzes conducted by Lee et al. [40, 41], a similar
approach named as Unified Multiphase (UMP) modeling technique was proposed and
applied in later papers [42]. The methodology required only one poroelastic domain
and started from the u/p enhanced form of Biot’s equations [43]. By setting limiting60

values to variables of interest, the description of acoustic, poroelastic and elastic do-
mains was successfully conducted. In both studies, the boundaries were fully coupled
throughout the entire optimizations. Recently, Hu et al. [44] placed these same kinds
of materials as sandwich core structures of a biphase soundproof system. In this case,
the ersatz material model was adopted, together with the floating projection topology65

optimization technique [45], for maximizing sound transmission loss values in specific
frequency points.

Despite all that, many gaps still exist in implementing topology optimization tech-
niques, especially when considering multiple materials of different physics subjected
to broad frequency ranges, in order to achieve greater proximity to real-world appli-70

cations. Hence, this work presents a new evolutionary methodology to design closed-
space systems for sound attenuation. Based on the Bi-directional Evolutionary Struc-
tural Optimization (BESO) algorithm, acoustic, poroelastic, and elastic material ele-
ments are systematically changed over the iterations due to the adoption of a novel
Material Interpolation Scheme (MIS). The optimization problem is then posed as to75

maximize dissipated power levels, and different combinations of its structural, viscous
and thermal partitions, throughout single and multiple frequencies. Pertinent results
comparisons are then made with non-optimized configurations, treated here as base-
lines, in order to highlight the physical aspects of the compositions found.

The organization of this paper is presented as follows: In section 2, the govern-80

ing equations and the finite element procedures employed in the simulation of multi-
physics domains are thoroughly detailed. Section 3 introduces the basic features of
the UMP approach and provides information about acoustic, poroelastic and elastic
material characterization. Also, MISs are given for all the considered variables. The
acoustic topology optimization problem is presented in section 4, where sensitivity85

analysis and the BESO algorithm are also detailed. In section 5, numerical examples
and their discussions are treated, with conclusions drawn in section 6.

2. Governing equations

Consider the system shown in Fig. 1, where the poroelastic domain, Ωp, displayed
in the hashed region, is secluded by two thin elastic structures, Ωe, representing a90

closed-space configuration for sound attenuation. In general, purely acoustic elements
are placed in the two areas outside the limits imposed by the thin structures, symbolized
by Ωa, while purely elastic elements are used in Ωe. Throughout the entire process, the
hashed sector is also considered to be the design domain (Ωd = Ωp), while the non-
design domain is set as Ωnd = Ωa ∪Ωe.95
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In a closer look at Fig. 1(a), it is noticeable that the entire domain is treated as
vertically periodic (the acoustic panel is formed by the repetition of the periodic cell),
while a plane wave enters at the left side boundary and an anechoic termination is set at
the right. With this disposition, nodal and elemental variables, such as displacements,
pressure and sensitivities, assume equal values in both parts of the periodic system100

divided by the line of symmetry. Therefore, a symmetric unit cell is adopted here,
without loss of generality, as shown in Fig. 1(b). The system dimensions, such as
the thickness, b, height, D, and lengths, La and Lp, are defined later in the numerical
examples section. Finally, it is remarked that the properties of acoustic, poroelastic
and elastic regions are mostly referred to the subscripts a, p and e, respectively. The105

structural and fluid phases of the poroelastic domain are subjected to the subscripts s
and f .

Ωa

D b 

Ωe

Ωa

LpLa La

Ωa Ωe∪Ωnd = ΩpΩd =

Line of 
Symmetry

�a = Z0
 

j�pa∇pa na

Ωp

Periodic boundary

Periodic boundary

pae j�t

(a)

(b)

Symmetry condition

Symmetry condition

Ωe

Figure 1: Initial closed-space system configuration with (a) periodic and (b) symmetry conditions

2.1. Poroelastic media formulation
The poroelastic media is here considered as macroscopically homogeneous [46]

and subjected to time-harmonic motion (use jωt and p f e jωt). In this scenario, the subse-110

quent set of relations may describe, in the frequency domain, the wave behavior inside
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of it, that is,

∇ ·
¯
σ̂s + ω2ρ̃us + γ̃∇p f = 0, (1)

∇2 p f + ω
2 ρ̃22

R̃
p f − ω

2 ρ̃22

ϕ2 γ̃∇ · us = 0, (2)

where p f is the interstitial fluid phase pressure, us is the solid phase displacement,
j2 = −1 is the imaginary unit number, ω is the angular frequency, t is time, ∇ is the
gradient operator, ∇2 is the Laplacian operator and ϕ is the porosity. The tilde symbol115

indicates a frequency-dependent and complex valued variable. To find the combined
effective density, ρ̃, and the coupling coefficient, γ̃, one may write,

ρ̃ = ρ̃11 −
ρ̃2

12

ρ̃22
, γ̃ = ϕ

(
ρ̃12

ρ̃22
−

Q̃
R̃

)
, (3)

with the individual effective densities being defined as,

ρ̃11 = ρ11 +
b̃
jω
, ρ̃22 = ρ22 +

b̃
jω
, ρ̃12 = ρ12 −

b̃
jω
. (4)

The homogenized densities ρ11 and ρ22 account for the inertia effects in the struc-
tural and fluid phases, respectively, while ρ12 considers the interactions between the120

inertia forces of both phases. The physical interpretation of b̃ may be divided into two
aspects, depending on its real and imaginary parts. The first is related to the dissipative
effect of viscous forces, and the second with the added mass effect that happens due to
these same viscous interactions [13]. Following Allard and Atalla [10], these last terms
may also be expressed as,125

ρ11 = (1 − ϕ)ρs − ρ12, ρ22 = ϕρ f − ρ12, (5)

ρ12 = −ϕρ f (α∞ − 1), b̃ = ϕ2σG̃, (6)

where α∞ is the tortuosity, σ is the static flow resistivity, ρ f is the fluid phase density
and ρs is the solid phase density. As G̃ defines b̃, it also accounts for viscous effects.
Based on Johnson et al. [8], this variable is written as,

G̃ =

√
1 + j

4α2
∞η0ρ fω

σ2Λ2ϕ2 , (7)

with Λ being the viscous characteristic length and η0 the dynamic viscosity of the
interstitial fluid.130

Related only to the structural skeleton, the stress tensor of the porous material in
vacuum,

¯
σ̂s, also has a mathematical expression associated with it,

¯
σ̂s =

(
Ã −

Q̃2

R̃

)
︸     ︷︷     ︸

Â

∇ · usI + 2Ñ
¯
εs, (8)
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where I is the identity tensor,
¯
εs is the structural phase strain tensor and Ã is the first

Lamé constant of the poroelastic material, which has Ñ as its shear modulus. The
variables Q̃ and R̃ are coupling coefficients that account for volumetric changes in both135

phases, and Â is the first Lamé constant of the structural phase (poroelastic material
in vacuum). Since the majority of poroelastic media has high porosity values, the
variables Ñ, Ã, Q̃ and R̃ can be written in a simplified manner,

Ñ =
Ep(1 + jηp)

2(1 + νp)
, Ã =

νpEp(1 + jηp)
(1 + νp)(1 − 2νp)

, (9)

Q̃ = (1 − ϕ)K̃ f , R̃ = ϕK̃ f , (10)

with Ep, ηp and νp being the Young’s modulus, the loss factor and the Poisson’s ratio
of the poroelastic material, respectively, while K̃ f represents the bulk modulus of the140

fluid in the pores. As highlighted by Cao et al. [6], one of the most used models to
account for thermal losses inside porous domains is attributed to Champoux and Allard
[9] due to the relatively low amount of variables introduced in the formulations. So,
with the adoption of this model in the present work, K̃ f can finally be defined,

K̃ f = γ0P0

γ0 − (γ0 − 1)

1 − j
8η0

Λ′2Pdρ fω

√
1 + j

Λ′2Pdρ fω

16η0


−1
−1

, (11)

where γ0 is the specific heat ratio, Pd is the Prandtl number, P0 is the atmospheric145

pressure and Λ′ is the thermal characteristic length.
The variational formulation (or weak form) of the coupled problem stated in Eqs. (1)

and (2) may then be obtained by the application of the Weighted Residuals Method and
the Divergence Theorem,∫

Ωp

{
¯
σ̂s(us) :

¯
εs(δus) − ω2ρ̃us · δus − (γ̃ + ξ̃)∇p f · δus

−ξ̃p f∇ · δus

}
dΩp −

∫
Γp

(
¯
σt · np) · δus dΓp = 0,

(12)

∫
Ωp

{
ϕ2

ω2ρ̃22
∇p f · ∇δp f −

ϕ2

R̃
p f δp f − (γ̃ + ξ̃)∇δp f · us

−ξ̃δp f∇ · us

}
dΩp −

∫
Γp

ϕ(U f − us) · npδp f dΓp = 0,
(13)

where δus and δp f are admissible functions, Γp is the outer boundary of the poroelastic150

domainΩp, np is the outward unit normal vector to Γp,
¯
σt =

¯
σ̂s− ξ̃p f I is the total stress

tensor, ϕ(U f − us) is the average relative displacement vector and ξ̃ = ϕ(1 + Q̃/R̃) is a
coupling coefficient introduced for conciseness [41]. An interesting aspect of Eqs. (12)
and (13) is that the couplings between the structural and fluid phases are of volumetric
nature, while the boundary quantities

¯
σt · np and ϕ(U f − us) · np allow for a natural155

coupling between poroelastic-elastic domains, as well as two dissimilar poroelastic
materials. Finally, according to Sgard et al. [47], the following relations γ̃ + ξ̃ =
ρ f (ϕ2/ρ̃22) are also valid.
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2.2. Coupled equilibrium equation
As this work also deals with interactions of explicit acoustic-elastic nature (not160

to be confused with the implicit kind of poroelastic media), it is useful that both do-
mains are formulated together. In this sense, the standard Helmholtz and elastodynamic
expressions that govern the harmonic wave behavior in both regions are respectively
presented,

1
ρa

(
∇2 pa +

ω2

c2
a

pa

)
= 0 in Ωa, (14)

∇ ·
¯
σe + ρeω

2ue = 0 in Ωe, (15)

with ρa and ρe being the acoustic and elastic densities, ca the speed of sound in air and165

¯
σe the elastic stress tensor.

In a general view, the acoustic boundary conditions are related to pressure imposi-
tion, Eq. (16), hard wall condition, Eq. (17), impedance matching, Eq. (18), and normal
displacements continuity, Eq. (19), that is,

pa = p̄a over ΓaD, (16)

∇pa · na = 0 over ΓaN, (17)

∇pa · na

ρa
= −

jωpa

Z0
over ΓaR, (18)

∇pa · na

ρa
= ω2ue · na over Γae. (19)

For the elastic domain, the displacement imposition, Eq. (20), external load distribu-170

tion, Eq. (21), and equilibrium between fluid pressures and surface tractions, Eq. (22),
are considered,

ue = ūe over ΓeD, (20)

¯
σe · ne = fe over ΓeN, (21)

¯
σe · ne = pana over Γae. (22)

The subscripts D, N and R refer to Dirichlet, Neumann and Robin boundary types of
both regions, while ae concerns to the acoustic-elastic frontier.

Following similar procedures to those performed for poroelastic materials, Eqs. (16)175

to (22) are respectively combined with Eqs. (14) and (15), leading to their weak forms,

1
ρa

∫
Ωa

∇pa · ∇δpa dΩa −
ω2

κa

∫
Ωa

paδpa dΩa

+

∫
ΓaR

jωpa

Z0
δpa dΓaR − ω

2
∫
Γae

ue · naδpa dΓae = 0,
(23)

∫
Ωe ¯
σe(ue) :

¯
εe(δue) dΩe −

∫
Ωe

ρeω
2ue · δue dΩe

−

∫
ΓeN

fe · δue dΓeN −

∫
Γae

pana · δue dΓae = 0,
(24)
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where p̄a and ūe are imposed pressure and displacement values, respectively, fe is a
load vector applied over ΓeN,

¯
εe is the elastic strain tensor, Z0 = ρaca is the acoustic

characteristic impedance and both δpa, δue are admissible functions.180

The coupling conditions at the poroelastic-elastic boundary, Γep, are defined in a
way that the continuity of the total stress, Eq. (25), the lack of relative mass flux through
the impervious wall, Eq. (26), and the continuity of the solid phase vectors, Eq. (27),
are all ensured,

¯
σt · np = ¯

σe · np, (25)
ϕ(U f − us) · np = 0, (26)

us = ue. (27)

This means that when Eqs. (25), (26) and (27) are applied to the poroelastic-elastic185

surface integrals,

Ip+ Ie = −

∫
Γep

(
¯
σt ·np) ·δus dΓep−

∫
Γep

ϕ(U f −us) ·npδp f dΓep+

∫
Γep

(
¯
σe ·np) ·δue dΓep,

(28)
where ne = −np, the coupling is natural (Ip + Ie = 0).

However, at the poroelastic-acoustic interface, Γap, the conditions are,

¯
σt · np = −panp, (29)

∇pa · np

ρa
= us · np + ϕ(U f − us) · np, (30)

p f = pa, (31)

where the continuity of all normal stresses, acoustic and total poroelastic displace-
ments, and pressure are respectively represented by Eqs. (29), (30) and (31). Substitut-190

ing these later expressions in Biot’s and Helmholtz surface integrals,

Ip+ Ia = −

∫
Γap

(
¯
σt ·np) ·δus dΓap−

∫
Γap

ϕ(U f −us) ·npδp f dΓap+

∫
Γap

∇pa · np

ρa
δpa dΓap,

(32)
for na = −np, the following coupling condition appear,

Ip + Ia =

∫
Γap

δ(panp · us) dΓap, (33)

which is the standard acoustic-elastic coupling term applied over Γap.
Finally, to proper couple two dissimilar poroelastic materials the conditions are of

four types. The first one concerns to the continuity of normal stresses, Eq. (34), while195

the second ensures continuity of mass flow across the boundary, Eq. (35). The third
and fourth ones, Eqs. (36) and (37), establish the solid phase displacements and pore
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fluid pressure fields across the poroelastic-poroelastic interface, Γpp, hence,

¯
σt

1 · np = ¯
σt

2 · np, (34)
ϕ(U f1 − us1 ) · np = ϕ(U f1 − us1 ) · np, (35)

us1 = us2 , (36)
p f1 = p f2 , (37)

which also leads to a natural coupling.
The Finite Element Method (FEM) is employed in the discretization of Eqs. (12),200

(13), (23) and (24). Combining with Garlekin’s approach, the following coupled sys-
tem of equations is found,
Ke − ω

2Me 0 0 −Lae

0 K̃p − ω
2M̃p −(C̃p1 + C̃p2) −Lap

0 −(C̃p1 + C̃p2)T H̃p/ω
2 − Q̃p 0

−LT
ae −LT

ap 0 Ha/ω
2 + jDa/ω −Qa

︸                                                                                          ︷︷                                                                                          ︸
Z̃


ûe

ûs

p̂ f

p̂a

︸︷︷︸
θ̂

=


f̂e

f̂s

f̂ f /ω
2

0

︸   ︷︷   ︸
f̂

,

(38)
where K, M, H and Q are the global stiffness, mass, kinetic and compression ma-
trices, respectively. The fluid-structure coupling matrices are C̃p1, C̃p2, Lae and Lap,
where the first two are related to both poroelastic phases, and the last ones regard the205

acoustic-elastic interactions present at Γae and Γap. Da is the acoustic damping matrix
that appears due to the anechoic termination (see Eqs. (18)). The global displacement,
pressure and load vectors are û, p̂ and f̂. From an elemental perspective, the above
matrices and load vectors can be explicitly found in the works of Allard and Atalla
[10].210

As previously stated, the adopted poroelasticity equations do not require coupling
matrices to connect dissimilar poroelastic or poroelastic-elastic domains. However, for
the acoustic-poroelastic case a Lap fluid-structural coupling matrix need to be imple-
mented for the correct description of forces that are exchanged between both media.
To comply with this, two methodologies can be used. The first consists of tracking215

the boundaries between the different materials throughout the optimization process,
in order to implement the Lae and Lap matrices in all acoustic-elastic and poroelastic-
acoustic boundaries. The second methodology avoid such time consuming calculations
by ignoring the tracking of borders, as Biot’s equations are used to simulate all acous-
tic, elastic and poroelastic elements by the manipulation of specific variables. This last220

approach, named as Unified Multiphase (UMP) [40, 41, 42] modeling technique, is the
one adopted in this work.

3. Target Material Characterization

To characterize the multiphysical soundproof system, consider the following set of
variables that are present in the weak form of Biot’s formulation (Eqs. (12) and (13)),225

Ψ̃ =
{
ξ̃, ρ̃, Ñ, Â, (ϕ2/ρ̃22), (ϕ2/R̃)

}
. (39)
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Taking limiting values of the parameters contained in Ψ̃, the scalar Helmholtz and
elastodynamic equations can be directly derived from the original Biot’s expressions
if ones goal is to simulate acoustic or elastic domains, respectively. Named as Uni-
fied Multiphase (UMP) approach by Lee et al. [40, 41, 42], these configurations are
implemented as follows,230

Ψ̃p =
{
ξ̃p, ρ̃p, Ñp, Âp, (ϕ2/ρ̃22)p, (ϕ2/R̃)p

}
≡ Ψ̃, (40)

Ψ̃a =
{
1, oaρ̃p, oaÑp, oaÂp, 1/ρa, 1/κa

}
, (41)

Ψ̃e =
{
oeξ̃p, ρe, Ñe, Ãe, oe(ϕ2/ρ̃22)p, oe(ϕ2/R̃)p

}
, (42)

for Ψ̃p, Ψ̃a and Ψ̃e being vectors of variables regarding poroelastic, acoustic and elastic
media. To avoid numerical instabilities, small constants are adopted in Ψ̃a and Ψ̃e as
oa = oe = 10−9.

The UMP method is illustrated in Fig 2. In item (a), the acoustic, poroelastic and
elastic domains are fully represented by the Helmholtz, Biot and elastodynamic formu-235

lations. With the adoption of the UMP approach, all these domains are characterized
only by Biot’s poroelasticity expressions, depending on the configuration of Ψ̃, as high-
lighted in Eqs. (40), (41) and (42), as well as shown in Fig 2(b). As a consequence of
the degeneration caused by Ψ̃a and Ψ̃e in Eqs. (1) and (2), all the combinations of
boundaries are naturally coupled, as also represented in Fig 2(b), hence solving the240

boundary tracking issue in the current acoustic topology optimization study. However,
as the UMP considers that Biot’s expressions describe the entire observed domain, the
degrees of freedom of the system are augmented; that is, regardless of the domain that
is simulated, each node will have three degrees of freedom in a 2D perspective, with
two of them concerning displacements and one pressure. This methodological down-245

side can be partially dealt with by adopting fully modeled acoustic and elastic elements
in the non-design regions, with poroelastic elements only employed in the design do-
main. Such procedure is adopted in this work (see Eq. 38 for the coupled expressions).

3.1. Material interpolation scheme considering multiphysics250

Recurrently in topology optimization approaches, the start design domain is con-
sidered to be completely (or partially) full of elastic/poroelastic elements in a way that
the acoustic ones are often inserted into it. However, many of these methods provide
different results if initialized with elastic or poroelastic. Therefore, seeing that the vast
majority of vibroacoustic systems are, at first, designed to contain only air, the pro-255

posed Material Interpolation Scheme (MIS) is built in the following manner,

Ψ̃(xi1 , xi2 ) = Ψ̃e + xζ2i2
(Ψ̃p − Ψ̃e) + xζ1i1

(Ψ̃a − Ψ̃p), (43)

with,

(xi1 , xi2 ) = (1, 1), for acoustic elements, (44)
(xi1 , xi2 ) = (xmin, 1), for poroelastic elements, (45)
(xi1 , xi2 ) = (xmin, xmin), for elastic elements. (46)
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Figure 2: Schematic representation of the UMP methodology, where (a) the fully coupled acoustic-
poroelastic-elastic region can be represented by (b) a unified Biot’s governed domain. The variables Γ
represent the inner/outer boundaries and the subscripts a, p and e respectively refer to acoustic, poroelastic
and elastic domains

In the above, xi1 and xi2 are elemental design variables, with xmin = 0.001. The super-
scripts ζ1 and ζ2 are penalty coefficients.

One important point to note is that Eq. (43) is applied to all six variables comprised260

by Ψ̃, as explicitly shown in Eqs. (47) to (52),

ξ̃ = oeξ̃p + xζ2i2
ξ̃p(1 − oe) + xζ1i1

(1 − ξ̃p), (47)

ρ̃ = ρe + xζ2i2
(ρ̃p − ρe) + xζ1i1

ρ̃p(oa − 1), (48)

Ñ = Ñe + xζ2i2
(Ñp − Ñe) + xζ1i1

Ñp(oa − 1), (49)

Â = Ãe + xζ2i2
(Âp − Ãe) + xζ1i1

Âp(oa − 1), (50)(
ϕ2

ρ̃22

)
= oe

(
ϕ2

ρ̃22

)
p
+ xζ2i2

(
ϕ2

ρ̃22

)
p

(1 − oe) + xζ1i1

 1
ρa
−

(
ϕ2

ρ̃22

)
p

 , (51)

(
ϕ2

R̃

)
= oe

(
ϕ2

R̃

)
p
+ xζ2i2

(
ϕ2

R̃

)
p

(1 − oe) + xζ1i1

 1
κa
−

(
ϕ2

R̃

)
p

 . (52)

Another interesting point regards the choice of only two penalty coefficients to be used
in the above equations, when twelve different values of ζ could be adopted. Although
this last possibility gives dynamism to the proposed MIS, which can be adapted to
several different scenarios, it also brings the burden of defining a high number of vari-265

ables previous to the optimization. After a series of tests conducted by the authors,
an effective mitigation approach is placed by simply setting the same values for all
the penalty variables pegged to xi1 or xi2 , that is, ζ2n−1 = ζ1 and ζ2n = ζ2, where
{n ∈ N \ 2 ≤ n ≤ 6}. Table 1 presents the material properties needed to carry out the
suggested approach. Here, the Polyurethane foam is treated as the poroelastic material,270
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while the Olefin sheet is regarded as elastic (viscoelastic characteristics are neglected)
[39].

Table 1: Acoustic, poroelastic and elastic parameters

Poroelastic and Elastic Parameters Polyurethane Foam Olefin Sheet

Porosity ϕ 0.97 –
Tortuosity α∞ 2.5 –
Static flow resistivity σ (N s m−4) 7 × 104 –
Viscous characteristic length Λ (m) 36 × 10−6 –
Thermal characteristic length Λ′ (m) 170 × 10−6 –
Mass density ρs, ρe (kg m−3) 1433 1790
Young’s modulus Ep, Ee (Pa) 2.67 × 105 1.75 × 108

Poisson’s ratio νp, νe 0.4 0.4
Loss factor ηp, ηe 0.11 0.205

Acoustic Parameters Air (20oC)

Dynamic viscosity η0 (kg m−1s−1) 1.84 · 10−5

Specific heat ratio γ0 1.401
Prandtl number Pd 0.710
Atmospheric pressure P0 (Pa) 101, 325

The final aspect that needs to be addressed is the fact that the design domain is
solely composed of air in its initial configuration. This statement contrasts with the
first presentation of the investigated setting, Fig. 1(b), where Ωd and Ωp are attributed275

as equals. However, the elements contained in Ωd are, throughout the investigations
carried out here, considered as initially governed by Biot’s equations of poroelastic-
ity, but with the possibility of degeneration to the Helmholtz and elastodynamic forms.
Moreover, the elements of Ωnd are purely governed by the equations of their own do-
mains (Helmholtz for acoustic elements and elastodynamics for elastic elements), with280

no possibility of change. In this way, Ωd is characterized as being initially composed
of air, even though the elements that compose this region are poroelastic elements de-
generated to represent acoustic ones by the UMP method.

4. Topology Optimization Problem Description

The topology optimization problem investigated in this work can be defined, for a285

specific target frequency, as to maximize the dissipated power level, PLD, that in turn
is a combination of the time-averaged dissipated powers of structural, Πs

D, viscous,
Πv

D, and thermal, Πt
D, nature, while subjected to volume constraints. Throughout the

numerical procedure, a multifrequency band of [ωs, ω f ] is also considered in a way that
the objective function becomes the mean PLD (or MPLD), as shown in the following290
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expressions,

Maximize: MPLD =
1

ω f − ωs

∫ ω f

ωs

10 log10

(
ϑ1Π

s
D + ϑ2Π

v
D + ϑ3Π

t
D

Πref

)
︸                                       ︷︷                                       ︸

PLD

dΩp, (53)

Subjected to:



Z̃θ̂ = f̂,
V f

p −
∑Nel

i=1 Vip xi1 = 0,
V f

e −
∑Nel

i=1 Vie xi2 = 0,
xi1 = xmin or 1,
xi2 = xmin or 1.

(54)

In Eq. (53), ϑ1, ϑ2 and ϑ3 are used as switching variables, that is, they assume unit
values when Πs

D, Πv
D or Πt

D are respectively considered in the objective function, other-
wise assuming null values. This artifice is here applied to facilitate the combination of
different dissipative portions of power without necessarily rewriting the objective func-295

tion. Furthermore, Πref = 1 × 10−12 W represents the reference power. In Eq. (54), the
prescribed final volume fraction is V f , with the design domain volume fraction being∑Nel

i=1 Vixi. Nel is the number of elements contained in the design domain. As Ωd ini-
tially contains only air, the porous materials are first introduced in the design until the
attainment of V f

p . Then, elastic structures are brought in, but only inside the regions im-300

mediately after being occupied by the porous bodies, in an acoustic-poroelastic-elastic
sequential manner. As this methodology entails a larger number of iterations to com-
plete the optimization process, it also enhances the stability of the application, since
do not allow that significant variations of the acoustic-elastic type occur in the same
iteration.305

Knowing that harmonic motion is considered in the definition of all domain for-
mulations, the dissipated powers may then be established in time-averaged forms. A
common way to obtain these expressions for the poroelastic media was introduced by
Sgard et al. [48], which applied δus = − jωu∗s and δp f = − jωp∗f as admissible func-
tions of Eqs. (12) and (13), generating,310

Πs
D =
ω

2
Im

(
ûH

s K̃pûs

)
, (55)

Πv
D = −

ω

2
Im

(
ω2ûH

s M̃pûs −
1
ω2 p̂H

f H̃pp̂ f + 2 ûH
s C̃p1p̂ f

)
, (56)

Πt
D = −

ω

2
Im

(
p̂H

f Q̃pp̂ f

)
, (57)

where Im(·) is the imaginary part of a function. The superscripts ∗ and H are, respec-
tively, the conjugate and the transpose conjugate of a complex variable. When consid-
ering the thin elastic structures and the anechoic termination in the composition of the
general domain (Ω = Ωd ∪ Ωnd), two more time-averaged dissipated powers should be
added to the above equations. However, the current double-wall composition causes a315

natural pressure reduction in the outlet region, which is even more pronounced with the
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addition of materials between such walls, so that the acoustic power contribution can
be neglected. Thus, Eq. (55) is rewritten to encompass only the purely elastic power
portion,

Πs
D =
ω

2
Im

(
ûH

e Keûe

)
+
ω

2
Im

(
ûH

s K̃pûs

)
. (58)

4.1. Sensitivity Analysis320

The sensitivity analysis must be performed in order to identify the effect of an
elemental change on the objective function. Here, the derivation of MPLD with respect
to xi is αi, so,

αi =
1

ω f − ωs

∫ ω f

ωs

10
ln10

ϑ1
dΠs

D
dxi
+ ϑ2

dΠv
D

dxi
+ ϑ3

dΠt
D

dxi

ϑ1Π
s
D + ϑ2Π

v
D + ϑ3Π

t
D

 dΩp. (59)

At this moment, consider θ̂ = θRe + jθIm, where θRe and θIm stand for the real and
imaginary parts of θ̂. The sum of the time-averaged dissipated powers can thus be325

rewritten as,
ΠD (θRe, θIm, xi) = ϑ1Π

s
D + ϑ2Π

v
D + ϑ3Π

t
D. (60)

With the introduction of Lagrange multipliers, λ, the augmented performance index
appears,

ΠD = ΠD(θRe, θIm, xi) + λT (Z̃θ̂ − f̂) + λH(Z̃∗θ̂∗ − f̂∗), (61)

where its derivative is,

dΠD

dxi
=
∂ΠD

∂xi
+

(
∂ΠD

∂θRe
+ λT Z̃ + λHZ̃∗

)
∂θRe

∂xi

+

(
∂ΠD

∂θIm
+ jλT Z̃ − jλHZ̃∗

)
∂θIm

∂xi

+ λT
(
∂Z̃
∂xi
θ̂ −
∂f̂
∂xi

)
+ λH

(
∂Z̃∗

∂xi
θ̂∗ −

∂f̂∗

∂xi

)
.

(62)

Since λ can take any value, the unknown variables ∂θRe/∂xi and ∂θIm/∂xi may be re-330

moved from Eq. (62), generating,
λT Z̃ + λHZ̃∗ = −

∂ΠD

∂θRe
,

jλT Z̃ − jλHZ̃∗ = −
∂ΠD

∂θIm
.

(63)

Multiplying the second expression in Eq. (63) by − j, adding it to the first and
transposing both sides (Z̃T = Z̃), the adjoint equation is found,

Z̃λ = −
1
2

(
∂ΠD

∂θRe
− j
∂ΠD

∂θIm

)T

= fad, (64)

with its right side being the adjoint load vector, fad. As ΠD is represented by Eq. (61),
the next step consists in finding the expressions for the structural, f s

ad, viscous, fv
ad,335
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and thermal, ft
ad, adjoint load vectors that compose fad. After a series of mathematical

manipulations, one may write,

f s
ad = −

ω

2

[
ûH

e Im (Ke) + ûH
s Im (K̃p)

]T
, (65)

fv
ad =

ω

2

[
ω2 ûH

s Im (M̃p) −
1
ω2 p̂H

f Im (H̃p) + p̂H
f Im (C̃p1)T + ûH

s Im (C̃p1)
]T

, (66)

ft
ad =

ω

2

[
p̂H

f Im (Q̃p)
]T
. (67)

The aforementioned procedure also leads to the final form of Eq. (62),

dΠD

dxi
=
∂ΠD

∂xi
+ 2 Re

[
λT

(
∂Z̃
∂xi
θ̂ −
∂f̂
∂xi

)]
, (68)

with,

∂ΠD

∂xi
= Im


{

ûs

p̂ f

}H
ω

2


ϑ1
∂K̃p

∂xi
− ϑ2 ω

2 ∂M̃p

∂xi
−ϑ2
∂C̃p1

∂xi

−ϑ2

∂C̃T
p1

∂xi

ϑ2

ω2

∂H̃p

∂xi
− ϑ3
∂Q̃p

∂xi


{

ûs

p̂ f

} , (69)

and,340

∂Z̃
∂xi
=



∂Ke

∂xi
− ω2 ∂Me

∂xi
0 0 −

∂Lae

∂xi

0
∂K̃p

∂xi
− ω2 ∂M̃p

∂xi
−
∂

∂xi
(C̃p1 + C̃p2) −

∂Lap

∂xi

0 −
∂

∂xi
(C̃p1 + C̃p2)T 1

ω2

∂H̃p

∂xi
−
∂Q̃p

∂xi
0

−
∂LT

ae

∂xi
−
∂LT

ap

∂xi
0

1
ω2

∂Ha

∂xi
+

j
ω

∂Da

∂xi
−
∂Qa

∂xi


, (70)

∂f̂
∂xi
= 0. (71)

In the above expressions, ∂Ke/∂xi = ∂Me/∂xi = ∂Lae/∂xi = ∂Lap/∂xi = ∂Ha/∂xi =

∂Qa/∂xi = ∂Da/∂xi = 0, since the purely acoustic and elastic domains compose Ωnd.
At last, the values ∂K̃p/∂xi, ∂M̃p/∂xi, ∂C̃p1/∂xi, ∂C̃p2/∂xi, ∂H̃p/∂xi and ∂Q̃p/∂xi can
be obtained with the derivation of the proposed MIS, Eq. (43), with respect to xi1 and345

xi2 .

4.2. Evolutionary Algorithm
With the possibility of using several iterative algorithms, structural topology op-

timization techniques may provide the best possible material arrangement in a closed
design space, even though its initial form is of arbitrary nature. The advantages of350

such approach are diverse, ranging from economic savings, such as reductions of time
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invested in try-and-error simulations and in raw materials used, to the improvement of
structural aspects [49].

Due to its robustness and simplicity, beyond the flexibility to remove and add ma-
terial elements at any time in the design domain, the BESO algorithm is the one chosen355

to compose this work. As a discrete, gradient-based optimization approach, this tech-
nique seems suitable to solve the current investigated problem since it allows that any
topologies obtained during the iterative process to be eventually used in practical ap-
plications, especially if combined with advanced fabrication techniques [50]. On that
basis, Algorithm 1 presents the general steps considered here.360

Algorithm 1: BESO procedure
Input: Geometry and FEM information – section 5

BESO parameters: xi1 , xi2 , ζ1, ζ2, V f
p , V f

e , rmin, ER, ARmax – section 5
θ̂ for the initial topology – Eq. (38)
Start iteration counter: r ← 0

while err < 0.005 or V (r)
p + V (r)

e , V f
p + V f

e do
r = r + 1
Calculate sensitivity numbers – section 4.1
Filter sensitivities – Eqs. (76) and (77)
Apply sensitivity historical averaging – Eq. (78)
Apply normalization of sensitivity numbers – Eq. (79)
Update multiphase topology – section 4.2
Update volume fraction – Eq. (75)
Evaluate θ̂ – Eq. (38)
Evaluate MPLD (or PLD for a specific target frequency) – Eq. (53)
Verify convergency by tolerance:

err =

∣∣∣∣∣∣∣
∑10

b=1 MPL(r−b+1)
D −

∑10
b=1 MPL(r−9−b)

D∑10
b=1 MPL(r−b+1)

D

∣∣∣∣∣∣∣ (72)

Output: Optimized topology

After defining the basic geometrical and FEM parameters, the BESO variables
should also be provided. As previously stated, xi can only assume two well-established
values: the minimum, xmin = 0.001, or the maximum, xi = 1, depending on the inves-
tigated configuration. The penalty coefficients, ζ1 and ζ2, as well as the final volume
fractions, V f

p and V f
e , also compose the set of variables that need to be known before-365

hand, as are the Evolutionary Ratio (ER) and the maximum Addition Ratio (ARmax).
With the definition of these last two, the sequential control of the amount of material
that leaves and enters the design domain is set.

For example, consider that acoustic, poroelastic and elastic elements are all allowed
in the design domain, meaning that two different sensitivity analyses would have to be370

performed in order to relate acoustic to poroelastic and then to elastic materials. In
other words, the procedure that starts in Eq. (59) has to be done twice since it takes
two design variables to fully describe the type of element occupying a predefined po-
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sition (see Eqs. (44), (45) and (46) for completeness). With this, two sets of sensitivity
numbers are generated, becoming then subject to the following relations,375

if αi ≤ αth then xi = xmin, (73)
else-if αi > αth then xi = 1, (74)

where αth is the threshold sensitivity number. Such aspect is mainly based on the target
volume of the following iteration, V (r+1), that is,

V (r+1) = V (r)(1 ± ER), (75)

with the superscript (r) representing the ongoing iteration.
To avoid checkboard patterns and mesh dependent solutions, the projection filter

scheme, as proposed by Huang and Xie [51], is adopted. Firstly, the elemental sensi-380

tivity numbers are transformed into nodal ones, αn, by setting,

αn =

M∑
i=1

1
M − 1

1 − rin∑M
i=1 rin

αi, (76)

where M is the number of elements connected to the nth node and rin is the distance
from the centroid of the ith element to the nth node (when M = 1, αn = αi). Then, the
recovery of the filtered αi values is performed in accordance with the number of nodes,
G, that are inside the filter subdomain,385

αi =

∑G
n=1 max(0, rmin − rin)αn∑G

n=1 max(0, rmin − rin)
, (77)

with rmin being a mesh independent filter radius.
The historical averaging and the Min-Max normalization concepts [52] are also

considered, as stated in Eqs. (78) and (79), to enhance sensitivity stabilization effects,

α(r)
i =

α(r−1)
i + α(r)

i

2
, (78)

α(r)
i =

α(r)
i − α

(r)
min

α(r)
max − α

(r)
min

, (79)

where α(r)
max and α(r)

min are the maximum and minimum sensitivity number values of390

iteration (r), respectively. The convergence is reached by the attainment of err < 0.005,
in Eq. (72), and the verification that V (r)

p + V (r)
e = V f

p + V f
e .

5. Numerical Results

In this section, numerical results regarding the newly proposed evolutionary method-
ology are presented and thoroughly discussed. The investigated closed-space configu-395

ration is initially built as shown in Fig. 1, where the design domain is filled with poroe-
lastic elements (Ωd = Ωp) and the non-design domain is composed of fully modeled
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acoustic and elastic ones (Ωnd = Ωa ∪ Ωe). It is remarked that the initial Ωd config-
uration is set to represent an acoustic region simulated by the UMP (Biot’s equations
degenerated to Helmholtz), hence being composed of nodes with three degrees of free-400

dom each. The Polyurethane foam and Olefin sheet are, respectively, the poroelastic
and elastic materials considered in all the cases (see Table 1).

The geometrical aspects of the studied system, Fig. 1(b), are defined as b = 1
mm, D = 150 mm and La = Lp = 50 mm. The purely acoustic domains, Ωa, are
filled with 1000 first-order quadrilateral elements each, while the purely elastic ones,405

Ωe, have 200 elements of the same type when considering both thin structures. In the
poroelastic region, Ωp, 5000 elements are placed, which are first-order quadrilaterals
of size 1 x 1.5 mm2. Being mainly based on the appearance of a steep descent in the
dissipated power level, PLD, values of the initial configuration (see Fig. 3(b)), two
different frequencies are targeted, that is 380 Hz and 430 Hz, as well as the entire mul-410

tifrequency band encompassed between both. In this sense, the composite Simpson’s
numerical integration rule [53] is adopted to solve the integral existing in the objective
function, Eq. (53), with a frequency step of 5 Hz. Still regarding this same equation,
the switching variables ϑ1, ϑ2 and ϑ3 that respectively account for the presence of Πs

D,
Πv

D and Πt
D, if assuming unit values, or their absence when zeroed, are initially set as415

ϑ1 = ϑ2 = ϑ3 = 1. The BESO parameters are defined as ER = ARmax = 1%, rmin = 20
mm, V f

p = 60%, V f
e = 5%, ζ1 = 2 and ζ2 = 1 for all cases.

This section is then divided into three main parts where, in the first, the optimized
topologies, their evolutions and dissipated power levels are presented. As poroelas-
tic and elastic materials are introduced in the design domain, which, in itself, already420

brings an increase of the general dissipative effects, the second part regards the com-
parison of the optimized designs with non-optimized geometries, referred here as base-
lines, as a way of investigating the effectiveness of the topologies found. Finally, the
third one deals with several other combinations of powers as the objective function.

5.1. Dissipated power level as the objective function425

Figure 3(a) shows the Top-F1, Top-F2 and Top-BD obtained topologies when con-
sidering, in a respectively manner, 380 Hz and 430 Hz as targeted frequencies, as well
as the band that it is comprised between both. Henceforth, the gray areas are referred
to poroelastic materials, while the light blue and black ones are attributed to acous-
tic and elastic domains, respectively. Fig. 3(b) presents the correspondent dissipated430

power levels of the optimized and initial configurations. Since the primary geometry
is composed of two thin elastic structures, with acoustic regions filling the rest of the
system (see Fig. 1), only contributions of a purely structural nature are visible, with
particularly small values between 380 to 430 Hz. With the end of the optimization pro-
cedure, it is noticeable, in Fig. 3(a), that all topologies create poroelastic barriers on the435

left side of the design domain to enhance the dissipative effects in the impinging wave
section. Such point is reinforced by the presence of acoustic holes in the center-to-right
sides of Ωd and the appearance of elastic structures in small concentrated areas, mostly
to provide structural stability to the overall system. As also highlighted in Fig. 3(b),
the proposed approach is able to significantly enhance the PLD function in all the cases440

treated, with the Top-BD configuration achieving the highest values in and out of the
optimization band.
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Another interesting point to note regards the type of dissipative effect that mainly
causes the enhancements of PLD. Figs. 3(c), (d) and (e) present such aspects, respec-
tively for Top-F1, Top-F2 and Top-BD, where the total time-averaged dissipated power,445

ΠD, has been divided in its structural, Πs
D, viscous, Πv

D, and thermal, Πt
D, portions and

plotted along a wide frequency spectrum. In all obtained topologies, the structural as-
pect takes the lead in relation to other forms of dissipation, since it has an average of
85% of ΠD, being even higher after 430 Hz. The viscous portion is mostly influential
at two different regions: around 50 Hz to 150 Hz, in which the structural power has450

a valley, and in the targeted frequency band, with the thermal aspects being mostly
insignificant.
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Figure 3: (a) One periodic topology design cells obtained when considering 380 Hz (Top-F1), 430 Hz (Top-
F2) and the band of frequencies encompassed by the two (Top-BD), together with its (b) dissipated power
levels. The time-averaged dissipated power ratios are also given for (c) Top-F1, (d) Top-F2 and (e) Top-BD

As previously reported by Dauchez et al. [54], the small influence of viscous and
thermal effects can be attributed to the low constriction of the saturated fluid that com-
poses the poroelastic domain; that is, the presence of an elastic layer between the acous-455

tic excitation, that comes from the input region, and the porous section, in addition to
the presence of infinitely periodic (or symmetric) boundaries, do not sufficiently con-
strain the fluid to enhance the particle frictions and vibrations. Furthermore, despite of
polyurethane foam being highly porous, fact that increases its attenuation effects [55],
it is known that the flow resistivity variable, σ, is usually the main indicator of vis-460
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cous actions in the low-frequency range, having a negative correlation with the overall
thickness (when one goes up, the other goes down). Hence, since the polymeric foam
here adopted has a quite stiff elastic skeleton (Ep = 2.67e5(1 + jηp) Pa) and a consid-
erable flow resistivity (σ = 7e4 N s m−4), the increase in thickness would have to be
significant for the viscous portion to be more expressive than the structural one.465

Such findings can also be perceived by looking at Fig. 4 that shows the positions
in which the dissipation mechanisms most occur within the design domain, followed
by absolute pressure values, |p|, and the sum of the displacement amplitudes in the x
and y directions, |ux| + |uy|. Calculating these aspects in 380 Hz, 430 Hz and in its fre-
quency band, respectively for the Top-F1, Top-F2 and Top-BD topologies of Fig. 3(a),470

it is seen, in Figs. 4(a), (b) and (c), a high particle displacement in regions close to
the left side poroelastic boundary, where the incoming wave is most strong, and close
to the air holes, as the particles are more unconstrained (or free of particle packing).
However, the elastic areas, filled with Olefin sheet material, seem to have little dis-
placement, mostly due to the high stiffness of it. In this scenario, PLs

D values are the475

biggest contributors to the general PLD, especially because of the poroelastic skeleton
movement. When looking at PLv

D and PLt
D, one may note a combination of pressure

and displacements in the areas of high dissipation, with displacements improving more
PLv

D values, while pressure mildly augmenting PLt
D (see also Eqs. (56) and (57)). Fi-

nally, it is important to state that PLs
D, PLv

D and PLt
D presented in Fig. 4 are obtained by480

the calculation of Eq. (38) for each element of the design domain and then of Eqs. (55),
(56) and (57). Afterwards, such elemental values are relatively expressed by color in
the contour plots, similarly to the procedures employed by Park et al. [56].

Figure 5 shows the evolutionary history of the mean dissipated power level, MPLD,
as well as intermediate topologies of interest regarding the Top-BD case. In the ob-485

served scenarios, a poroelastic material is firstly introduced in the system, causing the
MPLD to rapidly grow, as if the simple placement of a poroelastic barrier in the left re-
gion of Ωd would already be sufficient to greatly increase the objective function. With
the observation of the next topologies, such as the ones from

D

1 to

D

4 , it is apparent that
the porous material behaves in an irregular manner along the iterations, as the MPLD490

varies harshly with simple changes of element types. Such aspect is still visible until
the very last iteration of the evolutionary procedure, but with some softening when the
elastic material finally reaches its final volume fraction, as can be seen in iterations 100
to 111, and in the little topological variability of

D

5 to

D

6 .
Notwithstanding the adoption of the proposed acoustic-poroelastic-elastic sequen-495

tial methodology, together with the use of stabilization procedures, this behavior is
also present in the majority of the optimizations here investigated. With the examina-
tion of previous studies, such as the ones conducted by Pereira et al. [29] who designed
biphase soundproof systems with pororigid and rigid elements, expressive oscillations
are also noticed in those evolutionary processes, especially when rigid elements return500

toΩd due to the use of manufacturing constraints. In the current investigation, a similar
scenario is observed, i.e., there is the introduction, in a discrete manner, of poroelastic
and elastic materials inside the acoustic design region, leading to fluctuations of the ob-
jective function of choice. Moreover, relatively high values of ER and ARmax are here
chosen, with the aim of accelerating the optimization process, thus recovering from the505

computational delays caused by the characteristic excess of degrees of freedom in Ωd.
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Figure 4: Dissipative power levels of structural, PLs
D, viscous, PLv

D, and thermal, PLt
D, natures, as well as

absolute pressure values, |p|, and the sum of displacement amplitudes in the x and y directions, |ux | + |uy |.
One symmetric cell of the (a) Top-F1 topology, calculated in 380 Hz, (b) Top-F2 topology, determined in
430 Hz, and (c) Top-BD topology, obtained in the 380 to 430 Hz band, are considered

5.2. Comparison of the Top-BD configuration with baseline topologies

As this work deals with the introduction of poroelastic and elastic material elements
in aΩd full of air, it becomes interesting to compare PLD values of the obtained topolo-
gies with the ones of some non-optimized structures, referred here as baselines. At this510

point, let A be acoustic, P poroelastic and E elastic elements. Hence, the baseline
configurations adopted are of the form APEPA, EAPAE, PAEAP and EPAPE, with the
materials being distributed in layers, as shown in Fig. 6(a), and with volume fractions
of 60% of Polyurethane foam and 5% of Olefin sheet. In Fig. 6(b), the dissipated power
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Figure 5: (a) Evolutionary history of the mean dissipated power level, (b) and intermediate topologies of
interest, of the Top-BD case. The A, P and E letters used in the volume fraction descriptions regard acoustic,
poroelastic and elastic materials, respectively

levels of such baselines and of the configuration Top-BD (Fig. 3(a)) are presented.515

When looking at the detail shown in Fig. 6(b) regarding the results obtained in the
band of optimization, it is clear that the Top-BD configuration shows the highest PLD
along the most part of the targeted frequencies, with a mean value of 66.4 dB, against
65.9 dB, 59.0 dB, 57.0 dB and 57.8 for the APEPA, EAPAE, PAEAP and EPAPE
geometries, respectively. Nevertheless, it must be noted that EAPAE and APEPA reach520

high dissipative characteristics around 200 Hz and 300 Hz, mainly due to their thick
poroelastic layer located in the middle ofΩd and the air gap that is placed between both
poroelastic and elastic domains, which enhance losses of viscous and thermal nature
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[57]. Such aspects are even more noted in the APEPA case by the combination of
poroelastic and elastic materials, increasing both stiffness and thickness of the overall525

topology. In the PAEAP and EPAPE baselines, the poroelastic material is distributed,
with half of it in both Ωd extremities, lowering the viscous dissipation, but giving rise
to the powerful structural mechanisms of PLD [54, 57], especially visible in highest
frequencies. The Top-BD topology seems then to combine such structural and viscous
effects, as the poroelastic material is not concentrated in one specific Ωd location, but530

in an improved way, since brings the elevated PLD values of PAEAP and EPAPE, that
happens around 600 Hz, to the band of optimization. Besides, Top-BD PLD results are
better than the ones from PAEAP and EPAPE at lower frenquencies, and than the ones
from APEPA and EAPAE in the highest spectrum.

(b)

(a)

Band 
of optimization

D
is

si
pa

te
d 

P
ow

er
 L

ev
el

 (
dB

)

350 400 500450
55

60

65

70

Frequency (Hz)

D
is

si
pa

te
d 

P
ow

er
 L

ev
el

 (
dB

)

Top-BD

Figure 6: (a) Presentation of the baseline geometries considered, as well as (b) direct comparison of its
dissipated power levels with the ones of the Top-BD configuration
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5.3. Combinations of structural, viscous and thermal dissipative effects in the objective
function535

Aiming to investigate the unique influence that the structural, Πs
D, viscous, Πv

D, and
thermal, Πt

D, time-averaged dissipated power components, and its combinations, have
on the proposed methodology, Fig. 7 is presented. For all the cases here treated, the
band of frequencies comprised by 380 to 430 Hz is considered in the composition of
Eq. (53). In this sense, Fig. 7(a) shows the topologies Top-S, Top-V, Top-SV, Top-ST540

and Top-VT obtained when taking into account, in a sequential manner, the following
switching parameters: (ϑ1, ϑ2, ϑ3) = (1, 0, 0), (0, 1, 0), (1, 1, 0), (1, 0, 1), and (0, 1, 1).
In Fig. 7(b) the dissipated power levels of all these topologies are displayed along with
the results for the Top-BD case (see Fig. 3(a)), that in turn has a switching variable
sequence of (ϑ1, ϑ2, ϑ3) = (1, 1, 1). Finally, Table 2 present the mean values of Πs

D/ΠD,545

Πv
D/ΠD and Πt

D/ΠD calculated in the frequency band of optimization, while following
the sequence of topologies of Fig. 7(a).

By looking at the configurations of Top-S, Top-SV and Top-ST, which respectively
consider Πs

D, Πs
D + Π

v
D and Πs

D + Π
t
D in the objective function, material dispositions

similar to those obtained in the Top-BD case are perceived, as well as comparable550

values of Πs
D/ΠD and Πv

D/ΠD shown in Table 2. The configuration in which a porous
layer is established in the wave inlet region, along with the concentrated composition
of Olefin sheet in areas connected to the thin elastic structures, promote a significant
performance of Πs

D, being responsible for more than 80% of ΠD in all cases. The
Top-V and Top-VT topologies, that deals with Πv

D and Πv
D + Π

t
D in Eq. (53), present555

the highest values of Πv
D (above 20%), being the compositions that most connect two

different poroelastic layers inside Ωd; either through a combination of thick porous
and elastic material layers, either through several smaller polymeric connections. As
expected, the structural dissipative percentage is reduced in these cases, reaching the
lowest values observed in the study.560

The enhanced viscous contributions are also perceived in the results shown in
Fig. 7(b), with Top-VT being the topology that most increases PLD in the optimization
band. In this outline, both viscous and thermal effects have complementary mecha-
nisms, helping to achieve higher dissipated power levels in the frequencies between
380 and 430 Hz. Finally, it is worth mentioning that the combination of all three dissi-565

pative mechanisms prove to be unfavorable, in a point of view of the maximization of
general PLD values, since the contributions of the viscous and thermal effects are more
expressive in thicker layers than the ones obtained when considering the structural part.
However, on a fabrication scenario, the Top-BD topology seems to be one of the most
suitable for it.570

6. Conclusions

In many situations, simply filling spaces with porous foams may not be the most
effective approach to enhance the dissipative performance of a system. Therefore, this
work addressed the problem of designing closed-space soundproof systems, composed
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Figure 7: Periodic design cells information obtained when considering the unique influence that the struc-
tural, Πs

D, viscous, Πv
D, and thermal, Πt

D, time-averaged dissipated power components, and its combina-
tions, have on the proposed methodology. (a) The topologies Top-S, Top-V, Top-SV, Top-ST and Top-VT
are obtained when taking into account, in a sequential manner, the switching parameters (ϑ1, ϑ2, ϑ3) =
(1, 0, 0), (0, 1, 0), (1, 1, 0), (1, 0, 1), and (0, 1, 1) in Eq. (53), for a frequency band that starts in 380 and ends
in 430 Hz. (b) Dissipated power levels of all these topologies along with the results for the Top-BD case

of acoustic, poroelastic and elastic materials, for sound attenuation. A novel evolution-575

ary acoustic topology optimization methodology based on the BESO algorithm was
proposed, configuring a multiphase study of multiphysics nature. As part of the ana-
lyzes, the combination of the finite element method, the unified multiphase technique
and the mixed u/p formulation was adopted, in order to simulate acoustic, poroelas-
tic and elastic domains with bases on Biot’s expressions. The optimization problem580

was then posed as to maximize the total dissipated power level, and different combina-
tions of its structural, viscous and thermal mechanisms, while respecting multiphysical
equilibrium equations and volume constraints.
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Table 2: Mean values of time-averaged dissipated power ratios for the Top-S, Top-V, Top-SV, Top-ST, Top-
VT and Top-BD topologies, when considering the frequency band that starts in 380 and ends in 430 Hz

Mean Power Ratios
along 380 to 430 Hz Band

Resulted Topologies

Top-S Top-V Top-SV Top-ST Top-VT Top-BD

Πs
D/ΠD (%) 84.55 77.48 84.63 82.94 77.45 80.63
Πv

D/ΠD (%) 14.60 21.02 14.47 16.00 21.41 18.47
Πt

D/ΠD (%) 0.85 1.50 0.90 1.06 1.14 0.90

As a general finding, poroelastic barriers were placed at the left Ωd side of the
considered soundproof systems, enhancing the structural dissipative effects in the im-585

pinging wave section, at the cost of viscous and thermal ones. Nevertheless, such
contributions were able to significantly increase dissipated power levels in all observed
cases. When compared to the baselines, which are non-optimized configurations, the
obtained Top-BD topology presented clear PLD advantages in the band of optimization,
and intermediary results when a broadband was considered.590

In the multiple combination of structural, viscous and thermal dissipative effects
study, topologies generated with focus on viscous aspects performed better, in a point
of view of the maximization of PLD values, than the ones considering structural mech-
anisms in the objective function. Nevertheless, on a fabrication perspective, these
topologies seem to be filled with thin poroelastic compositions that may difficult prac-595

tical applications. Finally, it must be pointed out that other common vibroacoustic
indicators, such as insertion loss or mean quadratic velocities, have been left to be
considered in future research.
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Comparison of heuristics and metaheuristics for topology optimisation in acoustic
porous materials, J. Acoust. Soc. Am. 150 (4) (2021) 3164–3175. doi:10.1121/
10.0006784.

[39] T. Yamamoto, S. Maruyama, S. Nishiwaki, M. Yoshimura, Topology design of
multi-material soundproof structures including poroelastic media to minimize715

sound pressure levels, Comput. Methods Appl. Mech. Eng. 198 (17-20) (2009)
1439–1455. doi:10.1016/j.cma.2008.12.008.

[40] J. S. Lee, Unified multi-phase modeling and topology optimization for com-
plex vibro-acoustic systems consisting of acoustic, poroelastic and elastic media,
Ph.D. thesis, School of Mechanical and Aerospace Engineering, The Graduate720

School, Seoul National University (2009).

[41] J. S. Lee, Y. J. Kang, Y. Y. Kim, Unified multiphase modeling for evolving,
acoustically coupled systems consisting of acoustic, elastic, poroelastic media
and septa, J. Sound Vib. 331 (25) (2012) 5518–5536. doi:10.1016/j.jsv.

2012.07.027.725

29

121



[42] J. S. Lee, P. Göransson, Y. Y. Kim, Topology optimization for three-phase ma-
terials distribution in a dissipative expansion chamber by unified multiphase
modeling approach, Comput. Methods Appl. Mech. Eng. 287 (2015) 191–211.
doi:10.1016/j.cma.2015.01.011.

[43] N. Atalla, M. A. Hamdi, R. Panneton, Enhanced weak integral formulation for730

the mixed (u,p) poroelastic equations, J. Acoust. Soc. Am. 109 (6) (2001) 3065–
3068. doi:10.1121/1.1365423.

[44] J. Hu, S. Yao, X. Huang, Topological design of sandwich structures filling with
poroelastic materials for sound insulation, Finite Elem. Anal. Des. 199 (2022)
103650. doi:10.1016/j.finel.2021.103650.735

[45] J. Hu, S. Yao, X. Huang, Topology optimization of dynamic acoustic–mechanical
structures using the ersatz material model, Comput. Method Appl. Mech. Eng.
372 (2020) 113387. doi:10.1016/j.cma.2020.113387.
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7 | Discussion

Topology optimization techniques, combined with the finite element method, have

been part of the structural design methodologies for more than 30 years, being present in the

most diverse engineering applications. With the current programming packages and modern

commercial/open-source software, the simulation of structures has reached unprecedented lev-

els. It is worth noting that such methods require little financial resources if compared to the

predictive benefits they can bring. Despite these significant advances, the design of sound in-

sulation systems by evolutionary topology optimization approaches is still an object of limited

attention, which motivated the author to thoroughly explore such field of research in many dif-

ferent scenarios.

Hence, this chapter presents further discussions on the topics and results brought in

the papers entitled “Topology optimization of acoustic systems with a multiconstrained BESO

approach” by Rodrigo Lima Pereira, Heitor Nigro Lopes and Renato Pavanello, fully presented

in Chapter 4 and referred here as A1 (or Application 1); “Multi-domain acoustic topology op-

timization based on the BESO approach: applications on the design of multi-phase material

mufflers” by Rodrigo Lima Pereira, Heitor Nigro Lopes, Marcio da Silva Moura and Renato

Pavanello, fully presented in Chapter 5 and referred here as A2 (or Application 2); “Evolution-

ary topology optimization approach to design multiphase soundproof systems with poroelastic

media” by Rodrigo Lima Pereira, Lidy Marcela Anaya Jaimes and Renato Pavanello, fully pre-

sented in Chapter 6 and referred here as A3 (or Application 3).

7.1 Number of Elements per Wavelength and Mesh Configuration

Firstly, it is important to note that the maximum frequencies here considered have been

chosen based on the observed spectrum. For the acoustic metasurface application of paper A1

the maximum frequency is 4000 Hz. Hence, the entire region has approximately 68 elements/per

x axial wavelength and element size of 0.00125 m in the x direction. For the poro-acoustic
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application of the same paper the maximum frequency is 2000 Hz, meaning that the entire

region has approximately 171 elements/per x axial wavelength and element size of 0.001 m in

the x direction. The meshes considered in both problems are respectively illustrated in Figs. 7.1

and 7.2.

30 first order
quadrilateral

elements

584 first order quadrilateral elements

Figure 7.1 – Mesh configuration of Problem 1 – Application 1

85 first order
quadrilateral

elements

180 first order quadrilateral elements

Figure 7.2 – Mesh configuration of Problem 2 – Application 1

For the one-chamber muffler application of paper A2 the maximum frequency is con-

sidered to be 1400 Hz, in a way that the entire region has approximately 49 elements/per x axial

wavelength and element size of 0.005 m in the x direction. In this methodology, as the domain

increases, the number of elements per wavelength remains the same. Furthermore, for the mul-

tiphysics application of paper A3 the maximum frequency is also considered to be 1400 Hz.

This entails in an acoustic region of approximately 49 elements/per x axial wavelength, with

element size of 0.005 m in the x direction, an elastic region of approximately 245 elements/per

x axial wavelength, with element size of 0.001 m in the x direction, and a poroelastic region of

approximately 245 elements/per x axial wavelength, with element size of 0.001 m in the x direc-
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tion. The mesh configuration for the one-chamber muffler scenario, Application 2, is presented

in Fig. 7.3, while the mesh considered in Application 3 is illustrated in Fig. 7.4.

3120 first order
quadrilateral elements

Figure 7.3 – Mesh configuration of Application 2

5000 first order
quadrilateral Poroelastic

elements

1000 first order
quadrilateral Acoustic

elements
100 first order

quadrilateral Elastic
elements

1000 first order
quadrilateral Acoustic

elements

100 first order
quadrilateral Elastic

elements

Figure 7.4 – Mesh configuration of Application 3

7.2 Definition of Target Volume Fractions

In general topology optimization problems one of the key factors is to set the volume

of the final design. In the cases observed in paper A1, the general geometries were based

on previous works, such as the ones conducted by Miyata et al. (2018), for the metasurface

design, and Silva and Pavanello (2010), for the poro-acoustic study. Since both applications

made use of additional constraints to enhance the manufacturability, it would be interesting to

observe how the topologies would behave in situations where the volume remained the same,
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as well as it is reduced along the iterations. Therefore, the methodological choice was made

to keep the volume fractions constant in the first application, while reducing it in the second.

It is noteworthy that the reduction to 90% of Ωd was adopted in the second application so that

it could be compared to Silva Júnior (2007) and Silva and Pavanello (2010) results. Besides,

the constant value of 50% of Ωd was chosen in the design of acoustic metasurfaces only for

the purposes of observing if internal holes would naturally appear with the “spreading” of the

barrier inside the design domain, which actually happened, and how the manufacture constraint

would deal with such effect.

Moreover, along the development of the methodology detailed in paper A3, a few

different volume fraction, V f , values were tested, such as V f
p = 40%, V f

p = 50% and V f
p =

60% of porous materials, in relation to the design domain volume, while keeping V f
e = 5% of

elastic material in all the analysis. By considering V f
p = 40% or V f

p = 50% as the final volume

fraction of the porous domain, most topologies presented a scattered configuration (formation of

material islands) of both porous and elastic structures throughout the design domain, especially

after the introduction of the elastic phase. With the adoption of V f
p = 60%, however, the

inclusion of elastic structures in the porous design space actually enhanced the stabilization of

the composition, since the elastic phase was compactly organized to increase the stiffness of the

overall design. This motivated the choice of such value to compose the methodology. For the

works presented in paper A2, similar discussions are given in its Section 5.1 (see Figs. 6 and 7

of paper A2).

7.3 Computational Costs of the Multidomain/Multiphase Application

The current A2 methodology expands n times the basic acoustic domain (the one-

chamber muffler), and its building elements, to compose the multi-domain system. This, by

itself, already represents an increase of the computational costs related to each domain ex-

pansion. Moreover, in an effort to enhance the stability of the evolutionary process, the porous

material is firstly introduced in the design domain to only then include the rigid elements, which

stands for the multi-phase part of the methodology (see section 4.3 of paper A2 for more details

on this matter).

In a general setting, the entire process takes about 240 and 70 iterations to include the

20% of porous and 5% of rigid materials, respectively, totaling 310 iterations in average. For

a basic computer with an Intel® CoreTM i7-8550U CPU @ 1.80GHz, 16.00 GB of RAM and

NVIDIA GeForce MX150 graphics card with dedicated memory of 4GB GDDR4, the single-

chamber muffler case (3120 first order quadrilateral elements of size 5 mm) leads to a run time
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of 921 seconds, while the cases for 6240 and 9360 elements of the same type and size leads to

the run times of 2826 and 5794 seconds. Its worth mentioning that the Matlab® software was

here considered without any kind of parallel computing.

It is importante to note that these times may vary broadly, depending on the application

(mufflers were chosen in this case), the BESO variables (such as ER, ARmax and filters), the

computer specifications and so on. What is interesting to know here, however, is that the run

times are somewhat tripled when one more domain is added, which can be related not only to

the increase in the number of elements, but also to the increase in the amount of porous and

rigid materials that are introduced and their influence in the objective function evolution. Since

the purpose of this work is not necessarily to provide computational performance improvement

strategies to the muffler configuration in particular, more studies on this matter are to be included

in future research.

7.4 Performance Against Design Complexity of the Multiphysics Application

During the A3 study the main goal was to propose a methodology that would entail the

interplay of multiphysical domains throughout an evolutionary topology optimization process.

To achieve this, a combination of the BESO method and the Unified Multiphase modeling

approach was employed to account for the interactions between different domains, without

the need to track element boundaries throughout the iterative process. Consequently, a set of

topologies was obtained that maximized the dissipated power level at particular frequencies

and bands. Furthermore, these optimized topologies were compared with a few parametrically

obtained configurations, called baselines, to assess its capabilities.

The topologies obtained through parametric methods that included thick porous re-

gions showed relevant results at low frequencies due to the high viscous dissipation present in

such configurations, but lower values in the higher spectrum. Within this same set of results,

those that included separate porous materials tended to be relevant mostly at medium to higher

frequencies, within the observed bandwidth. As a combination of these two, the topologies

found from the proposed methodology were able to achieve the best dissipated power values

within the optimization band (between 380 and 430 Hz) and an intermediate behavior com-

pared to those found through parametric methods, that is, intermediary dissipative levels in

both lower and higher frequency spectra, while maintaining a high degree of manufacturability.

Thus, the topologies found by the proposed method can be quite useful for applications that

require sound dissipation over a wide range of frequencies.
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8 | Concluding Remarks

Throughout this work, comprehensive information about evolutionary optimization

methods were provided, while soughing to expand the concept to several applications involving

different materials, physics, domains and frequencies. Moreover, a broad theoretical basis re-

garding multiphysics interactions was presented, not only encompassing expressions of acoustic

or elastic nature, such as the scalar Helmholtz and the linear elastodynamic ones, but also pre-

senting the highly complex equations and concepts that are relevant to the understanding of

fluid-structure interactions. Here, the explicit interactions that occur between purely acoustic

and elastic domains was detailed, as well as the implicit ones that happen in the simulation

of poroelastic materials. The simultaneous interactions between all these domains were also

discussed, further increasing the degree of difficulty of the application.

In Chapter 1 the problem involving excessive noise was presented, together with brief

discussions about the various health issues that continued exposure to such levels can cause. A

few questions were then raised regarding the performance enhancements that porous (pororigid

or poroelastic) and elastic/rigid materials could provide to sound attenuation systems, in order

to create environments with greater acoustic comfort. The suggestion of using topology opti-

mization methods to help solve this problem was posed. Such methodologies were concisely

introduced, with highlights given to evolutionary methods, since these were the subject of this

work.

The general vibroacoustic systems governing equations were presented in Chapter 2,

detailing the main conditions for the use of Helmholtz, Biot’s and elastodynamic equations,

as well as the boundary information involved in the studied compositions. These discussions

were part of the theoretical background provided for this work, and represent an expansion

of the information provided in all sections number 2 of the embedded papers. The theoreti-

cal background also encompassed Chapter 3, which introduced the Bi-directional Evolutionary

Structural Optimization methodology applied in the solution of the compliance minimization

problem. Here, the main parts of the approach, such as material interpolation schemes, sen-
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sitivity analysis, mesh-independent filters, stabilization and normalization procedures, update

schemes and stop criteria were explored, and further condensate in a BESO flowchart illustra-

tion.

The novelties brought in this work were mainly presented in the embedded papers that

composed Chapters 4, 5 and 6. Using the basic BESO approach, some optimized topologies

presented internal air holes, which brought problems concerning the rigid material hypothesis

and the manufacturability of the obtained structures. This motivated the addition of the Vir-

tual Temperature Method (VTM) as a connectivity constraint, expanding the BESO algorithm

to a multiconstrained form, shown in Chapter 4. In this approach, bi-phase optimizations were

considered, being the first one composed of acoustic and rigid elements, and the second of poro-

rigid (simulated by the Johnson–Champoux–Allard formulations) and acoustic. Particularly in

the former analysis, rigid-acoustic metasurfaces were designed for minimization of Sound Pres-

sure Levels (SPL) in specific domain regions. They presented well defined topologies, with no

air inclusions, high manufacturability and reduced SPL values in the frequencies targeted. Ad-

ditionally, the trade-off between the amount of wind that is able to pass through the metasurface

holes and its soundproofing effects was successfully established for all cases. It is remarked

that the above study sought to answer the question posed in the introduction about how rigid

structures should be built to increase acoustic comfort, while maintaining permissibility.

In the latter application, a coupled poro-acoustic absorptive system was investigated,

aiming to maximize the sound absorption coefficient of the considered porous material, while

adopting the VTM as a connectivity constraint. In a direct comparison with the available liter-

ature, it was noted that the obtained topologies presented slightly lower sound absorption coef-

ficient values in the target frequencies of optimization, due to the additional constraint imposed

by the VTM. Nonetheless, this same fact also contributed to the improved performances of

the obtained topologies in low-to-mid frequency ranges. A common feature of most multicon-

strained problems here solved regarded the increase of the iterations required to convergence.

The material reorganization that was imposed by the VTM proved to be computationally ex-

pensive, and, especially when rigid materials were involved, difficult to converge. However,

the method succeeded in provide topologies free of air hole seclusion, easy to manufacture and

with enhanced characteristics in all the applications considered.

Chapter 5 regarded the design of muffler chambers composed of up to three distinct

materials for enhancement of transmission loss values in a broad range of frequencies. The

BESO method was extended to encompass not only a multiphase application, by the proposi-

tion of a novel material interpolation scheme that systematically reproduced acoustic, porous

and rigid material phases, but also to investigate multiple domains in a methodology called
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mdBESO. Rigid and porous materials with rigid frame were approximated by the over ampli-

fication of acoustic properties and by the JohnsonChampouxAllard formulations, respectively.

A common trait of these analyzes regarded the consideration of three different frequency bands

in the objective function calculation, being chosen in a way that each of them comprised one of

the three first horizontal eigenfrequencies of a nominal expansion chamber muffler.

The bi-phase acoustic-rigid and acoustic-pororigid optimization result showed to be

strongly depend on the lowest frequencies comprehended by the corresponding target bands,

being, therefore, consistent with results from the literature. The acoustic-pororigid-rigid designs

presented clear combinations of the acoustic-rigid and acoustic-pororigid analyzes, without the

need for further manipulations to obtain porous materials wrapped around rigid structures. In

all these outcomes, the breakage of acoustic modes was perceptive, leading the topologies to

deviate the lowest frequencies to regions far from the ones of interest. When comparing the

mdBESO with two additional BESO-based settings, named as BESO-C (union of separately

optimized muffler chambers) and BESO-F (all domains are considered as design region), it was

noted that the influence of the connecting tube nodal lines gave the mdBESO results enhanced

effectiveness in the attenuation of sound regarding the BESO-C ones, while also being more

stable than BESO-F.

Finally, Chapter 6 addressed the problem of designing closed-space systems, com-

posed of acoustic, poroelastic and elastic materials, for sound attenuation. The finite element

method, the Unified Multiphase technique and the mixed u/p formulation were combined to

simulated the behavior all these materials, while based on Biot’s expressions. Besides, novel

material interpolation schemes were proposed to encompass the multiphysics elemental changes

throughout the iterative procedure. The optimization problem was posed as to maximize the to-

tal dissipated power level, and different combinations of its structural, viscous and thermal

mechanisms, while respecting multiphysical equilibrium equations and volume constraints. In

general, poroelastic barriers were placed at the left side of the design domain, enhancing struc-

tural dissipative effects in the impinging wave section, at the cost of viscous and thermal ones.

Nevertheless, such contributions were able to significantly increase dissipated power levels in

all observed cases. When compared to non-optimized structures, known as baselines, the ob-

tained topologies presented higher dissipative effects in the target frequency band. To the best of

the author’s knowledge, such investigations were not conducted before. These last two chapters

also tried to answer the question related with the proper arrangement of porous and elastic/rigid

materials to reduce general noise levels, also posed at the introductory discussion. It is worth

to point out that several counter-intuitive, manufacturable, highly effective and novel topology

optimizations for sound attenuation were presented as result of all the aforementioned analyzes.
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Despite the fact that the proposed modifications to the standard BESO method proved

to be adequate not only to structural, but also to acoustic applications with multiple materials,

domains, physics and frequencies, further discussions were presented in Chapter 7, highlighting

the conditions adopted in the overall investigations. On that scenario, studies on broader aspects

are still needed in order to make the current propositions be fully considered for real-world

applications. Hence, future research directions may be given as to:

• Investigate the optimal size of air holes and their repercussions on the airflow throughout

the optimization problem in the metasurfaces scenario;

• Obtain global values of VTM variables, in order to broaden the applications presented in

Chapter 4 for other acoustic settings;

• Investigate the computational costs of the VTM implementation in different domain ap-

plications;

• Broaden the acoustic multiconstrained methodology to encompass multi-materials, as

well as develop a composed VTM for such multiphase setting;

• Include the search for the optimal domain disposition in the mdBESO algorithm;

• Include the possibility of considering mean flow, thermal loads and perforated tubes in

the mdBESO algorithm;

• Apply the mdBESO algorithm in other acoustic systems, including multiscale analysis

and different boundary conditions;

• Investigate alternatives to reduce the computational costs involved in the mdBESO method-

ology;

• Consider other objective functions, such as transmission loss, absorption coefficient and

sound pressure levels, in the design of acoustic-poroelastic-elastic systems to investigate

which vibroacoustic indicator better contributes to the reduction of noise in predefined

regions;

• Expand the above methodologies to the 3D scenario by combining commercial or open-

source softwares with the ones here adopted;

• Build and test 3D printed prototypes experimentally.
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A | Extended Sensitivity Analysis

This appendix presents detailed extensions of the procedures introduced in the sensi-

tivity analysis sections of papers A1, A2 and A3 (Chapters 4, 5 and 6, respectively). For this,

some recurring variables of the papers needed to be modified to maintain the uniformity estab-

lished in Chapters 1, 2 and 3 of this thesis. Thus, Table A.1 indicates such variables that have

undergone symbolic changes and their respective descriptions.

Table A.1 – Indication of variable changes: papers to thesis

Variables
Description

Papers Thesis

Ke Hi
a elemental kinetic energy (acoustic stiffness) matrix

Me Qi
a elemental compression (acoustic mass) matrix

Ce Di
a elemental damping matrix

p p̂a acoustic pressure vector

f f̂a acoustic load vector

V ∗ V f final volume fraction

γe xi design variable

T ∗ Tadm admissible temperature

Ne Na acoustic shape function matrix

Ωe Ωi
a elemental acoustic domain

ψ, η ψ1, ..., ψ4 penalty variables of A1

Φ ΦA1 objective function of A1

Φ ΦA2 objective function of A2
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A.1 Sound Pressure Level

The developments presented here are detailed extensions of the procedures introduced

in Section 6.1 of paper A1 and, therefore, a direct continuation of the sensitivity analysis started

in Section 5.1 of the same work. The optimization problem of designing acoustic metasurfaces

(referred here as P1) consists of reducing regional sound pressure levels in a set of observed

frequencies, while subjected to volume and manufacturing constraints,

Maximize: ΦP1
A1 = − 1

Nf

Nf∑
n=1

SPLn, (A.1)

Subjected to:



Zp̂a = f̂a,

KTT = q,

V f −
∑Nel

i=1 Vixi = 0,

Tj − Tadm ≤ 0,

xi = xmin or 1,

(A.2)

where the objective function ΦP1
A1 corresponds to the arithmetic mean of the SPL values for

Nf target frequencies. In Eq. (A.1), the negative sign is used to turn a maximization problem

into a minimization one (Huang; Xie, 2010a). Considering the reference pressure equal to

Pref = 20× 10−6 Pa, the mathematical expression for the frequency dependent SPL calculation

is presented by,

SPL = 10 log10

(
P 2

avg

P 2
ref

)
, (A.3)

where the average squared pressure amplitude is (Dühring et al., 2008; Kook et al., 2012),

P 2
avg =

1∫
Ωr

dΩr

∫
Ωr

|pa(ω, xi)|2 dΩr. (A.4)

In the equation above, Ωr corresponds to the receiver domain, the region in which the SPL

values must be minimized.

Since, in this case, ΦA1 = ΦP1
A1, the sensitivity analysis can now be completely de-

scribed by solving the first term of the right-hand side of the following,

αi =
dL

dxi
=
∂ΦA1

∂xi
+ λ

∂(Tj − Tadm + S2
k)

∂xi
. (A.5)

Therefore,
∂ΦA1

∂xi
=
dΦP1

A1

dxi
= − 1

Nf

Nf∑
n=1

[
10

ln10

(
dP 2

avg/dxi

P 2
avg

)]
. (A.6)
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To find dP 2
avg/dxi, first consider that,

p̂a = p̂Re + jp̂Im, (A.7)

where p̂Re and p̂Im are the real and imaginary parts of p̂a, respectively. Knowing that P 2
avg is a

function of p̂Re, p̂Im and xi, the adjoint method (Tortorelli; Michaleris, 1994) can be applied by

the introduction of Lagrange Multipliers, λA1,

P 2
avg = P 2

avg(p̂Re, p̂Im, xi) + λTA1(Zp̂a − f̂a) + λHA1(Z
∗p̂∗

a − f̂∗a ). (A.8)

The superscript (·)∗ is the complex conjugate and (·)H is the same as ((·)T )∗. It is important to

note that all pressure vectors are also dependent on xi, being hided in Eqs. (A.7) and (A.8) to

simplify the notation. Taking the derivative of Eq. (A.8) with respect to the design variable, one

gets,

dP 2
avg

dxi
=

∂P 2
avg

∂xi
+
∂P 2

avg

∂p̂Re

∂p̂Re

∂xi
+
∂P 2

avg

∂p̂Im

∂p̂Im

∂xi

+ λTA1

(
∂Z

∂xi
p̂a + Z

∂p̂Re

∂xi
+ jZ

∂p̂Im

∂xi
− ∂ f̂a
∂xi

)

+ λHA1

(
∂Z∗

∂xi
p̂∗
a + Z∗∂p̂Re

∂xi
− jZ∗∂p̂Im

∂xi
− ∂ f̂∗a
∂xi

)
,

(A.9)

which becomes,

dP 2
avg

dxi
=

∂P 2
avg

∂xi
+

(
∂P 2

avg

∂p̂Re
+ λTA1Z+ λHA1Z

∗
)
∂p̂Re

∂xi

+

(
∂P 2

avg

∂p̂Im
+ jλTA1Z− jλHA1Z

∗
)
∂p̂Im

∂xi

+ λTA1

(
∂Z

∂xi
p̂a −

∂ f̂a
∂xi

)
+ λHA1

(
∂Z∗

∂xi
p̂∗
a −

∂ f̂∗a
∂xi

)
.

(A.10)

The unknown expressions involving ∂p̂Re/∂xi and ∂p̂Im/∂xi can be eliminated by

satisfying, 
λTA1Z+ λHA1Z

∗ = −
∂P 2

avg

∂p̂Re
,

jλTA1Z− jλHA1Z
∗ = −

∂P 2
avg

∂p̂Im
.

(A.11)

Multiplying the second expression by −j, adding to the first and transposing both sides (ZT =

Z), the adjoint equation is found,

ZλA1 = −1

2

(
∂P 2

avg

∂p̂Re
− j

∂P 2
avg

∂p̂Im

)T
︸ ︷︷ ︸

fA1
ad

, (A.12)
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where,

fA1
ad = −

(
1∫

Ωr
dΩr

(p̂TRe − jp̂TIm)

∫
Ωr

NT
aNa dΩr

)T

. (A.13)

Furthermore, with the use of Eq. (A.11) it is now possible to simplify Eq. (A.10), hence,

dP 2
avg

dxi
=
∂P 2

avg

∂xi
+ 2Re

[
λTA1

(
∂Z

∂xi
p̂a −

∂ f̂a
∂xi

)]
. (A.14)

As,
∂P 2

avg

∂xi
= p̂Ha

[
∂

∂xi

(
1∫

Ωr
dΩr

∫
Ωr

NT
aNa dΩr

)]
p̂a = 0, (A.15)

and
∂ f̂a
∂xi

= 0, (A.16)

dP 2
avg/dxi can finally be found by the use of the MIS,

1

ρ(xi)
=

1

ρa
+ xψ1

i

(
1

ρr
− 1

ρa

)
,

1

κ(xi)
=

1

κa
+ xψ2

i

(
1

κr
− 1

κa

)
,

(A.17)

in the ∂Z/∂xi determination. Therefore,

∂Z

∂xi
=
∂Ha

∂xi
− ω2∂Qa

∂xi
, (A.18)

where,

∂Hi
a

∂xi
=

∂

∂xi

[
1

ρ(xi)

] ∫
Ωi

a

(∇Na)
T∇Na dΩ

i
a, (A.19)

∂Qi
a

∂xi
=

∂

∂xi

[
1

κ(xi)

] ∫
Ωi

a

NT
aNa dΩ

i
a, (A.20)

and,

∂

∂xi

[
1

ρ(xi)

]
= ψ1x

(ψ1−1)
i

(
1

ρr
− 1

ρa

)
, (A.21)

∂

∂xi

[
1

κ(xi)

]
= ψ2x

(ψ2−1)
i

(
1

κr
− 1

κa

)
, (A.22)

in the element domain Ωi
a. It is also noted that all pressure related sensitivity expressions have

been validated via finite differences method.
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A.2 Absorption Coefficient

The developments presented here are detailed extensions of the procedures introduced

in Section 6.2 of paper A1 and, therefore, a direct continuation of the sensitivity analysis started

in Section 5.1 of the same work. The acoustic topology optimization problem of designing poro-

acoustic structures (referred here as P2) with maximized absorption coefficient in predefined

frequencies can be written as,

Maximize: ΦP2
A1 = 1− |R|2, (A.23)

Subjected to:



Zp̂a = f̂a,

KTT = q,

V f −
∑Nel

i=1 Vixi = 0,

Tj − Tadm ≤ 0,

xi = xmin or 1,

(A.24)

where the objective function ΦP2
A1 is the sound absorption coefficient of the considered porous

material and R is the reflection coefficient, which in turn can be represented by the following

frequency dependent expression (Lee et al., 2008),

R =
−P2 exp(−jkaX1) + P1 exp(−jkaX2)

P2 exp(jkaX1)− P1 exp(jkaX2)
. (A.25)

P1 and P2 are pressure amplitudes measured in positions X1 and X2, and ka = ω/ca is the air

wavenumber.

Knowing that ΦA1 = ΦP2
A1, the first term of the right-hand side of Eq. (A.5) can be

specified as,
∂ΦP2

A1

∂xi
= −2

(
Re(R)

∂Re(R)
∂xi

+ Im(R)
∂Im(R)

∂xi

)
, (A.26)

with Re(R) and Im(R) denoting the real and imaginary parts of R. After a series of mathemat-

ical manipulations, the derivative of R can be found (Lee et al., 2008),

∂R

∂xi
=

[
−∂P2

∂xi
exp(−jkaX1) +

∂P1

∂xi
exp(−jkaX2)

]
[P2 exp(jkaX1)− P1 exp(jkaX2)]

[P2 exp(jkaX1)− P1 exp(jkaX2)]
2 −

[−P2 exp(−jkaX1) + P1 exp(−jkaX2)]

[
∂P2

∂xi
exp(jkaX1)−

∂P1

∂xi
exp(jkaX2)

]
[P2 exp(jkaX1)− P1 exp(jkaX2)]

2 ,

(A.27)

with ∂Re(R)/∂xi and ∂Im(R)/∂xi obtained by taking the real and imaginary parts of ∂R/∂xi.
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To find ∂P1/∂xi and ∂P2/∂xi, consider the adjoint load vector ∂Pj/∂p̂a of size [dof,

1], where dof is the total number of degrees of freedom of the system. Since Pj is the target pres-

sure value, located in a specific dof, ∂Pj/∂p̂a is completely full of zeros, except at the degree

of freedom referred to Pj , where a value of 1 is placed (Lee et al., 2015). The differentiation of

Pj can then be written,
∂Pj
∂xi

=

(
∂Pj
∂p̂a

)T
∂p̂a
∂xi

, (A.28)

with the subscript (·)j representing both microphone positions where P1 and P2 are measured.

Based on Eq. (2.21), one may write,

∂p̂a
∂xi

= −Z−1 ∂Z

∂xi
p̂a, (A.29)

which can be applied to Eq. (A.28), generating,

∂Pj
∂xi

= −p̂Tj
∂Z

∂xi
p̂a, (A.30)

where p̂j = Z−1(∂Pj/∂p̂a). Lastly, ∂Z/∂xi is calculated with Eq. (A.18) and then Eqs. (A.19)

and (A.20). Here, the appropriate MIS is,
1

ρ(xi)
=

1

ρa
+ xψ3

i

(
1

ρp
− 1

ρa

)
,

1

κ(xi)
=

1

κa
+ xψ4

i

(
1

κp
− 1

κa

)
,

(A.31)

with its derivation being,

∂

∂xi

[
1

ρ(xi)

]
= ψ3x

(ψ3−1)
i

(
1

ρp
− 1

ρa

)
, (A.32)

∂

∂xi

[
1

κ(xi)

]
= ψ4x

(ψ4−1)
i

(
1

κp
− 1

κa

)
. (A.33)

Once again, all pressure related sensitivity expressions have been validated via finite differences

method.

A.3 Transmission Loss

The developments presented here are detailed extensions of the procedures introduced

in Section 4.1 of paper A2. At this moment, consider a topology optimization problem where

the goal is to maximize the mean transmission loss, ΦA2, over the angular frequency range

[ω(1)
s , ω(m)

f ], when subjected to the acoustic equilibrium system (Eq. (2.21)) and np − 1 volume
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constraints,

Maximize: ΦA2 =
1

ω
(m)
f − ω

(1)
s

(∫ ω
(1)
f

ω
(1)
s

TL dΩd1 + ...+

∫ ω
(m)
f

ω
(m)
s

TL Ωdm

)
, (A.34)

Subjected to:



Zp̂a = f̂a,
V f
1 −

(∑Nel
i=1 Vixi

)
1

...

V f
np−1 −

(∑Nel
i=1 Vixi

)
np−1

 =


0
...

0

 ,

¯
x =



x1
...

xNel


1

, ...,


x1
...

xNel


np−1

 .

(A.35)

In the above equations, m is the number of design domains (or muffler chambers) considered

in the optimization, while Ωdm refers to the specific domain where the mean TL is calculated

over the [ω(m)
s , ω(m)

f ] frequency range. Additionally, np indicates the number of material phases

treated in the iterative procedure, which are controlled by the relations between the prescribed

final volume fractions, V f , and the domain volume fractions,
∑Nel

i=1 Vixi. The general design

domain matrix,
¯
x, encompass all the column design domain vectors, x, of each individual

material phase.

Considering the same cross sectional areas of the inlet and outlet tubes, and knowing

that only plane waves propagate themselves in those regions, the TL formula can be obtained

with the help of the three-point methodology (Wu; Wan, 1996),

TL = 10 log10

|pin|2

|pout|2
= 20 log10

(∣∣∣∣ 1p3 p1 − p2 exp(−jkaX12)

1− exp(−j2kaX12)

∣∣∣∣) , (A.36)

where the sound pressure amplitudes measured at the inlet receivers are p1 and p2, being located

X12 from each other, and the sound pressure amplitude taken from the outlet end is p3.

In this muffler optimization problem, the sensitivity analysis is done by the derivation

of ΦA2 with respect to xi,

αi =
dΦA2

dxi
=

1

ω
(m)
f − ω

(1)
s

(
d

dxi

∫ ω
(1)
f

ω
(1)
s

TL dΩd1 + ...+
d

dxi

∫ ω
(m)
f

ω
(m)
s

TL dΩdm

)
. (A.37)

By the adoption of the Leibniz integral rule (Flanders, 1973), Eq. (A.37) can be rewritten,

αi =
1

ω
(m)
f − ω

(1)
s

(∫ ω
(1)
f

ω
(1)
s

∂TL
∂xi

dΩd1 + ...+

∫ ω
(m)
f

ω
(m)
s

∂TL
∂xi

dΩdm

)
. (A.38)
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To properly solve Eq. (A.38), one may first calculate the partial TL derivative (Lee; Kim, 2009;

Azevedo et al., 2018),

∂TL
∂xi

=
10

ln10

(
∂|pin|2

∂xi

1

|pin|2
− ∂|pout|2

∂xi

1

|pout|2

)
, (A.39)

where,

|pin|2 =
[Re(p1)− Re(p2) cos(kaX12)− Im(p2) sin(kaX12)]

2

[1− cos(2kaX12)]2 + [sin(2kaX12)]2
+

[Im(p1)− Im(p2) cos(kaX12) + Re(p2) sin(kaX12)]
2

[1− cos(2kaX12)]2 + [sin(2kaX12)]2
,

(A.40)

|pout|2 = Re(p3)2 + Im(p3)
2, (A.41)

and,

∂|pin|2

∂xi
=

2 [Re(p1)− Re(p2) cos(kaX12)− Im(p2) sin(kaX12)]

[1− cos(2kaX12)]2 + [sin(2kaX12)]2
×[

∂Re(p1)
∂xi

− ∂Re(p2)
∂xi

cos(kaX12)− ∂Im(p2)
xi

sin(kaX12)
]

[1− cos(2kaX12)]2 + [sin(2kaX12)]2
+

2 [Im(p1)− Im(p2) cos(kaX12) + Re(p2) sin(kaX12)]

[1− cos(2kaX12)]2 + [sin(2kaX12)]2
×[

∂Im(p1)
∂xi

− ∂Im(p2)
∂xi

cos(kaX12) +
∂Re(p2)
xi

sin(kaX12)
]

[1− cos(2kaX12)]2 + [sin(2kaX12)]2
,

(A.42)

∂|pout|2

∂xi
= 2

∂Re(p3)
∂xi

Re(p3) + 2
∂Im(p3)

∂xi
Im(p3). (A.43)

In Eqs. (A.40) to (A.43), Re(pj) and Im(pj) denote the real and imaginary parts of the jth

pressure amplitude, with the values of ∂Re(pj)/∂xi and ∂Im(pj)/∂xi obtained by respectively

taking the real and imaginary parts of ∂pj/∂xi. This last term may be calculated by the adoption

of the procedures stated in Eqs. (A.28), (A.29) and (A.30), when Pj is similar to pj in this case.

As a final action, one may find ∂Z/∂xi with the assistance of,

∂Z

∂xi
=
∂Ha

∂xi
+ jω

∂Da

∂xi
− ω2∂Qa

∂xi
, (A.44)

where,

∂Hi
a

∂xi
=

∂

∂xi

[
1

ρ(xi)

] ∫
Ωi

a

(∇Na)
T∇Na dΩ

i
a, (A.45)

∂Qi
a

∂xi
=

∂

∂xi

[
1

κ(xi)

] ∫
Ωi

a

NT
aNa dΩ

i
a, (A.46)

∂Di
a

∂xi
= 0, (A.47)
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as well as the appropriate material interpolation schemes created for this application. In the

broader scenario, where acoustic, pororigid and rigid material elements are all considered in the

design domain, the MIS is,
1

ρ(xi1 , xi2)
= Θ3(1− xι2i2) +

1

ρp
(xι2i2 − xι1i1) + xι1i1

1

ρa
,

1

κ(xi1 , xi2)
= Θ4(1− xι4i2) +

1

κp
(xι4i2 − xι3i1) + xι3i1

1

κa
,

(A.48)

with,

Θ3 =
1

ρr
−
[
1

ρp
(xι2min − xι1min) + xι1min

1

ρa

]
, (A.49)

Θ4 =
1

κr
−
[
1

κp
(xι4min − xι3min) + xι3min

1

κa

]
. (A.50)

Furthermore, its derivation with respect to both design variables (xi1 , xi2) is then,

∂

∂xi1

[
1

ρ(xi1 , xi2)

]
= ι1x

(ι1−1)
i1

(
1

ρa
− 1

ρp

)
, (A.51)

∂

∂xi2

[
1

ρ(xi1 , xi2)

]
= ι2x

(ι2−1)
i2

(
1

ρp
−Θ3

)
, (A.52)

and

∂

∂xi1

[
1

κ(xi1 , xi2)

]
= ι3x

(ι3−1)
i1

(
1

κa
− 1

κp

)
, (A.53)

∂

∂xi2

[
1

κ(xi1 , xi2)

]
= ι4x

(ι4−1)
i2

(
1

κp
−Θ4

)
. (A.54)

All aforementioned expressions have been validated via finite differences method.

A.4 Dissipated Power Level

The developments presented here are detailed extensions of the procedures introduced

in Section 4.1 of paper A3. The topology optimization problem investigated in the multiphysics

application can be defined, for a specific target frequency, as to maximize the dissipated power

level, PLD, that in turn is a combination of the time-averaged dissipated powers of structural,

Πs
D, viscous, Πv

D, and thermal, Πt
D, nature, while subjected to volume constraints. Throughout

the numerical procedure, a multifrequency band of [ωs, ωf ] is also considered, in a way that the

objective function becomes the mean PLD (also referred as MPLD), as shown in the following
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expressions,

Maximize: MPLD =
1

ωf − ωs

∫ ωf

ωs

10 log10

(
ϑ1Π

s
D + ϑ2Π

v
D + ϑ3Π

t
D

Πref

)
︸ ︷︷ ︸

PLD

dΩp, (A.55)

Subjected to:



Z̃θ̂ = f̂ ,

V f
p −

∑Nel
i=1 Vipxi1 = 0,

V f
e −

∑Nel
i=1 Viexi2 = 0,

xi1 = xmin or 1,

xi2 = xmin or 1.

(A.56)

In Eq. (A.55), ϑ1, ϑ2 and ϑ3 are simply used as switching variables, that is, they assume

unit values when Πs
D, Πv

D or Πt
D are respectively considered in the objective function, otherwise

assuming null values. This artifice is here applied to facilitate the combination of different

dissipative portions of power without necessarily rewriting the objective function. Furthermore,

Πref = 1× 10−12 W represents the reference power. In Eq. (A.56), the prescribed final volume

fraction is V f , with the design domain volume fraction being
∑Nel

i=1 Vixi.

Since harmonic motion is considered in the definition of all domain formulations, the

dissipated powers may then be established in time-averaged forms. One way to obtain such

expressions for the porous medium was given by Sgard et al. (2000), being latter formalized by

Dazel et al. (2008). Due to the simplicity of Sgard et al. (2000) formulations, the expressions

that follow are therefore the result of their work. Considering the unification of Eqs. (2.47) and

(2.48), and that both admissible functions are δus = −jωu∗
s and δpf = −jωp∗f , the weak form

of the aforementioned expressions may be rewritten as,

−jω
∫
Ωp

¯
σ̂s(us) :

¯
εs(u∗

s) dΩp︸ ︷︷ ︸
Πs

elas

+ jω3

∫
Ωp

ρ̃us · u∗
s dΩp︸ ︷︷ ︸

Πs
iner

−jω
∫
Ωp

φ2

ω2ρ̃22
∇pf · ∇p∗f dΩp︸ ︷︷ ︸

Πf
iner

+ jω

∫
Ωp

φ2

R̃
pf p

∗
f dΩp︸ ︷︷ ︸

Πf
elas

+ jω (γ̃ + ξ̃)

∫
Ωp

(∇pf · u∗
s +∇p∗f · us) dΩp + jω ξ̃

∫
Ωp

(pf∇ · u∗
s + p∗f∇ · us) dΩp︸ ︷︷ ︸

Πsf
coup

+ jω

∫
Γp

(
¯
σt · np) · u∗

s dΓp + jω

∫
Γp

φ(Uf − us) · np p∗f dΓp︸ ︷︷ ︸
Πext

= 0.

(A.57)
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Based on the above equations, the power balance yields,

Πs
elas +Πs

iner +Πf
iner +Πf

elas +Πsf
coup +Πext = 0, (A.58)

where Πs
elas and Πs

iner are the power developed by the internal and inertial forces in the solid

phase in vacuum, respectively. These same internal and inertial forces also generate contribu-

tions in the interstitial fluid, respectively being the powers Πf
elas and Πf

iner. The power exchanged

between both phases is Πsf
coup, while the one developed by external loading in Πext. Knowing that

the time-averaged dissipated power, ΠD, can be divided into its structural, Πs
D, viscous, Πv

D, and

thermal, Πt
D, parts, as highlighted in Eq. (A.55), and based on the Eqs. (A.57), the Eqs.(A.59),

(A.60) and (A.61) are defined,

Πs
D =

ω

2
Im

[∫
Ωp

¯
σ̂s(us) :

¯
εs(u∗

s) dΩp

]
, (A.59)

Πv
D = −ω

2
Im

[
ω2

∫
Ωp

ρ̃us · u∗
s dΩp −

∫
Ωp

φ2

ω2ρ̃22
∇pf · ∇p∗f dΩp + 2 γ̃

∫
Ωp

Re(∇pf · u∗
s) dΩp

]
(A.60)

Πt
D = −ω

2
Im

[∫
Ωp

φ2

R̃
pf p

∗
f dΩp

]
, (A.61)

where, Πs
D is obtained from Πs

elas, Π
v
D from Πs

iner + Πf
iner + Πsf

coup and Πt
D from Πf

elas. It is also

noticeably that Im(γ̃ + ξ̃) = Im(γ̃), as Q̃/R̃ is a real number (see Eqs. (2.40) and (2.41)).

Finally, it is possible to apply the FEM to the aforementioned relations, generating the

time-averaged dissipated powers as functions of the elementary matrices,

Πs
D =

ω

2
Im
(
ûHs K̃pûs

)
, (A.62)

Πv
D = −ω

2
Im
(
ω2ûHs M̃pûs −

1

ω2
p̂Hf H̃pp̂f + 2 ûHs C̃p1p̂f

)
, (A.63)

Πt
D = −ω

2
Im
(
p̂Hf Q̃pp̂f

)
, (A.64)

where Im(·) is the imaginary part of a function, and the superscripts (·)∗ and (·)H are, respec-

tively, the conjugate and the transpose conjugate of a complex variable. An important point

to note is that, when considering the thin elastic structures and the anechoic termination in

the composition of the observed domain (Ω = Ωd ∪ Ωnd), two more time-averaged dissipated

powers should be included in Eqs. (A.62), (A.63) and (A.64). However, the current double-

wall composition causes a natural pressure reduction in the outlet region, which is even more

pronounced with the addition of materials between such walls, so that the acoustic power con-

tribution can be neglected. Thus, Eq. (A.62) can be rewritten to encompass the purely elastic

power portion,

Πs
D =

ω

2
Im
(
ûHe Keûe

)
+
ω

2
Im
(
ûHs K̃pûs

)
. (A.65)
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Furthermore, the derivation of MPLD with respect to xi is referred as αi, so,

αi =
1

ωf − ωs

∫ ωf

ωs

10

ln10

(
ϑ1

dΠs
D

dxi
+ ϑ2

dΠv
D

dxi
+ ϑ3

dΠt
D

dxi

ϑ1Πs
D + ϑ2Πv

D + ϑ3Πt
D

)
dΩp. (A.66)

At this moment, consider θ̂ = θRe + jθIm, where θRe and θIm stands for the real and imaginary

parts of θ̂. The sum of the time-averaged dissipated powers can thus be rewritten as,

ΠD (θRe,θIm, xi) = ϑ1Π
s
D + ϑ2Π

v
D + ϑ3Π

t
D. (A.67)

By the introduction of Lagrange multipliers, λA3, the augmented performance index

appear,

ΠD = ΠD(θRe,θIm, xi) + λTA3(Z̃θ̂ − f̂) + λHA3(Z̃
∗θ̂∗ − f̂∗), (A.68)

with its derivation being,

dΠD

dxi
=

∂ΠD

∂xi
+
∂ΠD

∂θRe

∂θRe

∂xi
+
∂ΠD

∂θIm

∂θIm

∂xi

+ λTA3

(
∂Z̃

∂xi
θ̂ + Z̃

∂θRe

∂xi
+ jZ̃

∂θIm

∂xi
− ∂ f̂

∂xi

)

+ λHA3

(
∂Z̃∗

∂xi
θ̂∗ + Z̃∗∂θRe

∂xi
− jZ̃∗∂θIm

∂xi
− ∂ f̂∗

∂xi

)
,

(A.69)

that becomes,

dΠD

dxi
=

∂ΠD

∂xi
+

(
∂ΠD

∂θRe
+ λTA3Z̃+ λHA3Z̃

∗
)
∂θRe

∂xi

+

(
∂ΠD

∂θIm
+ jλTA3Z̃− jλHA3Z̃

∗
)
∂θIm

∂xi

+ λTA3

(
∂Z̃

∂xi
θ̂ − ∂ f̂

∂xi

)
+ λHA3

(
∂Z̃∗

∂xi
θ̂∗ − ∂ f̂∗

∂xi

)
.

(A.70)

The unknown variables ∂θRe/∂xi and ∂θIm/∂xi may finally be removed from Eq. (A.70)

by setting, 
λTA3Z̃+ λHA3Z̃

∗ = − ∂ΠD

∂θRe
,

jλTA3Z̃− jλHA3Z̃
∗ = − ∂ΠD

∂θIm
.

(A.71)

Multiplying the second expression by −j, adding to the first and transposing both sides (Z̃T =

Z̃), the adjoint equation is found,

Z̃λA3 = −1

2

(
∂ΠD

∂θRe
− j

∂ΠD

∂θIm

)T
︸ ︷︷ ︸

fA3
ad

, (A.72)
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with its right side being the adjoint load vector, fA3
ad . Since ΠD is represented by Eq. (A.67), the

next step consists in finding the expressions for the structural, f sad, viscous, fvad, and thermal, f tad,

adjoint load vectors that compose fA3
ad . After a series of mathematical manipulations, one may

write,

f sad = −ω
2

[
ûHe Im (Ke) + ûHs Im (K̃p)

]T
, (A.73)

fvad =
ω

2

[
ω2 ûHs Im (M̃p)−

1

ω2
p̂Hf Im (H̃p) + p̂Hf Im (C̃p1)

T + ûHs Im (C̃p1)

]T
, (A.74)

f tad =
ω

2

[
p̂Hf Im (Q̃p)

]T
. (A.75)

The aforementioned procedures also lead to the final form of Eq. (A.70),

dΠD

dxi
=
∂ΠD

∂xi
+ 2Re

[
λTA3

(
∂Z̃

∂xi
θ̂ − ∂ f̂

∂xi

)]
, (A.76)

with,

∂Z̃

∂xi
=



∂Ke

∂xi
− ω2∂Me

∂xi
0 0 −∂Lae

∂xi

0
∂K̃p

∂xi
− ω2∂M̃p

∂xi
− ∂

∂xi
(C̃p1 + C̃p2) −

∂Lap

∂xi

0 − ∂

∂xi
(C̃p1 + C̃p2)

T 1

ω2

∂H̃p

∂xi
− ∂Q̃p

∂xi
0

−∂L
T
ae

∂xi
−
∂LTap

∂xi
0

1

ω2

∂Ha

∂xi
− 1

jω

∂Da

∂xi
− ∂Qa

∂xi


, (A.77)

where,

∂Ke

∂xi
=
∂Me

∂xi
= 0, (A.78)

∂Lae

∂xi
=
∂Lap

∂xi
=
∂LTae

∂xi
=
∂LTap

∂xi
= 0, (A.79)

∂Ha

∂xi
=
∂Qa

∂xi
=
∂Da

∂xi
= 0, (A.80)

(A.81)
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and, in an element domain Ωi
p,

∂K̃i
p

∂xi
=

∫
Ωi

p

(∇̄Ne)
T ∂

∂xi
[Ep(xi1 , xi2)] ∇̄Ne dΩ

i
p, (A.82)

∂M̃i
p

∂xi
=

∂

∂xi
[ρ̃(xi1 , xi2)]

∫
Ωi

p

NT
eNe dΩ

i
p, (A.83)

∂H̃i
p

∂xi
=

∂

∂xi

[
φ2

ρ̃22
(xi1 , xi2)

] ∫
Ωi

p

(∇Na)
T∇Na dΩ

i
p, (A.84)

∂Q̃i
p

∂xi
=

∂

∂xi

[
φ2

R̃
(xi1 , xi2)

] ∫
Ωi

p

NT
aNa dΩ

i
p, (A.85)

∂C̃i
p1

∂xi
=

∂

∂xi

[
φ

α̃
(xi1 , xi2)

] ∫
Ωi

p

NT
e∇Na dΩ

i
p, (A.86)

∂C̃i
p2

∂xi
=

∂

∂xi

[
ξ̃(xi1 , xi2)

] ∫
Ωi

p

φ(∇ ·Ne)
TNa dΩ

i
p. (A.87)

In the above, Ep(xi1 , xi2) can be written in terms of Ñ(xi1 , xi2) and Â(xi1 , xi2) (see Eq. (2.67)),

while (φ/α̃)(xi1 , xi2) is equivalent to γ̃ + ξ̃(xi1 , xi2), where γ̃ is not a function of the design

variables (see Eq. (2.69) and Eqs. (A.91), (A.92) and (A.93)).

The final forms of Eqs. (A.82) to (A.87) are obtained by the derivation of the proposed

multiphysical MIS,

Ψ̃(xi1 , xi2) = Ψ̃e + xζ2i2 (Ψ̃p − Ψ̃e) + xζ1i1 (Ψ̃a − Ψ̃p), (A.88)

with respect to xi1 and xi2 , that is,

∂Ψ̃(xi1 , xi2)

∂xi1
= ζ1x

(ζ1−1)
i1

(Ψ̃a − Ψ̃p), (A.89)

∂Ψ̃(xi1 , xi2)

∂xi2
= ζ2x

(ζ2−1)
i2

(Ψ̃p − Ψ̃e), (A.90)

with Ψ̃p, Ψ̃a and Ψ̃e being,

Ψ̃p =
{
ξ̃p, ρ̃p, Ñp, Âp, (φ

2/ρ̃22)p, (φ
2/R̃)p

}
≡ Ψ̃, (A.91)

Ψ̃a =
{
1, oaρ̃p, oaÑp, oaÂp, 1/ρa, 1/κa

}
, (A.92)

Ψ̃e =
{
oeξ̃p, ρe, Ñe, Ãe, oe(φ

2/ρ̃22)p, oe(φ
2/R̃)p

}
. (A.93)

To avoid numerical instabilities, small constants are adopted as oa = oe = 10−9, instead of

being zeroed.
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Lastly, ∂ΠD/∂xi and ∂ f̂/∂xi are defined by the following,

∂ΠD

∂xi
= Im


{
ûs

p̂f

}H

ω

2


ϑ1
∂K̃p

∂xi
− ϑ2 ω

2∂M̃p

∂xi
−ϑ2

∂C̃p1

∂xi

−ϑ2

∂C̃T
p1

∂xi

ϑ2

ω2

∂H̃p

∂xi
− ϑ3

∂Q̃p

∂xi


{
ûs

p̂f

} , (A.94)

and
∂ f̂

∂xi
= 0, (A.95)

which concludes the approach. All aforementioned expressions have been validated via finite

differences method.
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ABSTRACT

In the past few years, acoustic-mechanical devices have be-
come widely used, which increased the demand for noise
control solutions. One of the approaches to solve such
problems consists in designing noise barriers. However,
finding the best topology for these barriers can be a com-
plex task. In this work it is proposed a methodology to de-
sign periodic noise barriers, composed of rigid materials,
using the bi-directional evolutionary structural optimiza-
tion (BESO) method. The acoustic problem is modeled
using the Helmholtz equation and solved by the finite el-
ement procedure, while a material interpolation scheme is
used for switching acoustic and rigid elements. The op-
timization problem is defined as the minimization of the
average square pressure amplitude in a specific region of
the acoustic domain, while the volume of the barrier is
reduced. The sensitivity analysis was carried out by the
gradient of the objective function with respect to the de-
sign variable. Two cases are presented in order to show the
capabilities of the proposed approach. In the first one, pe-
riodic conditions are imposed in the entire system, while in
the second non-periodic conditions are considered. The re-
sults showed that, although the barrier volume was reduced
by 35% in both cases, the objective function decreased at
least 68.80%.

1. INTRODUCTION

In the last decades, topology optimization methods have
become powerful engineering tools since they provide non-
intuitive structure designs for a large number of applica-
tions. Generally, what is sought is a lighter structure that
is also able to enhance a few characteristics of the system,
making the design even less costly. After the development
and popularization of computing, many methods arose in
order to make use of topology optimization.

The Evolutionary Structural Optimization (ESO)
method, first introduced by Xie and Steven in the early
1990s [1], has as premise the removal of inefficient ma-
terial from the structure. However, this could also result in
non-optimal geometries due to inappropriate initial design
settings [2]. Later, the Bi-directional Evolutionary Struc-
tural Optimization (BESO) method, proposed by Yang et
al. [3], made possible not only to remove but also add el-
ements to the structure during the optimization process.
Shortly thereafter, the so-called new BESO algorithm [4]

has been used in many works, since also provides solutions
for some important numerical problems, such as checker-
board pattern and mesh-dependence. All these improve-
ments made the method even more popular and highly used
in many engineering applications [5, 6].

Acoustic-mechanical devices (AMDs), like micro-
phones and speakerphones, are increasingly familiar and
so is the noise control situation. As a result, the interest
of many researchers, whose main focus is the design of
acoustic barriers, enhanced. Due to the vast applicability
of such acoustic components, going from houses, hospi-
tals and schools to the automotive industry, for example,
a great number of techniques have been implemented to
design such systems.

It became common to design acoustic barriers, in repeti-
tive domains, taking into account the complexities of fluid-
structure interactions [7]. However, a more simplified ap-
proach, which consists of infinitely enlarge, in a theoret-
ical point of view, the mass density and bulk modulus
of the barrier material to generate a rigid structure, has
gained many supporters [8–10]. This is due to the fact that
it reduces the multiphysical fluid-structure problem to an
acoustical one, ruled by the Helmholtz equation.

Acoustic topology optimization (ATO) problems have
been solved, using the BESO method, in the works of Vi-
cente et al. [11] and Picelli et al. [12], but their main fo-
cus was on the structural part of the problem and, in many
situations, even neglected the effects of the acoustic do-
main. Kook [13] and Dilgen et al. [14] also used the bi-
directional optimization method, together with a mixed u/p
formulation, in order to solve classical acoustic-structure
problems. Finally, Azevedo et al. [15] combined the BESO
approach and the rigid material approximation with the
goal of maximizing the transmission loss in the internal
partitions of a reactive muffler.

With this in mind and seeking to enhance the use of the
bi-directional evolutionary structural topology optimiza-
tion method in the context of noise attenuation, this paper
aims to optimize noise barriers when subjected to periodic
and non-periodic conditions. The organization of this pa-
per is presented as follows: In section 2 the acoustic prob-
lem is formulated using the finite element approach. In
section 3 the optimization problem, as well as the mate-
rial interpolation scheme and the design sensitivity analy-
sis are discussed. Also in this section, the BESO method is
described in detail. Section 4 presents numerical results,
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intending to demonstrate the relevance of the presented
methodology. Finally, conclusions are drawn in section 5.

2. ACOUSTIC PROBLEM FORMULATION

Considering an acoustic volume Ωf that includes the de-
sign, Ωd, non-design, Ωnd, and objective, Ωo, domains, as
illustrated in Fig. 1. The boundaries are of Dirichlet, ΓD,
Neumann, ΓN , and Robin, ΓR, types where it is possible
to prescribe the acoustic pressure, normal gradient pres-
sure and acoustic admittance [16], respectively, according
to the system of Eqn. (1).

n

�D

�N

�R

�nd

�d

�o

�f = �nd∪�d∪�o

Figure 1. Acoustic continuum


∇2p̃+

ω2

c2
p̃ = 0 in Ωf

p̃ = p̄ at ΓD

∇p̃ · n = −ρ0ān at ΓN

∇p̃ · n + iρ0ωÃp̃ = 0 at ΓR

(1)

Where p̃ and p̄ are, respectively, the complex and pre-
scribed acoustic pressure, ω is the angular frequency, c is
the speed of sound in air, n is the outward unit normal vec-
tor, ρ0 is the fluid mass density, ān is the prescribed normal
acceleration and Ã is the acoustic admittance.

In order to provide a discrete approximation of the
continuum problem stated in Eqn. (1), the finite element
(FE) method is considered [15–17]. Thus, multiplying the
Helmholtz equation by a weight function ν and integrating
on the entire fluid domain (method of weighted residual)
the strong form can be written as Eqn. (2).∫

Ωf

∇2p̃ν dΩf +
ω2

c2

∫
Ωf

p̃ν dΩf = 0 (2)

Applying Green’s theorem, Eqn. (2) becomes,

−
∫

Ωf

∇p̃ · ∇ν dΩf +

∫
Γ

∇p̃ · nν dΓ+

ω2

c2

∫
Ωf

p̃ν dΩf = 0 (3)

for Γ = ΓD ∪ ΓN ∪ ΓR. Substituting the boundary condi-
tions presented in Eqn. (1), and knowing that ∇p̃ · n = 0

for the rigid wall case, the weak form can then be written
as Eqn. (4).∫

Ωf

∇p̃ · ∇ν dΩf +

∫
ΓN

ρ0ānν dΓN+∫
ΓR

iρ0ωÃp̃ν dΓR −
ω2

c2

∫
Ω

p̃ν dΩf = 0 (4)

The complex acoustic pressure and its normal gradient
can be rewritten in a more suitable manner,

p̃ = Np̃i, ∇p̃ = ∂Np̃i (5)

where N is the FE shape function matrix, with ∂N denot-
ing its derivation, and p̃i is the complex acoustic pressure
vector of the ith element. With the use of Galerkin method,
the weight function can be written,

ν = Nνi, ∇ν = ∂Nνi (6)

where ν is the weight function vector of the ith element.
Finally, substituting Eqns. (5) and (6) in Eqn. (4) and per-
forming the FE assembly procedure, the global dynamic
system arises,

Sp̃ = (K + iωC− ω2M)p̃ = f (7)

where S corresponds to the system matrix and has contri-
butions from K, C and M, denoting the acoustic stiffness,
damping and mass matrices, respectively, while f is the
acoustic load vector. Besides,

Ki =
1

ρ0

∫
Ωf

(∂N)t∂N dΩf (8)

Ci = Ã

∫
ΓR

NtN dΓR (9)

Mi =
1

κ

∫
Ωf

NtN dΩf (10)

fi = −ān
∫

ΓN

Nt dΓN (11)

where the subscript i represents elementary variables. The
bulk modulus of the acoustic medium is denoted by κ,
which is equal to ρ0c

2.

3. RIGID BARRIER TOPOLOGY OPTIMIZATION

In this section, the optimization problem is presented, as
well as the adopted material interpolation scheme, the de-
sign sensitivity analysis and the evolutionary procedure.
Eqn. (12) states the topology optimization problem as the
minimization of the average square acoustic pressure am-
plitude at Ωo [7–9, 13] subject to restrictions stated in
Eqns. (13), (14) and (15).

Minimize: Φ =
1∫

Ωo
dr

∫
Ωo

|p̃(r, χ(r))|2 dr (12)

Subjected to: V ∗ − 1∫
Ωd

dr

∫
Ωd

χ(r) dr = 0 (13)

S(χ(r))p̃(r,χ(r)) = f (14)

χ(r) = 0 or 1 ∀r ∈ Ωd (15)
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Where Φ is the objective function and V ∗ is the imposed
volume fraction, which varies from 0 to 1. Eqn. (14) ex-
poses that p̃ depends on the binary design variable, χ, and
the position, r, vectors. The elemental values of χ can only
be 0 for air or 1 for rigid materials.

3.1 Material interpolation scheme

As discussed in section 2, three different regions are in-
cluded in the fluid domain Ωf (see Fig. 1). In the non-
design, Ωnd, and objective, Ωo, domains the medium is air.
However, in the design domain, Ωd, the medium is com-
posed of an acoustic barrier of rigid constitution. Follow-
ing many researchers [7–10, 18], this so-called rigid mate-
rial is the result of a mathematical resource in which the air
density and bulk modulus are infinitely amplified, from a
purely theoretical point of view, in order to generate a ma-
terial where the wave is totally reflected. However, to avoid
numerical singularities in the calculation of the acoustic fi-
nite element matrices, adequate values need to be chosen
for these variables. In this sense, the physical properties
considered are ρair = 1.21 kg/m3, κair = 1, 42e5 Pa,
ρrigid = 1, 21e5 kg/m3 and κrigid = 1, 21e12 Pa, where
the subscripts air and rigid denote air and rigid mate-
rial, respectively [9]. To find the optimal distribution of
rigid in Ωd, the material interpolation scheme, presented
in Eqns. (16) and (17), is adopted.

1

ρ
=

1

ρair
+ χ

(
1

ρrigid
− 1

ρair

)
(16)

1

κ
=

1

κair
+ χ

(
1

κrigid
− 1

κair

)
(17)

3.2 Design Sensitivity Analysis

It is discussed, in this section, the sensitivity numbers
based on the average square acoustic pressure amplitude
[7]. Thus, since p̃ is a complex vector, it can be written as
follows,

p̃ = pR + ipI (18)

with pR and pI denoting real and imaginary parts of p̃.
Knowing that Φ is a function of,

Φ = Φ(pR,pI ,χ), (19)

the adjoint method [19] is used by the introduction of La-
grangian multipliers, λ̃ and ¯̃λ,

Φ = Φ(pR,pI ,χ) + λ̃
t
(Sp̃− f) +

¯̃
λ
t
(S̄¯̃p− f̄) (20)

where the over bars denote complex conjugates. It is im-
portant to note that all pressure vectors are also dependent
on χ, but this was not shown in Eqns. (18), (19) and (20)
in order to simplify the notation.

Taking the derivative of Eqn. (20), with respect to the

design domain variable, yields,

dΦ

dχ
=
∂Φ

∂χ
+

∂Φ

∂pR

∂pR
∂χ

+
∂Φ

∂pI

∂pI
∂χ

+

λ̃
t
(
∂S

∂χ
p̃ + S

∂pR
∂χ

+ iS
∂pI
∂χ
− ∂f

∂χ

)
+

¯̃λ
t
(
∂S̄

∂χ
¯̃p + S̄

∂pR
∂χ
− iS̄∂pI

∂χ
− ∂ f̄

∂χ

)
(21)

which becomes,

dΦ

dχ
=
∂Φ

∂χ
+ λ̃

t
(
∂S

∂χ
p̃− ∂f

∂χ

)
+ ¯̃λ

t
(
∂S̄

∂χ
¯̃p− ∂ f̄

∂χ

)
+(

∂Φ

∂pR
+ λ̃

t
S + ¯̃λ

t
S̄

)
∂pR
∂χ

+(
∂Φ

∂pI
+ iλ̃

t
S− i¯̃λ

t
S̄

)
∂pI
∂χ

. (22)

Since the Lagrangian multipliers can assume any num-
ber, the unknown expressions involving ∂pR

∂χ and ∂pI

∂χ can
be eliminated by satisfying Eqns. (23) and (24).

λ̃
t
S + ¯̃λ

t
S̄ = − ∂Φ

∂pR
(23)

iλ̃
t
S− i¯̃λ

t
S̄ = − ∂Φ

∂pI
(24)

Multiplying Eqn. (24) by−i, adding the result to Eqn. (23)
and transposing both sides (knowing that St = S), the ad-
joint equation is found,

Sλ̃ = −1

2

(
∂Φ

∂pR
− i ∂Φ

∂pI

)t
(25)

with λ̃ being the solution of the adjoint equation and with
the right side of Eqn. (25) defined as the adjoint load. Fi-
nally, it is possible to rewrite Eqn. (22) in its final form,

αi = −dΦ

dχ
= −

{
∂Φ

∂χ
+ 2Re

[
λ̃
t
(
∂S

∂χ
p̃− ∂f

∂χ

)]}
(26)

where αi denotes the sensitivity number of the ith element.
Also, it is noticeable that (26) has received a minus sign on
its right side, which acts as a corrector of the BESO method
towards minimization of the objective function.

Making use of the material interpolation scheme,
Eqns. (16) and (17), the derivatives stated at Eqn. (26) can
be easily written, at the elementary level, as follows,

∂Φ

∂χ
= 0,

∂f

∂χ
= 0 (27)

∂S

∂χ
=
∂K

∂χ
+ iω

∂C

∂χ
− ω2 ∂M

∂χ
(28)

with,

∂C

∂χ
= 0 (29)

∂K

∂χ
=

(
1

ρrigid
− 1

ρair

)∫
Ωd

(∂N)t∂N dΩd (30)

∂M

∂χ
=

(
1

κrigid
− 1

κair

)∫
Ωd

NtN dΩd. (31)
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Knowing that,

|p̃|2 = p2
R + p2

I (32)

pR = NpR (33)

pI = NpI (34)

the adjoint load can also be rewritten in an integral form as
Eqn. (35).

− 1

2

(
∂Φ

∂pR
− i ∂Φ

∂pI

)t
=

−

(
1∫

Ωo
dΩo

(ptR − iptI)
∫

Ωo

NtN dΩo

)t
(35)

Since the optimization of periodic noise barriers is ex-
amined, an additional procedure needs to be performed in
order to ensure the same topology in all barrier cells. In
that way, when more than one cell is considered, a peri-
odic vector of sensitivities is calculated by the following
procedure:

1. Calculate all the sensitivity numbers inside the de-
sign domain using Eqns. (25) to (35).

2. Separate the sensitivity numbers by cell vectors, in
order to identify the first, second, down to the last
elements, of each periodic cell.

3. Average the sensitivity numbers of all the firsts, sec-
onds, down to the last elements, and store those val-
ues inside another variable, called periodic sensitiv-
ity vector.

4. Use this new vector throughout the BESO method-
ology.

All this process ensures that the same barrier is obtained
independently of the amount of cells considered.

3.3 Bi-directional Evolutionary Procedure

This section presents the Bi-directional evolutionary struc-
tural optimization (BESO) method related with acoustic
problems [4, 5, 13, 15]. The main steps of the methodol-
ogy are given as follows:

1. Execute the finite element procedure using Eqns. (7)
to (11). This analysis should be performed in order
to find the acoustic pressure in the fluid domain. At
this point, it is important to differentiate air and rigid
elements, that encompass the design domain, by at-
tributing the correct physical properties to each case
(see section 3.1).

2. Carry out the sensitivity analysis. In this case the
sensitivity numbers were validated by comparing
them to the ones obtained by the finite differences
method.

3. Apply the filter scheme, Eqns. (36) to (38), in order
to deal with numerical problems that arises with the
use of low order elements [4, 20].

αj =
M∑
i=1

wiαi (36)

wi =
1

M − 1

(
1− rij∑M

i=1 rij

)
(37)

Where αj denotes the sensitivity number of the jth
node, M is the total number of elements connected
to the jth node, wi is the weight factor of the ith ele-
ment, with

∑M
i=1 wi = 1, and rij corresponds to the

distance between the center of the ith element and
the jth node. Additionally, a length scale, rmin, is
defined with the goal of identify the nodes that con-
tribute to the sensitivity of the ith element as follows,

αi =

∑tnd
j=1 w(rij)αj∑tnd
j=1 w(rij)

(38)

with tnd being the total number of nodes that has in-
fluence over αi andw(rij) is the linear weight factor
determined by rmin − rij , for all nodes inside the
subdomain imposed by rmin.

4. Apply the sensitivity history. One of the main char-
acteristics of the BESO method consists in the usage
of discrete design variables, which may cause diffi-
culties in the convergence of the objective function
and its corresponding topology. One way to solve
this issue is to average the sensitivity numbers with
its historical information. A way to do that is by the
application of Eqn. (39),

αi =
αiti + αit−1

i

2
(39)

where superscript it refers to the current iteration.

5. Define the volume target for the next iteration,

Vit+1 = Vit(1± ER) (40)

where Vit is the volume fraction of the iteration it
and ER is the evolutionary rate. When the final vol-
ume fraction, V ∗, is reached, the next iterations must
necessarily keep the volume constant until the stop
criteria (step 7) is fulfilled.

6. Define element type. The definition of volume for
the next iteration establishes a threshold for the
amount of elements that will be air (χ = 0) or rigid
(χ = 1). Looking at the sensitivity numbers in the
context of minimization of the objective function, it
is possible to write Eqns. (41) and (42).

αi ≤ αth air elements (41)

αi > αth rigid elements (42)
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Besides, another important parameter that needs to
be addressed is the addition ratio,AR, which defines
the additional volume that can return to the FE mesh.
However, in order to restrict this amount, the max-
imum addition ratio, ARmax, is also stated. If the
case AR > ARmax happens, only some elements
with the lowest αi will be turned to air in order to
respect the AR = ARmax restriction. This fact also
implies that some elements with the highest αi will
be turned to rigid, fulfilling Vit+1 [12].

7. Repeat 1 to 6 until the final volume is reached and
the stop criteria, Eqn. (43), is satisfied.

|
∑5
m=1 Φit−m+1 −

∑5
m=1 Φit−m−4|∑5

m=1 Φit−m+1

≤ τ (43)

The variable τ denotes the allowable error tolerance.

4. NUMERICAL RESULTS

This section presents the optimization of an acoustic bar-
rier with periodic, case 1, and non-periodic, case 2, set-
tings. Fig. 2 illustrates the geometry considered in the ex-
amples. The gray region denotes the design domain, ini-
tially full of rigid elements. The green and white areas are
the objective and non-design domain regions, respectively,
composed of air elements. The entire cell has 730 mm of
length and 45 mm of height, with an initial barrier of 30x27
mm2. At boundary Γin different inputs are given in order
to explore further the behavior of the optimization method
when dealing with this kind of ATO problem, while Γout
is considered closed in all examples.

300 mm 30 mm 300 mm 100 mm

27 mmΩd Ωo

Ωnd

Γup

Γdown

Γin
Γout

=∇p n = 0= ~

∇p n = 0= ~

45 mm

=

Figure 2. Geometric details of the structure adopted in the
examples

4.1 Case 1: Barrier optimization in a periodic system

Fig. 3(a) shows the sound pressure field of the acoustic
tube with dimensions given in Fig. 2, when subjected to a
plane wave caused by an acceleration of 1 m/s2, at Γin, and
frequency of 2900 Hz. The fluid domain is discretized by
292x30 first order quadrilateral elements, which is above
the minimum recommend per wavelength [16]. The speed
of sound in air is 343 m/s, with the physical character-
istics of air and rigid materials as stated in section 3.1.
Fig. 3(b) illustrates the sound pressure field of the acoustic
system with the optimized rigid barrier. The BESO param-
eters are: V ∗ = 0.65, ER = 1.0%, ARmax = 1.4%,
rmin = 10 mm and τ = 0.1%. Fig. 3(c) is the represen-
tation of the same problem, but with three periodic cells,
which makes a finite element mesh of size 292x90.

-0.05 -0.03 -0.01 0.01 0.03

-0.03 -0.01 0.01 0.03

-0.03 -0.01 0.01 0.03

(a)

(b)

(c)

Figure 3. Sound pressure field of an acoustic tube (a) one
cell with a non-optimized barrier (b) one cell with an opti-
mized barrier (c) three cells and optimized barriers

It is observed from Fig. 3(b) and (c) that the same re-
sults are found after the optimization is complete due to the
periodic conditions of the problem. Since the fluid domain
is horizontally symmetric, it is possible to model rigid bar-
riers with one or even half of a periodic cell, representing a
significant reduction of computational cost. This becomes
even clearer with the observation of Fig. 4, that presents
the identical evolution of the objective function for the ex-
amples with one and three periodic cells, respectively. The
barrier topology in iterations 10, 30 and 50 are also shown.
The BESO method reveals great potential in the optimiza-
tion of noise barriers with periodic conditions, since the
average square pressure is reduced by 68.80%, while 35%
of the barrier volume is also reduced. Additionally, there
was no break of horizontal symmetry during the entire op-
timization process, resulting in a smooth behavior of the
objective function.

4.2 Case 2: Optimization of a non-periodic system

Fig. 5(a) illustrates the sound pressure field of a similar
acoustic tube to the one presented in section 4.1 since
the geometry, acceleration and frequency are maintained.
However, a wave is generated by a cylindrical source of
45 mm in length, located at the center of Γin. In this case,
since the boundary is non-periodic, the entire tube needs to
be analyzed or Floquet-Bloch boundary conditions would
have to be imposed in order to consider the different phases
between cells [21]. Since this is an early study on the be-
havior of the BESO method in the optimization of noise
barriers, the authors choose to only consider the case pre-
sented in Fig. 5(a). It is our hope to go deeper into this
topic and even study the optimization of acoustic barri-
ers composed of poroelastic materials [22, 23] in future
work. Fig. 5(b) presents the results found after the opti-
mization takes place. The BESO parameters considered in
this case are: V ∗ = 0.65, ER = 0.6%, ARmax = 0.8%,
rmin = 18 mm and τ = 0.1%. It must be pointed out that
despite of the non-periodic setting, the barrier was consid-
ered as three cells, to which were applied the procedures
described at the end of section 3.2.

10.48465/fa.2020.1068 213 e-Forum Acusticum, December 7-11, 2020

161



(a)

(b)

Iteration

Iteration

Figure 4. Objective function and barrier evolutions (a) one
periodic cell (b) three periodic cells

From Fig. 5(b) it is noticed that the barrier converged
to a non-symmetrical optimized form, completely different
from the one presented in Fig. 3(c), even though its period-
icity is maintained by the optimization method. This ob-
servation implies that, for the case of non-periodic bound-
aries, the optimization needs to be made for the whole fluid
domain and not only for a small portion of it, as previously
discussed. Additionally, the barrier may present some ir-
regular behavior throughout the iterative procedure, due to
abrupt variations of the objective function when the swap
air-rigid is made. Sometimes, even elements located in-
side the barrier are turned to air, which does not affect the
objective function at first, but sudden variations are usu-
ally observed when these elements meet the design domain
surface. In this sense, the BESO parameters needed to be
changed in order to slow down the optimization process
and, therefore, reduce pressure variations.

Fig. 6 shows the evolution of the objective function with
a presentation of the topologies for the 9th, 45th, 81st and
117th iterations. When looking at Fig. 4 and 6 it is noted
that the number of iterations of the second case more than
doubled in comparison to the first, showing an increase
in computational cost. Despite that, the BESO method
presents a reduction of the average square pressure by
83.39%, while the barrier suffers a 35% volume reduction.

5. CONCLUSIONS

In this paper the Bi-directional evolutionary structural opti-
mization (BESO) methodology was implemented with the

-25                       -15                    -5                        5                       15                     25  

-20               -10                  0                  10                  20                 30                 40

(a)

(b)

Figure 5. (a) Sound pressure field of an acoustic tube with
a 45 mm cylindrical input (b) optimized result

Iteration

Figure 6. Evolution of the objective function for the non-
symmetric case

goal of finding the best distribution of air (χ = 0) and
rigid (χ = 1) elements in the design domain, thus building
the most suitable noise barrier for the applications consid-
ered. The first case used one and three periodic cells. It
is shown that the optimized results are, as expected, inde-
pendent from the number of cells used, since the entire do-
main remained periodic, representing a low computational
cost scenario. Additionally, the objective function has been
reduced by 68.80%, with smooth behavior during the op-
timization procedure. In the second case, non-periodic in-
puts were examined. This made clear that, in those types of
scenarios, the optimization needs to be made considering
the entire acoustic tube, or Floquet-Bloch boundary condi-
tions would have to be applied. In addition, BESO param-
eters were also required to change in order to deal with the
abrupt variations of the evolutionary procedure. Despite of
that, the objective function was reduced by 83.39% while
the barrier volume decreased by 35%, showing that BESO
is an applicable method to be used for the optimization
of rigid acoustic barriers subjected to periodic and non-
periodic conditions.
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10.48465/fa.2020.1068 214 e-Forum Acusticum, December 7-11, 2020

162



Estado de São Paulo), project number 2013/08293-7, and
CAPES (Coordenação de Aperfeiçoamento de Pessoal do
Nı́vel Superior), finance code 001.

7. REFERENCES

[1] Y. M. Xie and G. P. Steven, “A simple evolutionary
procedure for structural optimization,” Computers &
structures, vol. 49, no. 5, pp. 885–896, 1993.

[2] L. Xia, Q. Xia, X. Huang, and Y. M. Xie, “Bi-
directional evolutionary structural optimization on ad-
vanced structures and materials: a comprehensive re-
view,” Archives of Computational Methods in Engi-
neering, vol. 25, no. 2, pp. 437–478, 2018.

[3] X. Yang, Y. Xie, G. Steven, and O. Querin, “Bidirec-
tional evolutionary method for stiffness optimization,”
AIAA journal, vol. 37, no. 11, pp. 1483–1488, 1999.

[4] X. Huang and M. Xie, Evolutionary Topology Opti-
mization of Continuum Structures: methods and appli-
cations. West Sussex, UK: John Wiley & Sons, 1 ed.,
2010.

[5] X. Huang and Y. Xie, “Convergent and mesh-
independent solutions for the bi-directional evolution-
ary structural optimization method,” Finite Elements in
Analysis and Design, vol. 43, no. 14, pp. 1039–1049,
2007.

[6] X. Huang and Y.-M. Xie, “A further review of eso type
methods for topology optimization,” Structural and
Multidisciplinary Optimization, vol. 41, no. 5, pp. 671–
683, 2010.

[7] J. Kook, K. Koo, J. Hyun, J. S. Jensen, and S. Wang,
“Acoustical topology optimization for zwicker’s loud-
ness model–application to noise barriers,” Computer
Methods in Applied Mechanics and Engineering,
vol. 237, pp. 130–151, 2012.

[8] M. B. Dühring, J. S. Jensen, and O. Sigmund, “Acous-
tic design by topology optimization,” Journal of sound
and vibration, vol. 317, no. 3-5, pp. 557–575, 2008.

[9] J. W. Lee and Y. Y. Kim, “Rigid body modeling issue in
acoustical topology optimization,” Computer methods
in applied mechanics and engineering, vol. 198, no. 9-
12, pp. 1017–1030, 2009.

[10] J. W. Lee and Y. Y. Kim, “Topology optimization
of muffler internal partitions for improving acousti-
cal attenuation performance,” International journal for
numerical methods in engineering, vol. 80, no. 4,
pp. 455–477, 2009.

[11] W. Vicente, R. Picelli, R. Pavanello, and Y. Xie,
“Topology optimization of frequency responses of
fluid–structure interaction systems,” Finite Elements in
Analysis and Design, vol. 98, pp. 1 – 13, 2015.

[12] R. Picelli, W. M. Vicente, R. Pavanello, and Y. Xie,
“Evolutionary topology optimization for natural fre-
quency maximization problems considering acoustic–
structure interaction,” Finite Elements in Analysis and
Design, vol. 106, pp. 56–64, 2015.

[13] J. Kook, “Evolutionary topology optimization for
acoustic-structure interaction problems using a mixed
u/p formulation,” Mechanics Based Design of Struc-
tures and Machines, vol. 47, no. 3, pp. 356–374, 2019.

[14] C. B. Dilgen, S. B. Dilgen, N. Aage, and J. S. Jensen,
“Topology optimization of acoustic mechanical in-
teraction problems: a comparative review,” vol. 60,
pp. 779–801, 2019.

[15] F. M. Azevedo, M. S. Moura, W. M. Vicente, R. Pi-
celli, and R. Pavanello, “Topology optimization of re-
active acoustic mufflers using a bi-directional evolu-
tionary optimization method,” Structural and Multidis-
ciplinary Optimization, vol. 58, no. 5, pp. 2239–2252,
2018.

[16] N. Atalla and F. Sgard, Finite Element and Boundary
Methods in Structural Acoustics and Vibration. Boca
Raton, FL: CRC Press, 2015.

[17] R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt,
Concepts and Applications of Finite Element Analysis.
John wiley & sons, 2002.

[18] W. U. Yoon, J. H. Park, J. S. Lee, and Y. Y. Kim,
“Topology optimization design for total sound ab-
sorption in porous media,” Computer Methods in Ap-
plied Mechanics and Engineering, vol. 360, p. 112723,
2020.

[19] D. A. Tortorelli and P. Michaleris, “Design sensitivity
analysis: overview and review,” Inverse problems in
Engineering, vol. 1, no. 1, pp. 71–105, 1994.

[20] C. S. Jog and R. B. Haber, “Stability of finite el-
ement models for distributed-parameter optimization
and topology design,” Computer methods in applied
mechanics and engineering, vol. 130, no. 3-4, pp. 203–
226, 1996.

[21] K. Miyata, Y. Noguchi, T. Yamada, K. Izui, and
S. Nishiwaki, “Optimum design of a multi-functional
acoustic metasurface using topology optimization
based on zwicker’s loudness model,” Computer Meth-
ods in Applied Mechanics and Engineering, vol. 331,
pp. 116–137, 2018.

[22] F. I. Silva and R. Pavanello, “Synthesis of
porous–acoustic absorbing systems by an evolu-
tionary optimization method,” vol. 42, pp. 887–905,
2010.

[23] J. S. Lee, P. Göransson, and Y. Y. Kim, “Topology op-
timization for three-phase materials distribution in a
dissipative expansion chamber by unified multiphase
modeling approach,” vol. 287, pp. 191–211, 2015.

10.48465/fa.2020.1068 215 e-Forum Acusticum, December 7-11, 2020

163



15th World Congress on Computational Mechanics (WCCM-XV)
8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)

Virtual Congress: 31 July – 5 August 2022
S. Koshizuka (Ed.)

TOPOLOGY OPTIMIZATION OF
ACOUSTIC-POROELASTIC-ELASTIC STRUCTURES FOR SOUND

ATTENUATION

RODRIGO L. PEREIRA1, LIDY M. ANAYA-JAMES1 AND RENATO PAVANELLO1

1 Department of Computational Mechanics, School of Mechanical Engineering, University of
Campinas, Rua Mendeleyev 200, 13083-860, Campinas, Brazil

pereira@fem.unicamp.br, lidy@fem.unicamp.br, pava@fem.unicamp.br

Key words: Topology optimization, BESO method, Multiphysics, Poroelastic materials, Vibroacoustics

Abstract. Structures for sound attenuation have been explored in many scenarios, ranging from civil
construction to automotive and aerospace industries. However, the proper multiphysics interactions
of acoustic-poroelastic-elastic structures are still challenging, especially when topology optimization
techniques are involved. This work entails a new topology optimization methodology based on the Bi-
directional Evolutionary Structural Optimization (BESO) approach to design bidimensional structures
for sound attenuation enhancements. The full modeling of poroelastic bodies is done by the mixed u/p
technique. At the same time, the elastic and acoustic (air) materials are obtained by the degeneration
of the latter, leading to the well-known elasto-dynamic and Helmholtz formulations, respectively. Such
procedure is done in by the combination of the Finite Element Method (FEM) with the Unified Multi-
phase (UMP) modeling approach, which in turn contributes to the development of material interpolation
schemes suited for the application. In this scenario, the topology optimization problem is established
as the maximization of the time-averaged dissipative power, composed by the summation of its struc-
tural, viscous and thermal dissipative components. The numerical examples show the effectiveness of
the proposed methodology since it provides well-defined topologies with generally enhanced dissipative
performances.

1 INTRODUCTION

This paper presents a methodology to maximize the time-averaged dissipated power. It is considered a
multiphysics system composed of acoustic, elastic and poroelastic elements. The Bi-directional Evolu-
tionary Structural Optimization (BESO) method is chosen as the optimizer, since it provides clearly de-
fined boundaries throughout the entire optimization process. The first ones to use a similar optimization
methodology were Xie and Steven [1], with the proposition of the Evolutionary Structural Optimization
(ESO) method. In this case, the aim was to gradually remove inefficient material from the structure,
while enhancing some physical properties of the system. In 1999, Yang et al. [2] modified the ESO
technique by allowing not only material removal, but also addition to the design domain. After a series
of modifications that included sensitivity filters [3] and material interpolation schemes [4], Huang and
Xie [5] proposed the new BESO approach, being extensively used ever since.

As this work also deals with acoustic, elastic and poroelastic materials, careful attention has to be paid
to the boundary tracking problem in a context of topology optimizations. For example, when acoustic
elements change to elastic or poroelastic, the coupling between the boundaries has to be properly im-
posed. However, such procedure is not straightforward, in a way that a few solutions have been proposed
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to overcome this issue. Yamamoto et al. [6] considered three distinct poroelastic materials inside the
design domain, modifying specific variables in order to fully simulate acoustic, elastic and poroelastic
structures within the same region. The success of this approach was due to the fact that the materials
were all derived from Biot’s equation, therefore being naturally coupled with each other. In the same
year, the Unified Multiphase (UMP) technique was proposed by Lee [7, 8], which used these same Biot’s
equations, in the u/p form, as a foundation to describe the aforementioned medias. The main difference
between both approaches concerns the amount of different porous materials needed in the methodology.
While Yamamoto’s [6] approach used three different poroelastic medias, Lee’s [7, 8] considered only
one.

Finally, this work also proposes a new material interpolation scheme for systematic material changes
along the iterative procedure. According to Pereira et al. [9], the interpolations are generally polynomial
functions of the design variables, first used in density-based approaches [4]. Besides, penalty variables
are often used as degrees of freedom of the polynomial function. Although the BESO method does
not need material interpolations, it has been shown that such a procedure contributes to the avoidance
of singularities, as well as to the reduction of computational costs involved in multiphysics problems
[10, 11].

2 FINITE ELEMENT FORMULATION FOR POROELASTIC MEDIA: THE MIXED U/P

As of 1956, Biot [12, 13] proposed expressions that were able to microscopically describe the behavior
of the wave in poroelastic media, being mainly based on the displacements of the elastic (ü) and fluid
components (Ü), that is,

∇ ·σσσs = ρ11ü+ρ12Ü+ b̃(u̇− U̇), (1)

∇ ·σσσ f = ρ22Ü+ρ12ü− b̃(u̇− U̇), (2)

where σσσs and σσσ f are the stress tensor of the solid and fluid phases, respectively. The homogenized
densities related to the solid and fluid phases are ρ11 and ρ22, while ρ12 relates to the interaction between
the inertial forces of both phases. Finally, the viscous damping coefficient that accounts for the viscous
iteration forces is b̃, while the gradient operator is ∇.

In a mathematical perspective, the aforementioned homogenized densities and damping coefficient can
also be defined as [14],

ρ12 =−φρ f (α∞−1), ρ11 = (1−φ)ρs−ρ12, ρ22 = φρ f −ρ12, b̃ = φ
2
σG̃(ω), (3)

with φ being the porosity, α∞ the tortuosity, σ the static flow resistivity, ρ f the fluid phase density and ρs

the solid phase density. Following Johnson’s model [15], G̃(ω) is written [16] as,

G̃(ω) =

[
1+
(

2α∞η

φΛσ

)2 jωρ f

η

]1/2

. (4)

Here, η is the fluid kinematic viscosity, Λ is the viscous characteristic length, ω is the angular frequency
and j2 =−1 is the imaginary number.

Assuming that the porous material properties are homogeneous and subject to harmonic oscillations,
a more suitable way to describe the wave behavior in poroelastic materials was proposed by Atalla et al.
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[14, 17], by turning Eqs. (1) and (2) into a mixed displacement-pressure (u/p) formulation,

∇ · σ̂σσs +ω
2
ρ̃u+ γ̃∇p = 0, (5)

∇
2 p+ω

2 ˜ρ22

R̃
p−ω

2 ˜ρ22

φ2 γ̃∇ ·u = 0, (6)

where the combined effective density ρ̃ and the coupling coefficient γ̃ are written as,

ρ̃ = ρ̃11−
ρ̃2

12
ρ̃22

, γ̃ = φ

(
ρ̃12

ρ̃22
− Q̃

R̃

)
, (7)

with the effective densities that account for the inertia effects in the solid (ρ̃11), fluid (ρ̃22) and in the
viscous coupling that happens between the two (ρ̃12) being,

ρ̃11 = ρ11 +
b̃
jω

, ρ̃22 = ρ22 +
b̃
jω

, ρ̃12 = ρ12−
b̃
jω

. (8)

The stress tensor of the porous material in vacuo σ̂σσ
s also has a mathematical expression associated with

it,

σ̂σσ
s =

(
Ã− Q̃2

R̃

)
∇ ·uI+2Nεεε

s = Â∇ ·uI+2Nεεε
s, (9)

where I is the identity tensor, Ã is the first Lamé constant of the poroelastic material, N is the elastic shear
modulus, Q̃ is the coupling coefficient between the dilatation of both component phases, R̃ is the bulk
modulus of air occupying a fraction of volume aggregate and Â is the first Lamé constant of the elastic
phase [14, 18]. At last, since the majority of poroelastic media has high porosity in the applications here
considered, the variables N, Ã, Q̃ and R̃ can be written in a simplified manner,

N =
E(1+ jηe)

2(1+ν)
, Ã =

νE(1+ jηe)

(1+ν)(1−2ν)
(10)

Q̃ = (1−φ)K̃ f , R̃ = φK̃ f (11)

where E, ηe and ν are the Young’s modulus, the loss factor and the Poisson’s ratio of the elastic material,
respectively. K̃ f is the bulk modulus of the air in the poroelastic material pores.

The weak form of Eqs. (5) and (6) is then obtained by the combination of the Weighted Residuals
Method and the divergence theorem, followed by the consideration of material isotropy, that is [8, 19],∫

Ωp

{
σ̂σσ

s(u) : εεε
s(δu)−ω

2
ρ̃u ·δu− (γ̃+ ξ̃)∇p ·δu− ξ̃p∇ ·δu

}
dΩp−

∫
Γp

(σσσt ·n) ·δu dΓp = 0, (12)∫
Ωp

{
φ2

ω2ρ̃22
∇p ·∇δp− φ2

R̃
pδp− (γ̃+ ξ̃)∇δp ·u− ξ̃δp∇ ·u

}
dΩp−

∫
Γp

φ(U−u) ·nδp dΓp = 0, (13)

where δu and δp are test functions related to the solid phase displacement and the interstitial pressure,
respectively, while Ωp represents the poroelastic domain with Γp as its boundary. The newly introduced
variable ξ̃ = φ(1+ Q̃/R̃) may be also viewed as a coupling coefficient, and n is the outward unit normal
vector.
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The Finite Element Method (FEM) [20] is then considered in the discretization of the aforementioned
continuous problem, being also followed by Galerkin’s approach. The result is a linear system of equa-
tions [16], as can be seen next,[

K−ω2M̃ −(C̃1 + C̃2)

−(C̃1 + C̃2)
T H̃/ω2− Q̃

]{
u

p

}
=

{
fs

fp/ω2,

}
, (14)

where K, M̃, H̃, Q̃, C̃1, C̃2 denote the global stiffness, mass, kinetic, compression and coupling matrices,
respectively. The global displacement and acoustic pressure vectors, as well as the global structural and
acoustic loads are respectively defined as u, p, fs, fp.

3 UNIFIED MULTIPHASE MODELING: ACOUSTIC, ELASTIC AND POROELASTIC RE-
LATIONS

In this technique, six variables are controlled, namely, ξ̃, ρ̃, N, Â, φ2/ρ̃22 and φ2/R̃. For the acoustic
case, these variables take the following values: 1, 0, 0, 0, 1/ρa and 1/κa, where κa is the bulk modulus
of the air (identified by the subscript a). For the elastic case, one gets the sequence: 0, ρe, Ne, Ãe, 0 and
0, with the subscript e being related to the elastic material. In order to solve numerical issues that may
appear with the above relations, small valued coefficients are assigned to each of the properties that have
to be zero so that the final sequences get the following results,

{ξ̃, ρ̃,N, Â,(φ2/ρ̃22),(φ
2/R̃)}p = {ξ̃, ρ̃,N, Â,φ2/ρ̃22,φ

2/R̃}, (15)

{ξ̃, ρ̃,N, Â,(φ2/ρ̃22),(φ
2/R̃)}a = {1,εaρ̃,εaN,εaÂ,1/ρa,1/κa}, (16)

{ξ̃, ρ̃,N, Â,(φ2/ρ̃22),(φ
2/R̃)}e = {εeξ̃,ρe,Ne, Ãe,εe(φ

2/ρ̃22),εe(φ
2/R̃)}, (17)

where the subscript p refers to the poroelastic material. Here, εa = 1× 10−4 and εe = 1× 10−9 were
chosen.

The multiphase material interpolation scheme is then written,

ξ̃ = ξ̃e + xζ2
2 (ξ̃p− ξ̃e)+ xζ1

1 (ξ̃a− ξ̃p), (18)

ρ̃ = ρ̃e + xζ2
2 (ρ̃p− ρ̃e)+ xζ1

1 (ρ̃a− ρ̃p), (19)

N = Ne + xζ2
2 (Np−Ne)+ xζ1

1 (Na−Np), (20)

Â = Âe + xζ2
2 (Âp− Âe)+ xζ1

1 (Âa− Âp), (21)

φ
2/ρ̃22 = (φ2/ρ̃22)e + xζ2

2 [(φ2/ρ̃22)p− (φ2/ρ̃22)e]+ xζ1
1 [(φ2/ρ̃22)a− (φ2/ρ̃22)p], (22)

φ
2/R̃ = (φ2/R̃)e + xζ2

2 [(φ2/R̃)p− (φ2/R̃)e]+ xζ1
1 [(φ2/R̃)a− (φ2/R̃)p], (23)

where x1,2 represents the design variables and the superscripts ζ1,2 are the penalty coefficients. After a
series of tests, the following values were chosen for the design variables,

{x1, x2}= {1, 1}, for acoustic elements, (24)

{x1, x2}= {xmin, 1}, for poroelastic elements, (25)

{x1, x2}= {xmin, xmin}, for elastic elements, (26)
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and for the penalty variables, {ζ1, ζ2}= {2, 2}. In order to avoid numerical singularities, xmin = 0.001 is
adopted, being the lower limit that the design variable can get. Table 1 shows the poroelastic and elastic
material properties adopted in this work, while the acoustic characteristics used have been the same as
the ones brought by Pereira et al. [9].

Table 1: Poroelastic and elastic material properties [6]

Parameters Polyurethane foam Olefin sheet
Porosity φ 0.97 –
Tortuosity α∞ 2.5 –
Static flow resistivity σ (N s m−4) 7×104 –
Viscous characteristic length Λ (µm) 36×10−6 –
Thermal characteristic length Λ′ (µm) 170×10−6 –
Solid mass density ρ (kg m−3) 1433 1790
Young’s modulus E (Pa) 2.67×105 1.75×108

Poisson ratio ν 0.4 0.4
Loss factor η 0.11 0.205

4 DESCRIPTION OF THE TOPOLOGY OPTIMIZATION PROBLEM

The topology optimization problem investigated in this work aims to maximize the time-averaged
dissipated power (Πdiss) composed of its structural, viscous and thermal components. Throughout the
numerical procedure, a frequency band of [ωi, ω f ] is also considered, together with the multimaterial
and multiphysics constraints, therefore,

Maximize: Φ =
1

ω f −ωi

∫
ω f

ωi

10 log
Πdiss

Πref
dΩp, (in dB units) (27)

Subjected to:



 K−ω2M̃ −(C̃1 + C̃2)

−(C̃1 + C̃2)
T H̃/ω2− Q̃

{u
p

}
=

{
fs

fp/ω2,

}
,

V ∗1 −
(

∑
Nel
i=1Vixi

)
1

V ∗2 −
(

∑
Nel
i=1Vixi

)
2

=

0

0

 ,

x =




x1
...

xNel


1

,


x1
...

xNel


2

 .
(28)

In Eq. (28), the prescribed final volume fraction is V ∗, with the design domain volume fraction being
∑

Nel
i=1Vixi. Nel is the number of elements of the entire porous domain and x is the design variable matrix.

The subscript numbers 1 and 2 represent the changes along the optimization process, in other words,
the number 1 refers to variations from acoustic to poroelastic elements, while the number 2 regards the
changes from poroelastic to elastic.
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Generally, the Πdiss formula can be obtained as,

Πdiss =
ω

2

{
u
p

}H

Im

([
K−ω2M̃ −(C̃1 + C̃2)

−(C̃1 + C̃2)
T H̃/ω2− Q̃

]){
u
p

}
, (29)

where the superscript H represents the transpose conjugate of the solution vector, Im() is the imaginary
part and Πref is the reference acoustic power (Πref = 1×10−12 watts).

4.1 Sensitivity analysis

As the current work adopts the BESO method as the optimizer, the sensitivity analysis needs to be car-
ried out to identify each elemental contribution to the maximization of the objective function of choice.
The derivation of Eq. (27) follows,

αi =
dΦ

dxi
=

1
ω f −ωi

(∫
ω f

ωi

10
ln10

dΠdiss/dxi

Πdiss
dΩp

)
, (30)

with,

dΠdiss

dxi
=

∂Πdiss

∂xi
+2Re

λλλ
T




∂K
∂xi
−ω2 ∂M̃

∂xi
−
(

∂C̃1

∂xi
+

∂C̃2

∂xi

)
−
(

∂C̃1

∂xi
+

∂C̃2

∂xi

)T 1
ω2

∂H̃
∂xi
− ∂Q̃

∂xi


{

u
p

}
−


∂fs

∂xi

1
ω2

∂fp

∂xi



 (31)

and, [
K−ω2M̃ −(C̃1 + C̃2)

−(C̃1 + C̃2)
T H̃/ω2− Q̃

]
λλλ =−1

2

 ∂Πdiss

∂

(
Re
{

u
p

}) − j
∂Πdiss

∂

(
Im
{

u
p

})


T

, (32)

where Re() represents the real part.

5 NUMERICAL EXAMPLES

This section presents numerical examples regarding the optimization of the system illustrated in Fig. 1.
Here, the design, Ωd , and the non-design, Ωnd , domains are represented by the grey region at the center
of the system, and by the white and black areas located at the sides, respectively. Initially, poroelastic
structures fill the entire Ωd , while acoustic and elastic elements are set in the major white areas and
on the thin walls surrounding the design domain. At the upper and lower sides, symmetric boundary
conditions are imposed (only the degrees of freedom in the y direction are blocked); a plane wave enters
the composition at the left boundary, while at the right, an anechoic termination is set.

In the represented scenario, first order quadrilateral elements of size 1x1,25 mm2 are considered,
meaning that 22x40 elements are placed at both sides of Ωnd and 80x40 in Ωd . The BESO parameters
are then set to be ER = ARmax = 1% and rmin = 2 cm. Besides, V ∗2 = 0.05 is fixed, defining the amount
of elastic material that enters the design domain along the optimization procedure. Meanwhile, V ∗1 is
variable, that is, in some cases V ∗1 = 0.5 and in others V ∗1 = 0.6. Besides, two distinct low-to-mid
multifrequency bands are also treated in this work, namely B1 = [150, 200] Hz and B2 = [200, 250].
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Symmetry boundary
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Figure 1: Schematic representation of the considered geometry

Fig. 2 shows the optimized results obtained from the maximization of the time-averaged dissipated
powers when considering multiple frequency bands and distinct porous volume fractions. In Fig. 2 (a)
and (c), the topologies are strongly related to one another, with the one of item (c) being the most effective
in enhancing the objective function (see Fig. 2 (e)). This same aspect is not observed in Fig. 2 (b) and (d),
where B2 is considered. In this case, the topologies are entirely different, with the case of 50% of porous
material being similar, from a purely dissipative point of view, to its counterpart. This unsuspected result
illustrates how efficient the proposed topology optimization methodology can be, as effective topologies
may be generated with less material than expected. Finally, it is noted that even though some topologies
may present disconnected porous materials, such characteristic does not affect, in a considerable manner,
the dissipative effects of the main resulted topologies.
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6 CONCLUSIONS

This work proposed a multifrequency topology optimization methodology to maximize time-averaged
dissipated powers of an acoustic-poroelastic-elastic structure. For this, the Bi-directional Evolutionary
Structural Optimization approach was considered as the optimizer, in order to provide clearly defined
designs throughout the iterative procedure. The unified multiphase technique was then combined with
the finite element method to fully describe elastic and acoustic systems, starting from Biot’s poroelas-
ticity equations. This combination proved to be an efficient solution to the boundary tracking problem,
common to fluid-structure systems.

Furthermore, a newly introduced material interpolation scheme was also proposed, systematically
combining acoustic-poroelastic-elastic properties. With this, the numerical examples showed to be highly
effective in maximizing the objective function while generating topologies with low material disconnec-
tions.
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Porous materials are constantly the subject of study in the automotive and aerospace industries due to its sound insulation
capabilities, lightweight characteristics, and vast degree of applicability, for example. Nevertheless, its mathematical
formulations still pose a challenge, especially when topology optimization algorithms are considered, as multiphysics
components must be contemplated for an enhanced degree of real-world simulation. In this work, the design of full
modelled acoustic-poroelastic-elastic structures is formulated as a topology optimization problem. The Bi-directional
Evolutionary Structural Optimization (BESO) algorithm is employed to offer non-intuitive design options with clearly
defined boundaries. Biot’s poroelasticity equations, expressed in the mixed u/p form, and the Finite Element Method
(FEM) comprise the basic expressions adopted in the description of all mediums and multiphysics interface conditions.
With this unified multiphase (UMP) approach, it is possible to degenerate the poroelasticity expressions into the well-
known scalar Helmholtz or elasto-dynamic equations, depending on the need for describing acoustic or elastic elements,
respectively, without even implementing further coupling conditions. Additionally, this work also adopts a multiphase
material interpolation scheme, which allows for systematic material changes, with only the elemental design variable
information as input, and no boundary tracking. As Transmission Loss (TL) values are common indicators of the capability
of a system in attenuate sound, the topology optimization problem is defined as the maximization of TL values at a specific
target frequency. The proposed approach is tested through numerical examples that show the efficiency of the methodology.
Keywords: Topology optimization, BESO method, Multiphysics, Porous materials

INTRODUCTION

Generally speaking, porous materials can be viewed as micro (or sometimes meso) perforated solid structures that
are saturated with air. When this solid frame is considered to be montionless, the porous material can be modeled only
with modifications of the scalar Helmholtz equation (Johnson et al., 1987; Champoux and Allard, 1991). For more
real-life based simulations, however, the frame may be derived from an elastic component, hence having considerable
displacements along its structure. In this case, complex multiphysical expressions are used to fully model the fluid-
structure coupling of domains that presents such configuration.

As of 1956, Biot (1956a, 1956b) proposed expressions that were able to macroscopically describe the behavior of
the wave in poroelastic materials, being mainly based on the displacements of the elastic and fluid components. Later
in 1998, an even more suitable formulation was proposed by Atalla et al. (1998, 2001), which considered not only the
displacements of the elastic frame, but also the interstitial pressure of the fluid component. This so called mixed u/p
approach greatly reduced the Degrees of Freedom (dofs) involved in the Finite Element Method (FEM) implementation,
being especially adopted in the works involving topology optimization procedures (Yamamoto et al., 2009; Lee et al.,
2012, 2015, Hu et al. 2022).

Based on that, this work makes use of the Bi-directional Evolutionary Structural Optimization (BESO) method to
maximize Transmission Loss (TL) values at a predefined target frequency. The investigated domains are mainly composed
of poroelastic materials, represented by the mixed u/p formulation, but with the possibility of degeneration to acoustic
or elastic elements by means of the unified multiphase (UMP) approach (Lee, 2009; Lee et al., 2012). In this sense,
multiphysical aspects compose the optimization, as acoustic-poroelastic-elastic domains interact throughout the entire
procedure. In a systematic way, these components are rearranged in each iteration, in accordance with the adopted
multiphase material interpolation scheme.
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THE MIXED U/P FINITE ELEMENT FORMULATION FOR POROELASTIC MEDIA

Assuming that the porous material properties are homogeneous and subject to harmonic osculations (e jωt ), the mixed
displacement-pressure (u/p) formulation may be written in the following form,

∇ · σ̂σσs +ω
2
ρ̃u+ γ̃∇p = 0, (1)

∇
2 p+ω

2 ˜ρ22

R̃
p−ω

2 ˜ρ22

φ2 γ̃∇ ·u = 0, (2)

where ∇ is the gradient operator, ∇2 is the Laplace operator, ω is the angular frequency, j2 =−1 is the imaginary unit, t is
time, u is the solid phase displacement, p is the interstitial pressure and φ is the porosity. The combined effective density
ρ̃ and coupling coefficient γ̃ are defined as,

ρ̃ = ρ̃11−
ρ̃2

12
ρ̃22

, γ̃ = φ

(
ρ̃12

ρ̃22
− Q̃

R̃

)
, (3)

with ρ̃11, ρ̃22, ρ̃12 being the effective densities that account for the inertia effects in the solid, fluid and in the viscous
coupling that happens between the two, respectively. The stress tensor of the porous material in vacuo σ̂σσ

s has also a
mathematical expression associated to it,

σ̂σσ
s =

(
Ã− Q̃2

R̃

)
∇ ·uI+2Nεεε

s = Â∇ ·uI+2Nεεε
s, (4)

where I is the identity tensor, εεεs is the solid phase strain tensor, Ã is the first Lamé constant of the poroelastic material, N
is the elastic shear modulus, Q̃ is the coupling coefficient between the dilatation of both component phases, R̃ is the bulk
modulus of air occupying a fraction of volume aggregate and Â is the first Lamé constant of the elastic phase in vacuo
(Atalla et al., 1998; Lee et al. 2015).

The weak form of Eqs. (1) and (2) is then obtained by the combination of the Weighted Residuals Method and the
divergence theorem, followed by the consideration of material isotropy, that is (Rigobert et al., 2003; Lee et al. 2015),∫

Ωp

{
σ̂σσ

s(u) : εεε
s(δu)−ω

2
ρ̃u ·δu− (γ̃+ ξ̃)∇p ·δu− ξ̃p∇ ·δu

}
dΩp−

∫
Γp

(σσσt ·n) ·δu dΓp = 0, (5)

∫
Ωp

{
φ2

ω2ρ̃22
∇p ·∇δp− φ2

R̃
pδp− (γ̃+ ξ̃)∇δp ·u− ξ̃δp∇ ·u

}
dΩp−

∫
Γp

φ(U−u) ·nδp dΓp = 0, (6)

where δu and δp are test functions related with the solid phase displacement and the interstitial pressure, respectively,
while Ωp represents the poroelastic domain with Γp as its boundary. The newly introduced variable ξ̃ = φ(1+ Q̃/R̃) may
be also viewed as a coupling coefficient, and n is the outward unit normal vector.

An important point is that Eqs. (5) and (6) have boundary related expressions that can be physically specified on
the interface of two distinct poroelastic media, that is the traction vector, σσσt · n, and the relative displacement vector,
(U− u) · n. Joining this characteristic with the continuity of the nodal variables that it is common to the FEM, the
coupling of poroelastic-poroelastic and poroelastic-elastic materials happens naturally and completely free of further
approximations (Atalla et al., 2001).

The FEM is then considered in the discretization of the aforementioned continuous problem, being also followed by
Galerkin’s approach. The result is a linear system of equations (Allard and Atalla, 2009), as can be seen next,[

K−ω2M̃ −(C̃1 + C̃2)

−(C̃1 + C̃2)
T H̃/ω2− Q̃

]{
u

p

}
=

{
fs

fp/ω2,

}
, (7)

where K, M̃, H̃, Q̃, C̃1, C̃2 denote the global stiffness, mass, kinetic, compression and coupling matrices, respectively.
The global displacement and acoustic pressure vectors, as well as the global structural and acoustic loads are respectively
defined as u, p, fs, fp.

UNIFIED MULTIPHASE MODELING APPROACH

Following the works of Lee (2009) and Lee et. al (2012), the UMP approach aims at using Biot’s equations, in the
u/p form, to easily describe the three main medias considered in vibroacoustic systems applications. Hence, the scalar
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Helmholtz and the elasto-dynamic equations are directly derived from Eqs. (1) and (2) if ones goal is to simulate acoustic
or elastic materials, respectively. This happens by taking limit values of some material parameters, in order to degenerate
the original Biot’s equations in the ones of interest. As a direct consequence of the method, no boundary tracking is ever
needed when changing from one element type to another.

In a numerical point of view, six variables are directly controlled by the UMP approach, in a way that the dynamic
properties of the base poroelastic material are changed in accordance with the element configuration. In a purely poroelas-
tic scenario, the variables are: ξ̃, ρ̃, N, Â, φ2/ρ̃22 and φ2/R̃. For the acoustic case, the same variables assume the following
form: 1, 0, 0, 0, 1/ρa and 1/κa, where κa is the bulk modulus of the air (identified by the subscript a). Lastly, for the
elastic case, one gets the sequence: 0, ρe, Ne, Ãe, 0 and 0, with the subscript e being related with the elastic material.

A downside of this approach, in a finite element point of view, regards the singularity that happens when completely
canceling one of the aforementioned variables. To solve this issue, small valued coefficients are assigned to each of the
properties that have to be zero, in a way that all the sequences get the following results,

{ξ̃, ρ̃,N, Â,(φ2/ρ̃22),(φ
2/R̃)}p = {ξ̃, ρ̃,N, Â,φ2/ρ̃22,φ

2/R̃}, (8)

{ξ̃, ρ̃,N, Â,(φ2/ρ̃22),(φ
2/R̃)}a = {1,εaρ̃,εaN,εaÂ,1/ρa,1/κa}, (9)

{ξ̃, ρ̃,N, Â,(φ2/ρ̃22),(φ
2/R̃)}e = {εeξ̃,ρe,Ne, Ãe,εe(φ

2/ρ̃22),εe(φ
2/R̃)}, (10)

with the subscript p referring to the poroelastic materials. In this work, the values of εa and εe were carefully selected to
be 1×10−4 and 1×10−9, respectively.

Material interpolation scheme: acoustic, elastic and poroelastic relations

As the main objective of this paper is to study the design of structures composed of acoustic-poroelastic-elastic medias,
a multiphase material interpolation scheme is presented in Eqs. (11) to (16) with the goal of providing systematic material
changes along the entire optimization process,

ξ̃ = ξ̃e + xζ2
2 (ξ̃p− ξ̃e)+ xζ1

1 (ξ̃a− ξ̃p), (11)

ρ̃ = ρ̃e + xζ2
2 (ρ̃p− ρ̃e)+ xζ1

1 (ρ̃a− ρ̃p), (12)

N = Ne + xζ2
2 (Np−Ne)+ xζ1

1 (Na−Np), (13)

Â = Âe + xζ2
2 (Âp− Âe)+ xζ1

1 (Âa− Âp), (14)

φ
2/ρ̃22 = (φ2/ρ̃22)e + xζ2

2 [(φ2/ρ̃22)p− (φ2/ρ̃22)e]+ xζ1
1 [(φ2/ρ̃22)a− (φ2/ρ̃22)p], (15)

φ
2/R̃ = (φ2/R̃)e + xζ2

2 [(φ2/R̃)p− (φ2/R̃)e]+ xζ1
1 [(φ2/R̃)a− (φ2/R̃)p], (16)

where x1,2 represent the design variables and the superscripts ζ1,2 are the penalty coefficients. At this stage, it is important
to note that even thought the elastic and acoustic materials are indeed degenerated poroelastic ones, as highlighted in Eqs.
(8), (9) and (10), comparisons between the UMP approach and the segregated formulations (scalar Helmholtz for acoustic,
elasto-dynamic for elastic and Biot’s equations for poroelastic) have been conducted by the authors, hence validating the
current numerical approach. Another notable point is that, after a series of test, the following values were chosen for the
design variables,

{x1, x2}= {1, 1}, for acoustic elements, (17)
{x1, x2}= {xmin, 1}, for poroelastic elements, (18)
{x1, x2}= {xmin, xmin}, for elastic elements, (19)

and for the penalty variables, {ζ1, ζ2} = {2, 1}. The user defined xmin = 0.001 parameter is the lower limit that the
design variable can get, being usually adopted to avoid numerical singularities. Finally, the poroelastic and elastic material
properties adopted in this work are presented in Table 1, while the acoustic ones are the same as brought by Pereira et al.
(2022).
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Table 1 – Poroelastic and elastic material properties (Yamamoto et al. 2009)

Parameters Polyurethane foam Olefin sheet

Porosity φ 0.97 –
Tortuosity α∞ 2.5 –
Static flow resistivity σ (N s m−4) 7×104 –
Viscous characteristic length Λ (µm) 36×10−6 –
Thermal characteristic length Λ′ (µm) 170×10−6 –
Solid mass density ρ (kg m−3) 1433 1790
Young’s modulus E (Pa) 2.67×105 1.75×108

Poisson ratio ν 0.4 0.4
Loss factor η 0.11 0.205

TOPOLOGY OPTIMIZATION FORMULATION

Since TL values are common vibroacoustic indicators regarding the attenuation of sound in acoustic systems, the
topology optimization problem here investigated aims at the maximization of TL values at target frequencies, when
subjected to equilibrium equations (Eq. 7) and volume constraints,

Maximize: TL = 20 log10

(∣∣∣∣ 1
p3

p1− p2 exp(− jkaL)
1− exp(− j2kaL)

∣∣∣∣) , (20)

Subjected to:



 K−ω2M̃ −(C̃1 + C̃2)

−(C̃1 + C̃2)
T H̃/ω2− Q̃

{u
p

}
=

{
fs

fp/ω2,

}
,

V ∗1 −
(

∑
Nel
i=1 Viγi

)
1

V ∗2 −
(

∑
Nel
i=1 Viγi

)
2

=

0

0

 ,

x =




x1
...

xNel


1

,


x1
...

xNel


2

 .
(21)

As observed in Eq. (20), the two sound pressure amplitudes that are collected at the left side of the system (inlet) are p1
and p2, apart L from each other, while the one gathered at the right side (outlet) is p3 (see Fig. 1). Here, the wave number
is denoted as ka. In Eq. (21) the prescribed final volume fraction is V ∗, with the design domain volume fraction being
∑

Nel
i=1 Viγi. Nel is the number of elements of the entire porous domain and x is the design variable matrix. The subscript

numbers 1 and 2 represents the changes that happens along the optimization process, in other words, the number 1 refers
to variations from acoustic to poroelastic elements, while the number 2 regards the changes from poroelastic to elastic. It
is remarked, however, that changes from acoustic to poroelastic happens prior to poroelastic to elastic, in a way that the
final volume fraction of poroelastic materials have to be achieved to start the next set of alterations (poroelastic to elastic).
Finally, it may also be noted that once V ∗1 is reached, the value is kept constant until the achivement of V ∗2 (Huang and
Xie, 2010).

Sensitivity analysis

As previously highlighted, TL values are often observed when dealing with acoustic systems, which motivated many
researchers to conduct the derivation of Eq. (20) (Lee, 2009; Yoon, 2013; Lee et al. 2015; Azevedo et al., 2018; Ferrándiz
et al. 2020; Hu et al., 2022). In a mathematical perspective, the elemental sensitivity number, αi, is usually obtained as,

αi =
∂TL
∂xi

=
10

ln10

(
∂|pin|2

∂xi

1
|pin|2

− ∂|pout|2

∂xi

1
|pout|2

)
, (22)
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where,

|pin|= |(p1− p2 e− jkaL)/(1− e− j2kaL)| (23)
|pout|= |p3|. (24)

After open the expressions for ∂|pin|2/∂xi and ∂|pout|2/∂xi, one will need to find the partial derivatives of the observed
pressures in the jth node, hence,

∂p j

∂xi
=−p̂T

j


∂K
∂xi
−ω2 ∂M̃

∂xi
−
(

∂C̃1

∂xi
+

∂C̃2

∂xi

)
−
(

∂C̃1

∂xi
+

∂C̃2

∂xi

)T 1
ω2

∂H̃
∂xi
− ∂Q̃

∂xi


{

u
p

}
, (25)

where,

p̂T
j = fT

j

[
K−ω2M̃ −(C̃1 + C̃2)

−(C̃1 + C̃2)
T H̃/ω2− Q̃

]−1

, (26)

being the solution of the transposed problem. The partial derivatives resulted from Eq. (25) are easily obtained from the
material interpolation schemes provided in Eqs. (11) to (16). Finally, f j may be viewed as a locator, that is a vector full of
zeros, except on the dof referred to p j.

Overview of the BESO method

The BESO method is the topology optimization approach of choice in this work, as proposed by Huang and Xie (2010),
since it provides clearly defined designs at all stages of the iterative problem. The following algorithm summarizes the
entire method.

Algorithm 1: BESO algorithm
Input: Define geometry and FEM parameters
Define BESO parameters: x, V ∗, rmin, ER, ARmax, ζ1,2
Evaluate u and p
Start iteration counter: r = 0
while err < 0.005 or V (r)

1 +V (r)
2 6=V ∗1 +V ∗2 do

r = r+1
Calculate sensitivity numbers
Filter sensitivities (+ historical averaging + normalization)
Update design domain
Update volume domain
Evaluate u and p
Evaluate TL

err =
|∑10

b=1 TL(r−b+1)−∑
10
b=1 TL(r−9−b)|

∑
10
b=1 TL(r−b+1) ≤ 0.005 (27)

Output: Optimized topology

In Algorithm 1, it is perceptive that the domain geometry needs to be known beforehand, as well as the solution vectors
u and p. Next, in the while loop, the sensitivities are calculated and then filtered, following a projection approach that
is controlled by the filter radius, rrmin. To increase the stability of the optimization, two more procedures are commonly
performed, being the historical averaging of the elemental sensitivities and its normalization (Zhou et al., 2021). Before
updating the design variables, it is necessary to first determine the volume of the next iteration, V (r+1), with the information
of the current, V (r), and the Evolutionary Rate (ER), that is V (r+1) =V (r)(1±ER).

The sensitivity numbers are then sorted from highest to lowest, in order to assign the elements with the biggest αi
values as “full” and the smallest as “void”. The bi-directionality of the BESO approach is characterized by the allowance
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of the contrary mechanism, that is “void” elements can turn back to be “full”, which is controlled by the Addition Ratio
(ARmax). As the topology is updated, the solution vectors u and p are obtained, followed by the transmission loss values.
The final step is done by the calculation of the iteration error, that has to be smaller then the tolerance of 0.5%.

NUMERICAL EXAMPLES

In this section the optimization of two distinct systems composed of acoustic-poroelastic-elastic components are pre-
sented and discussed. Figure 1 shows two fairly similar systems, but with different boundary conditions. In the first one,
shown in Fig. 1 (a), the top surface is considered to be a hard wall (all elastic dofs are blocked), while the bottom is a
symmetry boundary (only the dofs in the y direction are blocked). A pressure imposed plane wave enters at the left side
of the system, while an anechoic termination is considered to be present at the far right. It is remarked that, in all domains
here considered, only poroelastic elements exist, being therefore modified to represent acoustic or elastic elements by the
UMP technique. In this sense, all nodes have three dofs, even when they are in the “modified form”, where two are related
with the displacements of the elastic frame and one with the interstitial pressure. As a consequence, the imposition of the
boundary conditions here considered are not straightforward, being presented in detail in the works of Lee (2009) and Lee
et al. (2012).

Still in Fig. 1 (a), the design domain, Ωd , is characterized by a light grey area of 8x5 cm2, and the non-design domain,
Ωnd , by two white and small black areas of 1x5 cm2 and 0.1x5 cm2, respectively. Three previously chosen points of
observation of pressure (inside inverted triangles) are also present. Figure 1 (b) shows the same elements as previously
highlighted, but with symmetry boundary conditions also in the top surface of the system. Another common fact regarding
both scenarios is the number of finite elements. It is a known fact that to simulate poroelastic structures more elements
are required per wavelength then common acoustic ones. Based on this, the entire system is composed of 102 x 40 first
order quadrilateral elements, being way above the recommended per wavelength (Atalla and Sgard, 2015).
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Figure 1 – Details of the geometries investigated.

In this study, the initial configuration is that acoustic elements fill the entire Ωd (light grey area), while Ωnd has both,
acoustic (white areas) and elastic (black area) components. In this sense, the BESO parameters are chosen to be ER = 1%,
AR = 0.5%, r1

min = 3 cm and r2
min = 2 cm. These two distinct filter radius were adopted as an effort to reduced isolated

configurations throughout the design domain. Furthermore, V ∗1 and V ∗2 assume the values of 0.5 and 0.05, respectively,
which guarantees that porous materials occupy 50% of the design domain, while the elastic component fills 5% of it. For
the sake of conciseness, the scenarios shown in Figs. 1 (a) and (b) will be referred, from now on, as Hard-Symmetry (or
simply HS) and Symmetry-Symmetry (SS).

179



R.L. Pereira, R. Pavanello

Topology Optimization of the Hard-Symmetry and Symmetry-Symmetry systems

Figure 2 shows the main results obtained from the analysis of the HS system (see Fig. 1 (a)) for the target frequency of
250 Hz. In Fig. 2 (b), the evolution of the volume fractions for acoustic (Vol.Frac - A), poroelastic (Vol.Frac - P) and elastic
(Vol.Frac - E) components are shown, together with the behavior of the objective function along the iterative procedure. It
is perceptive that TL values vary greatly throughout the course of the optimization, in a way that the procedure stops only
due to the mean values obtained in the calculation of Eq. (27). This fact shows that the ER and ARmax values chosen
need to be reevaluated to an even lower number, as an effort to reduce such erratic behavior.

Nevertheless, the topology resulted seem to be effective in promoting the increase of TL values, not only in the target
frequency, but also in the vast range of frequencies observed. Besides, the choice of different filter radius sizes is here
justified, as the poroelastic-elastic structures appear quite close to each other, instead of generating expressive material
disconnections (like porous structures floating on air); enhancing the manufacturability of the global optimized topologies.
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Figure 2 – Main results of the Hard-Symmetry system case, with (a) the transmission loss responses of the initial and final
configurations, highlighting the final topology, together with (b) the evolution of the objective function and volume fractions

of the three materials under consideration.

All of these findings can also be extended to the SS case (Fig. 3), given that the materials are close together in the
resulted topology and the TL enhancements are of 41.67 dB, but with oscillatory evolution. A different point is that, in the
HS configuration, both poroelastic and elastic materials seem to be drawn to the left and right sides of the domain, while
in the SS scenario these components are mainly located on the top and bottom portions of it. Such behavior is clearly
caused by the different boundary conditions considered, in a way that the HS case may represent a superior far end part
of a periodic structure (being the hard wall on the top and the periodic boundary on the bottom) and the SS condition may
be seen as the body part of said periodic structure (repeating themselves up and down).

CONCLUSIONS

In this work a topology optimization problem was developed, in order to design systems composed of acoustic-
poroelastic-elastic elements. Additionally, to ensure that clear design configurations are obtained at the end of the pro-
cedure, the BESO method was chosen. In this scenario, transmission loss values were maximized at 250 Hz, while
poroelastic and elastic materials were introduced in a design domain initially filled of acoustic elements, hence configur-
ing a multiphase approach. The modeling of such material phases was done by the unified multiphase technique, which
made use of Biot’s equations, in the mixed u/p, to obtain the scalar Helmholtz and elasto-dynamic expressions.

These fully modeled components were then systematically changed along the optimization iterations by an introduced
material interpolation scheme. In this scenario, two problems were investigated, being geometrically similar, but with
differences in the boundary configuration. In both cases, the transmission loss values were successfully enhanced and the
material disposition kept the components close to each other (with almost no material disconnection). As a drawback, a
great deal of variations occurred in the evolution of the objection function due to the iterative step chosen (ER and ARmax
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Figure 3 – Main results of the Symmetry-Symmetry system case, with (a) the transmission loss responses of the initial and
final configurations, highlighting the final topology, together with (b) the evolution of the objective function and volume

fractions of the three materials under consideration.

values).
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