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Abstract

Data Centers Networks (DCN) represent the critical infrastructure for running Internet-
based applications and services that demand colossal computing and storage resources.
However, the most prevalent multipath routing mechanism in DCNs, Equal Cost Multiple-
Path (ECMP), may degrade the performance of these applications and services while
using low network capacity due to the traffic characteristics of flows in DCNs (mice
and elephants). Novel multipath routing approaches tackle this problem by leveraging
Software-Defined Networking (SDN) for detecting and rescheduling the elephant flows.
Some SDN-based approaches have also incorporated Machine Learning (ML) techniques
to improve elephant detection and predict elephant traffic characteristics. However, SDN-
based multipath routing still requires finding the best trade-off between prompt elephant
detection, traffic overhead, data collection accuracy, and network modifications. More-
over, SDN-based multipath routing algorithms call for finer granularity traffic character-
istics of elephant flows for improving rescheduling decisions.

This thesis proposes a multipath routing mechanism that leverages both SDN and ML
to improve the routing function in DCNs. Three major components form the proposed
multipath routing mechanism. First, a flow detection method, called Network Elephant
Learner and anaLYzer (NELLY), incorporates incremental learning at the server-side of
SDN-based DCNs (SDDCN) to accurately and timely identify elephant flows at low traffic
overhead while enabling continuous model adaptation under limited memory resources.
Second, a Pseudo-MAC-based Multipath (PM2) routing algorithm supports transparent
host migration across the whole network while reducing the number of rules installed
on SDN switches, decreasing the delay introduced to flows (mainly mice) traversing the
SDDCN. Third, a flow rescheduling method at the controller-side of SDDCNs, called
intelligent Rescheduler of IDentified Elephants (iRIDE), improves network throughput
and traffic completion time by using deep incremental learning to predict the rate and
duration of elephants for computing and installing the best path across the network.

Results show that NELLY achieves high accuracy with a short classification time
when using adaptive decision trees algorithms. Moreover, NELLY reduces traffic over-
head, elephant detection time, and switch table occupancy compared to other ML-based
flow detection methods. On the other hand, PM2 installs much fewer rules than other
multipath routing algorithms that support transparent host migration across a large net-
work area (other than the same switch). Finally, iRIDE achieves a low prediction error of
the flow rate and flow duration when using deep neural networks with regularization and
dropout layers. Moreover, iRIDE enables intelligent elephant rescheduling algorithms that
efficiently use the available bandwidth, generating higher throughput and shorter traffic
completion time than conventional ECMP.



Resumo

As Redes de Centros de Dados (DCN) representam a infraestrutura principal para a
execução de aplicativos e serviços baseados na Internet que exigem recursos colossais de
computação e memória. No entanto, o mecanismo de roteamento multipath mais preva-
lente em DCNs, Equal Cost Multiple-Path (ECMP), pode degradar o desempenho desses
aplicativos e serviços quando usar baixa capacidade de rede devido às características de
tráfego de fluxos em DCNs (ratos e elefantes). Novas abordagens de roteamento mul-
ticaminho resolvem esse problema aproveitando as Redes Definidas por Software (SDN)
para detectar e reprogramar os elefantes. Algumas abordagens também incorporaram
técnicas de Aprendizagem de Máquina (ML) para melhorar a detecção de elefantes e
prever suas características do tráfego. No entanto, o roteamento multicaminho baseado
em SDN ainda requer encontrar o melhor balance entre detecção oportuna de elefantes,
sobrecarga de tráfego, precisão da coleta de dados e modificações de rede. Além disso, al-
goritmos de roteamento multicaminho baseados em SDN exigem características de tráfego
de granularidade mais finas para melhorar as decisões de reprogramação.

Esta tese propõe um mecanismo de roteamento multicaminho que aproveita SDN e ML
para melhorar a função de roteamento em DCNs. Três componentes principais formam
o mecanismo proposto. Primeiro, um método de detecção de fluxo, chamado Aprendiz
e Analisador de Elefantes de Rede (NELLY), incorpora aprendizagem incremental no
lado do servidor de DCNs baseadas em SDN (SDDCN) para identificar com precisão e
oportunamente elefantes, gerando baixa sobrecarga de tráfego e permitindo a adaptação
contínua do modelo sob recursos limitados. Em segundo lugar, o algoritmo de roteamento
Multicaminho baseado em Pseudo-MAC (PM2) suporta migração transparente de hosts
em toda a rede enquanto reduz o número de regras instaladas em switches, diminuindo o
atraso introduzido nos fluxos (principalmente ratos) que atravessam a SDDCN. Terceiro,
um método de reprogramação de fluxo no lado do controlador, chamado Reprogramador
Inteligente de Elefantes Identificados (iRIDE), melhora a taxa de transferência da rede e
o tempo de conclusão do tráfego usando aprendizagem incremental profundo para prever
a taxa e a duração dos elefantes e instalar o melhor caminho pela rede.

Os resultados mostram que o NELLY alcança alta precisão com um curto tempo de
classificação ao usar algoritmos de árvores de decisão adaptativos. Além disso, o NELLY
reduz a sobrecarga de tráfego, o tempo de detecção de elefantes e a ocupação das tabelas
dos switches em comparação com outros métodos de detecção de fluxo baseados em ML.
Por outro lado, o PM2 instala muito menos regras do que outros algoritmos de roteamento
multicaminho que suportam migração transparente de hosts em uma grande área de rede
(diferente do mesmo switch). Finalmente, o iRIDE alcança um baixo erro de previsão da
taxa e da duração do fluxo ao usar redes neurais profundas com regularização e dropout.
Além disso, o iRIDE permite algoritmos inteligentes de reprogramação de elefantes que
usam eficientemente a largura de banda disponível, gerando maior taxa de transferência
e menor tempo de conclusão do tráfego do que o ECMP convencional.
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Chapter 1

Introduction

1.1 Problem statement

Nowadays, the ever-growing Internet-based applications and services demand a huge
amount of computing and storage resources. Data centers represent the key infrastructure
that supports and provides such resources as a large number of servers interconnected by
a specially designed network, called Data Center Network (DCN) [1]. The goal of DCN
is to provide significant bandwidth capacity in order to achieve high throughput1 and
low-latency2.

Everyday, DCN managers are looking for solutions that allow optimizing these per-
formance requirements (i.e., high bandwidth, high throughput, and low latency) without
the need to add more capacity to the network. Traffic engineering represents a great
opportunity in this realm. Particularly, load-balancing is a desirable feature for reducing
network congestion while improving network resource availability and application per-
formance [2, 3]. A well-known technique for implementing load-balancing in DCNs is
multipath routing, which distributes traffic over multiple concurrent paths such that all
the links are optimally loaded [4]. Hereinafter, when this dissertation mentions routing
in DCN, it is particularly referring to intra-DCN routing.

The most prevalent multipath routing solution in DCNs is Equal Cost Multiple-Path
(ECMP) [5, 6]. Usually, ECMP uses a hash function in every switch to assign each
incoming flow to one of the equal-cost forwarding paths maintained by the switch for
reaching a destination [7]. However, traffic in DCNs presents a broad distribution of flow
sizes: from small, short-lived flows (i.e., mice) to large, long-lived flows (i.e., elephants) [8–
11]. This wide dispersion of flow sizes causes hot-spots in DCNs based on ECMP routing,
i.e., some links are highly utilized while others are underutilized.

For example, if two mouse flows and two elephant flows arrive at the same ECMP-
enabled switch, it is possible that this switch assigns the two mouse flows to one of
the forwarding paths and the two elephant flows to one of the other forwarding paths.
Therefore, the link transporting the two mouse flows is going to present less load and be
free much faster than the link transporting the two elephant flows, causing an underusing

1Total number of packets processed per second.
2Average processing time used for a single packet.
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and overloading of links, respectively. Facebook’s Altoona [12] propose to prevent the
degrading of elephant flows by making the network multi-speed. However, this is not
an efficient approach. Rather than adding more capacity, the issue is selecting a routing
mechanism for drawing traffic effectively.

For this reason, recent multipath routing mechanisms have been proposed for im-
proving ECMP. Broadly, these mechanisms can be categorized as distributed and cen-
tralized multipath routing. Distributed multipath routing maintains routing decisions at
switches or servers and tackles ECMP limitations by (i) using different levels of gran-
ularity for traffic splitting (i.e., packet-level [13, 14] and sub-flow-level [15]), (ii) adding
weights to the paths [15, 16]; or (iii) incorporating congestion information for making
routing decisions [17]. Distributed multipath routing mechanisms that combine sub-flow-
level traffic splitting and congestion-awareness—local congestion [18, 19] or global con-
gestion [20–22]—have provided great results for load-balancing in DCNs. However, these
solutions require specialized hardware implementation, potentially cause packet reorder-
ing, and lack a global view of traffic for making routing decisions.

Centralized multipath routing have leveraged Software-Defined Networking (SDN) to
face the ECMP limitations; DCNs using SDN are referred to as Software-Defined Data
Center Networks (SDDCNs). SDN allows a logically centralized controller to dynamically
make and install routing decisions on the basis of a global view of the network [23,
24]. Hereinafter, this dissertation uses the term SDN-based multipath routing to refer to
centralized mechanisms. SDN-based multipath routing reschedules elephant flows, while
handling mouse flows by employing default routing, such as ECMP. Early SDN-based
mechanisms proposed reactive flow detection methods to discriminate elephants from mice
by using static thresholds either at the controller-side [25, 26], switch-side [27], or server-
side [28, 29] of SDDCNs. However, reactive methods are not suitable for SDDCNs since
hot-spots may occur before the elephant flows are detected.

Novel SDN-based multipath routing have incorporated Machine Learning (ML)-based
flow detection methods for proactively identifying elephants. However, ML-based methods
train their classification models at the controller-side of SDDCNs, requiring the central
collection of either per-flow data [30–32] or sampling-based data [33–35]. The central
collection of per-flow data, however, causes problems such as heavy traffic overhead and
poor scalability. Sampling-based data, on the other hand, tends to provide delayed and
inaccurate flow information. Moreover, sampling techniques that mitigate the problem
rely on non-standard SDN specifications.

Another gap in multipath routing is that SDN-based mechanisms, both with reac-
tive and ML-based flow detection methods, merely identify elephant flows (i.e., binary
classification) and lack fine-grained information for making routing decisions. Therefore,
their routing algorithm reschedules all the elephants using the same approach regardless
of the different traffic characteristics that elephant flows exhibit in DCNs. This elephant-
oblivious routing, however, may cause hot-spots in SDDCNs, reducing the performance of
the network. Only a few SDN-based mechanisms introduce ML-based methods that clas-
sify flows into more than two categories (i.e., multiclass classification) [31, 33]. However,
the routing algorithms in such SDN-based mechanisms use only a part of the information
given by their flow detection methods. Moreover, such flow detection methods employ a
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reduced number of classification categories (up to five) that still fall short to cover the
broad distribution of elephant flows in DCNs.

Based on these statements, SDN-based multipath routing still requires finding the best
trade-off between prompt elephant detection, traffic overhead, data collection accuracy,
and network modifications. Besides, SDN-based multipath routing algorithms call for finer
granularity traffic characteristics of elephant flows for improving rescheduling decisions.
Therefore, this thesis project focused on solving the following research question:

How to carry out multipath routing in DCNs for enabling high throughput
and low delay while maintaining efficient use of resources?

1.2 Hypothesis

To address the research question, this thesis raised the following hypothesis: using ML
for fine-granularity prediction of flow characteristics and SDN for dynamic
control of flow scheduling would allow building a multipath routing mechanism
for DCNs that improves3 the routing function.

The following fundamental questions, associated with the hypothesis, guided the in-
vestigation conducted in this thesis.

• What is the accuracy and efficiency, in terms of time and memory, of ML techniques
for predicting flow characteristics of network traffic from DCNs?

• Does incorporating ML techniques to an SDN-based multipath routing mechanism
improve network traffic routing, in terms of throughput and delay, in DCNs?

1.3 Objectives

1.3.1 General objective

To develop a multipath routing mechanism based on ML and SDN for improving the
routing function in DCNs.

1.3.2 Specific objectives

• To design a multipath routing reference architecture that incorporates the capabil-
ities of ML and SDN for improving the routing function in DCNs.

• To construct and evaluate4 a mechanism based on ML that predicts, in a fine-
granularity way, flow characteristics in DCNs.

• To construct and evaluate5 a routing mechanism based on SDN that uses predicted
flow characteristics for improving the routing function in DCNs.

3In terms of high throughput and low delay while efficient use of resources
4In terms of accuracy (e.g., true/false positives/negatives) and processing requirements (e.g., training

data, training time, run-time).
5In terms of traffic performance (e.g., throughput, delay) and resource utilization (e.g., links load)
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1.4 Contributions

The scientific research process conducted during this thesis led to building a multipath
routing mechanism that leverages ML techniques for predicting traffic flow characteristics
and SDN capabilities for differentiated and dynamic control of traffic flows aiming to
improve the routing function in DCNs. Three major components form our multipath
routing mechanism.

• A flow detection method that incorporates incremental learning at the server-side
of SDDCNs to accurately and timely identify elephant flows while generating low
traffic overhead and adapting to varying traffic characteristics under limited memory
resources.

• A Pseudo-MAC (PMAC)-based multipath routing algorithm for steering traffic flows
(mainly, mice) in SDDCNs that supports transparent host migration across the
whole network while reducing the number of rules installed on SDN switches, de-
creasing the delay introduced to flows traversing the network.

• A flow rescheduling method at the controller-side of SDDCNs that applies deep in-
cremental learning for predicting traffic characteristics of elephant flows to compute
and install the best path per elephant flow across the network.

Moreover, collaborations with other researchers (i.e., student advisory and research
internships) during this thesis led to the following contributions.

• An SDN management architecture based on Hierarchical Task Network (HTN) and
Network Function Virtualization (NFV) that provides an automated, workable, and
flexible approach for monitoring, configuring, and controlling SDN resources.

• A vertical Management Plane for SDN that considers management tasks involving
more than one Autonomous System (AS).

• A set of data models for the SDN architecture based on the Yet Another Next
Generation (YANG) language to support integrated management in a technology-
agnostic and heterogeneous SDN environment.

These three contributions are built on the reference architecture for SDN integrated
management and the Common Information Model (CIM)-based information model
proposed in the author’s master thesis [36].

• A cognitive control loop framework for autonomic network management that incor-
porates ML at every function of the closed-loop and each of the Fault, Configuration,
Accounting, Performance, and Security (FCAPS) management areas. A discussion
about the opportunities and challenges pertaining to using ML to manage autonomic
networks complements this cognitive framework.

• A comprehensive body of knowledge on ML techniques in support of networking.
Particularly, this body of knowledge comprehends the following contributions.
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– A generic approach for designing ML-based solutions in networking.

– A brief history of ML focused on the techniques that have been applied in
networking.

– A literature review about the advances made in the application of ML in differ-
ent networking areas, including traffic prediction, classification, and routing,
which are fundamental in traffic engineering for optimizing network perfor-
mance.

– Prominent challenges and open research opportunities on the feasibility and
practicality of ML in current and future networks.

1.5 Scientific production

Two published papers (one in a highly ranked journal and one in a renowned confer-
ence) and one journal paper in construction report to the scientific community the major
contributions achieved during this thesis.

• “NELLY: Flow Detection Using Incremental Learning at the Server Side of SDN-
based Data Centers,” published in IEEE Transactions on Industrial Informatics,
2020 [37]. Ranking: JCR Q1, SJR Q1, Publindex A1, Qualis A1. Contribution: the
elephant flow detection method using incremental learning.

• “An Efficient Mice Flow Routing Algorithm for Data Centers based on Software-
Defined Networking,” published in the proceedings of 2019 IEEE International Con-
ference on Communications (ICC) [38]. Ranking: H5-index 56, Qualis A1, CORE
B. Contribution: the PMAC-based multipath routing algorithm for SDDCNs.

• “iRIDE: Rescheduling of Elephant Flows in SDN-based Data Centers Using Incre-
mental Deep Learning to Predict Traffic Characteristics,” in construction. Contri-
bution: the flow rescheduling method using deep incremental learning.

Furthermore, six papers published in renowned journals and conferences report to the
scientific community the contributions achieved in collaboration with other researchers.
These papers are listed in chronological order.

• “A Framework for SDN Integrated Management based on a CIM Model and a Verti-
cal Management Plane,” published in Computer Communications, 2017 [39]. Rank-
ing: JCR6 Q2, SJR7 Q2, Publindex8 A1, Qualis9 A2. Contribution: the reference
architecture for the SDN integrated management and the CIM-based information
model.

6Quartile from Journal Citation Reports (JCR)
7Quartile from SCImago Journal Rank (SJR)
8Bibliographic index from COLCIENCIAS, Colombia
9Bibliographic index from CAPES, Brazil
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• “SDNManagement Based on Hierarchical Task Network and Network Functions Vir-
tualization,” published in the proceedings of the 2017 IEEE Symposium on Comput-
ers and Communications (ISCC) [40]. Ranking: H5-index10 20, Qualis A3, CORE11

B. Contribution: the HTN- and NFV-based architecture for managing SDN.

• “A YANG Model for a vertical SDN Management Plane,” published in the proceed-
ings of the 2017 IEEE Colombian Conference on Communications and Computing
(COLCOM) [41]. Ranking: H5-index 9. Contribution: the YANG data model for
the SDN Management Plane.

• “Machine Learning for Cognitive Network Management,” published in IEEE Com-
munications Magazine, 2018 [42]. Ranking: JCR Q1, SJR Q1, Publindex A1, Qualis
A1. Contribution: the cognitive control loop framework for autonomic network
management.

• “A comprehensive survey on machine learning for networking: evolution, applica-
tions and research opportunities,” published in Journal of Internet Services and Ap-
plications, 2018 [43]. Ranking: SJR Q2, Publindex A2, Qualis A2. Contribution:
the body of knowledge on ML in networking.

• “An Approach based on YANG for SDN Management,” published in International
Journal of Communication Systems, 2021 [44]. Ranking: SJR Q2, Publindex A2,
Qualis A3. Contribution: the Management Plane with multiple ASs support and
the YANG data models for the SDN architecture.

Appendix A lists the eight published papers in chronological order.

1.6 Methodology and organization

The research process that guided the development of this thesis is based on a typical
scheme of the scientific method [45]. Figure 1.1 depicts the phases that form this research
process: Problem Statement, Hypothesis Construction, Experimentation, Conclusion, and
Publication. Problem Statement, for identifying and establishing the research question.
Hypothesis Construction, for formulating the hypothesis and the associated fundamen-
tal questions. In addition, this phase aimed to define and carry out the conceptual and
technological approaches. Experimentation, for testing the hypothesis and analyzing the
evaluation results. Conclusion, for outlining conclusions and future works. Note that Hy-
pothesis Construction had feedback from Experimentation and Conclusion. Publication,
for submitting and publishing papers for renowned conferences and journals. The writing
of this dissertation document also belongs to this last phase.

The organization of this document reflects the phases of the methodology.

• This introductory chapter presents the problem statement, delineates the hypothe-
sis, exposes the objectives, summarizes the contributions, lists the scientific produc-
tion, and describes the overall structure of this dissertation.

10H-index from Google Scholar Metrics
11Rank from COmputing Research and Education (CORE), Autralia
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Figure 1.1: Thesis phases

• Chapter 2 reviews the main concepts and research related to SDN management,
ML for networking, and traffic engineering in DCNs.

• Chapter 3 introduces the server-side flow detection method for SDDCNs based on
incremental learning.

• Chapter 4 details the multipath routing mechanism based on ML and SDN for
DCNs. Section 4.1 describes the multipath routing algorithm for steering mice in
SDDCNs.

• Chapter 5 presents conclusions about the hypothesis and the fundamental ques-
tions as well as research directions.
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Chapter 2

Background and state-of-the-art

This chapter presents the background of the main research topics encompassed in this
thesis. In this way, the first section introduces a bottom-up description of the typical
SDN architecture followed by a detailed explanation of our view of a management plane
for SDN. The second section provides a primer of ML for networking, discussing different
categories of ML-based techniques, their essential constituents, and their evolution. More-
over, this section reviews the notion of cognitive networking, focusing on our proposal for
realizing a cognitive control loop for autonomic networking. Finally, this chapter con-
textualize the concepts of DCN and traffic engineering, and provides a literature review
about multipath routing for load-balancing in DCNs, focusing on the seminal works that
use SDN and ML for addressing such a challenge.

2.1 Software-defined networking

SDN represents one of the most accepted and attractive trends, in research and industry,
for defining the architecture of future networks [46, 47]. From a general aspect, SDN
decouples the control and forwarding planes for enabling a simpler network operation from
a logically centralized software program, usually known as the controller [24]. The control
plane (i.e., the controller) compiles decision policies and enforces them on the data plane
(i.e., switches and routers) through a vendor independent protocol. OpenFlow [48] is the
most well-known open SDN protocol and a de facto standard because of its widespread
use by vendors and research.

SDN provides four major advantages for operating networks [49]: (i) a centralized
global view about the network state (e.g., resource capabilities and dynamic status) and
the deployed applications (e.g., QoS requirements), (ii) a dynamic programmability of
multiple forwarding devices (e.g., allocating resources to prevent congestion and improve
performance), (iii) open interfaces for handling the forwarding plane (e.g., OpenFlow) and
for developing the applications (e.g., Application Programming Interfaces (APIs) based
on protocols and programming languages); and (iv) a flexible flow management (e.g.,
multiple flow tables in OpenFlow). These unique features lead the SDN architecture to
emerge as a promising scenario for efficiently and intelligently implementing management
techniques, particularly for traffic engineering.
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2.1.1 SDN Architecture

Multiple standardization bodies, such as the Linux Foundation [50] and Open Network
Foundation (ONF) [51], focus on encouraging and normalizing open SDN frameworks.
Also, various private networking vendors, such as Cisco [52] and Juniper [53], offer pro-
prietary SDN deployments. In turn, several research surveys [23, 54] work on improving
architectural aspects of SDN. These open, proprietary, and research proposals establish
a typical SDN architecture composed of three horizontal planes (i.e., data, control, and
application) and three interfaces (i.e., southbound, northbound, and east/westbound), as
depicted in Figure 2.1.
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Figure 2.1: High-level SDN architecture

At the bottom of the SDN architecture, the data plane (a.k.a. forwarding plane) de-
ploys the network infrastructure formed by interconnected Network Devices (NetDevs),
such as switches and routers, that perform forwarding operations. A NetDev consists
of a physical and a functional part. The former comprises hardware elements, such as
ports, storage, processor, and memory. The latter defines a collection of software-based
forwarding functions executed by NetDevs. Regarding this functional part, a NetDev
ranges from dumb to custom. A dumb NetDev merely carries out simple forwarding
functions, such as longest prefix match. For example, OpenFlow-only switches [55] just
forward packets using the rules installed in their flow tables—updated by an OpenFlow
controller. On the other hand, a custom NetDev relies on programmable platforms [56]—
e.g., Protocol-Independent Switch Architecture (PISA) and Field-Programmable Gate
Array (FPGA)—to integrate more complex forwarding functions, such as load balanc-
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ing [57] and in-band network telemetry [58]. For example, P4 [59] provides a target- and
protocol-independent language that allows programming packet processing functionality.

In the middle, the control plane compiles the network logic and enforces decision
policies on the data plane through SouthBound Interfaces (SBIs). Each SBI defines the
set of instructions and the communication protocols to allow the interaction between
components in the control and data planes. The OpenFlow protocol [48] is the most well-
known open standard SBI because its widespread use by vendors and research [46]. Other
SBI proposals are Forwarding and Control Element Separation (ForCES) [60], Protocol-
Oblivious Forwarding (POF) [61], and P4Runtime [62].

The control plane comprises Network Slicers (NetSlicers) and Network Operating Sys-
tems (NOSs). A NetSlicer divides the underlying network infrastructure into several
isolated logical network instances (a.k.a. slices), assigning their control to specific NOSs.
NetSlicers may employ SBIs to communicate with NOSs. For example, FlowVisor [63]
acts as an OpenFlow proxy between switches and controllers, redirecting messages ac-
cording to flow parameters, such as TCP ports and IP addresses. An NOS instructs the
underlying data plane and provides generic services (e.g., topology discovering and host
tracking) and NorthBound Interfacess (NBIs) to the application plane, facilitating to inte-
grate custom Network Applications (NetApps). The possibility to add these NetApps in
an easier way is the key advantage of SDN to encourage innovation on the Internet. Open-
Flow controllers [55] and ForCES Control Element (CE) [60] represent NOS instances.
It is important to highlight that a lot of frameworks exist to develop and deploy Open-
Flow controllers, including open source projects like NOX [64] for C++, POX [65] and
Ryu [66] for Python, Floodlight [67] and OpenDaylight [68] for Java, and Trema [69] for
Ruby. Also, the control plane defines East/WestBound Interfacess (EWBIs) to deploy
distributed NOSs. For example, SDNi [70] and ForCES CE-CE interface [60].

At the top of the SDN architecture, the application plane contains NetApps that
deploy and orchestrate business logic and high-level network functions, such as routing
policies and access control. As aforementioned, NetApps communicate with the control
plane through NBIs provided by NOSs. NBIs encompass common APIs based on protocols
(e.g., Floodlight REST API [71]), programming languages (e.g., ad-hoc, Pyretic [72], and
Procera [73]), file systems (e.g., YANC [74]), among others. NetApps run either locally or
remotely regarding NOSs. Local NetApps prefer NBIs based on programming languages,
whereas remote NetApps usually employ protocol-based NBIs.

2.1.2 Management plane

As depicted in Section 2.1.1, the traditional SDN architecture lacked an integrated and
standardized framework for managing the virtual1, dynamic2, and heterogeneous3 SDN
environment. Later SDN approaches [75–78] considered a vertical management plane in
the SDN architecture (see Figure 2.1) for carrying out different Operation, Administration,
and Maintenance (OAM) functions. For example, assigning the data plane resources to

1Capability for sharing network resources from a same physical infrastructure among several virtual
network instances.

2Flexibility for adding, modifying, migrating, and removing network resources.
3Independence of the technology deployed by network resources.
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the corresponding control components, and configuring the policies and Service Level
Agreements (SLAs) of the control and application planes. Although NOSs may implement
some OAM functions, flooding the control plane with a lot of managing tasks may cause
low network performance.

These SDN approaches exposed a very high-level of their management component.
Therefore, we extended and detailed such management plane aiming to facilitate inte-
grated control and monitoring of heterogeneous SDNs [39]. This approach originally
lacked inter-domain communication management; hence, we later incorporated inter-AS
elements (i.e., repository, adapter, interface, and agent) for supporting management tasks
involving more than one domain [41,44]. Figure 2.2 depicts the proposed vertical manage-
ment plane comprising different elements: data repositories, managers, adapters, agents,
and management interfaces.

Figure 2.2: SDN vertical management plane

Two data repositories coexist, each holding a Resource Representation Model (RRM)
that handles metadata to provide an abstract, technology-neutral characterization of SDN
resources. Data repositories also serve managers for storing instance data, which repre-
sents execution-specific data whose structure follows such an RRM. Particularly, the
inter-AS data repository focuses on information relevant from other ASs for enabling
management tasks in an inter-domain environment. On the other hand, managers orches-
trate and deploy management services to carry out different SDN management functions.
These management services expose user interfaces to enable network administrators to
interact with managers. Managers also interact with agents via adapters, which enable
a protocol-agnostic communication using data type rendering, protocol translation, and
well-defined management interfaces. Note each management interface connects an adapter
with its corresponding agent. Finally, agents inside managed SDN resources act on behalf
of managers.

Figure 2.2 also describes our management plane referencing the four Open System
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Interconnection (OSI) network management submodels [79]. First, the organizational
model specifies roles and collaboration forms of the managing entities (i.e., managers
and adapters) and managed entities (i.e., agents). Second, the communication model
delineates the exchange of management data (e.g., operations, queries, events) and the
enabling technologies for the user and adapter interfaces (e.g., JSON [80] over HTTP [81]),
repository interfaces (e.g., XML [82] over HTTP), and management interfaces (e.g.,
OVSDB [83], NETCONF [84], SNMP [85]). Third, the functional model structures
the management services referencing the five OSI management functional areas (i.e.,
FCAPS [86]) along with a novel programmability function (i.e., FCAPS+P) introduced
by SDN. Fourth, the information model establishes a shared abstraction of SDN resources
for achieving an integrated and technology-independent management.

The whole operation of our management plane is based on RRM, which implements
the information model and originally leveraged CIM4 for representing the SDN architec-
ture as a conceptual model [39]. We later implemented the CIM model using YANG data
models5 since the latter provides a more human-readable and easier-to-learn language
than the former, while also being technology-agnostic [41, 44]. Note that different SDN
solutions from the industry and academia increasingly use YANG to build new manage-
ment solutions [89–91]. This is because YANG emerged from a widely adopted network
management protocol (i.e., NETCONF) [92, 93] and structures data under a hierarchical
tree topology using modules and submodules that allow description easily network devices
and their relationships [94].

We also defined our management plane in the context of network automation by intro-
ducing an SDN management architecture based on HTN and NFV [40]. This architecture
provides an automated, workable, and flexible approach for monitoring, configuring, and
controlling SDN resources. To achieve this goal, our management plane instantiates the
three NFV MANagement and Orchestrator (MANO) functional blocks [95]. The two
managers (i.e., virtual function and virtualized infrastructure) enable the communication
between the managing and managed entities. Whereas, the orchestrator leverages the au-
tomated planning capability from HTN [96] to facilitate composing network management
tasks. This allows overcoming low automation management tasks, such as reconfiguring
a broken connection, with minimal human intervention.

2.2 Machine learning for networking

Machine learning is a branch of artificial intelligence whose foundational concepts were
acquired over the years from contributions in the areas of computer science, mathemat-
ics, philosophy, economics, neuroscience, psychology, control theory, and more [97]. In
1959, Arthur Samuel coined the term “Machine Learning”, as “the field of study that gives

4CIM is an open standard aimed at assisting the management of devices, services, and computer
networks by facilitating their modeling [87].

5Information models represent managed objects at a conceptual level, independent of any specific
protocols used to transport the data. Whereas, data models define managed objects at a lower level of
abstraction, including implementation- and protocol-specific details. Multiple data models can be derived
from a single information model [88].
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computers the ability to learn without being explicitly programmed.” However, ML goes
beyond simply learning or extracting knowledge, to utilizing and improving knowledge
over time and with experience [98]. Broadly, ML can be divided into three paradigms,
based on how the learning is achieved [97,99]: supervised, unsupervised, and reinforcement
learning.

Supervised learning uses labeled training datasets to create models that map inputs
to their corresponding outputs. Then, this learning approach requires labeling methods
for establishing the ground truth in datasets and “learns” to identify patterns or behaviors
in the “known” training datasets. Typically, supervised learning solves classification and
regression problems that pertain to predicting discrete or continuous valued outcomes,
respectively (see Figures 2.3(a) and 2.3(b)). For example, a classification problem can be
to identify mice and elephant flows. Whereas, a regression problem can be to predict the
size of each flow.

Unsupervised learning uses unlabeled training datasets to create models that find
dominating structure or patterns in the data. This approach is most suited for clustering
problems (see Figure 2.3(c)). For instance, outliers detection and density estimation
problems in networking, can pertain to grouping different instances of attacks based on
their similarities. Between supervised and unsupervised learning resides semi-supervised
learning to face partial knowledge. That is, having incomplete labels or missing labels for
training data.

Reinforcement learning (RL) uses an agent that interacts with the external world
to learn by exploring the environment and exploiting the knowledge. The actions are
rewarded or penalized. Therefore, the training data constitutes a set of state-action pairs
and rewards (or penalties). The agent uses feedback from the environment to learn the
best sequence of actions or “policy” to optimize a cumulative reward. Hence, this learning
approach is best suited for making cognitive choices, such as decision making, planning,
and scheduling [100]. For example, rule extraction from the data that is statistically
supported and not predicted (see Figure 2.3(d)).

(a) Classification (b) Regression (c) Clustering (d) Rule extraction

Figure 2.3: Problem categories that benefit from ML paradigms

Though there are different categories of problems that enjoy the benefits of ML, there
is a generic approach to building ML-based solutions. Figure 2.4 illustrates the key con-
stituents in designing ML-based solutions for networking. Data collection pertains to
gathering, generating, and defining the set of data and the set of classes of interest. De-
pending on the applied ML paradigm, the collected data might be labeled for establishing
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the ground truth. Feature engineering is used to reduce dimensionality in data and identify
discriminating features that reduce computational overhead and increase accuracy. Model
learning refers to training one or multiple models using ML techniques, which carefully
analyze the complex inter- and intra-relationships in data to yield the outcome. Finally,
model validation regards defining the accuracy metrics that measure the performance of
the trained models.

Figure 2.4: The constituents of ML-based solutions

2.2.1 Incremental learning

Most ML approaches, mainly based on supervised and unsupervised learning, implement
the classical batch learning: all data needed to generate an inference is collected before
training and is simultaneously accessed [101]. Usually, batch learning divides the data
into training, validation (also called development), and test sets [102]. The training set is
leveraged to fit the parameters of an ML model (e.g., weights). Whereas, the validation
set is used to choose the suitable hyperparameters of an ML model (e.g., architecture,
learning rate, regularization), or choose a model from a pool of ML models. Finally, the
test set is used to assess the unbiased performance of the selected model. Note, batch
learning considers that both the data and its underlying structure are static.

A common batch setting decomposition of the dataset can conform to 60/20/20%
among training, validation, and test datasets, or 70/30% in case validation is not re-
quired [102]. These rule-of-thumb decompositions are reasonable for datasets that are
not very large. However, in the era of big data, where a dataset can have millions of
entries, other extreme decompositions, such as 98/1/1% or 99.8/0.1/0.1%, are also valid.



32

Several ML studies and practitioners consider that validation and test sets with sizes on
the order of tens of thousands of instances are sufficient. In batch learning, validation
and testing usually follows one of two methods6 [103]: holdout or k-fold cross-validation.
In the holdout method, part of the available dataset is set aside and used as a validation
(or testing) set. Whereas, in the k-fold cross-validation, the available dataset is randomly
divided into k equal subsets. Validation (or testing) process is repeated k times, with
k − 1 unique subsets for training and the remaining subset for validating (or testing) the
model, and the outcomes are averaged over the rounds.

Batch learning has also incorporated some big data upgrades, such as external storage
and data subsets, that enable processing large but static datasets [103]. However, the
more data available, the less performance to simply output a final static model. More-
over, batch learning fails to handle a continuous supply of changing data (i.e., sequential
data or data stream), which is characteristic of the networks and its high dynamicity.
Since static models cannot continuously integrate new information, they have to be con-
stantly reconstructed to ensure their validity over time. However, re-training a model
from scratch is computationally expensive, time-consuming, and leads to potentially out-
dated models [104]. An interesting research direction is to achieve incremental learning,
where the model is re-trained with only the new data.

Incremental learning7 refers to continuously updating a model using sequential data
(i.e., constantly arriving data with no specific order) without re-processing the data al-
ready used [105]. In fact, many datasets, although static, are so large that they would be
dealt with as sequential data. Since sequential data can become endless in some domains,
including computer networks, incremental learning aims for bounding model complexity
and processing time, enabling lifelong learning and a constantly updated model under lim-
ited memory resources. Therefore, four fundamental aspects characterize an incremental
learning algorithm [103]: (i) it processes an instance at a time in the order that arrives,
inspecting it as input only once8, (ii) it uses a limited amount of memory, even when
processing data much more extensive than available memory, (iii) it restricts the runtime
to a limit, which is particularly pivotal for algorithms aimed at real-time applications
(e.g., networking); and (iv) it can provide a prediction anytime, no matter the number of
instances used for training.

The evaluation of incremental learning algorithms follows one of two methods [103]:
holdout and interleaved test-then-train. Holdout represents a natural extension from
batch learning, where a single, independent, and sufficiently large (i.e., tens of thousands of
instances) test set can provide a valid accuracy measurement. The model can be evaluated
on the test set either after the last training or periodically to track its performance over
time. In scenarios where the data statistics change over time (a.k.a. concept change),

6Other evaluation practices for batch learning exist, such as leave-one-out and bootstrap, but the ML
community warns about using them.

7The definition of incremental learning is not always consistent in the literature and involves certain
ambiguity regarding related terms, including online learning, data stream mining, stream learning, and
incremental online learning. The definition presented in this thesis aims to cover the commonalities
among such related concepts.

8An algorithm may store some instances internally in the short term. However, at some point, it needs
to discard some of them to meet memory and time limits.
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the test set cannot be static but must be constantly collected using new instances not
yet used for training. On the other hand, interleaved test-then-train (a.k.a. prequential)
refers to using each individual instance for testing the model before training. Note this
method does not need a holdout set, making maximum use of the collected data for both
testing and training. In interleaved test-then-train, early mistakes from a poorly trained
model (a.k.a. cold start) punish the actual accuracy that incremental algorithms might
achieve. Although this effect diminishes over time, evaluation techniques like pretraining
and sliding windows help to correct the accuracy measurement. Incremental learning
algorithms are usually evaluated using interleaved test-then-train as it easily handles a
potentially infinite sequence of instances arriving one after another.

2.2.2 Evolution of machine learning techniques

Research efforts during the last 75 years have given rise to a plethora of ML techniques [97–
99,106]. This section provides a brief history of ML, focusing on the techniques that have
been particularly applied in the area of computer networks, including this thesis (see
Figure 2.5).

     | | | | | | | | |
     1940 1950 1960 1970 1980 1990 2000 2010 2020

Neural Networks (NN)

Perceptron – SLP, MLP

Key issues* BP Connectionism†

DBN

exponential growth‡

Decision Trees (DT)

CART

Bayesian Networks (BN)

Ensemble learning

WMA,
Boosting

Bagging, AdaBoost

Support Vector Machines/Regression (SVM/SVR)
* Stagnation. Overall,  the progress of  Machine Learning (ML) was minimal in the 1970s
† Resurgence leveraging both Backpropagation (BP) and Connectionism
‡ Boosted by both the increment of available data and the increasing capacity of computing  resources 

Markov Decision Process (MDP)

Expectation Maximization (EM)

FALA, CALA

Dynamic BN

Baum-Welch

SGBoost

Extra-TreesRF MART

Non-parametric models

HMM

CNNHebbian learnig

PSO

ML in communication
networks

ML by A. SamuelLearning machine
by A. Turing

ML by T. Mitchell

 M5,
C4.5

General technique

Specific technique

Predecessor

Milestone

KDE

NB

kNN

CMAC

ID3

TLFN,
RBFNN

DNN LSTMRBM

Deep
learning

Deep learning
in ML

POMDP TD(λ) Q-learning SARSA DQN

Linear models

MaxEnt, Logistic regressionOLS in machinesLeast
squares

//
1800s

Centroid models

k-Means

//

TD

AID THAID

SOM,
RNN 

GA

DRL

Ensemble DT

LASSO

REPTree XGBoost

Incremental learning

SGD

Incremental

BP

Mini-batch SGDID4, ID5, ID5R CVFDT, Online
bagging/boosting

PA, CVFDTNBC,
HAT, HOT

VFDR[NB],
AUE, AHOT

OAUE ARFAQ11

Incremental DTs

Figure 2.5: The evolution of machine learning techniques with key milestones

The beginning of ML dates back to 1943, when the first mathematical model of Neural
Network (NN) for computers was proposed by McCulloch [107]. This model introduced
a basic unit called artificial neuron that has been at the center of NN development to
this day. However, this early model required to manually establish the correct weights
of the connections between neurons. This limitation was addressed in 1949 by Hebbian
learning [108], a simple rule-based algorithm for updating the connection weights of the
early NN model. Like the neuron unit, Hebbian learning greatly influenced the progress
of NN. These two concepts led to the construction of the first NN computer in 1950,
called SNARC (Stochastic Neural Analog Reinforcement Computer) [97]. In the same
year, Alan Turing proposed a test—where a computer tries to fool a human into believing
it is also human—to determine if a computer is capable of showing intelligent behavior.
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He described the challenges underlying his idea of a “learning machine” in [109]. These
developments encouraged many researchers to work on similar approaches, resulting in
two decades of enthusiastic and prolific research in the ML area.

In the 1950s, the simplest linear regression model called Ordinary Least Squares
(OLS)—derived from the least squares method [110, 111] developed around the 1800s—
was used to calculate linear regressions in electro-mechanical desk calculators [112]. To
the best of our knowledge, this is the first evidence of using OLS in computing machines.
Following this trend, two linear models for conducting classification were introduced:
Maximum Entropy (MaxEnt) [113,114] and logistic regression [115].

Different ML techniques derived from pattern recognition and root-finding problems
appeared during this decade too. Research trends centered on pattern recognition exposed
two non-parametric models (i.e., not restricted to a bounded set of parameters) capable
of performing regression and classification: k-Nearest Neighbors (kNN) [116, 117] and
Kernel Density Estimation (KDE) [118], also known as Parzen density [119]. The former
uses a distance metric to analyze the data, while the latter applies a kernel function
(usually, Gaussian) to estimate the probability density function of the data. On the
other hand, research on root-finding optimization introduced the stochastic approximation
algorithm [120, 121], which uses successive approximations to find the unique root of a
regression function. This algorithm was later referred to as Stochastic Gradient Descent
(SGD) [122] since it approximates the true gradient (computed using the whole dataset) by
iteratively adding a scaled gradient estimate over every single instance of the dataset—a
later proposed variant that iterate over instance subsets, called mini-batches, can improve
performance and convergence [123]. SGD has become a well-known incremental (a.k.a.
online) learning method for training various ML models, such as linear regression and
NNs, facing large-scale datasets [124].

The 1950s also witnessed the first applications of the Naïve Bayes (NB) classifier in the
fields of pattern recognition [125] and information retrieval [126]. NB, whose foundations
date back to the 18th and 19th centuries [127,128], is a simple probabilistic classifier that
applies Bayes’ theorem on features with strong independence assumptions. NB was later
generalized using KDE, also known as NB with Kernel Estimation (NBKE), to estimate
the conditional probabilities of the features. In the area of clustering, Steinhaus [129]
was the first to propose a continuous version of the to be called k-Means algorithm [130],
to partition a heterogeneous solid with a given internal mass distribution into k subsets.
The proposed centroid model employs a distance metric to partition the data into clusters
where the distance to the centroid is minimized.

By the end of the 1950s, the Markov model [131, 132] (elaborated 50 years earlier)
was leveraged to construct a process based on discrete-time state transitions and action
rewards, named Markov Decision Process (MDP), which formalizes sequential decision-
making problems in a fully observable, controlled environment [133]. MDP has been
essential for the development of prevailing RL techniques [106]. Research efforts building
on the initial NN model flourished too: the modern concept of perceptron was intro-
duced as the first NN model that could learn the weights from input examples [134].
This model describes two NN classes according to the number of layers: Single-Layer
Perceptron (SLP), an NN with one input layer and one output layer, and Multi-Layer
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Perceptron (MLP), an NN with one or more hidden layers between the input and the
output layers. The perceptron model is also known as feedforward NN since the nodes
from each layer exhibit directed connections only to the nodes of the next layer. Finally,
the term “Machine Learning” was coined and defined for the first time by Arthur Samuel
(see Section 2.2), who also developed a checkers-playing game that is recognized as the
earliest self-learning program [135].

ML research continued to flourish in the 1960s, giving rise to a novel statistical class
of the Markov model, named Hidden Markov Model (HMM) [136]. An HMM describes
the conditional probabilities between hidden states and visible outputs in a partially ob-
servable, autonomous environment. The Baum-Welch algorithm [137] was proposed in
the mid-1960s to learn those conditional probabilities. At the same time, MDP continued
to instigate various research efforts. The Partially Observable MDP (POMDP) approach
to finding optimal or near-optimal control strategies for partially observable stochastic
environments, given a complete model of the environment, was first proposed by Cassan-
dra et al. [138] in 1965, while the algorithm to find the optimal solution was only devised
five years later [139]. Another development in MDP was the learning automata—officially
published in 1973 [140]—an RL technique that continuously updates the probabilities of
taking actions in an observed environment, according to given rewards. Depending on the
nature of the action set, the learning automata is classified as Finite Action-set Learning
Automata (FALA) or Continuous Action-set Learning Automata (CALA) [141].

In 1963, Morgan and Sonquis published Automatic Interaction Detection (AID) [142],
the first regression tree algorithm that seeks sequential partitioning of an observation set
into a series of mutually exclusive subsets, whose means reduces the error in predicting
the dependent variable. AID marked the beginning of the first generation of Decision
Tree (DT) models. However, the application of DTs to classification problems was only
initiated a decade later by Morgan and Messenger’s THeta AID (THAID) [143] algorithm.

In the meantime, the first algorithm for training MLP-NNs with many layers 9—also
known as Deep NN (DNN) in today’s jargon—was published by Ivakhnenko and Lapa
in 1965 [145]. This algorithm marked the commencement of the Deep Learning (DL)
discipline, though the term only started to be used in the 1980s in the general context of
ML, and in the year 2000 in the specific context of NNs [146]. By the end of the 1960s,
Minsky and Papertkey’s Perceptrons book [147] drew the limitations of perceptrons-based
NN through mathematical analysis, marking a historical turn in Artificial Intelligence (AI)
and ML in particular, and significantly reducing the research interest for this area over
the next several years [97].

Although ML research was progressing slower than projected in the 1970s [97], this
decade was marked by milestones that greatly shaped the evolution of ML, and con-
tributed to its success in the following years. These include the Back-Propagation (BP)
algorithm [148], the Cerebellar Model Articulation Controller (CMAC) NN model [149],
the Expectation Maximization (EM) algorithm [150], the to-be-referred-to as Temporal
Difference (TD) learning [151], the Iterative Dichotomiser 3 (ID3) algorithm [152], and
the AQ11 learning system [153].

9By 1971, the learning algorithm Group Method of Data Handling was capable of training an 8-layer
MLP [144]
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Werbos’s application of BP—originally a control theory algorithm from the 1960s [154–
156]—to train NNs [148] resurrected the research in the area. BP is to date the most pop-
ular NN training algorithm and comes in different variants [157], such as SGD (the de
facto standard algorithm), conjugate gradient, one step secant, Levenberg-Marquardt,
and resilient BP. Though, BP is widely used in training NNs, its efficiency depends on
the choice of initial weights. In particular, BP has been shown to have slower speed of con-
vergence and to fall into local optima. Over the years, global optimization methods have
been proposed to replace BP, including Genetic Algorithms (GA), simulated annealing,
and ant colony algorithms [158]. In 1975, Albus proposed CMAC, a new type of NN as an
alternative to MLP [149]. Although CMAC was primarily designed as a function modeler
for robotic controllers, it has been extensively used in RL and classification problems for
its faster learning compared to MLP.

In 1977, in the area of statistical learning, Dempster et al. proposed EM, a generaliza-
tion of the previous iterative, unsupervised methods, such as the Baum-Welch algorithm,
for learning the unknown parameters of statistical HMM models [150]. At the same time,
Witten developed an RL approach to solve MDPs, inspired by animal behavior and learn-
ing theories [151], that was later referred to as TD in Sutton’s work [159, 160]. In this
approach, the learning process is driven by the changes, or differences, in predictions over
successive time steps, such that the prediction at any given time step is updated to bring
it closer to the prediction of the same quantity at the next time step. Towards the end
of the 1970s, the second generation of DT models emerged as the ID3 algorithm was
released. The algorithm, developed by Quinlan [152], relies on a novel concept for at-
tribute selection based on entropy10 maximization. ID3 is a precursor to the popular and
widely used C4.5 and C5.0 DT algorithms. In addition, Michalski and Larson developed
AQ11 [153], a learning system that incrementally generates new rules using the existing
ones and new training instances, later discarded after learning. AQ11 is the first evidence
of using the term “incremental” in an ML technique, to the best of our knowledge.

The 1980s witnessed a renewed interest in ML research, and in particular in NNs. In
the early 1980s, three new classes of NN models emerged, namely Convolutional Neural
Network (CNN) [161], Self-Organizing Map (SOM) [162], and Hopfield network [163].
CNN is a feedforward NN specifically designed to be applied to visual imagery analysis
and classification, and thus require minimal image preprocessing. Connectivity between
neurons in CNNs is inspired by the organization of the animal visual cortex—modeled
by Hubel in the 1960s [164,165]—where the visual field is divided between neurons, each
responding to stimuli only in its corresponding region. Similarly to CNN, SOM was also
designed for a specific application domain; dimensionality reduction [162]. SOMs employ
an unsupervised competitive learning approach, unlike traditional NNs that apply error-
correction learning (such as BP with gradient descent).

In 1982, the first form of Recurrent Neural Network (RNN) was introduced by Hop-
field. Named after the inventor, Hopfield network is an RNN where the weights connecting
the neurons are bidirectional. The modern definition of RNN, as a network where con-
nections between neurons exhibit one or more than one cycle, was introduced by Jordan
in 1986 [166]. Cycles provide a structure for internal states or memory allowing RNNs

10Measure of the uncertainty about a source of messages
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to process arbitrary sequences of inputs. As such, RNN are found particularly useful in
time series forecasting, handwriting recognition, and speech recognition.

Several key concepts emerged from the 1980s’ connectionism movement, one of which
is the concept of distributed representation [167]. Introduced by Hinton in 1986, this
concept supports the idea that a system should be represented by many features and that
each feature may have different values. Distributed representation establishes a many-
to-many relationship between neurons and (feature,value) pairs for improved efficiency,
such that a (feature,value) input is represented by a pattern of activity across neurons as
opposed to being locally represented by a single neuron. The second half of the 1980s also
witnessed the increase in popularity of the BP algorithm and its successful application in
training DNNs [168,169], as well as the emergence of new classes of NNs, such as Restricted
Boltzmann Machines (RBM) [170], Time-Lagged Feedforward Network (TLFN) [171], and
Radial Basis Function (RBF) NN (RBFNN) [172].

Originally named Harmonium by Smolensky, RBM is a variant of Boltzmann ma-
chines [173] with the restriction that there are no connections within any of the network
layers, whether it is visible or hidden. Therefor, neurons in RBMs form a bipartite graph.
This restriction allows for more efficient and simpler learning compared to traditional
Boltzmann machines. RBMs are found useful in a variety of application domains such
as dimensionality reduction, feature learning, and classification, as they can be trained
in both supervised and unsupervised ways. The popularity of RBMs and the extent of
their applicability significantly increased after the mid-2000s as Hinton introduced in 2006
a faster learning method for Boltzmann machines, called Contrastive Divergence [174],
making RBMs even more attractive for DL [175]. Interestingly, although the use of the
term “deep learning” in the ML community dates back to 1986 [176], it did not apply to
NNs at that time.

As aforementioned, TLFN—an MLP that incorporates the time dimension into the
model for conducting time series forecasting [171]—and RBFNN—an NN with a weighted
set of RBF kernels trained in supervised or unsupervised ways [172]—joined the growing
list of NN classes. Indeed, any of these NNs can be employed in a DL architecture, either
by implementing a larger number of hidden layers or by stacking multiple simple NNs.

In addition to NNs, several other ML techniques thrived during the 1980s. Among
these techniques, Bayesian Network (BN) arose as a Directed Acyclic Graph (DAG) rep-
resentation for the statistical models in use [177], such as NB and HMM—the latter
considered as the simplest dynamic BN [178, 179]. Two DT learning algorithms, sim-
ilar to ID3 but developed independently, referred to as Classification And Regression
Trees (CART) [180], were proposed to model classification and regression problems. An-
other DT algorithm, under the name of Reduced Error Pruning Tree (REPTree), was also
introduced for classification. REPTree aimed at building faster and simpler tree models
using information gain for splitting, along with reduced-error pruning [181]. DT also
experienced its earliest incremental learning algorithms built upon batch models, mainly
ID3 (e.g., ID4 [182], ID5 [183], and ID5R [184]), which greatly influenced the incremental
DTs in the new millennium.

Towards the end of the 1980s, two TD approaches were proposed for RL: TD(λ) [160]
and Q-learning [185]. TD(λ) adds a discount factor (0 ≤ λ ≤ 1) that determines to
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what extent estimates of previous state-values are eligible for updating based on current
errors, in the policy evaluation process. For example, TD(0) only updates the estimate
of the value of the state preceding the current state. Q-learning, however, replaces the
traditional state-value function of TD by an action-value function (i.e., Q-value) that
estimates the utility of taking a specific action in specific states. As of today, Q-learning is
the most well-studied and widely-used model-free RL algorithm. By the end of the decade,
the application domains of ML started expending to the operation and management of
communication networks [186–188].

In the 1990s, significant advances were realized in ML research, focusing primarily on
NNs and DTs. Bio-inspired optimization algorithms, such as GA and Particle Swarm Op-
timization (PSO), received increasing attention and were used to train NNs for improved
performance over the traditional BP-based learning [189, 190]. Probably one of the most
important achievements in NNs was the work on Long Short-Term Memory (LSTM),
an RNN capable of learning long-term dependencies for solving DL tasks that involve
long input sequences [191]. Today, LSTM is widely used in speech recognition as well
as natural language processing. In DT research, Quinlan published the M5 algorithm in
1992 [192] to construct tree-based multivariate linear models analogous to piecewise linear
functions. One well-known variant of the M5 algorithm is M5P, which aims at building
trees for regression models. A year later, Quinlan published C4.5 [193], that builds on
and extends ID3 to address most of its practical shortcomings, including data overfitting
and training with missing values. C4.5 is to date one of the most important and widely
used algorithms in ML and data mining.

Several techniques other than NNs and DTs also prospered in the 1990s. Research
on regression analysis propounded the Least Absolute Selection and Shrinkage Opera-
tor (LASSO), which performs variable selection and regularization for higher prediction
accuracy [194]. Another well-known ML technique introduced in the 1990s was Support
Vector Machines (SVM). SVM enables plugging different kernel functions (e.g., linear,
polynomial, RBF) to find the optimal solution in high-dimensional feature spaces. SVM-
based classifiers find a hyperplane to discriminate between categories. A single-class SVM
is a binary classifier that deduces the hyperplane to differentiate between the data belong-
ing to the class against the rest of the data, that is, one-vs-rest. A multi-class approach
in SVM can be formulated as a series of single class classifiers, where the data is assigned
to the class that maximizes an output function. SVM has been widely used primarily
for classification, although a regression variant exists, known as Support Vector Regres-
sion (SVR) [195]. In addition, SVM can learn incrementally using SGD, though this
applies only to models using a linear kernel function. By 1999, an incremental learning
variant of SVM appeared for handling perceived and real concept drifts [196].

In the area of RL, State-Action-Reward-State-Action (SARSA) was introduced as
a more realistic, however less practical, Q-learning variation [197]. Unlike Q-learning,
SARSA does not update the Q-value of an action based on the maximum action-value of
the next state, but instead it uses the Q-value of the action chosen in the next state.

A new emerging concept called ensemble learning demonstrated that the predictive
performance of a single learning model can be be improved when combined with other
models [97]. As a result, the poor performance of a single predictor or classifier can
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be compensated with ensemble learning at the price of (significantly) extra computa-
tion. Indeed the results from ensemble learning must be aggregated, and a variety of
techniques have been proposed in this matter. The first instances of ensemble learning
include Weighted Majority Algorithm (WMA) [198], boosting [199], bootstrap aggregat-
ing (or bagging) [200], and Random Forest (RF) [201]. RF focused explicitly on tree
models and marked the beginning of a new generation of ensemble DT. In addition,
some variants of the original boosting algorithm were also developed, such as Adaptive
Boosting (AdaBoost) [202] and Stochastic Gradient Boosting (SGBoost) [203].

These advances in ML facilitated the successful deployment of major use cases in the
1990s, particularly, handwriting recognition [204] and data mining [205]. The latter rep-
resented a great shift to data-driven ML, and since then it has been applied in many areas
(e.g., , retail, finance, manufacturing, medicine, science) for processing huge amounts of
data to build models with valuable use [98]. Furthermore, from a conceptual perspective,
Tom Mitchell formally defined ML: “A computer program is said to learn from experience
E with respect to some class of tasks T and performance measure P , if its performance
at tasks in T , as measured by P , improves with experience E” [206].

The 21st century began with a new wave of increasing interest in SVM and ensemble
learning, and in particular ensemble DT. Research efforts in the field generated some
of the the most widely used implementations of ensemble DT as of today: Multiple
Additive Regression Trees (MART) [207], extra-trees [208], and eXtreme Gradient Boost-
ing (XGBoost) [209]. MART and XGBoost are respectively a commercial and open source
implementation of Friedman’s Gradient Boosting Decision Tree (GBDT) algorithm; an
ensemble DT algorithm based on gradient boosting [203, 207]. Extra-trees stands for ex-
tremely randomized trees, an ensemble DT algorithm that builds random trees based on k
randomly chosen features. However instead to computing an optimal split-point for each
one of the k features at each node as in RF, extra-trees selects a split-point randomly for
reduced computational complexity.

At the same time, the popularity of DL increased significantly after the term “deep
learning” was first introduced in the context of NNs in 2000 [146]. However, the at-
tractiveness of DNN started decreasing shortly after due to the experienced difficulty of
training DNNs using BP (e.g., vanishing gradient problem), in addition to the increasing
competitiveness of other ML techniques (e.g., SVM) [98]. Hinton’s work on Deep Belief
Networks (DBN), published in 2006 [210], gave a new breath and strength to research in
DNNs. DBN introduced an efficient training strategy for DL models, which was further
used successfully in different classes of DNNs [211, 212]. The development in ML (par-
ticularly, in DNNs) grew exponentially with advances in storage capacity and large-scale
data processing (i.e., big data) [98]. This wave of popularity in DL has continued to this
day, yielding major research advances over the years. One approach that has recently
received tremendous attention is Deep RL (DRL), which incorporates DL models into RL
for solving complex problems. For example, Deep Q-Networks (DQN)—a combination
of DNN and Q-learning—was proposed for mastering video games [213]. Although the
term DRL was coined recently, this concept was already discussed and applied 25 years
ago [214,215].

The 2000s have also been fruitful for the incremental learning research community.
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Although well-known ML techniques, such as NN and kNN, fit naturally to incremental
learning, several algorithms emerged during the last 20 years, particularly for incremental
DT. In 2001, the Very Fast Decision Tree (VFDT) algorithm [216] (a.k.a. Hoeffding
tree) exposed an incremental DT that selects a root node from the first training instances
and grows the tree from the leaf nodes. However, VFDT aimed for static concepts;
hence, an extension of this algorithm, called Concept-adapting VFDT (CVFDT) [217],
addresses concept drift by maintaining a set of alternate DTs and storing instances over
a window of time. CVFDT experienced further refinements during the subsequent years.
CVFDTNBC [218] incorporated NB classifiers in the leaf nodes of the tree, which demon-
strated better accuracy than its predecessor. Hoeffding Adaptive Tree (HAT) [219]
introduced ADaptive WINdowing (ADWIN) for monitoring the accuracy of the DT
branches, which are replaced with more accurate branches when their performance de-
creases. Hoeffding Option Tree (HOT) [220] refers to an ensemble method that uses addi-
tional option nodes to build a single structure with multiple CVFDTs as separate paths.
Adaptive Hoeffding Option Tree (AHOT) [103] extends HOT by storing in each leaf the
error estimation, computed using Exponentially Weighted Moving Average (EWMA). Fi-
nally, Adaptive Random Forest (ARF) [221] provides another incremental ensemble DT,
which adapts the widely used RF ensemble. In contrast to RF, ARF comes with a drift
and warning detector per base DT that enables selective resets and tree replacements—
when the warning becomes a drift.

Other non-strictly-DT incremental learning techniques also appeared during and after
the 2000s. In 2001, Oza and Russell [222] developed incremental variants of the bagging
and boosting ensemble algorithms, simply referred to as online bagging and online boost-
ing, respectively. Both incremental ensembles allow using different learners as the base
model, such as NB and any incremental DT, though recent implementations commonly
use CVFDTNBC. Five years later, the online Passive-Aggressive (PA) algorithms [223]
characterized a family of margin-based incremental learning techniques for solving clas-
sification and regression problems. These algorithms (passively) keep the same weights
when no loss is present but (aggressively) update them when the loss is positive. In 2011,
two new approaches emerged: Very Fast Decision Rules (VFDR) [224] and Accuracy
Updated Ensemble (AUE) [225]. VFDR introduced a rule-based incremental algorithm
aiming at more interpretability and flexibility than DTs. This single-pass algorithm con-
tinuously learns ordered and unordered rule sets and classifies using the majority class
strategy. A variant called VFDRNB [224] incorporates NB classifiers that improve the
accuracy. On the other hand, AUE presented an adaptive block-based ensemble for in-
cremental learning, which selects and updates the base classifiers regarding the current
distribution in a block series. An improvement to AUE, called Online Accuracy Updated
Ensemble (OAUE) [226], introduced a new error-based weighting function to incremen-
tally train and evaluate the base classifiers. Similar to online bagging and boosting, recent
implementations of both AUE and OAUE commonly use CVFDTNBC as the base learner.

It is important to mention that the evolution in ML research has enabled improved
learning capabilities which were found useful in several application domains, ranging from
games, image and speech recognition, network operation and management, to self-driving
cars [227].
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2.2.3 Cognitive networking

In theory, ML can be used for automating network operations and management as it
allows extracting knowledge from data. However, application of ML for incorporating
intelligence and autonomy in networking is a non-trivial task. Prohibiting factors include
the distributed control and vendor-specific nature of legacy network devices, lack of avail-
able data, and cost of compute and storage resources. Several technological advances
have been made in the last decade to overcome these limitations. The advent of network
softwarization and programmability through SDN and NFV offers centralized control and
alleviates vendor lock-in. The advances in ML along with the proliferation of new sources
of data and big data analytics platforms provide abundant data and extract knowledge
from them. Furthermore, the availability of seemingly infinite storage and compute re-
sources through the cloud overcomes the cost of resources. These together provide the
environment to realize the vision of cognitive networks.

Knowledge-Defined Networking (KDN) [228] depicts a recent initiative for cognitive
networking. This approach revisits the inclusion of a knowledge plane proposed initially
15 years before for the Internet [229]. KDN defines the knowledge plane at the top of the
SDN architecture (see Section 2.1), replacing the application plane; hence, it can interact
with the management and control planes to obtain a rich view and control over the
network. The knowledge plane enables learning from the network behavior by processing
operation and management data collected by the other SDN planes. Via ML techniques,
such data become knowledge aimed at providing recommendations and making network
decisions—either automated or human intervention.

In the context of autonomic systems and networks, IBM’s autonomic computing ar-
chitecture [230] is to date the most influential reference model. It comprises several layers
of autonomic managers. The behavior of each manager is governed by the MAPE control
loop that consists of four functions; Monitor, Analyze, Plan, and Execute. As shown in
Figure 2.6, the Knowledge source is orthogonal to every MAPE function. Functions can
retrieve data from and/or log created knowledge to the Knowledge source. For exam-
ple, the Analyze function obtains information about the historical behavior of a managed
resource and stores the ML models and the analytics it generates in the Knowledge source.

In [230], we observe that cognition has been restricted to the Analyze function, which
inhibits the ability to achieve closed-loop cognitive network management. In [42], we
proposed to incorporate cognition at every function in the loop. For example, the Monitor
function should be able to determine the what, when, and where to monitor. ML can be
leveraged to build this cognition in every function and allow each function to operate in
full autonomy. Therefore, we extend IBM’s MAPE control loop into a cognitive control
loop that we denote as C-MAPE. As illustrated in Figure 2.6, cognition is achieved by
introducing learning and inference in every function.

• C-Monitor function refers to the cognitive monitor that performs intelligent probing.
For instance, when the network is overloaded, the C-Monitor function may decide
to reduce the probing rate and instead perform regression for data prediction.

• C-Analyze function is responsible for detecting or predicting changes in the network
environment (e.g., faults, policy violations, frauds, performance degradation, and
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Figure 2.6: Cognitive control loop for network management

attacks). ML has been leveraged to address some of these challenges in each of the
FCAPS management areas, as discussed in [42].

• C-Plan function can leverage ML to develop an intelligent Automated Planning
(AP) engine that reacts to changes in the network by selecting or composing a change
plan. In the last decade, AP systems have been applied to real-world problems
and have been relying on ML for automating the extraction and organization of
knowledge (e.g., plans, execution traces), and for decision making [231].

• C-Execute function can use ML to schedule the generated plans and determine the
course of action should the execution of a plan fail. These tasks lend themselves
naturally to RL where the C-Execute agent could exploit past successful experiences
to generate optimal execution policies, and explore new actions should the execution
plan fail.

Closing the control loop is achieved by monitoring the state of the network to measure
the impact of the change plan.

2.3 Traffic engineering in data center networks

This section first reviews the concepts of DCN and traffic engineering to contextualize
the approach of this dissertation. Then, it provides a literature review about multipath
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routing for load-balancing in DCNs, focusing on the seminal works that use SDN and ML
for addressing such a challenge.

2.3.1 Data center network

DCN encompasses the communication infrastructure of data centers that aim to inter-
connect a large number of servers with significant bandwidth capacity in order to achieve
high throughput and low-latency [1]. Different DCN topologies have been designed to
meet such performance requirements. In general, these DCN topologies can be classi-
fied into three categories based on the routing and switching equipment used to forward
or process network traffic [232–234]: switch-centric, server-centric, and hybrid. Switch-
centric topologies consider switches as the only relay nodes (i.e., routing decisions) and
servers as mere endpoints, such as VL2 [235] and Jellyfish [236]. Server-centric topologies
define servers as both endpoints and relaying nodes, such as BCube [237] and DCell [238].
Hybrid topologies use a combination of electrical, optical, and/or wireless equipment to
add extra bandwidth capacity to the DCN, such as FireFly [239] and Helios [240].

Currently, most of the DCN deployments follow the switch-centric topology, partic-
ularly the tree-based design, such as Facebook’s Altoona [8] and Google’s Jupiter [241].
In switch-centric, the switches are interconnected in a hierarchical model with multiple
layers and the servers are connected to the switches of the lowest layer, known as edge or
Top-of-Rack (ToR). The tree-based design is an instance of the Clos network with a de-
gree defined according to the network scale indicating the number of layers. For example,
VL2 [235] and Fat-tree [242] arrange low-cost commodity switches in a tree-based topol-
ogy with fourth-degree, namely, from bottom-up, one layer of servers and three layers
of switches: edge, aggregation, and core (see Figure 2.7). Differing from this tree-based
design, Jellyfish [236] uses a random regular graph to interconnect the switches at the
edge layer. Although Jellyfish provides some benefits over the tree-based topologies, such
as higher capacity, shorter paths, and more resilience to failures and wiring errors, it is
more challenging and complex in terms of cabling, management, and routing.
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Figure 2.7: Tree-based DCN with fourth degree and multipath routing

In addition, several research works have analyzed the traffic characteristics of switch-
centric tree-based DCNs, converging to similar patterns [8, 9, 11]: (i) 10% to 25% of
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links are hot-spots, varying over time; (ii) less than 25% of capacity is utilized, even
with over-subscription; (iii) around 80% of flows (i.e., mice) carry less than 10% of total
bytes, last less than 10 seconds, and transmit less than 10KB, while 20% of flows (i.e.,
elephants) carry almost 80% of total bytes, last up to 500 seconds, and transmit up to
5GB; (iv) almost every flow at the ToR switch presents an inter-arrival time less than 100
milliseconds; and (v) the number of active flows can be up to 10,000 flows per second.

2.3.2 Traffic engineering

Traffic engineering involves the methods for measuring and managing network traffic to
optimize the performance of the network [3, 243]. This optimization requires providing
appropriate traffic requirements (e.g., throughput, delay, packet loss) while efficiently—in
terms of cost and reliability—utilizing network resources (e.g., bandwidth).

Traffic engineering encompasses four main dimensions [49]: flow management, fault-
tolerance, topology update, and traffic analysis. Flow management is about mapping and
controlling the traffic flows in the network for optimizing the routing function to steer
traffic (from ingress nodes to egress nodes) in the most effective way. Fault-tolerance refers
to ensuring network reliability by providing mechanisms that enhance network integrity
and by embracing policies emphasizing network survivability. Topology update involves
managing the capacity of the network in order to carry out planned changes, such as
network policy modifications. Traffic analysis deals with monitoring the performance
of the network and verify the compliance with network performance goals to evaluate
and debug the effectiveness of the applied traffic engineering methods. Each dimension
may operate at multiple levels of temporal resolution, ranging from a few nanoseconds to
possibly years. For example, topology update works at very coarse temporal levels, from
days to years, while flow management operates at finer levels of temporal resolution, from
microseconds to hours.

Load-balancing is one of the most well-known traffic engineering methods. As part
of the flow management dimension, load-balancing controls and optimizes the routing
function to minimize the maximum load across the links [2]. The goal is mapping traffic
flows from the heavily loaded paths to the lightly loaded paths for avoiding congestion
(i.e., hot-spots) and increasing network throughput and resource utilization. Multipath
routing has shown to effectively achieve load-balancing by distributing traffic over multiple
concurrent paths such that all the links are optimally loaded [4]. Figure 2.7 depicts two
disjoint11 paths in a tree-based DCN. In practice, multipath routing protocols may split
the traffic at different levels of granularity, such as per-flow, per-sub-flow, and per-packet.
In addition, these protocols may run at distinct layers of the TCP/IP model. For example,
ECMP [7] and valiant load balancing [244] work at the network layer, while Multi-Path
TCP (MPTCP) [245] operates at the transport layer.

11No common nodes or links except for source and destination.
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2.3.3 Multipath routing in data center networks

From a general perspective, multipath routing in DCNs divides into two categories: dis-
tributed and SDN-based (i.e., centralized). Initially, distributed approaches were the
standard for multipath routing. However, with the emergence of centralized network
programmability, SDN-based multipath routing has gained the same level of attention.
Recent investigations that have adopted the SDN-based approach aim to optimize the
routing function by using ML techniques for predicting flow traffic characteristics.

Distributed multipath routing

Distributed multipath routing mechanisms place routing decisions at either the switches
or servers of a DCN. These routing decisions can be oblivious to traffic conditions or
based on feedback information from the network (e.g., congestion). In addition, traffic
splitting in distributed multipath routing is conducted at different levels of granularity
(e.g., flow, packet, sub-flow). The following paragraphs describe the seminal works focused
on distributed multipath routing.

ECMP [6,7] represents the state-of-the-art distributed mechanism for multipath rout-
ing in DCNs. ECMP is oblivious to traffic conditions and splits the traffic at the level
of flows. Generally, ECMP applies a hash function at every switch on selected packet
headers to assign each incoming flow to an output port. The output port belongs to one
of the several equal-cost forwarding paths maintained by the switch for reaching a desti-
nation. A key limitation is that the broad distribution of flow sizes in DCNs (i.e., mice
and elephants) cause hot-spots in ECMP-based routing [9, 11]. This is because two or
more elephant flows can collide on their hash and end up on the same output port. Since
ECMP does not account for either current network utilization or flow size, the resulting
collisions overwhelm switch buffers and degrade overall switch and link utilization. In
addition, the performance of ECMP degrades significantly during asymmetric topologies
caused by link failures.

Despite ECMP limitations, it remains as the standard multipath routing mechanism
for load-balancing in today’s DCNs [5]. For example, Facebook’s DCN in Altoona [12]
employs BGP to populate the routing tables and ECMP for routing through the equal-cost
paths.

Motivated by the drawbacks of ECMP’s flow splitting, Random Packet Spraying [13]
and Digit Reversal Bouncing (DRB) [14] split the traffic at the level of packets through
the different equal-cost paths. However, these works rely on an ideal symmetry of the
network to avoid the adverse effects of packet reordering12 on TCP. To deal with the
asymmetry caused by failures, DRB includes a topology update mechanism, though the
distributed nature of this mechanism is not suitable for large-scale DCNs.

Other approaches have also addressed asymmetry by proposing topology-dependent
weighing of paths and using distinct granularity levels for splitting traffic. For example,
Weighted Cost Multiple-Path (WCMP) [16] extends ECMP to support weighted flow-level
splits at switches by repeating the same next-hop multiple times. Whereas, Presto [15]

12Packet reordering can cause TCP to unnecessarily reduce the sender’s rate, leading to severe through-
put inefficiencies.
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implements weights at the servers and splits flows at the level of TCP Segmentation
Offload (TCO) units, termed as flowcells. However, WCMP and Presto rely on static
weights that are generally sub-optimal with asymmetry, particularly for dynamic traffic
workloads. In terms of traffic splitting, WCMP inherits the elephant collision problem
from ECMP, while the sub-flow splitting defined by Presto is prone to packet reordering.
Moreover, neither of these distributed multipath routing mechanisms is aware of traffic
conditions, causing degraded performance during link failures.

In light of these gaps, some works have used knowledge of congestion on different paths
to make routing decisions. LocalFlow [18] and Flare [19] rely on local measurements of
traffic congestion to balance the load on the switch ports. However, they lack taking
global congestion information into account, yielding sub-optimal results for high varying
traffic. Therefore, further approaches use feedback from the network to gather path-wise
congestion information and shift traffic to less-congested paths. The congestion feedback
can be collected either at the servers (e.g., FlowBender [17], LetFlow [20], MPTCP [245])
or switches (e.g., HULA [21], CONGA [22], DeTail [246]) of the network. These global
congestion-aware mechanisms achieve better throughput and delay results in DCNs, yet
at the cost of significant implementation complexity or specialized hardware support—
software implementation produces sub-optimal results—at the servers or switches of the
network.

On the other hand, the level of granularity for splitting traffic in congestion-aware
multipath routing is variable. FlowBender works at flow-level, DeTail at packet-level,
and the rest at sub-flow-level. Particularly, LocalFlow conducts a spatial flow splitting
based on TCP sequence numbers, while MPTCP splits a TCP flow into multiple sub-flows
by varying port numbers. Flare, CONGA, HULA, and LetFlow rely on the concept of
flowlets [247], defined as a burst of packets from a flow separated by enough time gaps. As
discussed before, the flow splitting carries the elephant collision problem, while the packet
and sub-flow splitting potentially cause packet reordering. The latter because sub-flow
splitting lack an exhaustive study about the appropriate space or time between sub-flows
for achieving the best performance without causing packet reordering.

Table 2.1 outlines the limitations of distributed multipath routing. To summarize,
the distributed multipath routing mechanisms based on global congestion-awareness and
sub-flow splitting (particularly, flowlets) provide great results for load-balancing traffic in
DCNs. However, they require the implementation of specialized hardware in the network,
increasing the capital and operational expenditure for deploying a DCN. Moreover, these
distributed multipath routing mechanisms rely on a static separation between sub-flows,
which is not suitable for the varying traffic in DCNs.

Multipath routing based on software-defined networking

SDN-based multipath routing mechanisms leverage the potential of network programma-
bility for enabling a centralized controller to make routing decisions in a DCN. The
controller has a global view of the network status and instructs the switches for packet
forwarding. The routing decisions rely on flow detection methods that classify flows,
mostly into two classes: mice and elephants. Such classification occurs either at the
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Table 2.1: Summary of the limitations of distributed multipath routing
Perspective Approach Gaps

Traffic conditions
awareness

Oblivious
[7, 13–16]

- Performance degradation due to asymmetry of network
topology caused by link failures

- Routing decisions not based on traffic conditions

Local congestion
[18,19]

- Routing decisions not based on global congestion data
- Require specialized hardware implementation

Global congestion
[17,20–22,245,246]

- Significant implementation complexity
- Require specialized hardware implementation

Traffic splitting
granularity

Flow-level
[7, 16,17]

- Performance degradation due to hot-spots caused by col-
lisions of large, long lived flows (i.e., elephant flows)

Packet-level
[13, 14,246]

- Potential packet reordering
- Rely on the symmetry of the network for avoiding packet
reordering

Sub-flow-level
[15, 18–22,245]

- No guarantee that two distinct sub-flows take different
paths

- Potential packet reordering
- Unclear about the spatial or time space between sub-flows
for avoiding packet reordering

controller-side (e.g., by pulling or sampling traffic statistics), switch-side, or server-side
of SDDCNs. Moreover, some flow detection methods have leveraged ML techniques to
classify flows proactively (i.e., prediction). In the following, the seminal works centered
on Software-Defined Networking-based multipath routing are discussed.

Hedera [26] represents the state-of-the-art Software-Defined Networking-based mecha-
nism for multipath routing in DCNs. Hedera defines a centralized controller that period-
ically pulls flow statistics from ToR-switches to discriminate elephant flows from mouse
flows (i.e., binary classification). By default, Hedera assumes all flows as mice, forward-
ing them using ECMP, until a pre-defined threshold rate (10% of bandwidth, 100Mbps

in implementation) is reached. Hedera then executes a simple routing algorithm that
dynamically computes a suitable path for the detected elephant flow and installs the cor-
responding rules on the switches along that path. PMCE [248] provides an enhanced
routing algorithm for improving the performance of Hedera.

However, the short inter-arrival time of flows at ToR-switches (< 100ms) [8, 9, 11]
requires a high rate of statistics pulling for achieving good performance (e.g., < 500ms to
perform better than ECMP [245]). This high rate along with the huge amount of active
flows in ToR-switches (up to 10, 000 flows) greatly increases traffic overhead and controller
processing, negatively affecting the performance of the network traffic. Moreover, since
Hedera installs a flow rule per each active flow in the ToR-switches, the limited memory
capacity of switches restricts its scalability. Furthermore, Hedera’s binary classification is
too simple for the wide distribution of flow sizes in DCNs (i.e., tens of bytes to hundreds
of megabytes), causing the routing algorithms to make inaccurate decisions regarding the
traffic volume across a forwarding path.

To address the traffic overhead shortcoming of Hedera, Devoflow [27] reduces the
number of interactions between the controller and switches by introducing a rule cloning
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action for wildcard OpenFlow rules. Each cloned wildcard rule includes a trigger (i.e., a
counter and a comparator) based on a pre-defined threshold (128KB, 1MB, or 10MB)
that enables the switches to identify elephant flows. The detected elephant flows are sent
to the controller, which calculates the least congested path. The mouse flows are locally
handled by the switch through multipath and rapid re-routing actions (included as select
and fast failover group types in OpenFlow v1.5.1 [55], respectively). A key limitation is
that the rule cloning action is not supported in OpenFlow, therefore, DevoFlow requires
a specialized switch hardware implementation. In addition, although the latest version
of OpenFlow (i.e., 1.5.1) support threshold-based triggers, setting a trigger for each flow
would limit the scalability and impose a lot of processing to the switch. On the other
hand, the limitations of conducting a simple binary classification of flow sizes remain in
Devoflow.

Similarly, Mahout [29] tackles the traffic overhead shortcoming of Hedera by monitor-
ing and detecting elephant flows at the server-side of SDDCNs through a shim layer in the
operating system. When an elephant flow is detected, the server marks the subsequent
packets of the detected elephant flow. ToR-switches recognize these marked packets and
send the first of each flow to the controller. The controller then computes and installs a
path for the marked packets. As in Hedera, the packets without marks (i.e., mice) are
routed using ECMP. Mahout greatly reduces traffic overhead, however, at the cost of
software modifications in the servers of SDDCNs. Moreover, inaccurate routing decisions
also appear in Mahout since it relies on a simple binary classification of flow sizes. Mice-
Trap [28] employs the same mechanism of Mahout for identifying and handling elephant
flows, while proposing an aggregation module for managing mice flows. This mice aggre-
gation module reduces the number of rules installed on switches for handling mice flows.
Nevertheless, the shortcomings of Mahout persist in MiceTrap.

The Elephant Sensitive Hierarchical Statistics Pulling (ESHSP) approach [249] pro-
poses an iterative process to detect elephant flows by decomposing the flow space until
an elephant flow is isolated from the others. ESHSP uses a combination of aggregate and
individual statistics messages of OpenFlow to reduce the traffic overhead generated by
Hedera-like approaches. However, the traffic overhead produced by ESHSP is significantly
higher than switch-side and server-side approaches, though it does not require hardware
or software modifications in SDDCNs. While ESHSP does not perform further actions
with the detected elephant flows, the routing algorithms defined in works like Hedera and
Mahout can be easily integrated to it. In addition, ESHSP also suffer from the problems
of relying on a simple binary classification of flow sizes.

Sampling is another method that has been used for collecting data to detect ele-
phant flows without requiring hardware or software modifications. Sampling-based De-
voFlow [27] and TinyFlow [25] adopt the packet sampling mechanism from sFlow [250] to
identify elephant flows in DCNs. SDEFIX [251] has also integrated sFlow for detecting
elephant flows, though in Internet exchange points. In particular, DevoFlow exposes sam-
pling as an alternative to the threshold-based triggers for cloned wildcard rules. However,
this sampling-based DevoFlow rely on a flow-level simulation that does not simulate actual
packets but assume a distribution of packets as reported by earlier works [252]. There-
fore, the evaluation of the sampling-based DevoFlow is biased and might not represent
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the limitations of using sampling for detecting and scheduling elephant flows.
In the same context of SDDCNs, TinyFlow routes all flows using ECMP by default

until a pre-defined threshold is exceeded. Once an elephant flow is detected through
sampling, the TinyFlow controller installs a new rule on the ToR-switch that monitors
the byte count of that flow. When the byte count exceeds a pre-defined threshold, the
switch resets the byte count and chooses a different egress port to route the elephant
flow through a different equal-cost path. A key limitation of TinyFlow is that it imposes
processing overhead on the switch for monitoring each elephant and changing the egress
port accordingly, which was not evaluated. On the other hand, the elephant detection
based on sampling generates a traffic overhead lower than pulling statistics, though still
significantly higher than switch-side and server-side approaches. In addition, since only a
small fraction of packets are sampled (typically, 1 in 1000), the elephant detection is not
as accurate as in the other approaches.

A common problem of these Software-Defined Networking-based multipath routing
mechanisms is that they can only detect elephant flows reactively when their traffic char-
acteristics (e.g., flow size or flow rate) surpass a pre-defined static threshold. This is not
ideal since hot-spots may occur until traffic characteristics are detected and new paths
are chosen by the routing algorithms. For this reason, recent works have incorporated
ML techniques at the controller-side of SDDCNs to predict traffic characteristics and to
make routing decisions proactively.

Early ML-based approaches implement flow size prediction methods that learn from
centralized data collected by periodically pulling flow statistics from switches (similar to
Hedera). Xiao et al. [253] introduces a cost-sensitive C4.5 DT classifier. The accuracy
of this classifier heavily depends on the choice of the costs for identifying the class of a
flow (i.e., mouse or elephant). Experiments conducted on two real datasets, from a trans-
Pacific line [254] and a private data center edge link, demonstrated that incorporating cost-
sensitive to C4.5 improves its accuracy for elephant detection. Similarly, the Online Flow
Size Prediction (OFSP) approach [32] explores different ML techniques for elephant flow
detection. These include gaussian regression, BN, and NN. Experiments were performed
on three public real datasets from two university DCNs [255] and an academic building at
Dartmouth College [256] with over three million flows each. In contrast to the previous
work, OFSP employs the predicted flow size for making routing decisions. Presumably
mouse flows are routed through ECMP, whereas elephant flows are routed through the
least congested path. However, both approaches assume that the data is centralized,
requiring the centralized controller to periodically pull flow statistics from the switches.
This collection of data increases traffic overhead, which exponentially grows as these
approaches require per-packet headers. In addition, as other non-ML approaches, the
problems of a static threshold for simple binary classification of flow sizes remain.

Other ML-based approaches applied similar learning algorithms but on data collected
by sampling. The Efficient Sampling and Classification Approach (ESCA) [35] uses sam-
pling for collecting data and proposes a two-phase elephant flow detection. In the first
phase, the approach improves sampling efficiency by estimating the arrival interval of ele-
phant flows and filtering out redundant samples using a filtering flow table, which requires
modifications in the OpenFlow specification. In the second phase, the approach classifies
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samples with a new supervised classification algorithm based on the C4.5 DT. Once clas-
sified a flow, a differentiated scheduling approach called DIFFERENCE [34] searches for
the best path using a specific algorithm for each flow class: a blocking-island-based algo-
rithm for elephants and a weighted multipath algorithm for mice. Extensive experiment
results demonstrated that ESCA can provide accurate detection with less sampled packets
and shorter detection time than sFlow-based approaches (e.g., DevoFlow and TinyFlow).
However, the proposed sampling method depends on non-existing SDN specifications,
hence, requiring custom-made switch hardware.

FlowSeer [33] also leverages sampling and DTs for performing a two-phase cooperative
classification for elephant detection. In the first phase, the controller applies a simple DT
algorithm (i.e., C4.5) for identifying potential elephant flows. The statistics for this phase
are collected by an unsupervised flow sampling method based on wildcard rules. Then,
the switches are instructed to forward the headers of the first five packets of the potential
elephant flows to the controller. In the second phase, the controller use an incremental DT
algorithm (i.e., Hoeffding tree) to detect true elephant flows from the potential ones and
further classify them into five categories regarding their size and duration. The median
of the classified range is used by the routing algorithm as the predicted demand for
computing the best path. Although a five-class classification is much better than a binary
classification, a finer granularity prediction is desirable for improving the decisions of the
routing algorithm. In addition, FlowSeer carries the limitations of sampling statistics
collection, including inaccurate elephant detection and moderate traffic overhead.

All these mechanisms for detecting elephant flows are pre-configured with a fixed
threshold value, which might cause high detection error rates when working with the
frequently changing traffic of DCNs. Motivated by this shortcoming, Liu et al. [257]
introduce an adaptive approach for elephant flow detection by adopting a dynamical
traffic learning algorithm to configure the threshold value. Although the results show
improvement compared to other methods, this work relies on pulling flow statistics, which
generates high traffic overhead, and conducts a simple binary classification of flow sizes.

Rather than flow detection methods, some SDN-based multipath routing approaches
have used the short-term and partial predictability of the traffic matrix to make routing
decisions. MicroTE [258] proposes software modifications into each server (similar to Ma-
hout) for incorporating a monitoring component that collects network traffic. Only one
server per rack is responsible for aggregating, processing, and summarizing the network
statistics for the entire rack. This designated server then determines the matrix traffic
predictability and communicates this information to the controller. The controller com-
putes paths for predictable traffic, while the unpredictable traffic is routed in a weighted
form of ECMP. Similarly, Nie et al. [259] predicts and estimates the traffic matrix in
DCNs but applying a DL technique (i.e., DBN). The authors demonstrate through sim-
ulations that the proposed method can capture the short time scale property of traffic
flows faithfully. However, the bursty nature of the traffic in DCNs makes traffic ma-
trix prediction questionable. Moreover, the short time scale predictability of the traffic
matrix (1 − 2s) might not be enough for the whole process: sending information to the
controller, making routing decisions, and installing the computed paths on the switches.
This concern is more severe for the DBN approach than for MicroTE due to the time and
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processing requirements for training DL techniques. Further investigation is required to
clarify these questions.

Table 2.2 summarizes the limitations of the reviewed SDN-based multipath routing
mechanisms. In general, SDN-based multipath routing have demonstrated improvements
over the state-of-the-art multipath routing (i.e., ECMP). However, the existing mecha-
nisms lack finding the best trade-off between traffic overhead, data collection accuracy,
and network modifications. In addition, there is still room for improving the routing
decisions of SDN-based multipath routing by analyzing finer traffic characteristics.

Table 2.2: Summary of the limitations of SDN-based multipath routing
Perspective Approach Gaps

Traffic analysis
location

Centralized by pulling
[26,32,248,249,253,257,259]

- High traffic overhead
- High controller processing
- Low resource scalability

Centralized by sampling
[25,27,33–35,251]

- Moderate traffic overhead
- Moderate controller processing
- Inaccurate collection of traffic statistics

Distributed at switches
[27]

- Specialized hardware
- Low resource scalability
- High switch processing

Distributed at servers
[28,29,258] - Software modifications

Traffic
characteristics

Binary classification of flow sizes
- non-ML [25–29,248,249,251]
- ML-based [32, 34,35,253]

- Static threshold to identify elephants
- Coarse classification of flow sizes
(two classes)

- Reactive detection of traffic characteristics
(non-ML approaches)

Multiclass classification of flow
sizes based on ML [33]

- Moderate classification of flow sizes
(four to five classes)

Adaptive binary classification of
flow sizes based on ML [257] - Coarse classification of flow sizes

Prediction of traffic matrix
- non-ML [258]
- ML-based [259]

- Not suitable for the bursty traffic in DCNs
- Short time predictability of traffic matrix

2.4 Final remarks

First, this chapter detailed the traditional three-plane architecture for deploying an SDN-
based network as well as the later inclusion of the management plane in the architecture.
We extended such a management plane for integrated control and monitoring of hetero-
geneous SDNs in one or more domains. Our management plane included an information
model that leveraged either CIM or YANG to represent the SDN architecture. We also de-
fined our management plane in the context of network automation by introducing an SDN
management architecture based on HTN and NFV. Subsequently, the chapter provided
a primer on ML, which discussed different categories of ML-based approaches, including
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supervised, unsupervised, reinforcement, batch, and incremental learning. This primer
also included a brief history of ML techniques used in networking and the vision of cog-
nitive networks towards automating operations and management. The latter included
our C-MAPE approach that incorporates cognition in every function of IBM’s autonomic
computing control loop. Finally, this chapter exposed the concepts and a literature review
related to multipath routing for load-balancing in DCNs, focusing on the seminal works
that use SDN and ML for addressing such a challenge. From the literature review, we
can conclude that SDN-based multipath routing have demonstrated improvements over
the prevalent ECMP. However, the existing SDN-based mechanisms lack finding the best
trade-off between traffic overhead, data collection accuracy, and network modifications.
Furthermore, finer traffic characteristics is desirable for improving the routing decisions
of SDN-based multipath routing.
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Chapter 3

Flow detection using online incremental
learning at the server-side of
software-defined data center networks

Data centers provide significant bandwidth capacity for a large number of servers intercon-
nected by a specially designed network, called DCN [1,260]. This bandwidth capacity can
be optimized by using multipath routing, which distributes traffic over multiple concurrent
paths [4]. Nowadays, ECMP is the default multipath routing mechanism for DCNs [5].
ECMP uses in every router a hash function on packet headers to assign each incoming
flow to one of the equal-cost forwarding paths for reaching a destination. However, ECMP
can degrade the performance of DCNs due to the coexistence of many small, short-lived
flows (i.e., mice) and few large, long-lived flows (i.e., elephants), since ECMP can assign
more elephant flows to the same path, generating hot-spots (i.e., some links overused
while others underused). Flows traversing hot-spots suffer from low throughput and high
latency.

Recent multipath routing mechanisms have leveraged SDN to face the ECMP limita-
tions; DCNs using SDN are referred to as SDDCNs. SDN allows a logically centralized
controller to dynamically make and install routing decisions on the basis of a global view of
the network [24]. SDN-based multipath routing dynamically reschedules elephant flows,
while handling mouse flows by employing default routing such as ECMP [5] and our
pseudo-MAC-based approach (see Section 4.1). Reactive flow detection methods, which
are at the heart of SDN-based mechanisms, discriminate elephants from mice by using
static thresholds [26, 27, 29]. However, reactive methods are not suitable for SDDCNs
since hot-spots may occur before the elephant flows are detected.

Novel SDN-based flow detection methods incorporate ML for proactively identifying
elephant flows. However, ML-based methods operate at the controller-side of SDDCNs,
requiring the central collection of either per-flow data [32] or sampling-based data [33,35].
The central collection of per-flow data, however, causes problems such as heavy traffic
overhead and poor scalability. Sampling-based data, on the other hand, tends to provide
delayed and inaccurate flow information. Moreover, sampling techniques that mitigate
the problem rely on non-standard SDN specifications. Using ML on either the switch-
side or server-side represents a potential solution to the controller-side problems since
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these locations enable prompt and per-flow data with low traffic overhead. Switch-side
flow detection methods based on ML are impractical because they require specialized
hardware and put a heavy processing load on the switches. Conversely, ML-based flow
detection methods at the server-side require only software modifications in the servers;
nonetheless, these methods have not been fully explored.

In this chapter, we propose a novel flow detection method denominated Network Ele-
phant Learner and anaLYzer (NELLY), which applies online incremental learning at the
server-side of SDDCNs for accurately and timely identifying elephant flows while generat-
ing low control overhead. Incremental learning allows NELLY to constantly train a flow
size classification model from continuous and dynamic data streams (i.e., flows), providing
a constantly updated model and reducing time and memory requirements. Thus, NELLY
adapts to the variations in traffic characteristics and performs endless learning with limited
memory resources. We extensively evaluate NELLY using datasets extracted from real
packet traces and incremental learning algorithms. Quantitative evaluation demonstrates
that NELLY is efficient in relation to accuracy and classification time when adaptive deci-
sion trees algorithms are used. Analytic evaluation corroborates that NELLY is scalable,
causes low traffic overhead, and reduces detection time, yet it is in conformance with SDN
standards.

The remainder of this chapter is as follows. Section 3.1 introduces the architecture
of NELLY. Section 3.2 presents a quantitative evaluation of NELLY using incremental
learning algorithms and real packet traces. Section 3.3 compares NELLY to other related
work. Section 3.4 concludes the chapter.

3.1 Architecture of NELLY

Figure 3.1 introduces NELLY, a flow detection method that applies online incremental
learning at the server-side of SDDCNs to identify elephant flows accurately in a reasonable
time while generating low control overhead. NELLY operates as a software component
either in the kernel of the host operating system or in the hypervisor of servers in the
SDDCN with the aim of monitoring all packets sent by the applications, containers, and
virtual machines. Since NELLY detects elephant flows at their origin, a small overhead
is demanded.

The architecture of NELLY (see Figure 3.1) presents two subsystems: Analyzer and
Learner. The Analyzer applies a flow size classification model for detecting and marking
elephant flows on the fly. The Learner then applies an incremental learning algorithm for
building and updating the flow size classification model. This model maps online features
(i.e., features extracted from the first few packets of a flow) onto the corresponding class
of flows (i.e., mice or elephants). The processes of the Analyzer and the Learner run
concurrently as depicted in Algorithms 3.1 and 3.2, respectively. Moreover, for the sake
of readability, Table 3.1 lists and describes the symbols defined in the architecture of
NELLY.

NELLY is conceived for recognizing and handling elephant flows in real SDN imple-
mentations. NELLY can run on any host operating system or hypervisor. In the control
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Figure 3.1: Architecture of NELLY

plane, any OpenFlow-compliant controller (e.g., OpenDaylight , ONOS, Ryu) can be used
since NELLY operates at the server-side. In the data plane, OpenFlow-compliant switches
(e.g., Open vSwitch) can be employed since NELLY requires only that the ToR switches
include a pre-configured routing rule to forward elephant flows to the controller. The
controller then can install specific routing rules per elephant flow based on the best path
computed by a rescheduling algorithm, as discussed in Chapter 4.

3.1.1 Analyzer

As illustrated in Figure 3.1, the Analyzer consists of four modules: Monitor, Filter, Clas-
sifier, and Marker. The process of each module is detailed in Algorithm 3.1. As shown in
lines 1–2, the Monitor keeps track of flows by extracting the header, size, and timestamp
of each outgoing packet. A flow consists of subsequent packets sharing the same value
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Table 3.1: Symbols in the architecture of NELLY
Symbol Name Description

θTO Timeout threshold Time limit above which both the Monitor and the
Collector acknowledge a flow has terminated

θF Filter threshold
Flow size limit below which either the Analyzer sends
the packets without further processing or the Learner
discards the flow records

M Packet marking Number of subsequent packets in an elephant flow to
be marked

T Collection rate Time interval at which the Collector looks for termi-
nated flows in FlowRepo

θL Labeling threshold Flow size limit above which the Tagger labels the
flows as elephants

for certain header fields, and separated by a time-space shorter than a threshold timeout
(θTO). NELLY enables a flexible configuration of these flow parameters, namely, flow
header fields and θTO. For example, the flow header fields can be set as the well-known
5-tuple: source IP, source port, destination IP, destination port, and IP protocol. These
flow header fields can also include MAC addresses and VLAN ID. On the other hand, the
configuration of θTO is discussed in Section 3.1.2.

The Analyzer manages a flow record in the Flow Repository (FlowRepo) for each
observed flow. As illustrated in Figures 3.2 and 3.3, the flow record includes the Flow
IDentifier (FlowID), start time, last-seen time, packet header (e.g., 5-tuple), flow size, the
size and Inter-Arrival Time (IAT) of the first N packets, as well as the identified class
(i.e., mice or elephants). Note that the IAT of the first packet is not included because
it does not provide distinctive flow information (i.e., the IAT is always zero for the first
packet of every flow).

As depicted in lines 3–13 in Algorithm 3.1, the Monitor then generates a FlowID from
the flow header fields of each packet and checks to see if it exists in the FlowRepo. If this
FlowID is missing (e.g., for packets 1 and 3 in Figure 3.3), or if the time since the last
update of an existing record with this FlowID is longer than θTO (e.g., for packet 4), the
Monitor creates a new record in the FlowRepo (Algorithm 3.1, lines 25–32). Otherwise,
the Monitor fetches and updates the flow record (Algorithm 3.1, lines 33–43) using the
FlowID stored in the FlowRepo (e.g., for packets 2 and 5 through 10 in Figure 3.3). When
multiple flow records sharing the same FlowID exist in the FlowRepo, the Monitor always
works with the most recent one (e.g., for packets 5 to 10).

Using the updated flow record, the Filter (Algorithm 3.1, line 14) avoids the intro-
duction of a delay in the classification of a large number of mouse flows (usually latency-
sensitive [27, 29]) by sending the packets of flows with a size below a certain threshold
(θF ) directly to the SDDCN without further processing (e.g., for packets 1 to 9 in Fig-
ure 3.3). The Filter also ensures that the Classifier receives all the required online features
for making the classification. The online features refer to flow data extracted from the
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Algorithm 3.1: NELLY Analyzer
input : outgoing packet p with header hp, size sp, and timestamp tp, and flow size

classification model m
output: either packet p or packet marked p∗
data : flow timeout threshold θTO, filtering flow size threshold θF , and number of first

packets N
1 begin on receiving p

// Monitor
2 get hp, sp, and tp from p;
3 fid← compute FlowID using the flow header fields from hp;
4 if fid /∈ FlowRepo then
5 f ← call Create_Flow(fid, hp, sp, tp)
6 else
7 F ← fetch the last flow f ∈ FlowRepo such that f .id = fid;
8 if (currentTime − f .lastSeenTime) > θTO then
9 f ← call Create_Flow(fid, hp, sp, tp)

10 else
11 f ← call Update_Flow(f , sp, tp)
12 end
13 end

// Filter
14 if f .size < θF then return p;

// Classifier
15 if @ f .class then
16 f .class ← m.Classify(f);
17 update f → FlowRepo;
18 end

// Marker
19 if f .class = “Elephant” then
20 p∗ ← mark p;
21 return p∗;
22 end
23 return p;
24 end
25 function Create_Flow(fid, hp, sp, tp):
26 f ← initialize a new flow with FlowID fid;
27 f .headerFields[] ← array of flow header fields from hp;
28 f .startTime ← f .lastSeenTime ← tp;
29 f .size ← f .sizePackets[0] ← sp;
30 create f → FlowRepo;
31 return f

32 end
33 function Update_Flow(f , sp, tp):
34 n ← current number of packets of f ;
35 if n ≤ N then
36 f .sizePackets[n] ← sp;
37 f .iatPackets[n] ← tp −−f .lastSeenTime;
38 end
39 f .size ← f .size + sp;
40 f .lastSeenTime ← tp;
41 update f → FlowRepo;
42 return f

43 end

first N packets of a flow. The Filter then guarantees the size and IAT of the first N
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Figure 3.3: Example of how flow records are created and updated in FlowRepo

packets of a flow since the maximum value of N depends on θF . For example, θF = 10

kB would require an N ≤ 7 over Ethernet, otherwise, data from some packets would be
missed. Consequently, the Classifier operates once the Monitor has processed packets that
increment the size of flows over θF (e.g., for packet 10).

The Classifier (Algorithm 3.1, lines 15–18) applies the flow size classification model to
the online features to identify flows as either mice or elephants. This model results from
an incremental learning algorithm, which maps the online features to the corresponding
class of flows used as training data. After applying the flow size classification model,
the Classifier stores the identified class in the FlowRepo for each flow record with a flow
size greater than θF (e.g., elephant for flow of packet 10 in Figure 3.3). Therefore, when
processing a packet of a previously identified flow, the Classifier checks the fetched class
from the FlowRepo to avoid any delay from the classification. The Classifier then reports
to the Marker the class of the flow for each packet. We discuss in Section 3.1.2 how the
Learner collects the training data for building and updating the flow size classification
model.

The Marker (Algorithm 3.1, lines 19–23) forwards the packets of flows classified as mice
without changes but marks those classified as elephants (e.g., packet 10 in Figure 3.3). To
mark a packet, the Marker sets a predefined value in a code point header field supported
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by SDN switches. For example, OpenFlow switches support matching in two code point
header fields. The first of these is the 6-bit Differentiated Services Code Point (DSCP)
field of the IPv4 header. This DSCP reserves a code point space for experimental and
local usage (i.e., ∗ ∗ ∗ ∗ 11, where ∗ is 0 or 1). The second is the 3-bit 802.1Q Priority
Code Point (PCP) field of the Ethernet header. In practice, NELLY can rely on either
one of these fields, since it is improbable that a data center use both DSCP and PCP
simultaneously [29].

The Marker can be extended by enabling a flexible configuration of the number of
subsequent packets in an elephant flow to be marked (M), thus enabling a trade-off
between reliability and latency. For instance, as M increases, the lesser the probability
that the controller will miss elephant flows due to losses of marked packets in the SDDCN.
However, a higher M introduces a delay in the Marker for a higher number of packets of
elephant flows. Once the controller has installed a higher priority routing rule for handling
a specific elephant flow across the SDDCN, the subsequent marked packets of this flow
are not forwarded to the controller.

3.1.2 Learner

As depicted in Figure 3.1, the Learner consists of four modules: Collector, Filter, Tagger,
and Trainer. The process of each module is detailed in Algorithm 3.2. As shown in lines
1–4, the Collector fetches terminated flows from the FlowRepo at every interval T . A flow
is considered terminated if it remains idle for longer than θTO. Therefore, the Collector
recognizes terminated flows by checking that a time longer than θTO has passed since the
last-seen time of the FlowID records in the FlowRepo. Note that the Collector relies on
the FlowID records updated by the Monitor for the recognition of the terminated flows,
so their actual size can be obtained.

The Collector avoids increasing memory consumption in NELLY by removing termi-
nated flows from the FlowRepo (Algorithm 3.2, line 5). The actual size of terminated
flows can also be further used to provide fixed-memory probability distributions that sup-
port autonomous configuration of flow size thresholds [257]. Memory requirements in
the FlowRepo thus depend on both T and θTO. T provides a trade-off between memory
and processing. As T decreases, the Collector removes the terminated flows from the
FlowRepo more quickly, consuming less memory, but leading to more processing. In turn,
θTO directly affects the number of FlowID records stored in memory. As θTO increases,
the FlowRepo retains FlowID records for a longer time. θTO is related to the inactive
timeout configuration of flow rules in SDN-enabled switches, which provides a trade-off
between flow table occupancy and miss-rate (i.e., when the packet IAT is greater than
the timeout) [261].

The Filter of the Learner (Algorithm 3.2, line 6) receives the terminated flows from the
Collector and reports to the Tagger only those with size greater than θF . The terminated
flows are then used by the Trainer to build the flow size classification model. Since the
Classifier operates only with flows of a size greater than θF , the Filter of the Learner
prevents the introduction of noise to the model.

The Tagger (Algorithm 3.2, lines 7–8) compares the actual size of the filtered flows to
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Algorithm 3.2: NELLY Learner
input : flow size classification model m
output: either actual m or updated m
data : learning time interval T , flow timeout threshold θTO, filtering flow size threshold θF ,

and labeling flow size threshold θL
1 begin every T

// Collector
2 F ← fetch flows f ∈ FlowRepo;
3 for f ∈ F do
4 if currentTime − f .lastSeenTime > θTO then
5 delete f → FlowRepo;

// Filter
6 if f .size ≥ θF then

// Tagger
7 if f .size ≥ θL then f .class ← “Elephant” ;
8 else f .class ← “Mouse” ;

// Trainer
9 m← m.Update(f .headerFields[], f .sizePackets[], f .iatPackets[], f .class);

10 end
11 end
12 end
13 return m;
14 end

a labeling threshold (θL) so that they can be tagged as either mice or elephants. θL will
vary (e.g., 100 kB or 1 MB) as a function of the traffic characteristics and performance
requirements of SDDCNs. Labeled flows provide the Trainer (Algorithm 3.2, line 9) with
the ground truth for building a supervised learning model for flow size classification (see
Section 2.2). This classification model maps online features (i.e., packet header, size, and
IAT of the first N packets) onto the corresponding class (i.e., mice or elephants). Recall
that the Classifier relies on the flow size classification model to identify elephant flows.

Since flows represent continuous and dynamic data streams, the Trainer uses an incre-
mental learning algorithm (e.g., Hoeffding tree and online ensembles) for building the flow
size classification model. Incremental learning enables updating the flow size classifica-
tion model as the Trainer receives labeled flows over time, rather than retraining from the
beginning (see Section 2.2.1). Therefore, NELLY adapts to varying traffic characteristics
and performs continuous learning with limited memory resources. There is no need for
the Trainer to maintain labeled flows in memory. This is an important characteristic of
NELLY, since it helps to reduce the consumption of resources in all the servers of the
SDDCN.

3.2 Evaluation

This section presents the evaluation of NELLY in relation to classification accuracy and
time by using real packet traces and incremental learning algorithms. The generic ap-
proach for designing ML-based solutions in networking (see Figure 2.4) is used to describe
and conduct the evaluation of NELLY: (i) data collection to gather the raw packet traces
and generate the flow size datasets, (ii) feature engineering to extract and format the on-
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line features of the flow size datasets, (iii) establishing the ground truth to label each flow
in the datasets using the flow size and the classes of interest (i.e., mice and elephants),
iv model validation to define the accuracy metrics that measure the performance of the
trained models; and (v) model learning to train different models by using a variety of
incremental learning algorithms.

3.2.1 Datasets

Two real packet traces, UNI1 and UNI2, captured in university data centers [255], were
employed to evaluate NELLY (Table 3.2 summarizes their characteristics). These two
traces are shorter than three hours long, but their mice and elephants distributions are
similar to those found in non-public traces collected at different periods along the day [9,
11]. On the other hand, to the best of our knowledge, neither traces nor datasets of IPv6
traffic in DCNs are publicly available. In line with that, NELLY was evaluated using IPv4
traffic only which represents over 99% of the packets in UNI1 and UNI2.

Table 3.2: Details of real packet traces and extracted IPv4 flows
Packet traces [255] UNI1 UNI2

Duration 65 min 158 min

Packets 19.85 M 100 M

IPv4 % of total traffic 98.98% (mostly TCP) 99.9% (mostly UDP)

IPv4 flows 1.02 M (TCP and UDP) 1.04 M (mostly UDP)

Details of
IPv4
flows

Flow size % of IPv4 flows % of IPv4 traffic % of IPv4 flows % of IPv4 traffic
≥ 10 kB 7.16% 95.06% 5.91% 98.81%
≥ 100 kB 0.83% 83.71% 1.93% 96.86%
≥ 500 kB 0.14% 73.14% 0.76% 93.52%
≥ 1 MB 0.07% 69.52% 0.48% 90.83%
≥ 5 MB 0.01% 60.33% 0.17% 81.34%

IPv4 flows obtained using the 5-tuple header and a threshold timeout θTO = 5 s

Only the following parameters needed to be defined to generate the datasets: the
flow header fields, θTO, and N . Firstly, the 5-tuple header (i.e., source IP, destination IP,
source port, destination port, and IP protocol) as the flow header fields since it sufficiently
characterizes IPv4 flows; hereinafter, they are referred just as flows. Secondly, θTO = 5
s was established on the basis of the break-even point analysis between the flow table
occupancy and the miss-rate in OpenFlow switches for DCNs considered by [261]. Then,
since the maximum value of N depends on θF , N = 7 was set as the maximum for θF =

10 kB. As shown in Table 3.2, the selected θF encompasses all the potential elephants
(i.e., flows carrying more than 95% of the traffic) and avoids the introduction of the
classification delay to mice (for more than 93% of the flows). Using these parameters,
the UNI1 and UNI2 data traces were processed to generate the corresponding flow size
datasets, each containing somewhat more than a million flows (see Table 3.2). Since
NELLY only classifies flows greater than θF , those smaller than θF = 10 kB were removed
from both datasets. Therefore, the UNI1 and UNI2 datasets consisted of approximately
70,000 and 60,000 flows, respectively.

The datasets [262] included the following flow information: start time, end time, 5-
tuple header, size and IAT of the first 7 packets, as well as flow size. The start and end
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times enabled a more realistic evaluation (see Section 3.2.3). The 5-tuple header and
the size and IAT of the first 7 packets represented the online features for the flow size
classification model. The flow size was compared to different θL (e.g., 100 kB, 500 kB, 1
MB, and 5 MB) to label the flows as mice or elephants (i.e., classes of interest). Unless
otherwise stated, the datasets with θL = 100 kB were used. Labeled flows represented
the ground truth for learning and validating the flow size classification model.

For complementing feature engineering, various different data types were considered
for the online features, particularly for the 5-tuple header. Certainly, the size and IAT of
the first 7 packets (13 features, since the IAT of the first packet is not included) indicate a
measurement, hence, numeric data, whereas the 5-tuple header contains two IP addresses
in dotted-decimal notation (i.e., categorical data) and three numeric codes (i.e., nominal
data). However, the huge set of possible categories for IP addresses (i.e., 232) hinders a
real implementation. To address this problem, the IP addresses were divided into four
octets, resulting in a total of 11 nominal features for the 5-tuple header. To handle these
11 nominal features as numeric data, a Numeric (Num) header type was defined. These
features were then transformed into binary digits (bits), generating 104 features for the
5-tuple header. Considering these binary features, two more header types were defined:
Binary-Numeric (BinNum) to treat binary features as numeric data (i.e., a value between
zero and one) and Binary-Nominal (BinNom) to handle binary features as nominal data
(i.e., zero or one). Table 3.3 illustrates the features included by each header type. Unless
otherwise stated, the datasets with BinNom-header were used.

Table 3.3: Header types defined during feature engineering
Header
type

Features of the header type
(example)

# of
features

5-tuple
Source/Destination IP Source/Destination Port IP Protocol

541.177.26.55 80
6

244.3.160.248 43521

Num

Source/Destination IP
Source/Destination Port IP Protocol

11
Octet 1 Octet 2 Octet 3 Octet 4

41 177 26 55 80
6

244 3 160 248 43521

BinNum
BinNom

Source/Destination IP Source/Destination Port IP Protocol

104∗
8 bits 8 bits 8 bits 8 bits 16 bits 8 bits

00101001 10110001 00011010 00110111 0000000001010000
00000110

11110100 00000011 10100000 11111000 1010101000000001
∗Each bit represents one feature

3.2.2 Accuracy metrics

Metrics derived from the confusion matrix (see Figure 3.4) were used, including the True
Positive Rate (TPR) and the False Positive Rate (FPR), thus avoiding the over-optimism
of the conventional accuracy metric caused by an imbalance of classes [263]. In the
datasets, the imbalance between mice and elephants depends on θL. For example, as-
suming θL = 100 kB, only 12% of flows above 10 kB in the UNI1 dataset represent the
elephant class (see Table 3.2). The imbalance grows as θL increases.
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Figure 3.4: Confusion matrix for binary classification

Consider that each row in the confusion matrix, illustrated in Figure 3.4, represents
a predicted outcome and each column represents the actual instance. In this manner,
True Positive (TP) is the intersection between correctly predicted outcomes for the actual
positive instances. Similarly, True Negative (TN) is when the classification model correctly
predicts an actual negative instance. Whereas, False Positive (FP) and False Negative
(FN) describe incorrect predictions for negative and positive actual instances, respectively.
Note, that TP and TN correspond to the true predictions for the positive and negative
classes, respectively.

Recall that flows classified as elephants are forwarded to the controller for further
processing, thus introducing transmission and processing delays. Therefore, NELLY aims
at detecting as many elephants while negatively affecting as few latency-sensitive mice
as possible. Considering elephants as the positive condition, the TPR describes the pro-
portion of detected elephants (see Equation 3.1) whereas the FPR provides the ratio of
negatively affected mice (see Equation 3.2). Both TPR and FPR range between 0 and
1. Furthermore, the Matthews Correlation Coefficient (MCC) was used to analyze the
balance between the TPR and the FPR. The MCC takes all values from the confusion
matrix to provide a measure between 1 and -1 (see Equation 3.3). As the MCC gets closer
to 1, the difference of the TPR over the FPR increases, leading to a more accurate clas-
sifier. An MCC between 0 and -1 means that TPR ≤ FPR, which would be less accurate
than a random classifier. In our experiment, the MCC values were always greater than 0,
hence, we use a range between 0 and 1 to plot TPR, FPR, and MCC in Figures 3.5, 3.6,
and 3.7.

TPR =
TP

TP + FN
(3.1)

FPR =
FP

FP + TN
(3.2)
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MCC =
(TP × TN)− (FP × FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(3.3)

The MCC metric is employed in the performance analysis because it is recommended
for imbalanced datasets (like UNI1 and UNI2) [264]. The MCC score is only high when
the classification algorithms are doing well in both the positive and negative elements
(i.e., elephants and mice, respectively). The ROC curve has also proven to be useful
for imbalanced datasets but it is more appropriate to analyze classification algorithms
that output a real value [265]. Thus, we preferred the MCC because the output of the
incremental learning classification algorithms employed in this paper is a single class value
(either mouse or elephant) rather than a real value.

3.2.3 Experiment setup

Incremental learning algorithms are commonly evaluated using the interleaved test-then-
train approach [266]. This approach refers to going through each flow to classify it first
by working only with the online features and then use its actual class for training the
flow size classification model. However, since flows start and end over time, some order of
the flows must be established. Moreover, under real conditions, some flows start before a
classified flow ends, whereas others end before a new flow starts. Therefore, the flows are
classified at the start time and the model is trained at the end time, so the performance
evaluation will be based on more realistic conditions.

The imbalance of classes in the UNI1 and UNI2 datasets was addressed by training
the flow size classification model using inverse weights, as in [32], i.e., weights (between 0
and 1) inversely proportional to the ratio of training instances previously encountered by
the model for each class. If the model is trained with a single weight (i.e., 1 by default
in the Massive Online Analysis (MOA) tool [266]), it would tend to classify all flows as
mice due to the imbalance of classes.

To corroborate the weighting decision, the accuracy was evaluated when training the
model with the single weight and inverse weights for three incremental learning algorithms
available in MOA, namely, Adaptive Random Forest (ARF), Adaptive Hoeffding Option
Tree (AHOT), and Hoeffding trees (a.k.a. CVFDT)—as later discussed in Section 3.2.4,
NELLY achieves the best performance by using these algorithms. Figure 3.5 shows that
the three algorithms achieve a higher elephant detection rate (i.e., TPR) for both datasets
with the inverse weights than with the single weight. These gains in the TPR come at
a sacrifice to the FPR; however, the three algorithms maintain a similar MCC. There-
fore, in the performance evaluation, inverse weights were used to improve the TPR while
maintaining the trade-off between the TPR and FPR.

3.2.4 Performance analysis

To determine the consideration for the best classification performance of NELLY, the
UNI1 and UNI2 datasets were used with different header types (i.e., Num, BinNum, and
BinNom), as well as 50 incremental learning classification algorithms available in MOA.
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Figure 3.5: Classification accuracy of NELLY when using a single weight and inverse
weights for the UNI1 and UNI2 datasets

The performance evaluation included the accuracy metrics (i.e., TPR, FPR, and MCC)
and the classification time per flow (TC). The algorithms were executed with their default
settings (except for the training weights) and without previous model initialization.

For the sake of brevity, Table 3.4 presents ten algorithms, namely, AHOT, ARF, Ho-
effding tree, k-Nearest Neighbors (kNN) with Probabilistic Adaptive Windowing (PAW),
Naïve Bayes (NB), Online Accuracy Updated Ensemble (OAUE), online bagging, online
boosting, Stochastic Gradient Descent (SGD) for Support Vector Machines (SVM), and
Very Fast Decision Rules (VFDR) with NB classifiers (VFDRNB). These algorithms were
selected on the basis of the best performance results between algorithms with a similar
learning approach. Furthermore, Table 3.4 includes only the best results of each algo-
rithm, taking into account both accuracy and classification time for a specific header
type. The BinNom headers were found to enable the best performance of the majority of
the algorithms for the UNI1 and UNI2 datasets. This was due to the fact that most algo-
rithms achieved greater accuracy using the BinNom headers than the Num headers for a
comparable classification time. The use of the BinNum headers is strongly discouraged;
although similar or slightly better accuracy results were obtained, there was a significant
increase in the classification time (up to 4x).
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Table 3.4: Classification performance of NELLY with different incremental algorithms

Algorithms

UNI1 UNI2

TPR
(%)

FPR
(%) MCC TC

(µs)
Header
type

TPR
(%)

FPR
(%) MCC TC

(µs)
Header
type

AHOT 85.97 35.52 0.327 4.07 BinNom 60.16 28.58 0.304 10.17 BinNom

ARF 82.39 28.82 0.359 12.01 BinNom 68.65 21.33 0.460 17.39 BinNom

Hoeffding tree 86.79 36.38 0.326 3.18 BinNom 57.92 28.46 0.284 4.64 BinNom

kNN-PAW 25.30 2.99 0.311 473.1 Num 40.29 10.22 0.302 454.1 Num

NB 74.76 35.69 0.254 4.76 BinNom 49.74 23.18 0.267 4.82 BinNom

OAUE 86.79 33.63 0.347 25.58 BinNom 63.28 28.65 0.332 33.06 BinNom

Online bagging 87.78 37.11 0.327 23.98 BinNom 64.17 31.13 0.314 36.61 BinNom

Online boosting 75.88 29.93 0.307 11.56 BinNom 64.62 32.22 0.307 16.82 BinNom

SGD-SVM 16.76 10.21 0.067 0.81 Num 38.69 30.99 0.076 0.8 Num

VFDRNB 74.44 33.77 0.267 18.47 BinNom 54.83 29.15 0.248 18.59 BinNom

In bold the top five results of TPR and MCC, and the TC results shorter than 17.5 µs, for both UNI1 and UNI2

The accuracy results show that no single algorithm achieves the best values of the
TPR and MCC for the UNI1 and UNI2 datasets. This is due to the fact that the flow
size distribution and the features of the elephant and mouse flows were specific for each
dataset. Therefore, the top five results were used to analyze the accuracy performance.
Regarding the TC , most algorithms introduced a classification delay per flow shorter than
17.5 µs, but this represents only a small percentage (7%) of the Round-Trip Time (RTT)
in DCNs (i.e., 250 µs in the absence of queuing [267]).

Both Hoeffding tree and NB represent the state-of-the-art in incremental learning
algorithms. Their simplicity and low computational cost enabled a very short delay (TC <
5 µs) that accounts for only 2% of the RTT in DCNs. However, only the Hoeffding tree
represents a valid alternative for the traffic similar to that of UNI1 because its TPR and
MCC were among the top five results for the UNI1 dataset. The Hoeffding tree in MOA
uses NB classifiers on the leaves (i.e., CVFDTNBC), which improves the accuracy without
compromising the computational cost.

The ARF, OAUE, online bagging, and online boosting are ensemble-based algorithms
that combine multiple Hoeffding trees (ten in our evaluation) for improving the accuracy
at the expense of increasing the computational cost. As described in Section 2.2.2, en-
semble learning aims at improving the accuracy performance of a single learning model
by combining it with other models. As a result, the poor performance of a single classifier
can be compensated with ensemble learning at the price of extra computation. Indeed the
results from ensemble learning must be aggregated, and a variety of techniques have been
proposed in this matter, including random forest, block-weighting, bagging, and boosting.

Therefore, the ARF and online boosting algorithms introduced a TC shorter than 7%
of the RTT in DCNs. ARF provided the best MCC and a TPR among the top five for the
UNI1 and UNI2 datasets. Online boosting can be seen as an option for the traffic similar
to that of UNI2 since it was in the top five accuracy results only for the UNI2 dataset. In
contrast, although the OAUE and online bagging algorithms also provided good accuracy
results (particularly for the UNI1 dataset), they introduced a TC twice longer than the
TC of ARF and online boosting. This long TC is because OAUE and online bagging
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rely on ensemble methods (block-weighting and bagging, respectively) that demand more
computation than those used by ARF and online boosting (random forest and boosting,
respectively).

Similar to ARF, the AHOT algorithm figured in the top five accuracy results for both
datasets. Moreover, AHOT only introduced a TC shorter than 2% (5 µs) and 4% (10 µs)
of the RTT in DCNs for the UNI1 and UNI2 datasets, respectively. AHOT is capable
of improving the accuracy of the Hoeffding tree algorithm without demanding too much
computation by providing an intermediate solution between a single Hoeffding tree and
an ensemble of Hoeffding trees. AHOT uses additional option paths (five maximum in
our evaluation) to build a single structure that efficiently represents multiple Hoeffding
trees.

The implementations in MOA of the VFDRNB, SGD-SVM, and kNN-PAW algorithms
are strongly discouraged. The VFDRNB presented accuracy results outside the top five for
both datasets and a TC slightly longer than 7% of the RTT in DCNs. This is because rule-
based algorithms focus on building more interpretable models than does the Hoeffding
tree algorithm, which increases the computational cost but not necessarily improves the
accuracy. The SGD-SVM algorithm introduced the shortest classification delay (TC < 1
µs) but it produced the worst values in the TPR and MCC metrics. The reason for these
values is that MOA implements a very simple SGD-SVM algorithm that uses a linear
kernel which is not sufficient to model different patterns in flows of packets. The kNN-
PAW provided the second-worst TPR for both datasets and a very long classification delay
(TC > 450 µs), which increased up to 3,000 µs with the BinNum and BinNom headers
(i.e., 12x the RTT in DCNs). This long TC value is a consequence of the computation of a
distance metric by the algorithms based on kNN every time the classification is performed.

In conclusion, NELLY achieves the best classification performance by using the Bin-
Nom headers along with the following incremental learning algorithms:

• The ARF is good for any type of traffic and if the RTT is flexible. It achieved the
best MCC for the UNI1 and UNI2 datasets, and it was also the fifth- and second-best
for the TPR while introduced a TC lesser than 7.5% of the RTT in DCNs.

• The AHOT is good for any type of traffic and a strict RTT. The TPR and MCC
ranked among the top five for both datasets while the TC was shorter than that of
the ARF, especially for the UNI1 dataset.

• The Hoeffding tree (CVFDTNBC) is good for traffic similar to that of UNI1 and if
the RTT is very strict. The TPR was the second-best and the MCC was the fifth
(quite close to the AHOT) for the UNI1 dataset while introduced a very short TC .
When the RTT constraint takes precedence over the accuracy, this would be a good
option for traffic similar to that of UNI2 because a very short TC was maintained
while provided the sixth-best TPR and MCC for such traffic.

The classification accuracy of NELLY was also evaluated with the ARF and AHOT
algorithms for different values of θL since this threshold may vary as a function of traffic
and routing requirements. Both ARF and AHOT ranked among the top five in accuracy
for both datasets with a TC shorter than 7.5% of the RTT in DCNs. As shown in
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Figure 3.6, the MCC results of both algorithms were degraded as θL increased, especially
for the UNI1 dataset. This is because the difference between the features of the elephants
and mice becomes less significant as θL increases. In contrast, the TPR remained very
similar as θL increased, except that the ARF suffered from a significant reduction in the
TPR for the UNI1 dataset. Therefore, the AHOT was more robust to variations in θL for
traffic similar to that of UNI1, although the performance of both algorithms was similar
for the UNI2 dataset. Based on this summary, NELLY with the AHOT algorithm enables
a flexible configuration of θL while providing great elephant flows detection in data centers
regardless the type of traffic. For traffic similar to that of UNI2, both ARF and AHOT
represent valid alternatives for the use of NELLY and the flexible configuration of θL is
possible since they perform similarly in terms of elephants detection.
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Figure 3.6: Classification accuracy of NELLY with the ARF and AHOT algorithms when
varying the labeling threshold (θL) for the UNI1 and UNI2 datasets

Finally, the effect of the handling of different ranges of the inverse weights in the
two classes on the classification accuracy of NELLY with the two algorithms (ARF and
AHOT) was analyzed. The weights of the mice were maintained between 0 and 1, whereas
the weights of the elephants ranged from 0 toWE, whereWE varied from 1 to 5. Figure 3.7
shows that both the ARF and AHOT algorithms achieved a higher TPR for both datasets
as WE increased (up to 94% and 98% of elephants detection, respectively). These results
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were expected since establishing greater weights for the elephant class makes the learning
algorithms increment the influence of the features of the elephant flows in the classification
model. Moreover, the trade-off between the TPR and FPR (i.e., MCC) remained quite
similar for UNI1-type traffic whereas that of UNI2 was degraded as WE increased. This
is due to the greater differences between the elephants and mice for the UNI1 dataset
than for UNI2 when θL = 100 kB. Therefore, as WE increased for the UNI2 dataset, the
increment of mouse flows wrongly classified as elephants (i.e., FPR) was greater than that
of elephant flows correctly classified (i.e., TPR). In conclusion, NELLY supports a flexible
configuration of inverse weights for meeting different accuracy requirements.
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Figure 3.7: Classification accuracy of NELLY with the ARF and AHOT algorithms when
varying the inverse weights of elephant flows (WE) for the UNI1 and UNI2 datasets

3.3 Comparative analysis

NELLY was compared with OFSP [32], ESCA [35], FlowSeer [33], and Mahout [29].
OFSP, ESCA, and FlowSeer incorporate ML at the controller-side of SDDCNs for proac-
tively detecting elephant flows, whereas Mahout performs reactive detection at the server-
side. The results reported by each work for the UNI1 dataset were used to compare them
in relation to: learning approach, elephants detection, false elephants, table occupancy,
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control overhead, detection time, network modifications, and performance factors. The
seminal works involving Hedera [26] and DevoFlow [27] were not considered. These ap-
proaches perform reactive flow detection and their limitations hinder real implementation.
Hedera causes large control traffic overhead and has poor scalability, whereas Devoflow re-
quires custom-made switch hardware and imposes a heavy burden on switches. Devoflow
also presents an alternative based on sFlow [250], however, ESCA revealed and outper-
formed the inaccurate and late elephant detection suffered by the sFlow-based DevoFlow.

Table 3.5 summarizes the comparative analysis. Overall, NELLY achieved a better
balance between the comparative features than the other approaches, namely, a very high
elephant detection rate with a very short detection time, while significantly reducing traffic
overhead, without demanding switch table occupancy, and only software modifications and
resources in servers were required. The following paragraphs outline the comparison of
NELLY with the other approaches.

Table 3.5: Comparison of NELLY with related approaches
FEATURE OFSP

[32]
ESCA
[35]

FlowSeer
[33]

Mahout
[29] NELLY

Learning approach Incremental Batch Batch and
incremental None Incremental

Elephants detection Very high High Very high Perfect Very high

False elephants Very low Very low High None Very low

Table occupancy Very high Medium Low None None

Control overhead High Medium Medium Very low Very low

Detection time Very short Medium Medium Long Very short

Network modifications∗ None Hardware
of switches None Software

in servers
Software
in servers

Performance factors Controller
and ToR

Controller
and ToR

Controller
and ToR Servers Servers

∗Assuming OpenFlow-based networks [48]

Learning approach. ML algorithms used for detecting elephant flows can involve
batch or incremental learning. Batch learning refers to the use of training models based
on static datasets (i.e., all training data are simultaneously available). However, batch
learning requires the storage of unprocessed data to cope with traffic variations in DCNs,
so the models must repeatedly work from scratch. This is time-consuming and prone to
outdated models. Conversely, incremental learning continuously adapts the ML models
on the basis of streams of training data, enabling constantly updated models and reducing
time and memory requirements (see Section 2.2.1). ESCA relies on batch learning whereas
NELLY and OFSP rely on incremental learning for detecting elephant flows. FlowSeer
is a mixed approach using batch learning for the identification of potential elephants and
incremental learning for the classification of the potential ones. Mahout has no learning
approach, since it performs reactive elephants detection.

Elephants detection. The main goal of flow detection methods is to identify elephant
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flows (i.e., TPR). NELLY, OFSP, and FlowSeer all proactively detected more than 95%
of elephant flows, whereas ESCA detected a maximum of 88.3%. Mahout provides perfect
detection, although this is reactive.

False elephants. Mouse flows mistakenly identified as elephants (i.e., FPR) are need-
lessly forwarded to and processed by the controller. For achieving the highest elephants
detection rate, FlowSeer informed the controller of 29% of mice as potential elephants,
whereas OFSP and ESCA only reported around 2%. No mouse flow is reported to the
controller by Mahout since detection is reactive. NELLY yielded an FPR of 40%, but this
was computed using only 7% of the flows (i.e., θF = 10 kB, in Section 3.2.1). NELLY
sent the other 93% of the flows (corresponding to mice) directly to the SDDCN without
further processing (see Section 3.1.1). NELLY thus forwards only 2.5% of mice to the
controller for achieving the highest elephants detection rate (see Figure 3.9(b)).

Figures 3.8 and 3.9 depict the elephants detection and false elephants results that
NELLY achieves when considering all the IPv4 flows from the UNI1 and UNI2 data traces,
including the portion of mice sent directly to the SDDCN without further processing.
Figure 3.8 shows the results for different values of θL (cf. Figure 3.6), while Figure 3.9
sets θL = 100 kB and varies the range of the inverse weights of elephant flows (WE) (cf.
Figure 3.7).

Table occupancy. Controller-side flow detection methods install flow table entries
in ToR switches for centrally collecting flow data. The smaller the number of flow table
entries, the more efficient is the resource utilization. OFSP requires one entry per flow,
thus constraining its scalability because of the limited memory in SDN switches. ESCA
and FlowSeer install wildcard entries for sampling packets of flows. They reported 236 and
50 flow table entries, respectively, for achieving their highest detection rate in the UNI1
dataset. Conversely, NELLY and Mahout do not require flow table entries for collecting
data since they operate at the server-side.

Control overhead. Flow detection methods require ToR switches to send control
packets to the controller, either for the collection of flow data or for the reporting of
detected elephant flows. The smaller the control overhead, the lower are the link utiliza-
tion and the impact on the controller performance (since it has to process fewer control
packets). The overhead of this control was computed by assuming no loss in the network
and a control packet of 64 bytes. OFSP collects information from the first three packets
of each flow, generating a control overhead of 402 kbps. FlowSeer collects information
from the first five packets of sampled flows (i.e., 30% of the flow data) and potential
elephants, yielding a control overhead of 288 kbps. ESCA reduces the control overhead to
215 kbps by using a sampling method that only reports information from the first packet.
In contrast, NELLY and Mahout merely require that ToR switches send information of
flows marked as elephants, greatly reducing the control message overhead to 4.4 kbps and
1.1 kbps, respectively.

Detection time. Timely detection of elephant flows enables the controller to make
early decisions to improve routing. OFSP, ESCA, FlowSeer, and NELLY enable a short
detection time by proactively detecting elephant flows. ESCA reported a detection time
of 1.98 s for achieving the highest detection rate. OFSP and NELLY detect elephants in
a shorter time since they rely on the first N packets. On average, the detection time was
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Figure 3.8: Accuracy of NELLY with the ARF and AHOT algorithms when varying the
labeling threshold (θL) for all the IPv4 flows in UNI1 and UNI2 data traces

0.5 s for OFSP (N = 3) and 0.8 s for NELLY (N = 7). Further experimentation is needed
to evaluate the detection time of FlowSeer. Nevertheless, the detection time of the latter
would be slightly greater than for ESCA, since it is also based on sampling and considers
the first five packets (ESCA considers only one packet). In contrast, Mahout relies on a
reactive mechanism that detects elephant flows after their corresponding socket buffer in
a server surpasses a certain threshold. Assuming a small threshold of 100 kB, the average
detection time of Mahout is 3.8 s. However, unlike ML-based flow detection methods,
the detection time of Mahout becomes longer as the threshold increases, which may cause
hot-spots before the traffic carried by elephant flows reaches the threshold.

Network modifications. ESCA proposes a sampling method that depends on non-
existing SDN specifications, hence, requiring custom-made switch hardware. In contrast,
OFSP, FlowSeer, NELLY, and Mahout rely on OpenFlow [48], therefore enabling the use
of commercial switches. Essentially, NELLY and Mahout require the installation of addi-
tional software in the servers, which need only to be done once with further configuration
possible on the basis of a policy manager or autonomously. This installation can be car-
ried out by using DevOps automation tools, such as Puppet and Chef, that support the
distribution of software components to the operating systems of servers [268]. Moreover,
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Figure 3.9: Accuracy of NELLY with the ARF and AHOT algorithms when varying the
inverse weights of elephant flows (WE) for all the IPv4 flows in UNI1 and UNI2 data
traces

virtualization platforms, such as VMWare and Xen, support software distribution to the
servers as updates to the hypervisor without interrupting running virtual machines (either
by live-migration or live-updating) [269].

Performance factors. Depending on the location of the flow detection method,
different factors may affect its performance. Controller-side methods (i.e., OFSP, ESCA,
and FlowSeer) rely on the resources available at the controller and ToR switches. The
controller should be powerful enough for detecting all the elephants and processing the
control packets sent by the ToR switches in the DCN. Similarly, the ToR switches should
have enough memory for installing the required flow table entries. Moreover, the accuracy
of the controller-side methods can be negatively affected if the ToR switches drop some of
the first packets of the elephant flows. On the other hand, NELLY and Mahout operate
at the server-side, so they depend on servers resources. As NELLY is based on ML, it
requires more resources than does Mahout. Both server-side methods detect the elephants
generated by each server (i.e., distributed operation). Note that servers should be able to
monitor the first packets of the elephant flows for avoiding a decrease in accuracy.
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3.4 Final remarks

ECMP, which is the default routing technique in DCNs, can degrade the network per-
formance when handling mouse and elephant flows. Novel techniques for scheduling the
elephant flows can alleviate this problem. Recently, several approaches have incorporated
ML techniques at the controller-side of SDDCNs to detect elephant flows. However, these
approaches can produce heavy traffic overhead, low scalability, low accuracy, and high de-
tection time. In this chapter, we introduced NELLY to deal with this limitations. NELLY
performs continuous learning and requires limited memory resources by virtue of using
incremental learning. An extensive evaluation based on real packet traces and various
incremental learning algorithms demonstrated the high accuracy and speed of NELLY
when used with the ARF and AHOT algorithms. Moreover, an analytical comparison to
seminal related works corroborated the scalability of NELLY as well as its generation of
low traffic overhead and the fact that no modifications in SDN standards are required.
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Chapter 4

Multipath routing based on
software-defined networking and
machine learning for data center
networks

The majority of the flows in DCNs are mice (i.e., , small, short-lived flows), whereas
only very few are elephants (i.e., , large, long-lived flows) [8–11]. Mouse flows represent
latency-sensitive and bursty network traffic, such as search results [260], and elephant flows
depict massive data traffic, such as server migrations [270]. These traffic characteristics
negatively impact the performance of mice in DCNs as elephants tend to utilize most
bandwidth, introducing delay to mouse flows sharing the same links.

To tackle this problem, first, this chapter proposes a PMAC-based multipath routing
algorithm for steering traffic flows (mainly, mice) in SDDCNs that supports transparent
host migration across the whole network while reducing the number of rules installed on
SDN switches, decreasing the delay introduced to flows traversing the network. Second,
this chapter introduces a flow rescheduling method at the controller-side of SDDCNs that
applies incremental deep learning for predicting traffic characteristics of elephant flows to
compute and install the best path per elephant flow across the network.

4.1 Pseudo-MAC-based multipath routing in software-
defined data center networks

As described in Section 2.3.3, several SDDCN (i.e., DCNs using SDN) multipath routing
mechanisms focus on dynamically rescheduling paths for identified elephants from the
controller while relying on a default multipath routing algorithm, like ECMP [7], for
handling the rest of the flows (potentially, mice). However, most of these SDN-based
mechanisms do not specify how to implement such a default multipath routing algorithm
in an SDN enviroment. The simplest SDN implementation would dynamically compile and
install the path for each flow from the controller. However, this implementation introduces
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a delay (approximately, 10 ms1) when edge switches (a.k.a. ToR) send the first packet
of each flow to the controller [27, 271]. This delay negatively affects the latency-sensitive
mouse flows [272]. Moreover, the massive number of flows in DCNs leads to scalability
issues due to a large occupancy of the narrow flow tables in SDN switches and a significant
overload to the controller, which increases the processing delay [273].

Implementing the default multipath routing algorithm (e.g., ECMP) by installing
static flow rules overcomes the controller-related drawbacks (i.e., overload and first packets
delay). However, this implementation usually relies on multipath routing algorithms that
install a high number of source-destination (either Media Access Control (MAC) or IP)
static flow rules. As aforementioned, an SDN switch with many flow rules installed creates
scalability issues and increases the delay while the switch matches the rule for a specific
flow. Some approaches have proposed algorithms for reducing the number of flow rules
installed, particularly for mice [15, 28, 274]. However, these approaches do not address
the complexity of continuously updating the static flow rules in case of dynamic changes
in the network state. Therefore, an efficient implementation of the default multipath
routing algorithm should avoid sending the first flow packet to the controller, install the
less possible number of flow rules in switches, and update these rules as the network state
changes.

This section introduces an SDN-based multipath routing algorithm, named Pseudo-
MAC-based Multipath (PM2), which performs efficient routing of flows (mainly, mice)
in DCNs following the fat-tree topology [242]. Unlike other proposals that use addresses
(either MAC or IP) from hosts, PM2 identifies each switch’s layer (i.e., edge, aggregation,
core) and position for generating Pseudo-MAC (PMAC) prefixes, which allow installing
routing flow rules with wildcards to save space in the flow tables. PM2 then intercepts
Address Resolution Protocol (ARP) messages at the controller to generate a PMAC ad-
dress for each host (virtual and physical) and install the corresponding flow rules in
edge switches for both parsing MAC addresses and reaching destination. Results reveal
that PM2 significantly reduces the number of rules installed in switches while supporting
transparent host migration across the whole SDDCN.

The remainder of this section is as follows. Section 4.1.1 demonstrates the impact of
the number of switch installed flow rules on the routing delay. Section 4.1.2 describes the
algorithm and procedures of PM2. Section 4.1.3 presents a proof of concept of PM2 in
an emulated scenario. Section 4.1.3 compares PM2 with feasible routing approaches in
SDDCNs regarding the number of rules installed.

4.1.1 Motivation

Figure 4.1 shows three experimental scenarios that we use to explain how the number of
flow rules installed in a switch table impact the delay of flows traversing that switch. All
three scenarios deploy a Ryu controller [66] running an algorithm developed in Python
that simply installs static flow rules into the flow table of the corresponding switch.
The emulated scenario uses the network emulation tool Mininet 2.2.2 [275] to deploy

1Assuming that only the first packet goes to the controller. If multiple packets arrive (i.e., bursty
traffic) before installing the flow rule, more packets will bear the cost.
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two virtual hosts2 (h) and an OpenFlow switch in a single Virtual Machine (VM). The
Ryu controller runs in the same Physical Computer (PC) hosting the VM. The virtual
scenario deploys two virtual hosts and an Open vSwitch 2.5.4 [277] using different VMs
interconnected through virtual Ethernet interfaces [278]. The Ryu controller and the three
VMs run in the same PC. The physical scenario deploys an HP 2920 OpenFlow switch
(a.k.a. Aruba 2920) [279] that interconnects two PCs (physical hosts) through OpenFlow
VLAN interfaces. The Ryu controller runs in an independent PC. The PCs for all three
scenarios shared the following system specifications: Lubuntu 16.04 operating system,
2.40 GHz Intel Core i5 processor, and 3 GB RAM.

Controller

Emulated
Switch

Controller Controller

Virtual
Switch
(OVS)

HP 2920

h1 h2 h1 h2 h1 h2

VM1 VM1

VM2 VM3

PC1 PC1 PC1

PC2 PC3

Emulated Virtual Physical

Figure 4.1: RTT measurement experimental scenarios

We measured the RTT for all three scenarios while varying the number and arrange-
ment of flow rules installed in the corresponding switch. RTT represents the total time a
packet takes to go to the destination and back to the source. The number of installed flow
rules (r) ranged from 1000 to 16000 in steps of 1000 (r ∈ R = {1000, 2000, ..., 16000}),
where only two rules matched and forwarded the packets sent between the hosts (routing
rules) while the remaining occupied the flow table memory (filling rules). For each r ∈ R,
the arrangement of the flow rules varied by placing the routing rules at the beginning,
middle, and end of the filling rules. We installed each flow rule arrangement T times in
the switch and took the RTT N times for each t ∈ T . Each experiment was about sending
a ping request from the first host to the second one and then measuring the RTT in the
first host after receiving the corresponding ping reply from the second host.

Figure 4.2 depicts the results for each scenario with T = 30 and N = 30. These results
reveal that the RTT for the emulated scenario remains around 0.1 ms regardless of the
number of installed flow rules and the position of the routing rules. Similarly, the RTT
for the virtual scenario persists as the number and arrangement of the installed flow rules
vary, though it approximates to 1.3 ms. Such an increment in the RTT value is because
the virtual scenario deploys more virtual Ethernet interfaces between the hosts than the
emulated scenario. In contrast, the RTT for the physical scenario increases from 0.8 ms

2Mininet virtual hosts are processes running in their own Linux network namespace [276].
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up to 2.1 ms as the number of installed flow rules grows and as the position of the routing
rules moves to the end of the filling rules. For example, for routing rules placed at the
beginning of the filling rules, the RTT grows from 0.8 ms for r = 1000 to 1.1 ms for r =

16000. Whereas, for r = 16000, the RTT increases to 1.6 ms and 2.1 ms when placing
the routing rules in the middle and end of the filling rules, respectively.
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Figure 4.2: Average RTT per number of flow rules installed in the switch of each experi-
mental scenario with T = 30 and N = 30

We learned from these experiments that the RTT in the emulated and virtual scenarios
remains nearly constant while varying the number of installed flow rules. Second, in the
physical scenario, the limited memory in switches causes the number of installed flow
rules to impact the delay introduced to the packets of flows traversing the switch. Thus,
reducing the number of flow rules installed in SDN switches represents an opportunity to
lower the delay introduced to packets of flows (mainly, mice) traveling in SDDCNs.

4.1.2 Pseudo-MAC-based multipath routing

PM2 provides a multipath routing algorithm for steering flows (mainly, mice) in a fat-
tree SDDCN. PM2 focuses on supporting transparent host migration across the whole
SDDCN while reducing the number of rules installed in the switches, decreasing the delay
introduced to the packets of flows traversing the network. To do so, PM2 reuses the key
concept of Pseudo-MAC (PMAC), which defines a hierarchical MAC address assigned to
the physical and virtual hosts in a fat-tree DCN topology [280].

PM2 generates and assigns 48-bit PMACs using the form lia:pod:pos:port:vmid, where
lia, pod, pos, and port represent eight-bit fields, whereas vmid depicts a 16-bit field. lia
defines PMACs as local-individual addresses (e.g., 0x0a or 000010103). pod depicts the

3A MAC address with the second-least-significant bit of the first octet set to one (1) represents a
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number of the pod containing the edge switch. pos describes the position of the edge
switch within the pod. port details the switch port number connected with the physical
host. vmid identifies different virtual hosts using a bridge adapter in the same physical
host (0x00 if no virtual hosts using bridge adapters).

Figure 4.3 presents the process executed by PM2 for installing the routing rules. This
process involves four main tasks: (i) generate PMAC addresses, (ii) define the set of
routing rules based on the PMAC addresses, (iii) install the set of routing rules in the
corresponding switches; and (iv) update the routing rules when network changes occur.
Note the PM2 process runs after either discovering the topology or intercepting an ARP
message.

Intercepting
      ARP

ControllerSwitch

Start

End

Switch

Generate
   PMAC

Define
Routing Rules

Install
Routing Rules

Generated
    PMAC

Routing
                             Rules

ConfiguringRouting RulesUpdate
Routing Rules

Updating
   Rules

 Topology
Discovery

Figure 4.3: PM2 process to install routing rules

Topology discovery

PM2 requires an overview of the fat-tree DCN topology, including the position of the
switches and their connections to the other switches, for generating the PMAC addresses
and installing the required routing rules. The fat-tree topology represents a k-ary network
that consists of k-port switches distributed into three layers: core, aggregation, and edge,
top-down. There are k pods interconnected by k2

4
core switches. Each pod contains k

2

aggregation switches (upper pod) and k
2
edge switches (lower pod). Aggregation switches

connect to the core switches. Each aggregation switch connects to each edge switch in the
same pod. Each edge switch connects to k

2
physical hosts. The fat-tree topology provides a

high degree of available path diversity: between any source and destination host pair from
different pods, k2

4
equal-cost paths exist, each corresponding to a core switch, although

the paths are not link-disjoint. Table 4.1 depicts the fat-tree topology size, in terms of
hosts, switches, and links, based on the typical number of ports in switches.

locally administered address, whereas setting to zero (0) the least-significant bit of the first octet defines
an individual address meant for unicast communication [281].
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Table 4.1: Fat-tree topology size
Order∗

(k) Pods Hosts Edge
switches

Aggregation
switches

Core
switches

Total
switches Links

4 4 16 8 8 4 20 48

8 8 128 32 32 16 80 384

10 10 250 50 50 25 125 750

12 12 432 72 72 36 180 1296

16 16 1024 128 128 64 320 3072

24 24 3456 288 288 144 720 10368

28 28 5488 392 392 196 980 16464

48 48 27648 1152 1152 576 2880 82944

52 52 35152 1352 1352 676 3380 105456
∗Based on the typical number of ports in switches

For topology discovery, PM2 relies on the Link Layer Discovery Protocol (LLDP) to
obtain the connections among the switches. To do so, first, PM2 installs a routing rule
on every switch for redirecting any received LLDP packet to the controller, and then
frequently instructs every switch for sending LLDP packets through all the ports. The
switch connections allow PM2 determining the position of the switches in the fat-tree
topology. Assuming the network is fully connected, PM2 identifies as edge switches those
ones that failed to receive LLDP packets from half of their ports (i.e., ports connected to
physical hosts). In case the network is not fully connected, PM2 might rely on the switch
identifier (ID) to identify edge switches. In OpenFlow, for example, the switch ID is a
64-bit field known as datapath ID: the 48 Least Significant Bits (LSB) correspond to the
switch MAC, whereas the 16 Most Significant Bits (MSB) depend on the switch imple-
mentation (vary among models). Most OpenFlow switch implementations allow defining
a custom MSB, enabling network administrators to set a specific value in the datapath ID
of edge switches that PM2 identifies when the switches connect to the controller. Finally,
switches connected to edge switches become aggregation switches, and those connected
to aggregation switches become core switches.

Having determined the position of the switches in the fat-tree topology, PM2 generates
PMAC prefixes for the pods and edge switches. PMAC prefixes for the pod and edge
switches have the form lia:pod:∗ and lia:pod:pos:∗, respectively, where ∗ represents the
remaining wildcard bits (32 bits and 24 bits, respectively). For example, the pod two in
the fat-tree topology would have the PMAC prefix 0a:02:∗, whereas the edge switch in the
position one of the pod two would have the PMAC prefix 0a:02:01:∗. Note that all the
hosts (virtual and physical) under the same pod and edge switch share the same PMAC
prefix.

After generating the PMAC prefixes, PM2 defines and installs the wildcard routing
rules in the core and aggregation switches for enabling the top-down communication (i.e.,
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from core to aggregation and from aggregation to edge). Core switches only need to
match the PMAC prefix of a pod for sending a packet to a host that is under that pod.
For example, if the port two of a core switch connects to the pod two, the core switch
would have installed a wildcard routing rule that forwards through the port two every
packet whose destination MAC address matches the PMAC prefix 0a:02:∗. Similarly,
aggregation switches only need to match the PMAC prefix of an edge switch for sending
a packet to a host that is connected to that edge switch. For example, if the port one
of an aggregation switch in the pod two connects to the edge switch in position one, the
aggregation switch would have installed a wildcard routing rule that forwards through
the port one every packet whose destination MAC address matches the PMAC prefix
0a:02:01:∗. These wildcard routing rules based on PMAC prefixes enable reducing the
number of flow rules installed on switches at the core and aggregation layers.

PM2 also defines and installs group routing rules at the edge and aggregation switches
for enabling the bottom-up communication (i.e., from edge to aggregation and from aggre-
gation to core). These group routing rules represent low priority rules that switches apply
when none of the PMAC-based routing rules, with a higher priority, match the packet.
Therefore, if a packet from a source host arrives at an edge switch but the destination host
is not connected to the same edge switch, this switch applies a group routing rule to select
one of the ports connected to the aggregation switches to forward the packet. Similarly,
if a packet from an edge switch arrives at an aggregation switch but the destination host
is not in the same pod, the aggregation switch applies a group routing rule select one of
the ports connected to the core switches to forward the packet. These group routing rules
enable multipath routing between the equal-cost paths in the fat-tree topology. For ex-
ample, OpenFlow [55] provides a group table that contains group entries, each consisting
of a list of action buckets (e.g., forward through port two, forward through port three,
etc.). OpenFlow switches apply the actions in one or more action buckets depending on
the group type. Particularly, the select group type executes one of the action buckets in
the group. The selection of the action bucket in the group depends on the switch imple-
mentation. Open vSwitch, for instance, applies a hash function on the packet header for
selecting the action bucket in the group.

The last routing rules that PM2 defines using the topology discovery and installs on
the switches are for handling ARP messages. PM2 installs a routing rule on every edge
switch for intercepting all the ARP requests and replies. To do so, the ARP intercepting
routing rule matches all the packets with the EtherType field set to the ARP protocol
(0x0806) and forwards them to the controller. At the core and aggregation layer, PM2
simply instructs the switches to drop all the ARP messages. Note the ARP routing rules
present the highest priority among the installed routing rules.

Finally, PM2 triggers the update of routing rules when discovering changes in the
topology, such as broken links or switches down. That way, PM2 avoids forwarding
packets through disconnected ports, minimizing the rate of droppped packets. To do so,
PM2 generates a new configuration of routing rules and compares it with the current
configuration to enforce only the modifications. Note this updating task might imply
generating new PMAC prefixes, installing new routing rules, and deleting existing routing
rules.
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ARP interception

PM2 also operates when intercepting ARP messages. As shown in Figure 4.4, let’s assume
that a source host A, using the IP 10.0.0.1, wants to communicate with a destination host
B, using the IP 10.0.0.6. The source host A initially ignores the IP 10.0.0.6 is served
by the destination host B, so host A sends an ARP request to ask “who has 10.0.0.6?”
and “what is you MAC address?” in order to get the MAC address from host B. Since
host A ignores the MAC address from host B, the ARP request uses the broadcast MAC
address (ff :ff :ff :ff :ff :ff) for the destination MAC. This ARP request matches the
intercepting routing rule at the edge switch, which forwards it to the controller.

Controller

ARP Request
Src: 10.0.0.1 (03:45:21:a2:4b:61)
Dst: 10.0.0.6 (f f : f f : f f : f f : f f : f f )

Edge / ToR

Host A

A

A

A

Host B

Figure 4.4: ARP request interception in PM2

As depicted in Algorithm 4.1, PM2 receives as input the intercepting edge switch data
(sw) and the intercepted ARP message (A). The intercepting edge switch data includes
the switch ID (id) and the input port number the edge switch received the ARP packet in
(in_port). Note the intercepting edge switch data is not part of the ARP message but of
the messages sent to the controller by SDN protocols (e.g., OpenFlow packet-in message).
The intercepted ARP message contains the fields oper, ip_src, ip_dst, eth_src, and
eth_dst, which represent the ARP operation code (e.g., request or reply), the source IP
address, the destination IP address, the source MAC address, and the destination MAC
address. In the example from Figure 4.4, the value of the oper field is 0x01 since the ARP
message corresponds to an ARP request (this field is 0x02 for ARP reply).

Algorithm 4.1 shows that PM2, first, generates the PMAC address for the source host
using the switch ID (sw.id), the input port (sw.in_port), the source IP (A.ip_src), and
the source MAC (A.eth_src). Then, PM2 inserts the host generated PMAC into the
PMAC table, associating it with the source IP address (A.ip_src). Note that the switch
ID (sw.id), the input port (sw.in_port), and the source MAC (A.eth_src) are also stored
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Algorithm 4.1: Handling intercepted ARP messages in PM2
data:

sw edge switch that intercepted ARP message
A intercepted ARP message data
TH PMAC table for hosts (virtual or physical)
R installed PMAC routing rules
E set of edge (ToR) switches
θS ARP stale time threshold

// Function to handle intercepted ARP messages
1 function Handle_ARP(sw, A):

// Generate and store PMAC
2 pmac← Generate_PMAC(sw.id, sw.in_port, A.ip_src, A.eth_src);
3 TH [A.ip_src]← {pmac, sw.id, sw.in_port, A.eth_src};

// Install PMAC routing rules
4 if {sw.id, A.eth_src, pmac} /∈ R then
5 Install_PMAC_rules(sw.id, A.eth_src, pmac, sw.in_port);
6 R← {sw.id, A.eth_src, pmac};
7 end

// Update ARP data
8 A.eth_src← pmac;
9 Update_Time(A.dst_ip);

// Check if ARP request
10 if A.oper = 1 then

// Check if destination host is known
11 if A.dst_ip /∈ TH then
12 actions← [flood];
13 for each e ∈ E do
14 e.Send_Packet(A, actions);
15 end
16 else

// Check if stale time is shorter than threshold
17 if Stale_Time(A.dst_ip) > θS then
18 Check_Connection(A.dst_ip);
19 else

// Send ARP reply with source MAC set to destination PMAC
20 dst_pmac← TH [A.dst_ip][pmac];
21 reply ← ARP_Reply(A);
22 reply.eth_src← dst_pmac;
23 actions← [A.in_port];
24 sw.Send_Packet(reply, actions);
25 end
26 end
27 else

// Forward ARP reply
28 dst_swid, dst_port← TH [A.dst_ip];
29 dst_sw ← Get_Switch(dst_swid);
30 actions← [dst_port];
31 dst_sw.Send_Packet(A, actions);
32 end
33 end

in the PMAC table record. In Figure 4.5, for example, the PMAC table associates the IP
10.0.0.1 with the PMAC 0a:01:01:01:00:00, which was generated using the ARP request
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sent by host A, whose MAC is 03:45:21:a2:4b:61 and connects to the edge switch on port
one.

IP PMAC MAC Port

10.0.0.1 0a:01:01:01:00:00 03:45:21:a2:4b:61 1

10.0.0.6 0a:01:01:02:00:00 08:d4:6c:59:23:1e 2

Edge / ToR

Host A

1

d: 1 Position: 1

P

Host B

2

PMAC Table

B

B

Check

Figure 4.5: PMAC table in PM2

Continuing with Algorithm 4.1, PM2 defines and installs on the intercepting edge
switch the routing rules associated with the generated PMAC, in case it has not been done
yet. The PMAC routing rules consist of two routing rules per host on the edge switch the
host connects to. The first rule updates the source MAC of any packet received from any
of the hosts connected to the edge switch. This rule parses the actual MAC of the host to
the PMAC generated for that host. For example, in Figure 4.5, this rule parses the source
MAC from 03:45:21:a2:4b:61 to 0a:01:01:01:00:00 for any packet host A sends to the edge
switch. The second rule updates the destination MAC of any packet targeting any host
connected to the edge switch and forwards the packet though the corresponding port.
This rule parses the PMAC generated for the host to the actual MAC of that host. For
example, in Figure 4.5, this rule, first, parses the destination MAC from 0a:01:01:01:00:00

to 03:45:21:a2:4b:61 for any packet targeting host A, and then forwards the packet through
port one.

Next, Algorithm 4.1 depicts that PM2 updates the source MAC (A.eth_src) of the
ARP message by setting the generated PMAC. This enables each host to associate the
IPs to the PMACs generated for the other hosts instead of using their actual MACs.
Therefore, when the hosts send packets targeting any IP, they will set the source MAC
with their own actual MAC addresses and the destination MAC with the corresponding
PMAC that the controller reported for such IP. In our example, PM2 would parse the
source MAC of the ARP request from 03:45:21:a2:4b:61 to 0a:01:01:01:00:00. Following,
PM2 checks the operation code of the intercepted ARP message (A.oper) to discriminate
ARP requests and ARP replies. For intercepted ARP requests (A.oper = 1), if the PMAC
table ignores the IP destination address (A.dst_ip), PM2 instructs all the edge switches
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to flood the updated ARP request (i.e., send the packet through all ports) to find the host
with the destination IP. The destination host then receives the updated ARP request and
responds with an ARP reply to inform that the destination IP is at the corresponding
MAC. For example, in Figure 4.5, host B would respond that IP 10.0.0.6 is at MAC
08:d4:6c:59:23:1e. Note the ARP reply matches the intercepting routing rule at the edge
switch, which forwards it to the controller.

As show in Algorithm 4.1, PM2 also leverages ARP replies for generating host PMACs,
which are further stored in the PMAC table and used for defining and installing the PMAC
routing rules on the intercepting edge switch. In Figure 4.5, for example, the PMAC table
associates the IP 10.0.0.6 with the PMAC 0a:01:01:02:00:00, which was generated using
the ARP reply sent by host B, whose MAC is 08:d4:6c:59:23:1e and connects to the edge
switch on port two. Subsequently, PM2 updates the source MAC (A.eth_src) by setting
the generated PMAC and recognizes the ARP message is an ARP reply (A.oper = 2),
so it forwards the updated ARP reply to the destination host via the corresponding edge
switch and port. In our example, PM2 would parse the source MAC of the ARP reply
from 08:d4:6c:59:23:1e to 0a:01:01:02:00:00 and forward it through port one towards host
A.

When validating if the PMAC table knows the IP destination from the ARP request
(A.dst_ip), in case it does but the controller has not intercepted an ARP message (re-
quest or reply) from that IP for longer than a stale time threshold (θS), PM2 checks
the connection by sending the updated ARP request directly to the known destination
host. When the destination host replies, PM2 forwards the updated ARP reply to the
source host, reporting that the destination IP is at the generated PMAC. If the controller
does not intercepts an ARP reply from the destination host for longer than a removal
time threshold (θR), PM2 removes the record associated with the destination IP from
the PMAC table. On the other hand, in case the PMAC table knows the destination IP
from the ARP request (A.dst_ip) and the time since the controller intercepted an ARP
message from that IP is shorter than θS, PM2 generates and sends an ARP reply to the
source host, reporting that the destination IP is at the generated PMAC. Note that θS
and θR enable recognizing hosts down to avoid filling the network with traffic (e.g., UDP)
that has no destination.

Finally, PM2 supports transparent migration of hosts across the whole SDDCN. Trans-
parent migration refers to moving a host (virtual or physical) while keeping its IP and
being able to communicate with that host without performing manual configurations. In
PM2, when changing the position of a host, any source host communicating with it stops
receiving replies for the direct ARP requests. Source hosts will receive an ARP reply
either when one of them sends a broadcast ARP request or when the migrated host sends
an ARP request for communicating with any other host. These ARP messages allow
discovering the new position of the migrated host, for which PM2 updates the PMAC
address and the corresponding routing rules.
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4.1.3 Implementation

Figure 4.6 depicts the proof of concept we implemented for evaluating the feasibility of
PM2. We deployed this implementation on a server at the Computer Networks Laboratory
(LRC, Laboratório de Redes de Computadores) of the University of Campinas. This
server runs Debian 8.11 server in a 2.66 GHz Intel Xeon Processor X5650 machine, with
12 physical cores, 24 logical cores, and 40 GB RAM. On the server, we deployed a VM
for running Mininet [275], a well-known tool for emulating OpenFlow networks [48]. We
installed Mininet 2.3.0 and Open vSwitch 2.5.9 [277], which Mininet uses for deploying
the OpenFlow switches in the emulated network. Open vSwitch 2.5.9 fully supports up
to OpenFlow 1.3 and OpenFlow 1.5 with missing features. The Mininet VM runs an
Ubuntu 16.04 server with 6 logical cores and 20 GB RAM. Using the Mininet Python
API, we developed a custom fat-tree topology that accepts as input a parameter k for
setting the size of the fat-tree network (see Table 4.1). Our custom fat-tree topology
implementation is available in [282]. We executed our custom fat-tree topology on the
Mininet VM, varying the size of the network.

Figure 4.6: Implementation of PM2

On the server, we also deployed the Ryu SDN framework [66] as the controller for
managing the OpenFlow switches in Mininet. We installed Ryu 4.34, which fully supports
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up to OpenFlow 1.5 [55]. Using the Python libraries from the Ryu SDN framework, we
developed a network application that implements PM2, including the topology discovery,
the ARP management, and the process for generating PMAC addresses, defining the
routing rules, and installing them on the OpenFlow switches. Note we assumed a fully
connected network, so our PM2 implementation identifies as edge switches those ones that
failed to receive LLDP packets from half of their ports. Our Ryu network application that
implements PM2 is available in [282]. We executed our PM2 network application on the
Ryu SDN framework.

To test that PM2 installs the appropriate routing rules, we performed a ping test
between all the hosts in the emulated fat-tree network, validating that all of them were
able to communicate with each other. Due to resource limitations, we were able to test the
communication for a fat-tree topology of size 16, which deploys 1024 hosts, 320 switches
(128 at edge layer, 128 at aggregation layer, and 64 at core layer), and 3072 links (see
Table 4.1).

4.1.4 Analytic evaluation

PM2 enforces a PMAC-based routing for reducing the number of routing rules installed
on the switches. PM2 is similar to PortLand [280] in that both assign PMAC addresses to
the hosts according to their position in the fat-tree topology. However, for topology dis-
covery, PortLand depends on a custom Location Discovery Protocol (LDP), whereas PM2
relies on the widely-used LLDP. Moreover, unlike PortLand, PM2 defines and installs the
routing rules for supporting multipath routing (i.e., group routing rules). PortLand sim-
ply assumes a standard technique such as flow hashing in ECMP. Finally, PM2 validates
the time that hosts have been in communication with others (i.e., θS and θR) to identify
hosts down, avoiding filling the network with traffic (e.g., UDP) that has no destination.
PortLand does not account for hosts down.

We further evaluated PM2 by analyzing the number of rules installed per switch for
an all-to-all communication in an OpenFlow fat-tree topology, in comparison with other
three feasible approaches: (i) Layer 2 (L2), which uses MAC addresses for communication,
(ii) Hierarchical Layer 3 (HL3), which divides the network using IP prefixes; and (iii) a
hybrid approach between L2 and HL3 (L2-HL3), which uses MAC addresses from the
aggregation layer down and divides the pods using IP prefixes. Hereinafter, k denotes the
order (i.e., size) of the fat-tree topology (see Table 4.1).

First, we compute the number of rules that PM2 installs on the switches of an Open-
Flow fat-tree topology. Equation 4.1 describes the number of rules that PM2 installs per
edge switch. The four (4) rules are the ARP intercepting rule, the group rule, a miss
destination MAC rule that redirects to the group rule, and a miss source MAC rule that
handles packets coming from the aggregation layer. Moreover, PM2 installs two PMAC
routing rules per each host h in each server machine s ∈ 1..k

2
connected to the edge

switch. The first PMAC rule parses the source MAC, whereas the second rule parses the
destination MAC and forwards the packet through the corresponding port. Note that h
includes the physical host and the virtual hosts using a bridge adapter to connect to the
network. Virtual hosts using NAT adapters communicate to the network using the IP
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and MAC addresses of the physical host.

4 + 2 ·
k/2∑

s=1

hs (4.1)

Equation 4.2 depicts the number of rules that PM2 installs per aggregation switch.
The three (3) rules are the ARP dropping rule, the group rule, and a miss destination
MAC rule that redirects to the group rule. In addition, PM2 installs a wildcard routing
rule per each of the k

2
edge switches connected to the aggregation switch. Note these

wildcard rules use the PMAC prefixes generated for the edge switches (i.e., lia:pod:pos:∗).

3 +
k

2
(4.2)

Equation 4.3 presents the number of rules that PM2 installs per core switch. One
(1) ARP dropping rule and a wildcard routing rule per each of the k pods connected
to the core switch. These wildcard rules use the PMAC prefixes generated for the pods
(lia:pod:∗).

1 + k (4.3)

Next, we calculate the number of rules installed on the switches by the other three
OpenFlow-feasible approaches, namely, L2, HL3, and L2-HL3. Equation 4.4 denotes the
number of rules that these three routing approaches install per edge switch. The three
(3) rules are an ARP management rule, the group rule, and the miss destination MAC
rule that redirects to the group rule. Furthermore, these approaches install a routing rule
per each host h in each server machine s ∈ 1..k

2
connected to the edge switch.

3 +

k/2∑

s=1

hs (4.4)

Equation 4.5 describes the number of rules that L2 and L2-HL3 install per aggregation
switch. The three (3) rules are an ARP management rule, the group rule, and the miss
destination MAC rule that redirects to the group rule. Moreover, L2 and L2-HL3 install
a routing rule per each host h in each server machine s ∈ 1..k

2
connected to each edge

switch e ∈ 1..k
2
connected to the aggregation switch. In contrast, the number of rules

that HL3 installs per aggregation switch is given by Equation 4.2. Similar to PM2, HL3
leverages address prefixes for reducing the number of rules at the aggregation layer.

3 +

k/2∑

e=1

k/2∑

se=1

hse (4.5)

Lastly, Equation 4.6 depicts the number of rules that L2 installs per core switch. One
(1) ARP management rule and a routing rule per each host h in each server machine
s ∈ 1..k

2
connected to each edge switch e ∈ 1..k

2
belonging to each pod p ∈ 1..k. In

contrast, the number of rules that HL3 and L2-HL3 install per core switch is shown in
Equation 4.3. Similar to PM2, HL3 and L2-HL3 leverage address prefixes for reducing
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the number of rules at the core layer.

1 +
k∑

p=1

k/2∑

ep=1

k/2∑

sep=1

hsep (4.6)

For facilitating the analytic comparison, we make some assumptions to compute the
number of rules all these approaches install per switch for each layer in a fat-tree topology.
Table 4.2 simplifies Equations 4.1-4.6 by assuming only one host (i.e., the physical host)
in each server machine (i.e., hs = 1). Furthermore, Figure 4.7 shows the number of rules
each approach (PM2, L2, HL3, L2-HL3) install per switch for each layer in a fat-tree
topology of size k = 48 and only one host in each server machine (i.e., hs = 1). Note that
a fat-tree topology of size k = 48 consists of 27648 hosts, 2880 switches (1152 at edge
layer, 1152 at aggregation layer, and 576 at core layer), and 82944 links (see Table 4.1).
Moreover, the Y axis of Figure 4.7 is in logarithmic scale.

Table 4.2: Comparison of PM2 routing with related approaches
FEATURE L2 HL3 L2-HL3 PM2

Rules per edge (ToR) switch∗ 3 + k
2 3 + k

2 3 + k
2 4 + k

Rules per aggregation switch∗ 3 + k2

4 3 + k
2 3 + k2

4 3 + k
2

Rules per core switch∗ 1 + k3

4 1 + k 1 + k 1 + k

Transparent host migration Network Edge switch Pod Network
∗Equations obtained assuming only one host in each server (hs = 1)
∗k denotes the order (i.e., size) of the fat-tree topology

The results show that PM2, HL3, and L2-HL3 installs much less rules per core switch
than L2. Note the former three leverage address prefixes (either PMAC or IP) for reducing
the number of rules at the core layer. At the aggregate layer, PM2 and HL3 install much
fewer rules than L2 and L2-HL3. In this case, only PM2 and HL3 leverage address prefixes
(PMAC and IP, respectively) for reducing the number of rules per aggregate switch.
Lastly, PM2 installs a little more rules per edge switch than the other approaches. This
is because PM2 requires the MAC-PMAC address parsing. Overall, PM2 installs much
fewer rules than L2 and L2-HL3. In contrast, PM2 installs a little more rules than HL3.

However, as described in Table 4.2, HL3 limits the transparent host migration to
the edge switch. Note that transparent host migration requires migrated hosts to keep
their IPs since services running on other hosts might depend on it. As HL3 divides the
whole network using IP prefixes, each edge switch supports only a specific range of IPs.
Therefore, using HL3, a host cannot be migrated to another edge switch without changing
its IP. On the other hand, L2-HL3 extends the transparent host migration scope to the
pod since it uses IP prefixes only for dividing the pods. Whereas, PM2 and L2 enable
transparent host migration across the whole fat-tree network.

To sum up, PM2 installs much fewer rules than the other OpenFlow-feasible ap-
proaches that support transparent host migration across a fat-tree topology area larger
than the same edge switch. Such reduction in the number of rules installed on switches
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Figure 4.7: Number of rules installed per switch for each layer in a fat-tree topology with
size k = 48 and only one host in each server (hs = 1)

allows decreasing the delay introduced to flows (mainly mice) traversing the fat-tree topol-
ogy network.

4.2 Rescheduling of elephants in software-defined data
center networks using deep incremental learning

Recall that SDDCN multipath routing mechanisms (see Section 2.3.3) deploy a controller
that dynamically reschedules paths for identified elephants while relying on a default mul-
tipath routing algorithm, like PM2 (see Section 4.1 and ECMP [7], for handling the rest
of the flows (potentially, mice). These SDDCN multipath routing mechanisms depend on
flow detection methods that discriminate elephants from mice, either reactively by using
thresholds or proactively by incorporating ML (see NELLY, introduced in Chapter 3).
However, these flow detection methods merely indicate which flows are elephants (i.e.,
binary classification) but do not provide specific traffic characteristics (e.g., size, rate,
duration) of such flows.

Therefore, most SDDCN multipath routing mechanisms handle all the elephants flows
in the same way, that is, all with the same traffic characteristics. This is not suitable for
covering the broad distribution of traffic characteristics of elephant flows in DCNs [8–11].
Only FlowSeer [33] perform a multiclassification for dividing the rate of the elephants
into five classes. Although a five-class classification is much better than a binary classi-
fication, finer granularity traffic characteristics are desirable for improving the decisions
of the multipath routing algorithm. Moreover, FlowSeer relies on sampling-based data
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collection, which increases the traffic overhead and the detection time while reducing the
accuracy. As described in Section 3.3, FlowSeer reports to the controller 29% of mice as
potential elephants, which can negatively affect the performance of the multipath routing
algorithm.

In this section, we introduce a flow rescheduling method denominated intelligent
Rescheduler of IDentified Elephants (iRIDE), which applies incremental learning at the
controller-side of SDDCNs for predicting traffic characteristics of flows identified as ele-
phants to compute and install the best path per flow across the network. Incremental
learning allows iRIDE adapting to the variations in traffic characteristics and performing
endless learning with limited memory resources. Quantitative evaluation demonstrates
that iRIDE achieves low prediction error of flow rate and flow duration when using DNNs
with regularization and dropout layers. Moreover, iRIDE enables intelligent elephant
rescheduling algorithms that efficiently use the available bandwidth, generating higher
throughput and shorter traffic completion time than conventional ECMP.

The remainder of this section is as follows. Section 4.2.1 introduces the architecture of
iRIDE. Section 4.2.2 presents a quantitative evaluation of the prediction components in
iRIDE using real data and incremental learning algorithms in both batch and incremental
settings. Section 4.2.3 describes practical heuristics for implementing two rescheduling
algorithms for iRIDE. Section 4.2.4 exposes the implementation of iRIDE, including
the prediction and rescheduling components, for evaluating the networking performance.
Section 4.2.5 discusses the networking performance results.

4.2.1 Architecture of iRIDE

Figure 4.8 introduces iRIDE, a flow rescheduling method at the controller-side of SDDCNs
that applies incremental learning for predicting traffic characteristics of elephant flows to
compute and install the best path per elephant flow across the network. iRIDE relays
on flow detection methods, such as NELLY, for sending marked packets that identify
elephant flows traversing the network.

As illustrated in Figure 4.8, iRIDE consists of five modules: Catcher, Predictor,
Rescheduler, Monitor, and Trainer. For the sake of readability, Table 4.3 lists and de-
scribes the symbols defined in the architecture of iRIDE. The Catcher installs rules on
edge switches (a.k.a. ToR) that forward the marked packets to the controller (i.e., catch-
ing rules). This installation can be conducted once the controller knows a switch belongs
to the edge layer. The Catcher can receive this information from a topology discovery
application (see Section 4.1). The catching rule can look for a predefined value in a code
point header field supported by SDN switches. For example, OpenFlow switches support
matching in two code point header fields. The first of these is the 6-bit DSCP field of the
IPv4 header. This DSCP reserves a code point space for experimental and local usage
(i.e., ∗∗∗∗11, where ∗ is 0 or 1). The second is the 3-bit 802.1Q PCP field of the Ethernet
header. In practice, iRIDE can rely on either one of these fields, since it is improbable
that a data center use both DSCP and PCP simultaneously [29].

As soon as the catching rule matches a marked packet in an edge switch, the marked
packet is sent to the controller. The catcher receives the marked packet and extracts the
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Figure 4.8: Architecture of iRIDE

Table 4.3: Symbols in the architecture of iRIDE
Symbol Name Description

θCS Cold-start threshold
Value (e.g., number of training instances) above
which the Predictor uses the regression models for
predicting the traffic characteristics

θTO Timeout threshold
Time limit above which switches acknowledge in-
active flows as terminated for removing the corre-
sponding routing rule

θL Labeling threshold Flow size limit below which the Trainer discards
flows incorrectly classified as elephants

nB Mini-batch size Number of elephant instances for training the re-
gression models

TM Monitoring rate Time interval at which the Monitor requests flow
characteristics from the network

flow information from it, commonly, the header (e.g., 5-tuple) to identify the elephant flow.
This marked packet might also include the size and IAT of the first N flow packets that
flow detection methods, such as NELLY, usually collect for classifying flows as mice and
elephants (see Chapter 3). Note that NELLY requires a small modification in the Marker
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module of the Analyzer subsystem (see Section 3.1.1) to be able to communicate this extra
information to iRIDE. Instead of marking the packets of flows classified as elephants, the
Marker forwards the packets without changes and generates an extra marked packet for
each elephant flow. Such an extra marked packet uses the same flow header (e.g., 5-
tuple) and includes the size and IAT of the first N packets in its payload. In this case,
the parameter M of the Marker would represent the number of extra marked packets
generated for an elephant flow, thus enabling a trade-off between reliability and overhead.
As M increases, the lesser the probability that the controller will miss elephant flows due
to losses of extra marked packets in the SDDCN, but the more extra packets are sent to
edge switches and to the controller. Once the controller has installed a higher priority
routing rule for handling a specific elephant flow across the SDDCN, the subsequent extra
marked packets of this flow are not required but they are still forwarded to the controller,
which increases traffic overhead.

After the Catcher extracts the flow information from marked packets, it passes that
data to the Predictor, which uses the regression models to predict the rate and duration
of the flows identified by the marked packets. If the flow information includes the size
and IAT of the first N packets, the Predictor’s configuration can be extended by includ-
ing a cold start threshold (θCS) that defines if estimating or predicting the flow traffic
characteristics (i.e., rate and duration). For example, if the number of instances (i.e.,
flows) used to train the model is less than θCS, the Predictor computes the rate using the
first N packets data and assigns a default value to the duration. When the number of
trains reaches θCS, the Predictor starts using the regression models to predict the traffic
characteristics. θCS allows warming up the regression models to avoid predictions about
which they have not yet gathered sufficient information.

The Predictor stores all the flow information in the elephant camp (a temporal repos-
itory for elephant flows) and communicates the predicted traffic characteristics to the
Rescheduler. The Rescheduler then can install specific routing rules per elephant flow
across the network based on a path computed by a rescheduling algorithm that uses the
predicted traffic characteristics. Section 4.2.3 describes two rescheduling algorithms that
use either the predicted flow rate or flow duration to compute the path and install the
routing rules for rerouting elephants in a fat-tree DCN topology.

Each routing rule includes a threshold timeout (θTO) that instructs SDN-enabled
switches to remove the routing rule as soon as the corresponding flow has been inac-
tive for θTO (i.e., the switch has not received a packet that matches the flow rule). Note
that θTO is related to the flow definition in NELLY (see Section 3.1.1). Edge switches
additionally include a mechanism that reports to the controller flow statistics of the re-
moved routing rules due to time-out. Such a report must include the flow header, flow
size, and flow duration of the routing rule. For example, OpenFlow allows inserting the
flag OFPFF_SEND_FLOW_REM into the installed flow rules so when the OpenFlow
switch removes one of them, it reports the removed flow rule to the controller, including
the match header, removal cause (e.g., idle time-out), byte count, and duration in sec-
onds. P4 enables a flexible data plane programming for easily implementing this reporting
mechanism into P4 switches.

The Monitor receives the report of the removed routing rule from the edge switch
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and extracts the flow statistics: flow header, flow size, and flow duration. The Monitor
then communicates these flow statistics to the Trainer, which discards those flows that
were incorrectly marked as elephants, that is, flows whose size (e.g., byte count) is less
than an elephant size threshold (θL). In NELLY, θL represents the labeling threshold for
tagging flows as either mice or elephants (see Section 3.1.2). The Trainer computes the
rate and duration (ground truth) of the non-discarded flows (i.e., true elephants) and use
them to train the regression models. Each regression model maps online features (i.e.,
packet header, size, and IAT of the first N packets) onto the corresponding value (i.e.,
rate and duration). Recall that the Predictor relies on the regression models to predict
flow traffic characteristics. The Trainer avoids increasing memory consumption in iRIDE
by removing all timed-out flows (both discarded and used for training) from the elephant
camp. Instead of using only one elephant instance, the Trainer might hold a mini-batch
of elephant instances of size nB for training the regression models.

Since flows represent continuous and dynamic data streams, the Trainer uses an in-
cremental learning algorithm for building the regression models. Incremental learning
enables updating the regression models as the Trainer receives timed-out flows over time,
rather than retraining from the beginning (see Section 2.2.1).

Note that the Rescheduler operates depending on the predicted traffic characteristics
that the Predictor communicates. However, the Monitor might also support the Resched-
uler by implementing a mechanism that frequently requests flow characteristics (e.g., rate)
from the network. This mechanism should keep a low traffic overhead. Therefore, every
TM , the Monitor requests traffic characteristics from elephant flows from edge switches
and passes that information to the Rescheduler. For example, the Monitor can compute
the rate of each requested elephant flow and pass it to the Rescheduler to have an updated
view of the network traffic for taking routing decisions.

4.2.2 Prediction

This section presents the evaluation of the ML modules in iRIDE (i.e., the Predictor
and the Trainer) in relation to prediction accuracy and time by using real packet traces
and incremental learning algorithms. We used both batch and incremental settings for
evaluating these learning algorithms. Furthermore, we used the generic approach for
designing ML-based solutions in networking (see Figure 2.4) to describe and conduct this
evaluation: data collection, feature engineering, establishing the ground truth, model
validation, and model learning.

Datasets

We reused the two datasets [262], UNI1 and UNI2, generated for evaluating NELLY
(see Section 3.2.1). We selected the datasets with BinNom-header as they enabled the
best performance of the majority of the algorithms (see Section 3.2.4). BinNom-header
provides a total of 117 online features. Moreover, since iRIDE only reschedules flows
marked as elephants, we removed those flows smaller than θL = 100 kB from both datasets.
Therefore, the newly generated UNI1 and UNI2 datasets consisted of approximately 8,500
and 20,000 flows, respectively.
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The new datasets included the following flow information: start time, end time, 5-
tuple header, size and IAT of the first 7 packets, as well as flow size. The start and end
times allowed computing the duration of each flow. The 5-tuple header and the size and
IAT of the first 7 packets represented the online features for the two regression models:
flow rate and flow duration. The flow size was divided by the duration of the flow to
compute its rate. The rate and duration of each flow represent the target value to predict
and provide the ground truth for learning and validating the corresponding regression
model.

To complement feature engineering, we converted to negative one (-1) the binary zero
(0) values from the online features corresponding to the 5-tuple header since some ML
techniques (particularly, NNs) perform better when the input values are centered around
zero rather than ranging between 0 and 1 [283, 284]. We also transformed the numeric
values in the online features (i.e., size and IAT of first 7 packets) using different feature
scaling methods, as discussed later in the experiment setup.

Accuracy metrics

We used two accuracy metrics commonly used in the literature to report the performance
of regression models: the coefficient of determination (R2) and the Root Mean Square
Error (RMSE). R2 provides a goodness-of-fit score that measures how well the regression
models fit the observed data (i.e., ground truth) [285]. We rely on the common R2

definition that uses the first equation of Kvålseth (see Equation 4.7), which provides
scores usually between 0 and 1. As the R2 score gets closer to 1, the better the regression
predictions (ŷ) approximate to the observed values (y). Note that R2 scores below 0 might
occur, which represent that the regression fit performs worse than a horizontal line [286].
R2 enables comparisons across different types of data as it does not depend on the scale
of the values. However, R2 by itself cannot indicate if a regression model is adequate.
Therefore, we used RMSE to complement the R2 scores.

R2(y, ŷ) = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

, where ȳ =
1

n

n∑

i=1

yi (4.7)

As shown in Equation 4.8, RMSE measures the differences between the values pre-
dicted by the regression models (ŷ) and the observed values (y). RMSE provides a non-
negative value that expresses a higher accuracy as the error gets smaller. We preferred
RMSE over other similar error metrics often used to gauge the accuracy of regression
models, such as MAE and MSE [286]. The three error metrics disregard the direction of
under- and over-estimations in the predictions. Moreover, unlike R2, these metrics depend
on the scale of the data so they cannot be used to compare the accuracy of regression
models working with different types of data. However, MSE and RMSE are more useful
than MAE for heavily penalizing large errors and outliers. Additionally, in contrast to
MSE, RMSE expresses the standard deviation of the error, which is in the same units as
the quantity being predicted. Our RMSE results display Megabits per second (Mbps) for
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flow rate and seconds (s) for flow duration.

RMSE =

√∑n
i=1(yi − ŷi)2

n
(4.8)

At the end of the evaluation process, we also analyzed the residual plots of the selected
regression models to check no bias nor problematic patterns exist in the residuals.

Experiment setup

Incremental learning algorithms are commonly evaluated using the interleaved test-then-
train approach [266]. However, for selecting the data preprocessing techniques (i.e., fea-
ture scaling, target transformation, imbalance correction) and the regression model (i.e.,
learning algorithm and hyperparameter tuning), we followed the common 60/20/20%
batch decomposition for dividing the datasets into training, validation, and test sets, re-
spectively (see Section 2.2.1). This batch decomposition allows using the validation set for
selecting the best model and evaluate it on the test set to get an unbiased estimate of the
model’s performance [287]. Since our datasets are in the order of the tens of thousands,
we applied the batch holdout method for validation and testing. Note the result from the
test set represents the optimal performance to which the model would tend when using
an incremental evaluation method (either holdout or interleaved test-then-train) [288].

Feature scaling is an essential data preprocessing step for ML algorithms that compute
a distance function between input features, such as kNN [283]. Distance functions (e.g.,
Euclidean distance) depend heavily on the variability of the features and are biased to-
wards numerically larger values. For example, the online features in our datasets contain
binary values [-1, 1] for the 5-tuple packet header and numeric values for the size and IAT
of the first 7 packets. The packet size ranges from 60 bytes up to 1522 bytes, whereas the
packet IAT can go from a microsecond up to five million of microseconds (i.e., θTO = 5s).
Therefore, our non-scaled numeric values (particularly, large IATs) could bias ML algo-
rithms based on distance functions. Moreover, feature scaling for ML algorithms using
gradient descent, such as NNs, might not be strictly required but can make their training
to converge faster and with less chances of sticking in a local optima [283]. Conversely,
DT algorithms (e.g., Hoeffding trees) are insensitive to feature scaling.

We analyzed different feature scaling methods on the numeric values of the online
features [289]. The min-max zero-center scaler (see Equation 4.9) is a simple method
that rescales the features to the range [-1, 1] by using the minimum and maximum values
of each feature. In our datasets, we defined 60 and 1522 (bytes) as the minimum and
maximum values for the packet size, as well as one and five million (microseconds) for the
packet IAT. The standard scaler, also called Z-score normalization (see Equation 4.10),
removes the mean and scales the values to unit variance. The robust scaler removes the
median and scales the data according to the interquartile range (i.e., range between the
first and third quartiles). The quantile transformer provides a non-linear transformation
that maps the features to follow either a uniform or a normal distribution. The power
transformer applies either the Box-Cox transform (see Equation 4.11) or the Yeo-Johnson
transform (see Equation 4.12). Both non-linear transformations use the maximum like-
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lihood to estimate the optimal parameter λ that maps data to follow a Gaussian-like
distribution. The normalizer performs the Euclidean norm (a.k.a. L2 norm) to scale
features individually to unit form.

X ′i =
2 · (Xi −min(X))

max(X)−min(X)
− 1 (4.9)

X ′i =
Xi − X̄

σ
, where X̄ is the mean and σ is the standard deviation (4.10)

X
(λ)
i =

{
Xλ
i −1
λ

λ 6= 0

ln(Xi) λ = 0
(4.11)

X
(λ)
i =





(Xi+1)λ−1
λ

λ 6= 0, Xi ≥ 0

ln(Xi + 1) λ = 0, Xi ≥ 0

− (−Xi+1)(2−λ)−1
2−λ λ 6= 2, Xi < 0

− ln(−Xi + 1) λ = 2, Xi < 0

(4.12)

We also analyzed different target variable transformations by applying some of these
feature scaling methods: quantile-uniform, quantile-normal, Box-Cox, and Yeo-Jhonson.
Figures 4.9 and 4.10 depict these transformations on the two target variables, flow rate
and flow duration, respectively, in both datasets, UNI1 and UNI2. Note both target
variables present an imbalanced domain when no transformation has been applied to
the data. Therefore, we further included the Synthetic Minority Over-sampling tech-
nique for regression with Gaussian Noise (SMOGN) [290] into our experiments for an-
alyzing imbalance correction (i.e., under-sampling and over-sampling) in our datasets.
SMOGN combines three methods proposed for addressing regression imbalance: ran-
dom under-sampling [291], Synthetic Minority Over-sampling TEchnique for Regres-
sion (SMOTER) [292], and introduction of Gaussian Noise (GN) [293]. Random under-
sampling enables removing less interesting instances, whereas SMOTER and GN intro-
duction generate new synthetic data from close and distant instances, respectively.

Finally, we used the interleaved test-then-train approach [266] for evaluating the se-
lected regression model in an incremental setting. Similar to NELLY (see Section 3.2.3,
the prediction of flow characteristics (i.e., flow rate and flow duration) takes place at the
flow start time, while retraining the regression models at the flow end time. Moreover,
we analyzed different mini-batch sizes (nB) for training the model incrementally.

Performance analysis

To determine the regression model with the best accuracy performance, first, we used
the batch decomposition to evaluate different learning algorithms that can operate in
an incremental approach. Three regression algorithms from scikit-learn [294]: Stochastic
Gradient Descent (SGD) for Ordinary Least Squares (OLS), Passive-Aggressive (PA), and
Multi-Layer Perceptron (MLP) (i.e., NN); plus four regression algorithms from scikit-
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Figure 4.9: Transformations of flow rate in UNI1 and UNI2
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Figure 4.10: Transformations of flow duration in UNI1 and UNI2

multiflow [295]: k-Nearest Neighbors (kNN), Hoeffding tree, Hoeffding Adaptive Tree
(HAT), and Adaptive Random Forest (ARF). The algorithms were executed with their
default settings and without previous model initialization. We only modified the MLP
structure to two hidden layers: the first one with 175 units and the second one with 117
units (i.e., respectively, 3/2 and 1 times the number of input units, which is the number
of online features). Moreover, we evaluated all the feature scaling methods and target
transformations (both explained in the experiment setup) for each learning algorithm.

For the sake of brevity, Table 4.4 presents the learning algorithm and data preprocess-
ing techniques that achieved the best accuracy performance (i.e., the highest R2 and the
lowest RMSE) for predicting each target variable (i.e., flow rate and flow duration) in the
training and validation sets of UNI1 and UNI2. The results show that MLP achieved the
best accuracy for predicting the two target variables in both evaluation sets of UNI1 and
UNI2, though the associated feature scaling methods and target transformations varied.
Note Table 4.4 presents the second best accuracy performance for predicting both target
variables in the validation set of UNI1. Although kNN achieved the best accuracy in
the validation set, its accuracy results performed really bad in the training set. In fact,
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kNN presented negative R2 values in the training set, representing that the regression fit
performed worse than a horizontal line. Therefore, the kNN results in the validation set
of UNI1 were not reliable.

The results in Table 4.4 also depict that MLP fits better the rate (i.e., higher R2) in
UNI1 than in UNI2, achieving a lower error (i.e., RMSE) for the first one. In contrast,
although MLP fits better the duration in UNI1 than in UNI2, the error in the first one is
higher than in the other. This is because UNI1 presents some flow duration values that
greatly differ from the others, which are highly penalized by the RMSE metric. Therefore,
hereinafter, we make decisions based on RMSE results.

Table 4.4: Learning algorithm and data preprocessing with the best accuracy performance
in a batch learning setting

Dataset Target
variable

Evaluation
set

Learning
algorithm

Feature
scaling

Target
transform R2 RMSE∗

UNI1

Rate
Train MLP Box-Cox None 0.9417 1.42

Validation† MLP Robust Yeo-Johnson 0.3123 5.61

Duration
Train MLP Quantile-normal Quantile-normal 0.9678 85.64

Validation† MLP Min-max None 0.9119 197.92

UNI2

Rate
Train MLP Quantile-normal Quantile-normal 0.5424 23.07

Validation MLP Robust None 0.4367 24.81

Duration
Train MLP Quantile-normal Box-Cox 0.7378 14.28

Validation MLP Min-max Quantile-normal 0.5215 19.34
∗RMSE units depend on target variable: Megabits per second (Mbps) for rate and seconds (s) for duration
†Showing the second best result, disregarding kNN

We further applied SMOGN to our datasets for evaluating the effect of imbalance
correction (i.e., under-sampling and over-sampling) on the accuracy performance. In this
experiment, we only used MLP as the learning algorithm as it performed the best in the
results depicted in Table 4.4. However, we kept analyzing all the feature scaling methods
and target transformations. MLP preserved the same NN structure (i.e., two hidden
layers of 175 and 117 units), as well as the rest of default settings and no previous model
initialization.

Table 4.5 shows the data preprocessing techniques (imbalance correction, feature scal-
ing, and target transformation) with which MLP achieved the best accuracy performance
in the validation set for predicting both target variables in UNI1 and UNI2. To sum-
marize, for predicting the rate in UNI1, MLP achieved the best accuracy by using the
under-sampling imbalance corrective, the robust feature scaler, and the Yeo-Johnson tar-
get transformation. Whereas, for the duration in UNI1, MLP performed the best by
using over-sampling, the min-max scaler, and no target transformation. On the other
hand, for predicting both target variables in UNI2, MLP required no imbalance corrective
nor target transformation but used the feature normalizer to achieve the best perfor-
mance. However, many data preprocessing techniques that enabled the best accuracy
have been specially designed for batch learning (i.e., operate with the whole training set),
including under-sampling and over-sampling, robust scaler, normalizer, and Yeo-Johnson
transformer. Implementing these techniques in an incremental setting might require huge
memory resources and it is still an open research challenge [296].
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Table 4.5: Data preprocessing with the best accuracy performance for MLP in a batch
learning setting

Dataset Target
variable

Imbalance
corrective

Feature
scaling

Target
transform

Training Validation

R2 RMSE∗ R2 RMSE∗

UNI1

Rate

None† Robust None 0.9722 1.12 0.4849 4.27

Under-sampling Robust Yeo-Johnson 0.9745 1.62 0.4944 4.23

Over-sampling Yeo-Johnson None 0.9801 1.75 0.4649 4.35

Duration

None† Standard None 0.9979 24.82 0.8899 192.24

Under-sampling Min-max None 0.9976 44.89 0.8885 193.46

Over-sampling Min-max None 0.9978 49.58 0.9023 181.14

UNI2

Rate

None† Normalizer None 0.5167 23.45 0.4308 25.28

Under-sampling Normalizer Yeo-Johnson 0.7081 24.72 0.3971 26.01

Over-sampling Robust None 0.7532 23.09 0.4139 25.65

Duration

None† Normalizer None 0.6335 17.01 0.4936 21.77

Under-sampling Min-max None 0.6476 22.05 0.4647 22.38

Over-sampling Min-max Yeo-Johnson 0.6786 22.15 0.4522 22.64
∗RMSE units depend on target variable: Megabits per second (Mbps) for rate and seconds (s) for duration
†Original dataset, with no under-sampling nor over-sampling

Therefore, we evaluated a feasible incremental approach by combining MLP with those
data preprocessing techniques that can operate in an incremental setting, namely, min-
max feature scaler, no target transformation, and no imbalance correction. Note the
min-max scaler only requires defining the minimum and maximum values of the features.
In our datasets, 60 and 1522 (bytes) as the minimum and maximum values for the packet
size, as well as one and five million (microseconds) for the packet IAT. Table 4.6 presents
the accuracy performance of MLP using the feasible incremental data preprocessing tech-
niques. As expected, MLP achieved worse validation errors in comparison with using the
best data preprocessing techniques (see Table 4.5). RMSE in the validation set increased
by 0.6 (Mbps) and 0.3 (seconds) when predicting the flow rate in both datasets and the
flow duration in UNI2, respectively. Moreover, the flow duration prediction in UNI1 rep-
resents the worst case, incrementing the validation RMSE by 21 (seconds). Nevertheless,
MLP achieved similar RMSE values in the training set, opening an opportunity to improve
the validation error.

Aiming at improving the accuracy performance on the validation set, first, we focused
on building NN structures that reduce the training errors by using Tensorflow [297] and
Keras [298]. We set typical hyperparameters for DNNs [299–301], including the Rectified
Linear Unit (ReLU) [302] as the activation function in the units of the hidden layers,
He normal [303] to initialize the NN weights, Adam optimization [304] to improve SGD,
and the default mini-batch size of 32 instances per gradient update [305]. For tuning the
NN structure (see Figure 4.11), we varied the number of hidden layers (Lh) from one up
to ten in steps of one (i.e., Lh ∈ [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), and the number of units per
each hidden layer (n[lh] ∀ lh ∈ LH) from 15 up to 600 in steps of specific multiples of 15
(i.e., n[lh] ∈ [15, 30, 60, 120, 240, 360, 480, 600]). Note the data preprocessing techniques
remained as the feasible incremental approach (i.e., min-max feature scaler, no target
transformation, and no imbalance correction).
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Table 4.6: Accuracy performance of MLP using feasible incremental data preprocessing
techniques in a batch learning setting

Dataset Target
variable

Training Validation

R2 RMSE∗ R2 RMSE∗

UNI1
Rate 0.9532 1.45 0.3259 4.88

Duration 0.9969 29.77 0.8778 202.57

UNI2
Rate 0.4990 23.88 0.4032 25.88

Duration 0.5832 18.14 0.4781 22.09
∗RMSE units depend on target variable: Megabits per second
(Mbps) for rate and seconds (s) for duration

...

... ... ...

...

...

...

...
n [lh] → number of units in hidden layer lh ∈ Lh

Lh → number of hidden layers

n [i] = 117

Input layeri

n [o] = 1
Output layero

predicted 
value

...

Figure 4.11: NN structure

Table 4.7 describes the NN structures that achieved the lowest RMSE values in the
training sets of both datasets, UNI1 and UNI2, for predicting the two target variables. In
general, the results show that for reducing the training errors, NN requires deep structures
(i.e., DNN) from five up to nine hidden layers (Lh) and from 360 up to 600 units per each
hidden layer (n[lh]). In comparison to the results of MLP using the feasible incremental
data preprocessing techniques (see Table 4.6, the reduction of the training RMSE was good
for predicting the rate and duration in UNI1 (∼33% and ∼24%, respectively), moderate
for the duration in UNI2 (∼11%), and minimal for the rate in UNI2 (∼4.6%).

The problem about focusing on reducing the training error is that it causes overfit-
ting [306], which means that the model would not be able to generalize in unseen data
(i.e., poor accuracy performance on the validation and test sets). To tackle this prob-
lem, we incorporated a combination of two regularization methods to reduce the error
on the validation sets. First, L2 regularization [307] (see Equation 4.13), for which we
varied the regularization parameter (λ) from 0 up to 0.1 in steps of 1 thousand (i.e.,
λ ∈ [0, 10−5, 10−4, 10−3, 0.01, 0.1]). Second, a dropout regularization layer [308] for each
hidden layer, for which we varied the dropout rate from 0% up to 75% in steps of 25%
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Table 4.7: DNN structures with the lowest training errors in a batch learning setting

Dataset Target
variable

Hidden layers
(Lh)

Hidden units
(n[lh])

Training
RMSE∗

UNI1
Rate 5 480 0.97

Duration 8 360 22.53

UNI2
Rate 8 600 22.78

Duration 9 480 16.22
∗RMSE units depend on target variable: Megabits per second (Mbps) for
rate and seconds (s) for duration

(i.e., [0, 25, 50, 75]%).

L2 =
λ

2m
‖ w[l] ‖2F , where λ is the regularization parameter, m is the number

of training instances, and ‖ w[l] ‖2F is the squared Frobenius

norm of the weights in layer l
(4.13)

Table 4.8 depicts the DNN structures and regularization methods (i.e., L2 and dropout
layers) that achieved the lowest RMSE values in the validation sets of both datasets, UNI1
and UNI2, for predicting the two target variables. For predicting the rate, the results
show the DNN structures achieved the lowest validation errors by using a combination of
the two regularization methods, with λ = 0.1 and a dropout rate of 50% for UNI1, and
λ = 10−4 and a dropout rate of 25% for UNI2. Whereas, for predicting the duration, using
only L2 regularization with λ = 10−5 provided the best validation results. In comparison
to the results of MLP with the feasible incremental data preprocessing techniques (see
Table 4.6), the trained DNNs reduced the validation RMSE values, except for the rate
in UNI2, where no improvement nor degradation was observed. In fact, in comparison to
the results of MLP with the best data preprocessing techniques (see Table 4.5), the DNNs
reduced the validation errors for predicting the duration in UNI1 and UNI2. Although
the validation RMSE for predicting the rate in UNI1 is higher for the trained DNN than
for the best MLP, this error is still lower than for MLP with the feasible incremental data
preprocessing techniques.

To conclude the evaluation in a batch learning setting, we evaluated the obtained
DNN regression models in the test set of both datasets, UNI1 and UNI2, for reporting
an unbiased estimate of the model’s accuracy performance when predicting the flow rate
and the flow duration (see Table 4.8).

Continuing our prediction evaluation, we used the interleaved test-then-train approach
for evaluating the tuned DNN regression models in an incremental learning setting. Fig-
ure 4.12 shows the mean RMSE over a sliding window of approximately 10% of the
instances (1000 in UNI1 and 2000 in UNI2). Note that we also analyzed mini-batch sizes
(nB) other than one, varying the number of training instances from 8 up to 256 in dou-
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Table 4.8: DNN structures and regularization methods with the lowest validation errors
in a batch learning setting
Dataset Target

variable Structure∗ Regularization
parameter (λ)

Dropout
rate

Training
RMSE†

Validation
RMSE†

Testing
RMSE†

UNI1
Rate Lh = 5, n[lh] = 480 0.1 50% 4.61 4.34 5.42

Duration Lh = 8, n[lh] = 360 10−5 0% 30.14 173.97 126.89

UNI2
Rate Lh = 8, n[lh] = 600 10−4 25% 25.51 25.88 27.08

Duration Lh = 8, n[lh] = 360 10−5 0% 17.51 21.52 18.55
∗Defines the number of hidden layers (Lh) and the number of units per each hidden layer (n[lh])
†RMSE units depend on target variable: Megabits per second (Mbps) for rate and seconds (s) for duration

bling steps (i.e., nB ∈ [1, 8, 16, 32, 64, 128, 256]). Moreover, the reference dotted-red line
(Ref.) in the figure represents the RMSE values reported for the test sets in the batch
learning evaluation (see Table 4.8). The results show, first, the DNN regression models
incrementally tend to the test errors from the batch learning evaluation, except for the
duration in UNI2. Second, the models suffer from higher error as new traffic characteris-
tics appear in the data. However, the DNN regression models incrementally adapt to new
traffic characteristics, lowering the RMSE values back. Third, using a large nB generally
provides no significant improvement over time. In fact, using nB = 256 for predicting the
duration in UNI2 might cause overfitting, producing a higher error than using a smaller
nB. This is not the case for the duration in UNI1, which greatly benefits from using
nB > 1 to reduce the negative impact of the flow duration outliers on the prediction
error.
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Figure 4.12: Mean RMSE over a sliding window of instances for DNN regression models
with different mini-batch sizes (nB) in an incremental learning setting

Figure 4.13 corroborates the impact of nB on the prediction errors by presenting the
mean RMSE over different values of nB for the tuned DNN regression models. Similarly,
the dotted-striped-red bar represents the RMSE values reported for the test sets in the
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batch learning evaluation (see Table 4.8). The results show that using nB > 1 for pre-
dicting the rate in both UNI1 and UNI2 reduces RMSE by a small amount (maximum
9.5%), achieving a minimum value that is around 11% over the test errors from the batch
learning evaluation. Note the RMSE reduction is less significant for nB > 32. Regarding
the duration in UNI1, using nB > 1 greatly reduces the prediction error by a maximum
of 79%, achieving the lowest RMSE when using nB = 256, which is only 7% over the
test error from the batch learning evaluation. Similarly, the error reduction is minor for
nB > 32. In contrast, for predicting the duration in UNI2, the results show that using
nB > 1 provides no perceptible RMSE reduction. In fact, when nB = 8, the RMSE grows
up to 27% over the rest of nB values. Note the lowest RMSE is 44% over the test error
from the batch learning evaluation.
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Figure 4.13: Mean RMSE over mini-batch sizes (nB) for DNN regression models in an
incremental learning setting

Lastly, Figure 4.14 depicts the mean prediction time per flow over different values of nB
for the tuned DNN regression models. Note that the time for predicting the two target
variables, rate and duration, in both datasets UNI1 and UNI2, achieves the minimum
value when nB = 1. This prediction time per flow grows as nB increases, achieving a
maximum value when nB = 32, which is between 1.8 and 3.4 milliseconds (ms) over the
lowest prediction time. Based on the results of both the prediction time per flow and the
mean RMSE (see Figure 4.13), we recommend using only one training instance at a time
(i.e., nB = 1) when predicting the rate in UNI1 and UNI2 as the error reduction is small
(up to 9.5%) in comparison to the increment of the prediction time (> 2 ms) when using
nB > 1. Similarly, stick to nB = 1 when predicting the duration in UNI2 since no error
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reduction is perceptible when using nB > 1 while the prediction time does increment by
at least 2 ms. In contrast, for predicting the duration in UNI1, we recommend using
nB = 256 because the error is greatly reduced (up to 79%) while generating a prediction
time per flow that is only 0.7 ms above the prediction time for nB = 8.
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Figure 4.14: Mean prediction time per flow over mini-batch sizes (nB) for DNN regression
models in an incremental learning setting

4.2.3 Rescheduling

As described in Section 4.8, the Rescheduler module of iRIDE implements a rescheduling
algorithm that uses the predicted traffic characteristics, reported by the Predictor, to
compute a path and install specific routing rules per elephant flow across the network.
The problem about finding the path for different flows while not exceeding the bandwidth
capacity of any link is known as Multi-Commodity Flow, which is NP-complete [26]. To
the best of our knowledge, no polynomial time algorithm exists for simultaneous flow
routing in realistic DCN topologies, such as the 3-tier fat-tree topology (i.e., 5-stage Clos
network) [26]. Therefore, this section describes practical heuristics for implementing two
rescheduling algorithms that consider the fat-tree DCN topology, as seminal related works
have done (e.g., simulated annealing [26] and increasing first-fit [29]).

Least Congested (LC) path

In a fat-tree topology, multiple equal-cost paths exist between any pair of hosts not
connected to the same edge switch. When the Rescheduler receives a flow identified as
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elephant, the Least Congested (LC) path algorithm linearly searches all the paths between
the source and destination hosts to select the one whose link components carry the less
traffic load. Note that only one path exists if the pair of hosts are connected to the
same edge switch. The Rescheduler then places the flow on the selected path. First,
the Rescheduler uses the predicted flow rate, reported by the Predictor, to reserve the
bandwidth capacity for the flow on the links corresponding to the selected path. Second,
the Rescheduler installs routing rules for bottom-up communication (i.e., from edge to
aggregation and from aggregation to core) in the corresponding edge and aggregation
switches. The top-down communication (i.e., from core to aggregation, from aggregation
to edge, and from edge to destination host) relies on the default routing algorithm, such as
PM2 (see Section 4.1). The Rescheduler then maintains the reserved bandwidth capacity
for every link in the network to determine which paths carry the less traffic load for placing
new flows identified as elephants. When receiving the notification from the Monitor that
a flow has expired (i.e., a flow has been inactive for θTO), the Rescheduler clears the
corresponding reservations of bandwidth capacity.

Worst-Fit Badwidth-Time-Fit (WF+BTF)

In contrast to LC, the Worst-Fit Badwidth-Time-Fit (WF+BTF) algorithm uses the
two predicted traffic characteristics reported by the Predictor, namely, flow rate and flow
duration. To do so, WF+BTF operates in two steps. First, when the Rescheduler receives
a flow identified as elephant, WF+BTF linearly searches all the paths to find the one
with the less traffic load whose link components can all accommodate the predicted rate
of that flow. Note that this corresponds to the Worst-Fit (WF) algorithm from the bin
packing problem [309]; WF places an item (flow) in a feasible bin (path) with most free
space (bandwidth). When the network traffic load is light, finding such a path that can
accommodate the predicted flow rate is likely to be easy. However, as the network traffic
load grows and links become congested, WF does not guarantee that all flows identified
as elephants will be placed in a path. When no path among the many existing ones
between the pair of hosts can accommodate the predicted flow rate, WF+BTF moves to
the second step, the Badwidth-Time-Fit (BTF) algorithm. BTF searches for the path
with the maximum harmonic mean (see Equation 4.14) between the relative scores of the
available bandwidth in the path (bp) and the time the path would take to fit the predicted
rate (tp). BTF computes the relative scores bp and tp for each path by comparing the
corresponding values of the path to the best values (i.e., the maximum free bandwidth
and the minimum time to fit, respectively) among the many possible paths between the
pair of hosts. Note that the time to fit the predicted flow rate is computed using the
predicted duration of the flows.

H =
2× bp × tp
bp + tp

, where bp =
available bandwidth in path

maximum available bandwidth among paths

tp =
minimum time to fit among paths

time to fit in path

(4.14)
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4.2.4 Implementation

As depicted in Figure 4.15, we reused the Mininet VM deployed for PM2 (see Section 4.1.3)
for running our custom fat-tree topology to evaluate iRIDE. However, instead of execut-
ing a simple ping test between the hosts as in PM2, we installed the traffic generator
Tcpreplay 4.3.4 [310] on the Mininet VM for the hosts to inject real traffic into the net-
work. Tcpreplay supports replaying network traffic captured in the format of PCAP files.
Moreover, we installed Ifstat 1.1 [311] on the Mininet VM for capturing the activity of the
switch interfaces in our fat-tree emulated network. Ifstat reports interface statistics such
as the incoming and outgoing bandwidth traffic. Note that all the hosts in our fat-tree
emulated network concurrently execute a Tcpreplay process for generating traffic, which
requires more resources (around a logical processor per process) than a simple ping test.
Therefore, we redeployed our Mininet VM on to a more powerful server at LRC than
the one used for the proof of concept of PM2. The new server also runs Debian 8.11
server but in a 2.00 GHz Intel Xeon Processor ES-2660 machine, with 28 physical cores,
56 logical cores, and 226 GB RAM. Then, we increased the resources of the Mininet VM
to 18 logical cores and 100 GB RAM.

Similar to PM2, we installed Ryu 4.34 [66] on the new server for deploying the Open-
Flow controller that manages the OpenFlow switches. Furthermore, we installed Tensor-
flow 2.3.0 [297] and Keras 1.1.2 [298] for training (incrementally) and inference of DNNs.
Using the Python libraries from Ryu, Tensorflow, and Keras, we developed a network
application that implements the five modules of iRIDE: Catcher, Predictor, Rescheduler,
Monitor, and Trainer. The Catcher uses the value 001111 in the 6-bit DSCP field of the
IPv4 header for installing the catching rules that match and forward to the controller the
marked packets reporting the identified elephant flows. The Predictor implements no cold
start threshold (θCS = 0) for predicting the flow traffic characteristics. The Rescheduler
sets the timeout threshold θTO = 5 seconds for instructing OpenFlow switches to remove
idle rules installed for routing identified elephant flows. Moreover, the Rescheduler inserts
the OpenFlow flag OFPFF_SEND_FLOW_REM into the routing rules installed on the
edge switches that report the elephant flows (i.e., forward the marked packets). That way,
when a rule times out, the OpenFlow switch removes it and reports the flow rule statis-
tics to the controller. The Monitor performs no frequent requesting of flow characteristics
from the network (TM = ∞). The Trainer sets the labeling threshold θL = 100 kB for
filtering out flows incorrectly marked as elephants. In addition, the Trainer implements a
mini-batch size nB = 1. Finally, we used the DNN structures and regularization methods
from Table 4.8 for implementing the incremental regression models that the Trainer builds
and the Predictor applies for inference. Our Ryu network application that implements
iRIDE is available in [282]. We executed our iRIDE network application on the Ryu SDN
framework.

Each host in our fat-tree emulated network runs a Tcpreplay process for replaying the
traffic from a PCAP file. Figure 4.16 describes the process we followed to build a PCAP
file for each host from public real packet traces. We used the Scapy 2.4.5 Python library
to develop a PCAP parser that hashes the MAC and IP addresses, adds payload, and
generates marked packets. Note the two real packet traces [255], UNI1 and UNI2, consist
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Figure 4.15: Implementation of iRIDE

of different PCAP files. For security reasons, these PCAP files come anonymized, which
changes the source and destination MAC and IP addresses, remaps the transport layer
ports, and truncates the payload of the captured packets [312]. Our PCAP parser then
hashes the source and destination MAC and IP addresses for distributing the packets
among the hosts in our fat-tree network. We use the source IP for assigning each packet
to the corresponding PCAP file (e.g., 10.0.0.1.pcap). The PCAP parser also reads the
packet length for padding the payload of each packet with empty data. Lastly, recall that
iRIDE relies on a flow detection method, such as NELLY (see Chapter 3), that reports the
elephant flows using marked packets. Therefore, the PCAP parser reads the classification
results from NELLY for generating the marked packets that report those flows classified as
elephants. The PCAP parser inserts the value 001111 into the DSCP field of the marked
packets, so the catching rules will match and forward them to the controller. Moreover,
the marked packets include the size and IAT of the first 7 packets of the flow into their
payload.
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Figure 4.16: PCAP parsing for the traffic generator in iRIDE

4.2.5 Evaluation

Due to resource limitations, we executed our evaluation using a fat-tree topology of size
k = 4, which deploys 16 hosts, 20 switches (8 at edge layer, 8 at aggregation layer, and 4
at core layer), and 48 links (see Table 4.1). Note that the number of logical cores in the
server is insufficient for running a fat-tree topology of size k = 8 with all the 128 hosts
concurrently executing a Tcpreplay process. Since the total bandwidth in our Mininet
VM (obtained using the iperf test) was restricted to a maximum of 20 Gbps, we limited
each link to a bandwidth of 100 Mbps, for a total of 4.8 Gbps. Moreover, we replayed
only the traffic from the UNI1 packet trace, for which the PCAP parser generated the
PCAP files with a total size of 12 GB. We were not able to generate the PCAP files for the
UNI2 packet trace due to disk space limitations in the server. The hosts in our fat-tree
emulated network replayed the traffic from UNI1 at top-speed.

For the evaluation, we measured the throughput over time in the links of the fat-
tree emulated network when using iRIDE, with both rescheduling algorithms LC and
WF+BTF, and when using PM2, which provides an ECMP implementation for OpenFlow
networks. Figure 4.17 depicts the throughput over time in the bisection links of the fat-
tree topology from the first run of the evaluation. The bisection links of a network is
represented by “the minimum number of links to be removed to disconnect the network
into two halves of equal size” [313]. It is noteworthy that we also measured the throughput
on links from other areas of the fat-tree topology, including the links from the edge layer
to the aggregation layer and from the aggregation layer to the core layer (the links from
the edge layer to the hosts are not of our interest as they do not provide multiple paths).
However, we observed the same pattern as in the bisection links, so we decided to present
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only the throughput in the bisection links for simplicity. The results show that iRIDE is
able to use more efficiently the bisection bandwidth than PM2. Moreover, iRIDE using the
rescheduling algorithm WF+BTF is able to use more efficiently the bisection bandwidth
than using LC. Note that as better the bandwidth efficiency, the faster to complete the
traffic.
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Figure 4.17: Throughput over time in the bisection links of a fat-tree topology of size
k = 4 when using PM2 and iRIDE, with both LC and WF+BTF, for routing UNI1 traffic

Finally, Figure 4.18(a) presents the mean throughput in the bisection links of the fat-
tree topology, whereas Figure 4.18(b) depicts the traffic completion time. Both figures
display the average values and the corresponding standard deviation from ten runs for each
routing algorithm. Figure 4.18(a) shows that PM2 achieves a mean throughput of 33 Mbps
in the bisection links of the fat-tree topology, whereas iRIDE increments that throughput
by 5 and 11 Mbps when using LC and WF+BTF, respectively. Conversely, Figure 4.18(b)
depicts that all the hosts in the fat-tree topology completed the communication in about
38 minutes when using PM2 only, whereas iRIDE reduced such a traffic completion time
by 5 and 9 minutes when using LC and WF+BTF, respectively. These results confirm
that iRIDE is able to generate more throughput and to complete the traffic faster than
PM2, particularly, when using the rescheduling algorithm WF+BTF, which uses the flow
rates and flow durations predicted using the incremental DNNs.
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Figure 4.18: Mean throughput in the bisection links of a fat-tree topology of size k = 4
and traffic completion time when using PM2 and iRIDE, with both LC and WF+BTF,
for routing UNI1 traffic

4.3 Final remarks

A relevant problem affecting the overall performance of multipath routing in SDDCNs
is the coexistence of mice and elephant flows. Aiming at overcoming this problem, this
chapter introduced PM2, a multipath routing algorithm for steering flows (mainly mice)
in a fat-tree DCN topology. PM2 supports transparent host migration across the whole
network while reducing the number of rules installed on SDN switches, decreasing the
delay introduced to flows (mainly mice) traversing the network. An analytical comparison
corroborated that PM2 installs much fewer rules than other OpenFlow-feasible multipath
routing algorithms that support transparent host migration across a topology area greater
than the same edge switch. Futhermore, this chapter proposed iRIDE, a flow rescheduling
method that applies incremental learning at the controller-side of SDDCNs for predicting
traffic characteristics of flows identified as elephants to compute and install the best
path per flow across the network. An extensive evaluation based on real packet traces
and various incremental learning algorithms demonstrated the low error for predicting
the flow rate and duration of iRIDE when using DNNs with regularization and dropout
layers. Furthermore, the evaluation results show the high throughput and short traffic
completion time of iRIDE when implementing a rescheduling algorithm that uses the two
predicted traffic characteristics.
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Chapter 5

Conclusions

This chapter starts summarizing the research work carried out in this thesis. Then, it
provides the answers for the fundamental questions that guided the verification of the
hypothesis defended in this thesis. The last section outlines directions for future work.

This thesis presented the investigation carried out to verify the hypothesis: using
ML for fine-granularity prediction of flow characteristics and SDN for dynamic
control of flow scheduling would allow building a multipath routing mechanism
for DCNs that improves1 the routing function. Based on the hypothesis, this work
proposed a multipath routing mechanism that leverages both SDN and ML to improve
the routing function in DCNs. Three major components form the proposed multipath
routing mechanism: NELLY, PM2, and iRIDE.

NELLY introduced a flow detection method that incorporates incremental learning at
the server-side of SDDCNs to accurately and timely identify elephant flows at low traffic
overhead while enabling continuous model adaptation under limited memory resources.
An extensive evaluation based on real packet traces and various incremental learning
algorithms demonstrated the high accuracy and speed of NELLY when used with the
ARF and AHOT algorithms. Moreover, an analytical comparison to seminal related works
corroborated the scalability of NELLY as well as its generation of low traffic overhead and
the fact that no modifications in SDN standards are required.

PM2 provided a multipath routing algorithm that supports transparent host migration
across the whole network while reducing the number of rules installed on SDN switches,
decreasing the delay introduced to flows (mainly mice) traversing the SDDCN. A proto-
type implementation serves as a proof of concept for demonstrating the feasibility of PM2
in a fat-tree DCN topology. Moreover, an analytical comparison corroborated that PM2
installs much fewer rules than other OpenFlow-feasible multipath routing algorithms de-
pending on either MAC or IP addresses and supporting transparent host migration across
a topology area greater than the same edge switch.

iRIDE proposed a flow rescheduling method at the controller-side of SDDCNs that
improves network throughput and traffic completion time by using incremental learning
to predict the rate and duration of elephants for computing and installing the best path
across the network. An extensive evaluation based on real packet traces and various

1In terms of high throughput and low delay while efficient use of resources
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incremental learning algorithms demonstrated the low error of iRIDE for predicting the
flow rate and flow duration when using DNNs with regularization and dropout layers.
Furthermore, the evaluation results show the high throughput and short traffic completion
time of iRIDE when implementing the rescheduling algorithm WF+BTF, which uses both
predicted traffic characteristics, flow rate and flow duration.

5.1 Answers for the fundamental questions

Two fundamental questions guided the investigation about using ML for fine-granularity
prediction of flow characteristics and SDN for dynamic control of flow scheduling aiming
at building a multipath routing mechanism for DCNs that improves the routing function.
This section reviews and answers such questions.

Fundamental question I: What is the accuracy and efficiency, in terms of time
and memory, of ML techniques for predicting flow characteristics of network traffic from
DCNs?

In this work, NELLY focused on predicting the size of flows by classifying them as
mice or elephants. The evaluation results demonstrated that using incremental learning
algorithms for performing such a classification achieves high elephant detection with short
classification time. In particular, NELLY achieved the best classification performance,
in terms of accuracy and time, by using the BinNom headers along with the following
adaptive decision trees algorithms. ARF provides the best classification accuracy for UNI1
and UNI2 traffic with a classification time less than 17 µs (i.e., less than 7.5% of the RTT
in DCNs). AHOT is also good for UNI1 and UNI2 traffic, with a minor classification
accuracy than ARF but reducing the classification time to less than 10 µs. Finally, the
Hoeffding tree is only good for traffic similar to that of UNI1 but achieves a classification
accuracy similar to that of AHOT with a classification time less than 3 µs.

Similarly, iRIDE focused on predicting the rate and duration of flows by using regres-
sion models. The evaluation results revealed that iRIDE achieved the lowest prediction
errors of flow rate and flow duration when using DNNs with L2 regularization and dropout
layers. In particular, the most accurate DNNs required deep structures from five up to
nine hidden layers and from 360 up to 600 units per each hidden layer. Moreover, for
predicting the flow rate, the DNN structures achieved the lowest errors by using a combi-
nation of L2 regularization and dropout layers, whereas, for predicting the duration, the
most accurate DNN structures only required L2 regularization.

Finally, note that incremental learning reduces memory consumption by continuously
updating the models from constantly generated data that is temporarily persisted. This
enabled both NELLY and iRIDE, which rely on incremental learning algorithms, to adapt
to the variations in traffic characteristics and perform endless learning with limited mem-
ory resources.

Fundamental question II: Does incorporating ML techniques to an SDN-based mul-
tipath routing mechanism improve network traffic routing, in terms of throughput and
delay, in DCNs?

Recall that NELLY incorporates incremental learning at the server-side of SDDCNs for
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proactively identifying elephant flows at low traffic overhead. An analytical comparison to
seminal related works corroborated that NELLY reduces the switch table occupancy, the
traffic overhead, and the flow detection time. In particular, NELLY requires no flow table
entries on the SDN switches for collecting data since NELLY operates at the server-side of
SDDCNs, having local access to the data. Regarding the traffic overhead, NELLY merely
requires that edge (ToR) switches send control packets of flows marked as elephants,
greatly reducing the control traffic overhead (to 4.4 kbps if assuming a control packet of
64 bytes). Lastly, NELLY detects elephant flows in a very short time as it relies on the
first N packets (0.8 seconds when using the first 7 packets).

On the other hand, iRIDE incorporated incremental learning at the controller-side of
SDDCNs to predict the rate and duration of flows. These predicted flow traffic char-
acteristics enabled constructing intelligent elephant rescheduling algorithms, such as LC
and WF+BTF. The results from a quantitative evaluation demonstrated that iRIDE ef-
ficiently uses the available bandwidth, generating higher throughput and shorter traffic
completion time than conventional ECMP. In particular, when replaying the traffic from
the UNI1 packet trace in a fat-tree emulated network, iRIDE with WF+BTF incremented
the bisection throughput by 11 Mbps and reduced the traffic completion time by 9 minutes
in comparison with PM2. Note that WF+BTF uses the flow rates and flow durations
predicted using the incremental DNNs.

5.2 Future work

During the development of this thesis, we observed interesting opportunities for further
research. These opportunities are outlined as follows.

• Implement NELLY as an in-kernel software component for evaluating its impact
cost to server resources, including processing and memory consumption. This im-
plementation would enable to evaluate NELLY in an emulated SDDCN by installing
the software component into micro virtual machines connected to Open vSwitch in-
stances.

• Although this paper has proven that incremental learning algorithms are efficient
to detect elephant flows in DCNs, there is still no consistent and accepted method
for defining the threshold value that discriminates between mice and elephants in
DCNs. In this thesis, we evaluated different thresholds but did not specify how
to select the appropriate threshold value for the traffic and routing requirements.
RL algorithms can be useful for selecting a threshold that maximizes DCN routing
performance (e.g., throughput and delay) for specific traffic conditions.

• A future analysis of network traffic using IPv6 or at other layers of IIoT systems
would help to analyze if such traffic characteristics can also benefit from incremental
learning for either classifying flows (NELLY) or predicting flow features (iRIDE).
For example, fog layers are formed by micro data centers that analyze data that
require a rapid return (low latency). Moreover, it is expected that IIoT systems
introduce more diversity of network traffic (from elephant flows to mouse flows).
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Therefore, there is a need to create publicly available datasets of network traffic
with different characteristics (e.g., IPv6, fog layers) to evaluate the performance
improvement of ML-based methods on such datasets.

• Extending iRIDE to achieve a full cognitive networking, such as the C-MAPE loop
that we proposed in collaboration with other researchers (see Section 2.2.3. Note
that the cognitive operation in iRIDE (i.e., predicting flow traffic characteristics)
belongs to the C-Analyze function. However, the statistics collection, the path selec-
tion, and the rescheduling algorithm can be extended using an ML-based approach,
providing cognition in the Monitor, Plan, and Execute functions, respectively. Dif-
ferent works [40,314–316] in our research group have already explored some of these
cognitive approaches but independently.
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tical Management Plane,” published in Computer Communications, 2017.
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3. “A YANG Model for a vertical SDN Management Plane,” published in the proceed-
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munications Magazine, 2018.
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Applications, 2018.

6. “An Efficient Mice Flow Routing Algorithm for Data Centers based on Software-
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7. “NELLY: Flow Detection Using Incremental Learning at the Server Side of SDN-
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1. “iRIDE: Rescheduling of Elephant Flows in SDN-based Data Centers Using Incre-
mental Deep Learning to Predict Traffic Characteristics,” in construction.

The published papers are available in the next pages.



Computer Communications 102 (2017) 150–164 

Contents lists available at ScienceDirect 

Computer Communications 

journal homepage: www.elsevier.com/locate/comcom 

A framework for SDN integrated management based on a CIM model 

and a vertical management plane 

Felipe Estrada-Solano 

a , ∗, Armando Ordonez 

b , Lisandro Zambenedetti Granville c , 
Oscar Mauricio Caicedo Rendon 

a 

a Telematics Engineering Group, Telematics Department, University of Cauca, Calle 5 No. 4-70, Popayan, CA, Colombia 
b Intelligent Management Systems Group, Foundation University of Popayan, Calle 5 No. 8-58, Popayan, CA, Colombia 
c Computer Networks Group, Institute of Informatics, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500 Porto Alegre, RS, Brazil 

a r t i c l e i n f o 

Article history: 

Received 12 February 2016 

Revised 12 August 2016 

Accepted 13 August 2016 

Available online 16 August 2016 

Keywords: 

Common information model 

Software-defined networking 

Heterogeneous environments 

Resource characterization 

Configuration management 

a b s t r a c t 

The Software-Defined Networking (SDN) paradigm establishes a typical three-plane architecture ( i.e. , Data, 

Control, and Application planes) that facilitates the deployment of network functions and simplifies tra- 

ditional network management tasks. However, SDN lacks an integrated or standardized framework for 

managing its architecture. Some investigations have addressed such shortage by proposing different solu- 

tions that tackle specific management requirements for particular SDN technology instances. This isolated 

approach forces network administrators to use multiple frameworks to achieve a complete SDN manage- 

ment that is complex and time-consuming in heterogeneous environments. In this paper, we introduce 

an information model based on the common information model that establishes a technology-agnostic 

and consistent characterization of the SDN architecture. Such information model represents the core to- 

wards building a Management Plane aimed to facilitate the integrated SDN management in heterogeneous 

environments. To test our information model, we developed a prototype and conducted a performance 

evaluation in an SDN configuration scenario that deploys different managing technologies. The obtained 

results provide directions that corroborate the feasibility of our approach (in terms of time-response and 

network traffic) for configuring heterogeneous SDNs. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Over the past 20 years, programmable networks have evolved 

as a key driver to innovate and to cope with complexity and man- 

agement in computer networks. Nowadays, Software-Defined Net- 

working (SDN) paradigm is an attractive trend to program net- 

works in both research and industry [1,2] . From a high-level point 

of view, SDN separates control and forwarding planes, allowing 

to operate networks in a simpler way from a logically centralized 

software program often referred to as controller [3] . 

SDN standardization bodies ( e.g. , Open Network Foundation 

[ONF] and Linux Foundation) and networking vendors ( e.g. , Cisco 

and Juniper) describe a typical SDN architecture as three horizon- 

tal planes [4–7] : (i) a lower Data Plane to forward packets, (ii) 

a middle Control Plane to compile decision policies and to en- 

force them on the Data Plane through Southbound Interfaces (SBI); 
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omcaicedo@unicauca.edu.co (O.M. Caicedo Rendon). 

and (iii) an upper Application Plane to orchestrate business func- 

tions and high-level services that manage network behavior using 

Northbound Interfaces (NBI) provided by the Control Plane. Addi- 

tionally, the SDN architecture includes East/Westbound Interfaces 

(EWBI) to enable deploying a distributed Control Plane. 

At the top of the SDN architecture, a lot of research has pro- 

posed services and applications to simplify traditional network 

management tasks, such as load-balancing [8] , efficient energy us- 

age [9] , and access control [10,11] . Furthermore, some studies have 

addressed the need to manage the SDN architecture, including, for 

example, frameworks to configure the Data Plane [12,13] , to deploy 

[14,15] and monitor [16,17] the Control Plane, to virtualize SDNs 

[18,19] , and to develop the Application Plane [20,21] . However, to 

the best of our knowledge, no integrated solution exists to manage 

SDN as a whole by employing well-defined interfaces and support- 

ing different deployment technologies. 

The lack of frameworks for integrated network management 

forces network administrators to handle several isolated solutions 

to manage resources from distinct planes of the SDN architecture 

as well as various technology instances. Thus, SDN management 

remains complex and time-consuming because of the diversity of 

http://dx.doi.org/10.1016/j.comcom.2016.08.006 
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solutions. In our previous work, we evaluated the feasibility of us- 

ing mashups to control and monitor SDN in heterogeneous envi- 

ronments by composing management applications at the top of 

the SDN architecture [22–25] . Still, there is the need to charac- 

terize SDN as a whole from the management perspective to ac- 

complish a joint understanding in heterogeneous and distributed 

environments. Some approaches have addressed the formal repre- 

sentation of SDN [26–29] , nonetheless, they are focused exclusively 

on specific SDN technology instances or fall short in modeling 

the SDN architecture. In a later section, we define how these ap- 

proaches provide an insufficient solution for representing the SDN 

architecture. 

Recent proposals have considered a Management Plane in the 

SDN architecture for carrying out Operation, Administration, and 

Maintenance (OAM) functions [4–7] . These proposals expose a very 

high-level view of their management component. We argue that is 

needed to extend and detail such Management Plane aiming to fa- 

cilitate integrated control and monitoring of heterogeneous SDNs. 

As a first critical step, this Management Plane requires an infor- 

mation model that homogenizes management data to achieve con- 

sistency among all OAM tasks. In this paper, we specify the SDN 

Management Plane using the four Open System Interconnection 

(OSI) submodels [30] ( i.e. , Information, Organizational, Communi- 

cation, and Functional). Then, we focus on introducing a novel in- 

formation model that represents the SDN architecture from a man- 

agement perspective as a Common Information Model (CIM) con- 

ceptual framework [31] . We preferred CIM over other information 

definition languages ( e.g. , Structure of Management Information 

[SMI] [32] and Guidelines for the Definition of Managed Objects 

[GDMO] [33] ) because its high expressiveness affords future robust 

semantic integration [34] . Leveraging CIM features, we provide a 

technology-independent and consistent model across distinct ven- 

dors and SDN instances. Furthermore, our information model es- 

tablishes a shared abstraction of managed and managing SDN re- 

sources from Data, Control, and Application planes to achieve a 

complete SDN management. It is noteworthy that the proposed 

model provides concepts and artifacts that may complement or en- 

hance the information model structured by ONF ( i.e. , ONF-CIM 

1 ) 

[26] . 

The main contributions presented in this paper are: 

• An information model based on CIM that describes managed 

and managing SDN resources regardless of deploying technolo- 

gies; 

• An SDN management system prototype that is based on the 

above information model; 

• The demonstration that our proposal is effectively f easible (in 

terms of time-response and network traffic) when managing an 

SDN deployed with heterogeneous technologies. 

The remainder of this paper is organized as follows. In 

Section 2 , it is discussed both the background and related work. 

In Section 3 , we overview the proposed Management Plane. In 

Section 4 , we introduce our CIM-based information model. In 

Section 5 , we present a case study used to evaluate the proposed 

approach. The paper concludes in Section 6 . 

2. Background 

In this section, first, we present the SDN architecture. Second, 

we discuss the related work about the SDN management. 

1 ONF-CIM is not based on the CIM specification defined by the Distributed Man- 

agement Task Force (DMTF). 

2.1. Software-Defined Networking architecture 

Multiple standardization bodies, such as ONF and Linux Foun- 

dation, focus on encouraging and normalizing open SDN frame- 

works. Also, various private networking vendors, such as Cisco 

and Juniper, offer proprietary SDN deployments. In turn, several 

research efforts work on improving architectural aspects of SDN. 

These open, proprietary, and research SDN solutions establish a 

typical SDN architecture [4–7] composed of three horizontal planes 

( i.e. , Data Plane, Control Plane, and Application Plane) and three in- 

terfaces ( i.e. , SBI, NBI, and EWBI). 

The Data Plane deploys the network infrastructure composed 

of interconnected hardware and software-based Network Devices 

(NetDev) that perform forwarding operations. A NetDev ranges 

from dumb switches to custom switches. A dumb switch merely 

carries out simple forwarding functions, such as Longest Prefix 

Match (LPM). For example, OpenFlow-Only switches [35] just for- 

ward packets regarding their flow tables that are updated by the 

Control Plane. A custom switch relies on programmable platforms 

( e.g. , OpenWrt and NetFPGA) to integrate more complex forwarding 

functions, such as Network Address Translation (NAT) and firewall. 

For example, Forwarding Elements (FE) in ForCES [36] include mul- 

tiple associated Logical Functional Blocks (LFB) to carry out such 

forwarding functions. An LFB defines either a punctual action for 

handling packets or a configuration entity operated by the Control 

Plane. 

The Control Plane enforces decision policies on the Data Plane 

through SBIs. Each SBI defines the set of instructions and the com- 

munication protocols to allow the interaction between components 

in the Control Plane and in the Data Plane. The OpenFlow protocol 

is the most well-known open standard SBI because its widespread 

usage by vendors and research [1] . Other SBI proposals are ForCES 

[36] and Protocol-Oblivious Forwarding (POF) [37] . 

The Control Plane comprises Network Slicers (NetSlicer) and 

Network Operating Systems (NOS). A NetSlicer divides the under- 

lying network infrastructure into several isolated logical network 

instances ( a.k.a. slices), assigning their control to multiple tenant 

NOSs. For example, FlowVisor [38] acts as an OpenFlow proxy be- 

tween switches and controllers, redirecting messages according to 

specific slicing dimensions, such as bandwidth and forwarding ta- 

bles. An NOS compiles the network logic for instructing the under- 

lying Data Plane and provides generic services ( e.g. , topology dis- 

covering and host tracking) and NBIs to the Application Plane, fa- 

cilitating to add custom Network Applications (NetApp). OpenFlow 

Controllers [35] and ForCES Control Elements (CE) [36] are NOS in- 

stances. Although NetSlicers can be considered as a specific NOS, 

it is important to describe them as separate components in or- 

der to demarcate their functionality: network virtualization versus 

decision making. In addition, some approaches may provide net- 

work virtualization as an NOS service for multiple tenant NetApps 

[39,40] . 

As aforementioned, the Control Plane provides NBIs to the Ap- 

plication Plane. An NBI encompasses common Application Pro- 

gramming Interfaces (API) based on NOS native bundles ( e.g. , 

Floodlight Java API [41] and Ryu application API [42] ), program- 

ming languages ( e.g. , Pyretic [20] and Procera [21] ), protocols ( e.g. , 

Floodlight REST API [43] ), file systems ( e.g. , YANC [44] ), among oth- 

ers. The Control Plane also defines EWBIs to enable information 

exchange between NOSs distributed in different domains. For ex- 

ample, the SDN Inter-networking (SDNI) Negotiation Interface, the 

West-East Bridge (WE-Bridge) [45] , and the ForCES CE-CE interface 

[36] . 

The Application Plane consists of NetApps that deploy and or- 

chestrate business logic and high-level network functions, such 

as routing policies and access control. NetApps run either locally 

or remotely regarding NOSs. Local NetApps prefer NBIs based on 

144



152 F. Estrada-Solano et al. / Computer Communications 102 (2017) 150–164 

programming languages. Remote NetApps usually employ protocol- 

based APIs. 

2.2. Software-Defined Networking management 

Most SDN proposals have tackled traditional network man- 

agement tasks by carrying out managing functions in NetApps 

at the Application Plane. For example, wildcard-based algorithms 

[8] to better redistribute traffic in SDN networks, ElasticTree [9] to 

efficiently provide energy for SDN components, and Resonance 

[10] and OpenRoads [11] to control access to SDN resources. How- 

ever, functions in NetApps lack of mechanisms to deal with several 

management requirements from distinct SDN architectural planes, 

such as: (i) in the Data Plane, configure certain NetDevs to com- 

municate with a preferred NOS, (ii) in the Control Plane, set up a 

NetSlicer to link NOSs to their corresponding virtual network in- 

stances; and (iii) in the Application Plane, modify business param- 

eters to customize NetApps logic. 

Some investigations have tackled the above gap by providing 

isolated tools that address specific management requirements for 

particular SDN technology instances. For example: (i) OpenFlow 

Management and Configuration Protocol (OF-CONFIG) [12] and 

Open vSwitch Database (OVSDB) [13] that define protocols to con- 

figure NetDevs, (ii) Kandoo [14] and HyperFlow [15] to scale and 

distribute NOSs, (iii) OpenFlow Management Infrastructure (OMNI) 

[16] and ROVIZ [17] that provide graphic interfaces to monitor 

NOSs, (iv) VeRTIGO [18] and ADVisor [19] to configure NetSlicers; 

and (v) Pyretic [20] and Procera [21] that supply development tools 

to build NetApps. Considering that heterogeneous SDNs deploy a 

variety of resources from multiple vendors and distinct technolo- 

gies, it is to highlight that a classic solution based on using iso- 

lated tools to accomplish a complete SDN management is complex 

and time-consuming. 

In our previous work, we assessed the feasibility of a mashup- 

based approach to allow network administrators to compose Ne- 

tApps that control and monitor heterogeneous SDNs [22–25] . 

In such mashup-based approach, management applications re- 

lied on services and middlewares developed and extended by 

builder actors. These builder actors realized their job accord- 

ing to deployed SDN technology and their own managing data 

models, constraining such management applications to oper- 

ate only on particular SDN domains. Therefore, as an essen- 

tial step, an SDN management solution requires an informa- 

tion model that establishes a shared characterization of the en- 

tire SDN to enable integrated management in heterogeneous 

environments. 

Few approaches have defined information models to characterize 

the SDN architecture from a management perspective: (i) ONF-CIM 

[26] defines a Core Information Model (CoreModel) [27] that uses 

the Unified Modeling Language (UML) to structure the forward- 

ing functions of the Data Plane, (ii) Network Abstraction Model 

(NAM) [28] employs a building block approach to represent all re- 

sources of NetDevs; and (iii) CIM-SDN [29] proposes a CIM exten- 

sion schema to model SDN. It is worth noting that these infor- 

mation models fall short in representing the SDN architecture or 

are tied to specific SDN technology instances. ONF CoreModel de- 

scribes only the Data Plane and was designed for OpenFlow. NAM 

focuses on NetDevs and is extensible enough to represent different 

functionalities of the SDN architecture, however, it is deeply tied 

to the ForCES FE Model [46] . CIM-SDN merely includes the main 

elements from the Data and the Control Planes. Although CIM-SDN 

is based on a technology-neutral model ( i.e. , CIM), the extended 

schema is highly attached to the OpenFlow architecture. Finally, 

ONF-CIM simply includes CoreModel so far but provides a flexible 

environment that allows to expand and refine its structure as new 

insights emerge, such as the approach described in this paper. 

Table 1 summarizes the targets and gaps in SDN manage- 

ment of the above-reviewed proposals. Unlike these proposals, 

we consider an SDN management approach based on a complete, 

technology-agnostic reference model of the SDN architecture in or- 

der to achieve integrated management in heterogeneous environ- 

ments. 

3. A Management Plane for SDN 

To define our approach, we extend the Management Plane con- 

cept considered by recent SDN proposals for covering OAM func- 

tions omitted and restricted in the traditional SDN architecture [4–

7] . For example, assigning the Data Plane resources to the cor- 

responding control components and configuring the policies and 

Service Level Aggreements (SLA) of the Control and Application 

planes. Although NOSs may implement many of these OAM func- 

tions, flooding the Control Plane with a lot of management tasks 

may cause low network performance. Unlike the above proposals, 

our Management Plane aggregates components that facilitate the 

integrated management of heterogeneous SDN resources. To bet- 

ter explain our approach, we present a high-level overview of the 

Management Plane using the four OSI submodels [30] : Informa- 

tion, Organizational, Communication, and Functional. 

3.1. Overview 

Fig. 1 depicts our Management Plane. This plane is formed by 

the Data Repository, the Manager, Adapters, Management Inter- 

faces, and Agents. The Data Repository holds the Resource Repre- 

sentation Model (RRM) and serves the Manager to store manage- 

ment instance data. RRM handles metadata to provide an abstract, 

technology-neutral characterization of SDN resources. The Manager 

orchestrates and deploys Management Services to carry out differ- 

ent SDN management functions. These Management Services ex- 

pose user interfaces to allow interaction of Network Administra- 

tors. Adapters afford a protocol-agnostic communication between 

the Manager and Agents through well-defined Management In- 

terfaces. Each Management Interface connects both corresponding 

Adapter and Agent. Agents situate on SDN resources to act on 

behalf of the Manager. The whole operation of the Management 

Plane is based on RRM to achieve an integrated and technology- 

independent SDN management. 

Table 1 

Proposals on SDN management. 

References Approach Requirements for SDN management 

Complete Integrated Heterogeneous Information 

architecture management environment model 

[8] –[11] Functions in NetApps 

[12] –[21] Isolated tools � 

[22] –[25] Mashup based � � 

[26] –[29] Information models � � 

– This approach � � � � 
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Fig. 1. High-level SDN architecture with Management Plane. 

It is important to highlight that we define the Management 

Plane by referencing the four OSI network management submod- 

els [30] : (i) an information model to establish a shared abstrac- 

tion of SDN resources, (ii) an Organizational Model to specify roles 

and collaboration forms, (iii) a Communication Model to delineate 

the exchange of management data; and (iv) a Functional Model to 

structure management requirements. 

3.2. Submodels 

Following we overview the four submodels of the proposed 

Management Plane. 

3.2.1. Information model 

Our approach introduces a CIM model to describe the SDN ar- 

chitecture from a management perspective at a conceptual level 

regardless of deploying technologies. We use UML to graphi- 

cally represent SDN resources and their relationships as CIM 

classes and associations, respectively. This object-oriented, well- 

understood abstract framework standardizes SDN management in- 

formation across disparate vendors and SDN instances. Thus, en- 

abling to carry out integrated management in heterogeneous SDNs. 

Further network designers may extend the proposed CIM model to 

include customized resource behavior. In our approach, the infor- 

mation model is realized by RRM in the Data Repository. We focus 

on the details of the proposed information model in Section 4 . 

3.2.2. Organizational model 

We depict a two-tier like network management model that in- 

corporates three kinds of entities ( a.k.a. roles). A Managing Tier 

that encloses manager and adapter entities, and a Managed Tier 

that contains agent entities. A manager entity is responsible for: 

(i) housing and coordinating logic of management functions, (ii) 

providing user interaction with deployed management functions 

through tailored user interfaces ( e.g. , command-line, graphical, and 

Web-based); and (iii) sending requests to and receiving replies and 

events from agents by means of adapters . An adapter entity al- 

lows a manager to interact with any specific agent by parsing data 

formats and protocols handled by their communication interfaces 

( i.e. , Adapter Interface and Management Interfaces). An agent en- 

tity resides on managed resources to carry out management re- 

quests delegated by a manager , such as performing an operation or 

responding to a query. In addition, an agent entity may dispatch 

unsolicited events to a manager . Each organizational component in 

our Management Plane gets the same name as its corresponding 

role. The Manager acts as a manager entity. NetApp Adapter, NOS 

Adapter, NetSlicer Adapter, and NetDev Adapter play an adapter 

role. NetApp Agent, NOS Agent, NetSlicer Agent, and NetDev Agent 

perform agent tasks. We differentiate Adapters and Agents regard- 

ing of SDN managed resources ( i.e. , NetApp, NOS, NetSlicer, and 

NetDev) to demarcate the communication between such kind of 

entities located at different architectural planes. 

3.2.3. Communication model 

Our Management Plane defines the User Interface, the Repos- 

itory Interface, the Adapter Interface, and the set of Management 

Interfaces. The User Interface enables Network Administrators to 

interact with Management Services exposed by the Manager. The 

Repository Interface connects the Manager with the Data Reposi- 

tory. The Adapter Interface and Management Interfaces transport 
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request messages ( i.e. , operations and queries) from the Manager 

to a particular Agent, passing through the related Adapter. Both 

of these interfaces also transmit reply messages and unsolicited 

events sent by an Agent towards the Manager. In order to match 

each Agent with its respective Adapter, we establish a Management 

Interface (MI) per SDN managed resource: NetApp MI, NOS MI, 

NetSlicer MI, and NetDev MI. Regarding communication support, 

the User Interface and the Adapter Interface must employ a con- 

sistent data format ( e.g. , JavaScript Object Notation [JSON] [47] and 

eXtensible Markup Language [XML] [48] ) and a standardized proto- 

col ( e.g. , HyperText Transfer Protocol [HTTP] [49] and Simple Object 

Access Protocol [SOAP] [50] ) to exchange management data. The 

Repository Interface relies on technologies deployed by the Data 

Repository ( e.g. , XML over HTTP). Finally, Management Interfaces 

handle data formats and protocols implemented by Agents ( e.g. , 

OVSDB [13] , Network Configuration Protocol [NETCONF] [51] , and 

Simple Network Management Protocol [SNMP] [52] ). 

3.2.4. Functional model 

As considered by recent Management Plane approaches for SDN 

[5,7] , this proposal also references the five OSI management func- 

tional areas [53] to classify Management Services: Fault Services, 

Configuration Services, Accounting Services, Performance Services, 

and Security Services. Fault Services detect, separate, and fix fail- 

ures in physical and logical SDN resources. Configuration Services 

modify and update behavior of SDN resources. Accounting Services 

tracks and allocate usage of SDN resources. Performance Services 

monitor, collect, and report information about the operation of 

SDN resources. Security Services control and analyze access to SDN 

resources. In addition, we include Programming Services to coordi- 

nate programmable software of SDN resources, such as checking 

and deploying versions of a particular NetApp running on a spe- 

cific NOS. By using or combining the aforementioned Management 

Services, our Management Plane allows network administrators to 

carry out different SDN management requirements, as those de- 

scribed by Wickboldt et al. [4] . 

4. Information model 

As aforementioned, our Management Plane requires an infor- 

mation model that provides a technology-agnostic and consistent 

abstraction of the SDN architecture to enable integrated manage- 

ment. Few approaches provide models that attempt to characterize 

the SDN architecture from a management perspective [12,28,29] , 

but they are tied to specific SDN instances and expose incomplete 

SDN representations. 

In this paper, we introduce a CIM-based information model that 

provides a technology-independent and consistent abstraction of 

SDN managed and managing resources. This information model 

represents every plane in the SDN architecture to encourage a 

complete SDN management regardless of deploying technologies. 

We adopted CIM because it offers higher expressiveness than other 

information definition languages ( e.g. , SMI [32] and GDMO [33] ), 

affording future robust semantic integration [34] . CIM supplies sev- 

eral classes, associations, properties, and methods to describe net- 

work resources at a conceptual level, such as Ethernet ports, LAN 

endpoints, and VLANs [54,55] . However, CIM lacks elements that 

represent specific SDN features for management [29] . Thus, our in- 

formation model introduces new elements that extend the actual 

CIM Schema to characterize the SDN architecture from a manage- 

ment perspective. We present this extended schema as a graphical 

visualization composed of UML classes and associations that repre- 

sent SDN managed and managing resources and their relationships. 

Although CIM schemas can be considered as a Data Model, their 

graphical notation support ( i.e. , UML) provides a nearby approach 

to an information model [56] . In fact, the extended CIM schema 

described in this paper includes important aspects of information 

models: the independence of particular implementations or proto- 

cols and the relationships between managed objects. 

In next paragraphs and figures ( Figs. 2–5 ) we describe a simple 

version of the proposed information model. Specific properties and 

methods from each class are out of scope. We exclude the CIM_ 

prefix from the current CIM elements and the SDN_ prefix from 

the new elements. For example, CIM_System appears as System and 

SDN_AgentService as AgentService . To provide a better visualization, 

the proposed class schema displays gray background for the new 

classes, white background for the current CIM classes, bold char- 

acters for the new associations, and thin characters for the current 

CIM associations. It is noteworthy that this class schema represents 

the main contribution of this paper, particularly the new classes 

and the new associations. For the sake of simplicity, we omit in- 

heritance associations between the new classes and the current 

CIM classes. Unless otherwise stated, general inheritance associa- 

tions satisfy the following: (i) the new classes with suffix Capabili- 

ties represent subclasses from the EnabledLogicalElementCapabilities 

CIM class, (ii) with suffix Service from the Service CIM class; and 

(iii) with suffix Settings from the SettingData CIM class. In addi- 

tion, we skip the BindsTo CIM associations for the CIM classes Ser- 

viceAccessPoint and ProtocolEndpoint . The BindsTo association con- 

nects the class itself to define a protocol layering dependency be- 

tween an upper and a lower protocol. For example, the OpenFlow 

protocol binds the TCP protocol to set the port and address enabled 

for OpenFlow communication. 

Fig. 2 illustrates the extended class schema for the proposed 

Management Plane. We introduced five new classes to charac- 

terize the novel components defined in this approach: in the 
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Managing Tier, the ManagementService , the ManagementServiceCa- 

pabilities , and the AdapterService ; and in the Managed Tier, the 

AgentService and the EventIndication . 

The ManagementService class represents Management Services 

that allow carrying out different SDN management functions. 

Through the ElementCapabilities association, the ManagementSer- 

viceCapabilities class describes both supported and excluded abil- 

ities for Management Services. For example, the property Function- 

alCapabilities establishes a numeric value map based on the Func- 

tional Model for classifying SDN Management Services as Fault, 

Configuration, Accounting, Performance, Security, or Programming 

services (see Section 3.2.4 ). Thus, a Management Service that mod- 

ifies the SBI communication of NetDevs may declare capabilities of 

Configuration Services. 

The RegisteredProfile class models a CIM profile specification 

defined by any standard organization for managing SDNs. Each 

profile specification includes a small subset of the proposed class 

schema and delineates corresponding behavior as management 

requirements. The ReferencedProfile association indicates that a 

profile specification may reference others. In addition, the El- 

ementConformsToProfile association describes which CIM profile 

specifications a Management Service apply. For example, a Con- 

figuration Service fulfills with a profile specification of DMTF that 

standardizes how to achieve seamless migration in NetDevs. 

The Manager represents the system hosting the SDN Manage- 

ment Services. The HostedService association realizes this relation- 

ship between the ManagementService and the Manager . Although 

this model presents the Manager as an instance of the System class, 

it also may implement an instance of a subclass from System , such 

as ComputerSystem, J2eeServer , or a new class. For example, a Con- 

figuration Service may be carried out as a Web application running 

on either an Apache Tomcat Server or a GlassFish Server. 

The ProtocolEndpoint class tagged as User Interface models the 

communication point that enables access of Network Administra- 

tors. The corresponding ProvidesEndpoint association implies that 

the ManagementService supplies such user ProtocolEndpoint . For ex- 

ample, a Configuration Service provides an HTTP interface to allow 

Network Administrators to set SBI parameters of NetDevs through 

a Web browser. 

The ServiceAccessPoint class tagged as Adapter Interface repre- 

sents the communication point between the ManagementService 

and the AdapterService . The ProvidesEndpoint associations con- 
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nected to the adapter ServiceAccessPoint indicate that both the 

ManagementService and the AdapterService establish their own 

communication points to allow access from the other. The Service- 

SAPDependency associations imply that both the ManagementSer- 

vice and the AdapterService utilize the adapter ServiceAccessPoint 

to access the other. The ManagementService and the AdapterSer- 

vice support properties and methods for sending and receiving 

requests, responses, and events through the adapter ServiceAc- 

cessPoint , such as the property ListeningEvents that specifies if the 

ManagementService handles event notifications and the properties 

AdapterInterface and ManageInterface that identify the access APIs 

provided by the ManagementService and the AdapterService , respec- 

tively. For example, a Configuration Service and a NetDev Adapter 

establish a mutual communication using JSON over HTTP. Using 

this channel, the NetDev Adapter forwards to the Configuration 

Service an event from a NetDev Agent that notifies about failures 

with misconfiguration. Similarly, the Configuration Service uses 

the same channel to fix this failure by sending a configuration 

request to the NetDev Adapter. The NetDev Adapter forwards this 

request to the corresponding NetDev Agent. 

The AdapterService class models an Adapter in charge of parsing 

and forwarding requests, responses, and events between the Man- 

agementService and the AgentService . The AdapterService is a su- 

perclass that holds properties and methods for handling the com- 

munication through the adapter and management interfaces. Be- 

sides the aforementioned property ManageInterface , the AdapterSer- 

vice also provides the property AgentProtocol that identifies the 

communication protocol used to interact with a specific AgentSer- 

vice . Four subclasses inherit from the AdapterService : the NetDe- 

vAdapterService , the NetSlicerAdapterService , the NOSAdapterService , 

and the NetAppAdapterService . For the sake of brevity and because 

the behavior of these subclasses is very similar, we decide to ex- 

clude them in Fig. 2 . Each subclass from the AdapterService adds 

properties and methods to support functionality provided by the 

subclass from the AgentService that uses the same managed re- 

source name ( e.g. , the NetDevAdapterService matches the NetDe- 

vAgentService ). In addition, regarding this correlation, every sub- 

class deriving from the AdapterService instruments specific aspects 

from the proposed class schema. For example, a NetDev Adapter, 

which matches a NetDev Agent, only concerns about functionality 

for managing NetDevs (see Fig. 5 ). 

The AdapterService may be hosted by either the Manager or the 

Adapter . Both HostedService associations linked to the AdapterSer- 

vice indicate this relationship. As well as the Manager , the Adapter 

may be an instance of either the System class or one of its sub- 

classes. For example, a NetDev Adapter may be executed on ei- 

ther the same server running Management Services or a different 

server. 

The ServiceAccessPoint class tagged as Management Interfaces 

represents the communication point between the AdapterService 

and the AgentService . The ProvidesEndpoint and the ServiceSAPDe- 

pendency associations related to the management ServiceAccess- 

Point indicate that both the AdapterService and the AgentService 

provide and utilize management interfaces to perform their func- 

tionality. Subclasses from the AdapterService and from the AgentSer- 

vice inherits these associations. Each instance of the subclasses 

from the AdapterService handles the protocol used by the cor- 

responding instance of the subclasses from the AgentService , af- 

fording a protocol-agnostic communication for the ManagementSer- 

vice . Both the property AgentProtocol from the AgentService and the 

property ManageProtocol from the AdapterService define the com- 

munication protocol. For example, a NetDev Adapter uses the OF- 

CONFIG protocol to access a NetDev Agent for OpenFlow switches. 

A second NetDev Adapter utilizes the SNMP protocol to contact a 

second NetDev Agent for ForCES FEs. A Configuration Service com- 

municates with both NetDev Adapters using a standardized data 

format and protocol ( e.g. , JSON over HTTP). The NetDev Adapters 

forward to the NetDev Agents the management requests received 

from the Configuration Service. Similarly, the NetDev Adapters for- 

ward to the Configuration Service responses and events received 

from the NetDev Agents. Thus, the Configuration Service carry out 

a protocol-agnostic management on different NetDev technology 

instances. 

The AgentService class represents an Agent running on SDN 

managed resources, such as NetDev, NetSlicer, NOS, and NetApp. 

This is a superclass that defines properties and methods for sup- 
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porting the management ServiceAccessPoint and for handling the 

EventIndication . Besides the above described property ManagePro- 

tocol , the AgentService also provides the property Authentication 

that declares the access parameters ( e.g. , login and password) 

and the property MaxConnections that defines the maximum 

number of concurrent connections supported. The EventIndication 

is a subclass from the ProcessIndication class. The EventIndication 

maps an unsolicited event sent by the AgentService towards the 

ManagementService to notify about changes and alerts in SDN 

managed resources. The property AgentID of the EventIndication 

class identifies the instance of AgentService that generates the 

notification. For example, a NetDev Agent dispatches an event that 

notifies a detected misconfiguration on its hosting NetDev. The 

corresponding NetDev Adapter receives this unsolicited event and 

forwards it to a Configuration Service. 

Four subclasses derive from the AgentService : the NetDe- 

vAgent Service , the Net SlicerAgent Service , the NOSAgent Service , and 

the NetAppAgentService . Each subclass supports methods to carry 

out management tasks in its hosting SDN managed resource, such 

as retrieving statistical information, modifying configuration pa- 

rameters, discovering capabilities, and changing communication at- 

tributes. 

We use the System class to model the SDN as an entity com- 

posed of the DataPlane , the ControlPlane , and the AppPlane . The 

Network class represents the DataPlane as a logical, virtual, or phys- 

ical network that groups interconnected NetDevs capable of ex- 

changing information. The AdminDomain class indicates that the 

ControlPlane and the AppPlane gather similarly managed compo- 

nents, such as NetSlicers and NOSs for the Control Plane, and Ne- 

tApps for the Application Plane. 

The ServiceAffectsElement association between the SDN and the 

ManagementService reflects that Management Services have an ef- 

fect in the SDN architecture, such as changing resource behav- 

ior, monitoring failures, and analyzing performance. Besides, the 

SAPAvailableForElement association between the SDN and the man- 

agement ServiceAccessPoint implies that management interfaces 

provide managing access for the SDN architecture. 

Fig. 3 shows the extended class schema for the Application 

Plane. We introduced three new classes and two novel associa- 

tions to describe specific management features of NetApps. The 

new classes are the NetAppCapabilities , the NetAppSettings , and 

the NorthboundService . The new associations are the NetAppHoste- 

dOnNOS and the NetAppHostedOnServer . 

The AppPlane , modeled with the AdminDomain class, uses the 

SystemComponent association to aggregate instances of the NetApp . 

Leveraging the ApplicationSystem class, the NetApp represents Ne- 

tApps holding business logic on top of the SDN architecture. For 

example, NetApps that carries out load-balancing and access con- 

trol tasks. 

We use the HostedService association to indicate that the Ne- 

tApp hosts the NetAppAgentService and the NorthboundService . The 

NorthboundService class models modules that communicate with 

services exposed by NOSs. The ProvidesEndpoint and the Service- 

SAPDependency associations reflect that the NorthboundService uses 

and provides functions through the northbound ServiceAccessPoint . 

For example, a load-balancing and access-control NetApps retrieve 

and supply data from and to tracking and firewall services de- 

ployed by an NOS. 

The ServiceAccessPoint tagged as Northbound Interfaces models 

the communication between the Application Plane and the Con- 

trol Plane. This northbound ServiceAccessPoint encompasses differ- 

ent NBIs, such as APIs based on NOS native bundles ( e.g. , Floodlight 

and Ryu APIs), programming languages ( e.g. , Pyretic and Procera), 

and protocols ( e.g. , REST). The property NBIType from the North- 

boundService identifies the API type used for the communication 

through the northbound ServiceAccessPoint . 

The NetAppHostedOnNOS association between the NetApp and 

the NOS represents local NetApps running on NOSs. Usually, these 

local NetApps utilize NBIs based on NOS native bundles and pro- 

gramming languages to access and supply functionality from and 

to NOS services. The NetAppHostedOnServer between the NetApp 

and the Server system models NetApps running on remote servers. 

These remote NetApps prefer NBIs based on protocols for commu- 

nicating with the Control Plane. 

Using the ElementCapabilities association, the NetAppCapabilities 

class describes the supported and excluded abilities of NetApps. 

For instance, the property SLADescriptor allows to describe the ser- 

vice level policies of a specific NetApp . The NetAppSettings class 

establishes configuration parameters for the NetApp , such as the 

property ExecuteModes that defines the different execution modes 

supported by a particular NetApp . The ElementSettingData asso- 

ciation depicts the relationship between the NetAppSettings and 

the NetApp . The SettingsDefineCapabilities association between the 

NetAppSettings and the NetAppCapabilities reflects that the setting 

data affect some NetApps capabilities. For example, configuring 

a different load-balancing algorithm modifies the behavior of the 

corresponding NetApp. 

Fig. 4 describes the extended class schema for the Control 

Plane. Considering that CIM lacks elements that characterize the 

management information of NetSlicers and NOSs, we introduce 

seven new classes: the SlicingService , the SlicingStatistics , the Slic- 

ingCapabilities , the SlicingSettings , the NOSService , the NOSService- 

Capabilities , and the NOSServiceSettings . 

The AdminDomain class uses the SystemComponent association 

to describe the ControlPlane as an entity composed of NOSs and 

NetSlicers. The NOS models an NOS, such as OpenFlow controllers 

and ForCES CEs. The NetSlicer represents a NetSlicer system, such 

as FlowVisor for OpenFlow-based networks. The NOS is the hosting 

system for the NOSAgentService and the NetSlicer for the NetSlicer- 

AgentService . 

The NOSService is a superclass that models network services 

hosted in NOSs. The HostedService association between the NOSSer- 

vice and the NOS indicates this relationship. The property NOSPri- 

ority from the NOSService designates the order at which the NOS 

processes the instances of the different hosted services. Sub- 

classes must inherit from the NOSService in order to define spe- 

cific NOS services, such as tracking, route calculation, and firewall. 

We present three subclasses for NOS services: the ApplicationSer- 

vice , the DistributingService , and the ControlService . The Application- 

Service depicts services that expose functionality to the Applica- 

tion Plane through the northbound ServiceAccessPoint . Its property 

NBIType specifies the provided API for the northbound communi- 

cation. The DistributingService defines services that enable to de- 

ploy a distributed Control Plane across distinct domains through 

the east/westbound ServiceAccessPoint . This class includes the prop- 

erty EWBIProtocol that declares the protocol for the east/westbound 

communication and the property CurrentDomains that indicates the 

number of different domains currently handled by the Distribut- 

ingService . The ControlService describes services that handle the 

communication with NetDevs and NetSlicers through the south- 

bound ServiceAccessPoint . Its property SBIProtocol specifies the pro- 

tocol for the southbound communication. 

The ServiceServiceDependency association reflects that NOS ser- 

vices collaborate with or are necessary for other NOS services 

to perform their operation. For example, a topology service re- 

quires a tracking service to recognize hosts connected to specific 

switches. 

We use the ProvidesEndpoint and the ServiceSAPDependency as- 

sociations to correlate the ApplicationService with the northbound 

ServiceAccessPoint , the DistributingService with the east/westbound 

ServiceAccessPoint , and the ControlService with the southbound 

ServiceAccessPoint . 
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The ServiceAccessPoint tagged as East/Westbound Interfaces rep- 

resents the communication point between distinct Control Plane 

domains. For example, the SDNI Negotiation Interface and the WE- 

Bridge mechanism. Although the exchange of information is usu- 

ally carried out by NOSs, NetSlicers may also need to deploy a dis- 

tributed architecture. This is reflected by the HostedService associ- 

ation between the DistributingService and the NetSlicer . 

The ServiceAccessPoint tagged as Southbound Interfaces models 

the communication point between the Control Plane and the Data 

Plane. The ServiceSAPDependency and the ProvidesEndpoint associ- 

ations reflect that the ControlService uses and supplies the south- 

bound ServiceAccessPoint to send and receive messages to and from 

the Data Plane. This southbound ServiceAccessPoint encompasses 

different SBI protocols, such as OpenFlow, ForCES, and POF. 

The NOSServiceCapabilities class declares the supported abilities 

of NOSs services, like the property Reuse that specifies the reusabil- 

ity of the NOSService . The ElementCapabilities association between 

the NOSServiceCapabilities and the NOSService reflects this relation- 

ship. The NOSServiceSettings class defines the configuration param- 

eters for NOSs services, such as the property Logging that allows 

to set the method for storing data generated by the NOSService . 

The ElementSettingData association between the NOSServiceCapabil- 

ities and the NOSService indicates this relationship. The Settings- 

DefineCapabilities association between the NOSServiceSettings and 

the NOSServiceCapabilities implies that configuring NOS services 

establishes some capabilities. For example, the time interval for 

sending discovery messages updates the behavior of a tracking 

service. 

The SlicingService class represents the functionality of a Net- 

Slicer: divide the Data Plane into several isolated logical network 

instances ( a.k.a. slices) and assign them to different NOSs. The Net- 

Slicer hosts the SlicingService using the HostedService association. 

The SlicingService includes the property SBIProtocol that describes 

the protocol for the southbound communication and the prop- 

erty CurrentSlices that reports the number of slices currently op- 

erated by a particular NetSlicer. The ProvidesEndpoint and the Ser- 

viceSAPDependency associations between the SlicingService and the 

southbound ServiceAccessPoint indicate that NetSlicers provide and 

use SBIs to communicate with NetDevs and NOSs. For example, 

FlowVisor uses the OpenFlow protocol to communicate with both 

OpenFlow switches and OpenFlow controllers. 

The SlicingStatistics class defines collections of metrics suitable 

to instances of the SlicingService . The SlicingStatistics is a subclass 

that derives from the StatisticalData . The ServiceStatistics associa- 

tion relates the SlicingStatistics with the SlicingService . For example, 

the property TotalSlices from the SlicingStatistics reports the total 

number of slices handled by a NetSlicer. 

Through the ElementCapabilities association, the SlicingCapabili- 

ties class describes the supported and excluded capabilities of the 

SlicingService , like the property SupportedSlicing that indicates the 

different slicing methods defined by a NetSlicer. Some of these ca- 

pabilities are specified in the SlicingSettings class by means of the 

SettingsDefineCapabilities association. The SlicingSettings delineates 

the configuration parameters for the SlicingService . The ElementSet- 

tingData association between the SlicingSettings and the SlicingSer- 

vice reflects this relationship. For example, the property MaxSlices 

declares the maximum number of concurrent slices supported by 

a NetSlicer. 

Fig. 5 depicts the extended class schema for the Data Plane. 

In order to describe specific management features of NetApps, we 

introduce five new classes: the NetDevCapabilities , the NetDevRe- 

source , the NetDevResourceSettings , the NetDevService , and the Net- 

DevServiceSettings . 

As aforementioned, the Network class indicates that the Dat- 

aPlane models a network composed of interconnected NetDevs. 

The NetDev represents a NetDev system within a network, such as 

OpenFlow switches and custom forwarding hardware ( e.g. , Open- 

Wrt and NetFPGA). The DataPlane aggregates the NetDev using 

the SystemComponent association. The NetDev hosts the NetDe- 

vAgentService . 

The supported and excluded abilities of a NetDev are described 

by the NetDevCapabilities . The ElementCapabilities association be- 

tween the NetDev and the NetDevCapabilities indicates this relation- 

ship. For example, the property Customization defines the degree 

of personalization for an instance of NetDev . An OpenFlow switch 

declares low customization capabilities because it provides simple 

forwarding functions based on match/action flow tables. A NetF- 

PGA programmable hardware exposes higher customization capa- 

bilities because it offers complex plugging modules that enable to 

build specific functions. In addition, both kinds of NetDevs also re- 

veal network capacity enabled by its components, such as speed of 

ports and size of queues. 

The NetDevResource class inherits from the EnabledLogicalEle- 

ment to model network elements composing a NetDev, like ports, 

queues, and tables. The SystemComponent association between the 

NetDev and the NetDevResource implies this aggregation. The latter 

includes the property ResourceType that allows to identify the type 

of network element composing the NetDev . Our schema presents 

the NetDevResource as a superclass from which individual sub- 

classes inherit to represent NetDev components. For example, a 

subclass called FlowTable for characterizing flow tables that com- 

pose OpenFlow switches. In addition, the Component association 

connected to the NetDevResource models a network element com- 

posed of others, such as ports including various queues. 

The NetDevResourceStatistics defines arbitrary collections of sta- 

tistical information applicable to instances of the NetDevResource . 

The NetDevResourceStatistics is a subclass that derives from the Sta- 

tisticalData . The Statistics association attaches the NetDevResourceS- 

tatistics with the NetDevResource . For example, ports in switches 

delineate transmission metrics, such as received and transmitted 

bytes, packets, and errors. The property MetricUnits from the Net- 

DevResourceStatistics declares the units of measurement used by a 

network element for statistical data. 

The NetDevResourceSettings class describes the configuration of 

network elements that compose NetDevs. The ElementSettingData 

association between the NetDevResourceSettings and the NetDevRe- 

source reflects this relationship. The SettingsDefineCapabilities asso- 

ciation between the NetDevResourceSettings and the NetDevCapabil- 

ities indicates that the configuration parameters of NetDev compo- 

nents specify some capabilities of NetDevs. For example, the prop- 

erty Limit establishes boundaries for NetDev components, such as 

the highest speed operation of ports and the maximum buffer size 

of queues. 

The NetDevService is a superclass that represents network ser- 

vices hosted in NetDevs. This hosting relationship is depicted with 

the HostedService association between the NetDevService and the 

NetDev . The property Priority from the NetDevService indicates the 

preference for processing a group of services hosted by a NetDev. 

Subclasses must derive from the NetDevService in order to model 

particular NetDev services, such as forwarding, route calculation, 

and firewall. This is the case of the SouthboundService , which de- 

fines services that query, receive, and execute instructions to and 

from the Control Plane. The SouthboundService inherits from the 

NetDevService and includes properties and methods to handle the 

communication through the SBIs. For example, the property SBIPro- 

tocol may specify that the southbound communication uses the 

OpenFlow protocol, which defines a secure channel in switches 

for communicating with external controllers and updating internal 

flow tables. 

The ServiceServiceDependency association indicates that NetDev 

services cooperate with or are required for other NetDev services 

to perform their functions. For example, an inspection service 
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requires a forwarding service to redirect malicious packets to a 

specific destination. 

The ServiceSAPDependency and the ProvidesEndpoint associations 

reflect that the SouthboundService uses and supplies the south- 

bound ServiceAccessPoint to send and receive messages to and from 

the Control Plane. The SAPAvailableForElement association between 

this ServiceAccessPoint and the NetDev implies that the SBIs al- 

low access from the Control Plane for managing NetDevs compo- 

nents and hosted services. For example, the OpenFlow protocol en- 

ables to manipulate flow tables within OpenFlow switches and the 

ForCES protocol facilitates to configure logical functions residing in 

ForCES FEs. 

Through the ElementSettingData association, the NetDevService- 

Settings class describes the configuration parameters of services 

hosted in NetDevs. For example, the property ChainedServices al- 

lows to delineate the sequence of services that forms a specific 

NetDevService . In particular, a subclass from the NetDevServiceSet- 

tings may include properties for establishing the routing algorithm 

of a route calculation service or the list of OpenFlow controllers of 

a southbound service. The SettingsDefineCapabilities association be- 

tween the NetDevServiceSettings and the NetDevCapabilities implies 

that the configuration of NetDev services characterizes some capa- 

bilities of NetDevs. 

The presented information model leverages the extensibility of 

CIM schemas to allow vendors and providers to represent specific 

implementation features of SDN resources. As above described, a 

specific implementation model must inherit from the classes de- 

fined in the proposed class schema. Furthermore, network de- 

signers may use or extend our information model to represent 

management requirements of new network paradigms seamlessly 

together with the functionality described in the proposed class 

schema. For example, network functions from Network Function 

Virtualization (NFV) can be successfully adapted to the conceptual 

model of NetDevs from SDN [28] . Finally, since the proposed class 

schema follow CIM conventions, our information model may in- 

clude elements from the existing CIM Schema to represent other 

managed resources, such as legacy networks [54] and virtual net- 

working [55] . 

5. Case study 

To assess our approach, first, we establish a network manage- 

ment scenario that deploys different SDN management technolo- 

gies. Second, we implement the system prototype that relies on 

the present approach. Third, we build up a test environment based 

on the described scenario. Fourth, we conduct a performance eval- 

uation to determine the feasibility of using the proposed approach 

in terms of time-response and network traffic. These metrics are 

related to the behavior on runtime of solutions used to manage 

heterogeneous SDNs. Finally, we expose the qualitative features of 

this approach. 

5.1. Scenario: configuring SDN-based networks by using 

heterogeneous management interfaces 

Let us suppose that a Cloud Service Provider (CSP) enables ac- 

cess to its cloud resources by deploying a basic SDN data center 

network: three tiers of NetDevs ( i.e. , core, aggregation, and edge) 

handled by a Current NOS and arranged in a simple tree topology 

( i.e. , each NetDev has a single parent). Usually, the CSP Network 

Administrator purchases SDN forwarding resources from Vendor A . 

However, at some point in time, the Network Administrator de- 

cided to buy NetDevs from Vendor B because it offered a better 

benefit-cost ratio than Vendor A . As the network became bigger 

and since the implementations of SDN resources are constantly up- 

dated, the CSP decided to install a New NOS that offers better per- 

formance, reliability, and security features. Now, the Network Ad- 

ministrator faces the challenge of configuring heterogeneous Net- 

Devs for being controlled by the New NOS . 

Considering that Vendor A provides a different NetDev man- 

agement interface than Vendor B , the Network Administrator typ- 

ically would use an Isolated Solution ( i.e., Vendor A Tool and Ven- 

dor B Tool) to execute specific configuration commands on NetDevs 

from distinct vendors. This solution hinders and retards managing 

tasks of Network Administrator. Instead, our approach hides net- 

work heterogeneity by establishing a common NetDev configura- 

tion model and by adapting to each vendor management interface. 

Thus, we afford an Integrated Solution that allows the Network Ad- 

ministrator to seamlessly configure every NetDev to be controlled 

by the new NOS, mitigating the complexity and time consumption 

of managing heterogeneous SDN resources. 

Fig. 6 illustrates the above-described scenario. NetDevs pro- 

vided by Vendor A are OpenFlow switches that enable the OVSDB 

management interface to accept configuration requests ( i.e. , OVSDB 

switches). NetDevs from Vendor B are OpenFlow switches that run 

the OF-CONFIG server to support configuration through the OF- 

CONFIG protocol ( i.e. , OF-CONFIG switches). The Current NOS that 

initially handles the OpenFlow switches is a Floodlight controller. 

The New NOS that has to be set in the OpenFlow switches for con- 

trolling them is an Opendaylight controller. In addition, we defined 

a managing operation called SetController . This operation describes 

the process of configuring a number of NetDevs that provide dis- 

tinct management interfaces ( i.e. , OVSDB switches and OF-CONFIG 

switches) in order to establish the New NOS ( i.e. , Opendaylight) 

as their controller. SetController represents a common management 

task that Network Administrators must perform when conducting 

updating, maintenance, and recovery functions in heterogeneous 

SDN-based networks. 

5.2. Implementation 

To evaluate our approach, we developed two prototypes to con- 

duct the SetController operation: Integrated Solution and Isolated So- 

lution . 

5.2.1. Integrated solution 

We built this prototype upon the proposed approach for per- 

forming SetController regardless the different configuration inter- 

faces. Fig. 7 depicts the implemented Integrated Solution . The Data 

Repository is a CIM Object Manager (CIMOM) that provides RRM 

as CIM schemas and stores instance data as CIM instances. CIMOM 

is the main component of a Web-Based Enterprise Management 

(WBEM) framework. CIM schemas characterize the SDN architec- 

ture from a management perspective while CIM instances repre- 

sent the SDN managed resources. To build RRM, we compiled both 

the CIM Schema 2.18.1 and the SDN Extension Schema. The SDN 

Extension Schema implements the proposed information model. 

Since this prototype focuses on the SetController operation, the 

compiled SDN Extension Schema is limited to the following new 

classes from the proposed information model: AgentService, NetDe- 

vAgentService, AdapterService, NetDevAdapterService, NetDevService , 

and SouthboundService . In addition, CIMOM stores CIM instances 

of the above-mentioned classes and of classes included in the 

CIM Schema 2.18.1: ComputerSystem, HostedService, RemotePort, Ser- 

viceSAPDependency, TCPProtocolEndpoint, ProvidesEndpoint, IPProto- 

colEndpoint , and BindsTo . We used the Managed Object Format 

(MOF) to formally express the SDN Extension Schema and the CIM 

instances. 

The Manager is carried out in a Java application. This Manager 

deploys the SetController operation as a Configuration Service. The 

User Interface of the Manager is a simple Command Line Interface 
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(CLI) that allows executing the configuration commands of SetCon- 

troller . The Repository Interface uses the WBEM API to read and 

write instances stored in CIMOM. The Adapter Interface relies on 

the Remote Method Invocation (RMI) to communicate the Manager 

and the Adapters. 

The Java application also deploys the NetDev Adapters: the 

OVSDB Adapter and the OF-CONFIG Adapter. The OVSDB Adapter 

employs the Opendaylight OVSDB API to communicate with the 

OVSDB Agent that maintains the configuration database of OVSDB 

switches. The OF-CONFIG Adapter relies on the NETCONF4J API to 

connect with the OF-CONFIG Agent deployed by the OF-CONFIG 

switches for accepting configuration requests. OF-CONFIG utilizes 

NETCONF as the associated protocol. 

Based on the information retrieved from CIMOM, the Manager 

invokes the appropriate Adapter. Once achieved the configuration 

in each requested OpenFlow switch, the Manager updates the in- 

stance data stored in CIMOM. 

5.2.2. Isolated solution 

This prototype describes a classic solution of using a configu- 

ration tool for each management technology ( i.e. , OVSDB and OF- 

CONFIG) to perform operations as SetController . We built both the 

OVSDB Tool and the OF-CONFIG Tool as bash scripts that automa- 

tize the usage of their underlying software. The OVSDB Tool uses 

the ovs-vsctl program to configure OVSDB switches. The OF-CONFIG 

Tool employs the NETCONF client netopeer-cli to communicate with 

OF-CONFIG switches. Both tools provide a simple CLI to specify the 

configuration parameters. 

5.3. Test environment 

To evaluate the proposed approach, we conducted a case study 

in a test environment that allowed deploying the described sce- 

nario. Fig. 8 depicts this environment formed by two OpenFlow 

networks, two OpenFlow controllers, the Manager Client, and 

CIMOM. Each OpenFlow network ran on an Ubuntu Server 14.04 

Virtual Machine (VM) with one virtual processor and 1.5 GB RAM 

assigned, both hosted by an Ubuntu 14.04 machine with 2.53 GHz 

Intel Core i5 processor and 4 GB RAM. Each VM executed Mininet 

2.2.1, a software for emulating OpenFlow-based networks, to de- 

ploy a simple tree topology with 111 Open vSwitches 2.3.1. A tun- 

nel over an IP network interconnected the root switches from each 

tree topology. 

The Open vSwitches used the OpenFlow protocol over a second 

IP network to communicate with a specific OpenFlow controller: 

Floodlight v1.0.1 or Opendaylight Helium. Later in each evaluation, 

we will define the exact quantity of switches per controller. Each 

153



F. Estrada-Solano et al. / Computer Communications 102 (2017) 150–164 161 

OF-CONFIG Switches
Open vSwitch 2.3.1 + Mininet 2.2.1

OF-CONFIG Server

OVSDB Switches
Open vSwitch 2.3.1 + Mininet 2.2.1

OVSDB Interface Floodlight v1.0.1
OpenFlow Controller

Opendaylight Helium 
OpenFlow Controller

CIMOM
WBEMServices 1.0.2

Manager Client

Isolated Solution

Integrated Solution

Integrated Solution
Data Repository

Manager Adapters

IP Network
Tunnelling

IP Network
Management Data

IP Network
OpenFlow Protocol .

Fig. 8. Test environment. 

OpenFlow controller operated on an Ubuntu 14.04 machine with 

2.4 GHz Intel Core 2 duo processor and 2 GB RAM. 

A third IP Network transmitted management data among the 

OpenFlow networks, the Manager Client, and CIMOM. The Manager 

Client was an Ubuntu 14.04 machine with 2.33 GHz Intel Core 2 

duo processor and 2 GB RAM. The Manager Client hosted the Man- 

ager and Adapters components of the Integrated Solution , and the 

configuration tools of the Isolated Solution . We executed CIMOM 

from the WBEM Services 1.0.2 on an Ubuntu 14.04 machine with 

2.53 GHz Intel Core 2 duo processor and 4 GB RAM. CIMOM real- 

izes the Data Repository of the Integrated Solution prototype. 

5.4. Evaluation and analysis 

To evaluate the proposed approach, it was proceeded to mea- 

sure the time-response and the network traffic of the Integrated 

Solution and the Isolated Solution when used in the test environ- 

ment (see Fig. 8 ) to conduct the operation SetController . Although 

the test environment allows to perform such operation in parallel 

for reducing the overall time-response, we carried out a sequen- 

tial configuration for assuming the worst scenario. Furthermore, 

since many Open vSwitches run on the same VM, executing the 

operation in sequence avoided readings distorted by the overuse of 

shared resources. The number of configured switches for each eval- 

uation was 2, 20, 50, 100, 150, and 200. Half were OVSDB Switches, 

and the other half were OF-CONFIG Switches. It is worth to men- 

tion that the values of 2 and 20 configured switches allowed us to 

demarcate a boundary for the analysis in terms of time-response 

and network traffic. In all evaluation cases, we took the average 

values for 30 measurements with a 95% confidence level. 

Fig. 9 depicts the time-response results. Time-response is the 

time in seconds ( s ) measured since the Network Administrator ex- 

ecutes the operation SetController on the Manager Client until re- 

ceiving the reply of the last configured switch. Nevertheless, since 

a configuration reply is received for each switch, we provide a per 

switch basis analysis. Considering that the time-response ( r in s ) 

of Web systems can be ranked as optimal ( r ≤ 0.1), good (0.1 < 

r ≤ 1), admissible (1 < r ≤ 10), and deficient ( r > 10) [ 57 ], the 

time-response results reveal: (i) SetController of both the Isolated 

Solution and the Integrated Solution has an admissible r that grows 
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moderately (less than 1.5 s and 1.8 s per switch, respectively) when 

the number of configured switches increases, (ii) the Integrated 

Solution takes longer than the Isolated Solution , as expected for 

using additional components ( e.g. , CIMOM and Adapters) to cope 

with the heterogeneity; and (iii) the time-response overhead per 

switch of the Integrated Solution is 0.8 s for 2 switches and less 

than 0.35 s for 20 switches or more. Based on the above results, the 

time-response overhead of the Integrated Solution ( Tr oh : integrated ) de- 

pends on the number of configured switches ( N sw 

): (i) if N sw 

< 20, 

Tr oh : integrated ≤ 0.8 N sw 

and (ii) if N sw 

≥ 20, Tr oh : integrated ≤ 0.35 N sw 

. 

Let us compare the time-response results with the time that 

the Network Administrator takes to build the configuration com- 

mand on the CLIs ( i.e. , time composing). In this case, the Isolated 

Solution aggregates an overhead to the time composing of the In- 

tegrated Solution . This is because the Isolated Solution forces the 

Network Administrator to decide which tool must use to config- 

ure each OpenFlow switch. Unlike this, the Integrated Solution ab- 

stracts the heterogeneity of the configuration technologies of the 

OpenFlow switches. 
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To compute the time composing overhead of the Isolated Solu- 

tion ( Tc oh : isolated ), we use the Keystroke-Level Model (KLM) [58] be- 

cause it is useful to estimate the time that an expert user ( i.e. , the 

Network Administrator) spends to accomplish a routine task sup- 

ported on computer keyboard and mouse ( i.e. , build the configu- 

ration command on the CLI). Previous researches demonstrate the 

feasibility of using KLM for conducting this kind of time evalua- 

tion [24,59] . In KLM, each task is modeled as a sequence of ac- 

tions. We take two KLM operators: (i) press and release a key, K = 

0 . 2 s, and (ii) mentally preparing for decision making, M = 1 . 35 s . 

In the best case, the Network Administrator carries out on the 

Isolated Solution the following additional actions: (i) change once 

from one tool to another by pressing ALT and TAB keys, and (ii) 

decide which tool must use for each switch. Based on these ac- 

tions, Tc oh : isolated is also proportional to N sw 

, therefore: T c oh : isolated = 

K + MN sw 

= 0 . 4 + 1 . 35 N sw 

. The results obtained and estimated re- 

veal that Tr oh : integrated is always less than Tc oh : isolated . 

Summing up, although the Integrated Solution includes addi- 

tional modules ( e.g. , CIMOM and adapters) to cope with the com- 

plexity of managing heterogeneous SDN resources, it introduces a 

time-response overhead shorter than the time composing overhead 

of the Isolated Solution . Certainly, the difference between the time 

overheads increases as more switches and distinct technologies in- 

corporate the managed SDN architecture. Additionally, considering 

that the time-consumption ( Tt ) is the sum of the time-response 

and the time composing, the difference between the time over- 

heads demonstrates that the Integrated Solution reduces the time- 

consumption for carrying out the operation SetController , as can be 

seen in Eq. (1) . Therefore, the time-response results corroborate 

that, in terms of such metric, it is feasible to use the proposed ap- 

proach for executing management operations like the proved Set- 

Controller . 

T t int egrat ed = T r int egrat ed + T c int egrat ed 

T t isolated = T r isolated + T c isolated 

T r int egrat ed = T r oh : int egrat ed + T r isolated 

T c isolated = T c oh : isolated + Tc int egrat ed 

T t int egrat ed = T r isolated + T c isolated + T r oh : int egrat ed − T c oh : isolated 

T t int egrat ed = 

{
T t isolated − 0 . 4 − 0 . 55 N sw 

, N sw 

< 20 

T t isolated − 0 . 4 − N sw 

, N sw 

≥ 20 

(1) 

Fig. 10 presents the network traffic results. Network traffic is 

the amount of data in kilobytes ( KB ) transmitted and received by 

the network interface of the Manager Client. These results reveal: 

(i) the traffic generated by SetController of both the Isolated Solu- 

tion and the Integrated Solution grows moderately (approx 106 KB 

and 124 KB per switch, respectively) when the number of con- 

figured switches increases, (ii) the Integrated Solution generates 

more traffic than the Isolated Solution , as expected for handling 

management information of switches in CIMOM; and (iii) the ad- 

ditional traffic generated by the Integrated Solution is 32% for 2 

switches and less than 17% for 20 switches or more. Considering 

that the Integrated Solution , unlike the Isolated Solution , copes with 

the heterogeneity of SDN resources by operating with standard- 

ized management data, the above facts corroborate that SetCon- 

troller of the Integrated Solution has a good behavior on network 

traffic. 

Regarding the results obtained in the time-response and net- 

work traffic evaluation of the operation SetController , it is impor- 

tant to mention: (i) approx 94% of the time-response of Isolated 

Solution corresponds to the OF-CONFIG Tool, (ii) the OVSDB Tool 

generated approx 87% of the network traffic of Isolated Solution ; 

and (iii) the time-response and network traffic overheads intro- 

duced by the Integrated Solution is smaller for many switches than 

for a few; this is because both the connection and the authen- 

tication with CIMOM were realized just once for any number of 

configured switches. Summarizing, the time-response and network 

traffic results demonstrated that, in terms of such metrics, it is fea- 

sible to use the proposed approach to perform SDN management 

operations in heterogeneous environments, as the executed SetCon- 

troller . 

From a qualitative point of view, our approach provides mainly 

simplicity and formalization. The simplicity refers to that the pro- 

posed Management Plane facilitates integrating the SDN manage- 

ment operations of network administrators. They do not require 

to employ multiple frameworks to completely manage SDNs de- 

ployed with various technologies because the proposed plane ad- 

dresses the management requirements of all the SDN architecture 

and hides the heterogeneity of the deployed resources. Regarding 

the formalization, the information model introduced in this paper 

can be considered as a step forward in unifying a conceptual un- 

derstanding of the SDN architecture from the management per- 

spective. It is possible because the information model relies on 

CIM to provide a technology-agnostic and consistent characteriza- 

tion of SDN. Although CIM schemas might be complex to under- 

stand, the working groups from DMTF continuously develop man- 

agement profiles for clarifying how to use the classes and associa- 

tions from CIM for specific areas of management. Thus, our pro- 

posed CIM schema provides a reference to DMTF for building a 

management profile that clearly explains how to characterize man- 

aging functions in the SDN architecture. Moreover, future SDN pro- 

posals may extend this approach for tackling arising challenges in 

SDN management. 

6. Conclusions and future work 

In this paper, we introduced a Management Plane aimed to fa- 

cilitate the integrated management of the SDN architecture in het- 

erogeneous environments. We provided a description of this Man- 

agement Plane by referencing the four OSI network management 

submodels: Information, Organization, Communication, and Func- 

tion. Furthermore, we relied on CIM to define a consistent infor- 

mation model that characterizes the entire SDN architecture from a 

management perspective regardless of the deploying technologies. 

This information model extends the CIM Schema to accomplish a 

generic abstraction of the SDN managed and managing resources 

and their relationships. It is noteworthy that our proposal looks at 

the complete SDN management aspect instead of only modeling a 

certain part, empowering a fully integrated solution for managing 

heterogeneous SDNs. 

155



F. Estrada-Solano et al. / Computer Communications 102 (2017) 150–164 163 

We carried out and evaluated the proposed approach with a 

prototype in a realistic scenario based on SDN. This scenario es- 

tablished a particular challenge: configuring a heterogeneous SDN 

composed of NetDevs that deploy distinct management technolo- 

gies. Our approach corroborated to be feasible when effectively 

(in terms of time-response and network traffic) overcoming such 

challenge. Through a quantitative perspective, the evaluation re- 

sults revealed: (i) regarding the performance analysis for Java 

Websites [ 57 ], it has an admissible behavior in terms of time- 

response, similar than using isolated tools, (ii) it introduces a small 

time-response overhead ( < 0.8 s per switch) compared with the 

minimal time required by network administrators to handle dis- 

persed solutions ( > 1.35 s per switch), and (iii) it has a good be- 

havior on network traffic when managing several devices ( < 17% 

for 20 switches or more) in relation to employing distinct tools. 

From a qualitative point of view, the proposed approach reduces 

the complexity of SDN management by including modules ( e.g. , 

Data Repository and Adapters) that hide heterogeneity of SDN 

resources. 

As future research, we plan to evaluate the proposed informa- 

tion model with other SDN technology instances ( e.g. , ForCES). We 

are also interested in focusing on assessing the remaining submod- 

els from the Management Plane ( e.g. , Communication and Func- 

tions) in order to afford a complete SDN management architecture. 
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Abstract—Ensuring proper operation of networks based on the
Software-Defined Networking (SDN) is essential. Many proposals
exist for managing SDN. However, they present low automation,
long-time for Administrators to manage situations, and lack of
flexibility and workability. In this paper, we introduce an archi-
tecture based on the Hierarchical Task Network (HTN) planning
technique and the Network Functions Virtualization (NFV) for
managing SDN. This architecture presents how to carry out
the orchestrator of NFV by using HTN for SDN management.
Furthermore, it presents how to perform a Virtualized Network
Functions Manager and a Virtualized Infrastructure Manager
of NFV by using a request-response model for communicating
to and from managed networks. Furthermore, our architecture
inherited flexibility and workability from NFV. We evaluate the
architecture in a proof-of-concept regarding time-planning and
network traffic. The evaluation results evidenced short time-
planning and small traffic overhead.

I. INTRODUCTION

Management is an essential part of networks because it
ensures operation, maintenance, administration, and provi-
sioning of network systems [1]. In a traditional network
environment, management is complex because forwarding and
control planes are both in the same network device [2] [3]
[4]. This means that Administrators have to manage each
network device separately for controlling the whole network.
The Software-Defined Networking (SDN) is a new network
technology that makes management tasks easier than in tradi-
tional networks by centralizing the network control [2].

As any network technology, SDN needs to be managed
properly. However, SDN presents a typical problem: when a
new technology is deployed, the importance of its management
is underestimated. This means that management becomes a
patch because it does not evolve simultaneously with the net-
work technology [2]. There are many proposals for managing
SDN, which are based on different techniques, such as Set
Cover Problem [5], middleboxes [6], interactive visualization
[7], Software Defined Infrastructure [8], RESTful APIs [9]
and selective and adaptive monitoring [10]. Nonetheless, these
proposals share some shortcomings: (i) low automation of
network tasks, (ii) long-time required for Administrators to
manage situations (e.g, a failure in packets transmission or
an unforeseen slowness in a link formed by virtual switches);
and (iii) lack of flexibility and workability for network man-
agement. Also, in our previous work [11]–[14], we have pro-
posed solutions based on mashups and situational management

for managing SDN. Nevertheless, we have only achieved a
medium-automation level because of intrinsic limitations of
mashups.

To overcome the above shortcomings, we introduce an
architecture for monitoring, configuring, and controlling SDN-
based networks. Our architecture is based on the Hierarchical
Task Network (HTN) and the Network Functions Virtualiza-
tion (NFV). HTN is a planning technique that decomposes
tasks into subtasks and leads their execution to meet a definite
goal [15]. We argue that HTN is a key tool for managing
SDN because it makes the work of Administrators easier by
introducing automation of network tasks. Such automation
could reduce management complexity and eliminate the need
for Administrators to manage network situations manually and
one at a time. Thus, the time that Administrators need to face
situations could be reduced.

NFV is a promising technology that aims to decouple
Network Functions from the hardware on which they run
[16]. Although some proposals have investigated SDN and
NFV relationship [16]–[18], the use of NFV for managing
SDN is a major open research topic yet. We consider that
the Management and Orchestrator (MANO) is fundamental
for managing SDN because it brings benefits like flexibility
(this involves scalability and elasticity) and workability (i.e.,
the ability to work in existing networks) from NFV.

To sum up, the key contributions presented in this paper
are to: (i) propose an architecture based on NFV and HTN for
managing SDN, (ii) present a prototype of this architecture;
and (iii) demonstrate by a proof-of-concept that our architec-
ture has short values for time-planning and network traffic.

The remainder of this paper is organized as follows. In
Section II, we present HTN, NFV and the related work. In
Section III, we introduce the architecture for managing SDN.
In Section IV, we expose and analyze the proof-of-concept of
our architecture. In Section V, we provide some conclusions
and implications for future work.

II. BACKGROUND AND RELATED WORK

In this section, we present a background about HTN and
NFV. Afterward, we present the related work of our proposal.

A. Hierarchical Task Network
HTN is an Artificial Intelligence planning technique that

aims to create a plan (i.e., a set of tasks) for achieving
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a goal state by decomposing tasks into smaller tasks [15].
HTN includes a planning problem and a planning domain.
The planning problem has an initial state and desired goals
while the planning domain contains a set of tasks useful
to achieve these goals [19]. Several tasks are organized in
a hierarchy called task network. Each task represents an
activity to be performed and may be primitive or compound
[20]. A primitive task represents a low-level action that is
indivisible and executed directly. A compound task is a high-
level action that needs to be decomposed into subtasks. A
method describes how to decompose a compound task [21].
Several methods may be associated with a compound task [22].

We consider that HTN represents a powerful tool for sup-
porting SDN management. The work of Administrators should
become easier as HTN introduces automation of network tasks.
Such automation could lower management complexity because
it would eliminate the need for Administrators to manage
network situations individually. As a consequence, the time
that Administrators spend to face complex situations (i.e.,
situations composed by other ones) could be reduced.

B. Network Functions Virtualization

NFV is an initiative of the European Telecommunications
Standards Institute (ETSI), aiming to enhance the delivery
of network services by separating network functions from
the hardware [18]. MANO of NFV is formed by [23]: an
Orchestrator for composing software resources and virtualized
hardware; a Virtualized Network Functions Manager (VNFM)
for managing the lifecycle of the Virtualized Network Func-
tions (VNFs); and a Virtualized Infrastructure Manager (VIM)
for virtualizing and managing network resources [24].

We argue that MANO is an essential element for monitor-
ing, configuring and controlling SDN because its use can bring
from NFV benefits like scalability, elasticity and workability
[23]. Such benefits aid to ensure the robustness of network
management tools that follow our architecture.

C. Literature Review

In the literature, there are a lot of proposals for managing
SDN. In [5], the authors proposed a low-cost monitoring
scheme for recovering flow statistics across an SDN-based
network in a timely way. In [7], the authors put forward an
approach for managing SDN by configuring control traffic
that allows Administrators to interact with the network. In
[8], the authors built a system based on Software-Defined
Infrastructure that provides integrated functions for monitoring
SDN. In [10], the authors presented Flo-v, a framework to
provide network monitoring in a virtual SDN. The above
proposals share some shortcomings like low automation of
network management tasks, long-time required for Adminis-
trators to handle situations, and lack of flexibility, elasticity,
and workability. Furthermore, they do not use NFV and HTN
for managing SDN.

There are also proposals that use SDN and NFV for different
purposes. For instance, in [18], the authors described how NFV
is applied to virtualize a particular SDN function. In [16], the

authors performed a study for flexible management and de-
ployment of VNFs. In [17], the authors presented a taxonomy
to depict the evolution of the NFV/SDN relationship. However,
the use of NFV for managing SDN is still a relevant open
research topic.

In our previous work, we have developed solutions for
managing SDN. In [11]–[13], we proposed an approach that
allows Administrators to customize and combine solutions for
composing mashups, based on situation management, that aim
to tackle unexpected, dynamic, and heterogeneous network
situations. Nevertheless, we have only achieved a medium-
automation level because of inner limitations of mashups.
Also, we introduced a CIM-based Information Model for a
vertical Management Plane to facilitate the integrated man-
agement in heterogeneous SDNs [14]. Such a model is more
abstract than the one presented in this paper.

On the other hand, HTN has been used for diverse purposes.
The work [25] proposed an automated system that allows
creating mission plans for environmental disaster situations.
The work [20] presented a framework based on automated
planning for composing convergent telecommunications ser-
vices centered in the final user. The work [26] put forward
an automated solution to manage human-robot collaborative
activities. It is remarkable that, to the best of our knowledge,
we are pioneers in using HTN to carry out NFV MANO for
managing SDN.

III. ARCHITECTURE BASED ON HTN AND NFV

Here, we present motivating scenarios and an overview of
our architecture. Also, we introduce its layers and elements.

A. Motivating Scenario

Let us consider the next scenario: a situation in an SDN-
based network formed by several slices (i.e., portions of a net-
work) that support Internet services to companies like banks,
hospitals, and governments. Sometimes, unexpected situations,
like faults or wrong configuration in an SDN-enabled switch,
can break the connection and stop the normal functioning of
these services. Usually, providers cope with these situations
by redirecting, reconfiguring and, even, rebooting slices or
network in a traditional way, that is, with a human intervention
that tends to be slow and prone to mistakes.

We found some shortcomings when network situations
are handled in a traditional way: (i) Administrators have to
manage network devices one at a time, (ii) as a consequence,
Administrators need a lot of time to deal with these situations;
and (iii) Administrators typically have just one option to
solve a situation. These shortcomings bring loss of money for
both providers and customers and, mainly, highlight the need
for automating the process of overcoming network situations.
To address these shortcomings, our architecture offers: (a)
automated planning (i.e., composition) of solutions in a less
complex, time-consuming and network traffic way, (b) visual-
ization of planning process information in an understandable
and friendly way to make decisions; and (c) taking into ac-
count several alternatives to generate the automatic solutions.
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Fig. 1. Architecture based on HTN and NFV

B. Overview

Our architecture, based on HTN and NFV MANO, aims
to automate the tasks of monitoring, configuring and con-
trolling SDN-enabled networks. Here, we propose how to
instantiate: (i) the orchestrator of MANO by using HTN that
is a key enabler for facilitating the composition of network
management tasks because it allows automated planning, (ii)
VNFM and VIM of MANO for enabling the communication
to and from the Managed Networks. By these instantiations,
our architecture inherits from NFV important features like
flexibility and workability.

The proposed architecture is formed by three layers (Figure
1) located in a vertical Management Plane [2] [14] that
communicates with classical SDN planes. From a high level
point of view, this architecture allows: (i) collecting data from
the Managed Network to recognize situations (i.e., a specific
condition or problem in a SDN [13]), (ii) building automat-
ically plans (i.e., a solution formed by a set of management
tasks) to manage recognized situations, (iii) storing, executing,
and publishing built plans; and (iv) depicting information of
such plans and their tasks.

C. Layers and Elements

The Adaptation Layer is in charge of getting information
(e.g., routers and switches condition) from the Managed
Network to send it to the Planning Layer. Furthermore, the
Adaptation Layer receives management operations from the
Planning Layer to forward them to the Managed Network.
This Layer is formed by J-VNFM and J-VIM that are based
on VNFM and VIM, respectively. In particular, J-VIM is in
charge of virtualizing and managing the network infrastructure
including the Planes of Data, Control, and Application. In
turn, J-VNFM is responsible for managing lifecycle of Virtual
Machines or Dockers in which VNFs are deployed. Here,

example of VNFs are firewalls, load balancers and obviously
the management network functions of our Management plane.

The communication between architectural layers is made
by reference points that support the bidirectional information
exchange. The Managed Network and J-VNFM and J-VIM of
the Adaptation Layer are linked by V m−Dat, V m−Con, and
V m−Ap reference points. V m−Dat links to the Data Plane,
V m−Con connects to the Control Plane, and V m−Ap links
to the Application Plane. The communication between the
Planning and Adaptation layers is by Pl−Ad. The reference
points might be instantiated by using the Representational
State Transfer (REST) [27] or the Simple Object Access
Protocol (SOAP) [28].

The Planning Layer is in charge of automatically generating
plans for monitoring, configuring and controlling situations in
the Managed Network by two steps: (i) recognizing a situation
in an automated way; and (ii) automatically planning a solution
to manage the identified situation. These steps are conducted
by Recognizer and Planning Orchestrator.

Figure 2 introduces the Recognizer that automatically iden-
tyfies network situations (e.g., faults and configuration) by
comparing network information (i.e., samples) and patterns ex-
isting in the Pattern Repository that we explained in [13]. The
Recognizer is formed by Sensing and Matching Mechanism.
The Sensing is in charge of retrieving information from the
Managed Network via the Adaptation Layer and delivering
it as streaming to the Matching Mechanism. The Matching
Mechanism recognizes a situation as follows: (1) it reads and
loads situation patterns from the Pattern Repository, (2) it ob-
tains samples by sensing, (3) it conducts matching operations
(i.e., samples vs patterns), (4) per detected situation (i.e., there
is a match), an HTN descriptor (i.e., the representation of a
goal to achieve) is called by using a planner identifier; and (5)
the Planning Orchestrator is invoked to build a plan intended
to face the recognized situation.
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Fig. 2. Automatic Recognition

The Planning Orchestrator is an HTN-based MANO. Our
Orchestrator build plans automatically for managing network
situations, and it is formed by the Decomposer, Executor,
Planner Repository and HTN Solution Repository. The Planner
Repository storages planners that include two descriptors
called Planning Domain and Planning Problem. These de-
scriptors must be written in an HTN notation by experts in
automated planning and Networking. The Planning Domain
contains the operators and methods used to compose plans.
The Planning Problem contains an initial state and a final state
to be reached.

Listings 1 and 2 present, using the SHOP2 [29] planner
notation, the Planning Problem and Planning Domain for a
planner of example. This example aims to change the state
(i.e., on and off) of two OpenFlow-enabled switches when
one of them fails. The Planning Problem includes a description
of the initial state where switch2 is on, and a description of
the goal in which switches states must be exchanged. The
Planning Domain consists of two operators and one method
that allow decomposing tasks. The method allows to exchange
the switches states by calling the operators. Once operators are
called, they are executed to achieve the goal. It is important to
emphasize that the Planning Domain is fundamental for our
Orchestrator because it includes all possible actions for facing
network situations.

Listing 1. HTN Planning Problem
( d e f p r o b l e m problem b a s i c

( ( on l i n k 2 ) )
( ( exchange l i n k 2 l i n k 1 ) )

) ; d e f p r o b l e m

Listing 2. HTN Planning Domain
( defdomain b a s i c (

( : o p e r a t o r ( ! e n a b l e ? a ) ( ) ( ) ( ( on ? a ) ) )
( : o p e r a t o r ( ! d i s a b l e ? a ) ( ( on ? a ) ) ( ) )
( : method ( exchange ? x ? y )
( ( on ? x ) ( n o t ( on ? y ) ) )
( ( ! d i s a b l e ? x ) ( ! e n a b l e ? x ) ) )
) ; b a s i c

) ; defdomain

Figure 3 depicts the automated composition of a plan for a
network situation. This composition is as follows. (1) Decom-
poser receives a planner identifier from the Recognizer. (2)
Decomposer retrieves a planner from the Planner Repository
by using such an identifier. (3) Decomposer creates a plan
by using SHOP2 [20] that is an automated planning system
for planning tasks in the same order that they will be executed

Fig. 3. Automatic Composition

later. The algorithm begins loading the Planning Problem (goal
to achieve) and the Planning Domain (tasks useful to reach a
goal) included in the planner, then the algorithm chooses a task
from the set of tasks, if such a task is a primitive, it is executed,
if the task is compound, the algorithm looks for a method to
decompose it into smaller ones. This decomposition process is
continuously repeated and it finishes when the algorithm finds
out only primitive tasks which form the plan. (4) Executor
allows storing, publishing, and executing plans. (5) Executed
plans are stored in the HTN Solution Repository for later
reference. (6) Once plans are stored, they are ready for being
displayed in the Presentation Layer.

The Presentation Layer can be accessed by the Management
GUI in any PC or laptop connected to the Internet. This Layer
receives management information about generated, executed
and on running plans from the Planning Layer by Pr − Pl
reference point. This point could also be instantiated using
REST or SOAP. By the Management GUI, Administrators
can mainly: (i) visualize plans executed and on running, (ii)
select plans by clicking, (iii) visualize alternative plans; and
(iv) customize plans.

IV. PROOF-OF-CONCEPT

This section introduces a prototype of our architecture. Also,
it presents and discusses the evaluation of our prototype.

A. Prototype

Figure 4 depicts the prototype built to assess our proposal.
We implemented the Presentation Layer as a typical Web
application based on Java. The Planning Orchestrator was
created with JSHOP2 [20] that is an implementation of SHOP2
developed in Java. The Matching Mechanism was created
using an instantiation of the PHREAK algorithm provided by
JBOSS Drools [30]. The J-VIM and J-VNFM were created
using RESTful [31] that is a Java API useful to implement
the REST architectural model. It is important to highlight
that the Planning Orchestrator, Matching Mechanism, J-VIM,
and J-VNFM were deployed in Virtual Machines running on
OpenStack [32] as VNFs specialized in management tasks.

The Managed Network was a SDN formed by a controller,
switches and hosts deployed in Mininet [33]. The controller
was deployed by using Ryu [34], a SDN framework that
provides software components with APIs to create network
management and control applications. In turn, the switches
were deployed with Open vSwitch [35].
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Fig. 4. Prototype

B. Evaluation and analysis

During the evaluation, first, we measured the time-planning
(i.e., time required by the Planning Orchestrator for building an
automated plan) to analyze the time added by our approach for
facing a situation. Second, we measured the traffic to analyze
the impact in the network of using our prototype.

In the time-planning evaluation, we automatically generated
a plan from the planner described in Listings 1 (Planning
Problem) and 2 (Planning Domain). Afterwards, we generated
the same plan increasing the number of primitives (tasks
applied to each switch forming the Managed SDN) to 20, 40,
60, 80, and 100. Table I presents the corresponding results,
revealing that time-planning increases linearly with the number
of primitives.

TABLE I
TIME-PLANNING FOR A SINGLE PLAN

Primitive tasks Time-Planning (ms)
20 68
40 105,2
60 127,2
80 149,9

100 171,2

During the time-planning evaluation, we also conducted a
test by automatically generating 2, 4, 8, and 16 plans. Here,
per plan, we varied the number of primitive tasks from 4 to 28.
Figure 5 presents the corresponding results, corroborating that
time-planning increases slightly and linearly with the number
of primitives. It is important to highlight that our proposal
has similar time-planning behavior than other works [13] [36].
According to the foregoing results, we can conclude that our
proposal is a feasible alternative for Administrators manage
situations in SDN by spending short time. This feasibility is
because we use HTN and NFV to address the low automation
problem of network management.

For the traffic evaluation, we managed a SDN formed by
a controller and 255 Open vSwitches organized in a tree
topology (depth 8, fan-out 2). During this evaluation, we
measured the traffic in bytes when the controller receives

Fig. 5. Time-planning for several plans

from our prototype 10, 20, 40, 80, 160 and 320 plans with
2, 4, 8, and 16 primitives; in Figure 4, the controller is
obviously located in the Managed Network and our prototype
in the Management Plane. It has to be noted that in this
evaluation, first, an OpenFlow message is generated by a
primitive task (i.e., a management operation) into a plan.
Second, our prototype was deployed in a cloud environment
to offer it on-demand.

Figure 6 depicts the network traffic evaluation results, re-
vealing that the number of OpenFlow messages raised linearly
with the number of plans. In our solution, it is possible to know
in advance the traffic that a plan can generate because such
a traffic is related to the number of primitives per plan; in
this test we have a one to one relationship between primitives
and OpenFlow messages. Furthermore, the evaluation results
confirmed that our proposal does not affect the normal traffic
between switches, but it increases the number of OpenFlow
messages between the SDN controller and switches; this
increasing may be a limiting in front of high traffic conditions.
According to the above results, our proposal is a good option
for managing SDN by using few resources and delivering a
good performance.

Fig. 6. Traffic versus plans launched

From a qualitative perspective, our proposal inherited the
flexibility and workability from MANO and HTN. It is because
we instantiate the Orchestrator, VNFM, and VIM as VNFs
specialized in performing network management tasks.
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V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced an approach, based on HTN and
NFV, for monitoring, configuring and controlling SDN. The
time-planning results corroborated that our architecture aids to
overcome the low automation of tasks problem presented in
related works. We solved this problem by providing an HTN-
based proposal with minimal human intervention. This inter-
vention is just necessary for getting information about plans
executed and on running and to adapt plans to manage similar
network situations, facilitating the work of Administrators.
Also, the network traffic results confirmed that our proposal is
a feasible solution for managing SDN by using few resources;
it is because the plans automatically built do not affect the
normal traffic between switches, these plans just increase the
number of OpenFlow messages between the controller and
switches. Furthermore, our proposal is flexible and workable
because it works in a vertical management plane based on
NFV MANO and deployed on OpenStack.

As future work, we are interested in supporting Natural
Language Processing. We think that the work of Adminis-
trators will be even easier by using natural language that
allows adding and improving interactions through any device
connected to the Internet. Furthermore, we also want to add
learning of network situations to build an autonomic network
management system for SDN.
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Ana Isabel Montoya-Muñoz∗, Daniela Maria Casas-Velasco∗, Felipe Estrada-Solano∗, Armando Ordonez† and
Oscar Mauricio Caicedo Rendon∗
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Abstract—Specifying a Management Plane for the Software-
Defined Networking (SDN) architecture is essential for moni-
toring, configuring and handling computer networks. Diverse
solutions have proposed it but they share some shortcomings:
incomplete representations of SDN elements, few human readable
languages for managing networks, no communication manage-
ment aimed at Internet Engineering and absence of supporting
communication between Autonomous Systems. In this paper, we
introduce a protocol-agnostic Data Model based on YANG that
specifies a vertical SDN management Plane, handles technology
heterogeneity and supports inter-domain communication. To test
our Data Model, we evaluate a prototype in an SDN configuration
scenario that includes devices supporting diverse technologies.
The obtained results provide directions that corroborate the
efficiency of our approach in terms of time-response and network
traffic.

Keywords—Software-Defined Networking, Network Management,
Data Model, YANG.

I. INTRODUCTION

Computer networks are formed by a lot of elements
that involve complex management tasks [1]. The Software-
Defined Networking (SDN) allows managing networks by
a centralized logic, a programmatic configuration and open
standards-based protocols [2]. The SDN architecture is com-
posed of four Planes [3-6]: Data, Control, Application and
Management. The last Plane is in charge of carrying out
the functions of Operation, Administration, and Management
(OAM). The management of SDN presents some challenges
[5] [7-8] such as performance and scalability, monitoring and
visualization, continually changing network state, low-level
per-device network configuration, and lack of frameworks for
integrated network management. To address these challenges,
the specification of a Management Plane became an important
requirement because it allows integrally monitoring, config-
uring, and handling an entire SDN and avoids the recurrent
mistake of patching management solutions [5].

To define a Management Plane is priority to describe its
Information Model (IM) [9]. An IM represents entities, re-
lationships and operations that specify the semantic of data
in a particular domain such as network management [10]. In
this domain, for instance, an IM allows conceptually modeling

978-1-5386-1060-2/17/$31.00 c©2017 IEEE

managed objects, regardless of specific protocols used to
transport data. An IM is formed by a collection of Data Models
(DMs) and relationships which are defined at a lower level of
abstraction [11].

Diverse works have proposed management solutions consid-
ering DMs and, in general, modeling languages. For instance,
the Common Information Model (CIM) has been used as an
extension schema to model both SDN [12] and Core Informa-
tion Model [1] that provides a Data Plane representation. The
Yet Another Next Generation (YANG) language has been used
jointly with the OpenFlow Protocol to carry out conversion of
parameters from OFConfig to Open Virtual Switch Data Base
(OVSDB) [13], in configuration state models for OpenConfig
[14], and for defining data model routing [15]. Notwithstanding
the contributions performed by the above works, they share
shortcomings: a) incomplete representation of SDN elements,
b) use of languages for network management that are not very
understandable by humans, c) no communication management
aimed at Internet Engineering; and d) no supporting on com-
munication between multiple Autonomous Systems (ASs).

In previous work, we introduced a DM that characterizes
an SDN vertical Management Plane as a CIM conceptual
framework [2]. We conclude that CIM turned difficult since
the language that it uses is the Extensible Markup Language
(XML) and such a language is few understandable by humans.
Furthermore, such a CIM framework considers an hetero-
geneity constrained to use resources of distinct technologies
as well as does not consider inter-domain communication
management. In this paper, we propose a technology-agnostic
YANG-based DM for a vertical SDN Management Plane that
supports management tasks in a technology-agnostic and het-
erogeneous environment. Also, we consider the management
entities needed to communicate different ASs and, further, our
DM supports OAM functions in a reliable and solid way.
To test the proposed DM, we evaluate a prototype in an
SDN configuration scenario that includes devices supporting
diverse technologies. The obtained results provide directions
that corroborate the efficiency of our DM in terms of time-
response and network traffic.

The remainder of this paper is organized as follows. In
Section II we present the related work. In Sections III and
IV, we overview our Management Plane and expose from a
high-level point of view the YANG-based DM, respectively.
In Section V, we present an evaluation of the proposed model.
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In Section VI we expose conclusions and future work.

II. RELATED WORK

The systematic review performed for this paper discloses
diverse facts: i) the investigations that include YANG and CIM
[2] [12-13] [16] [17-21] propose solutions for network man-
agement, ii) few works [22-23] do not employ any modeling
language for their approach in network management, both i
and ii highlight the trending fact of using modeling languages
in management networks because of their performance, relia-
bility, and security features, iii) the most works that implement
YANG do not consider SDN [15-16] [17-21], except [13]
that uses YANG data models for implementing OFConfig,
iv) nonetheless the use of CIM in recognized protocols as
OpenFlow, CIM studies have less trending interest than YANG
studies because the YANG approach is oriented to the Internet
networking, v) to the best of our knowledge, none work
presents a proposal that includes both SDN management and
YANG concepts to define the Management Plane, but some
works do it separately, for instance, [13] and [20] work with
YANG and [2] orients its approach to SDN management, vi)
as far as we know, few works had considered inter-domain
communication in SDN environments but do not consider
its management, such as [24] that proposes components to
support communication between ASs but it does not consider
it from a management perspective, vii) YANG is mostly used
in real environment implementations [16] [18-19] and CIM in
prototypes [2] [12] what exposes the confidence put in YANG
for management networks; and viii) works with prototypes as
result focused on configuration management [2] [12-13] [17]
[20-21] [24].

Unlike the above works, in this paper, we model the
Management Plane by our DM. These are based on YANG
to support SDN management FCAPS+Programming functions
[25] in a technology-agnostic and independent-protocol way.
Furthermore, our DM also considers the management of inter-
ASs communication. For the sake of brevity and space, we
present our DM from a high-level point of view by exposing
just the entities and the main relationships that between them.
The entire YANG-based DM is complete in our GitHub
repository [26].

III. VERTICAL MANAGEMENT PLANE

The vertical Management Plane includes elements that al-
lows configuring, controlling and monitoring resources and
handling their heterogeneity and inter-domain communica-
tion in SDN-based networks. Figure 1 presents a high-level
overview of our Management Plane by the four OSI submodels
[9]: (i) an Information Model for abstracting SDN resources,
(ii) an Organizational Model for specifying roles and collab-
oration, (iii) a Communication Model for transferring data;
and (iv) a Functional Model to structure management features
including the communication between diverse ASs.

The Management Plane detailed in the AS1 has a Man-
aging and a Managed section. The Managing section holds
elements that allows controlling, configuring and monitoring
the networks and the Managed section holds the Data, Control

and Application Planes with the respective elements to be
managed. The Management Plane is formed by the Manager,
Adapters and Agents entities, the Data Repository, InterAS
Data Repository and Management Interfaces. The Manager en-
tity coordinates and deploys Management Services to carry out
SDN management tasks. Each one of Management Services
deploys a user interface for Network Administrators (NetAd-
mins) interaction. The Data Repository and the InterAS Data
Repository hold a Resource Representation Model (RRM) and
serve the Manager to store management instance data belong-
ing to an AS. RRM handles metadata to provide an abstract,
technology-neutral characterization of SDN resources. The
InterAS Data Repository holds information relevant from other
ASs to manage inter-domain communication. The Adapter
entities allow a protocol-agnostic communication between the
Manager and Agents entities by well-defined Management
Interfaces. Each Management Interface connects both corre-
sponding adapter and agent. The Agents entities inside SDN
resources act on behalf of Managers.

Figure 1 also represents the entities hosted by the four sub-
models. The Organizational Model is composed by the Agent,
Manager and Adapter entities. Each organizational component
is named as its corresponding entity or role. The Manager acts
as a manager entity. NetApp, NetInterAS, NOS, NetSlicer, and
NetDev Adapters perform an adapter role. In turn, NetApp,
NetInterAS, NOS, NetSlicer, and NetDev Agents carry out the
agent tasks by performing an agent role. The Communication
Model is formed by the User Interface, the Repository Inter-
faces, the Adapter Interfaces and the Management Interfaces.
In order to match each agent with its respective adapter, we
establish a Management Interface (MI) per SDN managed
resource: NetApp MI, NOS MI, NetSlicer MI, and NetDev
MI. The Functional Model classifies the Management Services
according the management FCAPS+Programming functions.

In this work, we focus on the DM of the Management Plane
composed by RRM, Instance Data and both InterAS Data and
Data Repositories. The entire operation of the Management
Plane is specified in RRM to achieve an integrated and
technology-independent SDN management.

IV. YANG-BASED DATA MODEL FOR A VERTICAL
MANAGEMENT PLANE

This paper proposes a YANG-based DM that characterizes
the SDN architecture presented in Figure 1. We model the
network entities, relationships, and elements by defining the
hierarchical structure of YANG module (i.e., YANG statement
composed by three types of statements: module header, revi-
sion, and definition statements) that interrelates a collection
of submodules ( i.e., portions of its definitions of a module).
Each YANG module defines a hierarchy of data for defin-
ing configurations, state data, Remote Procedure Calls and
notifications. Modules can import data from other external
modules and include data from submodules [27]. Submodules
are partial modules that contribute definitions to modules. Each
submodule must belong to only one module [28].

Figure 2 introduces our YANG-based DM for the Man-
agement Plane. This model is divided into submodules. Each
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Figure. 1. Vertical Management Plane

Figure. 2. YANG model for Management Plane

submodule defines the node schema used to model all Planes.
The submodules for the Vertical SDN Management Plane are:
i) SDN for modeling the SDN network composed by the fol-
lowing Planes: ii) MngtPlane, iii) AppPlane, iv) ControlPlane,
and v) DataPlane submodules that are defined to represent
each SDN architectural Plane, vi) Manager for representing
the system hosting the Management Services, vii) Manage-
mentService for representing Management Services that allow
carrying out different SDN management functions, viii) Man-
agementServiceCapabilities for describing both supported and
excluded capabilities in ManagementServices, understanding
capabilities as device features, ix) ServiceAccessPoint for
defining the communication points between nodes in a data tree

model, it instances communication channels according to the
interface required, x) AdapterServices for modeling adapters
that parse and forward requests, responses, and notifications
between ManagementServices and AgentServices by Manage-
ment Interfaces defined in the ServiceAccessPoint, xi) Adapter
for representing a system that may host the AdapterServices,
xii) AgentServices for representing Agents running on SDN
managed resources, xiii) ProcessIndication for modeling noti-
fications that may be sent by AgentServices informing about
changes in SDN managed resources, xiv) ProtocolEndPoint
for modeling the communication point allowing the access of
NetAdmins to networks; and xv) StandarizedYANGModules
for allowing accessing to well known YANG models that may
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be required when modeling a network.
Figure 2 also depicts the relationships between the different

submodules that comprise our DM of the Management Plane.
The SystemComponent relationships connect the SDN node
with the Planes of App, Control, Data, and Management indi-
cating their belonging to SDN. The ServicesAffectsElement re-
lationship between SDN and ManagementService reflects that
Management Services have an effect in SDN, such as changing
resource behavior and configuring SDN controllers for a set
of OpenFlow switches. The SAPAvailableForElement rela-
tionship communicates SDN with the ServiceAccessPoint by
the management interfaces, it represents that these interfaces
provide managing access for SDN. The HostService MngtServ
relationship indicates that the Manager represents the system
hosting the SDN Management Services. The ManagementSer-
vice is related to the ManagementServiceCapabilities submod-
ule by the ElementCapabilities relationship representing the
capabilities supported for Management Services.

Relationships tagged as ProvidesEndpoint “id” have at the
end of the name an identifier (id) directly associated with the
submodule where is defined (i.e., a YANG “prefix” statement)
to identify easily the corresponding submodule connected
with the ServiceAccessPoint. These relationships indicate that
the nodes related establish their own communication point
to access from the other one. Relationships tagged as Ser-
viceSAPDependency “id” also have at the end of the name
an identifier for identifying submodules connected. These
relationships imply that both nodes use the ServiceAccessPoint
to access the other one. For instance, a Configuration Service
and a NetDev Adapter establish a communication using JSON
over HTTP. Using this communication, the NetDev Adapter
forwards to the Configuration Service a notification from a
NetDev Agent that reports about misconfiguration failures.
Similarly, the Configuration Service may use the same channel
to fix this failure by sending a configuration request to the
NetDev Adapter. This Adapter forwards this request to the
corresponding NetDev Agent.

The HostedService relationships that connect AdapterSer-
vices submodule with the Manager and Adapter indicate that
the Adapter Services may be hosted by the Manager or
the Adapter. The AgentNotification relationship communicates
AgentServices submodule with ProcessIndications submodule
and represents the notifications sent by Agents toward Manage-
mentService. In particular, the ProvidesEndpoint ProEndpoint
relationship implies that the ManagementService supplies Pro-
tocolEndPoint users with the corresponding user interface. The
ToYANGRepository relationship relates ManagementServices
submodule with StandarizedYANGModules submodule to con-
sider well-known YANG modules.

V. EVALUATION

To assess our DM, first, we establish a network manage-
ment scenario with different SDN technologies. Second, we
implement a prototype that includes the DM proposed. Third,
we evaluate in terms of time-response and network traffic, the
prototype by using the scenario mentioned.

A. Scenario

Let us consider that a Bank deployed an SDN network with
NetDevs handled by an NOS1. Initially, the SDN network
offered NetDevs from Vendor A. However, there was the need
to extend services to the rest of the bank branches for handling
more users. In this sense, the NetAdmin decided: i) deploy
NetDev resources from a Vendor B because it offers a better
benefit-cost ratio than Vendor A and; ii) install a NOS2 that
offers better features for handling the entire network. Now, the
NetAdmin faces the challenge of configuring heterogeneous
NetDevs by NOS2.

The NetAdmin typically uses Vendor A Tool and Vendor B
Tool to execute specific, complex and individual configuration
commands on NetDevs. Instead, we propose an Integrated
Solution based on our DM to configure the NetDevs in
a high-abstraction level. Our Integrated Solution allows the
NetAdmins to seamlessly configure NetDevs from NOS2 since
this solution hides the complexity of managing heterogeneous
SDN-based networks.

In particular, in the test environment, NetDevs provided by
Vendor A were OVSDB switches. NetDevs from Vendor B
were OF-CONFIG switches. The NOS1 was a RYU controller
and the NOS2 was an OpenDayLight controller. The managing
operation used during the tests was called SetController. This
operation is to configure NetDevs with distinct management
interfaces (i.e., OVSDB and OF-CONFIG switches) and to
define NOS2 as their new controller.

B. Implementation

Figure. 3. Integrated Solution prototype

Integrated Solution. We built this prototype to perform the
SetController operation regardless the different configuration
interfaces by using our DM. Figure 3 presents the implemented
Integrated Solution which contains the Data Repository formed
by RRM, particularly, the YANG DM, and the Instance Data
described in a JSON file. By using a tool called pyang [29],
we translated the DM into XSL and XML files to generate
a skeleton in JSON format. To carry out the SetController
operation, the NetAdmin connects by a CLI to the Manager
which deploys this operation as a Configuration Service. This
Configuration Service invokes tools to change the NOS of the
OpenFlow switches based on the instance data from the JSON
file.
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Figure. 4. Test environment

C. Test environment

Figure 4 depicts the environment formed by two OpenFlow
networks, two OpenFlow controllers and the Manager Client.
The Manager Client contains the Data Repository and the In-
tegrated Solution. A tunnel over an IP network interconnected
the root switches from each tree topology. The Open vSwitches
used the OpenFlow protocol over a second IP network to
communicate with a specific OpenFlow controller. A third
IP Network transmitted the management data between the
OpenFlow networks and the Manager Client. We measured
the third IP Network because it represented the management
interface.

D. Results and analysis

To evaluate the prototype built, we carried out a comparison
in terms of time-response (i.e., time in seconds s that the
Manager Client spends when executing the SetController oper-
ation) and network traffic (i.e., the amount of data in kilobytes
KB transmitted and received by the network interface of
the Manager Client) with our previous approach [2]. For this
comparison we executed the SetController operation to mea-
sure its time-response and network traffic when configuring
2, 20, 50 and 100 switches per evaluation. The half were
OVSDB Switches, and the other were OF-CONFIG Switches.
The overhead is the difference between both Integrated and
Isolated Solutions. In all evaluation cases, we took the average
values for 30 measurements with a 95% confidence level.

In terms of time, Figure 5 presents the difference between
the overhead of the CIM-based Integrated Solution (CIM-
IS) and the overhead of the YANG-based Integrated Solution
(YANG-IS), disclosing that the CIM-IS takes longer time than
the YANG-IS because the CIM-IS used additional components
to build its Manager and execute the Configuration Service
(e.g., CIMOM as data repository for a CIM-based IM [30]).
In fact, the CIM-IS takes 1.25s and 3.97s more than YANG-
IS for 2 switches and more than 20 switches, respectively, to
cope with the technology heterogeneity. It is noteworthy that
YANG-IS only used the JSON file to execute the Configuration
Service.

In terms of network traffic, the comparison of the YANG-
IS with the CIM-IS discloses: i) as expected, the difference
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Figure. 5. Comparison between the YANG and CIM Integrated Solutions

between the overheads of both solutions is big, that is around
98.2KB and 414KB when the number of configured switches
(NS) are 2 and 20, respectively, ii) the CIM-IS generates more
network traffic than the YANG-IS (approximate 18KB more
per switch when NS > 20), since the YANG-IS only uses a
JSON file for instancing the DM and it is less verbose than
the XML language used in the CIM-based solution; and iii)
both Integrated Solutions have a good performance of network
traffic while executing the SetController operation with a
difference between the overheads that increases proportionally
with NS . Also, it is to highlight that the network traffic grows
around 124KB and 109KB per switch for the solutions based
on CIM and YANG, respectively. Note that CIM-IS needs to
connect and disconnect with the CIMOM repository during
the configuring and authenticating actions per switch which
generates additional traffic. Instead, YANG-IS does not need
to communicate with other applications or components.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a protocol-agnostic YANG-
based DM. Such a DM characterizes a vertical SDN Manage-
ment Plane, handles technological heterogeneity and considers
inter-domain communication. The evaluation demonstrated the
efficiency of our DM prototype in a realistic scenario, it estab-
lished the challenge of configuring SDN with heterogeneous
technologies by a common interface for the NetAdmin. Our
prototype proved to be successful when used to overcoming
such a challenge in terms of time-response and network traffic.
In fact, our prototype has a shorter time-response and is lesser
network traffic generator than CIM-IS.

As future work, we intend to detail all our DM for the
Vertical Management Plane and the other SDN planes by
YANG statements. Furthermore, we plan to develop more
proof-of-concepts of the entire DM.
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AbstrAct

Over the last decade, a significant amount 
of effort has been invested on architecting agile 
and adaptive management solutions in support of 
autonomic, self-managing networks. Autonomic 
networking calls for automated decisions for man-
agement actions. This can be realized through a 
set of pre-defined network management policies 
engineered from human expert knowledge. How-
ever, engineering sufficiently accurate knowledge 
considering the high complexity of today’s net-
working environment is a difficult task. This has 
been a particularly limiting factor in the practical 
deployment of autonomic systems. ML is a pow-
erful technique for extracting knowledge from 
data. However, there has been little evidence of 
its application in realizing practical management 
solutions for autonomic networks. Recent advanc-
es in network softwarization and programmabil-
ity through SDN and NFV, the proliferation of 
new sources of data, and the availability of low-
cost and seemingly infinite storage and compute 
resource from the cloud are paving the way for 
the adoption of ML to realize cognitive network 
management in support of autonomic network-
ing. This article is intended to stimulate thought 
and foster discussion on how to defeat the bot-
tlenecks that are limiting the wide deployment of 
autonomic systems, and the role that ML can play 
in this regard.

IntroductIon
The complexity, heterogeneity, and scale of net-
works have grown far beyond the limits of manual 
administration. Furthermore, the main cause of 
outages in many network environments is human 
error [1]. This has triggered a shift in the design 
philosophy of network management systems to 
minimize the role of humans in the control loop.

In 2001, IBM proposed the autonomic com-
puting initiative. The vision was to have strate-
gies for self-* (i.e., self-configuring, self-healing, 
self-optimizing, and self-protecting) IT systems, 
a goal also shared by HP’s Adaptive Enterprise 
and Microsoft’s Dynamic Systems. As part of 
this initiative, IBM proposed an architecture for 
autonomic computing [2], where autonomic man-
agers maintain a Monitor-Analyze-Plan-Execute 
(MAPE) over shared knowledge control loop 
with the managed resources. Since then, several 
extensions to the MAPE control loop have been 
proposed, including Foundation-Observe-Com-

pare-Act-Learn-rEason (FOCALE) [1] that is based 
on Observe-Orient-Decide-Act (OODA) [1]. 
Essentially, FOCALE offers extensions for knowl-
edge use and learning with dynamic control 
loops, namely reactive, deliberative and reflec-
tive with increasing level of cognitive capabilities. 
However, IBM’s MAPE remains the most widely 
adopted with many incarnations of its vision pro-
posed for networking, such as cognitive networks 
[1, 3] and knowledge-driven networking [4, 5]. 
In essence, these initiatives advocate for incor-
porating intelligence and autonomy in network 
management.

Autonomic networks call for automated 
decisions for management actions. This can be 
achieved via policy-based management (PBM) 
through a set of pre-defined self-* policies engi-
neered from human expert knowledge or derived 
from high-level policies provided by humans. Acti-
vating backup resources upon predicting a fault 
and steering traffic flows through deep packet 
inspection (DPI) based on a blacklist are examples 
of self-healing and self-protection policies, respec-
tively. However, considering the high complexity 
of today’s networking environments, engineering 
sufficiently accurate knowledge is a cumbersome 
task. This has prohibited the practical deployment 
of autonomic systems. In autonomic systems, pos-
sible actions should be learned from the operat-
ing environment, and reasoned and adapted to 
changes, while respecting operational goals and 
requirements.

Machine learning (ML) is a popular technique 
for extracting knowledge from data. In theory, 
ML can be used for automating network opera-
tions and management. However, there has been 
little evidence of its application in realizing auto-
nomic networks. Prohibiting factors include the 
distributed control and vendor-specific nature of 
legacy network devices, lack of available data, 
and cost of compute and storage resources. Sev-
eral technological advances have been made in 
the last decade to overcome these limitations. 
The advent of network softwarization and pro-
grammability through software-defined network-
ing (SDN) and network functions virtualization 
(NFV) offers centralized control and alleviates 
vendor lock-in. The advances in ML along with 
the proliferation of new sources of data and big 
data analytics platforms provide abundant data 
and extract knowledge from them. For instance, 
recent breakthroughs in deep learning (DL) allow 
generation of models from raw data without the 
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need for data labeling. Furthermore, the avail-
ability of seemingly infinite storage and compute 
resources through the cloud overcomes the cost 
of resources. These together provide the environ-
ment to realize the vision of autonomic networks. 
The main contributions of this article are:
• We expose how ML can be used to realize

autonomicity in each of the fault, configura-
tion, accounting, performance, and security
(FCAPS) [6] management areas.

• We show how ML can be leveraged to real-
ize a cognitive MAPE control loop for net-
work management.

• We discuss the opportunities and challenges
pertaining to using ML for the management
of autonomic networks.
The remainder of this article is organized as

follows. We provide a high-level background on 
ML in the following section. After that we high-
light how ML has been leveraged for network 
management. We showcase how ML can be used 
to realize a cognitive control loop, and present 
a use case illustrating its realization in practice 
using existing technologies and protocols. Then 
we present future research directions to facilitate 
a holistic cognitive management framework.

MAchIne LeArnIng
ML goes beyond learning or extracting knowl-
edge to utilizing it and improving it with experi-
ence. It has given rise to a plethora of algorithms, 
as shown in Fig. 1. Essentially, ML is applied to 
problems that can be solved using inference [7] 
and have large representative training data. Fun-
damental to ML is feature extraction, which deter-
mines the best discriminators for learning and 
inference [8]. Note that learning splits the data 
into training and validation sets. This split can con-
form to the 80:20 or 70:30 ratio rule of thumb, or 
follow the k-fold cross-validation technique.

ML is classified into three categories, based on 
how the learning is achieved [1].

Supervised Learning: uses labeled training 
datasets to create models that map inputs to cor-
responding outputs. Typically, this approach is 
used to solve classification and regression prob-
lems that pertain to predicting discrete or contin-
uous valued outputs, respectively. For example, a 
classification problem can be to identify an attack 
as either denial of service (DoS), root-to-local 

(R2L), user-to-root (U2R), or probing. A regres-
sion problem can be to predict the time of future 
attacks.

Unsupervised Learning: uses unlabeled train-
ing datasets to create models that find dominating 
structure or patterns in the data. This approach 
is appropriate for clustering, outliers detection, 
and density estimation problems. For example, the 
clustering problem can pertain to grouping differ-
ent instances of attacks based on their similarities.

Reinforcement Learning (RL): is an iterative 
process that uses the feedback from the environ-
ment to learn the correct sequence of actions 
to maximize a cumulative reward. Unlike other 
approaches that are myopic in nature, RL may 
sacrifice immediate gains for long-term rewards. 
Hence, RL is best suited for making cognitive 
choices, such as decision making, planning, and 
scheduling [9].

Different ML techniques (Fig. 1) belong to one 
or more of the aforementioned categories. Bayes-
ian networks (BNs) and support vector machines 
(SVMs) are typically applied in supervised learn-
ing. k-nearest neighbors (k-NN), decision trees 
(DTs), and neural networks (NNs) have been used 
in both supervised and unsupervised learning. 
k-means operates only in unsupervised learning.
Q-learning, the most prominent RL technique,
has recently used NN and deep NN (DNN) to
approximate its action-value function (i.e., deep
RL).

MAchIne LeArnIng for 
network MAnAgeMent

MAchIne LeArnIng for fcAPs: whAt hAs been done?
Application of ML to automate network man-
agement and close the management loop is a 
nontrivial task. Table 1 highlights representative 
ML techniques employed in the literature for 
the FCAPS management areas to provide some 
degree of autonomy.

Fault Management: Failure in networks is a 
norm rather than an exception, and its impact can 
be quite costly [10]. The slow reaction time and 
poor accuracy of traditional fault management 
techniques further increase this cost. This has 
motivated efforts that leveraged ML for proactive 
fault prediction. Additional works considered the 
usage of ML for fault localization and automat-
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ed mitigation to minimize downtime and human 
intervention.

Configuration Management: Operators must 
implement increasingly sophisticated network pol-
icies that have to be translated into constrained 
low-level configuration commands, and adjusted 
to changes in network conditions (e.g., intrusions, 
traffic shifts, performance degradation). As the 
network state is constantly changing, network 
managers find themselves constantly configuring 
the network to adapt to these changes, which is 
a cumbersome and error-prone process. ML can 
help automate this process by training models to 
identify optimal state-action pairs as the network 
behavior changes over time. A handful of works 
have showcased the benefits of ML for dynamic 
resource allocation and service configuration.

Accounting Management: Accounting is 
tightly coupled with business and control mod-
els. These models leverage accounting data in 

decision making, service planning, and delivery, 
and designing tariffs and pricing plans. Therefore, 
it is essential to ensure the integrity of account-
ing data by accurate collection of usage data 
and fraud detection. The use of ML for network 
accounting management is rather unexplored.

Performance Management: Today’s networks 
typically run a variety of services with different 
performance requirements to serve an increas-
ing number of users with distinct profiles. Guar-
anteeing performance is a daunting task. In fact, 
without the ability to accurately predict network 
behavior, how can we provide such guarantees? 
This realization has attracted numerous efforts 
that have leveraged ML for performance and 
traffic load prediction, and quality of experience/
service (QoE/QoS) correlation for proactive and 
adaptive network performance management [11].

Security Management: The most common-
ly employed security approach consists of mon-
itoring the network for patterns of well-known 
threats. However, this renders the network vul-
nerable to zero-day attacks. This vulnerability is 
critical as new attacks emerge daily [12]. The 
need for robust security measures is clear, and the 
role of ML toward this end has been investigated 
extensively [13]. Existing efforts have concentrat-
ed on using ML for misuse detection in order to 
learn complex attack patterns from historical data 
and generate generic rules that allow detecting 
variations of known attacks. Anomaly detection 
using ML has also been explored to detect zero-
day attacks. This consists of learning patterns of 
normal behavior and detecting deviations from 
the norm.

The aforementioned efforts show promising 
results toward incorporating cognition in network 
management. However, leveraging ML for the dif-
ferent network management functions alone will 
not fulfill the vision of cognitive management. In 
fact, there is a need for a cognitive control loop, 
detailed below.

c-MAPe: A cognItIve controL LooP

To date, IBM’s architecture for autonomic com-
puting [2] is the most influential reference model 
for autonomic systems and networks. It comprises 
several layers of autonomic managers. The behav-
ior of each manager is governed by the MAPE 
control loop that consists of four functions: mon-
itor, analyze, plan, and execute. As shown in Fig. 
2, the knowledge source is orthogonal to every 
MAPE function. Functions can retrieve data from 
and/or log created knowledge to the knowledge 
source. For example, the analyze function obtains 
information about the historical behavior of a 
managed resource and stores the ML models and 
the analytics it generates in the knowledge source.

In [2], we observe that cognition has been 
restricted to the analyze function, which inhibits 
the ability to achieve closed-loop cognitive net-
work management. In this article, we propose 
to incorporate cognition at every function in the 
loop. For example, the monitor function should 
be able to determine what, when, and where to 
monitor. ML can be leveraged to build this cog-
nition in every function and allow each function 
to operate in full autonomy. Therefore, we extend 
IBM’s MAPE control loop into a cognitive con-
trol loop we call C-MAPE. As illustrated in Fig. 2, 

Table 1. Sample machine learning techniques used in FCAPS. 

Management area Management function Machine learning techniques

Fault

Fault prediction NN, k-NN, k-Means, DT, BN, SVM

Fault localization NN, k-NN, k-Means, DT

Automated mitigation BN, SVM

Configuration
Adaptive resource allocation Q-Learning, Deep 

Adaptive service configuration Q-Learning

Accounting — —

Performance
Traffic load and metrics prediction (Ensemble) NN, BN, SVM,

QoE-QoS correlation DT, BN, SVM, Q-learning

Security

Misuse detection NN, DT, BN, SVM

Anomaly detection
(Ensemble) NN, DNN, k-NN, k-means, 
(Ensemble) DT, Ensemble BN, SVM

Figure 2. Cognitive control loop for network management.
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cognition is achieved by introducing learning and 
inference in every function.

C-Monitor Function: refers to the cognitive 
monitor that performs intelligent probing. For 
instance, when the network is overloaded, the 
C-Monitor function may decide to reduce the 
probing rate and instead perform regression for 
data prediction.

C-Analyze Function: is responsible for detect-
ing or predicting changes in the network envi-
ronment (e.g., faults, policy violations, frauds, 
performance degradation, and attacks). ML has 
been leveraged to address some of these chal-
lenges, as discussed previously.

C-Plan Function: can leverage ML to develop 
an intelligent automated planning (AP) engine 
that reacts to changes in the network by selecting 
or composing a change plan. In the last decade, 
AP systems have been applied to real-world prob-
lems and have been relying on ML (e.g., DT, RL) 
for automating the extraction and organization of 
knowledge (e.g., plans, execution traces), and for 
decision making [14].

C-Execute Function: can use ML to schedule 
the generated plans and determine the course of 
action should the execution of a plan fail. These 
tasks lend themselves naturally to RL where the 
C-Execute agent could exploit past successful 
experiences to generate optimal execution poli-
cies, and explore new actions in case the execu-
tion plan fails.

Closing the control loop is achieved by mon-
itoring the state of the network to measure the 
impact of the change plan.

use cAse: A cognItIve securIty MAnAger

We showcase how C-MAPE can be used for 
security anomaly detection and mitigation. We 
present a use case over a software-defined infra-
structure (SDI) that can be realized in produc-
tion. Figure 3 illustrates the resource orchestrator 
(e.g., OpenStack; https://www.openstack.org/, 
accessed 14 June2017) and the SDN controller 
(e.g., OpenDaylight; https://www.opendaylight.
org/, accessed 14 June 2017) that directly com-
municate with the computing and networking 
resources in the SDI. The resource orchestrator 
administers the physical and virtual resources, 
while the SDN controller facilitates automat-
ed and flexible configuration of the network 
resources.

We assume that all information regarding 
the physical and virtual resources (e.g., topolo-
gy changes), and data (e.g., flow statistics, links’ 
states) are periodically stored in a central reposito-
ry, by the resource orchestrator and the SDN con-
troller, respectively. This repository supplements 
the knowledge source. The cognitive security man-
ager (CSM) in Fig. 3 depicts the cognitive control 
loop for C-MAPE functions in security manage-
ment. It communicates with the resource orches-
trator, the SDN controller, and the repository via 
REST application programming interfaces (APIs) to 
perform control and management functions.

As illustrated in Fig. 3, the C-Monitor function 
pulls flow-level information and packet-level sta-
tistics for ingress traffic via the SDN controller 
from the SDN switch X. The flow-level information 
includes source IP, destination IP, source port, 
destination port, and protocol. The packet-level 

statistics include packet inter-arrival time, average 
packet length, and bytes per packet. The control-
ler augments the central repository with this infor-
mation and statistics.

We assume that C-Analyze in CSM has 
already augmented the knowledge source with 
an outliers detection model using an ML algo-
rithm (e.g., k-means, k-NN) for anomaly infer-
ence. It does so by leveraging the historical data 
from the knowledge source to train and validate 
the model. In real time, the C-Analyze function 
passes the data collected by C-Monitor through 
the trained model and infers a security anomaly 
associated with a sequence of flows pertaining 
to the same source IP.

The generated analytics are then used by the 
C-Plan function that employs RL to choose an 
optimal change plan based on the criticality of the 
anomaly. This plan entails installing a DPI virtual 
network function along with updating flow rules 
to route packets from the suspected source IP to 
the DPI.

Based on the chosen plan from the C-Plan 
function, the C-Execute function directs the 
resource orchestrator to instantiate a DPI VM on 
computing resource A in Fig. 3. The DPI VM is 
pre-configured to log DPI results in the repository. 
The C-Execute function also directs the SDN con-
troller to install flow rules in the SDN switch X to 
route packets from the suspected IP to the DPI A 
for further investigation.

The illustrated use case ends here; however, 
the results from the DPI could further be used 

Figure 3. Cognitive security manager for anomaly inference and mitigation 
over a software-defined infrastructure.
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to install a firewall and configure it to drop pack-
ets from the suspicious IP if deemed malicious. 
Although this use case focuses on C-MAPE for 
security management, C-MAPE can play a vital 
role in all areas (e.g., fault, configuration) to offer 
holistic cognitive network management.

future reseArch dIrectIons

MAchIne LeArnIng for fcAPs: whAt cAn be done?
Above, we highlighted the previous efforts toward 
employing ML in FCAPS. These efforts are indeed 
fundamental toward realizing autonomic network 
management. As illustrated in Fig. 4, C-MAPE will 
reside in every management area, and within dif-
ferent functions of every area. However, as we 
survey previous and ongoing efforts, we observe 
that the automation of many management tasks 
has not been explored yet. As a call for action, we 
identify further research opportunities, where ML 
can be applied with respect to FCAPS.

Fault Management:
Failure Prevention: ML has been used for pro-

active failure prediction, leaving the localization 
and mitigation steps mostly as reactive. However, 
proactive mitigation combined with fault predic-
tion can help prevent upcoming failures. Since a 
proactive mitigation approach requires a set of 
actions to be taken, RL can be a prospective can-
didate. To select the appropriate mitigation step, 
the root cause of the predicted fault has to be 
precisely identified. Existing ML-based localization 
approaches suffer from poor scalability when ana-
lyzing the high-dimensional device log attributes 
in moderate-size networks. Dimensionality reduc-
tion can be leveraged to improve the scalability 
of fault localization techniques without sacrificing 
accuracy.

Fault Management in Cloud and Virtualized 
Environments: The efforts on fault management 
discussed above focus on single tenant networks. 
The advent of new technologies, such as multi-ten-
ancy in cloud and virtualization of network func-
tions, magnify the complexity and dimensions of 
the fault space in a network. For instance, any fail-

ure in the underlying physical resource can propa-
gate to the hosted virtual resources. However, the 
reverse is not always true. To predict and locate 
faults in such networks, we can use DNNs, which 
can model complex multi-dimensional state spac-
es. A reliable virtual network (VN) embedding 
algorithm can leverage these predictions to set 
up a VN. Furthermore, any automated mitigation 
within a VN should not affect the operations of 
other coexisting VNs. Here, RL combined with 
DNNs can learn to optimize mitigation steps.

Configuration Management: 
Mapping High-Level Requirements to Low-Lev-

el Configurations: Networks are configured to sat-
isfy certain requirements in terms of performance, 
connectivity, fault tolerance, security, and so on. 
The gap between high-level requirements and 
low-level configurations (e.g., resources to be pro-
visioned) is difficult to bridge. RL techniques can be 
leveraged in this context. The reward for selecting 
a configuration setting of a given network element 
can be thought of as the utility of that particular 
setting in delivering the high-level requirement 
under a given network condition.

Configuration Verification: Configuration 
changes (e.g., access control lists, routing tables) 
should not conflict with high-level requirements; 
nor should they adversely affect the expected 
behavior of the network. Formal methods have 
been used to analyze and verify network config-
urations [15]. However, these methods are found 
to be highly complex and are difficult to scale. 
A growing interest has been shown in applying 
DL-aided verification, code correction, and theo-
rem proving. Considering the scale and complexi-
ty of the configuration parameters in a network, a 
DL-based verification approach is worth exploring.

Configuration Rollback: After verification, a 
decision is made to either accept the configura-
tion changes or to revert (some of) them back to 
a previous stable state. To avoid service disruption 
and performance degradation, it is essential that 
the stable state is reached with minimum delay. 
Assuming that snapshots of stable configurations 
are logged, the system still has to decide in what 
order the changes should be applied, while min-
imizing both disruption and delay. Here, RL can 
be used to find the optimal rollback strategy, 
assuming, for instance, that rollbacks are assigned 
rewards that are inversely related to the incurred 
disruption and time-to-stable state.

Accounting Management:
Making Accounting Smart: Collecting accu-

rate customer usage yields opportunities for 
increasing customer experience and resource 
utilization, and reducing cost of operations. The 
collected customer usage data can be leveraged 
by supervised and unsupervised ML models to 
deduce norms and predict customers’ usage 
habits. These models identify deviations from the 
norm, triggering misuse detection and root cause 
analysis for fraudulent activities. Such prediction 
models can also help service providers to con-
vene smart pricing schemes and smart forecast-
ed bills, provide incentives, and bundle services. 
Furthermore, these models can facilitate oppor-
tunistic, dynamic, and proactive provisioning of 
resources to improve QoS.

Figure 4. C-MAPE in each function of FCAPS management area.
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Performance Management: 
Adaptive Probing: Obtaining measurements 

from the network is required for monitoring net-
work behavior. However, the large number of 
devices in the network, the variety of parameters 
to measure, and the small time intervals to log 
data exponentially increase the amount of traf-
fic overhead, resulting in network performance 
degradation. Regression, mostly based on time 
series data, can predict the value of the mea-
sured parameters to optimize probing. The goal 
is to set probing rates that keep traffic overhead 
within a target value, while minimizing perfor-
mance degradation and providing high predic-
tion accuracy.

Detecting Patterns of Degradation: Poor 
QoS can be addressed by monitoring network 
metrics that indicate performance degradation. 
The challenge is to detect the characteristic pat-
terns of degradation before the quality drops 
below an acceptable level. This information can 
be reported to the network administrator or 
used for autonomic tuning of network param-
eters to achieve optimum performance. Here, 
elastic resource allocation can be leveraged to 
dynamically accommodate user demands for 
achieving optimum performance while maxi-
mizing resource utilization. As aforementioned, 
supervised learning has been used to predict the 
value of network performance metrics. Howev-
er, employing performance prediction for auto-
nomic tuning of the network behavior remains 
an open challenge. 

 
Security Management:

Reducing Classification Errors: While ML for 
anomaly detection has received significant interest 
in the literature, it has not yet been employed in 
practice. This is mainly due to their high false pos-
itive rate that wastes expensive network analyst 
time. Hence, further efforts are needed to reduce 
classification errors in anomaly detection. Some 
promising research directions include the use of 
alarm post-processing (e.g., correlation, filtering, 
prioritization) and the correlation of host-based 
and network-based data traces. The latter allows 
the detection of threats that fail to be detected at 
the network level but exhibit anomalous behavior 
on the host and vice versa. Ensemble learning has 
also shown encouraging results in terms of its abil-
ity to overcome data skew.

Security of Management: An important aspect 
of management is ensuring that the manage-
ment interface itself is secured. This is primarily 
achieved by limiting access to authorized users. 
However, it cannot guarantee safety against mali-
cious authorized users. Indeed, an authorized 
user with malicious intent can create havoc. To 
the best of our knowledge, there has been no 
work tailored to address the security of manage-
ment, leaving it as an open research direction.

Autonomic Security Management: Anoma-
ly detection has been extensively explored for 
its ability to detect new attacks. This is achieved 
by learning normal behavior and raising an alarm 
when a deviation from the norm is detected. 
However, this does not provide any intuition of 
the attack taking place. Identifying the nature of 
the attack is fundamental to determine the critical-
ity of the situation and take appropriate mitigation 

actions. This is indeed vital to achieve autonomic 
security management and must be realized in real 
time to avoid detrimental consequences.

chALLenges In usIng MAchIne LeArnIng

Representative Datasets: ML is inherently 
data-driven. Hence, the quality of the data used 
for training and validation is critical. Non-represen-
tative datasets can have a severe impact on the 
accuracy of the models. Gaining access to rep-
resentative data is not an easy task mainly due to 
its sensitive and confidential nature. One possible 
direction is to encourage sharing of data in the 
research community. Toward fulfilling this need, 
we have launched a website (https://sites.google.
com/site/cnetmag/; accessed 14 June 2017) for 
the research community to share datasets, tools, 
and platforms.

Speed vs. Accuracy: Achieving high accura-
cy often comes at the cost of high computation 
time for training the model. This is particularly a 
challenge when dealing with online models. A 
promising direction to explore to overcome this 
challenge is the use of ensemble learning and 
hybrid techniques.

Ground Truth: A key challenge in applying ML 
is the need for ground truth. For supervised learn-
ing, ground truth provides the labels for training. 
For unsupervised learning it allows  the accuracy 
of the model to be evaluated. However, to obtain 
the ground truth, one must either manually label 
the data or synthetically generate it. While the 
former allows the use of real data traces, the man-
ual labeling process can be highly cumbersome 
and error-prone. On the other hand, the latter 
can render unrealistic traffic traces. An interesting 
research direction worth exploring is the applica-
tion of active learning [16] to facilitate labeling.

ML Techniques for Networks: Another key 
challenge with the application of ML in net-
working is the lack of a “Theory of Networks.” 
This concern was raised by David Meyer during 
his talk at Internet Engineering Task Force 97 
(IETF97) [17] on machine intelligence and net-
working. Indeed, without a unified theory, each 
network has to be learned separately. This could 
truly hinder the speed of adoption of ML in net-
working. Furthermore, the currently employed 
ML techniques in networking have been designed 
with other applications in mind. An open research 
direction in this realm is to design ML algorithms 
tailored for networks [5]. 

Incremental Learning: Due to the high dyna-
micity of networks, the ML models have to be 
constantly re-trained to ensure their validity over 
time. Re-training a model from scratch is com-
putationally expensive and time consuming, par-
ticularly for online applications. An interesting 
research direction is to achieve fast incremental 
learning, where the model is re-trained with only 
the new data.

Security of Machine Learning: ML is prone to 
adversarial attacks [18], also known as mimicry 
attacks, that aim to confuse learning. For instance, 
when employing ML for intrusion detection, an 
adversarial attack can trick the model into misclas-
sifying malicious events as benign by poisoning 
the training set. In [18], the authors performed 
a proof of concept to showcase how a learning 
algorithm (outlier detection) can be manipulat-
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ed. They assumed complete knowledge of the 
ML algorithm in use and its decision boundaries. 
However, without such knowledge, the vulner-
ability of ML models remain an open research 
question. That is, it is unclear what it would take 
an outsider (without inside information) to pull 
off an adversarial attack in a blackbox setting. An 
interesting initiative worth mentioning is Clever-
hans (https://github.com/tensorflow/cleverhans; 
accessed 14 June 2017), a useful library that 
allows to craft adversarial examples. It provides 
training datasets that can be used to build robust 
ML models capable of distinguishing legitimate 
datasets from poisoned ones.

chALLenges In AutonoMIc network MAnAgeMent

Orchestration of Cognitive Management 
Functions: One key challenge in autonomic net-
work management is how to orchestrate C-MAPE 
functions within a management area or across 
management areas. Such coordination is funda-
mental to attain high-level network policies that 
ensure the correctness of the system and the 
stability of the C-MAPE loop. Clearly, an orches-
tration layer is needed that will sit atop the man-
agement areas. Such a layer will need to address 
three key issues: 
• Define valid operating regions of functions 

and ensure that a function remains within its 
boundary.

• Enable synchronization among functions so 
that C-MAPE can converge to a steady state.

• Resolve conflicting policies posed by dif-
ferent functions to ensure that the system 
behaves correctly. 

However, to the best of our knowledge such a 
cognitive management orchestrator does not 
exist, and thus remains an open research direc-
tion.

Technological Barriers: To attain full autono-
my, the management functions must be able to 
easily interact with the managed resources. With-
out standardized open interfaces, such autono-
mous interactions cannot be achieved. With the 
advent of SDN and NFV, many of these complex-
ities have been alleviated. Although SDN enjoys 
the advantage of a well defined southbound API 
between the controller and network devices, the 
northbound API between the controller and the 
management applications has yet to mature. In 
addition, while NFV offers the flexibility to instan-
tiate network functions on the fly, there are no 
standard APIs to configure their states. These chal-
lenges and more demand further efforts toward 
facilitating and standardizing network configura-
tion and control.

concLusIon
More than a decade has passed since the vision 
of autonomic computing was initially proposed. 
The gap between the vision’s demands and the 
network capabilities have inhibited the former 
from being effectuated. However, the network 
has come a long way since then with the increas-
ing adoption of SDN, NFV, and cloud computing. 
These technological advances have rendered the 
infrastructure more agile, and compute and stor-
age resources more abundant than ever before. 
Motivated by this evolution, coupled with the 
growing need for enhanced management, this 

article presents our preliminary effort to realize a 
cognitive network management framework using 
ML. We motivate the major role that ML can play 
in realizing cognitive network management, and 
highlight existing efforts that have leveraged ML 
for performing various management tasks. We 
follow this discussion with an elucidation of how 
ML extends the MAPE control loop to realize cog-
nitive network management. We present a use 
case of a cognitive security manager that can be 
implemented in practice, and conclude with open 
research directions to realize a holistic cognitive 
network management framework.
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Abstract

Machine Learning (ML) has been enjoying an unprecedented surge in applications that solve problems and enable
automation in diverse domains. Primarily, this is due to the explosion in the availability of data, significant
improvements in ML techniques, and advancement in computing capabilities. Undoubtedly, ML has been applied to
various mundane and complex problems arising in network operation and management. There are various surveys on
ML for specific areas in networking or for specific network technologies. This survey is original, since it jointly presents
the application of diverse ML techniques in various key areas of networking across different network technologies. In
this way, readers will benefit from a comprehensive discussion on the different learning paradigms and ML
techniques applied to fundamental problems in networking, including traffic prediction, routing and classification,
congestion control, resource and fault management, QoS and QoE management, and network security. Furthermore,
this survey delineates the limitations, give insights, research challenges and future opportunities to advance ML in
networking. Therefore, this is a timely contribution of the implications of ML for networking, that is pushing the
barriers of autonomic network operation and management.

Keywords: Machine learning, Traffic prediction, Traffic classification, Traffic routing, Congestion control, Resource
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1 Introduction
Machine learning (ML) enables a system to scrutinize data
and deduce knowledge. It goes beyond simply learning or
extracting knowledge, to utilizing and improving knowl-
edge over time and with experience. In essence, the goal of
ML is to identify and exploit hidden patterns in “training”
data. The patterns learnt are used to analyze unknown
data, such that it can be grouped together or mapped to
the known groups. This instigates a shift in the traditional
programming paradigm, where programs are written to
automate tasks. ML creates the program (i.e. model) that
fits the data. Recently, ML is enjoying renewed interest.
EarlyML techniques were rigid and incapable of tolerating
any variations from the training data [134].
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Recent advances in ML have made these techniques
flexible and resilient in their applicability to various real-
world scenarios, ranging from extraordinary to mundane.
For instance, ML in health care has greatly improved
the areas of medical imaging and computer-aided diag-
nosis. Ordinarily, we often use technological tools that
are founded upon ML. For example, search engines
extensively use ML for non-trivial tasks, such as query
suggestions, spell correction, web indexing and page rank-
ing. Evidently, as we look forward to automating more
aspects of our lives, ranging from home automation to
autonomous vehicles, ML techniques will become an
increasingly important facet in various systems that aid in
decision making, analysis, and automation.
Apart from the advances in ML techniques, various

other factors contribute to its revival. Most importantly,
the success of ML techniques relies heavily on data [77].
Undoubtedly, there is a colossal amount of data in todays’
networks, which is bound to grow further with emerging
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networks, such as the Internet of Things (IoT) and its
billions of connected devices [162]. This encourages the
application of ML that not only identifies hidden and
unexpected patterns, but can also be applied to learn and
understand the processes that generate the data.
Recent advances in computing offer storage and pro-

cessing capabilities required for training and testing ML
models for the voluminous data. For instance, Cloud
Computing offers seemingly infinite compute and storage
resources, while Graphics Processing Units [342] (GPUs)
and Tensor Processing Units [170] (TPUs) provide accel-
erated training and inference for voluminous data. It
is important to note that a trained ML model can
be deployed for inference on less capable devices e.g.
smartphones. Despite these advances, network opera-
tions and management still remains cumbersome, and
network faults are prevalent primarily due to human
error [291]. Network faults lead to financial liability and
defamation in reputation of network providers. There-
fore, there is immense interest in building autonomic (i.e.
self-configuring, self-healing, self-optimizing and self-
protecting) networks [28] that are highly resilient.
Though, there is a dire need for cognitive control in net-

work operation and management [28], it poses a unique
set of challenges for ML. First, each network is unique
and there is a lack of enforcement of standards to attain
uniformity across networks. For instance, the enterprise
network from one organization is diverse and disparate
from another. Therefore, the patterns proven to work in
one network may not be feasible for another network of
the same kind. Second, the network is continually evolving
and the dynamics inhibit the application of a fixed set of
patterns that aid in network operation and management.
It is almost impossible to manually keep up with network
administration, due to the continuous growth in the num-
ber of applications running in the network and the kinds
of devices connected to the network.
Key technological advances in networking, such as net-

work programmability via Software-Defined Networking
(SDN), promote the applicability of ML in networking.
Though, ML has been extensively applied to problems in
pattern recognition, speech synthesis, and outlier detec-
tion, its successful deployment for network operations and
management has been limited. Themain obstacles include
what data can be collected from and what control actions
can be exercised on legacy network devices. The ability to
program the network by leveraging SDN alleviates these
obstacles. The cognition from ML can be used to aid in
the automation of network operation and management
tasks. Therefore, it is exciting and non-trivial to apply
ML techniques for such diverse and complex problems in
networking. This makes ML in networking an interesting
research area, and requires an understanding of the ML
techniques and the problems in networking.

In this paper, we discuss the advances made in the
application ofML in networking.We focus on traffic engi-
neering, performance optimization and network security.
In traffic engineering, we discuss traffic prediction, clas-
sification and routing that are fundamental in providing
differentiated and prioritized services. In performance
optimization, we discuss application of ML techniques in
the context of congestion control, QoS/QoE correlation,
and resource and fault management. Undoubtedly, secu-
rity is a cornerstone in networking and in this regard,
we highlight existing efforts that use ML techniques for
network security.
The primary objective of this survey is to provide a

comprehensive body of knowledge on ML techniques
in support of networking. Furthermore, we complement
the discussion with key insights into the techniques
employed, their benefits, limitations and their feasibility
to real-world networking scenarios. Our contributions are
summarized as follows:

– A comprehensive view of ML techniques in network-
ing. We review literature published in peer-reviewed
venues over the past two decades that have high
impact and have been well received by peers. The
works selected and discussed in this survey are com-
prehensive in the advances made for networking. The
key criteria used in the selection is a combination of
the year of publication, citation count and merit. For
example, consider two papers A and B published in
the same year with citation counts x and y, respec-
tively. If x is significantly larger than y, A would be
selected for discussion. However, upon evaluating B,
if it is evidenced that it presents original ideas, criti-
cal insights or lessons learnt, then it is also selected for
discussion due to its merit, despite the lower citation
count.

– A purposeful discussion on the feasibility of the ML
techniques for networking. We explore ML tech-
niques in networking, including their benefits and
limitations. It is important to realize that our coverage
of networking aspects are not limited to a specific net-
work technology (e.g. cellular network, wireless sensor
network (WSN), mobile ad hoc network (MANET),
cognitive radio network (CRN)). This gives readers
a broad view of the possible solutions to networking
problems across network technologies.

– Identification of key challenges and future research
opportunities. The presented discussion on ML-
based techniques in networking uncovers fundamen-
tal research challenges that confront networking and
inhibit ultimate cognition in network operation and
management. A discussion of these opportunities will
motivate future work and push the boundaries of
networking.
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Though there are various surveys on ML in network-
ing [18, 61, 82, 142, 246, 339], this survey is purposefully
different. Primarily, this is due to its timeliness, the com-
prehensiveness of ML techniques covered, and the vari-
ous aspects of networking discussed, irrespective of the
network technology. For instance, Nguyen and Armitage
[339], though impactful, is now dated and only addresses
traffic classification in networking. Whereas, Fadlullah
et al. [142] and Buczak et al. [82], both state-of-the-
art surveys, have a specialized treatment of ML to spe-
cific problems in networking. On the other hand, Klaine
et al. [246], Bkassiny et al. [61] and Alsheikh et al. [18],
though comprehensive in their coverage ofML techniques
in networking, are specialized to specific network tech-
nology i.e. cellular network, CRN and WSN, respectively.
Therefore, our survey provides a holistic view of the appli-
cability, challenges and limitations of ML techniques in
networking.
We organize the remainder of this paper as follows.

In Section 2, we provide a primer on ML, which dis-
cusses different categories of ML-based techniques, their
essential constituents and their evolution. Sections 3, 4
and 5 discuss the application of the various ML-based
techniques for traffic prediction, classification and rout-
ing, respectively. We present the ML-based advances in
performance management, with respect to congestion
control, resource management, fault management, and
QoS/QoE management for networking in Sections 6, 7, 8
and 9. In Section 10, we examine the benefits of ML for
anomaly and misuse detection for intrusion detection in
networking. Finally, we delineate the lessons learned, and
future research challenges and opportunities for ML in
networking in Section 11. We conclude in Section 12 with
a brief overview of our contributions. To facilitate reading,
Fig. 1 presents a conceptual map of the survey, and Table 1
provides the list of acronyms and definitions for ML.

2 Machine learning for networking—a primer
In 1959, Arthur Samuel coined the term “Machine Learn-
ing”, as “the field of study that gives computers the ability to
learn without being explicitly programmed” [369]. There
are four broad categories of problems that can leverage
ML, namely, clustering, classification, regression and rule
extraction [79]. In clustering problems, the objective is
to group similar data together, while increasing the gap
between the groups.Whereas, in classification and regres-
sion problems, the goal is to map a set of new input data to
a set of discrete or continuous valued output, respectively.
Rule extraction problems are intrinsically different, where
the goal is to identify statistical relationships in data.
ML techniques have been applied to various problem

domains. A closely related domain consists of data anal-
ysis for large databases, called data mining [16]. Though,
ML techniques can be applied to aid in data mining, the

goal of data mining problems is to critically and metic-
ulously analyze data—its features, variables, invariants,
temporal granularity, probability distributions and their
transformations. However, ML goes beyond data mining
to predict future events or sequence of events.
Generally, ML is ideal for inferring solutions to prob-

lems that have a large representative dataset. In this way,
as illustrated in Fig. 2, ML techniques are designed to
identify and exploit hidden patterns in data for (i) describ-
ing the outcome as a grouping of data for clustering
problems, (ii) predicting the outcome of future events for
classification and regression problems, and (iii) evaluat-
ing the outcome of a sequence of data points for rule
extraction problems. Though, the figure illustrates data
and outcome in a two-dimensional plane, the discus-
sion holds for multi-dimensional datasets and outcome
functions. For instance, in the case of clustering, the out-
come can be a non-linear function in a hyperplane that
discriminates between groups of data. Networking prob-
lems can be formulated as one of these problems that
can leverage ML. For example, a classification problem in
networking can be formulated to predict the kind of secu-
rity attack: Denial-of-Service (DoS), User-to-Root (U2R),
Root-to-Local (R2L), or probing, given network condi-
tions. Whereas, a regression problem can be formulated
to predict of when a future failure will transpire.
Though there are different categories of problems that

enjoy the benefits of ML, there is a generic approach
to building ML-based solutions. Figure 3 illustrates the
key constituents in designing ML-based solutions for net-
working. Data collection pertains to gathering, generating
and, or defining the set of data and the set of classes
of interest. Feature engineering is used to reduce dimen-
sionality in data and identify discriminating features that
reduce computational overhead and increase accuracy.
Finally, ML techniques carefully analyze the complex
inter- and intra-relationships in data and learn a model for
the outcome.
For instance, consider an example of Gold values over

time, as illustrated in Fig. 2c. Naïvely, a linear regression
model, shown as a best-fit line through the historical data,
can facilitate in predicting future values of Gold. There-
fore, once the ML model is built, it can be deployed to
deduce outcomes from new data. However, the outcomes
are periodically validated, since they can drift over time,
known as concept drifting. This can be used as an indi-
cator for incremental learning and re-training of the ML
model. In the following subsections, we discuss each of the
components in Fig. 3.

2.1 Learning paradigms
There are four learning paradigms in ML, supervised,
unsupervised, semi-supervised and reinforcement learn-
ing. These paradigms influence data collection, feature

182



Boutaba et al. Journal of Internet Services and Applications  (2018) 9:16 Page 4 of 99

Fig. 1 Conceptual map of the survey

engineering, and establishing ground truth. Recall, the
objective is to infer an outcome, given some dataset.
The dataset used in constructing the ML model is
often denoted as training data and labels are associ-
ated with training data if the user is aware of the
description of the data. The outcome is often per-
ceived as the identification of membership to a class of
interest.
There are two schools of thought on the methodol-

ogy for learning; generative and discriminative [333]. The
basis for the learning methodologies is rooted in the
famous Bayes’ theorem for conditional probability and

the fundamental rule that relates joint probability to con-
ditional probability. Bayes’ theorem is stated as follows.
Given two events A and B, the conditional probability is
defined as

P(A | B) = P(B | A) × P(A)

P(B)
,

which is also stated as

posterior = likelihood × prior
evidence

.
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Table 1 List of acronyms for machine learning

AdaBoost Adaptive Boosting

AIWPSO Adaptive Inertia Weight Particle Swarm Optimization

BN Bayesian Network

BNN Bayesian Neural Network

BP BackPropagation

CALA Continuous Action-set Learning Automata

CART Classification and Regression Tree

CMAC Cerebellar Model Articulation Controller

DBN Deep belief Network

DBSCAN Density-based Spatial Clustering of Applications with Noise

DE Differential Evolution

DL Deep Learning

DNN Deep Neural Network

DQN Deep Q-Network

DT Decision Tree

EM Expectation Maximization

EMD Entropy Minimization Discretization

FALA Finite Action-set Learning Automata

FCM Fuzzy C Means

FNN Feedforward Neural Network

GD Gradient Descent

HCA Hierarchical Clustering Analysis

HMM Hidden Markov Model

HNN Hopfield Neural Network

ID3 Iterative Dichotomiser 3

k-NN k-Nearest Neighbor

KDE Kernel Density Estimation

LDA Linear Discriminant Analysis

LSTM Long Short-term Memory

LVQ Learning Vector Quantization

MART Multiple Additive Regression Tree

MaxEnt Maximum Entropy

MDP Markov Decision Process

ML Machine Learning

MLP Multi-layer Perceptron

NB Naïve Bayes

NBKE Naïve Bayes with Kernel Estimation

NN Neural Network

OLS Ordinary Least Squares

PCA Principal Component Analysis

PNN Probabilistic Neural Network

POMDP Partially Observable Markov Decision Process

RandNN Random Neural Network

RBF Radial Basis Function

RBFNN Radial Basis Function Neural Network

Table 1 List of acronyms for machine learning (Continued)

RBM Restricted Boltzman Machines

REPTree Reduced Error Pruning Tree

RF Random Forest

RIPPER Repeated Incremental Pruning to Produce Error Reduction

RL Reinforcement Learning

RNN Recurrent Neural Network

SARSA State-Action-Reward-State-Action

SGBoost Stochastic Gradient Boosting

SHLLE Supervised Hessian Locally Linear Embedding

SLP Single-Layer Perceptron

SOM Self-Organizing Map

STL Selt-Taught Learning

SVM Support Vector Machine

SVR Support Vector Regression

TD Temporal Difference

THAID THeta Automatic Interaction Detection

TLFN Time-Lagged Feedforward Neural Network

WMA Weighted Majority Algorithm

XGBoost eXtreme Gradient Boosting

The joint probability P(A, B) of events A and B
is P(A ∩ B) = P(B | A) × P(A), and the con-
ditional probability is the normalized joint probabil-
ity. The generative methodology aims at modeling the
joint probability P(A, B) by predicting the conditional
probability. On the other hand, in the discriminative
methodology a function is learned for the conditional
probability.
Supervised learning uses labeled training datasets to

create models. There are various methods for labeling
datasets known as ground truth (cf., Section 2.4). This
learning technique is employed to “learn” to identify
patterns or behaviors in the “known” training datasets.
Typically, this approach is used to solve classification
and regression problems that pertain to predicting dis-
crete or continuous valued outcomes, respectively. On
the other hand, it is possible to employ semi-supervised
ML techniques in the face of partial knowledge. That
is, having incomplete labels for training data or miss-
ing labels. Unsupervised learning uses unlabeled training
datasets to create models that can discriminate between
patterns in the data. This approach is most suited for
clustering problems. For instance, outliers detection and
density estimation problems in networking, can pertain
to grouping different instances of attacks based on their
similarities.
Reinforcement learning (RL) is an agent-based itera-

tive process for modeling problems for decision making.
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a b c d

Fig. 2 Problem categories that benefit from machine learning. a Clustering. b Classification. c Regression. d Rule extraction

Generally, learning is based on exemplars from training
datasets. However, in RL there is an agent that interacts
with the external world, and instead of being taught by
exemplars, it learns by exploring the environment and
exploiting the knowledge. The actions are rewarded or

Fig. 3 The constituents of ML-based solutions

penalized. Therefore, the training data in RL constitutes
a set of state-action pairs and rewards (or penalties). The
agent uses feedback from the environment to learn the
best sequence of actions or “policy” to optimize a cumu-
lative reward. For example, rule extraction from the data
that is statistically supported and not predicted. Unlike,
generative and discriminative approaches that are myopic
in nature, RL may sacrifice immediate gains for long-
term rewards. Hence, RL is best suited for making cog-
nitive choices, such as decision making, planning and
scheduling [441].
It is important to note that there is a strong relation-

ship between the training data, problem and the learning
paradigm. For instance, it is possible that due to lack of
knowledge about the training data, supervised learning
cannot be employed and other learning paradigms have to
be employed for model construction.

2.2 Data collection
ML techniques require representative data, possibly with-
out bias, to build an effective ML model for a given
networking problem. Data collection is an important step,
since representative datasets vary not only from one prob-
lem to another but also from one time period to the
next. In general, data collection can be achieved in two
phases—offline and online [460]. Offline data collection
allows to gather a large amount of historical data that can
be used for model training and testing. Whereas, real-
time network data collected in the online phase can be
used as feedback to the model, or as input for re-training
the model. Offline data can also be obtained from var-
ious repositories, given it is relevant to the networking
problem being studied. Examples of these repositories
include Waikato Internet Traffic Storage (WITS) [457],
UCI Knowledge Discovery in Databases (KDD) Archive
[450], Measurement and Analysis on the WIDE Internet
(MAWI)Working Group Traffic Archive [474], and Infor-
mation Marketplace for Policy and Analysis of Cyber-risk
& Trust (IMPACT) Archive [202].
An effective way to collect both offline and online data is

by using monitoring and measurement tools. These tools
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provide greater control in various aspects of data col-
lection, such as data sampling rate, monitoring duration
and location (e.g. network core vs. network edge). They
often use network monitoring protocols, such as Simple
NetworkManagement Protocol (SNMP) [208], Cisco Net-
Flow [100], and IP Flow Information Export (IPFIX) [209].
However, monitoring can be active or passive [152]. Active
monitoring injects measurement traffic, such as probe
packets in the network and collects relevant data from
this traffic. In contrast, passive monitoring collects data
by observing the actual network traffic. Evidently, active
monitoring introduces additional overhead due to band-
width consumption from injected traffic. Whereas, pas-
sive monitoring eliminates this overhead, at the expense
of additional devices that analyze the network traffic to
gather relevant information.
Once data is collected, it is decomposed into training,

validation (also called development set or the “dev set”),
and test datasets. The training set is leveraged to find
the ideal parameters (e.g. weights of connections between
neurons in a Neural Network (NN)) of a ML model.
Whereas, the validation set is used to choose the suitable
architecture (e.g. the number of hidden layers in a NN) of
aMLmodel, or choose amodel from a pool ofMLmodels.
Note, if a ML model and its architecture are pre-selected,
there is no need for a validation set. Finally, test set is used
to assess the unbiased performance of the selected model.
Note, validation and testing can be performed using one of
two methods—holdout or k-fold cross-validation. In the
holdout method, part of the available dataset is set aside
and used as a validation (or testing) set. Whereas, in the
k-fold cross-validation, the available dataset is randomly
divided into k equal subsets. Validation (or testing) pro-
cess is repeated k times, with k − 1 unique subsets for
training and the remaining subset for validating (or test-
ing) the model, and the outcomes are averaged over the
rounds.
A common decomposition of the dataset can con-

form to 60/20/20% among training, validation, and test
datasets, or 70/30% in case validation is not required.
These rule-of-thumb decompositions are reasonable for
datasets that are not very large. However, in the era of big
data, where a dataset can have millions of entries, other
extreme decompositions, such as 98/1/1% or 99/0.4/0.1%,
are also valid. However, it is important to avoid skewness
in the training datasets, with respect to the classes of inter-
est. This inhibits the learning and generalization of the
outcome, leading to model over- and/or under-fitting. In
addition, both validation and testing datasets should be
independent of the training dataset and follow the same
probability distribution as the training dataset.
Temporal and spatial robustness of ML model can be

evaluated by exposing the model to training and valida-
tion datasets that are temporally and spatially distant. For

instance, a model that performs well when evaluated with
datasets collected a year after being trained or from a
different network, exhibits temporal and spatial stability,
respectively.

2.3 Feature engineering
The collected raw data may be noisy or incomplete. Before
using the data for learning, it must go through a pre-
processing phase to clean the data. Another important
step prior to learning, or training a model, is feature
extraction. These features act as discriminators for learn-
ing and inference. In networking, there are many choices
of features to choose from. Broadly, they can be catego-
rized based on the level of granularity.
At the finest level of granularity, packet-level features

are simplistically extracted or derived from collected
packets, e.g. statistics of packet size, including mean, root
mean square (RMS) and variance, and time series infor-
mation, such as hurst. The key advantage of packet-level
statistics is their insensitivity to packet sampling that is
often employed for data collection and interferes with
feature characteristics [390]. On the other hand, Flow-
level features are derived using simple statistics, such as
mean flow duration, mean number of packets per flow,
and mean number of bytes per flow [390]. Whereas,
connection-level features from the transport layer are
exploited to infer connection oriented details. In addi-
tion to the flow-level features, transport layer details,
such as throughput and advertised window size in TCP
connection headers, can be employed. Though these fea-
tures generate high quality data, they incur computational
overhead and are highly susceptible to sampling and rout-
ing asymmetries [390].
Feature engineering is a critical aspect in ML that

includes feature selection and extraction. It is used to
reduce dimensionality in voluminous data and to iden-
tify discriminating features that reduce computational
overhead and increase accuracy of ML models. Feature
selection is the removal of features that are irrelevant
or redundant [321]. Irrelevant features increase compu-
tational overhead with marginal to no gain in accuracy,
while redundant features promote over-fitting. Feature
extraction is often a computationally intensive process of
deriving extended or new features from existing features,
using techniques, such as entropy, Fourier transform and
principal component analysis (PCA).
Features selection and extraction can be performed

using tools, such as NetMate [21] andWEKA [288]. How-
ever, in this case, the extraction and selection techniques
are limited by the capability of the tool employed. There-
fore, often specialized filter, embedded, and wrapper-
based methods are employed for feature selection. Filtering
prunes out the training data after carefully analyzing
the dataset for identifying the irrelevant and redundant
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features. In contrast, wrapper-based techniques take an
iterative approach, using a different subset of features in
every iteration to identify the optimal subset. Whereas,
embedded methods combine the benefits of filter and
wrapper-based methods, and perform feature selection
during model creation. Examples of feature selection
techniques include, colored traffic activity graphs (TAG)
[221], breadth-first search (BFS) [496], L1 Regularization
[259], backward greedy feature selection (BGFS) [137],
consistency-based (CON) and correlation-based feature
selection (CFS) [321, 476]. It is crucial to carefully select an
ideal set of features that strikes a balance between exploit-
ing correlation and reducing/eliminating over-fitting for
higher accuracy and lower computational overhead.
Furthermore, it is important to consider the characteris-

tics of the task we are addressing while performing feature
engineering. To better illustrate this, consider the follow-
ing scenario from network traffic classification. One vari-
ant of the problem entails the identification of a streaming
application (e.g. Netflix) from network traces. Intuitively,
average packet-size and packet inter-arrival times are rep-
resentative features, as they play a dominant role in traffic
classification. Average packet size is fairly constant in
nature [492] and packet inter-arrival times are a good dis-
criminator for bulk data transfer (e.g. FTP) and streaming
applications [390]. However, average packet size can be
skewed by intermediate fragmentation and encryption,
and packet inter-arrival times and their distributions are
affected by queuing in routers [492]. Furthermore, stream-
ing applications often behave similar to bulk data transfer
applications [390]. Therefore, it is imperative to consider
the classes of interest i.e. applications, before selecting the
features for this network traffic classification problem.
Finally, It is also essential to select features that do not

contradict underlying assumptions in the context of the
problem. For example, in traffic classification, features
that are extracted from multi-modal application classes
(e.g. WWW) tend to show a non-Gaussian behavior
[321]. These relationships not only become irrelevant
and redundant, they contradict widely held assump-
tions in traffic classification, such as feature distributions
being independent and following a Gaussian distribu-
tion. Therefore, careful feature extraction and selection is
crucial for the performance of ML models [77].

2.4 Establishing ground truth
Establishing the ground truth pertains to giving a formal
description (i.e. labels) to the classes of interest. There
are various methods for labeling datasets using the fea-
tures of a class. Primarily, it requires hand-labeling by
domain experts, with aid from deep packet inspection
(DPI) [462, 496], pattern matching (e.g. application
signatures) or unsupervised ML techniques (e.g. Auto-
Class using EM) [136].

For instance, in traffic classification, establishing ground
truth for application classes in the training dataset can
be achieved using application signature pattern match-
ing [140]. Application signatures are built using features,
such as average packet size, flow duration, bytes per flow,
packets per flow, root mean square packet size and IP
traffic packet payload [176, 390]. Average packet size and
flow duration have been shown to be good discriminators
[390]. Application signatures for encrypted traffic (e.g.
SSH, HTTPS) extract the signature from unencrypted
handshakes. However, these application signatures must
be kept up-to-date and adapted to the application
dynamics [176].
Alternatively, it is possible to design and rely on

statistical and structural content models for describ-
ing the datasets and infer the classes of interest. For
instance, these models can be used to classify a pro-
tocol based on the label of a single instance of that
protocol and correlations can be derived from unlabeled
training data [286]. On the other hand, common sub-
string graphs capture structural information about the
training data [286]. These models are good at infer-
ring discriminators for binary, textual and structural
content [286].
Inadvertently, the ground truth drives the accuracy of

ML models. There is also an inherent mutual dependency
on the size of the training data of one class of inter-
est on another, impacting model performance [417]. The
imbalance in the number of training data across classes,
is a violation of the assumptions maintained by many ML
techniques, that is, the data is independent and identi-
cally distributed. Therefore, typically there is a need to
combat class imbalance by applying under-, over-, joint-,
or ensemble-sampling techniques [267]. For example, uni-
form weighted threshold under-sampling creates smaller
balanced training sets [222].

2.5 Performance metrics andmodel validation
Once an ML model has been built and the ground truth
has been ascertained, it is crucial to gauge the perfor-
mance of the ML model that will describe, predict, or
evaluate outcomes. However, it is important to realize that
there is no way to distinguish a learning algorithm as the
“best” and it is not fair to compare error rates across a
whole variety of applications [16]. The performance met-
rics can be used to measure the different aspects of the
model, such as reliability, robustness, accuracy, and com-
plexity. In this section, we discuss the validation of the
ML models with respect to accuracy (cf., Table 2), which
is a critical aspect in the applicability of the model for
networking problems. Moreover, the accuracy is often
used as a feedback for incremental learning [389], to
increase model robustness and resilience in a dynamic
environment.
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Table 2 Performance metrics for accuracy validation

Metric Description

Mean Absolute Error (MAE) Average of the absolute error between the actual and predicted values.
Facilitates error interpretability.

Mean Squared Error (MSE) Average of the squares of the error between the actual and predicted
values. Heavily penalizes large errors.

Mean Absolute Prediction Error (MAPE) Percentage of the error between the actual and predicted values. Not
reliable for zero values or low-scale data.

Root MSE (RMSE) Squared root of MSE. Represents the standard deviation of the error
between the actual and predicted values.

Normalized RMSE (NRMSE) Normalized RMSE. Facilitates comparing different models indepen-
dently of their working scale.

Cross-entropy Metric based on the logistic function that measures the error between
the actual and predicted values.

Accuracy Proportion of correct predictions among the total number of predic-
tions. Not reliable for skewed class-wise data.

True Positive Rate (TPR) or recall Proportion of actual positives that are correctly predicted. Represents
the sensitivity or detection rate (DR) of a model.

False Positive Rate (FPR) Proportion of actual negatives predicted as positives. Represents the
significance level of a model.

True Negative Rate (TNR) Proportion of actual negatives that are correctly predicted. Represents
the specificity of a model.

False Negative Rate (FNR) Proportion of actual positives predicted as negatives. Inversely propor-
tional to the statistical power of a model.

Received Operating Characteristic (ROC) Curve that plots TPR versus FPR at different parameter settings. Facili-
tates analyzing the cost-benefit of possibly optimal models.

Area Under the ROC Curve (AUC) Probability of confidence in a model to accurately predict positive
outcomes for actual positive instances.

Precision Proportion of positive predictions that are correctly predicted.

F-measure Harmonic mean of precision and recall. Facilitates analyzing the trade-
off between these metrics.

Coefficient of Variation (CV) Intra-cluster similarity to measure the accuracy of unsupervised classifi-
cation models based on clusters.

Let us consider the accuracy validation of ML models
for prediction. Usually, this accuracy validation undergoes
an error analysis that computes the difference between
the actual and predicted values. Recall, a prediction is an
outcome of ML models for classification and regression
problems. In classification, the common metrics for error
analysis are based on the logistic function, such as binary
and categorical cross-entropy—for binary and multi-class
classification, respectively. In regression, the conventional
error metrics are Mean Absolute Error (MAE) and Mean
Squared Error (MSE). Both regression error metrics dis-
regard the direction of under- and over-estimations in the
predictions. MAE is simpler and easier to interpret than
MSE, though MSE is more useful for heavily penalizing
large errors.
The above error metrics are commonly used to com-

pute the cost function of ML-based classification and
regression models. Computing the cost function of the
training and validation datasets (cf., Section 2.2) allow
diagnosing performance problems due to high bias or

high variance. High bias refers to a simple ML model that
poorly maps the relations between features and outcomes
(under-fitting). High variance implies an ML model that
fits the training data but does not generalize well to pre-
dict new data (over-fitting). Depending on the diagnosed
problem, the ML model can be improved by going back
to one of the following design constituents (cf., Fig. 3):
(i) data collection, for getting more training data (only
for high variance), (ii) feature engineering, for increasing
or reducing the set of features, and (iii) model learning,
for building a simpler or more complex model, or for
adjusting a regularization parameter.
After tuning the ML model for the training and vali-

dation datasets, the accuracy metrics for the test dataset
are reported as the performance validation of the model.
Regression models often use MAE or MSE (i.e. error met-
rics) to report the performance results. Other error met-
rics commonly used in the literature to gauge the accuracy
of regression models include Mean Absolute Prediction
Error (MAPE), RootMSE (RMSE), andNormalized RMSE
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(NRMSE). MAPE states the prediction error as a per-
centage, while RMSE expresses the standard deviation of
the error. Whereas, NRMSE allows comparing between
models working on different scales, unlike the other error
metrics described.
In classification, the conventional metric to report the

performance of an ML model is the accuracy. The accu-
racy metric is defined as the proportion of true predic-
tions T for each class Ci ∀i = 1...N among the total
number of predictions, as follows:

Accuracy =
∑N

i=1 TCi

Total Predictions
For example, let us consider a classification model that

predicts whether an email should go to the spam, inbox,
or promotion folder (i.e. multi-class classification). In this
case, the accuracy is the sum of emails correctly predicted
as spam, inbox, and promotion, divided by the total num-
ber of predicted emails. However, the accuracy metric is
not reliable when the data is skewed with respect to the
classes. For example, if the actual number of spam and
promotion emails is very small compared to inbox emails,
a simple classification model that predicts every email as
inbox will still achieve a high accuracy.
To tackle this limitation, it is recommended to use the

metrics derived from a confusion matrix, as illustrated in
Fig. 4. Consider that each row in the confusionmatrix rep-
resents a predicted outcome and each column represents
the actual instance. In this manner, True Positive (TP)
is the intersection between correctly predicted outcomes
for the actual positive instances. Similarly, True Negative
(TN) is when the classification model correctly predicts
an actual negative instance. Whereas, False Positive (FP)
and False Negative (FN) describe incorrect predictions for
negative and positive actual instances, respectively. Note,
that TP and TN correspond to the true predictions for

Fig. 4 Confusion matrix for binary classification

the positive and negative classes, respectively. Therefore,
the accuracy metric can also be defined in terms of the
confusion matrix:

Accuracy = TP + TN
TP + TN + FP + FN

The confusion matrix in Fig. 4 works for a binary clas-
sification model. Therefore, it can be used in multi-class
classification by building the confusion matrix for a spe-
cific class. This is achieved by transforming themulti-class
classification problem into multiple binary classification
subproblems, using the one-vs-rest strategy. For exam-
ple, in the email multi-class classification, the confusion
matrix for the spam class sets the positive class as spam
and the negative class as the rest of the email classes (i.e.
inbox and promotion), obtaining a binary classification
model for spam and not spam email.
Consequentially, the True Positive Rate (TPR) describ-

ing the number of correct predictions is inferred from the
confusion matrix as:

TPR (Recall) = TP
TP + FN

The converse, False Positive Rate (FPR) is the ratio of
incorrect predictions and is defined as:

FPR = FP
FP + TN

Similarly, True Negative Rate (TNR) and False Negative
Rate (FNR) are used to deduce the number of correct and
incorrect negative predictions, respectively. The terms
recall, sensitivity, and detection rate (DR) are often used to
refer to TPR. In contrast, a comparison of the TPR versus
FPR is depicted in a Received Operating Characteristics
(ROC) graph. In a ROC graph, where TPR is on the y-
axis and FPR is on the x-axis, a good classification model
will yield a ROC curve that has a highly positive gradi-
ent. This implies high TP for a small change in FP. As the
gradient gets closer to 1, the prediction of the ML model
deteriorates, as the number of correct and incorrect pre-
dictions is approximately the same. It should be noted that
a classification model with a negative gradient in the ROC
curve can be easily improved by flipping the predictions
from the model [16] or swapping the labels of the actual
instances.
In this way, multiple classification models for the same

problem can be compared and can give insight into the
different conditions under which one model outperforms
another. Though the ROC aids in visual analysis, the area
under the ROC curve (AUC), ideally 1, is a measure of
the probability of confidence in the model to accurately
predict positive outcomes for actual positive instances.
Therefore, the precision of the ML model can be formally
defined as the frequency of correct predictions for actual
positive instances:
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Precision = TP
TP + FP

The trade-off between recall and precision values allows
to tune the parameters of the classification models and
achieve the desired results. For example, in the binary
spam classifier, a higher recall would avoid missing too
many spam emails (lower FN), but would incorrectly pre-
dict more emails as spam (higher FP). Whereas, a higher
precision would reduce the number of incorrect predic-
tions of emails as spam (lower FP), but would miss more
spam emails (higher FN). F-measure allows to analyze the
trade-off between recall and precision by providing the
harmonic average, ideally 1, of these metrics:

F–measure = 2 · Precision · Recall
Precision + Recall

The Coefficient of Variation (CV) is another accuracy
metric, particularly used for reporting the performance
of unsupervised models that conduct classification using
clusters (or states). CV is a standardized measure of dis-
persion that represents the intra-cluster (or intra-state)
similarity. A lower CV implies a small variability of each
outcome in relation to the mean of the corresponding
cluster. This represents a higher intra-cluster similarity
and a higher classification accuracy.

2.6 Evolution of machine learning techniques
Machine learning is a branch of artificial intelligence
whose foundational concepts were acquired over the years
from contributions in the areas of computer science,
mathematics, philosophy, economics, neuroscience, psy-
chology, control theory, and more [397]. Research efforts
during the last 75 years have given rise to a plethora of
ML techniques [15, 169, 397, 435]. In this section, we pro-
vide a brief history of ML focusing on the techniques that
have been particularly applied in the area of computer
networks (cf., Fig. 5).
The beginning of ML dates back to 1943, when the

first mathematical model of NNs for computers was pro-
posed by McCulloch [302]. This model introduced a basic
unit called artificial neuron that has been at the cen-
ter of NN development to this day. However, this early
model required to manually establish the correct weights
of the connections between neurons. This limitation was
addressed in 1949 by Hebbian learning [184], a simple
rule-based algorithm for updating the connection weights
of the early NN model. Like the neuron unit, Hebbian
learning greatly influenced the progress of NN. These two
concepts led to the construction of the first NN com-
puter in 1950, called SNARC (Stochastic Neural Analog
Reinforcement Computer) [397]. In the same year, Alan
Turing proposed a test –where a computer tries to fool

a human into believing it is also human– to determine if
a computer is capable of showing intelligent behavior. He
described the challenges underlying his idea of a “learning
machine” in [449]. These developments encouraged many
researchers to work on similar approaches, resulting in
two decades of enthusiastic and prolific research in the
ML area.
In the 1950s, the simplest linear regression model

called Ordinary Least Squares (OLS) –derived from the
least squares method [266, 423] developed around the
1800s– was used to calculate linear regressions in electro-
mechanical desk calculators [168]. To the best of our
knowledge, this is the first evidence of using OLS in com-
puting machines. Following this trend, two linear models
for conducting classification were introduced: Maximum
Entropy (MaxEnt) [215, 216] and logistic regression [105].
A different research trend centered on pattern recognition
exposed two non-parametric models (i.e. not restricted
to a bounded set of parameters) capable of performing
regression and classification: k-Nearest Neighbors (k-NN)
[147, 420] and Kernel Density Estimation (KDE) [388],
also known as Parzen density [349]. The former uses
a distance metric to analyze the data, while the latter
applies a kernel function (usually, Gaussian) to estimate
the probability density function of the data.
The 1950s also witnessed the first applications of the

Naïve Bayes (NB) classifier in the fields of pattern recog-
nition [97] and information retrieval [297]. NB, whose
foundations date back to the 18th and 19th centuries
[43, 261], is a simple probabilistic classifier that applies
Bayes’ theorem on features with strong independence
assumptions. NB was later generalized using KDE, also
known as NB with Kernel Estimation (NBKE), to estimate
the conditional probabilities of the features. In the area
of clustering, Steinhaus [422] was the first to propose a
continuous version of the to be called k-Means algorithm
[290], to partition a heterogeneous solid with a given
internal mass distribution into k subsets. The proposed
centroid model employs a distance metric to partition the
data into clusters where the distance to the centroid is
minimized.
In addition, the Markov model [159, 296] (elaborated

50 years earlier) was leveraged to construct a pro-
cess based on discrete-time state transitions and action
rewards, named Markov Decision Process (MDP), which
formalizes sequential decision-making problems in a fully
observable, controlled environment [46]. MDP has been
essential for the development of prevailing RL techniques
[435]. Research efforts building on the initial NN model
flourished too: the modern concept of perceptron was
introduced as the first NN model that could learn the
weights from input examples [387]. This model describes
two NN classes according to the number of layers: Single-
Layer Perceptron (SLP), an NN with one input layer
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Fig. 5 The evolution of machine learning techniques with key milestones

and one output layer, and Multi-Layer Perceptron (MLP),
an NN with one or more hidden layers between the
input and the output layers. The perceptron model is
also known as Feedforward NN (FNN) since the nodes
from each layer exhibit directed connections only to the
nodes of the next layer. In the remainder of the paper,
MLP-NNs and NNs in general, will be denoted by the
tuple (input_nodes, hidden_layer_nodes+, output_nodes),
for instance a (106, 60, 40, 1) MLP-NN has a 160-node
input layer, two hidden layers of 60 and 40 nodes respec-
tively, and a single node output layer.
By the end of the 1950s, the term “Machine Learning”

was coined and defined for the first time by Arthur Samuel
(cf., Section 2), who also developed a checkers-playing
game that is recognized as the earliest self-learning pro-
gram [401]. ML research continued to flourish in the
1960s, giving rise to a novel statistical class of the Markov
model, named Hidden Markov Model (HMM) [426]. An
HMM describes the conditional probabilities between
hidden states and visible outputs in a partially observable,
autonomous environment. The Baum-Welch algorithm
[41] was proposed in the mi-1960s to learn those condi-
tional probabilities. At the same time, MDP continued to
instigate various research efforts. The partially observable
Markov decision process (POMDP) approach to finding
optimal or near-optimal control strategies for partially
observable stochastic environments, given a complete
model of the environment, was first proposed by
Cassandra et al. [25] in 1965, while the algorithm to find
the optimal solution was only devised 5 years later [416].
Another development in MDP was the learning automata
–officially published in 1973 [448]–, a Reinforcement
Learning (RL) technique that continuously updates the

probabilities of taking actions in an observed environ-
ment, according to given rewards. Depending on the
nature of the action set, the learning automata is classi-
fied as Finite Action-set Learning Automata (FALA) or
Continuous Action-set Learning Automata (CALA) [330].
In 1963, Morgan and Sonquis published Automatic

Interaction Detection (AID) [323], the first regression tree
algorithm that seeks sequential partitioning of an observa-
tion set into a series of mutually exclusive subsets, whose
means reduces the error in predicting the dependent vari-
able. AID marked the beginning of the first generation of
Decision Trees (DT). However, the application of DTs to
classification problems was only initiated a decade later
by Morgan and Messenger’s Theta AID (THAID) [305]
algorithm.
In the meantime, the first algorithm for training MLP-

NNs with many layers –also known as Deep NN (DNN)
in today’s jargon– was published by Ivakhnenko and Lapa
in 1965 [210]. This algorithm marked the commence-
ment of the Deep Learning (DL) discipline, though the
term only started to be used in the 1980s in the general
context of ML, and in the year 2000 in the specific con-
text of NNs [9]. By the end of the 1960s, Minsky and
Papertkey’s Perceptrons book [315] drew the limitations
of perceptrons-based NN through mathematical analysis,
marking a historical turn in AI and ML in particular, and
significantly reducing the research interest for this area
over the next several years [397].
Although ML research was progressing slower than

projected in the 1970s [397], the 1970s were marked
by milestones that greatly shaped the evolution of ML,
and contributed to its success in the following years.
These include the Backpropagation (BP) algorithm, the
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Cerebellar Model Articulation Controller (CMAC) NN
model [11], the Expectation Maximization (EM) algo-
rithm [115], the to-be-referred-to as Temporal Difference
(TD) learning [478], and the Iterative Dichotomiser 3
(ID3) algorithm [373].
Werbos’s application of BP –originally a control theory

algorithm from the 1960s [80, 81, 233]– to train NNs [472]
resurrected the research in the area. BP is to date the most
popular NN training algorithm, and comes in different
variants such as Gradient Descent (GD), Conjugate Gra-
dient (CG), One Step Secant (SS), Levenberg-Marquardt
(LM), and Resilient backpropagation (Rp). Though, BP is
widely used in training NNs, its efficiency depends on the
choice of initial weights. In particular, BP has been shown
to have slower speed of convergence and to fall into local
optima. Over the years, global optimization methods have
been proposed to replace BP, including Genetic Algo-
rithms (GA), Simulated Annealing (SA), and Ant Colony
(AC) algorithm [500]. In 1975, Albus proposed CMAC, a
new type of NN as an alternative to MLP [11]. Although
CMAC was primarily designed as a function modeler for
robotic controllers, it has been extensively used in RL and
classification problems for its faster learning compared
to MLP.
In 1977, in the area of statistical learning, Dempster

et al. proposed EM, a generalization of the previous iter-
ative, unsupervised methods, such as the Baum-Welch
algorithm, for learning the unknown parameters of sta-
tistical HMM models [115]. At the same time, Witten
developed an RL approach to solveMDPs, inspired by ani-
mal behavior and learning theories [478], that was later
referred to as Temporal Difference (TD) in Sutton’s work
[433, 434]. In this approach the learning process is driven
by the changes, or differences, in predictions over succes-
sive time steps, such that the prediction at any given time
step is updated to bring it closer to the prediction of the
same quantity at the next time step.
Towards the end of the 1970s, the second generation of

DTs emerged as the Iterative Dichotomiser 3 (ID3) algo-
rithm was released. The algorithm, developed by Quinlan
[373], relies on a novel concept for attribute selection
based on entropy maximization. ID3 is a precursor to the
popular and widely used C4.5 and C5.0 algorithms.
The 1980s witnessed a renewed interest in ML research,

and in particular in NNs. In the early 1980s, three new
classes of NNs emerged, namely Convolutional Neural
Network (CNN) [157], Self-OrganizingMap (SOM) [249],
and Hopfield network [195]. CNN is a feedforward NN
specifically designed to be applied to visual imagery anal-
ysis and classification, and thus require minimal image
preprocessing. Connectivity between neurons in CNN is
inspired by the organization of the animal visual cortex
–modeled by Hubel in the 1960s [200, 201]–, where the
visual field is divided between neurons, each responding

to stimuli only in its corresponding region. Similarly to
CNN, SOM was also designed for a specific application
domain; dimensionality reduction [249]. SOMs employ an
unsupervised competitive learning approach, unlike tra-
ditional NNs that apply error-correction learning (such as
BP with gradient descent).
In 1982, the first form of Recurrent Neural Network

(RNN) was introduced by Hopfield. Named after the
inventor, Hopfield network is an RNN where the weights
connecting the neurons are bidirectional. The modern
definition of RNN, as a network where connections
between neurons exhibit one or more than one cycle,
was introduced by Jordan in 1986 [226]. Cycles pro-
vide a structure for internal states or memory allow-
ing RNNs to process arbitrary sequences of inputs. As
such, RNNs are found particularly useful in Time Series
Forecasting (TSF), handwriting recognition and speech
recognition.
Several key concepts emerged from the 1980s’ con-

nectionism movement, one of which is the concept of
distributed representation [187]. Introduced by Hinton in
1986, this concept supports the idea that a system should
be represented bymany features and that each featuremay
have different values. Distributed representation estab-
lishes a many-to-many relationship between neurons and
(feature,value) pairs for improved efficiency, such that a
(feature,value) input is represented by a pattern of activity
across neurons as opposed to being locally represented by
a single neuron. The second half of 1980s also witnessed
the increase in popularity of the BP algorithm and its suc-
cessful application in training DNNs [263, 394], as well as
the emergence of new classes of NNs, such as Restricted
BoltzmannMachines (RBM) [413], Time-Lagged Feedfor-
ward Network (TLFN) [260], and Radial Basis Function
Neural Network (RBFNN) [260].
Originally named Harmonium by Smolensky, RBM is

a variant of Boltzmann machines [2] with the restric-
tion that there are no connections within any of the
network layers, whether it is visible or hidden. Therefor,
neurons in RBMs form a bipartite graph. This restric-
tion allows for more efficient and simpler learning com-
pared to traditional Boltzmann machines. RBMs are
found useful in a variety of application domains such as
dimensionality reduction, feature learning, and classifi-
cation, as they can be trained in both supervised and
unsupervised ways. The popularity of RBMs and the
extent of their applicability significantly increased after
the mid-2000s as Hinton introduced in 2006 a faster
learning method for Boltzmann machines called Con-
trastive Divergence [186] making RBMs even more attrac-
tive for deep learning [399]. Interestingly, although the
use of the term “deep learning” in the ML community
dates back to 1986 [111], it did not apply to NNs at
that time.
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Towards the end of 1980s, TLFN –an MLP that incor-
porates the time dimension into the model for conducting
TSF [260]–, and RBFNN –an NN with a weighted set of
Radial Basis Function (RBF) kernels that can be trained in
unsupervised and supervised ways [78]– joined the grow-
ing list of NN classes. Indeed any of the above NNs can
be employed in a DL architecture, either by implement-
ing a larger number of hidden layers or stacking multiple
simple NNs.
In addition to NNs, several otherML techniques thrived

during the 1980s. Among these techniques, Bayesian Net-
work (BN) arose as a Directed Acyclic Graph (DAG)
representation model for the statistical models in use
[352], such as NB and HMM –the latter considered as
the simplest dynamic BN [107, 110]–. Two DT learning
algorithms, similar to ID3 but developed independently,
referred to as Classification And Regression Trees (CART)
[76], were proposed to model classification and regres-
sion problems. Another DT algorithm, under the name of
Reduced Error Pruning Tree (REPTree), was also intro-
duced for classification. REPTree aimed at building faster
and simpler tree models using information gain for split-
ting, along with reduced-error pruning [374].
Towards the end of 1980s, two TD approaches were

proposed for reinforcement learning: TD(λ) [433] and Q-
learning [471]. TD(λ) adds a discount factor (0 ≤ λ ≤ 1)
that determines to what extent estimates of previous state-
values are eligible for updating based on current errors,
in the policy evaluation process. For example, TD(0) only
updates the estimate of the value of the state preced-
ing the current state. Q-learning, however, replaces the
traditional state-value function of TD by an action-value
function (i.e. Q-value) that estimates the utility of taking
a specific action in specific states. As of today, Q-learning
is the most well-studied and widely-used model-free RL
algorithm. By the end of the decade, the application
domains of ML started expending to the operation and
management of communication networks [57, 217, 289].
In the 1990s, significant advances were realized in

ML research, focusing primarily on NNs and DTs. Bio-
inspired optimization algorithms, such as Genetic Algo-
rithms (GA) and Particle Swarm Optimization (PSO),
received increasing attention and were used to train NNs
for improved performance over the traditional BP-based
learning [234, 319]. Probably one of the most important
achievements in NNs was the work on Long Short-Term
Memory (LSTM), an RNN capable of learning long-term
dependencies for solving DL tasks that involve long input
sequences [192]. Today, LSTM is widely used in speech
recognition as well as natural language processing. In DT
research, Quinlan published the M5 algorithm in 1992
[375] to construct tree-based multivariate linear models
analogous to piecewise linear functions. One well-known
variant of theM5 algorithm isM5P, which aims at building

trees for regression models. A year later, Quinlan pub-
lished C4.5 [376], that builds on and extends ID3 to
address most of its practical shortcomings, including data
overfitting and training withmissing values. C4.5 is to date
one of the most important and widely used algorithms in
ML and data mining.
Several techniques other than NN and DT also pros-

pered in the 1990s. Research on regression analysis
propounded the Least Absolute Selection and Shrink-
age Operator (LASSO), which performs variable selec-
tion and regularization for higher prediction accuracy
[445]. Another well-known ML technique introduced in
the 1990s was Support Vector Machines (SVM). SVM
enables plugging different kernel functions (e.g. linear,
polynomial, RBF) to find the optimal solution in higher-
dimensional feature spaces. SVM-based classifiers find a
hyperplane to discriminate between categories. A single-
class SVM is a binary classifier that deduces the hyper-
plane to differentiate between the data belonging to the
class against the rest of the data, that is, one-vs-rest. A
multi-class approach in SVM can be formulated as a series
of single class classifiers, where the data is assigned to the
class that maximizes an output function. SVM has been
widely used primarily for classification, although a regres-
sion variant exists, known as Support Vector Regression
(SVR) [70].
In the area of RL, SARSA (State-Action-Reward-State-

Action) was introduced as a more realistic, however less
practical, Q-learning variation [395]. Unlike Q-learning,
SARSA does not update the Q-value of an action based on
the maximum action-value of the next state, but instead it
uses the Q-value of the action chosen in the next state.
A new emerging concept called ensemble learning

demonstrated that the predictive performance of a single
learning model can be be improved when combined with
other models [397]. As a result, the poor performance
of a single predictor or classifier can be compensated
with ensemble learning at the price of (significantly) extra
computation. Indeed the results from ensemble learning
must be aggregated, and a variety of techniques have been
proposed in this matter. The first instances of ensemble
learning include Weighted Majority Algorithm (WMA)
[279], boosting [403], bootstrap aggregating (or bagging)
[75], and Random Forests (RF) [191]. RF focused explic-
itly on tree models and marked the beginning of a new
generation of ensemble DT. In addition, some variants of
the original boosting algorithm were also developed, such
as Adaptive Boosting (AdaBoost) [153] and Stochastic
Gradient Boosting (SGBoost) [155].
These advances in ML facilitated the successful deploy-

ment of major use cases in the 1990s, particularly,
handwriting recognition [419] and data mining [3]. The
latter represented a great shift to data-driven ML, and
since then it has been applied in many areas (e.g., retail,
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finance, manufacturing, medicine, science) for processing
huge amounts of data to build models with valuable use
[169]. Furthermore, from a conceptual perspective, Tom
Mitchell formally defined ML: “A computer program is
said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance
at tasks in T, as measured by P, improves with experience
E” [317].
The 21st century began with a new wave of increasing

interest in SVM and ensemble learning, and in partic-
ular ensemble DT. Research efforts in the field gener-
ated some of the the most widely used implementations
of ensemble DT as of today: Multiple Additive Regres-
sion Trees (MART) [154], extra-trees [164], and eXtreme
Gradient Boosting (XGBoost) [93]. MART and XGBoost
are respectively a commercial and open source imple-
mentation of Friedman’s Gradient Boosting Decision Tree
(GBDT) algorithm; an ensemble DT algorithm based
on gradient boosting [154, 155]. Extra-trees stands for
extremely randomized trees, an ensemble DT algorithm
that builds random trees based on k randomly chosen
features. However instead to computing an optimal split-
point for each one of the k features at each node as in
RF, extra-trees selects a split-point randomly for reduced
computational complexity.
At the same time, the popularity of DL increased signif-

icantly after the term “deep learning” was first introduced
in the context of NNs in 2000 [9]. However, the attrac-
tiveness of DNN started decreasing shortly after due to
the experienced difficulty of training DNNs using BP (e.g.
vanishing gradient problem), in addition to the increas-
ing competitiveness of other ML techniques (e.g. SVM)
[169]. Hinton’s work on Deep Belief Networks (DBN),
published in 2006 [188], gave a new breath and strength
to research in DNNs. DBN introduced an efficient train-
ing strategy for deep learning models, which was further
used successfully in different classes of DNNs [49, 381].
The development in ML –particularly, in DNNs– grew
exponentially with advances in storage capacity and large-
scale data processing (i.e. Big Data) [169]. This wave of
popularity in deep learning has continued to this day,
yielding major research advances over the years. One
approach that is currently receiving tremendous atten-
tion is Deep RL, which incorporates deep learning models
into RL for solving complex problems. For example, Deep
Q-Networks (DQN) –a combination of DNN and Q-
learning– was proposed for mastering video games [318].
Although the termDeepRLwas coined recently, this concept
was already discussed and applied 25 years ago [275, 440].
It is important to mention that the evolution in ML

research has enabled improved learning capabilities which
were found useful in several application domains, ranging
from games, image and speech recognition, network oper-
ation and management, to self-driving cars [120].

3 Traffic prediction
Network traffic prediction plays a key role in network
operations and management for today’s increasingly com-
plex and diverse networks. It entails forecasting future
traffic and traditionally has been addressed via time series
forecasting (TSF). The objective in TSF is to construct a
regression model capable of drawing accurate correlation
between future traffic volume and previously observed
traffic volumes.
Existing TSF models for traffic prediction can be

broadly decomposed into statistical analysis models and
supervisedMLmodels. Statistical analysis models are typ-
ically built upon the generalized autoregressive integrated
moving average (ARIMA) model, while majority of learn-
ing for traffic prediction is achieved via supervised NNs.
Generally, the ARIMA model is a popular approach for
TSF, where autoregressive (AR) and moving average (MA)
models are applied in tandem to perform auto-regression
on the differenced and “stationarized” data. However, with
the rapid growth of networks and increasing complexity
of network traffic, traditional TSF models are seemingly
compromised, giving rise to more advanced ML models.
More recently, efforts have been made to reduce overhead
and, or improve accuracy in traffic prediction by employ-
ing features from flows, other than traffic volume. In the
following subsections, we discuss the various traffic pre-
diction techniques that leverage ML and summarize them
in Table 3.

3.1 Traffic prediction as a pure TSF problem
To the best of our knowledge, Yu et al. [489] were the first
to apply ML in traffic prediction using MLP-NN. Their
primary motive was to improve accuracy over traditional
ARmethods. This was supported by rigorous independent
mathematical proofs published in the late eighties and the
early nineties by Cybenko [106], Hornik [196], and Funa-
hashi [158]. These proofs showed that SLP-NN approxi-
mators, which employed sufficient number of neurons of
continuous sigmoidal activation type (a constraint intro-
duced by Cybenko and relaxed by Hornik), were universal
approximators, capable of approximating any continuous
function to any desired accuracy.
In the last decade, different types of NNs (SLP, MLP,

RNN, etc.) and other supervised techniques have been
employed for TSF of network traffic. Eswaradass et al.
[141] propose a MLP-NN-based bandwidth prediction
system for Grid environments and compare it to the
Network Weather Service (NWS) [480] bandwidth fore-
casting AR models for traffic monitoring and measure-
ment. The goal of the system is to forecast the available
bandwidth on a given path by feeding the NN with the
minimum, maximum and average number of bits per sec-
ond used on that path in the last epoch (ranging from 10 to
30 s). Experiments on the dotresearch.org network and the
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40 gigabit/s NSF TeraGrid network datasets show that the
NN outperforms the NWS bandwidth forecasting models
with an error rate of up to 8 and 121.9% for MLP-NN and
NWS, respectively. Indeed the proposed NN-based fore-
casting system shows better learning ability than NWS’s.
However, no details are provided for the characteristics of
the MLP employed in the study, nor the time complexity
of the system compared to NWS.
Cortez et al. [104] choose to use a NN ensemble (NNE)

of five MLP-NN with one hidden layer each. Resilient
backpropagation (Rp) training is used on SNMP traffic
data collected from two different ISP networks. The first
data represents the traffic on a transatlantic link, while the
second represents the aggregated traffic in the ISP back-
bone. Linear interpolation is used to complete missing
SNMP data. The NNE is tested for real-time forecasting
(online forecasting on a few-minute sample), short-term
(one-hour to several-hours sample), and mid-term fore-
casting (one-day to several-days sample). The NNE is
compared against AR models of traditional Holt-Winters,
double Holt-Winters seasonal variant to identify repe-
titions in patterns at fixed time periods, and ARIMA.
The comparison amongst the TSF methods show that in
general the NNE produces the lowest MAPE for both
datasets. It also shows that in terms of time and compu-
tational complexity, NNE outperforms the other methods
with an order ofmagnitude, and is well suited for real-time
forecasting.
The applicability of NNs in traffic prediction instigated

various other efforts [86, 500] to compare and contrast
various training algorithms for network traffic prediction.
Chabaa et al. [86] evaluate the performance of various BP
training algorithms to adjust the weights in the MLP-NN,
when applied to Internet traffic time series. They show
superior performance, with respect to RMSE and RPE, of
the Levenberg-Marquardt (LM) and the Resilient back-
propagation (Rp) algorithms over other BP algorithms.
In contrast to the local optimization in BP, Zhu et al.

[500] propose a hybrid training algorithm that is based
on global optimization, the PSO-ABC technique [98]. It is
an artificial bee colony (ABC) algorithm employing par-
ticle swarm optimization (PSO), an evolutionary search
algorithm. The training algorithm is implemented with a
(5, 11, 1) MLP-NN. Experiments on a 2 weeks hourly traf-
fic measurement dataset show that PSO-ABC has higher
prediction accuracy than BP, with an MSE of 0.006 and
0.011, respectively, on normalized data and has stable pre-
diction performance. Furthermore, the hybrid PSO-ABC
has a faster training time than ABC or PSO.
On the other hand, SVM has a low computational over-

head and is more robust to parameter variations (e.g. time
scale, number of samples) in general. However, they are
usually applied to classification rather than TSF. SVM
and its regression variant, SVR, are scrutinized for their

applicability to traffic prediction in [52]. Bermolen et al.
[52] consider the prospect of applying SVR for link load
forecasting. The SVR model is tested on heterogeneous
Internet traffic collected at the POP of an ISP network.
At 1sec timescale, the SVR model shows a slight improve-
ment over an AR model in terms of RMSE. A more sig-
nificant 10% improvement is achieved over a MA model.
Most importantly, SVR is able to achieve 9000 forecast
per sec with 10 input samples, and shows the potential for
real-time operation.

3.2 Traffic prediction as a non-TSF problem
In contrast to TSF methods, network traffic can be
predicted leveraging other methods and features. For
instance, Li et al. [274] propose a frequency domain based
method for network traffic flows, instead of just traffic
volume. The focus is on predicting incoming and out-
going traffic volume on an inter-data center link domi-
nated by elephant flows. Their models incorporate FNN,
trained with BP using simple gradient descent and wavelet
transform to capture both the time and frequency fea-
tures of the traffic time series. Elephant flows are added
as separate feature dimensions in the prediction. How-
ever, collecting all elephant flows at high frequencies is
more expensive than byte count for traffic volume. There-
fore, elephant flow information is collected at lower fre-
quencies and interpolated to fill in the missing values,
overcoming the overhead for elephant flow collection.
The dataset contains the total incoming and outgoing

traffic collected in 30 s intervals using SNMP counters
on the data center (DC) edge routers and inter-DC link
at Baidu over a six-week period. The top 5 applications
account for 80% of the total incoming and outgoing traffic
data, which is collected every 5 min and interpolated to
estimate missing values at the 30 s scale. The time series is
decomposed using level 10 wavelet transform, leading to
120 features per timestamp.
Thus, k-step ahead predictions, feed k × 120 features

into the NN and show a relative RMSE (RRMSE) rang-
ing from 4 to 10% for the NN-Wavelet transformation
model as the prediction horizon varies from 30 s to 20
min. Evidently, wavelet transformation reduces the aver-
age prediction errors for different prediction horizons by
5.4 and 2.9% for incoming and outgoing traffic, respec-
tively. In contrast, the linear ARIMA model has predic-
tion error of approximately 8.5 and 6.9% for incoming
and outgoing traffic, respectively. The combined NN and
wavelet transform model reduces the peak inter-DC link
utilization, i.e. the ISP’s billed utilization, by about 9%.
However, the model does not seem to be fully consid-
ering the features related to the elephant flow, which
may explain the inexplicable good performance of the
0-interpolation, a simple method that fills zeros for all
unknown points.
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Chen et al. [94], investigate the possibility of reduc-
ing cost of monitoring and collecting traffic volume,
by inferring future traffic volume based on flow count
only. They propose a HMM to describe the relationship
between the flow count, flow volume and their temporal
dynamic behavior. The Kernel Bayes Rule (KBR) and RNN
with LSTM unit is used to predict future traffic volume
based on current flow count. A normalized dataset, with
mean=0 and standard deviation=1, consists of network
traffic volumes and corresponding flow counts collected
every 5 min over a 24-week period [391]. The RNN shows
a prediction MSE of 0.3 at best, 0.05 higher than KBR and
twice as much as the prediction error of an RNN fed with
traffic volume instead of flow count. Therefore, though
the motive was to promote flow count based traffic pre-
diction to overcome the cost of monitoring traffic volume,
the performance is compromised.
Poupart et al. [365] explore the use of different ML tech-

niques for flow size prediction and elephant flow detection.
These techniques include gaussian processes regression
(GPR), online bayesian moment matching (oBMM) and a
(106, 60, 40, 1) MLP-NN. Seven features are considered
for each flow, including source IP, destination IP, source
port, destination port, protocol, server versus client (if
protocol is TCP), and the size of the first three data
packets after the protocol/synchronization packets.
The datasets consist of three public datasets from two

university networks [50] and an academic building at
Dartmouth College [251] with over three million flows
each. Elephant flow detection is based on a flow size
threshold that varies from 10KB to 1MB. The experi-
ments show noticeable discrepancies in the performance
of the approaches with varying datasets. Although oBMM
outperforms all other approaches in one dataset with an
average TPR and TNR very close to 100%, it fails mis-
erably in the other datasets with an average TPR below
50% for one dataset. In the latter dataset, oBMM seems
to suffer the most from class imbalance. As the detec-
tion flow size threshold increases, less flows are tagged
as elephant flows, creating class imbalance in the train-
ing dataset and leading to lower TPR. However, it is worth
noting that oBMM outperforms all other approaches in
terms of average TNR in all 3 datasets. On the other hand,
NN and GPR, have an average TPR consistently above
80%. Although NN outperforms GPR in terms of robust-
ness to class imbalance by looking at the consistency of
its TPR with varying flow size threshold, it has the lowest
average TNR of below 80% in all datasets.
The motive for flow size prediction in [365], is to dis-

criminate elephant flows from mice flows in routing to
speed up elephant flow completion time. Presumably,
mice flows are routed through Equal-cost multi-path rout-
ing, while elephant flows are routed through the least
congested path. The performance of the routing policy

combined with GPR and oBMM for elephant flow predic-
tion is tested with a varying subset of features. According
to the authors, GPR improves the completion time by 6.6%
in average for 99% of elephant flows when only the first
packet header information is considered. A 14% improve-
ment is observed when the size of the three first packets is
used along with the header information. It is also noticed
that considering the size of the first three packets alone
leads to over 13.5% improvement, regardless of whether
GPR or oBMM is used, with a very slight impact on the
completion time of mice flows.

3.3 Summary
Supervised NNs (including MLP and RNN) have been
successfully applied to traffic prediction, as shown in
Table 9. TSF approaches, such as [52, 86, 104, 141, 500],
where NNs are used to infer traffic volumes from past
measured volumes, show high long-term and short-term
prediction accuracy at low complexity with limited num-
ber of features and limited number of layers and neurons.
Unfortunately, TSF approaches are restrictive in general.

In fact they are only possible if past observations on the
prediction variable are made. For instance, in order to pre-
dict the traffic for a particular flow f on link l, there must
be a counter on link l actively measuring the traffic for that
particular flow f, which can be challenging on very high
speed links. Because it might not be possible to have the
appropriate counter in place, or because it might be tech-
nically difficult to conduct measurements at the required
speed or granularity, non-TSF approaches can be useful.
Non-TSF approaches were investigated in [94, 274, 365]

to infer traffic volumes from flow count and packet header
fields. Although higher prediction error rates are experi-
enced, these rates remain relatively low not only for NNs
but also for other supervised learning techniques, such
as GPR and oBMM. According to [365] a more com-
plex MLP-NN (in terms of number of layers and neurons)
might be required to achieve better accuracy in a non-
TSF setting, and the performance of supervised learning
techniques varies when tested on different datasets. This
motivates the need for ensemble learning.
It is envisaged that as the applicability of ML tech-

niques for traffic prediction increases, traffic prediction
will improve with respect to computational overhead and
accuracy. Furthermore, learning will enable automation
of various network operation and management activities,
such as network planing, resource provisioning, routing
optimization, and SLA/QoS management.

4 Traffic classification
Traffic classification is quintessential for network oper-
ators to perform a wide range of network operation
and management activities. These include capacity plan-
ning, security and intrusion detection, QoS and service
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differentiation, performance monitoring, and resource
provisioning, to name a few. For example, an operator
of an enterprise network may want to prioritize traffic
for business critical applications, identify unknown traffic
for anomaly detection, or perform workload characteriza-
tion for designing efficient resourcemanagement schemes
that satisfy diverse applications performance and resource
requirements.
Traffic classification requires the ability to accurately

associate network traffic to pre-defined classes of inter-
est. These classes of interest can be classes of applications
(e.g. HTTP, FTP, WWW, DNS and P2P), applications (e.g.
Skype [310], YouTube [488] and Netflix [331]), or class of
service [390]. A class of service, for instance based onQoS,
encompasses all applications or classes of applications that
have the same QoS requirements. Therefore, it is pos-
sible that applications that apparently behave differently,
belong to the same class of service [462].
Generally, network traffic classification methodologies

can be decomposed into four broad categories that lever-
age port number, packet payload, host behavior or flow
features [31, 244]. The classical approach to traffic clas-
sification simply associates Internet Assigned Numbers
Authority (IANA) [207] registered port numbers to appli-
cations. However, since it is no longer the de facto, nor,
does it lend itself to learning due to trivial lookup, it
is not in the scope of this survey. Furthermore, relying
solely on port numbers has been shown to be ineffec-
tive [125, 228, 320], largely due to the use of dynamic
port negotiation, tunneling and misuse of port numbers

assigned to well-known applications for obfuscating traf-
fic and avoiding firewalls [54, 109, 176, 286]. Nevertheless,
various classifiers leverage port numbers in conjunction
with other techniques [31, 56, 244, 417] to improve the
performance of the traffic classifiers. In the following
subsections, we discuss the various traffic classification
techniques that leverage ML and summarize them in
Tables 4, 5, 6, 7 and 8.

4.1 Payload-based traffic classification
Payload-based traffic classification is an alternate to port-
based traffic classification. However, since it searches
through the payload for known application signatures, it
incurs higher computation and storage costs. Also, it is
cumbersome to manually maintain and adapt the signa-
tures to the ever growing number of applications and their
dynamics [138]. Furthermore, with the rise in security and
privacy concerns, payload is often encrypted and its access
is prohibited due to privacy laws. This makes it non-trivial
to infer a signature for an application class using payload
[54, 138].
Haffner et al. [176] reduce the computational overhead

by using only the first few bytes of unidirectional, unen-
crypted TCP flows as binary feature vectors. For SSH
and HTTPS encrypted traffic, they extract features from
the unencrypted handshake that negotiate the encryp-
tion parameters of the TCP connection. They use NB,
AdaBoost and MaxEnt for traffic classification. AdaBoost
outperforms NB and MaxEnt, and yields an overall preci-
sion of 99% with an error rate within 0.5%.

Table 4 Summary of Payload� and Host Behavior†-based Traffic Classification

Ref. ML Technique Dataset Features Classes Evaluation

Settings Results

Haffner
et al.
[176]�

Supervised
NB, AdaBoost,
MaxEnt

Proprietary Discrete byte encod-
ing for first n bytes of
unidirectional flow

FTP, SMTP, POP3,
IMAP, HTTPS,
HTTP, SSH

n = 64 − 256 bytes Overall error rate <0.51%,
precision > 99%,
recall > 94%

Ma et al.
[286]�

Unsupervised
HCA

Proprietary: U.
Cambridge,
UCSD

Discrete byte encod-
ing for first n bytes of
unidirectional flow

FTP, SMTP, HTTP,
HTTPS, DNS, NTP,
NetBIOS, SrvLoc

n = 64 bytes, distance
metric: PD = 250, MP =
150, CSG = 12%

Error rate:
PD ≤ 4.15%, MP ≤ 9.97%,
CSG ≤ 6.19%

Finamore
et al.
[146]�

Supervised
SVM

Tstat [439];
NAPA-WINE
[268]; Proprieta
ry: ISP network

Statistical characteri-
zation of first N bytes
of each packet a win-
dow of size C, divided
into G groups of b
consecutive bits

eMule, BitTorrent,
RTP, RTCP, DNS,
P2P-TV (PPLive,
Joost, SopCast,
TVAnts), Skype,
Background

C = 80,N = 12,G = 24,
b = 4

Average TP = 99.6%,
FP < 1%

Schatzmann
et al.
[404]†

Supervised
SVM

Proprietary:
ISP network

Service proximity,
activity profiles,
session duration,
periodicity

Mail, Non-Mail N/A Average accuracy = 93.2%,
precision = 79.2%

Bermolan
et al.
[53]†

Supervised
SVM

Proprietary:
campus net-
work, ISP
network

Packet count
exchanged between
peers in duration �T

PPLive, TVAnts,
SopCast, Joost

�T = 5 s, SVM distance
metric R = 0.5

Worst-case TPR≈ 95%,
FPR < 0.1%

N/A: Not available
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Table 5 Summary of supervised flow feature-based traffic classification

Ref. ML Technique Dataset Features Classes Evaluation

Settings Results

Roughan
et al. [390]

Supervised
k-NN

Proprietary:
univ. networks,
streaming
service

Packet-level and flow-level
features

Telnet, FTP-data,
Kazaa, RealMedia
Streaming, DNS,
HTTPS

k = 3, number of
QoS classes = 3,
4, 7

Error rate:
5.1% (4), 2.5% (3),
9.4% (7); (#): number
of QoS Classes

Moore and
Zuev [321]

Supervised
NBKE

Proprietary:
campus
network

Baseline and derivative
packet-level features

BULK, WWW,MAIL,
SERVICES, DB, P2P,
ATTACK,
MULTIMEDIA

N/A Accuracy upto 95%,
TPR upto 99%

Jiang et al.
[218]

Supervised
NBKE

Proprietary:
campus
network

Baseline and derivative
flow-level features

WWW, email,
bulk, attack, P2P,
multimedia, ser-
vice, database,
interaction,
games

N/A Average accuracy ≈
91%

Park et al.
[347]

Supervised
REPTree,
REPTree-
Bagging

NLANR [457] Packet-level, flow-level
and connection-level
features

WWW, Telnet,
Messenger, FTP,
P2P, Multimedia,
SMTP, POP, IMAP,
DNS, Services

Burst packet
threshold =
0.007s

Accuracy ≥ 90%
(features ≥ 7)

Zhang et al.
[496]

Supervised
BoF-NB

WIDE [474],
proprietary: ISP
network

Packet-level and
flow-level features
from unidirectional
flows

BT, DNS, FTP,
HTTP, IMAP, MSN,
POP3, SMTP, SSH,
SSL, XMPP

Aggregation rule
= sum, BoF size

Accuracy 87-94%,
F-measure = 80%

Zhang et al.
[497]

Supervised
RF, Unsuper-
vised k-Means
(BoF-based,
RTC)

KEIO [474],
WIDE [474],
proprietary: ISP
network

Packet-level and
flow-level features
from unidirectional
flows

FTP, HTTP, IMAP,
POP3, RAZOR, SSH,
SSL, UNKNOWN
/ ZERO-DAY (BT,
DNS, SMTP)

N/A RTC upto 15% and
10% better in flow
and byte accuracy,
respectively, than sec-
ond best F-measure=
0.91 (before update),
0.94 (after update)

Auld et al.
[26]

Supervised
BNN

Proprietary Packet-level and flow-level
features

ATTACK, BULK,
DB, MAIL, P2P,
SERVICE, WWW

Number of fea-
tures = 246, hid-
den layers = 0-1,
0-30 nodes in the
hidden layer, out-
put = 10

Accuracy > 99%, 95%
with temporally dis-
tant training and test-
ing datasets

Sun et al.
[431]

Supervised
PNN

Proprietary:
campus
networks

Packet-level and flow-level
features

P2P, WEB, OTHERS Number of fea-
tures = 22

Accuracy = 87.99%;
P2P: TPR = 91.25%,
FPR = 1.36%;
WEB: TPR = 98.74%,
FPR = 27.7%

Este et al.
[140]

Supervised
SVM

LBNL [262],
CAIDA [451],
proprietary:
campus
network

Packet payload size HTTP, SMTP,
POP3, HTTPS,
IMAPS, BitTorrent,
FTP, MSN, eDon-
key, SSL, SMB,
Kazaa, Gnutella,
NNTP, DNS, LDAP,
SSH

Number of sup-
port vectors cf.,
[140]

TP > 90% for most
classes

Jing et al.
[223]

Supervised
FT-SVM

Proprietary
[270, 321]

A subset of 12 from 248
features [321]

BULK, INTERAC-
TIVE, WWW, MAIL,
SERVICES, P2P,
ATTACK, GAME,
MULTIMEDIA,
OTHER

SVM parameters
automatically
chosen

Accuracy up to 96%,
error ratio ↓ 2.35
times, avg. compu-
tation cost ↓ 7.65
times

Wang et al.
[464]

Supervised
multi-class
SVM, unbalance
d binary SVM

Proprietary:
univ. network

Flow-level and
connection-level
features

BitTorrent, eDon-
key, Kazaa, pplive

N/A Accuracy 75-99%

N/A: Not available

199



Boutaba et al. Journal of Internet Services and Applications  (2018) 9:16 Page 21 of 99

Table 6 Summary of unsupervised flow feature-based traffic classification

Ref. ML Technique Dataset Features Classes Evaluation

Settings Results

Liu et al.
[283]

Unsupervised
k-Means

Proprietary:
campus
network

Packet-level and
flow-level features

WWW, MAIL, P2P,
FTP (CONTROL,
PASV, DATA),
ATTACK,
DATABASE,
SERVICES,
INTERACTIVE,
MULTIMEDIA,
GAMES

k = 80 Average accuracy ≈
90%, minimum recall =
70%

Zander
et al. [492]

Unsupervised
AutoClass

NLANR [457] Packet-level and
flow-level features

AOL Messenger,
Napster, Half-Life,
FTP, Telnet, SMTP,
DNS, HTTP

Intra-class homogeneity
(H)

Mean accuracy = 86.5%

Erman
et al. [136]

Unsupervised
AutoClass

Univ.
Auckland
[457]

Packet-level and
flow-level features

HTTP, SMTP, DNS,
SOCKS, IRC, FTP
(control, data),
POP3, LIMEWIRE,
FTP

N/A Accuracy = 91.2%

Erman
et al. [135]

Unsupervised
DBSCAN

Univ. Auck-
land [457],
proprietary:
Univ. Calgary

Packet-level and
flow-level features

HTTP, P2P, SMTP,
IMAP, POP3,
MSSQL, OTHER

eps = 0.03, minPts = 3,
number of clusters = 190

Overall accuracy =
75.6%, average precision
> 95%
(7/9 classes)

Erman
et al. [138]

Unsupervised
k-Means

Proprietary:
univ.
network

Packet-level and
flow-level features
from unidirectional
flows

Web, EMAIL,
DB, P2P, OTHER,
CHAT, FTP,
STREAMING

k = 400 Server-to-client:
Avg. flow accuracy =
95%, Avg. byte accuracy
= 79%;
Web: precision = 97%,
recall = 97%;
P2P: precision = 82%,
recall = 77%

N/A: Not available

Their ML models are scalable and robust due to the use
of partial payloads, and unidirectional flows and diverse
usage patterns, respectively. The unidirectional flows cir-
cumvent the challenges due to asymmetric routing. In
comparison to campus or enterprise networks, residential
network data offer an increased diversity, with respect to,
social group, age and interest with less spatial and tem-
poral correlation in usage patterns. Unfortunately, per-
formance of AdaBoost traffic classifier deteriorates with
noisy data [176] and their approach requires a priori
knowledge about the protocols in the application classes.
Ma et al. [286] show that payload-based traffic classifi-

cation can be performed without any a priori knowledge
of the application classes using unsupervised clustering.
They train their classifiers based on the label of a sin-
gle instance of a protocol and a list of partially correlated
protocols, where a protocol is modeled as a distribution
of sessions. Each session is a pair of unidirectional flow
distributions, one from the source to the destination and
another from the destination to the source. For tractabil-
ity, the sessions are assumed to be finite and a protocol
model is derived as a distribution on n byte flows, rather
than pair of flows.

In product distribution (PD) protocol model, the n byte
flow distribution is statistically represented as a product
of n independent byte distributions, each describing the
distribution of bytes at a particular offset in the flow. Sim-
ilarly, in the Markov process (MP) protocol model, nodes
are labeled with unique byte values and the edges are
weighted with a transition probability, such that the sum
of all egress transition probabilities from a node is one. A
randomwalk through the directed graph identify discrim-
inator strings that are not tied to a fixed offset. In contrast,
the common substring graphs (CSG) capture structural
information about the flows using longest common subse-
quence. A subsequence in a series of common substrings
that capture commonalities including the fixed offsets in
statistical protocol modeling.
Finally, the authors perform agglomerative (bottom-

up) hierarchical clustering analysis (HCA) to group the
observed protocols and distinguish between the classes of
interest. They employ weighted relative entropy for PD
and MP, and approximate graph similarity for CSG, as
the distance metric. In evaluation, the PD-based proto-
col models resulted in the lowest total misclassification
error, under 5%. Thus, there is a high invariance at fixed
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Table 7 Summary of Early� , Sub-flow†-based and Encrypted‡ flow feature-based traffic classification

Ref. ML Technique Dataset Features Classes Evaluation

Settings Results

Bernaille et al.
[55]∗

Unsupervised
k-Means

Proprietary:
univ.
network

Packet size and direc-
tion of first P packets
in a flow

eDonkey, FTP, HTTP,
Kazaa, NNTP, POP3,
SMTP, SSH, HTTPS,
POP3S

P = 5, k = 50 Accuracy > 80%

TIE [108, 121]∗ Supervised
J48 DT, k-NN,
Random Tree,
RIPPER, MLP,
NB

Proprietary:
Univ. Napoli
campus
network

Payload size stats and
inter-packet time
stats of first N pack-
ets, bidirectional flow
duration and size,
transport protocol

BitTorrent, SMTP,
Skype2Skype, POP,
HTTP, SOULSEEK,
NBNS, QQ, DNS,SSL
RTP, EDONKEY

N = 1...10 Overall accuracy = 98.4%
with BKS (J48, Random Tree,
RIPPER, PL) combiner, N =
10

Nguyen et al.
[337]†

Supervised
NB, C4.5 DT

Proprietary:
home net-
work, univ.
network,
game server

Inter-packet arrival
time statistics,
inter-packet length
variation statistics, IP
packet length statis-
tics of N consecutive
packets

Enemy Territory
(online game),
VoIP, Other

N = 25 C4.5 DT: Enemy Territory -
recall∗ = 99.3%, prec.∗ = 97%;
VoIP - recall∗ = 95.7%,
precision∗ = 99.2%
NB: Enemy Territory -
recall∗ = 98.9%, prec.∗ = 87%,
VoIP - recall∗ = 99.6%,
precision∗ = 95.4%
∗ median

Erman et al.
[137]�

Semi-
supervised
k-Means

Proprietary:
Univ. Calgary

Number of pack-
ets, average packet
size, total bytes, total
header bytes, total
payload bytes (caller
to callee and vice
versa)

P2P, HTTP, CHAT,
EMAIL, FTP,
STREAMING,
OTHER

k = 400, 13 layers,
packet milestones
(number of packets)
in layers are sepa-
rated exponentially
(8, 16, 32, . . . )

Flow accuracy > 94%,
byte accuracy 70-90%

Li et al. [270]� Supervised
C4.5 DT,
C4.5 DT with
AdaBoost,
NBKE

Proprietary A subset of 12 from
248 features [321] of
first N packets

WEB, MAIL,
BULK, Attack,
P2P, DB, Service,
Interactive

N = 5 C4.5 DT: Accuracy >99%;
Attack is an exception with
moderate-high
recall

Jin et al.[222]� Supervised
AdaBoost

Proprietary:
ISP network,
labeled as in
[176]

Lowsrcport, highsrc-
port, duration, mean
packet size, mean
packet rate, toscount,
tcpflags, dstinnet,
lowdstport, highd-
stport, packet, byte,
tos, numtosbytes,
srcinnet

Business, chat,
DNS, FileShar-
ing, FTP, Games,
Mail, Multimedia,
NetNews, Secu-
rityThreat, VoIP,
Web

Number of binary
classifiers (k): TCP =
12, UDP = 8

Error rate:
TCP = 3%, UDP = 0.4%

Bonfiglio et al.
[69]‡

Supervised
NB, Pearson’s
χ2 test

Proprietary:
univ. net-
work, ISP
network

Message size, aver-
age inter-packet gap

Skype NB decision thresh-
old Bmin = −5,
χ2(Thr) = 150

NB∧χ2:
UDP – E2E - FP = 0.01%,
FN = 29.98%
E2O - FP = 0.0%,
FN = 9.82% (univ. dataset);
E2E - FP = 0.01%,
FN = 24.62%
E2O - FP = 0.11%,
FN = 2.40% (ISP dataset)
TCP – negligible FP

Alshammari
et al. [17]‡

Supervised
AdaBoost,
SVM, NB,
RIPPER, C4.5
DT

AMP [457],
MAWI
[474],
DARPA99
[278],
proprietary
from
Univ.
Dalhousie

Packet size, packet
inter-arrival time,
number of packets,
number of bytes,
flow duration, pro-
tocol (forward and
backward direction)

SSH, Skype N/A C4.5 DT:
SSH – DR = 95.9%,
FPR = 2.8% (Dalhousie), DR
= 97.2%,
FPR = 0.8% (AMP),
DR = 82.9%,
FPR = 0.5% (MAWI)
Skype – DR = 98.4%,
FPR = 7.8% (Dalhousie)
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Table 7 Summary of Early� , Sub-flow†-based and Encrypted‡ flow feature-based traffic classification (Continued)

Ref. ML Technique Dataset Features Classes Evaluation

Settings Results

Shbair et al. [409]‡ Supervised
C4.5 DT, RF

Synthetic
trace

Statistical features
from encrypted payload
and [253] (client to server
and vice versa)

Service Provider
(number of services):
Uni-lorraine.fr (15),
Google.com (29),
akamihd.net (6),
Googlevideo.com
(1), Twitter.com (3),
Youtube.com (1),
Facebook.com (4),
Yahoo.com (19),
Cloudfront.com (1)

N/A RF (service provider):
precision = 92.6%,
recall = 92.8%,
F-measure = 92.6%
RF (service): accu-
racy in 95-100% for
majority of service
providers > 100 con-
nections per HTTPS
service

N/A: Not available

offsets in binary and textual protocols, such as DNS and
HTTP, respectively. Though, the CSG resulted in a higher
misclassification error, approximately 7%, it performed
best for SSH encrypted traffic. However, it is important
to realize that encryption often introduces randomness
in the payload. Hence, techniques such as in Ma et al.

[286] that search for keywords at fixed offsets will suffer
in performance.
Techniques that rely on capturing the beginning of

flows [176, 286] are infeasible for links with high data
rates where sampling is often employed. Finamore et al.
[146] overcome this limitation by extracting signatures

Table 8 Summary of NFV� and SDN†-based traffic classification

Ref. ML Technique Dataset Features Classes Evaluation

Settings Results

He et al.
[182]�

Supervised k-NN,
Linear-SVM, Radial-
SVM, DT,
RF, Extended
Tree, AdaBoost,
Gradient-AdaBoost,
NB, MLP

KDD [42] Protocol, network service,
source bytes, destination
bytes, login status, error
rate, connection counts,
connection percentages
(different services among
the same host, different
hosts among the same
service)

Attack types from [450] Dynamic selection of
classifier and features
to collect

Accuracy = 95.6%

Amaral
et al. [19]†

Supervised RF,
SGBoost, XGBoost

Proprietary:
enterprise
network

Packet size (1 to N pack-
ets), packet timestamp
(1 to N packets), inter-
arrival time (N packets),
source/destination MAC,
source/destination IP,
source/destination port,
flow duration, packet
count byte count

BitTorrent, Dropbox,
Facebook, Web Brows-
ing (HTTP), LinkedIn,
Skype, Vimeo, YouTube

N = 5 RF: Accuracy 73.6-96.0%
SGBoost:
Accuracy 71.2-93.6%
XGBoost:
Accuracy 73.6-95.2%

Wang
et al.
[462]†

Semi-supervised
Laplacian-SVM

Proprietary:
univ.
network

Entropy of packet
length, average
packet length
(source to destination
and vice versa), source
port, destination port,
packets to respond from
source to destination,
minimum length of pack-
ets from destination to
source, packet inactivity
degree from source
to destination, median
of packet length from
source to destination for
the first N packets

Voice/video conference,
streaming, bulk data
transfer, interactive

N = 20, Laplacian-
SVM parameters λ =
0.00001 − 0.0001, σ =
0.21 − 0.23

Accuracy > 90%

N/A: Not available
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from any point in a flow. In light of the rise in stream-
ing applications, they focus on analyzing packet payload
to extract signature of applications over long-lived UDP
traffic. In essence, to extract application signatures, the
authors employ Pearsons’s Chi-square (χ2) test to capture
the level of randomness in the first N bytes of each packet
divided into G groups of b consecutive bits within a win-
dow of C packets. The randomness is evaluated based on
the distance between the observed values and a reference
uniform distribution. The signatures are then used to train
a SVM classifier that distinguishes between the classes of
interest with an average TP of 99.6%. However, FP are
more sensitive to the window size, and reduce below 5%
only for window sizes over 80.
Despite the disadvantages of payload-based classifica-

tion techniques, the payload-based classifiers achieve high
accuracy and are often employed to establish ground
truth [55].

4.2 Host behavior-based traffic classification
This technique leverages the inherent behavioral charac-
teristics of hosts on the network to predict the classes of
interest. It overcomes the limitations of unregistered or
misused port numbers and encrypted packet payload, by
moving the observation point to the edge of the network
and examining traffic between hosts (e.g. how many hosts
are contacted, by which transport protocol, howmany dif-
ferent ports are involved). These classifiers rely on the
notion that applications generate different communica-
tion patterns. For example, a P2P host may contact several
different peers using a different port number for each peer.
While, a webserver may be contacted by different clients
on the same port.
Schatzmann et al. [404] exploit correlations across pro-

tocols and time, to identify webmail traffic over HTTPS.
They exploit the following features: (i) service proximity—
webmail servers tend to reside in the same domain or
subnet as SMTP, IMAP, and POP servers, that are iden-
tifiable using port numbers [243], (ii) activity profiles—
irrespective of the protocol (i.e. IMAP, POP, webmail),
users of a mail server share distinct daily and weekly usage
habits, (iii) session duration—users of a webmail service
spend more time on emails than other web pages and tend
to keep the web client open for incoming messages, and
(iv) periodicity—webmail traffic exhibit periodic patterns
due to application timers (e.g. asynchronous checking
for new message from AJAX-based clients). The authors
show that these features act as good discriminators for a
SVM classifier to differentiate between webmail and non-
webmail traffic. Using 5-fold cross validation, the classifier
achieves an average accuracy of 93.2% and a precision
of 79.2%. The higher FN is attributed to the inability of
the classifier to distinguish between VPN and webmail
servers.

The data exchanged amongst P2P applications is highly
discriminative [53]. For example, a P2P application may
establish long flows to download video content from a
few peers. Whereas, another P2P application may prefer
to use short flows to download fixed size video chunks
from many peers in parallel. Therefore, Bermolan et al.
[53] leverage this behavior to derive P2P application signa-
tures from the packets and bytes exchanged between peers
in small time windows. Formally, the application signature
is the probability mass function (PMF) of the number of
peers that send a given number of packets and bytes to a
peer in the time interval �T .
These signatures are used to train a SVM classifier with

a Gaussian kernel function and exponential binning strat-
egy, with a rejection threshold (distance metric) of 0.5,
to discriminate between applications belonging to the
P2P-TV class (i.e. PPLive, TVAnts, SopCast, Joost). The
authors evaluate the sensitivity of parameters to optimize
their settings in order to guarantee the best performance,
that is higher TPR and lower FPR. The classifier results
in a worst-case TPR of about 95%, with FPR well below
0.1%. Also, temporal and spatial portability of signatures
is validated with marginal degradation in performance.
However, the accuracy of the host behavior-based traf-

fic classification strongly depends on the location of
the monitoring system, especially since the observed
communication pattern may be affected by routing asym-
metries in the network core [229].

4.3 Flow Feature-based traffic classification
In contrast to payload-based and host behavior-based
traffic classifiers, flow feature-based classifiers have a dif-
ferent perspective. They step back and consider a com-
munication session, which consists of a pair of complete
flows. A complete flow is a unidirectional exchange of
consecutive packets on the network between a port at an
IP address and another port at a different IP address using
a particular application protocol [100]. It is identified with
the quintuple 〈srcIP, destIP, srcPort, destPort, protocol〉.
For example, a complete flow in an online game session
would consist of all sequential packets sent from source
s to destination d (e.g. host to game server). Therefore, a
complete flow includes all packets pertaining to session
setup, data exchange and session tear-down. A sub-flow
is a subset of a complete flow and can be collected over
a time window in an on-going session. A feature is an
attribute representing unique characteristic of a flow, such
as packet length, packet inter-arrival time, flow duration,
and number of packets in a flow. Flow feature-based tech-
nique uses flow features as discriminators to map flows to
classes of interest.
In essence, flow feature-based traffic classification

exploits the diversity and distinguishable characteristics
of the traffic footprint generated by different applications
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[31, 467]. It has the potential to overcome numer-
ous limitations of other techniques, such as unregis-
tered port numbers, encrypted packet payload, routing
asymmetries, high storage and computational overhead
[55, 138, 176, 347]. However, it remains to be evaluated
if flow feature-based classifiers can achieve the accuracy
of payload-based classifiers [176, 286]. The correspond-
ing traffic classification problem can be defined as follows:
given a set of flows X = {x1, x2, x3, . . . , x|X|}, such that
X consists of either complete or sub-flows, and a set of
classes of interest Y = {y1, y2, y3, . . . , y|Y |}, find the map-
ping g(X) → Y . This mapping can be used to classify
previously unseen flows. ML is an ideal tool for finding
this mapping automatically.

4.3.1 Supervised complete flow feature-based traffic
classification

One of the earliest works in network traffic classifica-
tion using ML is from Roughan et al. [390]. They employ
k-NN and Linear Discriminant Analysis (LDA) to map
network traffic into different classes of interest based on
QoS requirements. Their traffic classification framework
uses statistics that are insensitive to application protocol.
The authors employ both packet-level and flow-level fea-
tures. However, they observe that the average packet size
and flow duration act as good discriminators, hence used
these in their preliminary evaluation.
In their evaluation, k-NN outperforms LDA with the

lowest error rate of 5.1 and 9.4% for four and seven class
classification, respectively. They notice that often stream-
ing applications behave very similar to bulk data trans-
fer applications. Therefore, either a prioritization rule is
necessary to break the tie, or extended/derivative fea-
tures must be employed to act as good disciminators.
In their extended evaluation, the authors employ inter-
arrival variability to distinguish between streaming and
bulk data transfer applications.
On the other hand, flow features were also leveraged in

Moore and Zuev [321] that extend NB with Kernel Esti-
mation (NBKE) to overcome the limitations that make
it impractical for network traffic classification. Though,
NB classifiers have been commonly used in classification,
they have two fundamental assumptions, (i) probability of
occurrence of each feature being independent from the
occurrence of another feature, and (ii) probability dis-
tribution of a feature following a Gaussian distribution.
Both of these assumptions are unrealistic for traffic clas-
sification and lead to poor accuracy. However, NBKE is a
feasible alternate that generalizes NB and overcomes the
Gaussian distribution approximation assumption.
Features are extracted from the header of packets in

TCP flows using Fast Correlation-Based Filter (FCBF) to
address the first assumption. In this way, NBKEwith FCBF
achieves a classification accuracy of upto 95% and TPR of

upto 99%. It also achieves temporal stability by classifying
new flows collected twelve months later with an accuracy
of 93% and TPR of 98%. Moreover, it also outperforms NB
with respect to training time. However, it incurs increased
inference time, especially for classifying unknown
flows [347].
Realizing the need for lightweight traffic classification,

Jiang et al. [218] further reduce the complexity of KE by
employing symmetric uncertainty and correlation mea-
sures for feature selection, derived from flows rather than
packets. In this manner, NBKE can still be used to classify
flows with an accuracy of 91.4%. Though, the classification
accuracy is lower than the NBKE in [321], the techniques
of varying sampling and application aware feature selec-
tion increases its applicability for online classification.
Generally, when training time is important, NBKE clas-
sifiers are preferred over tree-based approaches, such as
C4.5 DT and NB tree [347, 476]. However, DT performs
better than NBKE, with respect to execution time and
space in memory [347]. Unfortunately, DT suffers from
overfitting with noisy data, which deteriorates perfor-
mance [347].
It is not always possible to collect bidirectional flows due

to routing asymmetries [138, 347]. However, it is possible
to derive components of the feature vector for an appli-
cation class given a priori knowledge [347], or estimate
the missing statistics [138]. In addition, filtering can be
leveraged to reduce the dimensionality of the feature space
and the training time. Park et al. [347] employ supervised
tree-based classifiers on unidirectional flows and compare
them against NBKE using WEKA [288]. They exploit the
faster classification time and lowmemory storage require-
ments of DT to employ Reduced Error Pruning Tree (REP-
Tree) for classification. REPTree finds a sub-optimal tree
that minimizes classification error. In addition, the Bag-
ging ensemble is used to classify flows using majority rule
to aggregate multiple REPTree predictions. Recall, that
P2P bulk data transfer and streaming applications often
behave similar to each other [390]. Therefore, the authors
in [347] employ a burst feature to better discriminate
between such classes. The burst feature is based on packet
inter-arrival statistics and a predetermined threshold that
dictates whether packets are exhibiting “bursty” behavior.
Evidently, bulk data transfer applications exhibit higher
burst than streaming applications.
Though, it was presumed that Bagging will outperform

REPTree, both classifiers exhibited similar performance.
REPTree achieves over 90% accuracy in classification of
unidirectional flows and plateaus at seven features. This
is in contrast to NBKE, where the classification accuracy
deteriorates dramatically with increasing number of fea-
tures. Though, the accuracy of REPTree is sensitive to
packet sampling, the degradation is limited if the same
sampling rate is used for both training and testing data.
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Evidently, supervised learning yields high classification
accuracy, due to a priori information about the charac-
teristics of the classes of interest. However, it is infeasible
to expect complete a priori information for applications,
since often network operators do not even know all the
applications that are running in the network. Therefore,
Zhang et al. [496] present a traffic classification scheme
suitable for a small set of supervised training dataset. The
small labeled training set can be trivially hand-labeled
based on the limited knowledge of the network operators.
They use discretized statistical flow features and Bag-of-
Flow (BoF)-based traffic classification. A BoF consists of
discretized flows (i.e. correlated flows) that share the des-
tination IP address, destination port and transport layer
protocol.
Traditional NB classifiers are simple and effective in

assigning the test data a posterior conditional probability
of belonging to a class of interest. The BoF-based traf-
fic classification leverages NB to generate predictions for
each flow, and aggregate the predictions using rules, such
as sum, max, median, majority, since flows are correlated.
The F-measure, used to evaluate per class performance,
of BoF-NB outperforms NB irrespective of the aggrega-
tion rule. For example, the F-measure of BoF-NB with the
sum rule is over 15 and 10% higher than NB for DNS and
POP3, respectively. Evidently, the accuracy increases and
error sensitivity decreases as the size of BoFs increase, due
to the growth in BoF intra-diversity [496].
Zhang et al. [497] propose a scheme, called Robust

Traffic Classification (RTC). They combine supervised
and unsupervised ML techniques for the classification
of previously unknown zero-day application traffic, and
improving the accuracy of known classes in the pres-
ence of zero-day application traffic. Their motivation is
that unlabeled data contains zero-day traffic. The pro-
posed RTC framework consists of three modules, namely
unknown discovery, BoF-based traffic classification, and
system update.
The unknown discovery module uses k-Means to iden-

tify zero-day traffic clusters, and RF to extract zero-day
samples. The BoF module guarantees the purity of zero-
day samples, which classifies correlated flows together,
while the system update module complements knowl-
edge by learning new classes in identified zero-day traffic.
RTC is novel in its ability to reflect realistic scenarios
using correlated flows and identify zero-day applications.
Therefore, even with small labeled training datasets, RTC
can achieve a higher flow and byte accuracy of up to 15%
and 10%, respectively, in comparison to the second best
technique.
The accuracy of traffic classification can be increased to

over 99%, by using the discriminative MLP-NN classifier
to assign membership probabilities to flows. Auld et al.
[26] employ hyperbolic tangent for activation function

and a softmax filter to ensure that activation to out-
put generates a positive, normalized distribution over the
classes of interest. Their MLP-NN with Bayesian trained
weights (BNN) also increases the temporal accuracy of
the classifier to 95%. The increase in accuracy is pri-
marily achieved due to the ability to reject predictions.
Though the NN with Bayesian weights attain very high
performance, it comes at the cost of high compute and
storage overhead. Furthermore, some employed features,
such as effective bandwidth based on entropy and fourier
transform of packet inter-arrival time are computationally
intensive, inhibiting its use for online classification. The
authors purport that their Bayesian trained weights are
robust and efficient, and require only zero or one hidden
layer.
On the other hand, Probabilistic Neural Network (PNN)

uses Bayes inference theory for classification. Sun et al.
[431] leverage PNN that requires no learning processes,
no initial weights, no relationship between learning and
recalling processes, and the difference between inference
and target vectors are not used to modify weights. They
employ an activation function that is typical in radial basis
function networks and filter out mice flows. Elephant
versus mice flows is a prevalent problem in traffic classi-
fication, since there is often a lack of representative data
for the short-lived mice flows. Often, these flows are dis-
carded for efficient classification. The authors detect mice
flows as those flows that contain less than 10 packets and
the duration is less than 0.01s. They show that PNN out-
performs RBFNN, a feed forward neural network with
only two layers and a typical non-linear RBF activation
function.
In contrast, Este et al. [140] use single-class SVM fol-

lowed by multi-class SVM for traffic classification. They
consider “semantically valid” bidirectional TCP flows,
while ignoring short flows. A grid is maintained to keep
track of the percentage of vectors of training sets that are
correctly and incorrectly classified as a class. To reduce
the overhead in the grid search, they randomly select a
small number of flows from the training set to satisfacto-
rily train both single and multi-class classifiers to classify
using the first few packets payload sizes. The Multi-class
stage is only resorted to, if the single-class stage is unable
to clearly identify the application classes. The authors
apply their technique to different datasets, with TP of
over 90% and low FP for most classes. However, the per-
formance is compromised for encrypted traffic, where
ground truth is established using unreliable port-based
labeling.
A traffic classification problem with more than two

classes, naïvely transforms the SVM into N one-vs-
rest binary subproblems, resulting in a higher computa-
tion cost for a large number of classes. However, Jing
et al. [223] propose a SVM based on tournaments for
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multi-class traffic classification. In the tournament design
of SVM, in each round the candidate classes are ran-
domly organized into pairs, where one class of each pair is
selected by a binary SVM classifier, reducing the candidate
classes by half. This limits the number of support vectors,
which is now based only on the two classes in the pair in
contrast to using the entire training dataset. This all-vs-
all approach to multi-class classification in SVM results
in a much lower computational cost for classification. The
tournament in [223] results in only one candidate class
being left as the classified class.
It is important to note that it is possible that the most

appropriate class is eliminated, resulting in higher mis-
classification. To overcome this, a fuzzy policy is used
in the tournament. It allows competing classes to pro-
ceed to the next round without being eliminated, if nei-
ther class has a clear advantage over the other. However,
if two classes are continually paired against each other,
the fuzzy rule will break the tie. Unfortunately, this spe-
cial handling results in higher computational cost. The
authors compare their proposed basic tournament and
fuzzy tournament (FT-SVM) schemes with existing SVM
[270] and [140]. The FT-SVM scheme achieves a high
overall accuracy of up to 96%, reduces classification error
ratio by up to 2.35 times, and reduces average computa-
tion cost by up to 7.65 times.
Traditional SVM and multi-class SVM fall short in effi-

ciency for large datasets. Therefore, Wang et al. [464]
use multi-class SVM along with an unbalanced binary
SVM to perform statistics-based app-level classification
for P2P traffic. Unlike the typical approach of decompos-
ing a multi-class problem into multiple binary classifica-
tion problems and using one-vs-all approach, the authors
employ the all-together approach. They leverage NetFlow
to collect TCP flows on the edge router of their cam-
pus network. In the classification process, unknown flows
go through the unbalanced binary model first. Only if
identified as P2P, they go through a weighted multi-class
model. The unbalanced binary SVM model is built using
non-P2P and N types of P2P traffic to help decrease FP
(i.e. misclassification of non-P2P traffic as P2P). Whereas,
the weighted multi-class model is trained using N types
of P2P traffic, giving more weight to data traffic than
control/signaling traffic. The proposed scheme correctly
classifies atleast 75% and atmost 99% of the entire P2P
traffic with generally low misclassification.

4.3.2 Unsupervised complete flow feature-based traffic
classification

It is not always possible to apply supervised learning on
network traffic, since information about all applications
running in the network is rarely available. An alternate
is unsupervised learning, where the training data is not
labeled. Therefore, the classes of interest are unknown. In

this case, ML techniques are leveraged to learn about sim-
ilarities and patterns in data and generate clusters that can
be used to identify classes of interest. Therefore, cluster-
ing essentially identifies patterns in data and groups them
together. In hard clustering, an unknown data point must
belong to a single cluster, whereas, in soft clustering, a data
point can be mapped into multiple different clusters.
Hard clustering often relies on distance and similarity

metrics to select a cluster that most closely resembles a
data point. Liu et al. [283] employ hard clustering using
k-Means with unsupervised training and achieve an accu-
racy of up to 90%. They use complete TCP flows and
log transformation of features to extract and approxi-
mate features to a normal distribution, disposing of any
noise and abnormality in data. However, it is unrealis-
tic to apply hard clustering for membership, since flow
features from applications, such as HTTP and FTP can
exhibit high similarity [303]. Therefore, it is impractical to
assume a cluster can accurately represent an application
[492]. Hence, a fine-grained view of applications is often
necessary by employing soft clustering and assigning an
unknown data point to a set of clusters. EM is an iter-
ative and probabilistic soft clustering technique, which
guesses the expected cluster(s) and refines the guess using
statistical characteristics, such as mean and variance.
McGregor et al. [303] employ EM to group flows with

a certain probability and use cross-validation to find the
optimal number of clusters. To refine the clusters, they
generate classification rules from the clusters and use the
rules to prune features that have insignificant impact on
classification and repeat the clustering process. Though,
promising preliminary results indicate stable clusters and
an alternative to disaggregate flows based on traffic types,
very limited results are provided.
Similarly, AutoClass is an EM approximation approach

employed in Zander et al. [492] that automatically creates
clusters from unlabeled training datasets. The boundaries
of the classes are improved using an intra-class homo-
geneity metric, defined as the largest fraction of flows
belonging to one application in the class. Their objective
is to maximize the mean of intra-class homogeneities and
achieve a good separation between different application
data. On average, the intra-class homogeneity improves
as number of features increase. It eventually plateaus at
approximately 0.85-0.89, which implies that it is possi-
ble to achieve a good separation between classes without
using the full set of features. However, this is still compu-
tationally expensive.
Erman et al. [136] uncover that this computational over-

head can be reduced by training with half of the clusters,
since majority of flows were grouped into these clusters.
The trade-off between an intra-class homogeneity metric
[492] versus iterative clustering remains to be investi-
gated. The suitability of unsupervised learning in traffic
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classification reached an milestone when AutoClass was
employed to achieve an accuracy of over 91%, higher
than the 82.5% accuracy of the supervised NBKE [136].
Thus, it became possible to identify previously unknown
applications. Unfortunately, the training time of Auto-
Class is magnitudes higher than the training time of
NBKE [321].
In contrast to EM-based unsupervised clustering,

density-based clustering has been found to have a signif-
icantly lower training time. Furthermore, density-based
spatial clustering of applications with noise (DBSCAN)
has the ability to classify noisy data in contrast to k-Means
and AutoClass. It differs from conventional clustering, as
it exploits the idea of a core object and objects connected
to it. An object that does not belong in the neighbor-
hood of a core object and is not a core object itself, is
noise. Noisy objects are not assigned to any clusters. The
neighborhood around an object is demarcated by epsilon
(eps). An object is determined to be the core of the cluster
when the number of objects in its neighborhood exceeds
minimum number of points (minPts). In this manner, data
points are evaluated to be core points, neighbors of core,
or noise, and assigned to clusters or discarded accordingly.
Erman et al. [135] leverage DBSCAN with transport

layer statistics to identify application types. Flows are
collected from TCP-based applications, identifying flow
start and end based on the TCP three way handshake
and FIN/RST packets, respectively. They employ loga-
rithms of features due to their heavy-tail distribution
and deduce similarity based on Euclidean distance. The
authors use WEKA [288] and Cluster 3.0 [194] for eval-
uating DBSCAN, AutoClass and k-Means clustering and
found that AutoClass outperforms DBSCAN. However,
training time of DBSCAN is magnitudes lower than Auto-
Class, 3 min vs. 4.5 h. Furthermore, its non-spherical
clusters are more precise than the spherical clusters of k-
Means. Uniquely, DBSCAN has the ability to classify data
into the smallest number of clusters, while the accuracy of
k-Means is dependent on the cluster size.
Erman et al. [138] extend their previous work [136]

to employ unidirectional TCP flows to classify network
traffic using k-Means. The motivation for unidirectional
flows is justified, since it may not always be possible to
collect bidirectional flows due to routing asymmetries
[138, 347]. Therefore, the authors analyze the effective-
ness of flows in one direction. To this end, they divide
their dataset into three sets, consisting of server-to-client
flows, client-to-server flows, and random flows that have
a combination of both. The beginning and ending of the
TCP flows are identified using SYN/SYNACK packets
and FIN/RST packets, respectively. Whereas, a cluster is
labeled to the traffic class with the majority of flows. As
the number of clusters increase, it is possible to identify
applications with a finer granularity.

It is observed that server-to-client flows consistently
exhibit the highest average classification accuracy of 95
and 79% for flows and bytes, respectively. However, the
random flows attain an average accuracy of 91 and 67%
for flows and bytes, respectively. Whereas, the client-to-
server flows show the average classification accuracy of
94 and 57% for flows and bytes, respectively. Also, the
ML model using the server-to-client dataset has precision
and recall values of 97% for Web traffic, while the P2P
traffic had a precision of 82% and a recall of 77%. It is
apparent that features from traffic in the server-to-client
direction act as a good discriminators to classify unidi-
rectional TCP flows. Furthermore, many network applica-
tion’s payload size is much higher in the server-to-client
direction.

4.3.3 Early and sub-flow-based traffic classification
Relying on the completion of a flow for traffic classifi-
cation not only surmounts to extensive classifier training
time and memory overhead, but also delays time-sensitive
classification decisions. Therefore, Bernaille et al. [55]
leverage the size and direction of the first few P pack-
ets from an application’s negotiation phase (i.e. during
TCP connection setup) for early traffic classification. They
inspect packet payload to establish flow labels and employ
unsupervised k-Means clustering to model the applica-
tion classes. The authors empirically deduce the optimal P
and number of clusters (k) that strikes a balance between
behavior separation and complexity. They represent a flow
in a P-dimensional space, where the pth coordinate is the
size of the pth packet in the flow and compute a behav-
ioral similarity between flows using Euclidean distance
between their spatial representations.
In the online classification phase, the distance between

the spatial representation of a new flow and the cen-
troid of all the clusters is computed. The flow is classified
to the cluster with the minimum distance, hence to the
dominant application class in the cluster. This approach
achieves a classification accuracy exceeding 80% with P =
5 and k = 50 for most application classes. However, if
different application classes exhibit similar behavior dur-
ing the application’s negotiation phase, their flows can
be easily misclassified. For example, POP3 is always mis-
classified as NNTP and SMTP, the dominant application
classes in corresponding clusters. However, this issue can
be resolved by leveraging port number as a feature during
cluster composition [56], which increases the classifica-
tion accuracy of POP3 to over 90%.
Key advantages of the traffic classification approach in

[55] is the ability to classify the same set of application
classes from another network, since network packet sizes
are similar across different traces. Furthermore, as their
approach does not depend on packet payload, it is suit-
able for classifying encrypted traffic. Though, the packet
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size may increase due to encryption method used, it can
be adjusted for based on a simple heuristic [56]. How-
ever, a fundamental requirement is to extract the first few
packets during the negotiation phase of a TCP connec-
tion. Though simplistic, it is not always possible, especially
in networks that use packet sampling. Furthermore, it
is impractical for networks that have high load or miss
packet statistics.
The classification accuracy of stand-alone classifiers

that perform early classification, can be significantly
improved by combining the outputs of multiple classi-
fiers using combination algorithms [108, 121]. Donato
et al. [121] propose Traffic Identification Engine (TIE),
a platform that allows the development and evaluation
of ML (and non-ML) classification techniques as plu-
gins. Furthermore, TIE capitalizes on complementarity
between classifiers to achieve higher accuracy in online
classification. This is realized by using classifier out-
put fusion algorithms, called combiners, including NB,
majority voting (MV), weighted majority voting (WMV),
Dempster-Shafer (D-S) [484], Behavior-Knowledge Space
(BKS) method [199], andWernecke (WER) method [473].
Note, BKS-based combiners overcome the independent
classifier assumption of the other combiners [108]. How-
ever, due to the reliance of classifiers on the first few
packets, it inherits the limitations of [56].
The authors [108, 121] evaluate the accuracy of the

stand-alone classifiers and the combiners. They extract
features for ML from flows in proprietary dataset, which
is split into 20% classifier training set, 40% classifier and
combiner validation set, and 40% classifier and combiner
test set. The authors label the dataset using a ground
truth classifier e.g. payload-based (PL) classifier. In stand-
alone mode, the J48 classifier achieves the highest overall
accuracy of 97.2%. Combining the output of J48 with
other classifiers (i.e. RandomTree, RIPPER, PL) using BKS
method, increases the overall accuracy to 98.4%, when
considering first 10 packets per bidirectional flow. Most
notably, an average gain in accuracy of 42% is achieved
when extracting features from only the first packet, which
is significant for online classification. However, higher
accuracies are achieved when PL classifier is considered
by the combiners in the pool of classifiers, thus increasing
computational overhead.
The objective of Nguyen et al. [337] is to design a traf-

fic classifier that can perform well, irrespective of missing
statistics, using a small number of most recent packets,
called sub-flows [336]. These sub-flows are derived by
using a small sliding window over each flow, of N consec-
utive packets and a step fraction S, to start at packet 0 and
slide across the training dataset in steps of N/S. Param-
eters N and S are critically chosen based on the memory
limitations and the trade-off between classification time
and accuracy.

To ensure high accuracy of the classifier it is imper-
ative to identify and select sub-flows that best capture
the distinctive statistical variations of the complete flows.
To this end, the authors manually identify sub-flow start-
ing positions based on protocol knowledge. They leverage
Assistance of Clustering Technique (ACT) [338] to auto-
mate the selection of sub-flows using unsupervised EM
clustering to establish ground truth. To account for direc-
tionality, Synthetic Sub-flow Pairs (SSP) are created for
every sub-flow recorded with forward and backward fea-
tures swapped, both labeled as the same application class
[335].
Finally, the authors in [337] use NetMate [21] to com-

pute feature values and employ supervised NB and C4.5
DT for traffic classification using WEKA [288]. Both clas-
sifiers perform well when evaluated with missing flow
start, missing directionality, or 5% independent random
packet loss. However, the C4.5 DT classifier performs
better with 99.3% median recall and 97% median preci-
sion, and achieved 95.7% median recall and 99.2% median
precision, for sub-flow size N = 25 packets for Enemy
Territory and VoIP traffic, respectively. The authors also
evaluate a real-world implementation of their approach,
called DIFFUSE, for online traffic classification. DIFFUSE
achieves a high accuracy of 98-99% for Enemy Territory
(online game) and VoIP traffic replayed across the net-
work, while monitoring one or more 1 Gb/s links. Despite
the high accuracy, this technique lacks in flexibility, since
the classifier can only recognize the application classes
that were known a priori.
Erman et al. [137] propose a semi-supervised TCP traf-

fic classification technique that partially overcomes a limi-
tation of [55] and [337]—a priori knowledge of application
class or protocol. They have the following objectives: (i)
use a small number of labeled flows mixed with a large
number of unlabeled flows, (ii) accommodate both known
and unknown applications and allow iterative develop-
ment of classifiers, and (iii) integrate with flow statistics
collection and management solutions, such as Bro [350]
and NetFlow [100], respectively.
To accomplish this, the authors employ backward

greedy feature selection (BGFS) [173] and k-Means clus-
tering to group similar training flows together, while using
Euclidean distance as the similarity metric. Here, the
objective is to use the patterns hidden in flows to assign
them together in clusters, without pre-determined labels.
Note, a small set of pre-determined labels are assigned
to clusters using maximum likelihood, mapping clusters
to application classes. While, other clusters remain unla-
beled, accommodating for new or unknown applications.
Thus, unknown flows are assigned to an unlabeled clus-
ter. This gives network operators the flexibility to add
new unlabeled flows and improve classifier performance
by allowing identification of application classes that were
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previously unknown. The authors establish ground truth
using payload-based signature matching with hand classi-
fication for validation.
In offline classification, the authors in [137] achieve over

94% flow accuracy with just two randomly labeled flows
per cluster, amongst a mix of 64,000 unlabeled flows and
k = 400. For real-time classification, the authors leverage
a layered classification approach, where each layer repre-
sents a packet milestone, that is, the number of packets
a flow has sent or received within a pre-defined sliding
window. Each layer uses an independent model to clas-
sify ongoing flows based on statistics available at the given
milestone.
Though, the model is trained with flows that have

reached each specific packet milestone, previously
assigned labels are disregarded upon reclassification. A
significant increase in the average distance of new flows
to their nearest cluster mean is indicative of the need for
retraining, which could be achieved by incremental learn-
ing. This approach not only has a small memory footprint,
it allows to update the model and potentially improve
classification performance [137]. The authors integrate
their layered online classification in Bro and achieve byte
accuracies in the 70-90% range. Furthermore, the classifier
remains fairly robust over time for different traces.
Similar to [137, 337], Li et al. [270] classify TCP traffic

into application classes, including unknown application
classes using a few packets in a flow. Their approach
uniquely trains the ML model for the application class
“Attack”, that enables early detection and classification of
anomalous traffic. They employ C4.5 DT to achieve high
accuracy for online classification and reduce complexity
in the number of features, by using correlation-based fil-
tering. They perform their evaluations on WEKA [288],
and find C4.5 DT to outperform C4.5 DT with AdaBoost
and NBKE.
The classification accuracy of C4.5 DT with 0.5% ran-

domly selected training flows, exceed 99% for most classes
except Attack, which exhibits moderate-high recall. This
is because Attack is a complex application class that shows
no temporal stability and its characteristics dynamically
change over time. However, it may be possible to over-
come this by iterative retraining of the classifier, either
by using approach similar to [137] or introducing rules
(e.g. based on port numbers or flow metrics) in the DT
to increase temporal stability of the classifier. Further-
more, the use of port numbers in conjunction with other
features results in a slightly higher accuracy. However,
this leaves the classifier vulnerable to issues in port-based
classification.
In contrast to the semi-supervised and unsupervised

techniques for TCP andUDP traffic classification, Jin et al.
[222] employ a supervised approach. They classify net-
work traffic using complete flows, while achieving high

accuracy, temporal and spatial stability, and scalability. For
accuracy and scalability, their system offers two levels of
modularity, partitioning flows and classifying each parti-
tion. In the first level, domain knowledge is exploited to
partition a flow into m non-overlapping partitions based
on flow features, such as protocol or flow size. Second,
each partition can be classified in parallel, leveraging
a series of k-binary classifiers. Each binary classifier, i,
assigns a likelihood score that is reflective of the probabil-
ity of the flow belonging to the ith traffic class. Eventually,
the flow is assigned to the class with the highest score.
They design and leverage weighted threshold sampling

and logistic calibration to overcome the imbalance of
training and testing data across classes. Though, non-
uniform weighted threshold sampling creates smaller bal-
anced training sets, it can distort the distribution of
the data. This may violate the independent and identi-
cally distributed assumption held by most ML algorithms,
invalidating the results of the binary classifiers. Therefore,
logistic calibrators are trained for each binary classifier
and used at runtime to adjust the prediction of the binary
classifiers.
The authors in [222] evaluate their system with respect

to spatial and temporal stability, classification accuracy,
and training and runtime scalability. With training and
testing data collected two months apart from two differ-
ent locations, result in low error rates of 3 and 0.4% for
TCP and UDP traffic, respectively. However, with a larger
time difference between training and testing data collec-
tion, the error rates increase to 5.5 and 1.2% for TCP and
UDP traffic, respectively. By employing collective traffic
statistics [221] via colored traffic activity graphs (TAGs)
improves the accuracy for all traffic classes, reducing the
overall error rate by 15%.
This diminishes the need for frequent retraining of the

classifiers. Their system also provides flexible training
configuration. That is, given a training time budget it can
find the suitable amount of training data and iterations of
the ML algorithm. It took the system about two hours to
train the classifiers resulting in the reported error rates.
Furthermore, their system on a multi-core machine using
multi-threads, was able to handle 6.5 million new flows
arriving per minute.

4.3.4 Encrypted traffic classification
Various applications employ encryption, obfuscation and
compression techniques, that make it difficult to detect
the corresponding traffic. Bonfiglio et al. [69] perform
controlled experiments to reverse engineer the structure
of Skype messages between two Skype clients (E2E) and
between a Skype client and a traditional PSTN phone
(E2O). The proposed framework uses three technique to
identify Skype traffic, with a focus on voice calls, regard-
less of the transport layer protocol, TCP or UDP. The
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first technique uses a classifier based on the Pearson’s
χ2 test that leverages the randomness in message con-
tent bits, introduced by the Skype encryption process, as
a signature to identify Skype traffic. Whereas, the sec-
ond technique is based on NB classifier that relies on
the stochastic characteristics of traffic, such as message
size and average inter-packet gap, to classify Skype traffic
over IP. The third technique uses DPI to create a baseline
payload-based classifier.
In the evaluation, the NB classifier is effective in iden-

tifying all voice traffic, while the χ2 classifier accurately
identifies all Skype traffic over UDP and all encrypted
or compressed traffic over TCP. Jointly, NB and χ2 clas-
sifier outperform the classifiers in isolation by detecting
Skype voice traffic over UDP and TCP with nearly zero FP.
However, higher FNs are noticeable in comparison to the
isolated classifiers, as the combination disregards video
and data transfers, and correctly identify only those Skype
flows that actually carry voice traffic.
The identification of Skype traffic at the flow level is

also addressed in Alshammari et al. [17] by employing
supervised AdaBoost, Repeated Incremental Pruning to
Produce Error Reduction (RIPPER), SVM, NB and C4.5
DT classifiers. Additionally, these classifiers are used to
identify Secure Shell (SSH) encrypted traffic. The authors
use flow-based statistical features extracted using Net-
Mate [21] and leverageWEKA [288] to train the classifiers
using a sampled dataset for SSH, non-SSH, and Skype,
non-Skype traffic. The trained models are applied to com-
plete datasets to label flows as SSH, non-SSH, Skype and
non-Skype.
In the evaluation, C4.5 DT outperform the other clas-

sifiers for the majority of datasets. For SSH traffic, it
achieves 95.9%DR and 2.8% FPR on theDalhousie dataset,
97.2% DR and 0.8% FPR on the AMP dataset, and 82.9%
DR and 0.5% FPR on the MAWI dataset. Furthermore,
when trained and tested across datasets (i.e. across net-
works), it achieves 83.7% DR and 1.5% FPR. Hence, it
generalizes well from one network to another. The C4.5
DT classifier also performed well for Skype traffic with
98.4% DR and 7.8% FPR in the Dalhousie dataset. How-
ever, secure communication in SSH and HTTPS ses-
sions can contain a variety of applications, identification
of which may be needed for granularity. Unfortunately,
Alshammari et al. [17] do not detect the precise applica-
tions within a secure session.
This problem is addressed by Shbair et al. [409]

by adopting a hierarchical classification to identify the
service provider (e.g. google.com, dropbox.com), fol-
lowed by the type of service (e.g. maps.google.com,
drive.google.com) that are encapsulated in TLS-based
HTTPS sessions. They start with the reconstruction of
TLS connections from the HTTPS traces and label them
using the Server Name Identification (SNI) field, creating

the service provider-service hierarchy. These labeled con-
nections are used to build: (i) a classifier to differen-
tiate between service providers, and (ii) a classifier for
each service provider to differentiate between their cor-
responding services. This hierarchical approach reduces
the effort required to retrain the classifiers in the event of
an addition of a new service. They use statistical features
extracted over encrypted payload with CFS and employ
C4.5 DT and RF classifiers.
In the evaluation, RF performs better in comparison

to C4.5 DT with a precision of 92.6%, recall of 92.8%,
and F-measure of 92.6%, to classify service providers
with selected features. Furthermore, the accuracy of ser-
vice classification is between 95-100% for majority of the
providers. Thus, asserting the benefit of a hierarchical
approach to traffic classification. Also, overall accuracy of
the system across both levels is 93.10% with a degrada-
tion of less than 20% over a period of 23 weeks without
retraining.

4.3.5 NFV and SDN for traffic classification
Recent advances in network paradigms, such as Network
Functions Virtualization (NFV) and SDN enable flexi-
ble and adaptive techniques for traffic classification. The
efforts discussed in this subsection present contrasting
approaches for traffic classification using ML in soft-
warized and virtualized networks.
It is well-known that the performance of classifiers vary

significantly based on the type of flow features used. Fur-
thermore, flows inherently exhibit specific characteristics
of network applications and protocols. Therefore, find-
ing the ideal set of features is fundamental to achieve
efficiency in traffic classification. In a preliminary effort,
He et al. [182] propose a NFV-based traffic-driven learn-
ing framework for traffic classification, called vTC. vTC
consists of a controller, and a set of ML classifiers and fea-
ture collectors as virtual network functions (VNFs). Their
objective is to dynamically select the most effective ML
classifiers and the most cost-efficient flow features, by
leveraging a controller and a group of VNFs, for traffic
classification. The vTC framework strives to achieve a bal-
ance between classification accuracy and speed, and the
choice of features have a significant impact on these crite-
ria. Therefore, it is critical to determine the most suitable
classifier and dynamically adjust feature collection for a
given flow protocol (e.g. TCP, UDP, ICMP).
The cost of extracting different features vary from one

another. The same holds true for the execution of clas-
sifiers. Therefore, it is important to: (i) identify whether
a feature should be collected on the data plane or the
control plane, and (ii) have a centralized view of net-
work resources while selecting the appropriate classifier.
The controller in vTC is responsible for maintaining the
ML models from offline training, and selecting the most
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suitable classifier and flow features to collect by chain-
ing the corresponding VNFs at runtime. It also monitors
the load on the VNFs for scaling resources, if necessary.
The adaptive selection of features and classifiers in vTC,
based on the flow protocol, result in an accuracy of 95.6%.
However, the performance overhead of adaptive selection
of classifiers and features, and chaining of corresponding
VNFs in vTC is not discussed. Furthermore, fine-grained
classification and corresponding results are missing.
SDN offers built-in mechanisms for data collection via

the OpenFlow (OF) protocol. Amaral et al. [19] harness
SDN and OF to monitor and classify TCP enterprise net-
work traffic. They leverage ML to extract knowledge from
the collected data. In their architecture, a SDN applica-
tion collects flow statistics from controlled switches and
pro-actively installs a flow entry to direct all packets to the
controller. For TCP traffic, the controller skips the TCP
control packets, and stores the features of sizes, times-
tamps, MAC and IP addresses, and port numbers for
the first five packets, along with their inter-arrival times.
Then, the controller installs a flow entry with an idle
timeout for local processing at the switch. Upon timeout,
flow features of packet count, byte count and duration are
collected at the controller.
The collected features are pruned using PCA and

adjusted to eliminate high variability and scaling effects.
However, the use of port numbers as a feature leaves the
classifiers susceptible to issues in port-based classifica-
tion. Nevertheless, the authors evaluate three ensemble
ML classifiers, namely RF, Stochastic Gradient Boosting
(SGBoost) and Extreme Gradient Boosting (XGBoost).
The results exhibit high accuracy for some application
classes (e.g. Web Browsing), while poor performance for
others (e.g. LinkedIn). The authors do not provide justi-
fications for the performance of the classifiers. However,
this can be attributed to the fairly small training dataset
used in their evaluation.
In contrast, Wang et al. [462] propose a framework to

classify network traffic to QoS classes rather than appli-
cations. They assume that applications with similar QoS
requirements exhibit similar statistical properties. This
allows for equal treatment of different applications hav-
ing similar QoS requirements. Their framework consists
of two components: (i) traffic identification component
that resides in switches at the network edge, to detect
QoS-significant (i.e. elephant or long-lived) flows, and (ii)
QoS aware traffic classification engine in the SDN con-
troller that leverages DPI (for offline labeling) and semi-
supervised ML to map long-lived flows to QoS classes. A
significant number of flows remain unlabeled due to lim-
ited information on all possible/existing applications, thus
calling for semi-supervised learning.
Similar to [137], periodic retraining of classifier is

required to cater to new applications. The Laplacian-SVM

classifier employed uses flow features from the first twenty
packets to classify flows into QoS classes. Furthermore,
they employ forward feature selection to reduce the num-
ber of features to nine from the initial sixty features. In the
evaluation, the accuracy of classifying long-lived flows to
QoS classes exceed 90%. However, the performance of the
proposed framework is not evaluated, especially in light of
the entropy-based features used for traffic classification.

4.4 Summary
Traditionally, Internet traffic has been classified using
port numbers, payload and host-based techniques. Port-
based techniques are unreliable and antiquated, largely
due to the use of dynamic port negotiation, tunneling
and misuse of port numbers assigned to well-known
applications for obfuscating traffic and avoiding firewalls
[54, 109, 176, 286]. In contrast, payload-based techniques
are designed to inspect application payload. Though, they
are computationally intensive and complicated due to
encryption, supervised and unsupervised ML has been
successfully applied for traffic classification with high
accuracy. Generally, unencrypted handshake payload is
used for traffic classification, which is infeasible for high
data rate links. On the other hand, long-lived UDP traf-
fic lends itself to supervised payload-based traffic clas-
sification, where payload is inspected randomly in an
observation window [146]. However, it is not widely appli-
cable and is highly sensitive to the observation window
size. Similarly, host-based traffic classification is highly
susceptible to routing asymmetries.
In contrast to these myopic approaches, flow feature-

based traffic classification techniques inspect the
complete communication session, which includes all
consecutive, unidirectional packets in the network. This
is the most widely studied technique for traffic classifi-
cation that leverages both supervised and unsupervised
ML. In supervised learning, various kernel estimation,
NN and SVM-based ML techniques have been employed
to achieve high accuracy. Though, traditional kernel
estimation techniques are simple and effective, their
underlying assumptions are unrealistic and infeasible
for traffic classification. In this light, NBKE has been
explored for traffic classification, but NN-based traffic
classification has shown higher accuracy with probabilis-
tic and, or Bayesian trained weights. Similarly, traditional
and multi-class SVM have been applied jointly to increase
the accuracy of traffic classification and its applicability
to large datasets [464].
Rarely do network operators have complete informa-

tion about all the applications in their network. Therefore,
it is impractical to expect complete a priori knowledge
about all applications for traffic classification. Therefore,
unsupervisedML techniques have been explored for prac-
tical traffic classification using flow features. For traffic
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classification with unsupervised ML, both hard and soft
clustering techniques have been investigated. Since flow
features from applications can exhibit high similarity, it
is unrealistic to apply hard clustering for fine-grained
traffic classification. On the other hand, soft clustering
achieves the required granularity with density-based clus-
tering techniques, which also has a lower training time
than EM-based soft clustering technique.
Complete flow feature-based traffic classification has

been shown to achieve high spatial and temporal stabil-
ity, high classification accuracy, and training and runtime
scalability [222]. However, it requires extensive memory
for storage and delays time sensitive classifier decisions.
Flow feature-based traffic classification can be achieved
using only a small of number of packets in a flow, rather
than the complete flow. These sub-flows can be extended
synthetically [55] or derived from a small sliding window
over each flow [337]. Sub-flow-based traffic classifica-
tion achieves high accuracy using fast and efficient C4.5
DT classifier with correlation-based filtering. Similar to
payload-based traffic classification, encryption can also
complicate flow feature-based traffic classification. How-
ever, it is possible to circumvent these challenges. For
instance, a hierarchical method that identifies service
provider followed by type of service, using statistical fea-
tures from encrypted payload has been highly accurate
and temporally stable [409].
Undoubtedly, supervised ML lends itself to accuracy

in traffic classification, while unsupervised techniques
are more robust. Consequentially, joint application of
supervised and unsupervised ML for traffic classifica-
tion [137, 497] has demonstrated success. Not only are
semi-supervised classifiers resilient, they can be easily
adapted for zero-day traffic or retrained for increased
accuracy against previously unknown applications. Recent
advances in networking increase the opportunities in traf-
fic classification with SDN- and NFV-based identification
of applications and classes of QoS. Though, some pre-
liminary work in this area has achieved high accuracy,
more scrutiny is required with respect to their resilience,
temporal and spatial stability, and computational over-
head. Most importantly, it is imperative to assess the
feasibility of these technologies for time sensitive traffic
classification decisions.

5 Traffic routing
Network traffic routing is fundamental in networking and
entails selecting a path for packet transmission. Selection
criteria are diverse and primarily depend on the opera-
tion policies and objectives, such as cost minimization,
maximization of link utilization, and QoS provisioning.
Traffic routing requires challenging abilities for the ML
models, such as the ability to cope and scale with com-
plex and dynamic network topologies, the ability to learn

the correlation between the selected path and the per-
ceived QoS, and the ability to predict the consequences of
routing decisions. In the existing literature, one family of
ML techniques has dominated research in traffic routing,
Reinforcement Learning.
Recall, RL employs learning agents to explore, with no

supervision, the surrounding environment, usually rep-
resented as a MDP with finite states, and learn from
trial-and-error the optimal action policy that maximizes a
cumulative reward. RL models are as such defined based
on a set of states S , a set of actions per stateA(st), and the
corresponding rewards (or costs) rt . When S is associated
with the network, a state st represents the status at time
t of all nodes and links in the network. However, when it
is associated with the packet being routed, st represents
the status of the node holding the packet at time t. In this
case, A(st) represents all the possible next-hop neighbor
nodes, which may be selected to route the packet to a
given destination node. To each link or forwarding action
within a route may be associated an immediate static or
dynamic reward (respectively cost) rt according to a sin-
gle or multiple reward (respectively cost) metrics, such
as queuing delay, available bandwidth, congestion level,
packet loss rate, energy consumption level, link reliability,
retransmission count, etc.
At routing time, the cumulative reward, i.e. the total

reward accumulated by the time the packet reaches its
destination, is typically unknown. In Q-learning, a simple
yet powerful model-free technique in RL, an estimate of
the remaining cumulative reward, also known as Q-value,
is associated with each state-action pair. A Q-learning
agent learns the best action-selection policy by greedily
selecting at each state the action at with highest expected
Q-value maxa∈A(st) Q(st , a). Once the action at is exe-
cuted and the corresponding reward rt is known, the node
updates the Q-value Q(st , at) accordingly as follows:

Q(st , at)←(1−α)Q(st , at)+α

(

rt + γ max
a∈A(st+1)

Q(st+1, a)
)

α (0 < α ≤ 1) and γ (0 ≤ γ ≤ 1) denote the
learning rate and discount factor respectively. The closer
α is to 1, the higher is the impact of the most recently
learned Q-value. While higher γ values make the learn-
ing agent aim for longer-term high rewards. Indeed, the
greedy action-selection approach is only optimal if the
learning agent knows the current Q-values of all possi-
ble actions. The agent can then exploit this knowledge
to select the most rewarding action. If not, an ε-greedy
approach may be used such that with probability ε the
agent chooses to explore a random action rather than
choosing deterministically the one with highest Q-value.
Though, RL is gaining a lot of attention these days, its

application in network traffic routing dates back to the
early 1990s. Boyan and Littman’s [71, 280] seminal work
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introduced Q-routing, a straight-forward application of
the Q-learning algorithm to packet routing. In Q-routing,
a router x learns tomap a routing policy, such as routing to
destination d via neighbor y, to its Q-value. The Q-value is
an estimate of the time it will take for the packet to reach
d through y, including any time the packet would have to
spend in node x’s queue plus the transmission time over
the link x, y. Upon reception of the packet, y sends back to
x the new estimated remaining routing delay, and x adjusts
accordingly its Q-value based on a learning rate. After
convergence of the algorithm, optimal routing policies are
learned.
Q-routing does not require any prior knowledge of the

network topology or traffic patterns. However, experi-
ments on a 36-node network demonstrated the Q-routing
outperforms the shortest path first routing algorithm in
terms of average packet delivery time. It was also found
that, although Q-routing does no exploration or fine-
tuning after policies and Q-values are learned, it still
outperforms in a dynamically changing network topol-
ogy, a full-echo Q-routing algorithm where the policy is
dynamically adjusted to the current estimated time to des-
tination. In fact, under heavy load, the full-echo Q-routing
algorithm constantly changes the routing policy creating
bottlenecks in the network. On the contrary, the orig-
inal Q-routing shows better stability and robustness to
topology changes under higher loads.
Since then the application of Q-learning to packet

routing has attracted immense attention. A number of
research efforts from late 1990s and early 2000s, built
on and proposed improvements to Q-learning, result-
ing in three main research directions: (a) improving the
performance of Q-routing to increase learning and con-
vergence speed [96, 254], (b) leveraging the low com-
plexity of Q-learning and devising Q-learning-inspired
algorithms adapted to the specificities of the network (e.g.
energy-constrained networks) and/or routing paradigm
(e.g. multicast routing [430]), and (c) enforcing further col-
laboration between the routing learning agents to achieve
complex global performance requirements [424, 479].
In 1996, a memory-based Q-learning algorithm called

predictive Q-routing (PQ-routing) is proposed to keep
past experiences to increase learning speed. PQ-routing
keeps past best estimated delivery times to destination via
each neighboring node y and reuses them in tandem with
more current ones. In 1997, Kumar et al. apply dual rein-
forcement Q-routing (DRQ-Routing) to minimize packet
delivery time [254]. DRQ-Routing integrates dual rein-
forcement learning [167] with Q-routing, so that nodes
along the route between the source and the destination
receive feedbacks in both directions (i.e. from both the
up-stream and down-stream nodes). Both PQ-routing and
DRQ-Routing are fully distributed as in Q-routing, and
use only local information plus the feedbacks received

from neighboring nodes. While PQ-routing shows better
performance than Q-routing at lower-loads, DRQ-routing
converges faster and the protocol shows better overall per-
formance at the cost of slightly increased communication
overhead due to backward rewards.
The problem of ML-based multicast routing was

first addressed by Sun et al. [430] in the context of
MANETs. Q-MAP, a Q-learning-based algorithm, was
proposed to find and build the optimal multicast tree
in MANETs. In Q-MAP, Q-values are associated with
different upstream nodes and the best Q-values are dis-
seminated directly from the sinks to the nodes thus
making exploration of routes unnecessary, while speed-
ing up the convergence of the learning process. Indeed an
exploration-free approach eventually leads to maximum
routing performance since only actions with maximum
Q-values are selected, however it reduces the proto-
col to a static approach that is insensitive to topology
changes.
The traditional single-agent RL model, which is greedy

in nature, provides local optimizations regardless of the
global performance. Therefore, it is not sufficient to
achieve global optimizations such as network lifetime
maximization or network-wide QoS provisioning. Multi-
Agent Reinforcement Learning (MARL) entails that, in
addition to learning information from the environment,
each node exchanges local knowledge (i.e. state, Q-value,
reward) and decisions (i.e. actions) with other nodes in
the network in order to achieve global optimizations. This
helps the nodes to consider not only their own perfor-
mance, but also the one of their neighbors and eventually
others, in selecting the routing policy. Generally, this
comes at the price of increased complexity as the state is
a joint state of all the learning agents, and the transitions
are the result of the joint action of all the agents in the sys-
tem. Q-routing and Q-routing-inspired approaches like
PR-routing and DRQ-Routing do use a form of MARL, as
Q-values are exchanged between neighboring nodes. This
form of MARL is soft in that it is easy to implement and
has low communication and computational complexity as
opposed to the general more complex form of MARL like
in [124, 425].
Team-partitioned opaque-transition reinforcement

learning (TPOT-RL), proposed by Stone and Veloso for
the RoboCup-1998 (Robot Soccer World Cup II) [425],
is the first fully collaborative MARL technique to be
applied to packet routing [424]. Routing was used by the
authors as a proof-of-concept of the applicability of their
algorithm to real world problems. However, in practice
this algorithm has high computational complexity consid-
ering the very large number of states to be explored, and
high communication overhead as every routed packet is
acknowledged back by the sink along the path from the
source for reward computation.
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These early works paved the way to a decade of con-
tinued and prolific research in the area. While exist-
ing research studies preeminently consider routing as a
decentralized operation function, and as such distribute
the learning function across the routing nodes, works like
[276, 461] take a centralized and a partially decentral-
ized approach respectively. In the following we discuss
representative works in the area and summarize them in
Table 9.

5.1 Routing as a decentralized operation function
RL when applied in a fully distributed fashion, turns
each routing node into a learning agent that makes local
routing decisions from information learned from the envi-
ronment. Routing nodes can take their decisions either
independently or through collaboration in a multi-agent
system fashion.
In [151], Forster et al. use a Q-learning approach in

a multicast routing protocol, called FROMS (Feedback
Routing for Optimizing Multiple Sinks). The goal of
FROMS is to route data efficiently, in terms of hop count,
from one source to many mobile sinks in a WSN by find-
ing the optimal shared tree. Like in [430], a FROMS node
is a learning agent that runs Q-learning to incrementally
learn the real costs of different possible routes. Its state is
updated with every data packet that needs to be routed,
and the set of actions is defined by the possible next
hop neighbors (ni) and their route to the sinks

(
hopsniDp

)
.

Rewards are received back from the upstream nodes and
used to update the Q-values of the corresponding actions.
However, unlike [430], next-hop neighbors are selected
using a variant of the ε − greedy algorithm, such that
the routing algorithm alternates between an exploration
phase and a greedy exploitation phase. FROMS shows up
to 5 times higher delivery rates than the popular directed
diffusion algorithm [205] in the presence of node failure,
and 20% less network overhead per packet due to route
aggregation.
Arroyo-Valles et al. [24] propose Q-probabilistic routing

(Q-PR), a localization-aware routing scheme for WSNs
that applies Q-learning to achieve a trade-off between
packet delivery rate, expected transmission count (ETX),
and network lifetime. A node’s decision as to drop a packet
or forward it to one of the neighbors is a function of the
energy cost at transmission and reception, packet prior-
ity, and the ETX to the sink through the neighbor. A node
greedily chooses among its next-hop candidate neighbors
the one that minimizes the cost of the route to the sink,
which is estimated by the Q-value of the nodes. It updates
its Q-value every time it relays a packet, and broadcast it
so it is received by its neighbors. Experimental evaluations
are carried out through simulations with over 50 different
topologies of connected networks.

Q-PR is compared to the greedy perimeter stateless
routing algorithm (GPSR) and the Expected progress-
Face-Expected progress (EFE), both localization-aware
routing algorithms. Results show that Q-PR as well as
EFE outperform GPSR in terms of successful delivery rate
(over 98% against 75.66%). Moreover, Q-PR shows lower
number of retransmission retries and acknowledgements
(on average over 50% and 40% less than GPSR and EFE
respectively). Thus the Q-PR algorithm preserves better
the lifetime of the WSN (3× and 4× more than GPSR
and EFE respectively). However the algorithm requires
that each node maintains locally a number of informa-
tion regarding each of its neighbors. These include the
distance between the nodes, the distance of the neighbor
to the sink, the delivery probability between nodes, the
estimated residual energy at the neighboor, and the 2-hop
neighboors. This hampers the scalability of the approach.
Hu and Fei [197] propose QELAR, a model-based vari-

ant of the Q-routing algorithm, to provide faster conver-
gence, route cost reduction, and energy preservation in
underwater WSNs. In QELAR, rewards account for both
the packet transmission energy (incurred for forwarding
the packet to the neighbor node) and the neighbor node’s
residual energy. Taking into account the residual energy
helps achieve a balanced energy distribution among nodes
by avoiding highly utilized routes (hotspots). Amodel rep-
resentation for each packet is adopted such that the state
is defined as per which node holds the packet. Next-hop
nodes are selected greedily based on their expected Q-
values. The latter are maintained by the node along with
corresponding transition probabilities learned at runtime.
Each time a node forwards a packet, it appends its Q-value
along with its energy level.
QELAR is evaluated and compared against the vector-

based forwarding protocol (VBF) through simulations
with 250 mobile sensor nodes uniformly deployed in a
3D space. Results show that QELAR is 25% more energy
efficient than VBF. The lifetime of the network is 25% ∼
30% higher with QELAR in the presence of failures and
network partition compared with VBF with comparable
transmission range, which makes QELAR more robust to
faults. Whereas, both show comparable routing efficiency
and delivery rates. On the other hand, further research
could be pursued to study the convergence speed of the
model-based learning algorithm of QELAR compared to
the model-free Q-learning when appropriate learning rate
and discount factor are used.
In [277] Lin and Schaar address the problem of routing

delay-sensitive applications in the more general context
of multi-hop wireless ad hoc networks. They rely on a n-
step temporal difference (TD) [433] learning method, and
aim at reducing the frequency of message exchange, and
thus the communication overhead without jeopardizing
the convergence speed. The routing protocol is evaluated
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in a simulatedmulti-hop network with 2 sources transmit-
ting videos to a same destination node. Results show that
by reducing the frequency of message exchange by 95%
(from every 1ms to every 20ms), the goodput and effective
data rate are increased by over 40%, and the video quality,
calculated in terms of peak signal-to-noise ratio (PSNR), is
increased by 10%. The convergence time seems to be only
slightly affected (1 ∼ 2sec). This is an interesting find-
ing considering the bandwidth that can be saved and the
interferences that can be avoided by spacing information
exchanges.
Bhorkar et al. also address the problem of routing in

multi-hop wireless ad hoc networks. They propose d-
AdaptOR [59], a distributed adaptive opportunistic rout-
ing protocol which minimizes the average packet routing
cost. d-AdaptOR is based on Q-learning with adaptive
learning rate.
In opportunistic routing, instead of pre-selecting a spe-

cific relay node at each packet transmission as in tradi-
tional routing, a node broadcasts the data packet so that
it is overheard by multiple neighbors. Neighbors who suc-
cessfully acknowledge the packet form the set of candidate
relays. The node will then choose among the candidate
relays the one that will be forwarding the packet to desti-
nation. This property is an opportunity for the Q-learner
to receive from the candidate relays their up-to-date Q-
values. Traditionally, in Q-learning action selection is
based on older, previously received Q-values.
Routing in d-AdaptOR consists of four main steps:

(1) the sender transmits the data packet, (2) neighbors
acknowledge the packet while sending its Q-value, the
estimated cumulative cost-aware packet delivery reward,
(3) the sender selects a routing action, either a next-hop
relay or the termination of packet transmission, based on
the outcome of the previous step using an ε-greedy selec-
tion rule (4) after the packet is transmitted, the sender
updates its own Q-value at a learning rate that is spe-
cific to the selected next-hop relay. The learning rate is
adjusted using a counter that keeps track of the num-
ber of packets received from that neighbor node. The
higher the value of the counter, the higher is the conver-
gence rate, though at the expense of Q-values fluctuations.
Indeed the value of the counter depends also on the fre-
quency of explorations. Further research could be pursued
to investigate the optimal exploration-exploration strategy
and the effects of different strategies on the convergence
rate.
d-AdaptOR performance was investigated on the

QualNet simulator using a random network benchmark
consisting of 36 randomly placed wireless nodes. Sim-
ulations show that d-AdaptOR consistently outperforms
existing adaptive routing algorithms, in terms of num-
ber of retransmissions per packet. Further study could be
pursued to investigate the added value of node-specific

learning rates in Q-value computation, compared to the
traditional node-oblivious learning rate that is more effi-
cient in terms of storage and computation.
Xia et al. [482] apply a spectrum-aware DRQ-routing

approach in cognitive radio networks. In CRNs, the avail-
ability of a channel is dynamic, and is dependent on the
activity level of the primary user (PU). The purpose of
the routing scheme is to enable a node to select a next-
hop neighbor node with higher estimate of total number
of available channels up to destination. Indeed, higher
number of available channels reduces channel contention,
and hence reduces the MAC layer delay. However, rely-
ing on the total number of available channels along the
path to destination can lead to very poor results in prac-
tice. The dual DRQ-routing approach was tested through
simulations on a tailored stationary (non-mobile) multi-
hop network topology with 10 cognitive radio nodes
and 2 PUs operating on different channels. DRQ-routing
was also compared against spectrum-aware Q-routing
and spectrum-aware shortest path routing (SP-routing)
at different activity levels. Simulation results show that
after convergence, DRQ-routing minimizes end-to-end
delay, is faster to converge than Q-routing (50% faster
at lower activity level), and that it significantly reduces
end-to-end delay compared to SP-routing at higher activ-
ity levels. However, although the nodes are not mobile
and the topology is fixed, the convergence time at a 2
packet/s activity level is around 700sec which implies that
1400 periods have elapsed before DQR-routing has con-
verged. As the activity level reaches 2.75packet/s, over
3000 periods are necessary for DRQ-routing to con-
verge. These numbers are quite significant, but that is
not surprising considering that a discount factor of 1 was
used.
Elwhishi et al. [133] propose a Collaborative Reinforce-

ment Learning (CRL) -based routing scheme for delay
tolerant networks. CRL is an extension to RL introduced
by Dowling et al. in 2004 for solving system-wide opti-
mization problems in decentralized multi-agent systems
with no global state [123], and was first applied to rout-
ing in MANETs by the same authors in [124]. Routing
schemes for delay tolerant networks are characterized by
the lack of end-to-end aspect, and each node explores
network connectivity through finding a new link to a next-
hop neighbor node when a new packet arrives, which
must be kept in the buffer while a link is formed. SAM-
PLE, the proposed routing mechanism, selects a reliable
next-hop neighbor node while taking into account three
factors; two factors relevant to the channel availability
(node mobility and congestion level), and a factor rel-
evant to the buffer utilization (remaining space in the
buffer). These are learned through feedback exchange
among agents. Tested with different network topologies
and mobility models, SAMPLE shows better performance
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than the traditional AODV and DSR routing algorithms in
terms of packet delivery ratio and throughput.

5.2 Routing as a partially decentralized operation
function

In [461] Wang et al. present AdaR, a routing mechanism
for WSNs based on a centralized implementation of the
model-free Least Squares Policy Iteration (LSPI) RL tech-
nique [258]. AdaR uses an offline learning procedure, and
is claimed to converge to the fixed point routing pol-
icy faster than the traditional Q-learning. The algorithm
takes into account the node’s load, its residual energy,
and hop count to the sink, as well as the reliability of
the links. The algorithm runs in learning episodes. The
base station is the learning agent, while the routing nodes
are passive in terms of learning. However, actions are
selected by the routing nodes in a decentralized fashion
based on the Q-values assigned by the base station, and
the ε-greedy selection algorithm. During each episode,
the current Q-values are used to select a route to the
base station. At each hop, the full hop information is
appended to the packet and is used by the base station
to calculate immediate rewards. When the base station
has received enough information (the required number of
packets is undefined), it calculates the newQ-values of the
nodes offline, and disseminates them via a network-wide
broadcast.
AdaR is tested on a simulated WSN with varying node

residual energy and link reliability. Results show that the
algorithm converges faster than Q-learning; a routing suc-
cess rate of ∼ 95% with a low deviation was reached
even before the 5th learning episode, whereas, it took
40 episodes for Q-learning to reach comparable success
rates. This can be explained by Q-learning’s initial Q-
values and the selected learning rate (α = 0.5). Appropri-
ate initial Q-values and higher learning rate would have
helped Q-learning converge faster. In fact, the authors
show that Q-learning is more sensitive to the initial choice
of Q-values than AdaR. Indeed AdaR has some useful
properties, like taking into account different routing cost
metrics and having faster convergence time. However, this
comes at the price of higher computational complexity,
and communication overhead due to the growing size of
the packets at each hop and the broadcasting of Q-values,
which also makes it more sensitive to link failures and
node mobility.

5.3 Routing as a centralized control function
More recently, a centralized SARSA with a softmax pol-
icy selection algorithm has been applied by Lin et al. [276]
to achieve QoS-aware adaptive routing (QAR) in SDN.
Although a multi-layer hierarchical SDN control plane is
considered by the authors, the proposed SARSA-based
routing algorithm is not specific to such an architecture,

and is meant to run on any controller that has global
visibility of the different paths and links in the network.
For each new flow, the first packet is transmit-

ted by the switch to the controller. The controller
implicitly recognizes the QoS requirements of the
flow, calculates the optimal route using the SARSA-
based QAR algorithm, and accordingly updates the for-
warding tables of the switches along the path. The
QoS requirements consist in what metric to mini-
mize/maximize (delay, loss, throughput, etc.). They are
used to control the weight of each metric in the reward
function.
It is suggested that the controller iterates the SARSA

algorithm until convergence, which in practice results in
delayed routing. The question is, how long is the delay and
how suitable is the solution for real-time traffic. Also the
impact of routing new flows on the QoS of other flows in
the network is overlooked. If the flow is an elephant flow,
it may congest the links and severely impact the QoS of
flows with tight delay requirements.

5.4 Summary
The low computational and communication requirements
of traditional RL algorithms, in particular Q-learning, and
their ability to perform well at finding an optimal solution
and adapting to changes in the environment, have moti-
vated their—reportedly successful—application to traffic
routing in a variety of network settings, as shown in
Table 9.
Different approaches have been considered in apply-

ing RL to the traffic routing problem. These approaches
vary in terms of: (i) level of distribution of the learning
capability, and (ii) level of collaboration among multi-
ple learners. Clearly, different approaches lend themselves
more naturally to different network topologies and util-
ity functions. For instance, in SDN [276] as well as
WSN, the existence of a central node—the controller
in SDN and the sink in WSN, respectively—allows for
centralized learning. Whereas, routing in wireless ad
hoc networks calls for decentralized RL [59, 277] where
the learning capability is distributed among the routing
nodes.
For the nodes to select the optimal routing policy,

they need to evaluate different routing policies (actions)
against a given utility function (reward). Rewards can be
calculated in a central node, such as a sink or base station
like in AdaR [461]. Alternatively, rewards are locally esti-
mated by the nodes, which requires the nodes to exchange
information. The nature and the amount of information,
as well as the dissemination process, vary according to
the utility function, as shown in Table 9. Indeed utility
functions such as QoS provisioning, load balancing and
network lifetime maximization, as in Q-PR [24], QELAR
[197, 277], require more information to be disseminated
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at the cost of an increased complexity and communication
overhead.
It is also important to notice that learners are very

loosely coupled inmost recently adopted decentralized RL
approaches, where routers tend to select routing policies
in an asynchronous, independent, very soft MARL fash-
ion. Clearly, MARL aims at coordinating learning agents
in order to achieve the optimal network-wide perfor-
mance. This should further enhance the routing perfor-
mance. However, several challenges arise from MARL. In
fact, the difficulty of defining a good global learning goal,
the overhead for an agent to coherently coordinate with
other learning agents, and the longer convergence time
can be prohibitive when applying MARL to realistic prob-
lem sizes. Indeed, there is a need for understanding the
trade-off between benefits and overhead when applying
MARL, particularly in resource-constrained and dynamic
wireless networks where coordination has eventually a lot
to offer.

6 Congestion control
Congestion control is fundamental to network operations
and is responsible for throttling the number of packets
entering the network. It ensures network stability, fair-
ness in resource utilization, and acceptable packet loss
ratio. Different network architectures deploy their own set
of congestion control mechanisms. The most well-known
congestion control mechanisms are those implemented
in TCP, since TCP along with IP constitute the basis of
the current Internet [13]. TCP congestion control mech-
anisms operate in the end-systems of the network to
limit the packet sending rate when congestion is detected.
Another well-known congestion control mechanism is
queue management [72] that operates inside the inter-
mediate nodes of the network (e.g. switches and routers)
to complement TCP. There have been several improve-
ments in congestion control mechanisms for the Internet
and evolutionary network architectures, such as Delay-
Tolerant Networks (DTN) and Named Data Networking
(NDN). Despite these efforts, there are various short-
comings in areas such as packet loss classification, queue
management, Congestion Window (CWND) update, and
congestion inference.
This section describes several research works that

demonstrate the potential of applyingML to enhance con-
gestion control in different networks.Majority of the tech-
niques have been applied toTCP/IPnetworks. It is important
to note that the first ML-based approaches for congestion
control were proposed in the context of asynchronous t
ransfer mode (ATM) networks [175, 264, 284, 437]. How-
ever, we exclude these works from the survey because,
to the best of our knowledge, this type of network has
a low impact on present and future networking research
interests [177].

6.1 Packet loss classification
In theory, TCP works well regardless of the underly-
ing transmission medium, such as wired, wireless, and
optical. In practice the standard TCP congestion control
mechanism has been optimized for wired networks. How-
ever, the major problem in TCP is that it recognizes and
handles all packet losses as network congestion, that is
buffer overflow. Hence, performing unjustified conges-
tion control when a loss is due to other reasons, such as
packet reordering [150], fading and shadowing in wire-
less networks [130], and wavelength contention in optical
networks [214]. As a consequence, TCP unnecessarily
reduces its transmission rate at each detected packet loss,
lowering the end-to-end throughput.
Therefore, the TCP throughput for wireless networks

can be improved by accurately identifying the cause of
packet loss [34, 62, 490] and reducing the TCP transmis-
sion rate only when congestion is detected. However, TCP
congestion control has no mechanism for identifying the
cause of packet loss. We term this problem as packet loss
classification and various efforts have been made to pro-
pose solutions to this problem. In general, the solutions
for packet loss classification fall in two broad categories,
depending on where the solution is implemented in the
network, that is, at intermediate nodes or in end-systems.
The former requires additional implementation at the
intermediate nodes that either hide the error losses from
the sender [32, 33], or communicate to the sender extra
statistics about the network state, such as congestion noti-
fication [483] and burst acknowledgment (ACK) [490]. It
is important to mention that hiding error losses may vio-
late TCP end-to-end principle as it may require splitting
the TCP connection by sending an ACK to the sender
before the packet arrives at the receiver [129].
In the latter approach, end-systems are complemented

with solutions, such as TCP-Veno [156] and TCP-
Westwood [463]. These leverage information available at
end-systems, such as inter-arrival time (IAT), round-trip
time (RTT), and one-way delay, to distinguish causes of
packet loss and aid TCP congestion control mechanism.
However, it has been shown that it is difficult to perform
a good classification using simple tests, such as the ones
implemented by TCP-Veno and TCP-Westwood, on these
metrics, since they lack correlation to the cause for packet
loss [60].
Therefore, various ML-based solutions have been pro-

posed for packet loss classification in end-systems for
different networks, such as hybrid wired-wireless [38,
129, 130, 163, 282], wired [150], and optical networks
[214]. Generally, the classifier is trained offline, leveraging
diverse supervised and unsupervised ML algorithms for
binary classification. The majority of these techniques use
the metrics readily available at end-systems, and evaluate
their classifier on synthetic data on network simulators,
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such as ns-2 [203]. We delineate the proposed ML-based
solutions for packet loss classification in Table 10 and
discuss these techniques in this subsection.
Liu et al. [282] proposed, to the best of our knowl-

edge, the first approach using ML for inferring the cause
of packet loss in hybrid wired-wireless networks. Partic-
ularly, they distinguish between losses due to congestion
and errors in wireless transmission. They employ EM to
train a 4-state HMM based on loss pair RTT values, that
is RTT measured before a packet loss. The Viterbi algo-
rithm [455] is applied on the trained HMM to infer the
cause of packet loss. The resultant ML-based packet loss
classifier exhibits greater flexibility and superiority over
TCP-Vegas [73]. Since, TCP-Vegas has been shown to out-
perform non-ML-based packet loss classifiers [60], the
ML-based solution of [282] was fundamental in creating
a niche and instigating the feasibility of ML-based solu-
tions for packet loss classification problems. However, the
authors assume that the RTT values never change dur-
ing measurement. This is an unrealistic assumption since
a modification in the return path changes the RTT values
without affecting the cause of packet loss. Thus, affect-
ing the correlation between RTT and cause of packet
loss.
Barman and Matta [38] use EM on a 2-state HMM and

consider discrete delay values to improve the accuracy of
the above packet loss classifier, though at the expense of
a higher computational cost. This work substitutes the
Viterbi algorithm with a Bayesian binary test that pro-
vides comparable accuracy, while being computationally
efficient. However, this ML-based packet loss classifier,
unlike others, requires support from the network to obtain
one of its input features, the estimated probability of wire-
less loss. Furthermore, [38, 282] evaluate their packet loss
classifiers on simple linear topologies, which is far from
realistic network topologies.
In contrast, El Khayat et al. [129, 130, 163] simulate

more than one thousand random hybrid wired-wireless
topologies for collecting a dataset of congestion and wire-
less error losses. The authors compute 40 input features
from this dataset by using information that is only avail-
able at end-systems, including one-way delay and IAT of
packets preceding and succeeding a packet loss. Several
supervised ML algorithms are leveraged to build packet
loss classifiers using these features. All the classifiers
achieve a much higher classification accuracy than non-
ML solutions, such as TCP-Veno and TCP-Westwood. In
particular, Boosting DT with 25 trees provide the high-
est accuracy and the second fastest training time. It is
important to realize that the training time of DT is the
fastest, with a small reduction in accuracy of less than 4%
compared to Boosting DT. Therefore, in case of computa-
tional constraints, DT achieves the best balance between
accuracy and training time.

The authors continue on to improve TCP with the
Boosting DT classifier, which exhibit throughput gains
over the standard TCP-NewReno [185] and TCP-Veno.
The results also show that the improved TCP can main-
tain a fair link share with legacy protocols (i.e. TCP-
friendly). Their ML-based packet loss classifier is flexible
and enables the selection between TCP throughput gain
and fairness without retraining the classifier.
On the other hand, Fonseca and Crovella [150] focus

on detecting the presence of packet loss by differentiating
Duplicated ACKs (DUPACK) caused by congestion losses
and reordering events. Similar to [282], they employ loss
pair RTT as an input feature, however, to infer the network
state and not the state of a single TCP connection. Thus,
avoiding the poor correlation between RTT and the cause
of packet loss. The authors construct a Bayesian packet
loss classifier that achieves up to 90% detection proba-
bility with a false alarm of 20% on real wired network
datasets from the Boston University (BU) and Passive
Measure Analysis (PMA) [1]. The performance is superior
for the BU dataset due to the poor quality of RTT mea-
surements in the PMA dataset. In addition, the authors
adapt an analytic Markov model to evaluate a TCP variant
enhanced with the Bayesian packet loss classifier, result-
ing in a throughput improvement of up to 25% over the
standard TCP-Reno.
In the context of optical networks, Jayaraj et al. [214]

tackle the classification of congestion losses and con-
tention losses in Optical Burst Switching (OBS) networks.
The authors collect data by simulating the National Sci-
ence Foundation Network (NSFNET) with OBS modules
and derive a new feature from the observed losses, called
the number of burst between failures (NBBF). They con-
struct two ML-based packet loss classifiers by applying
EM for both HMM and clustering. These classifiers inte-
grate two TCP variants that keep a low control overhead
for providing better performance (e.g. higher through-
put and fewer timeouts) over the standard TCP-NewReno
[185] and TCP-SACK [299], and Burst-TCP [490] for OBS
networks. The TCP variant using EM for clustering per-
form slightly better than EM for HMM, as the former
produce states (clusters) with a higher degree of similarity,
while requiring a similar training time.

6.2 Queuemanagement
Queue management is a mechanism in the intermedi-
ate nodes of the network that complements TCP con-
gestion control mechanisms. Specifically, queue manage-
ment is in charge of dropping packets when appropriate,
to control the queue length in the intermediate nodes
[72]. The conventional technique for queue management
is Drop-tail, which adopts the First-In-First-Out (FIFO)
scheme to handle packets that enter a queue. In Drop-tail,
each queue establishes a maximum length for accepting
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incoming packets. When the queue becomes full, the sub-
sequent incoming packets are dropped until the queue
becomes available again. However, the combination of
Drop-Tail with the TCP congestion avoidance mecha-
nism leads to TCP synchronization that may cause serious
problems [68, 72]: (i) inefficient link utilization and exces-
sive packet loss due to a simultaneous decrease in TCP
rate, (ii) unacceptable queuing delay due to a continuous
full queue state; and (iii) TCP unfairness due to a few con-
nections that monopolize the queue space (i.e. lock-out
phenomenon).
Active Queue Management (AQM) is a proactive

approach that mitigates the limitations of Drop-tail by
dropping packets (or marking them for drop) before
a queue becomes full [72]. This allows end-systems to
respond to congestion before the queue overflows and
intermediate nodes to manage packet drops. Random
Early Detection (RED) [148] is the earliest and most well
known AQM scheme. RED continually adjusts a dropping
(marking) probability according to a predicted congestion
level. This congestion level is based on a pre-defined
threshold and a computed average queue length. However,
RED suffers from poor responsiveness, fails to stabilize
the queue length to a target value, and its performance
(w.r.t. link utilization and packet drop) greatly depends
on its parameter tuning, which has not been success-
fully addressed [269]. Many AQM schemes have been
proposed to improve these shortcomings [4]. However,
they rely on fixed parameters that are insensitive to the
time-varying and nonlinear network conditions.
For this reason, significant research has been conducted

to apply ML for building an effective and reliable AQM
scheme, which is capable of intelligently managing the
queue length and tuning its parameters based on network
and traffic conditions. The proposals presented in this
survey conduct online training in the intermediate nodes
of the network and evaluate their solutions by simulating
diverse network topologies, mostly in ns2, using charac-
teristics of wired networks. As highlighted in Table 11,
these AQM schemes apply different supervised tech-
niques for TSF [160, 179, 212, 498] and reinforcement-
based methods for deducing the increment in the packet
drop probability [298, 427, 428, 485, 499]. It is important
to note that in this section we use the term increment
to refer to a small positive or negative change in the
value of the packet drop probability. The accuracy results
depict the quality of the ML technique, for either cor-
rectly predicting future time series values or stabilizing
the queue length. In addition, the computational com-
plexity of these AQM schemes depend on the learning
algorithm employed and the elements that constitute the
ML component. For example, the NN structure and its
complementing components. In the following, we discuss
these ML-based AQM schemes.

PAQM [160], to the best of our knowledge, is the first
approach using ML for improving AQM. Specifically,
PAQM used OLS on time series of traffic samples (in
bytes) for predicting future traffic volume. Based on such
predictions, PAQMdynamically adjusted the packet drop-
ping probability. The proposed OLS method relies on the
normalized least mean square (NLMS) algorithm to cal-
culate the linear minimum mean square error (LMMSE).
Through simulations, the authors demonstrated that their
linear predictor achieves a good accuracy, enabling PAQM
to enhance the stability of the queue length when com-
pared to RED-based schemes. Therefore, PAQM is capa-
ble of providing high link utilization while incurring low
packet loss. Similarly, APACE [212] configure the packet
dropping probability by using a similar NLMS-based OLS
on time series of queue lengths to predict the current
queue length. Simulations show that APACE is compara-
ble to PAQM in terms of prediction accuracy and queue
stability, while providing better link utilization with lower
packet loss and delay under multiple bottleneck links.
However, these NLMS-based predictors have a high com-
putational overhead that is unjustified in comparison to a
simpler predictor based on, for instance, a low pass filter.
To address these shortcomings, α_SNFAQM [498] was

proposed to predict future traffic volume by applying the
BP algorithm to train a neuro-fuzzy hybrid model using
NN and fuzzy logic, called α_SNF. This α_SNF predic-
tor uses time series of traffic samples and the predicted
traffic volume as features. Then, α_SNFAQM leverage
the predicted traffic volume and the instantaneous queue
length to classify the network congestion as either severe
or light. On this basis, α_SNFAQM decides to either
drop all packets, drop packets with probability, or drop
none. Simulations demonstrate that the α_SNF predic-
tor slightly exceeds the accuracy of the NMLS-based
predictor and incurs lower computational overhead. Fur-
thermore, α_SNFAQM achieves smaller and more stable
queue length than PAQM and APACE, while provid-
ing comparable goodput. However, α_SNFAQM produce
more packet drops in order to notify the congestion
earlier.
Similarly, to keep a low computational overhead, NN-

RED [179] apply an SLP-NN on time series of queue
length to predict a future queue length. The predicted
queue length is compared to a threshold to decide if
packet dropping is needed for preventing severe conges-
tion. The SLP-NN is trained using the least mean square
(LMS) algorithm (a.k.a., delta-rule), which is marginally
less complex than NLMS. Basic simulations exhibit that
NN-RED outperforms RED and Drop-tail in terms of
queuing delay, dropped packets, and queue stability. How-
ever, this work lacks comparison of NN-RED with similar
approaches, such as PAQM, APACE, and α_SNFAQM, in
terms of performance and computational overhead.
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Table 11 Summary of AQM schemes with online training in the intermediate nodes of a wired network

Ref. ML
Technique

Multiple Synthetic data from Features Output Evaluation

Bottlenecka ns-2 simulation (action-set for RL) Settings Results

PAQM [160] Supervised:
· OLS

� Topology:
· 6-linear
· Arbitrary
dumbbell
Time = 50s

· Traffic
volume
(bytes)

TSF:
· Traffic volume

· NMLS
algorithm
based on
LMMSE

Accuracy:
· 90 − 92.3%

APACE [212] Supervised:
· OLS

� Topology:
· Dumbbell
(1-sink) · 6-linear
Time = 40s

· Queue
length

TSF:
· Queue length

· NMLS
algorithm
based on LMMSE

Accuracy:
· 92%

α_SNFAQM
[498]

Supervised:
· MLP-NN

– Topology:
· Dumbbell (1-sink)
Time = 300s

· Traffic
volume
· Predicted
traffic
volume

TSF:
· Traffic volume

· 2 input
neurons · 2 hidden
layers with
3 neurons
· 1 output
neuron

Accuracy: · 90 − 93%

NN-RED
[179]

Supervised:
· SLP-NN

– Topology:
· Dumbbell
Time = 900s

· Queue length TSF: · Queue
length

· 1+N input neurons
(N past values) · 0
hidden layers
· 1 output
neuron
· Delta-rule
learning

N/A

DEEP
BLUE [298]

Reinforcement:
· Q-learning
- ε-greedy

– Topology:
· Dumbbell
Time = 50s
OPNET
simulator
instead of ns-2

States:
· Queue
length · Packet drop
prob. Reward:
· Throughput
· Queuing
delay

Decision making:
· Increment of the
packet drop
probability (finite:
6 actions)

· N/A states
· 6 actions
· ε-greedy
ASSb

Optimal
packet
drop probability:
· Outperforms
BLUE [144]

Neuron PID
[428]

Reinforcement:
· PIDNN

� Topology:
· Dumbbell
Time = 100s

· Queue
length error

Decision making:
· Increment of the
packet drop
probability
(continuous)

· 3 input neurons
· 0 hidden layers
· 1 output neuron
· Hebbian learning
· 1 PID component

QLAcc errorc:
· 7.15 QLJit:
· 20.18

AN-AQM
[427]

Reinforcement:
· PIDNN

� Topology:
· Dumbbell
· 6-linear Time
= 100s

· Queue
length error
· Sending
rate error

Decision making:
· Increment of
the packet
drop probability
(continuous)

· 6 input neurons
· 0 hidden layers
· 1 output neuron
· Hebbian learning
· 2 PID components

QLAcc errorc:
· 6.44 QLJit:
· 22.61

FAPIDNN
[485]

Reinforcement:
· PIDNN

� Topology:
· Dumbbell
Time = 60s

· Queue length
error

Decision making:
· Increment of the
packet drop
probability
(continuous)

· 3 input neurons
· 0 hidden layers
· 1 output neuron
· 1 PID component
· 1 fuzzy component

QLAcc errorc:
· 3.73 QLJit:
· 31.8

NRL [499] Reinforcement:
· SLP-NN

� Topology:
· Dumbbell
Time = 100s

· Queue
length error
· Sending rate
error

Decision making:
· Increment of the
packet drop
probability
(continuous)

· 2 input
neurons
· 0 hidden
layers
· 1 output
neuron · RL learning

QLAcc errorc:
· 38.73 QLJit:
· 128.84

aSpecifies if the approach was evaluated for multiple bottleneck links (�) or simply for a single bottleneck link (–)
bAction Selection Strategy (ASS)
cValue computed using RMSE on the results presented in [269] for different network conditions

On the other hand, DEEP BLUE [298] focus on address-
ing the limitations of BLUE [144], an AQM scheme pro-
posed for improving RED. BLUE suffers from inaccurate

parameter setting and is highly dependent on its parame-
ters. DEEP BLUE addresses these problems by introducing
a fuzzy Q-learning (FQL) approach that learns to select
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the appropriate increment (actions) for achieving the opti-
mal packet drop probability. The features for inferring the
FQL states are the current queue length and packet drop
probability. Whereas, the reward signal adopts a linear
combination of the throughput and queuing delay. The
authors use the OPNET simulator to show that DEEP
BLUE improves BLUE in terms of queue stabilization and
dropping policy. In addition, the authors mention that
DEEP BLUE only generates a slight surplus of storage and
computational overhead over BLUE, though no evaluation
results are reported.
Other NN-based AQM schemes adopt an RL approach

for deciding the proper increment of the packet drop
probability. Neuron PID [428] uses a Proportional-
Integral-Derivative (PID) controller that incorporates an
SLP-NN to tune the controller parameters. Specifically,
the SLP-NN receives three terms from the PID compo-
nent and updates their weights by applying the associative
Hebbian learning. The three terms of this PID-based SLP-
NN (PIDNN) are computed from the queue length error,
which is the difference between the target and current
queue lengths. The latter represents the reward signal of
the PID control loop. It is important to note that the PID
component includes a transfer function that increases the
computational overhead of the PIDNN, when compared
to a simple SLP-NN.
AN-AQM [427] extends Neuron PID by including

another PID component. Therefore, the SLP-NN of AN-
AQM receives three terms more from the second PID
component for updating their weights. The three terms
of the second PID component are generated from the
sending rate error, which is the mismatch between the
bottleneck link capacity and the queue input rate. The
latter serves as the reward signal for the PID control
loop. This modification improves the performance of the
PIDNN in more realistic scenarios. However, it incurs a
higher computational overhead, due to an additional PID
transfer function and the increase in the number of input
neurons. Similarly, FAPIDNN [485] adopts a fuzzy con-
troller to dynamically tune the learning rate of a PIDNN.
As in Neuron PID, FAPIDNN includes only one PID com-
ponent to calculate the three terms from the queue length
error. However, the fuzzy controller of FAPIDNN also
adds computational complexity. Alternatively, NRL [499]
directly uses an SLP-NN—without a PID or fuzzy compo
nent—that relies on a reward function to update the learn-
ing parameters. This reward function is computed from
the queue length error and the sending rate error.
Li et al. [269] carry out extensive simulations on ns-

2 to perform a comparative evaluation of the above
NN-based AQM schemes (i.e. Neuron PID, AN-AQM,
FAPIDNN, and NRL) and AQM schemes based on RED
and Proportional-Integral (PI) controllers. For a sin-
gle bottleneck link, the results demonstrate that the

NN-based schemes outperform the RED/PI schemes in
terms of queue length accuracy (QLAcc) and queue length
jitter (QLJit), under different network settings. Where,
QLAcc is the difference between the average queue length
and a target value, while QLJit is the standard devi-
ation of the average queue length. However, the NN-
based schemes result in a higher packet drop than
PI schemes. For multiple bottleneck links, one of the
PI schemes (i.e. IAPI [429]) present better QLAcc and
packet drop, yet producing higher QLJit. When compar-
ing only NN-based schemes, FAPIDNN provides the best
QLAcc, while Neuron PID has the least QLJit and packet
drop. Nevertheless, AN-AQM is superior in these perfor-
mancemetrics for realistic scenarios involving UDP traffic
noise.

6.3 Congestion window update
CWND is one of the TCP per-connection state variables
that limits the amount of data a sender can transmit
before receiving an ACK. The other state variable is the
Receiver Window (RWND), which is a limit advertised by
a receiver to a sender for communicating the amount of
data it can receive. The TCP congestion control mech-
anisms use the minimum between these state variables
to manage the amount of data injected into the network
[13]. However, TCP was designed based on specific net-
work conditions and assumes all losses as congestion (cf.,
Section 6.1). Therefore, TCP in wireless lossy links unnec-
essarily lowers its rate by reducing CWND at each packet
loss, negatively affecting the end-to-end performance.
Furthermore, the CWND update mechanism of TCP is
not suitable for the diverse characteristics of different net-
work technologies [30, 122]. For example, networks with
a high Bandwidth-Delay Product (BDP), such as satel-
lite networks, require a more aggressive CWND increase.
Whereas, networks with a low BDP, such as Wireless Ad
hoc Networks (WANET), call for a more conservative
CWND increase.
The challenge of properly updating CWND in resource-

constrained wireless networks, like WANET and IoT, is
difficult. This is due to their limited bandwidth, pro-
cessing, and battery power, and their dynamic network
conditions [271, 380]. In fact, the deterministic nature
of TCP is more prone to cause higher contention losses
and CWND synchronization problems in WANET, due
to node mobility that continuously modifies the wireless
multi-hop paths [29, 379]. Several TCP variations, such
as TCP-Vegas and TCP-Westwood, have been proposed
to overcome these shortcomings. However, the fixed rule
strategies used by such TCP variations are inadequate for
adapting CWND to the rapidly changing wireless envi-
ronment. For example, TCP-Vegas fails to fully utilize the
available bandwidth in WANETs, as its RTT-based rate
estimate is incorrect under unstable network conditions
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[219]. Furthermore, methods for improving TCP-Vegas
(e.g. Vegas-W [119]) are still insufficient to account for
such variability, as their operation relies on the past net-
work conditions rather than present or future.
As summarized in Table 12, this survey reviews several

approaches based on RL that have been proposed to cope
with the problems of properly updating CWND (or send-
ing rate) according to the network conditions. Some of
these approaches are particularly designed for resource-
constrained networks, including WANETs [29, 219, 379,
380] and IoT [271], while others address a wider range
of network architectures [30, 122, 477], such as satel-
lite, cellular, and data center networks. Unless otherwise
stated, the RL component conducts online training in the
end-systems of the network to decide the increment for
updating CWND. Although some approaches may apply
the same RL technique, they differ in either the defined
action-set (i.e. finite or continuous) or the utilization of a
function approximation.
The evaluation of these RL-based approaches rely on

synthetic data generated from multiple network topolo-
gies simulated in tools, such as GloMoSim, ns-2, and
ns-3. A couple of these approaches [29, 122] also include
experimental evaluation. The performance results show
the improvement ratio of each RL-based approach against
the best TCP implementation baseline. For example, if an
approach is compared to TCP-Reno and TCP-NewReno,
we present the improvement over the latter, as it is an
enhancement over the former. It is important to note that
an optimal CWND update reduces the number of packets
lost and delay, and increases the throughput and fair-
ness. Therefore, the selected improvement metrics allow
to measure the quality of the RL component for deciding
the best set of actions to update CWND.
To the best of our knowledge, TCP-FALA [380] is

the first RL-based TCP variant that focuses on CWND
adaptation in wireless networks, particularly in WANETs.
TCP-FALA introduces a CWND update mechanism that
applies FALA to learn the congestion state of the network.
On receipt of a packet, it computes five states using IATs
of ACKs, and distinguishes DUPACKs to compute the
states in a different way. Each state corresponds to a sin-
gle action that defines the increment for updating CWND.
The probabilities for each possible action are continually
updated, which are used by TCP-FALA for stochasti-
cally selecting the action to be executed. Such stochastic
decision facilitates in adapting to changing network con-
ditions and prevents CWND synchronization problem.
Simulations in GloMoSim demonstrate that TCP-FALA
experiences lower packet loss and higher throughput
than standard TCP-Reno in different network conditions.
However, the limited size of the action-set makes difficult
mapping the range of responses provided by the network
to the appropriate actions. In addition,WANETs require a

much finer update of the CWND due to their constrained
bandwidth.
To overcome this limitation, Learning-TCP [29, 379]

extends TCP-FALA by employing CALA for enabling
a finer and more flexible CWND update. Instead
of separately calculating probabilities for each action,
Learning-TCP continually updates an action probabil-
ity distribution, which follows a normal distribution and
requires less time to compute. Similar to TCP-FALA,
Learning-TCP uses IATs of ACKs for computing the
states, though without distinguishing DUPACKs and
reducing the number of states to two. Several simulations
in ns-2 and GloMoSim show that both Learning-TCP and
TCP-FALA outperform standard TCP-NewReno in terms
of packet loss, goodput, and fairness. Furthermore, the
simulations demonstrate that Learning-TCP is superior to
TCP-FALA and TCP-FeW [329] (a non-ML TCP variant
enhanced for WANETs) with respect to these perfor-
mance metrics. Whereas, TCP-FALA only achieves better
fairness than TCP-FeW. The authors also provide experi-
mental results that are consistent with the simulations.
TCP-GVegas [219] also focuses on updating CWND in

WANETs. It improves TCP-Vegas by combining a grey
model and a Q-learning model. The grey model pre-
dicts the real throughput of the next stage, while the
Q-learning model adapts CWND to network changes.
This Q-learning model uses the three stages of CWND
changes (defined by TCP-Vegas) as the states and the
throughput as the reward. The state is determined from
CWND, RTT, and actual and predicted throughput. The
action-set is continuous and limited by a range computed
from RTT, throughput, and a pre-defined span factor.
TCP-GVegas adopts an ε-greedy strategy for selecting the
optimal action that maximizes the quality of the state-
action pair. Simulations in ns-2 reveal that TCP-GVegas
outperforms TCP-NewReno and TCP-Vegas in terms of
throughput and delay for different wireless topologies
and varying network conditions. However, TCP-GVegas
has higher computational and storage overhead compared
to standard TCP and TCP-Vegas. In fact, TCP-GVegas
even has a higher computational and storage overhead
than TCP-FALA and Learning-TCP, though a more thor-
ough performance evaluation is required to determine the
trade-off between these RL-based TCP variants.
In the similar context of resource constrained networks,

TCPLearning [271] apply Q-learning for updating CWND
in IoT networks. This Q-learning model computes the
states by using a 10-interval discretization of each of the
following four features: IAT of ACKs, IAT of packets sent,
RTT, and Slow Start Threshold (SSThresh). TCPLearning
defines a finite action-set that provides five increments
for updating CWND and a selection strategy based on
ε-greedy. The reward for each state-action pair is calcu-
lated from the throughput and RTT. To cope with the
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Table 12 Summary of decision making of the increment for updating CWND by using online training at end-systems of the network

Ref. RL Network Synthetic Dataset Features Action-set Evaluation

Technique (action selection) Settings Resultsa

TCP-FALA
[380]

FALA WANET GloMoSim
simulation:
· Topology:
- Random
- Dumbbell

States and reward:
· IAT of ACKs
(distinguish ACKS
and DUPACKs)

Finite:
· 5 actions
(stochastic)

· 1 input feature
· 5 states
· 5 actions

To TCP-NewRenob:
· Packet loss = 66%
· Goodput = 29%
· Fairness = 20%
To TCP-FeW‡ :
· Packet loss = −5%
· Goodput = −10%
· Fairness = 12%

Learning-TCP
[29, 379]

CALA WANET Simulation:
· ns2 and GloMoSim
· Topology:
- Chain
- Random node
- Grid
Experimental:
· Linux-based
· Chain topology

States and reward:
· IAT of ACKs

Continuous:
· Normal action
probability
distribution
(stochastic)

· 1 input feature
· 2 states
· ∞ actions

To TCP-FeW:
· Packet loss = 37%
· Goodput = 13%
· Fairness = 23%
To TCP-FALA:
· Packet loss = 28%
· Goodput = 36%
· Fairness = 14%

TCP-GVegas
[219]

Q-learning WANET ns-2 simulation:
· Topology:
- Chain
- Random

States:
· CWND
· RTTz
· Throughput
Reward:
· Throughput

Continuous:
· Range based on
RTT, throughput,
and a span factor
(ε-greedy)

· 3 input features
· 3 states
· N/A actions

To TCP-Vegas:
· Throughput = 60%
· Delay = 54%

FK-
TCPLearning
[271]

FKQL IoT ns-3 simulation:
· Dumbbell topol-
ogy:
- Single source/sink
- Double
source/sink

States:
· IAT of ACKs
· IAT of packets sent
· RTT
· SSThresh
Reward:
· Throughput
· RTT

Finite:
· 5 actions
(ε-greedy)

· 5 input features
· 10k states
· 5 actions
· FK approx:
- 100 prototypes

To TCP-NewReno:
· Throughput = 34%
· Delay = 12%
To TCPLearning based
on pure Q-learning:
· Throughput= −1.5%
· Delay = −10%

UL-TCP [30] CALA Wireless:
· Single-hop:
- Satellite
- Cellular
- WLAN
· Multi-hop:
- WANET

ns-2 simulation:
· Single-hop
dumbbell
· Multi-hop topol-
ogy: - Chain
- Random
- Grid

States and reward:
· RTT
· Throughput
· RTO CWND

Continuous:
· Normal action
probability
distribution
(stochastic)

· 3 input features
· 2 states
· ∞ actions

For single-hop, to ATL:
· Packet loss = 51%
· Goodput: = −14%
· Fairness = 53%
For multi-hop, similar
to Learning-TCP

Remy [477] Own
(offline training)

· Wired
· Cellular

ns-2 simulation:
· Wired topology:
- Dumbbell
- Datacenter
· Cellular topology

States:
· IAT of ACKs
· IAT of packets sent
· RTT
Reward:
· Throughput
· Delay

Continuous with
3-dimensions:
· CWNDmultiple
· CWND incre-
ment · Time
between suc-
cessive sends
(ε-greedy)

· 4 input features
· (16k)3 states
· 1003 actions
· 16 network
configurations

To TCP-Cubic:
· Throughput = 21%
· Delay = 60%
To
TCP-Cubic/SFQ-CD:
· Throughput = 10% ·
Delay = 38%

PCC [122] Own · Wired
· Satellite

Experimental:
· GENI
· Emulab
· PlanetLab

States:
· Sending rate
Reward:
· Throughput
· Delay
· Loss rate

Finite:
· 2 actions of the
increment for
updating send-
ing rate (not
CWND) (gradient
ascent)

· 3 input features
· 4 states
· 2 actions

To TCP-Cubic:
· Throughput = 21% ·
Delay = 60%

aAverage value of improvement ratio. Results vary according to the configured network parameters (e.g. topology, mobility, traffic)
bBased on the results from the simulated and experimental evaluations in [29]

memory restrictions of IoT devices, the authors use two
function approximation methods: tile coding [435] and
Fuzzy Kanerva (FK) [481]. The latter significantly reduces
the memory requirements, hence, is incorporated in a
modification of TCPLearning, called FK-TCPLearning.

Specifically, FK-TCPLearning with a set of 100 proto-
types, needs only 1.2% (2.4KB) of the memory used by
TCPLearning based on pure Q-learning (200KB), for stor-
ing 50,000 state-action pairs. Furthermore, basic sim-
ulations in ns-3 reveal that FK-TCPLearning improves
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the throughput and delay of TCP-NewReno, while being
marginally inferior to TCPLearning.
The approaches above are specifically designed for

resource constrained networks, hence, restricting their
applicability. For example, TCP-FALA and Learning-TCP
estimate the congestion state from IATs of ACKs, which
are prone to fluctuations in single-hop-wireless networks
with high and moderate BDP, such as satellite networks,
cellular networks, and WLAN. UL-TCP [30] address this
gap by modifying Learning-TCP to compute the two
congestion states from three different network features:
RTT, throughput, and CWND at retransmission time-
out (RTO). Simulations of single-hop-wireless networks
in ns-2 show that UL-TCP achieves significantly better
packet loss and fairness than TCP-NewReno and TCP-
ATL [10] (a non-ML TCP variant designed for single-hop-
wireless networks). However, UL-TCP is slightly inferior
in terms of goodput than TCP-ATL. It is important to
note that, unlike UL-TCP, TCP-ATL requires additional
implementation in the intermediate nodes of the net-
work. For multi-hop-wireless networks (i.e. WANETs),
UL-TCP is compared to TCP-NewReno and TCP-FALA,
and exhibit similar results to Learning-TCP. However, UL-
TCP is slightly more complex than Learning-TCP due to
the storage and usage of more parameters for computing
the states.
Remy [477] and PCC [122] went further by introduc-

ing congestion control mechanisms that learn to oper-
ate in multiple network architectures. Remy designed an
RL-based algorithm that is trained offline under many
simulated network samples. It aims to find the best rule
map (i.e. RemyCC) between the network state and the
CWND updating actions to optimize a specific objective
function. The simulated samples are constructed based
on network assumptions (e.g. number of senders, link
speeds, traffic model) given at design time—along with
the objective function—as prior knowledge to Remy. The
generated RemyCC is deployed in the target network
without further learning to update CWND according to
the current network state and the rule map. Several tests
on simulated network topologies, such as cellular and
data center networks, reveal that most of the generated
RemyCCs provide a better balance between through-
put and delay, in comparison to the standard TCP and
its many enhanced variants, including TCP-Vegas, TCP-
Cubic [174], and TCP-Cubic over Stochastic Fair Queuing
[304] with Controlled-Delay AQM [340] (SFQ-CD). How-
ever, if the target network violates the prior assumptions
or if the simulated samples incompletely consider the
parameters of the target network, the performance of the
trained RemyCC may degrade.
To tackle this uncertainty, PCC [122] avoids network

assumptions and proposes an online RL-based algorithm
that continually selects the increment for updating the

sending rate, instead of CWND, based on a utility func-
tion. This utility function aggregates performance results
(i.e. throughput, delay, and loss rate) observed for new
sending rates during short periods of time. The authors
emulate various network topologies, such as satellite and
data center networks, on experimental testbeds for eval-
uating their proposal. The results demonstrate that PCC
outperforms standard TCP and other variants specially
designed for particular networks, such as TCP-Hybla [83]
for satellite networks and TCP-SABUL [172] for inter-data
center networks.

6.4 Congestion inference
Network protocols adapt their operation based on
estimated network parameters that allow to infer the
congestion state. For example, some multicast and mul-
tipath protocols rely on predictions of TCP throughput
to adjust their behavior [238, 316], and the TCP protocol
computes the retransmission timeout based on RTT esti-
mations [22]. However, the conventional mechanisms for
estimating these network parameters remain inaccurate,
primarily because the relationships between the various
parameters are not clearly understood. This is the case
of analytic and history-based models for predicting the
TCP throughput and the Exponential Weighted Moving
Average (EWMA) algorithm used by TCP for estimating
RTT.
For the aforementioned reasons, several ML-based

approaches have addressed the limitations of inferring the
congestion in various network architectures by estimating
different network parameters: throughput [238, 316, 371],
RTT [22, 128], andmobility [309] in TCP-based networks,
table entries rate in NDNs [230], and congestion level in
DTNs [412]. As depicted in Table 13, the majority of these
proposals apply diverse supervised learning techniques,
mostly for prediction. While, the one focused on DTN
uses Q-learning for building a congestion control mech-
anism. The location of the final solution and the training
type (i.e. online or offline) differ throughout the proposals,
as well as the dataset and tools used for evaluating them.
Similarly, the accuracy column shows a variety of metrics
mainly due to the lack of consistency from the authors for
evaluating the quality of their ML-based components for
correctly predicting a specific parameter.
El Khayat et al. [238] apply multiple supervised learn-

ing techniques for predicting the TCP throughput in a
wired network. From the different features used in the
learning phase for building the ML models, the authors
find that the Timeout Loss Rate (TLR) adds significant
improvement in prediction accuracy. This is because TLR
helps to discriminate two types of losses: triple duplicates
and timeout. The ML models are trained and tested using
synthetic data collected from ns-2 simulations. MLP-NN
achieve the lowest accuracy error, followed byMARTwith
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Table 13 Summary of congestion inference from the estimation of different network parameters

Ref. ML Technique Network Dataset Features Output Evaluation

(location) Settings Resultsab

El Khayat
et al. [238]

Supervised:
· MLP-NN
· MART
· Bagging DT
· Extra-trees
(offline)

Wired
(end-system)

Synthetic data:
· ns-2 simulation
· > 1k random
topologies
Data distribution:
· Training = 18k
· Testing = 7.6k

· Packet size
· RTT: avg, min, max,
stdev
· Sesion loss rate
· Initial timeout
· Packets ACK at
once
· Session duration
· TLR

Prediction:
· Throughput

Ensemble DT:
· 25 trees
NN: N/A

MSE (10−3)c:
· 0.245
· 0.423
· 0.501
· 0.525

Mirza et al.
[316]

Supervised:
· SVR
(offline)

Multi-path
wired
(end-system)

Synthetic data:
· Laboratory testbed
- Dumbbell multi-
path topology
· RON testbed

· Queuing delay
· Packet loss
· Throughput

Prediction:
· Throughput

· 2 input features
· RBF kernel

Rate of predictions
with RPE ≤10%:
· Lab: 51%
· RON: 87%

Quer et al.
[371]

Supervised:
· BN
(offline)

WLAN
(access point)

Synthetic data:
· ns-3 simulation
· Star topology
Data distribution:
· Training = 40k
· Testing = 10k

· MAC-TX
· MAC-RTX
· MAC contention
window
· CWND
· CWND status
· RTT
· Trhoughput

Prediction:
· Throughput

DAG:
· 7 vertices
· 6 edges

Using MAC-TX:
· NRMSE = 0.37
Using all features:
· NRMSE = 0.27

Mezzavilla
et al. [309]

Supervised:
· BN
(offline)

WANET
(end-system)

Synthetic data:
· ns-3 simulation
· Topology:
- (not mentioned)

· MAC-TX
· MAC-RTX
· Slots before TX
· Queue TX packets
· Missing entries in
IP table

Classification:
· Static
· Mobile

DAG:
· 6 vertices
· 5 edges

Using MAC-TX and
MAC-RTX:
· Precision = 0.88
· Recall = 0.91

Fixed-Share
Experts [22]

Supervised:
· WMA (online)

· WANET
· Wired
· Hybrid
wired and
wireless
(end-system)

Synthetic data:
· QualNet
simulation
· Topology:
- RandomWANET
- Dumbbell wired
Real data:
· File transfer
· Wired and WLAN

· RTT Prediction:
· RTT

· 1 input feature
· 100 experts
· Simple experts

MAE (ticks):
· Synthetic data
(ticks of 500ms):
= 0.53
· Real data
(ticks of 4ms):
= 2.95

SENSE [128] Supervised:
· WMA
(online)

Hybrid wired
and wireless
(end-system)

Real data:
· Dataset from [22]

· RTT Prediction:
· RTT

· 1 input feature
· 100 experts
· EWMA experts

MAE (ticks of 4ms):
= 1.55

ACCPndn
[230]

Supervised:
· TLFN
- PSO
- GA
(online)

NDN
(controller
node)

Synthetic data:
· ns-2 simulation
· Topology:
- DFN
- SWITCH
Data distribution:
· Training = 70%
· Validation = 15%
· Testing = 15%

· PIT entries rate Prediction:
· PIT entries
rate

· R input neu-
rons
· 2 hidden layers
with R neurons
· R output neu-
rons R: number
of
contributing
routers

MSE:
· PSO-GA = 2.23
· GA-PSO = 3.25
· PSO = 4.05
· GA = 5.65
· BP = 7.27

Smart-
DTN-CC
[412]

Reinforcement:
· Q-learning
- Boltzmann
- WoLF
(online)

DTN (node) Synthetic data:
· ONE simulation:
· Random topology

States:
· Input rate
· Output rate
· Buffer space
Reward:
· State transition

Decision-
making:
· Action to
control the
congestion
(finite action-
set:
12 actions)

· 3 input features
· 4 states
· 12 actions

Improvement to
CCC:
· Delivery ratio
= 53%
· Delay = 95%

aAverage values. Results vary according to the configured network parameters (e.g. topology, mobility, traffic)
bError metrics: MAE, MSE, NRMSE, and Relative Prediction Error (RPE)
cRespectively to the list of elements in the column ML technique
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25 trees. Both methods are recommended by the authors
when learning from the full feature set. In addition, the
authors demonstrate that all their ML-based predictors
aremore TCP-friendly than conventional throughput ana-
lytic models, like SQRT [300] and PFTK [343], which are
generally used by multicast and real-time protocols.
Mirza et al. [316] also focus on throughput prediction,

however, for multi-path wired networks, such as multi-
homed and wide-area overlay networks. The authors
train and test a supervised time series regression model
using SVR on synthetic data collected from two distinct
testbeds: authors laboratory deployment and the Resilient
Overlay Networks (RON) project [332]. They also include
a confidence interval estimator that triggers retraining if
the predicted throughput falls outside the interval. The
results reveal that the SVR model yields more predictions
with a relative prediction error (RPE) of at least 10% than a
simple history-based predictor. Moreover, the evaluation
show that using active measurement tools for comput-
ing the model features, provide predictions as accurate
as relying on ideal passive measurements. This is impor-
tant because it is difficult to correctly collect passive
measurements in real wide-area paths.
Another approach for predicting TCP throughput is

proposed by Quer et al. [371]. Their ML solution resides
in the access point of aWLAN, instead of the end-systems
as in the above approaches. The authors apply BN for con-
structing a DAG that contains the probabilistic structure
between the multiple features that allow predicting the
throughput. A simplified probabilistic model is derived
from the constructed DAG by using a subset of the fea-
tures for inference. The training and testing of the BN
model rely on synthetic data collected from ns-3 simu-
lations. The results demonstrate that for a good amount
of training samples (≥ 1000), this model provides a low
prediction error. Furthermore, the authors exhibit that
the prediction based only on the number of MAC Trans-
missions (MAC-TX) achieves a comparable error—and
sometimes even lower—than using the full set of features.
A similar BN-based approach is proposed by Mezzav-

illa et al. [309], for classifying the mobility of the nodes in
WANETs as either static or mobile. The DAG is built from
a fewer number of features, therefore, reducing its num-
ber of vertices and edges. As in [371], the authors derive
a simplified probabilistic model from the DAG by using
two features for inference: MAC-TX and MAC Retrans-
missions (MAC-RTX). The results reveal that the simpli-
fied BN model achieves a good accuracy for classifying
mobility inWANETs, when varying the radio propagation
stability. This mobility classifier was used to implement a
TCP variant that outperforms TCP-NewReno in terms of
throughput and outage probability.
Fixed-Share Experts [22] and SENSE [128] concentrate

on a different challenge, i.e. predicting RTT for estimating

the congestion state at the end-systems of the network.
Both are based on the WMA ensemble method and con-
duct online training for TFS. It is important to note
that WMA uses the term experts to refer to algorithms
or hypotheses that form the ensemble model. Partic-
ularly, SENSE extends Fixed-Share Experts by adding:
(i) EWMA equations with different weights as experts,
(ii) a meta-learning step for modifying experts penalty
regarding recent past history, and (iii) a level-shift for
adapting to sudden changes by restarting parameter learn-
ing. The two RTT predictors are trained and tested on
real data collected from file transfers in a hybrid wired-
wireless network. Only Fixed-Share Experts is evaluated
on synthetic data collected from QualNet simulations.
The results on real data show that SENSE achieves a lower
prediction error—measured in ticks of 4ms—than Fixed-
Share Experts for predicting RTT. For synthetic data,
Fixed-Share Experts provide a lower prediction error in
comparison to real data even with a higher tick value of
500ms. In terms of complexity, it is important to mention
that SENSE requires more computational resources than
Fixed-Share Experts, due to the adoption of EWMA as
experts and the meta-learning step.
Finally, other works apply ML techniques to build novel

congestion control mechanisms for non-TCP-based net-
works. ACCPndn [230] propose to include a TLFN into
a controller node for predicting the rate of entries arriv-
ing to the Pending Interest Table (PIT) of NDN routers.
The controller node gathers historical PIT entries rate
from contributing routers and sends the prediction back
to the corresponding router. The defined TLFN consists
of two hidden layers between the input and output layers.
The number of neurons for each layer corresponds to the
number of contributing routers. To improve the param-
eter tuning of the TLFN trained using BP, the authors
introduce a hybrid training algorithm that combines two
optimization methods: PSO and GA. Various tests on
synthetic data collected from ns-2 simulations demon-
strate that the TLFN trained with PSO-GA provides a
lower prediction error than the TLFN with other train-
ing algorithms, such as GA-PSO, GA or PSO only, and
BP. Additionally, ACCPndn incorporate fuzzy decision-
making in each router that uses the predicted PIT entries
rate to proactively respond to network congestion. This
congestion control mechanism considerably outperforms
other NDN congestion control protocols, such as NACK
[487] and HoBHIS [392], in terms of packet drop and link
utilization.
Smart-DTN-CC [412] is another congestion control

mechanism based on ML for DTN nodes. In particular,
Smart-DTN-CC applies Q-learning for adjusting the con-
gestion control behavior to the operating dynamics of the
environment. Four congestion states are computed from
information locally available at each node. The actions are
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selected from a finite set of 12 actions based on Boltzmann
or Win-or-Learn Fast (WoLF) strategies. The reward of
the state-action pairs depend on the transition between
the states caused by a specific action. Simulations in the
Opportunistic Network Environment (ONE) tool show
that Smart-DTN-CC achieves higher delivery ratio and
significantly lower delay than existing DTN congestion
control mechanisms, such as CCC [265] and SR [406].

6.5 Summary
In the current Internet, TCP implements the most preva-
lent congestion control mechanism. TCP degrades the
throughput of the network when packet losses are due
to reasons other than congestion. Therefore, identifying
the cause of packet loss can improve TCP throughput.
Table 10 summarizes various solutions that have lever-
agedML for classifying packet losses at the end-systems of
different network technologies. In hybrid wired-wireless
networks, the unsupervised EM for HMM and various
supervised techniques were used to differentiate wire-
less losses (e.g. fading and shadowing) from congestion.
In wired networks, a supervised Bayesian classifier was
proposed to distinguish DUPACKs caused by reordering
from the ones due to congestion. In optical networks,
the unsupervised algorithm EM was employed on HMM
training and clustering for classifying contention and con-
gestion losses.
TCP variants built upon these ML-based classifiers out-

perform standard and diverse non-ML TCP versions (e.g.
TCP-Veno and Burst-TCP). The majority of the ML-
based classifiers were tested using synthetic data collected
from simulations. EM-based classifiers simulate simpler
topologies. Only the Bayesian classifier was evaluated on
real data, though the small number of losses in the data
negatively affects the results. In addition, all the classifiers
perform binary classification of packet losses. Therefore,
it would be interesting to explore an ML-based classi-
fier that distinguishes between multiple causes of packet
loss.
The other well-known congestion control mechanism is

queue management. Several variations of AQM schemes
(e.g. RED) have been proposed to overcome the TCP
synchronization problem. However, these schemes suffer
from poor responsiveness to time-varying and nonlinear
network conditions. Therefore, different AQM schemes
have integrated ML for better queue length stabilization
and parameter tuning in changing network traffic con-
ditions. As depicted in Table 11, half of the ML-based
AQM schemes apply supervised OLS and NN for predict-
ing future time series values of either traffic volume or
queue length. The predicted values are used to dynami-
cally adjust the packet drop probability. The other half of
ML-based schemes employ reinforcement-basedmethods
for deducing the increment in the packet drop probability.

All these ML-based AQM schemes improve and speed
up the queue stabilization over non-ML AQM schemes
for varying network conditions. However, the evaluation
was based only on simulations of wired networks, though
including single andmultiple bottleneck topologies. Addi-
tionally, none of the ML-based AQM schemes have con-
sidered providing a fair link share among senders and have
not been tested under coexisting legacy schemes in other
bottleneck links in the network.
Another shortcoming in TCP is that its CWND update

mechanism does not fit the distinct characteristics of dif-
ferent networks. For example, while satellite networks
demand an aggressive CWND increase, WANETs per-
form better under a conservative approach. Table 12 out-
lines several solutions that have used RL techniques to
appropriately update CWND according to the network
conditions. Half of these ML-based approaches apply
FALA, CALA, or Q-learning (including the FK func-
tion approximation) on resource-constrained networks
(i.e. WANET and IoT). Whereas, the other half either use
CALA or an own RL design on a wider range of network
architectures, including satellite, cellular, and data center
networks.
TCP variants built upon theseML-based CWNDupdat-

ing mechanisms perform better in terms of throughput
and delay than standard and non-ML TCP versions par-
ticularly enhanced for specific network conditions (e.g.
TCP-FeW and TCP-Cubic). Some of the ML-based TCP
also show improvements in packet loss and fairness. The
evaluation has been only based on synthetic data collected
from simulations and experimental testbeds. In this case,
it would be interesting to explore other ML techniques
rather than RL for properly updating CWND.
TCP, as well as some multicast and multipath proto-

cols, infer the congestion state from estimated network
parameters (e.g. RTT and throughput) to adapt their
behavior. However, such estimation remains imprecise
mainly because of the difficulty in modeling the relation-
ships between the various parameters. As summarized
in Table 13, several solutions have leveraged ML for
inferring congestion in different network architectures by
estimating diverse network parameters. In the context of
TCP-based networks, various supervised techniques were
employed to predict the throughput in wired and WLAN
networks. A supervised BN was also built to classify the
nodemobility inWANETs, while the ensembleWMAwas
used for predicting RTT in WANETs and hybrid wired-
wireless networks. In the context of evolutionary network
architectures, a supervised TLFN predicted the rate of
entries arriving to the PIT of NDN routers, whereas Q-
learning was employed in DTN nodes to select the proper
action for the corresponding congestion state.
All these ML-based estimators outperform the accu-

racy of conventional estimation mechanisms (e.g. EWMA
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and history-based). The evaluation was mostly performed
using synthetic data collected from simulations and lab-
oratory testbeds. Only the WMA-based estimators col-
lected real data to test their approaches.
As final remarks, note that themajority of theML-based

solutions rely on synthetic data to conduct the evalua-
tion. However, synthetic data rely on simulations that may
differ from real conditions. Therefore, there is a need
to collect data from real networks to successfully apply
and evaluate ML-based solutions. In some cases, such
as in queue management, real collected data might not
be enough to accomplish a realistic evaluation because
the solutions impact the immediate network conditions.
Therefore, recent networking technologies, like SDN and
NFV, might support the evaluation in real networks. In
addition, despite some ML-based solutions work on the
same problem and report similar evaluationmetrics, there
is still the need of establishing a common set of metrics,
data, and conditions that facilitate their comparison in
terms of performance and complexity.

7 Resourcemanagement
Resource management in networking entails controlling
the vital resources of the network, including CPU, mem-
ory, disk, switches, routers, bandwidth, AP, radio channels
and its frequencies. These are leveraged collectively or
independently to offer services. Naïvely, network service
providers can provision a fixed amount of resources that
satisfies an expected demand for a service. However, it
is non-trivial to predict demand, while over and under
estimation can lead to both poor utilization and loss in
revenue. Therefore, a fundamental challenge in resource
management is predicting demand and dynamically pro-
visioning and reprovisioning resources, such that the net-
work is resilient to variations in service demand. Despite
the widespread application of ML for load prediction and
resource management in cloud data centers [367], various
challenges still prevail for different networks, including
cellular networks, wireless networks and ad hoc networks.
Though, there are various challenges in resource manage-
ment, in this survey, we consider two broad categories,
admission control and resource allocation.
Admission control is an indirect approach to resource

management that does not need demand prediction. The
objective in admission control is to optimize the uti-
lization of resources by monitoring and managing the
resources in the network. For example, new requests for
compute and network resources are initiated for a VoIP
call or connection setup. In this case, admission con-
trol dictates whether the new incoming request should be
granted or rejected based on available network resources,
QoS requirements of the new request and its conse-
quence on the existing services utilizing the resources in
the network. Evidently, accepting a new request generates

revenue for the network service provider. However, it
may degrade the QoS of existing services due to scarcity
of resources and consequentially violate SLA, incurring
penalties and loss in revenue. Therefore, there is an immi-
nent trade-off between accepting new requests and main-
taining or meeting QoS. Admission control addresses this
challenge and aims to maximize the number of requests
accepted and ser ved by the network without violat-
ing SLA.
In contrast, resource allocation is a decision problem

that actively manages resources to maximize a long-term
objective, such as revenue or resource utilization. The
underlying challenge in resource allocation is to adapt
resources for long-term benefits in the face of unpre-
dictability. General model driven approaches for resource
allocation have fallen short in keeping up with the velocity
and volume of the resource requests in the network. How-
ever, resource allocation is exemplar for highlighting the
advantages of ML, which can learn and manage resource
provisioning in various ways.

7.1 Admission control
As shown in Table 14, Admission control has leveraged
ML extensively in a variety of networks, including ATM
networks [95, 189, 190], wireless networks [8, 36, 359], cel-
lular networks [66, 67, 281, 372, 458], ad hoc networks
[452], and next generation networks [311]. To the best
of our knowledge, Hiramatsu [189] was the first to pro-
pose NN based solutions controlling the admission of
a service requesting resources for a basic call setup in
ATM networks. He demonstrated the feasibility of NN
based approaches for accepting or rejecting requests, for
resilience to dynamic changes in network traffic char-
acteristics. However, there were unrealistic underlying
assumptions. First, all calls had similar traffic characteris-
tics, that is, single bit or multi bitrate. Second, cell loss rate
was the sole QoS parameter.
Later, Hiramatsu [190] overcome these limitations, by

integrating admission control for calls and link capac-
ity control in ATM networks using distributed NNs. The
NNs could now handle a number of bit-rate classes with
unknown characteristics and adapt to the changes in traf-
fic characteristics of each class. Cheng and Chang [95]
use a congestion-status parameter, a cell-loss probability,
and three traffic parameters, including peak bitrate, aver-
age bitrate, and mean peak-rate duration, to achieve a
20% improvement over Hiramatsu. To reduce the dimen-
sionality of the feature space, they transform peak bitrate,
average bitrate, and mean peak-rate duration of a call into
a unified metric.
Piamrat et al. [359] propose an admission control mech-

anism for wireless networks based on subjective QoE
perceived by end-users. This is in contrast to leverag-
ing quantitative parameters, such as bandwidth, loss and
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latency. To do so, they first choose configuration parame-
ters, such as codec, bandwidth, loss, delay, and jitter, along
with their value ranges. Then, the authors synthetically
distort a number of video samples by varying the chosen
parameters. These distorted video samples are evaluated
by human observers who provide a mean opinion score
(MOS) for each sample. The configurations and corre-
sponding MOSs are used to construct the training and
testing datasets for a RandomNeural Network (RandNN),
which predictsMOSs in real-time without human interac-
tion. Though, they evaluate their admission control mech-
anism for user satisfaction and throughput based metrics,
no accuracy or error analysis is reported for the RandNN.
Baldo et al. [36] propose a ML-based solution using

MLP-NN to address the problem of user driven admis-
sion control for VoIP communications in a WLAN. In
their solution, a mobile device gathers measurements on
the link congestion and the service quality of past voice
calls. These measurements are used to train the MLP-
NN to learn the relationship between the VoIP call quality
and the underlying link layer, thus inferring whether an
access point can satisfactorily sustain the new VoIP call.
The authors report 98.5% and 92% accuracy for offline and
online learning, respectively.
On the other hand, Liu et al. [281] propose a self-

learning call admission control mechanism for Code Divi-
sion Multiple Access (CDMA) cellular networks that have
both voice and data services. Their admission control
mechanism is built atop a novel learning control archi-
tecture (e.g., adaptive critic design) that has only one
controller module, namely, a critic network. The critic
network is trained with an 3:6:1 MLP-NN that uses
inputs such as network environment (e.g. total interfer-
ence received at the base station), user behavior (e.g. call
type—new or hand off call), call class (e.g. voice, data), and
the action to accept or reject calls. The output is the Grade
of Service (GoS) measure. The MLP-NN is retrained to
adapt to changes in the admission control requirements,
user behaviors and usage patterns, and the underlying net-
work itself. Through simulation of cellular networks with
two classes of services, the authors demonstrate that their
admission control mechanism outperforms non-adaptive
admission control mechanisms, with respect to GoS, in
CDMA cellular networks.
In contrast, Bojovic et al. [66] design anML-based radio

admission control mechanism to guarantee QoS for var-
ious services, such as voice, data, video and FTP, while
maximizing radio resource utilization in long term evo-
lution (LTE) networks. In their mechanism, the MLP-NN
is trained using features, such as application throughput,
average packet error rate, and average size of payload.
The MLP-NN is then used to predict how the admission
of a new session would affect the QoS of all sessions to
come. Using a LTE simulator, it is shown that MLP-NN

can achieve up to 86% accurate decisions provided it has
been trained over a relatively long period of time. Despite
its high accuracy, a critical disadvantage of MLP-NN is
over-fitting, thus it fails to generalize in the face of partial
new inputs.
Vassis et al. [452] propose an adaptive and distributed

admission control mechanism for variable bitrate video
sessions, over ad hoc networks with heterogeneous video
and HTTP traffic. Unlike previous admission control
approaches that only consider the new request, this mech-
anism takes into account the QoS constraints of all the
services in the network. The authors evaluate five different
NNs, namely MLP, probabilistic RBFNN, learning vec-
tor quantization network (LVQ) –a precursor to SOM–,
HNN, and SVM network. Using network throughput and
packet generation rates of all nodes prior to starting each
session and the average packet delays of those sessions as
the training and validation data, respectively, they found
probabilistic RBFNN to always converge with a success
rate between 77 and 88%.
Similarly, Ahn et al. [8] propose a dynamic admission

control algorithm for multimedia wireless networks based
on unsupervised HNN. In this mechanism, new or hand-
off connections requesting admission are only granted
admission if the bandwidth of the corresponding cell is
sufficient to meet the bandwidth required for their best
QoS level. Otherwise, the QoS levels of the existing con-
nections are degraded to free up some bandwidth for
the new or hand-off connection requesting admission.
The compromised QoS levels of existing connections and
the QoS levels of the new or hand-off connections are
then computed using a hardware-based HNN that per-
mits real-time admission control. Most importantly, the
HNN does not require any training, and can easily adapt
to dynamic network conditions. This admission control
mechanism achieves significant gains in ATM networks,
in terms of minimizing the blocking and dropping proba-
bilities and maximizing fairness in resource allocation.
Recently, Blenk et al. [63] employ RNN for admission

control for the online virtual network embedding (VNE)
problem. Before running a VNE algorithm to embed a
virtual network request (VNR), the RNN predicts the
probability whether VNR will be accepted by the VNE
algorithm based on the current state of the substrate and
the request. This allows the VNE algorithm to process
only those requests that are accepted by the RNN, thus
reducing the overall runtime and improving the system
performance. The RNN is trained with new representa-
tions of substrate networks and VNRs that are based on
topological and network resource features. To obtain a
compact representation, the authors apply PCA on a set
of feature vectors and select features that are sensitive
to high load, including number of nodes, spectral radius,
maximum effective eccentricity, average neighbor degree,
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number of eigenvalues, average path length, and number
of edges. A total of 18 different RNNs are trained offline
using a supervised learning algorithm and a dataset gen-
erated through simulation of two VNE algorithms, namely
Shortest Distance Path and Load Balanced. These RNNs
achieve accuracies between 89% and 98%, demonstrating
that this admission control mechanism can learn from the
historical performances of VNE algorithms.
However, a potential disadvantage of NN based systems

is that the confidence of the predicted output is unknown.
As a remedy, a BN can predict the probability distribu-
tion of certain network variables for better performance in
admission control [67, 372]. Specifically, Bojovic et al. [67]
compare NN and BN models by applying them for admis-
sion control of calls in LTE networks. Both models are
trained to learn the network behavior from the observa-
tion of the selected features. Upon arrival of an incoming
VoIP call and assuming that the call is accepted, these two
models are used to estimate the R-factor [206] QoS met-
ric. A major difference between NN and BN is that NN
can directly predict the value of the R-factor, while BN
provides a distribution over its possible values. In NN, if
the estimated R-factor is greater or smaller than a QoS
threshold, the call is accepted or rejected, respectively.
In contrast, the BN model accepts a call if the probabil-
ity of the R-factor exceeding a threshold is greater than
a probability threshold, or drops it otherwise. This gives
the admission control mechanism additional flexibility to
choose the probability threshold that allows to meet dif-
ferent system requirements by opportunistically tuning
these thresholds. Through a simulation of macro cell LTE
admission control scenario in ns-3, the BN model shows
less FPs and FNs compared to NN.
Similarly, Quer et al. [372] develop an admission control

mechanism for VoIP calls in a WLAN. They employ BN
to predict the voice call quality as a function of link layer
conditions in the network, including the fraction of chan-
nel time occupied by voice and background best effort
traffic, estimated frame error probabilities of voice and
background traffic, and R-factor representing the posteri-
ori performance. The BNmodel is built upon four phases,
(i) a structure learning phase to find qualitative relation-
ships among the variables, (ii) a parameter learning phase
to find quantitative relationships, (iii) the design of an
inference engine to estimate the most probable value of
the variable of interest, and (iv) an accuracy verification
to obtain the desired level of accuracy in the estimation
of the parameter of interest. The authors evaluate the BN
model via ns-3 based simulation of a WLAN, having both
VoIP and TCP traffic, and show an accuracy of 95%.
Besides NN and BN, the admission control problem

has also been formulated as an MDP [311, 458]. Tradi-
tionally, dynamic programming (DP) is used to solve a
MDP. However, DP suffers from two limitations in the

context of admission control. First, it expects the num-
ber of states in the MDP to be in polynomial order,
which is seldom the case in real networks. Second, DP
requires explicit state transition probabilities, which are
non-trivial to determine a priori. Therefore, RL, that
can handle MDP problems with very large state spaces
and unknown state transition probabilities, has been suc-
cessfully applied to solve MDP-based admission control
problems in networking.
Mignanti et al. [311] employ Q-learning to address

admission control for connections in next generation net-
works. In their approach, when a connection request
arrives, the Q-values of accepting and rejecting the
request are computed. The request is accepted or rejected
depending on whether the Q-value for acceptance or
rejection is higher. Similarly, Q-learning has been used to
allocate guard channels as part of the admission control
mechanism for new calls in the LTE femtocell networks
[458]. It is important to realize that allocating a guard
channel for a new or hand-off call can raise the blocking
probability. Therefore, Q-learning has to find the optimal
policy that minimizes the cumulative blocking probability.
RL has also been leveraged for more complex prob-

lems that pertain to admission control with routing
[295, 446]. In such problems, when a request is admitted,
a route has to be established such that each link in the
route meets the QoS requirements of the request. There-
fore, RL-based solutions discussed earlier for admission
control, with only two possible actions, are infeasible for
admission control with routing. Here, the action space
consists of selecting a route from a predefined set of routes
in the network. Tong et al. [446] formulate this prob-
lem as a semi-MDP, and leverage Q-learning to define
policies for route selection, such that the revenue is max-
imized and QoS requirements of the requests are met.
In the formulation, they consider two important classes
of QoS constraints, (i) state dependent constraint (e.g.
capacity constraint) that is a function of only the cur-
rent state, and (ii) past dependent constraint (e.g. fairness
constraint) that depends on statistics over the past his-
tory. Since a detailed specification of a network state is
computationally intractable [446], they exploit statistical
independence of the links in the network for developing
a decentralized RL training and decision making algo-
rithm. In this approach, each link in the network performs
Q-learning locally using only the link state information,
instead of network state information. The authors evalu-
ate their approach to admission control with routing via
simulation of a network with 4 nodes and 12 links. The
results show significant improvement over heuristic based
algorithms.
Similarly, Marbach et al. [295] use RL to construct a

dynamic admission control with routing policy for new
calls in integrated service networks. As the traditional
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DP-based models for admission control with routing are
computationally intractable, Marbach et al. [295] propose
an approximation architecture consisting of an MLP with
internal tunable weights that can be adjusted using TD(0).
However, TD(0) has a slow rate of convergence, hence the
authors integrate it with decomposition approach to rep-
resent the network as a set of decoupled link processes.
This allows to adopt a decentralized training and deci-
sion making, which not only significantly reduce training
time, but also achieve sophisticated admission control
with routing policies that are otherwise difficult to obtain
via heuristics approaches.

7.2 Resource allocation
Recall that the challenge in resource allocation lies in
predicting demand variability and future resource utiliza-
tion. ML-based techniques can be leveraged to learn the
indicators that can aid in resource allocation as summa-
rized in Table 15. The most suitable ML-based approach
for the resource allocation decision problem is RL. The
primary advantage of RL is that it can be deployed with-
out any initial policies, and it can learn to adapt to the
dynamic demands for a reactive resource allocation. For
instance, Tesauro [442] use decompositional RL to allo-
cate and reallocate data center server resources to two dif-
ferent workloads, a web-based time-varying transactional
workload and a non-web-based batch workload. Since the
impact of a resource allocation decision is Markovian, the
RA problem benefits largely from anMDP-based formula-
tion. However, the state and action space of anMDP grows
exponentially and leads to the dimensionality problem.
To address this problem, the authors in [442] propose a

decompositional formula of RL for composite MDPs. The
decompositional RL uses a localized version of SARSA(0)
algorithm to learn a local value function based on local
state and local resource allocation of a request instead of
global knowledge. Vengerov [454] go further in applying
RL to the allocation of multiple resource types (e.g. CPU,
memory, bandwidth), using fuzzy rules where some or all
the fuzzy categories can overlap.Whereas,Mao et al. [294]
use DNN to approximate functions in large scale RL task
in order to develop a multi-resource cluster scheduler.
Most recently, Pietrabissa et al. [361] propose a scalable
RL based solution to the MDP problem for resource allo-
cation using policy reduction mechanism proposed in
[360] and state aggregation that combines lightly loaded
states into one single state.
More specifically, Baldo et al. [35] and Bojovic et al.

[65] optimize network resource allocation. Baldo et al.
[35] use a supervised MLP-NN for real-time character-
ization of the communication performance in wireless
networks and optimize resource allocation. On the other
hand, Bojovic et al. [65] use MLP-NN to select the AP
that will provide the best performance to a mobile user

in IEEE 802.11 WLAN. In their proposals, each user col-
lects measurements from each AP, such as signal to noise
ratio (SNR), probability of failure, business ratio, aver-
age beacon delay, and number of detected stations. These
metrics are used to describe different APs and train a
two layer MLP-NN. The output of the MLP-NN is the
downlink throughput, which is a standard performance
metric used bymobile clients. TheMLP-NN is trained rig-
orously with different configuration parameters to result
in the lowest normalized RMSE (NRMSE). Finally, the
MLP-NN is deployed to select the AP that will yield the
optimal throughput in different scenarios and evaluated
on EXTREME testbed [364]. Undoubtedly, the ML-based
AP selection for network resource allocation, outperforms
AP selection mechanisms based on the signal to noise
ratio (SNR), the load based scheme and the beacon delay
scheme, especially in dynamic environments.
Similarly, Adeel et al. [6] leverage RNN to build an intel-

ligent LTE-Uplink system that can optimize radio resource
allocation based on user requirements, surrounding envi-
ronments, and equipment’s ability. In particular, their
system can allocate the optimal radio parameters to serv-
ing users and suggest the acceptable transmit power to
users served by adjacent cells for inter-cell-interference
coordination. To analyze the performance of RNN, three
learning algorithms are analyzed, namely GD, adaptive
inertia weight particle swarm optimization (AIWPSO),
and differential evolution (DE). One RNN is trained and
validated using each of the above learning algorithms with
a dataset of 6000 samples. The dataset is synthetically
generated by executing multiple simulations of the LTE
environment using a SEAMCAT simulator. Evaluation
results show that AIWPSO outperforms the other learn-
ing algorithms, with respect to accuracy (based on MSE).
However, AIWPSO’s better accuracy is achieved at the
expense of longer convergence time due to extra computa-
tional complexity. Unfortunately, [6] does not evaluate the
effectiveness of resource allocation for the proposed LTE
system. However, the analysis of the learning algorithms
can provide valuable insights in applying ML to similar
networking problems.
Though, admission control and resource allocation have

been studied separately, Testolin et al. [443] leverage ML
to address them jointly for QoE-based video requests in
wireless networks. They combine unsupervised learning,
using stochastic RNN, also known as RBM, with super-
vised classification using a linear classifier, to estimate
video quality in terms of the average Structural SIMilar-
ity (SSIM) index. The corresponding module uses video
frame size that is readily available at the network layer
to control admission and resource provisioning. However,
the relationship between video frame size and SSIM in
non-linear and RBM extracts an abstract representation
of the features that describe the video. The linear classifier

235



Boutaba et al. Journal of Internet Services and Applications  (2018) 9:16 Page 57 of 99

Ta
b
le

15
Su
m
m
ar
y
of

M
L-
ba

se
d
Re
so
ur
ce

A
llo
ca
tio

n

Re
f.

M
L
Te
ch
ni
qu

e
N
et
w
or
k

D
at
as
et

Fe
at
ur
es

O
ut
pu

t
Ev
al
ua
tio

n

Se
tt
in
gs

Re
su
lts

Ba
ld
o
et

al
.[
35
]

Su
pe

rv
is
ed

:·M
LP
-N
N

W
ire
le
ss
ne

tw
or
ks

Si
m
ul
at
io
n
da
ta

ge
ne

ra
te
d
us
in
g

ns
-M

ira
cl
e
si
m
ul
at
or

·S
ig
na
lt
o
no

is
e
ra
tio

·
Re
ce
iv
ed

fra
m
es

·E
rr
o-

ne
ou

s
fra

m
es

·
Id
le

tim
e

·T
hr
ou

gh
pu

t·
D
el
ay

·R
el
i-

ab
ili
ty

2
la
ye
rs

w
ith

6
ne

u-
ro
ns

in
th
e

hi
dd

en
la
ye
r

Ve
ry

go
od

ac
cu
-

ra
cy

Bo
jo
vi
c
[6
5]

Su
pe

rv
is
ed

:·M
LP
-N
N

W
ire
le
ss
LA

N
Sy
nt
he

tic
da
ta

ge
ne

r-
at
ed

us
in
g
te
st
be

d
·S

ig
na
l
to

no
is
e
ra
tio

·P
ro
ba

bi
lit
y
of

fa
ilu
re

·B
us
in
es
s
ra
tio

·A
ve
r-

ag
e

be
ac
on

de
la
y

·
N
um

be
r

of
de

te
ct
ed

st
at
io
ns

·T
hr
ou

gh
pu

t
of

an
ac
ce
ss

po
in
t

2
la
ye
rs

w
ith

va
ry
in
g

nu
m
be

r
of

no
de

s
in

th
e

hi
dd

en
la
ye
r,

m
ax
im

um
nu

m
be

r
of

ep
oc
hs
,
an
d

le
ar
ni
ng

ra
te

N
RM

SE
=
8%

A
de

el
et

al
.[
6]

RN
N
w
ith

G
D
,A

IW
PS
O
,

an
d
D
E

C
el
lu
la
rn

et
w
or
k

Sy
nt
he

tic
al
ly

ge
ne

ra
te
d

us
in
g

a
SE
A
M
C
A
T

LT
E

si
m
ul
at
or

·S
ig
na
lt
o
in
te
rfe

re
nc
e

no
is
e
ra
tio

·In
te
r-
ce
ll-

in
te
rfe

re
nc
e

·M
od

ul
a-

tio
n/
co
di
ng

sc
he

m
es

·
Tr
an
sm

it
po

w
er

Th
ro
ug

hp
ut

5-
8-
1a

M
ea
n

sq
ua
re

er
ro
r

·
A
IW

PS
O
:

8.
5

×
10

−4
·G

D
:

1.
03

×
10

−3
·D

E:
9.
3

×
10

−4

Te
st
ol
in
et

al
.[
44
3]

Su
pe

rv
is
ed

:·L
in
ea
r

cl
as
si
fie
rU

ns
up

er
vi
se
d:

·R
N
N

W
ire
le
ss
ne

tw
or
ks

38
vi
de

o
cl
ip
s

ta
ke
n

fro
m

C
IF

·V
id
eo

fra
m
e
si
ze

·
Q
ua
lit
y

le
ve
l
of

ea
ch

vi
de

o
in
te
rm

s
of

th
e
av
er
-

ag
e
SS
IM

in
de

x

32
vi
si
bl
e

un
its

w
ith

a
va
ry
in
g

nu
m
be

r
of

hi
dd

en
un

its

RM
SE

<
3%

M
iju
m
bi
et

al
.[
31
2]

RL
·Q

-le
ar
ni
ng

(ε
-g
re
ed

y
an
d
so
ft
m
ax
)

VN
s

Si
m
ul
at
io
n
on

ns
-3

an
d
re
al

In
te
rn
et

tr
af
fic

tr
ac
es

St
at
es

·P
er
ce
nt
ag
es

of
al
lo
ca
te
d

an
d

un
us
ed

re
so
ur
ce
s
in

su
bs
tr
at
e

no
de

s
an
d
lin
ks

A
ct
io
ns

·
In
cr
ea
se

or
de

cr
ea
se

th
e
pe

rc
en

ta
ge

s
of

al
lo
ca
te
d
re
so
ur
ce

29
st
at
es
,9

ac
tio

ns
Im

pr
ov
ed

th
e

ac
ce
pt
an
ce

ra
tio

M
iju
m
bi
et

al
.[
31
3]

Su
pe

rv
is
ed

:·F
N
N

VN
F
ch
ai
ns

Vo
IP
tr
af
fic

tr
ac
es

·D
ep

en
de

nc
y
of

re
so
ur
ce

re
qu

ire
m
en

ts
of

ea
ch

VN
FC

on
its

ne
ig
hb

or
VN

FC
s

·
H
is
to
ric
al

lo
ca
l
VN

FC
re
so
ur
ce

ut
ili
za
tio

n

·R
es
ou

rc
e
re
qu

ire
m
en

ts
of

ea
ch

VN
FC

2
N
N
s
fo
re
ac
h
VN

FC
A
cc
ur
ac
y
∼9

0%

Sh
ie
ta
l.
[4
10
]

Su
pe

rv
is
ed

:·M
D
P

·B
N

VN
F
ch
ai
ns

Si
m
ul
at
io
n
da
ta

ge
ne

ra
te
d
us
in
g

W
or
kf
lo
w
Si
m

·
H
is
to
ric
al

re
so
ur
ce

us
ag
e

·F
ut
ur
e
re
so
ur
ce

re
lia
bi
lit
y

Ru
nn

in
g

tim
e

fo
r

M
D
P:

O
(t
v+

1
),

w
he

re
t
an
d
v
st
an
d
fo
r
th
e

nu
m
be

r
of

N
FV

co
m
-

po
ne

nt
ta
sk
s

an
d

th
e

nu
m
be

r
of

VM
s,

re
sp
ec
tiv
el
y

Be
tt
er

th
an

ot
he

r
gr
ee
dy

m
et
ho

ds
in
te
rm

s
of

co
st

a N
um

be
ro

fn
eu

ro
ns

at
th
e
in
pu

tl
ay
er
,h
id
de

n,
an
d
ou

tp
ut

la
ye
rs
,r
es
pe

ct
iv
el
y

236



Boutaba et al. Journal of Internet Services and Applications  (2018) 9:16 Page 58 of 99

maps the abstractions to the SSIM coefficients, which are
leveraged to accept or reject new video requests, and to
adapt resource provisioning to meet the network resource
requirements. The authors report a RMSE of below 3%
using videos from a pool of 38 video clips with different
data rates and durations.
Virtualization of network resources through NFV and

virtual networks brings forward a new dimension to the
resource allocation problem, that is, provisioning virtual
resources sitting on top of physical resources. To leverage
the benefits of virtualization, Mijumbi et al. [312] propose
a dynamic resource management approach for virtual net-
works (VNs) using distributed RL that dynamically and
opportunistically allocates resources to virtual nodes and
links. The substrate network is modeled as a decentral-
ized system, wheremultiple agents useQ-learning on each
substrate node and link. These agents learn the optimal
policy to dynamically allocate substrate network resources
to virtual nodes and links. The percentage of allocated
and unused resources (e.g. queue size, bandwidth) in sub-
strate nodes or links represent the states of Q-learning,
with two explicit actions to increase or decrease the per-
centage of allocated resource. A biased learning policy is
exploited with an initialization phase to improve the con-
vergence rate of Q-learning. This Q-learning based action
selection approach for resource allocation outperforms ε-
greedy and softmax in ns-3 simulation with real Internet
traffic traces. Furthermore, in comparison to static alloca-
tion, the proposed method improve the ratio of accepting
VNs without affecting their QoSs.
In addition, Mijumbi et al. [312] use FNN to predict

future resource requirements for each VNF component
(VNFC) in a service function chain [313]. Each VNFC is
modeled using a pair of supervised FNNs that learn the
trend of resource requirements for the VNFC by combin-
ing historical local VNFC resource utilization information
with the information collected from its neighbors. The
first FNN learns the dependence of the resource require-
ments for each of the VNFCs, which is used by the
second FNN to forecast the resource requirements for
each VNFC. The predictions are leveraged to spin-up and
configure new VNFCs or deallocate resources to turn off
VNFCs. Evaluation based on real-time VoIP traffic traces
on a virtualized IP Multimedia Subsystem (IMS) reveals a
prediction accuracy of approximately 90%.
In contrast, Shi et al. [410] use BN to predict future

resource reliability, the ability of a resource to ensure
constant system operation without disruption, of NFV
components based on historical resource usage of VNFC.
The learning algorithm is triggered when an NFV com-
ponent is initially allocated to resources. As time evolves,
the BN is continuously trained with resource reliabil-
ity responses and transition probabilities of the BN are
updated, resulting in improved prediction accuracy. The

predictions are leveraged in an MDP to dynamically allo-
cate resources for VNFCs. Using WorkflowSim simulator,
the authors demonstrate that the proposed method out-
performs greedy methods in terms of overall cost.

7.3 Summary
As evident from Tables 14 and 15, the ML-based resource
management schemes studied in this paper can be broadly
classified into two groups—supervised learning-based
and RL-based. Application of unsupervised techniques
in resource management is rather unexplored, with the
exception of a few works. In addition, MLP-NN, though
applied with a variety of parameter settings, is the most
popular supervised technique, while Q-learning domi-
nates the choice of RL-based approaches. Furthermore,
other works have leveraged BN techniques, to intro-
duce the flexibility of having a probability distribution
rather than individual values produced by NN-based
approaches. However, MLP-NNs offer better scalability
than BN and RL, since the number of neurons in different
layers of an MLP-NN can be tuned based on the prob-
lem dimension. Whereas, the number of states in RL can
explode very quickly in a moderate size network. In the
past, several techniques, such as decomposition, decen-
tralization, and approximation have been used to deal
with the dimensionality issue of applying RL. Recently,
RL combined with deep-learning has been shown as
a promising alternative [294] that can be leveraged to
tackle various resourcemanagement problems in practical
settings. Nonetheless, NN-based supervised approaches
exhibit steady performance in terms of both accuracy and
convergence.
Although the ML-based resource management schemes

studied in this paper differ in terms of the feature sets,
they either predict one or more QoS metrics of interest or
generate an acceptance/rejection decision for an incom-
ing request, based on a QoS estimation. The ML-based
resource management approaches also exhibit a similar-
ity regarding the network and dataset. The focus of the
majority of approaches is on wireless networks, where
resource contention is more profound than wired net-
works. Due to the lack of real-life traces, these approaches
adopt different methods to simulate the network of inter-
est and produce training and testing data. Therefore, more
research is needed that can evaluate the performance of
the proposed ML techniques in real networks and with
real data.

8 Fault management
Fault management involves detection, isolation, and cor-
rection of an abnormal condition of a network. It requires
network operators and administrators to have a thor-
ough knowledge of the entire network, its devices and
all the applications running in the network. This is
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an unrealistic expectation. Furthermore, recent advances
in technology, such as virtualization and softwarization
makes today’s network monumental in size, complex-
ity and highly dynamic. Therefore, fault management is
becoming increasingly challenging in today’s networks.
Naïve fault management is reactive and can be perceived

as a cyclic process of detection, localization andmitigation
of faults. First, fault detection jointly correlates vairous
different network symptoms to determine whether one
or more network failures or faults have occurred. For
example, faults can occur due to reduced switch capacity,
increased rate of packet generation for a certain applica-
tion, disabled switch, and disabled links [37]. Therefore,
the next step in fault management is localization of the
root cause of the fault(s), which requires pinpointing the
physical location of the faulty network hardware or soft-
ware element, and determining the reason for the fault.
And lastly, fault mitigation aims to repair or correct the
network behaviour. In contrast, fault prediction is proac-
tive and aims to prevent faults or failures in the future
by predicting them and initiating mitigation procedures
to minimize performance degradation. ML-based tech-
niques have been proposed to address these challenges
and promote cognitive fault management in the areas
of fault prediction, detection, localization of root cause,
and mitigation of the faults. In the following subsections,
we describe the role ML has played in these prominent
challenges for fault management.

8.1 Predicting fault
One of the fundamental challenges in fault manage-
ment is fault prediction to circumvent upcoming network
failures and performance degradation. One of the first
ML-based approaches for detecting anomalous events in
communication networks is [301]. This approach per-
forms fault prediction by continuously learning to distin-
guish between normal and abnormal network behaviors
and triggering diagnostic measures upon the detection
of an anomaly. The continuous learning enables adapta-
tion of the fault prediction and diagnostic measure to the
network dynamics without explicit control. Although the
work in [301] leverages ML in fault prediction, it does
not mention any specific technique. On the other hand,
BNs have been widely used in communication and cellular
networks to predict faults [193, 247, 248].
In a BN, the normal behavior of a network and devia-

tions from the normal are combined in the probabilistic
framework to predict future faults in communication and
cellular networks. However, one shortcoming of the sys-
tem in [193] is that it cannot predict impact on network
service deterioration. Nevertheless, a common drawback
of BN is that they are not sensitive to temporal factors,
and fail to model IP networks that dynamically evolve over
time. For such networks, Ding et al. [118] apply dynamic

BN to model both static and dynamic changes in man-
aged entities and their dependencies. The dynamic BN
model is robust in fault prediction of a network element,
localization of fault and its cause and effect on network
performance.
Snow et al. [414] use a NN to estimate the dependabil-

ity of a 2G wireless network that is used to characterize
availability, reliability, maintainability, and survivability of
the network. Though the NN is trained vigorously with
analytical and empirical datasets, it is limited, due to the
wireless network topology having a fixed topology. This
is far from reality. Furthermore, network fault predictions
are tightly coupled with wireless link quality. Therefore,
in Wang et al. [466], the estimation of the link quality
in WSNs is postulated as a classification problem, and
solved by leveraging supervised DT, rule learner, SVM,
BN, and ensemble methods. The results reveal that DTs
and rule learners achieve the highest accuracy and result
in significant improvement in data delivery rates.
A daunting and fundamental prerequisite for fault pre-

diction is feature selection. It is non-trivial to extract
appropriate features from an enormous volume of event
logs of a large scale or distributed network system [285].
Therefore, feature selection and dimensionality reduction
are imperative for accurate fault prediction. Wang et al.
[466] propose to employ local over the global features, as
local features can be collected without costly communi-
cations in a wireless network. In contrast, Lu et al. [285]
use a manifold learning technique called Supervised Hes-
sian Locally Linear Embedding (SHLLE), to automatically
extract the failure features and generate failure predic-
tion. Based on an empirical experiment, the authors show
that SHLLE outperforms the feature extraction algorithm,
such as PCA, and classification methods, including k-NN
and SVM.
Pellegrini et al. [355] propose an ML-based framework

to predict the remaining time to failure (RTTF) of appli-
cations. Their framework is application-agnostic, that is,
it is applicable to scenarios where a sufficient number
of observations of the monitored phenomena can be
collected in advance. The framework uses different ML
techniques for building prediction models, namely lin-
ear regression, M5P, REPTree, LASSO, SVM, and Least-
Square SVM, allowing network operators to select the
most suitable technique based on their needs. In addition,
otherML techniques can be easily integrated in the frame-
work. TheML techniques in the framework are compared
for a multi-tier e-commerce web application running on a
virtualized testbed, and show that the REPTree and M5P
outperform the otherML techniques for predicting RTTF.
It is essential to note that the model has a high prediction
error when the network system is temporally far from the
occurrence of the failure. However, as the network system
approaches the time of the occurrence of the failure, the
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number of accumulated anomalies increase and themodel
is able to predict the RTTF with a high accuracy.
Wang et al. [469] present a mechanism for predicting

equipment failure in optical networks using ML-based
techniques and TSF. The operational states of an equip-
ment are built by leveraging physical indicators, such as
input optical power, laser bias current, laser temperature
offset, output optical power, environmental temperature,
and unusable time. A double-exponential smoothing time
series algorithm uses the historical data from time t − n
to time t − 1 to predict the values of the physical indica-
tors at a future time instance t + T . This is accomplished
by using a kernel function and penalty factor in an SVM
to model non-linear relationships and reduce misclassi-
fication, respectively. The enhanced SVM accomplish an
accuracy of 95% in predicting equipment failure based on
real data from an optical network operator.
Most recently, Kumar et al. [255] explore the applica-

bility of a wide range of regression and analytical models
to predict inter-arrival time of faults in a cellular net-
work. They analyze time-stamped faults over a period
of one month from multiple base stations of a national
mobile operator in USA. The authors observe that cur-
rent networks barely reside in a healthy state and patterns
of fault occurrence is non-linear. In a comparison of the
different ML-based techniques for fault prediction, they
show that DNN with autoencoders outperform other ML
techniques, including autoregressive NN, linear and non-
linear SVM, and exponential and linear regression. An
autoencoder is a variant of NN that consists of an encoder
and a decoder and used for dimensionality reduction. The
autoencoder is pre-trained on the testing data and then
converted into a traditional NN for computing prediction
error. The pre-training of each layer in an unsupervised
manner allows for better initial weights, and results in
higher prediction accuracy.

8.2 Detecting fault
Unlike fault prediction, fault detection is reactive and
identifies and, or classifies a failure after it has occurred,
using network symptoms, performance degradation, and
other parameters. Rao [382] propose fault detection for
cellular networks that can detect faults at different lev-
els, base station, sector, carrier, and channel. They employ
a statistical hypothesis testing framework which com-
bines parametric, semi-parametric, and non-parametric
test statistics to model expected behavior. In parametric
and semi-parametric statistical tests, a fault is detected
when significant deviations from the expected activity is
observed. In the case of non-parametric statistical tests,
where the expected distribution is not known a-priori, the
authors use a combination of empirical data and statisti-
cal correlations to conduct the hypothesis test. The test is
dependent on a threshold value that is initially set through

statistical analysis of traffic patterns. However, improper
threshold settings may lead to high FPs and FNs. Hence,
the threshold should be adapted to changing traffic pat-
terns due to spatial, temporal, and seasonal effects. In the
background, an open loop routine continuously learns and
updates the threshold, in an adjustable period of time.
However, the time for learning may be large for certain
applications that may impact fault detection time.
Baras et al. [37] implement a reactive system to detect

and localize the root cause of faults for X.25 protocol, by
combining an NN with an expert system. Performance
data, such as blocking of packets, queue sizes, packet
throughput from all applications, utilization of links con-
necting subnetworks, and packet end-to-end delays, are
used to train a RBFNN for various faults. The output of the
NN is a fault code that represents one of the various fault
scenarios. A classifier leverages the aggregated output of
the NN to determine the current status of the network as
normal or faulty. The detection phase is repeated until a
confidence of K out of M is achieved, which activates the
expert system to collect and deduce the location and cause
of the fault.
Recently, Adda et al. [5] build a real-time fault detection

and classification model using k-Means, Fuzzy C Means
(FCM), and EM. They leverage SNMP to collect informa-
tion from the routers, switches, hubs, printers and servers
in an IP network of a college campus. The authors select
12 features that exhibit sensitivity to the behavior of net-
work traffic [370], and use the traffic patterns to form
clusters that represent normal traffic, link failure, server
crash, broadcast storm and protocol error. Their eval-
uation results reveal that though k-Means and EM are
relatively faster than FCM, FCM is more accurate.
Moustapha and Selmic [324] detect faulty nodes in a

WSN using RNN. The nodes in the RNN hidden lay-
ers model sensor nodes in WSN, while the weights on
the edges are based on confidence factors of the received
signal strength indicators (RSSI). Whereas, the output of
the RNN is an approximation of the operation of the
WSN. Fault detection is achieved by identifying discrep-
ancies between approximated and real WSN values. The
RNN successfully detect faults, without early false alarms,
for a small scale WSN with 15 sensors and synthetically
introduced faults.
Recall, supervised fault detection requires models to be

trained with normal and failure-prone datasets. However,
Hajji [178] propose an unsupervised fault detectionmech-
anism for fast detection of anomalies in LAN through traf-
fic analysis. They design a parametric model of network
traffic, and a method for baselining normal network oper-
ations using successive parameter identification, instead
of EM. The fault detection problem is formulated as a
change point problem that observes the baseline ran-
dom variable and raises an alarm as soon as the variable
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exceeds an expected value. Experimental evaluation vali-
date the fault detection mechanism in real-time on a real
network with high detection accuracy.
Recently, Hashmi et al. [181] use different unsuper-

vised algorithms, such as k-Means, FCM, Kohonens SOM,
Local Outlier Factor, and Local Outlier Probabilities, to
detect faults in a broadband service provider network
that serves about 1.3 million customers. For this pur-
pose, they analyze a real network failure log (NFL) dataset
that contains status of customer complaints, along with
network generated alarms affecting a particular region
during a certain time. The selected data spans a dura-
tion of 12 months and contains about 1 million NFL data
points from 5 service regions of the provider. The col-
lected NFL dataset has 9 attributes, out of which 5 are
selected for the analysis: (i) fault occurrence date, (ii) time
of the day, (iii) geographical region, (iv) fault cause, and
(v) resolution time. At first, k-Means, FCM and Koho-
nens SOM clustering techniques are applied to cluster
the NFL dataset that is completely unlabeled. Afterwards,
density-based outlier determination algorithms, such as
Local Outlier Factor, and Local Outlier Probabilities, are
used on the clustered data to determine the degree of
anomalous behavior for every SOM node. The evaluation
results show that SOM outperforms k-Means and FCM in
terms of error metric. Furthermore, Local Outlier Prob-
abilities algorithm applied on SOM is more reliable in
identifying the spatio-temporal patterns linked with high
fault resolution times.

8.3 Localizing the root cause of fault
The next step in fault management is to identify the root
cause and physically locate the fault to initiate mitiga-
tion. This minimizes the mean time to repair in a network
that does not deploy a proactive fault prediction mech-
anism. Chen et al. [91, 92] use DTs and clustering to
diagnose faults in large network systems. The DTs are
trained using a new learning algorithm, MinEntropy [91],
on datasets of failure prone network traces. To minimize
convergence time and computational overhead, MinEn-
tropy uses an early stopping criteria and follows the most
suspicious path in the DT. Chen et al. [91] complement
the DTwith heuristics, to correlate features with the num-
ber of detected failures to aid in feature selection and
fault localization. MinEntropy is validated against actual
failures observed for several months on eBay [127]. For
single fault cases, the algorithm identifies more than 90%
of the faults with low FPRs. In contrast, Chen et al.
[92] employ clustering to group the successes and fail-
ures of requests. A faulty component is detected and
located by analyzing the components that are only used
in the failed requests. In addition to the single fault
cases, the clustering approach can also locate faults occur-
ring due to interactions amongst multiple components,

with a high accuracy and relatively low number of false
positives.
Ruiz et al. [393] use a BN to localize and identify the

most probable cause of two types of failures, the tight fil-
tering and inter-channel interference, in optical networks.
They discretize the continuous real-valued features of
Quality of Transmission (QoT), such as received power
and pre-forward error correction bit error rate (pre-FEC
BER) for categories. The authors use these categories
and type of failures to train the BN, which can identify
the root cause of the failure at the optical layer when
a service experiences excessive errors. The BN achieves
high accuracy of 99.2% on synthetically generated
datasets.
Similarly, Khanafer et al. [237] develop an automated

diagnosis model for Universal Mobile Telecommunica-
tions System (UMTS) networks using BN. The core
elements of the diagnosis model are the causes and symp-
toms of faults. The authors consider two types of symp-
toms, i.e., alarms and Key Performance Indicators (KPI).
To automatically specify KPI thresholds, they investigated
two different discretization methods, an unsupervised
method called Percentile-based Discretization (PBD) and
a supervised method called Entropy Minimization Dis-
cretization (EMD). The performances of the two dis-
cretization methods are evaluated on a semi-dynamic
UMTS simulator that allows the generation of a large
amount of causes and symptoms data required to con-
struct the diagnosis model. As EMD technique outper-
forms PBD by a large margin in the simulation study, the
authors analyze the diagnosis model consisting of BN and
EMD in a real UMTS network, utilizing alarms and KPIs
extracted from an operations and maintenance center.
Using a 3-fold cross-validation test, the correct faults are
diagnosed in 88.1% of the cases. In the remaining cases,
the diagnosis is incorrect for the first cause but correct
for the second, and the diagnosis model converges from
around 100 data points.
Kiciman and Fox [241] propose PinPoint for fault detec-

tion and localization that requires no a priori knowledge
of the faults. The models capture the runtime path of
each request served by the network and delineates it as
the causal path in the network. It exploits the paths to
extract two low-level behaviors of the network, the path
shape and the interaction of the components. Using the
set of previous path shapes modeled as a Probabilistic
Context-Free Grammar (PCFG), it builds a dynamic and
self-adapting reference model of the network. Therefore,
fault prediction is a search for anomalies against the ref-
erence model. Pinpoint uses DT with ID3 to correlate the
anomaly to its probable cause in the network. The DT is
converted to an equivalent set of rules by generating a rule
for each path from the root of the tree to a leaf. PinPoint
ranks the rules, based on the number of paths classified

240



Boutaba et al. Journal of Internet Services and Applications  (2018) 9:16 Page 62 of 99

as anomalous, to identify the hardware and, or software
components that are correlated with the failures.
Johnsson et al. [225] use discrete state-space particle

filtering to determine the locations of performance degra-
dations in packet switched networks. Their approach
is based on active network measurements, probabilistic
inference, and change detection in the network. They
define a PMF to define the location of faulty components
in the network. It is a lightweight fault detection and
isolation mechanism, which is capable of automatically
detecting and identifying the location of the fault in simu-
lation of different sized tree topologies. It is imperative to
realize that time to fault localization is dependent on pre-
cise position of the fault in the topology. This is because
the links closer to the root are measured more often in
comparison to links close to the leaf nodes. Hence, the
filter is able to learn the positions close to the root. In
addition, the algorithm minimizes false positives or false
negatives for the chosen parameter values.
Barreto et al. [40] develop an unsupervised approach

to monitor the condition of cellular networks using
competitive neural algorithms, including Winner-Take-
All (WTA), Frequency-Sensitive Competitive Learning
(FSCL), SOM, and Neural-Gas algorithm (NGA). The
model is trained on state vectors that represent the nor-
mal functioning of a CDMA2000 wireless network. Global
and local normality profiles (NPs) are built from the
distribution of quantization errors of the training state
vectors and their components, respectively. The overall
state of the cellular network is evaluated using the global
NP and the local NPs are used to identify the causes of
faults. Evidently, the joint use of global and local NPs is
more accurate and robust than applying these methods in
isolation.

8.4 Automatedmitigation
Automated mitigation improves fault management by
minimizing and, or eliminating human intervention, and
reducing downtime. For proactive fault prediction, auto-
mated mitigation involves gathering information from the
suspected network elements to help find the origin of
the predicted fault. For building this information base, a
fault manager may either actively poll selected network
elements, or rely on passive submission of alarms from
them. In both cases, actions should be selected carefully
since frequent polling wastes network resources, while too
many false alarms diminish the effectiveness of automated
mitigation. On the other hand, in the case of reactive
fault detection, automated mitigation selects a workflow
for troubleshooting the fault. Therefore, the fundamental
challenge in automated mitigation is to select the optimal
set of actions or workflow in a stochastic environment.
He et al. [183] address this fundamental challenge for

proactive fault management using a POMDP, to formulate

the trade-off between monitoring, diagnosis, and mitiga-
tion. They assume partial observability, to account for the
fact that some monitored observations might be missing
or delayed in a communication network. They propose
an RL algorithm to obtain approximate solutions to the
POMDP with large number of states representing real-
life networks. The authors devise a preliminary policy
where the states are completely observable. Then, they
fine-tune this policy by updating the belief space and tran-
sition probabilities in the real world, where the states are
incompletely observed.
In contrast, for reactive fault detection, Watanabe

et al. [470] propose a method for automatically extract-
ing a workflow from unstructured trouble tickets to
troubleshoot a network fault. A trouble ticket contains
free-format texts that provide a complete history of trou-
bleshooting a failure. The authors use supervised NB
classifier to automatically classify the correct labels for
each sentence of a trouble ticket and remove unrelated
sentences. They propose an efficient algorithm to align the
same actions described with different sentences by using
multiple sequence alignment. Furthermore, clustering is
used to find the actions that have different mitigation
steps depending on the situation. This aid the operators
in selecting the appropriate next action. Using real trouble
tickets, obtained from an enterprise service, the authors
report a precision of over 83%.

8.5 Summary
As summarized in Tables 16, 17 and 18, most of the
ML-based fault management approaches use different
supervised learning techniques that depend on training
data to predict/detect/locate faults in the network. How-
ever, a common challenge faced by these techniques is
the scarcity of fault data generated in a production net-
work.While both normal and fault data are easily available
for a test or simulated network, only normal data with
infrequent faults are routinely available for a production
network. Although injecting faults can help produce the
required data [285], it is unrealistic to inject faults in
the production network just for the sake of generating
training data. On the other hand, synthetic data gener-
ated in a test or simulated network may not perfectly
mimic the behavior of a production network. Such lim-
itations increase the probability of ML techniques being
ill-trained in an unfamiliar network setting. As a rem-
edy, some approaches leverage unsupervised techniques
that rely on detecting changes in network states instead
of using labeled fault data. However, unsupervised tech-
niques can take longer time to converge than supervised
approaches, potentially missing any fault occurring before
the convergence. Therefore, a potential research direction
can be to explore the applicability of semi-supervised and
RL-based techniques for fault management.
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The ML-based fault management approaches surveyed
in this paper focus on a variety of networks. Conse-
quently, the fault scenarios studied in these approaches
vary greatly as they depend both on the layer (e.g. physical,
link, or IP layer) and the type (e.g. cellular, wireless, local
area network) of the network. The same holds for fea-
ture set and output of these schemes, as both features and
outputs depend on the fault scenario of a particular net-
work. In addition, the evaluation settings adopted by these
approaches lack uniformity. Therefore, a pairwise com-
parison between the evaluation results of two approaches
in any of the Tables 16, 17 and 18 may be misleading.
Nonetheless, it is clear that ML techniques can aid the
cumbersome and human centric fault management pro-
cess, by either predicting faults in advance, or narrowing
down the cause or location of the fault that could not be
avoided in the first place.

9 QoS and QoEmanagement
The knowledge about the impact of network performance
on user experience is crucial, as it determines the success,
degradation or failure of a service. User experience assess-
ment has attracted a lot of attention. In early works, there
was no differentiation between user experience and net-
work QoS. User experience was then measured in terms
of network parameters (e.g. bandwidth, packet loss rate,
delay, jitter), and application parameters, such as bitrate
for multimedia services. While monitoring and control-
ling QoS parameters is essential for delivering high service
quality, it is more crucial, especially for service providers,
to evaluate service quality from the user’s perspective.
User QoE assessment is complex as individual experi-

ence depends on individual expectation and perception.
Both are subjective in nature, and hard to quantify and
measure. QoE assessment methods went through differ-
ent stages this last decade, from subjective testing to
engagementmeasurement through objective quality mod-
eling. Subjective testing, where users are asked to rate or
assign opinions scores averaged into a mean opinion score
(MOS), has been and is still widely used. Subjective testing
is simple and easy to implement, and the MOS metric is
easy to compute. However because one cannot force users
to rate a service and rate it objectively, MOS scores can be
unfair and biased, and are subjected to outliers. Objective
quality models, such as the video quality metric (VQM)
[362], the perceptual evaluation of speech quality (PESQ)
metric [386] and the E-model [51] for voice and video ser-
vices, were proposed to objectively assess service quality
by human beings and infermore “fair” and unbiasedMOS.
Full-reference (FR) quality models, like PESQ and VQM,
compute quality distortion by comparing the original sig-
nal against the received one. They are as such accurate, but
at the expense of a high computational effort. On the con-
trary, no-reference (NR) models like E-model try to assess

the quality of a distorted signal without any reference to
the original signal. They are more efficient to compute,
however they may be less accurate. More recently, mea-
surable user engagement metrics, such as service time and
probability of return, have emerged from data-driven QoE
analysis. Such metrics are found to draw more directly the
impact of user quality perception to content providers;
business objectives.
Statistical and ML techniques have been found useful in

linking QoE to network- and application-level QoS, and
understanding the impact of the latter on the former. Lin-
ear and non-linear regression (e.g. exponential, logarith-
mic, power regression) was used to quantify the individual
and collective impact of network- and application- level
QoS parameters (e.g. packet loss ratio, delay, through-
put, round-trip time, video bitrate, frame rate, etc.) on
the user’s QoE. In the literature, simple-regression mod-
els with a single feature are most dominant [145, 240,
383, 408], although the collective impact of different QoS
parameters was also considered [23, 132].

Simple regression: In [408], Shaikh et al. study existing
correlation between different network-level QoS param-
eters and MOS in the context of a web surfing. They
show that a correlation does exist and that among 3
forms of regression (linear, exponential, and logarithmic),
linear regression renders the best correlation coefficient
between QoE and packet loss rate, exponential regression
captures the correlation between QoE and file download
time with highest accuracy, whereas logarithmic regres-
sion is the best fit for linking QoE to throughput.
Reichl et al. [383], in alignment with theWeber-Fechner

law from the field of psychophysics, use logarithmic
regression to quantify the correlation between available
bandwidth and mobile broadband service users’ MOS.
In [145], Fiedler et al. test the IQX hypothesis accord-

ing to which QoE and QoS parameters are connected
through an exponential relationship. Their experiment
validates the IQX hypothesis for VoIP services, where
PESQ-generatedMOS is expressed as a function of packet
loss, and reordering ratio caused by jitter. For web surf-
ing, exponential mappings are shown to outperform a
previously published logarithmic function.
Steven’s power law from the field of psychophysics,

according to which there is a power correlation between
the magnitude of a physical stimulus and the intensity
or strength that people feel, was applied by Khorsandroo
et al. [239, 240] to find a power mapping function between
MOS and packet loss ratio. A comparative study shows
that the proposed power correlation is outperformed by
the logarithmic correlation from [383].
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Multi-parameter regression: In order to gasp the
impact of the global network condition on the QoE, Elko-
tob et al. [132] propose to map MOS to a set of QoS
parameters (e.g. packet loss rate, frame rate, bandwidth,
round trip time and jitter) as opposed to a single one.
This idea was further promoted by Aroussi et al. [23]
who propose a generic exponential correlation model
between QoE and several QoS parameters based on the
IQX hypothesis.
More complex regression and classification models

based on supervised and unsupervised ML techniques
(including deep learning) were also proposed and tested
against real-life and trace-driven datasets. We report
below on the characteristics of surveyed models and their
performance in terms of accuracy, generally measured in
terms ofMSRE, and linearity, generally measured in terms
of Pearson correlation coefficient (PCC), all summarized
in Tables 19 and 20.

9.1 QoE/QoS correlation with supervised ML
In [235, 236], Khan et al. propose an Adaptive Neural
Fuzzy Inference System (ANFIS)-based model to predict
streamed video quality in terms of MOS. They also inves-
tigate the impact of QoS on end-to-end video quality for
H.264 encoded video, and in particular the impact of radio
link loss models in UMTS networks. A combination of
physical and application layer parameters is used to train
both models. Simulation results show that both models
give good prediction accuracy. However, the authors con-
clude that the choice of parameters is crucial in achieving
good performance. The proposed models in this paper
need to be validated by more subjective testing. Other
works like [501] have also used the ANFIS approach to
identify the causal relationship between the QoS parame-
ters that affect the QoE and the overall perceived QoE.
MLP-NNs are also reported to efficiently estimate the

QoE by Machado et al. [287], who adopt a methodology
that is similar to Khan et al. [235]. In this work, QoE is
estimated by applying an MLP over network-related fea-
tures (delay, jitter, packet loss, etc.) as well as video-related
features (type of video, e.g. news, football, etc.). Differ-
ent MLP models are generated for different program-
generated QoE metrics, including Peak-Signal-to-Noise-
Ratio (PSNR), MOS, Structural SIMilarity (SSIM) [468],
and VQM. A synthetic video streaming dataset of 565
data points is created with EvalVid integrated to NS-2,
and the models are trained over 70% of the database for
parameter fine-tuning. It is observed that different QoE
metrics can lead to very different model parameters. For
instance, for the estimated MOS metric, best results are
achieved by a single hidden-layer MLP with 10 neurons
trained over 2700 epochs. Whereas for SSIM, 2 hidden
layers with, respectively, 12 and 24 neurons trained over
1800 epochs are needed to achieve similar results. With

a MSE of ≈ 0.01, the MOS-MLP model outperforms the
other models. Nevertheless, with appropriate configura-
tion all the models are able to predict the QoE with very
high accuracy.
In [328], Mushtaq et al. apply sixML classifiers to model

QoE/QoS correlation, namely NB, SVM, k-NN, DT, RF
and NN. A dataset is generated from a controlled network
environment where streamed video traffic flows through
a network emulator and different delay, jitter, and packet
loss ratio are applied. Opinion scores are collected from
a panel of viewers and MOS are calculated. ML models
are fed with nine features related to the viewers, net-
work condition and the video itself, namely, viewer gender,
frequency of viewing, interest, delay, jitter, loss, condi-
tional loss, motion complexity and resolution. A 4-fold
cross-validation is performed to estimate the performance
of the models. Results show that DT and RF perform
slightly better than the other models with a mean abso-
lute error of 0.126 and 0.136 respectively, and a TPR of
74% and 74.8% respectively. The parameters of the mod-
els are not disclosed, and neither is the significance of
the selected features in particular the viewer-related ones,
whose usefulness and practicality in real-life deployment
are questionable.
In [89] Charonyktakis et al. develop a modular user-

centric algorithm MLQoE based on supervised learning
to correlate the QoE and network QoS metrics for VoIP
services. The algorithm is modular in that it trains several
supervised learning models based on SVR, single hidden
layer MLP-NN, DT, and GNB, and after cross-validation,
it selects the most accurate model. The algorithm is user-
centric in that a model is generated for each user, which
makes it computationally costly and time consuming. 3
datasets are generated synthetically with calls established
in 3 different testbeds under different network condi-
tions: during handover (dataset 1), in a network with
heavy UDP traffic (dataset 2), in a network with heavy
TCP traffic (dataset 3). OMNET++ and a VoIP tool are
used in this matter. The QoE of the received calls are
assessed through both subjective testing (user-generated
MOS) and objective measurement (PESQ and E-model).
The no-reference ML models are trained with 10 network
metrics (including average delay, packet loss, average jit-
ter, and more) to output predicted MOS. The accuracy of
the MLQoE model in predicting MOS and the accuracies
of pure SVR, NN, DT and GNB models are further com-
pared against the full-reference PSEQ’s, the no-reference
E-model’s, as well as the predictive accuracies of the
single-feature simple-regressionWFL [383] and IQX [145]
models. Experiments show that, in terms of mean abso-
lute error MAE, the supervised learning models generally
outperform E-model and even the full-reference PESQ,
only one exception is observed with dataset 2. It also
shows that there is no single ML model that outperforms
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all others; while the SVR model has the lowest MAE with
dataset 1 (0.66), DT achieves the best result with dataset 2
(0.55) and GBNwith dataset 3 (0.43). MLQoE further out-
performs theWFL-model and the IQX-model with aMAE
improvement of 18 ∼ 42%. Indeed this motivates the
need for a modular ML-based QoE prediction algorithm.
However, further research could be pursued to study the
correlation between the performance of the different ML-
models and the way the QoS parameters evolve in each of
the 3 datasets.
Another subset of ML techniques are considered by

Demirbilek et al. [114] and used to develop no-reference
models to predict QoE for audiovisual services. These
techniques include: decision tree ensemble methods (RF
and BG), and deep learning (DNN). Genetic programming
(GP) is also considered and compared against the ML
techniques. All models are trained and validated through
4 ∼ 10-fold cross-validation on the INRS dataset [113].
The dataset includes user-generated MOS on audiovi-
sual sequences encoded and transmitted with varying
video frame rates, quantization parameters, filters and
network packet loss rates. 34 no-reference application-
and network-level features are considered. Experiments
with different feature sets show that, apart from the DNN
model, all models perform better with the complete set
of features, and hence do not require feature processing.
On the contrary the DNN model performs better when
trained only with 5 independent features, namely: video
frame rate, quantization, noise reduction, video packet
loss rate, and audio packet loss rate. Also, the one-hidden
layer DNN model outperforms the model with 20 hidden
layers in terms of RMSE (0.403 vs. 0.437) and PCC (0.909
vs. 0.894). The conducted experiments also show that all
models perform quite well and that the RF model with
complete set of features performs the best (lowest RMSE
0.340 and highest PCC 0.930). The video packet loss rate
seems to be the most influential feature on the RF model.
The model is further trained on other publicly available
audiovisual datasets and still performs well. However it is
not compared to the other models, which would be useful
to confirm or infirm the supremacy of RF.

9.2 QoE prediction under QoS impairments
In [453], Vega et al. propose an unsupervised deep learn-
ing model based on Restricted Boltzmann Machines
(RBMs) for real-time quality assessment of video stream-
ing services. More precisely, the model is intended to infer
the no-reference features of the received video from only
a subset of those features that the client extracts in real-
time fashion. 10 video-related features are extracted: one
related to the bit stream, five to the frame, two to the
inter-frame and the last two to the content. Network QoS
parameters are not considered in the feature set, how-
ever the impact of the network conditions is studied in

the paper based on two synthetic network-impaired video
datasets, namely ReTRiEVED (for general condition net-
works) and LIMP (for extremely lossy networks). It is
observed that the PCC between the VQM of the received
video and the bit rate feature is the highest amongst the
ten features, under network delay, jitter and throughput
impairments. However, it is the blur ratio that correlates
the most with VQM under severe packet loss condition. A
discrepancy between video types was also recorded. This
eventually motivated the need for one RBM model (with
different feature set) per video type and network impair-
ment, which raised the number of devised models to 32.
Video-type and network-condition specific RBMs (with
100 hidden neurons) eventually shows a better perfor-
mance than the single video-type and network-condition
oblivious model on the ReTRiEVED dataset, according to
the authors, which contradicts the results shown on the
tables. Assuming that there is improvement, the practi-
cality and overhead of the multi-RBMs solution are yet to
be evaluated. In fact, delay, jitter, and throughput impair-
ments are treated as if they were independent conditions
and a condition-specific model is created. In practice,
however impairments are correlated and happen together.
Therefore, if the client has to assess the quality of the
streamed video, it will also have to find out what impair-
ment there is prior to selecting the appropriate predictor.

9.3 QoS/QoE prediction for HAS and DASH
Recently, the widespread adoption of HTTP adaptive
streaming (HAS) drove increasing interest in developing
QoE/QoS-aware HAS clients. Data-driven approaches, in
particular ML, have been employed mainly in two differ-
ent ways: (1) to predict changes in network QoS, namely
throughput, and trigger adaptation mechanism to reduce
rebuffering time [432], and (2) to select appropriate adap-
tation action [102].
It has been shown in recent work [432] that accurate

throughput prediction can significantly improve the QoE
for adaptive video streaming. ML has been widely used in
throughput prediction in general as shown in Section 3.
In the particular context of adaptive video streaming, Sun
et al. propose in [432] the Cross Session Stateful Predic-
tor (CS2P), a throughput prediction system to help with
bitrate selection and adaptation in HAS clients. CS2P
uses HMM for modeling the state-transition evolution
of throughput, one model per session cluster, where ses-
sions are clustered according to common features (e.g.
ISP, region). The system is testing with a video provider
(iQIYI) dataset consisting of 20 million sessions covering
3 million unique client IPs, 18 server IPs, and 87 ISPs.
The HMM model is trained offline via the expectation
maximization algorithm, and 4-fold cross-validation is
used for tuning the number of states (6 states in total).
Online prediction provides an estimate of the throughput
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1 ∼ 10 epochs ahead using maximum likelihood esti-
mation. Throughput is continuously monitored and the
model is updated online accordingly. Midstream through-
put prediction experiments show that the model achieves
7% median absolute normalized prediction error (∼ 20%
75th-percentile error) reducing the median prediction
error by up to 50% compared to history-based predictors
(last sample, harmonic mean, AR) as well as other ML-
based predictors (SVR, GBR, and HMM trained on all
sessions as opposed to the session cluster). It is also shown
that CS2P achieves 3.2% improvement on overall QoE and
10.9% higher average bitrate over state-of-art Model Pre-
dictive Control (MPC) approach, which uses harmonic
mean for throughput prediction. The authors claim that
SVR and GBR perform poorly when trained on the session
cluster. This might be due to the smaller size of the session
cluster dataset, but requires further investigation.
In [102] (that extends [103] - [357]), a Q-learning-

based HAS client is proposed to dynamically adjust to the
current network conditions, while optimizing the QoE.
Adaptation is assumed at the segment level; the qual-
ity level (e.g. bitrate) of the next video segment may go
higher or lower depending on network conditions. States
are defined as a combination of the client buffer filling
level and throughput level. Bmax/Tseg + 1 different buffer
filling levels are considered where Bmax denotes the max-
imum client buffer size in seconds, and Tseg the segment
duration in seconds. WhereasN +1 throughput levels are
considered, ranging between 0 and the client link capac-
ity, where N is the number of quality levels. The reward
function to be maximized is a measure of the QoE, calcu-
lated on the basis of the targeted segment quality level, the
span between the current and targeted quality level, and
the rebuffering level (which may result in video freezes).
The model is trained and tested on NS − 3 with 10-

min different video sequences (6 in total), split into 2sec
segments each encoded at N = 7 different bitrates. The
algorithm is trained for 400 episodes of streaming each
of the video sequences over a publicly available 3G net-
work bandwidth trace [384, 385]. The authors claim that
the Q-learning client achieves in average 9.12% higher
estimated MOS (program-generated), with 16.65% lower
standard deviation, than the traditional Microsoft ISS
Smooth Streaming (MSS) client. Similar performance is
recorded when alternating between 2 video sequences
every 100 streaming episodes. However, shifting to a ran-
dom new video sequence after convergence time was not
investigated.

9.4 Summary
Research in QoS/QoE provisioning has been leverag-

ing ML for both prediction and adaptation, as shown in
Tables 19 and 20. Clearly, research has been dominated
by works on predicting QoE based on video-level and

network-level features. As such, a number of different
QoS/QoE correlation models have been proposed in the
literature for different media types (e.g. voice, video and
image) ranging from simple regression models to NNs,
including SVM, DT, RF, etc. For each media type, dif-
ferent QoE assessment methods and metrics have been
used (e.g. MOS, VQM), each with its own set of com-
putational and operational requirements. The lack of a
common, standard QoE measure makes it difficult to
compare the efficiency of different QoS/QoE prediction
and correlation models. In addition, there is a lack of a
clear quantitative description of the impact of network
QoS on QoE. This impact is poorly understood and varies
from one scenario to another.While some find it sufficient
to correlate the QoE to a single network QoS parameter
[145, 240, 383, 408], e.g. delay or throughput, others argue
that multiple QoS parameters impact the QoE and need
to be considered in tandem as features in a QoE/QoS cor-
relation model [89, 102, 114, 235, 287, 328, 432]. Still othe
rs consider QoS as a confounding parameter and build dif-
ferent QoE assessment models for different network QoS
conditions [453].
This motivates the need for an efficient methodology

for QoE/QoS correlation, based on a combination of
quantifiable subjective and objective QoS measures and
outcomes of service usage. This calls for the identifica-
tion of the influential factors of QoE for a given type of
service and understanding their impact on user’s expec-
tation and satisfaction. QoE measures, such as MOS, and
user engagement metrics are very sensitive to contex-
tual factors. Though, contextual information undoubtedly
influences QoE and is necessary to develop relevant QoE
optimization strategies, it can raise privacy concerns.
Results depicted in Table 19 show that supervised learn-

ing techniques, such as NNs, SVR, DT and RF have
consistent low MOS prediction errors. According to [89],
RF is a better classifier than NN when it comes to pre-
dicting MOS. Table 20 also shows that using ML in HAS
and DASH for prediction and adaptation, using super-
vised learning and RL, can improve QoE. However, this
still needs to be validated in a real-world testbed.

10 Network security
Network security consists of protecting the network
against cyber-threats that may compromise the network’s
availability, or yield unauthorized access or misuse of
network-accessible resources. Undoubtedly, businesses
are constantly under security threats [231], which not only
costs billions of dollars in damage and recovery [227], but
could also have a detrimental impact to their reputation.
Therefore, network security is a fundamental cornerstone
in network operations and management.
It is undeniable that we are now facing a cyber arms

race, where attackers are constantly finding clever ways
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to attack networks, while security experts are developing
new measures to shield the network from known attacks,
and most importantly zero-day attacks. Examples of such
security measures include:

– Encryption of network traffic, especially the payload,
to protect the integrity and confidentiality of the data
in the packets traversing the network.

– Authorization using credentials, to restrict access to
authorized personnel only.

– Access control, for instance, using security policies to
grant different access rights and privileges to different
users based on their roles and authorities.

– Anti-viruses, to protect end-systems againstmalwares,
e.g. Trojan horse, ransom-wares, etc.

– Firewalls, hardware or software-based, to allow or
block network traffic based on pre-defined set of rules.

However, encryption keys and login credentials can be
breached, exposing the network to all kinds of threats.
Furthermore, the prevention capabilities of firewalls and
anti-viruses are limited by the prescribed set of rules
and patches. Hence, it is imperative to include a second
line of defense that can detect early symptoms of cyber-
threats and react quickly enough before any damage is
done. Such systems are commonly referred to as Intru-
sion Detection/Prevention Systems (IDS/IPS). IDSs mon-
itor the network for signs of malicious activities and can
be broadly classified into two categories—Misuse- and
Anomaly-based systems. While the former rely on signa-
tures of known attacks, the latter is based on the notion
that intrusions exhibit a behavior that is quite distinc-
tive from normal network behavior. Hence, the general
objective of anomaly-based IDSs is to define the “normal
behavior” in order to detect deviations from this norm.
When it comes to the application of ML for network

security, through our literature survey we have found that
the majority of works have focused on the application
of ML for intrusion detection. Here, intrusion detection
refers to detecting any form of attacks that may com-
promise the network e.g. probing, phishing, DoS, DDoS,
etc. This can be seen as a classification problem. While
there is a body of work on host-based intrusion detec-
tion (e.g. malware and botnet detection), we do not delve
into this topic, as most of these works utilize traces col-
lected from the end-host (sometimes in correlation with
network traces). Concretely, in our discussion, we focus
on network-based intrusion detection and we classify the
works into three categories, namely misuse, anomaly, and
hybrid network IDSs.
Previous surveys [82, 161, 447] looked at the applica-

tion of ML for cyber-security. However, [161, 447] cover
the literature between 2000-2008, leaving out a decade of
work. More recently, [82] looked at the application of Data
Mining and ML for cyber-security intrusion detection.

The proposed taxonomy consists of the differentML tech-
niques with a sample of efforts that apply the correspond-
ing technique. Our discussion is different, as we focus on
ML-based approaches with a quantitative analysis of exist-
ing works (Tables 21, 22 23, 24 and 25). Furthermore, we
survey efforts related to SDN and reinforcement learning,
which have been recently published.

10.1 Misuse-based intrusion detection
Misuse-based IDSs consist of monitoring the network
and matching the network activities against the expected
behavior of an attack. The key component of such a sys-
tem is the comprehensiveness of the attack signatures.
Typically, the signatures fed to amisuse-IDS rely on expert
knowledge [84]. The source of this knowledge can either
be human experts, or it can be extracted from data. How-
ever, the huge volume of generated network traces renders
manual inspection practically impossible. Furthermore,
attack signatures extracted by sequentially scanning net-
work traces will fail to capture advanced persistent threats
or complex attacks with intermittent symptoms. Intrud-
ers can easily evade detection if the signatures rely on a
stream of suspicious activities by simply inserting noise in
the data.
In light of the above, ML became the tool of choice

for misuse-based IDSs. Its ability to find patterns in big
datasets, fits the need to learn signatures of attacks from
collected network traces. Hence, it comes as no surprise
to see a fair amount of literature [20, 84, 90, 252, 322, 344,
354, 402, 421] that rely onML for misuse-detection. These
efforts are summarized in Table 21. Naturally, all exist-
ing works employ supervised learning, and the majority
perform the detection offline. Note, we classify all work
that use normal and attack data in their training set as
misuse-detection.
The earliest work that employed ML for misuse detec-

tion is [84]. It was among the first to highlight the limi-
tations of rule-based expert systems, namely that they (i)
fail to detect variants of known attacks, (ii) require con-
stant updating, and (iii) fail to correlate between multiple
individual instances of suspicious activities if they occur in
isolation. Following the success of NN in the detection of
computer viruses, the application of NN for misuse detec-
tion as an alternative to rule-based systems is proposed.
The advantages of NN are its ability to analyze network
traces in a less structured-manner (as opposed to rule-
based systems), and to provide prediction in the form of
a probability. The latter can enable the detection of vari-
ants of known attacks. For evaluation, training and testing
dataset are generated using RealSecureTM—a tool that
monitors network data and compares it against signatures
of known attacks. For attack dataset, InternetScannerTM
[368] and Satan Scanner [143] tools are used to gener-
ate port scans and syn-flood attacks on the monitored
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Table 21 Summary of ML-based Misuse Detection

Ref. ML Technique Dataset Features Evaluation

Settings Results

Cannady [84] Supervised NN
(offline)

Normal: RealSecure
Attack: [143, 368]

TCP, IP, and
ICMP header
fields and
payload

-1 Layer MLP: 9, a, 2
-Sigmoid function
-Number of nodes in hidden
layers determined by trial &
error

DR: 89%-91% Training +
Testing runtime: 26.13 hrs

Pfahringer
[358]

Supervised
Ensemble of C5
DTs
(offline)

KDD Cup [257] all 41 features -Two-processor (2x300Mhz)
-512M memory, 9 GB disc
Solaris OS 5.6
-10-folds cross-validation

DR Normal: 99.5%
DR Probe: 83.3%
DR DoS: 97.1%
DR U2R: 13.2%
DR R2L: 8.4%
Training: 24 h

Pan et al.
[344]

Supervised NN and
C4.5 DT (offline)

KDD Cup [257] all 41 features -29,313 training data records
-111,858 testing data records
-1 Layer MLP: 70-14-6
-NN trained until MSE = 0.001
or # Epochs = 1500
-Selected attacks for U2L and
R2L
-After-the-event analysis

DR Normal : 99.5%
DR DoS: 97.3%
DR Probe (Satan): 95.3%
DR Probe (Portsweep): 94.9%
DR U2R: 72.7%
DR R2L: 100%
ADR: 93.28% FP: 0.2%

Moradi et al.
[322]

Supervised
NN
(offline)

KDD Cup [257] 35 features -12,159 training data records
-900 validation data records
-6,996 testing data records
-Attacks: SYN Flood and Satan
-2 Layers MLP: 35 35 35 3
-1 Layer MLP: 35 45 35
-ESVM Method

2 Layers MLP DR: 80%
2 Layers MLP Training time
> 25 hrs 2 Layers MLP w/
ESVM DR: 90% 2 Layers
MLP w/ ESVM Training time
< 5 hrs 1 Layers MLP w/
ESVM DR: 87%

Chebrolu et al.
[90]

Supervised BN and
CART (offline)

KDD Cup [257] Feature
Selection using
Markov Blanket
and Gini rule

-5,092 training data records
-6,890 testing data records
- AMD Athlon 1.67 GHz
processor with 992 MB of RAM

DR Normal: 100%
DR Probe: 100%
DR DoS: 100%
DR U2R: 84%
DR R2L: 99.47%
Training BN time: 11.03 ∼ 25.19 sec
Testing BN time: 5.01 ∼ 12.13 sec
Training CART time : 0.59 ∼ 1.15 sec
Testing CART time: 0.02∼ 0.13 sec

Amor et al.
[20]

Supervised NB
(offline)

KDD Cup [257] all 41 features -494,019 training data records
-311,029 testing data records
-Pentium III 700 Mhz
processor

DR Normal: 97.68%
PCC DoS: 96.65%
PCC R2L: 8.66%
PCC U2R: 11.84%
PCC Probing: 88.33%

Stein et al.
[421]

Supervised C4.5 DT
(offline)

KDD Cup [257] GA-based
feature
selection

-489,843 training data records
-311,029 testing data records
-10-fold cross validation
-GA ran for 100 generations

Error rate DoS: 2.22%
Error rate Probe: 1.67%
Error rate R2L: 19.9%
Error rate U2R: 0.1%

Paddabachigari
et al. [354]

Supervised
Ensemble of SVM,
DT, and SVM-DT
Offline

KDD Cup [257] all 41 features 5,092 training data records
6,890 testing data records
AMD Athlon, 1.67 GHz
processor with 992 MB of RAM
-Polynomial kernel

DR Normal: 99.7%
DR Probe:100%
DR DoS: 99.92%
DR U2R: 68%
DR R2L: 97.16%
Training time: 1∼ 19 sec
Testing time: 0.03∼ 2.11 sec

Sangkatsanee
et al. [402]

Supervised
C4.5 DT
(online)

Normal: Reliability Lab
Data 2009 (RLD09)
Attack: [341, 444, 475]

TCP, UPD, and
ICMP header
fields

-55,000 training data records
-102,959 testing data records
-12 features
-2.83 GHz Intel Pentium Core2
Quad 9550 processor with 4
GB RAM and 100 Mbps LAN
-Platform used: Weka V.3.6.0

DR Normal: 99.43%
DR DoS: 99.17%
DR Probe: 98.73%
Detection speed: 2∼ 3 sec
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Table 21 Summary of ML-based Misuse Detection (Continued)

Ref. ML Technique Dataset Features Evaluation

Settings Results

Miller et al.
[314]

Supervised
Ensemble MPML
(Offline)

NSL-KDD [438] all 41 features -125,973 training records
-22,544 testing records
-3 NBs trained w/ 12, 9, 9 fea-
tures
-Platform used Weka [288]

TP: 84.137%
FP: 15.863%

Li et al. [272] Supervised
TCM K-NN
(Offline)

KDD Cup [257] all 41 features
8 features
selected using
Chi-square

-Intel Pentium 4, 1.73 GHz, 1
GB RAM, Windows XP Profes-
sional
- Platform Weka [288]
-49,402 training records
-12,350 testing records
-K = 50

41 features: TP 99.7%
41 features: FP 0%
8 features: TP 99.6%
8 features: FP 0.1%

aDetermined empirically, Mean Square Error (MSE), Percentage Correct Classification (PCC), Average Detection Rate (ADR), Early Stop Validation Method (ESVM)

host. Results show that the NN is able to correctly identify
normal and attack records 89-91% of the time.
In 1999, the KDD cup was launched in conjunction with

the KDD’99 conference. The objective of the contest was
the design of a classifier that is capable of distinguishing
between normal and attack connections in a network. A
dataset was publicly provided for this contest [257], and
since then became the primary dataset used in ML-based
intrusion detection literature. It consists of 5 categories of
attacks, including DoS, probing, user-to-root (U2R) and
root-to-local (R2L), in addition to normal connections.
The top three contestants employed DT-based solutions
[421]. The winner of the contest [358] used an ensem-
ble of 50 times 10 C5 DTs with a mixture of bagging
and boosting [377]. The results of the proposed method
are presented in Table 21. Clearly, the proposed approach
performs poorly for U2R and R2L attack categories. The
authors do mention that many of the decisions were prag-
matic and encouraged more scientific endeavors. Sub-
sequently, an extensive body of literature emerged for
ML-based intrusion detection using the KDD’99 dataset,
in efforts to improve on these results, where some use the
winners’ results as a benchmark.
For instance, Moradi et al. [322] investigate the applica-

tion of NN for multi-class classification using the KDD’99
dataset. Specifically, the authors focused on DoS and
probing attacks. As opposed to the work of [84], two NNs
were trained: one with a single hidden layer and the sec-
ond with two hidden layers, to increase the precision of
attack classification. They leverage the Early Stopping Val-
idation Method [366] to reduce training and validation
time of the NN to less than 5 hours. As expected, the NN
with 2 hidden layers achieves a higher accuracy of 91%,
compared to the 87% accuracy of the NN with a single
hidden layer.
Amor et al. [20] compare NB and DT also using

KDD’99 dataset, and promote NB’s linear training and

classification times as a competitive alternative to DT. NB
is found to be 7 times faster in learning and classification
than DT. For whole attacks, DT shows a slightly higher
accuracy over NB. However, NB achieves better accuracy
for DoS, R2L, and probing attacks. Both NB and DT per-
form poorly for R2L and U2R attacks. In fact, Sabhnani
and Serpen [398] expose that no classifiers can be trained
successfully on the KDD dataset to performmisuse detec-
tion for U2R or R2L attack categories. This is due to the
deficiencies and limitations of the KDD dataset rather
than the inadequacies of the proposed algorithms.
The authors found via multiple analysis techniques

that the training and testing datasets represent dissimilar
hypothesis for the U2R and R2L attack categories; so if one
would employ any algorithm that attempts to learn the sig-
nature of these attacks using the training dataset is bound
to perform poorly on the testing dataset. Yet, the work in
[344] reports surprisingly impressive detection accuracy
for U2R and R2L. Here, a hybrid of BP NN with C4.5 is
proposed, where BP NN is used to detect DoS and prob-
ing attacks, and C4.5 for U2R and R2L. For U2R and R2L
only a subcategory of attacks is considered (yielding a total
of 11 U2R connections out of more than 200 in the orig-
inal dataset and ∼ 2000 out of more than 15000 for R2L
connections).After-the-event analysis is also performed to
feed C4.5 with new rules in the event of misclassification.
Other seminal works consider hybrid and ensemble

methods for misuse detection [90, 354, 421]. The goal of
ensemble methods is to integrate different ML techniques
to leverage their benefits and overcome their individual
limitations. When applied to misuse detection, and more
specifically for the KDD’99 dataset, these work focused
on looking at which ML technique works best for a class
of connections. For instance, Peddabachigari et al. [354]
propose an IDS that leverages an ensemble of DT, SVM
with polynomial kernel based function, and hybrid DT-
SVM to detect various different cases of misuse. Through
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Table 22 Summary of ML for flow feature-based anomaly detection

Ref. ML Technique Dataset Features Evaluation

Settings Results

Kayacik et al.
[232]

Unsupervised
Hierarchical
SOM (Offline)

KDD Cup [257] 6 TCP features -494,021 training records
-311,029 records in test set 1
-4,898,431 records in test set 2
-Platforms: SOM-Toolbox [12] &
SOM PAK [250] -3-level SOM
w/ # Epochs: 4000

DR Test-set 1: 89% FP Test-set
1: 4.6% DR Test-set 2: 99.7%
FP Test-set 2: 1.7%

Kim et al. [242] Supervised SVM
(Offline)

KDD Cup [257] selected using GA Training set: kddcup.data.gz
[257] Testing set: corrected.gz
[257] -Detect only DoS attacks
-10-fold cross validation -GA
ran for 20 generations

DR w/ Neural Kernel: 99% DR
w/ Radial Kernel:87% DR w/
Inverse Multi-Quadratic
Kernel: 77%

Jiang et al. [220] Unsupervised
Improved NN
(Offline)

KDD Cup
[256, 257]

all 41 features -40,459 training records
-429,742 testing records
-Cluster Radius Thresh
r=[0.2-0.27]

DR DoS: 99.10%%99.15 DR
Probe: 64.72%80.27% DR U2R:
25.49%60.78% DR R2L
6.34%8.67% DR new attacks:
32.44%42.12% FP: 0.05%1.30%

Zhang et al. [495] Unsupervised
Random
Forests (Offline)

KDD Cup [257] 40 features labeled by
service type

-4 datasets used with % of
attack connections: 1%, 2%,
5%, 10% -Platform used: Weka
[288]

1% attacks: FP: 1% DR: 95%
10% attacks: FP: 1% DR: 80%

Ahmed et al. [7] Supervised
Kernel Function
(Online)

From Abilene
backbone
network

number of packets,
number of individual
IP flows

-2 timeseries binned at 5 min
intervals -Timeseries
dimensions = FxT -F = 121
flows, T = 2016 timesteps

T#1 DR: 21/34-30/34 FP:0-19
T#2 DR:28/44-39/44 FP:5-16

Shon et al. [411] Unsupervised
Soft-margin
SVM and
OCSVM (Offline)

KDD Cup [257]
Data collected
from Dalhousie U.

selected using GA -SVM Toolkits [88, 396]
-100,000 packets for training
-1,000-1,500 packet for testing
-GA run for 100 generations
3-cross fold validation

KDD w/ 9 attack types DR:
74.4% Dalhousie Dataset DR:
99.99% KDD w/ 9 attack types
FN:31.3% Dalhousi Dataset
FP:0.01%

Giacinto et al.
[165]

Unsupervised
Multiple
Classifiers
(Offline)

KDD Cup [257] 29 features for HTTP
34 features for FTP 16
features for ICMP 31
features for Mail 37
features for Misc 29
features for
Private&Other

-494,020 training records
-311,029 testing records -1.5%
of data records is attacks

v-SVC DR: 67.31%-94.25%
v-SVC FP: 0.91%-9.62%

Hu et al. [198] Supervised
Decision
stumps with
AdaBoost
(Offline)

KDD Cup [257] all 41 features -494,021 training records
-311,029 testing records
-Pentium IV with 2.6-GHz CPU
and 256-MB RAM -Platform
used Matlab 7

DR: 90.04%-90.88% FP:
0.31%-1.79% Mean Training
time: 73 sec

Muniyandi et al.
[327]

Unsupervised
K-Means, C4.5
DT (Offline)

KDD Cup [257] all 41 features -15,000 training records -2,500
testing records -Intel Pentium
Core 2 Duo CPU 2.20GHz,
2.19GHz, 0.99GB of RAM w/
Microsoft Windows XP (SP2)
-Platform: Weka 3.5 [288]

DR: 99.6% FP: 0.1% Precision:
95.6% Accuracy: 95.8%
F-measure: 94.0%

Panda et al. [345] Unsupervised
RF, ND, END
(Offline)

NSL-KDD [438] all 41 features -25,192 training instances -IBM
PC of 2.66GHz CPU with 40GB
HDD and 512 MB RAM -10-fold
cross validation

TP: 99.5 FP: 0.1% F-measure:
99.7% Precision: 99.9% Recall
99.9% Time to build model:
18.13 sec

Boero et al. [64] Supervised
RBF-SVM
(Offline)

Normal: from U.
of Genoa
Malwares: [126,
292, 348, 351]

7 SDN OpenFlow
features

-RBF Complexity par: 20 -RBF
kernel par: 2

Normal-TP: 86% Normal-FP:
1.6% Malware-TP: 98.4%
Malware-FP: 13.8%

empirical evaluation, the resultant IDS consist of using DT
for U2R, SVM for DoS, and andDT-SVM to detect normal
traffic. The ensemble of the 3 methods together (with

a voting mechanism) is used to detect probing and R2L
attacks. The resultant accuracy for each class is presented
in Table 21.
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Table 23 Summary of ML for payload-based anomaly detection

Ref. ML Technique Dataset Features Evaluation

Settings Results

Zanero et al.
[493]

Unsupervised
A two-tier
SOM-based
architecture
(Offline)

Normal: KDD
Cup [257]
Attack: Scans
from Nessus
[44]

Packet headers
and payload

-2,000 training packets
-2,000 testing packets
-10x10 SOM trained for 10,000
epochs
-Platform used: SOM toolbox [12]

Improves DR by 75% over 1-tiered
S.O.M

Wang et al.
[459]

Unsupervised
Centroid model
(Offline)

KDD Cup [257]
& CUCS

Payload of TCP
traffic

-2 weeks training data
-3 weeks testing data
-Inside network TCP data only
-Incremental learning

DR w/ payload of a packet: 58.8%
DR w/ first 100 bytes of a packet:
56.7%
DR w/ last 100 bytes of a packet:
47.4%
DR w/ all payloads of a con: 56.7%
DR w/ first 1000 bytes of a Con:
52.6%
Training time: 4.6-26.2 sec
Testing time: 1.6-16.1 sec

Perdisci et al.
[356]

Supervised
Ensemble of
single-class SVM
(Offline)

Normal: KDD
Cup [257]
Normal:
GATECH
Attack: CLET
[117]
Attack: PBA
[149]
Generic [204]

Payload -50% of dataset for training
-50% of dataset for testing
-11 OCSVM trained with
2v-grams; v=1...10
-5-fold cross validation on KDD
cup
-7-fold cross validation on
GATECH
-2 GHz Dual Core AMD Opteron
Processor and 8GB RAM

Generic DR w/ FP 10−5: 60%
shell-code DR w/ FP 10−5: 90%
CLET DR w/ FP 10−5: 90%
Detection time KDD Cup: 10.92
ms
Detection time GATECH: 17.11 ms

Gornitz et al.
[171]

Supervised
SVDD
(Online)

Normal: from
Fraunhofer Inst.
Attack:
Metasploit

payload -2,500 training network events
-1,250 testing network events
-Active Learning
-Fraction of Labeled data: 1.5%

DR: 96%
FP: 0.0015%

Stein et al. [421] employ DT with GA. The goal of GA
is to pick the best feature set out of the 41 features pro-
vided in KDD’99 dataset. DT with GA is performed for
every category of attacks, rendering a total of 4 DTs. The
average error rate achieved by each DT at the end of 20
runs is reported in Table 21. Another interesting ensem-
ble learning approach is the one proposed in [90], where
the ensemble is composed of pairs of feature set and
classification technique. More specifically, BN and CART
classification techniques are evaluated on the KDD’99
dataset with different feature sets. Markov blanket [353]
and Gini [76] are adopted as feature selection techniques
for BN and CART, respectively. Markov blanket identifies
the only knowledge needed to predict the behavior of a
particular node; a node here refers to the different cate-
gories of attacks. Gini coefficient measures how well the
splitting rules in CART separates between the different
categories of attacks. This is achieved by pruning away
branches with high classification error. For BN, 17 fea-
tures out of 41 are chosen during the data reduction phase.
For CART, 12 variables are selected. CART and BN are
trained on the 12 and 17 features set, as well as 19 features
set from [326]. They describe the final ensemble method
using pairs (#features, classification), which delineates the
reduced feature set and the classification technique that

exhibits the highest accuracy for the different categories of
attacks and normal traffic. The ensemble model achieves
100% accuracy for normal (12 features set, CART), probe
(17 features set, CART), and DoS (17 features set, Ensem-
ble), and 84% accuracy for U2R (19 features set, CART),
and 99.47% accuracy for R2L (12 features set, Ensemble).
Miller et al. [314] also devise an ensemble method but

based on NB classifiers, denoted as Multi-perspective
Machine Learning (MPML). The key idea behind MPML
is that an attack can be detected by looking at different
network characteristics or “perspective”. These charac-
teristics in turn are represented by a subset of network
features. Hence, they group the features of a perspective
together, and train a classifier using each feature set. The
intuition behind this approach is to consider a diverse and
rich set of network characteristics (each represented by a
classifier), to enhance the overall prediction accuracy. The
predictions made by each classifier are then fed to another
NB model to reach a consensus.
A limitation of the aforementioned approaches is that

they are all employed offline, which inhibits their appli-
cation in real life. A few related works focused on the
training and detection times of their IDS. Most classifiers
(e.g., image, text recognition systems) require re-training
from time to time. However, for IDSs this retraining may
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Table 24 Summary of deep and reinforcement learning for intrusion detection

Ref. ML Technique Dataset Features Evaluation

Settings Results

Cannady et al.
[85]

RL
CMAC-NN
(Online)

Prototype Appli-
cation

Patterns of Ping
Flood and UDP
Packet Storm
attacks

-3 Layers NN
-Prototype developed w/ C
& Matlab

Learning Error: 2.199-1.94−07%
New Attack Error:2.199-8.53−14%
Recollection Error: 0.038-3.28−05%
Error after Refinement: 1.24%

Servin et al.
[407]

RL
Q-Learning
(Online)

Generated using
NS-2

Congestion,
Delay, and
Flow-based

-Number of Agents: 7
-DDoS attacks only
-Boltzmann’s rules for E2

FP: 0-10%
Accuracy:∼ 70%-∼ 99%
Recall: ∼ 30%-∼ 99%

Li et al. [273] DL
DBN w/ Auto-
Encoder
(Offline)

KDD Cup [257] all 41 features -494,021 training records
-311,029 testing records
-Intel Core Duo CPU 2.10
GHz and 2GB RAM
-Platform used: Matlab v.7.11
-3 Layers Encoder:
41,300,150,75,*

TPR: 92.20%-96.79%
FPR: 1.58%-15.79%
Accuracy: 88.95%-92.10%
Training time: [1.147-2.625] sec

Alom et al.
[14]

DL
DBN
(Offline)

NSL-KDD [438] 39 features -25,000 training & testing
records

DR w/ 40% data for training: 97.45%
Training time w/ 40% data for train-
ing: 0.32 sec

Tang et al.
[436]

DL
DNN
(Offline)

NSL-KDD [438] 6 basic features -125,975 training records
-22,554 testing records
-3-Layers DNN: 6,12,6,3,2
-Batch Size: 10 # Epochs: 100
-Best Learning Rate: 0.001

Accuracy: 72.0%5-75.75%
Precision: 79%-83%
Recall: 72%-76%
F-measure: 72%-75%

Kim et al.
[245]

DL
LSTM-RNN
(Offline)

KDD Cup [257] all 41 features -1,930 training data records
-10 test datasets of 5000
records
-Intel Core I7 3.60 GHZ, RAM
8GB, OS Ubuntu 14.04
-# Nodes in Input Layer: 41
-# Nodes in Output Layer: 5
-Batch Size:50 #Epoch:500
-Best Learning Rate:0.01

DR: 98.88%
FP: 10.04%
Accuracy: 96.93%

Javaid et al.
[213]

DL
Self-taught Learn-
ing
(Offline)

NSL-KDD [438] all 41 features -125,973 training records
-22,544 testing records
-10-fold cross validation

2-class TP: 88.39%
2-class Precision: 85.44%
2-class Recall: 95.95%
2-class F-measure: 90.4%

Table 25 Summary of ML for Hybrid Intrusion Detection

Ref. ML Technique Dataset Features Evaluation

Settings Results

Mukkamala
et al. [325]

Supervised
RBF-SVM
(Online)

KDD cup [257] all 41 features 7,312 training records
-6,980 testing records
-Platform used: SVMLight
[224]

Accuracy: 99.5%
Training time: 17.77 sec
Testing Time: 1.63 sec

Zhang
et al. [494]

Hybrid
Hierarchical-RBF
(Online)

KDD Cup all 41 features -32,000 training records
-32,000 testing records

SHIDS Normal DR:=99.5%
SHIDS Normal FP: 1.2%
SHIDS Attack DR: [98.2%-99.3%]
SHIDS Attack FP: [0%-5.4%]
PHIDS level 1 DR: 99.8%
PHIDS level 1 DR:1.2%
PHIDS level 2 DR:[98.8%-99.7%]
PHIDS level 2 FP:[0%-4%]
PHIDS level 3 DR: 86.9%
PHIDS level 3 FP: 0%
Training time: 5 min

Depren
et al. [116]

Hybrid
SOM w./ J.48
(Offline)

KDD Cup 6 basic features
for SOM
all 41 features for
J.48

-10-fold cross validation
-Two-phases SOM Training
-Phase 1 learning rate:0.6
-Phase 2 learning rate: 0.05
-Confidence Val. for J.48
pruning: 25%

DR: 99.9%
Missed Rate: 0.1%
FP: 1.25%
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be performed daily (or even hourly) due to the fast and
ever changing nature of cyber-threats [180]. Hence, fast
training times are critical for an adaptable and robust IDS.
[198] tackled the challenge of devising an IDS with fast
training time using an Adaboost algorithm. The proposed
algorithm consists of an ensemble of weak classifiers
(decision stumps), where their decisions are then fed to a
strong classifier to make the final decision. The fast train-
ing time achieved (of 73 s) is attributed to the use of weak
classifiers. Another advantage of decision stumps is the
ability to combine weak classifiers for categorical features
with weak classifiers for continuous features, without any
forced conversation as is typically done in most works.
During the evaluation, a subset of attack types are omitted
from the training set in order to evaluate the algorithm’s
ability to detect unknown attacks. While the reported
accuracy is not significantly high (90%), the training time
is promising for real-time deployment. Clearly, there is
still a need for a model that can achieve fast training time,
without sacrificing the detection accuracy.
Sangkatsanee et al. [402] propose a real-time misuse-

based IDS. Information gain is applied to reduce the num-
ber of features used (for faster detection), resulting in 12
features. Different ML techniques were assessed, among
which DT provided the best empirical results. They devel-
oped a tool that runs on traces collected in 2 s time
intervals, and shows a detection accuracy of 98%. A post-
processing technique is also proposed to reduce FP, which
consists of flagging an attack only if 3-out-of 5 consecutive
records belonging to the same connection were classified
as an attack. While this work is indeed promising, given it
is performed in real-time, it suffers from a few limitations:
(i) it can only detect two types of attacks (DoS and probe),
(ii) it is not compared against other real-time signature-
based IDS (e.g. Snort [87]), (iii) it only looks at attacks
in windows of 2 s, and (iv) its post-processing approach
correlates records between 2 IPs, making it vulnerable to
persistent threats and distributed attacks.
A final effort that merits a discussion here is [272]. This

work employs Transductive Confidence Machine for k-
NN (TCM-KNN), a supervised classification algorithm
with a strangeness measure. A high strangeness measure
indicates that the given instance is an outlier in a particu-
lar class (for which the measurement is being conducted).
The strangeness measure is calculated for every instance
against each possible classification class. This is achieved
by measuring the ratio of the sum of the k-nearest dis-
tances from a given class to the sum of the k-nearest
distances from all other classes. The strangeness measure
is also employed for active learning. Since getting labeled
data for attacks is a cumbersome task, active learning can
relieve part of this tedious process by indicating the subset
of data points that should be labeled to improve the con-
fidence of the classifier. TCM-KNN is evaluated over the

KDD’99 dataset and the results are reported in Table 21.
The benefits of active learning is also evaluated. Start-
ing with a training set of just 12 instances, TCM-KNN
requires the labeling of an additional 40 actively selected
instances to reach a TP of 99.7%. Whereas, random sam-
pling requires the labeling of 2000 instances to attain the
same accuracy.

10.2 Anomaly-based intrusion detection
Though misuse-based IDSs are very successful at detect-
ing known attacks, they fail to identify new ones. Network
cyber-threats are constantly changing and evolving, mak-
ing it crucial to identify “zero-day” attacks. This is where
anomaly-based intrusion detection comes in. Anomaly-
based IDS models normal network behavior, and identify
anomalies as a deviation from the expected behavior. A
big issue with anomaly-based IDSs is false alarms, since
it is difficult to obtain a complete representation of nor-
mality. ML for anomaly detection has received significant
attention, due to the autonomy and robustness it offers in
learning and adapting profiles of normality as they change
over time. With ML, the system can learn patterns of nor-
mal behavior across environments, applications, group of
users, and time. In addition, it offers the ability to find
complex correlations in the data that cannot be deduced
frommere observation. Though anomaly detection can be
broadly divided into flow feature or payload-based detec-
tion, recently, deep learning and reinforcement learning
are being aptly exploited. Primarily, this is due to their
intrinsic ability to extrapolate data from limited knowl-
edge. We delineate and summarize the seminal and state-
of-the-art ML-based techniques for anomaly detection in
Tables 22, 23 and 24.

10.2.1 Flow feature-based anomaly detection
Flow-based anomaly detection techniques rely on learn-
ing the expected (benign) network activities from flow
features. The immediate observation in contrast to misuse
detection is the application of unsupervised learning and
hybrid supervised/unsupervised learning. Some works
employed supervised learning for anomaly detection as
well. The main difference is instead of teaching the model
the expected behavior, in unsupervised learning themodel
is fed with an unlabeled training set to find a structure, or
a hidden pattern, in the data. In anomaly detection, the
notion is that benign network behavior is more common
and will naturally group together, whereas, anomalous
behavior is more sparse and will appear as outliers in
the dataset. Hence, the larger and more dense clusters
will indicate normal connections, while the smaller more
distant data points (or clusters of data points) will indi-
cate malicious behavior. A quick glance at Tables 22, 23,
and 24 will reveal that the KDD’99 dataset is the dataset
of choice in most anomaly-based intrusion detection

258



Boutaba et al. Journal of Internet Services and Applications  (2018) 9:16 Page 80 of 99

literature, where some have also employed the improved
version of the dataset, NSL-KDD [438] released in 2009.
In the sequel, we elucidate the most influential work in
the application of flow feature-based ML for anomaly
detection.
We start-off our discussion by looking at supervised

learning techniques. KOAD [7] is an online kernel
function-based anomaly detection IDS. The key feature
of KOAD is its ability to model normal behavior in
face of variable traffic characteristics. It leverages a real-
time anomaly detection algorithm that incrementally con-
structs and maintains a dictionary of input vectors defin-
ing the region of normal behavior. This dictionary is built
using time series of the number of packets and IP flows.
In the evaluation, the authors use a dataset collected by
monitoring 11 core routers in the Abilene backbone net-
work for a week. It comprises of two multi-variate time
series, the number of packets and the number of indi-
vidual IP flows. KOAD is evaluated against PCA and
One-Class Neighbor Machine (OCNM). In packet time
series, OCNM flags 26 out of 34 anomalies but generates
14 FPs, while KOAD gives different TP and FP under dif-
ferent parameters. For instance, it can detect 30 anomaly
records with 17 FPs, and 26 anomaly records with 1 FP.
However, PCA can detect 25 anomalies with 0 FP. On the
other hand, for the flow-count time series, KOAD outper-
forms PCA and OCNM in terms of detection rate but at
the cost of a higher FP.
More recently, Boero et al. [64] leverage a SVM with

radial basis function kernel (RBF-SVM) to devise an IDS
for SDN-based malware detection. A reduced feature set
is evaluated based on features that are collectible via OF
and commercial SDN switches. This limits the number of
features to 7 consisting of the number of packets, number
of bytes, flow duration, byte rate, packet rate, length of the
first packet, and average packet length. The dataset used
for evaluation consists of normal traffic traces from a uni-
versity campus and malware traffic traces from [126, 292,
348, 351]. For a dataset with known attacks, both RBF-
SVM with limited and all features return a TP above 98%
for the malware traces, while TP of RBF-SVM is 86.2% for
normal traces.
However, detecting new attacks using the RBF-SVM

with limited and full features achieve comparable TP
with a high FP of approximately 18% for normal traces.
This shows that restricting the features set to those
that can be collected via SDN switches slightly impacts
the TP rate; however it comes at a cost of a higher
FP. Hence there is a need to enlarge the features set
that SDN switches monitor and collect. As we will see
in the following, the battle between FP and TP will
constantly resurface throughout our discussion. This is
expected since guaranteeing the ground truth is difficult
and requires manual labeling. Furthermore, obtaining a

complete representation of normal behavior is extremely
challenging. Thus, any future legitimate behavior that was
not part of the trained set might be flagged as an anomaly.
The main application of unsupervised learning for

anomaly detection is clustering on the basis that normal
data connections will create larger more dense clusters.
Jiang et al. [220] challenge this notion by showcasing that
the size of the cluster is not sufficient to detect anomalies
and has to be coupled with the distance of the cluster from
other clusters, to increase accuracy of detection. To this
end, the authors propose an Improved Nearest Neighbor
(IMM) technique for calculating cluster radius threshold.
The KDD dataset is used for evaluation and shows that
IMM outperforms three related works [131, 139, 363] in
terms of detection rate and FP. A snippet of their reported
results is presented in Table 22.
Kayacik et al. [232] leverage unsupervised NN with

SOM and investigate their detection capabilities when
trained with only 6 of the most basic TCP features, includ-
ing protocol type, service type, status flag, connection
duration, and total bytes sent to destination/source host.
They evaluate their work on the KDD dataset, and observe
that SOM-based anomaly detection achieves an average
DR (ADR) of 89% with FP in the range of [1.7%-4.6%].
Other interesting applications of unsupervised learning
for anomaly detection is RF [495] and an ensemble of
single-class classifiers [165]. Giacinto et al. [165] train a
single-class classifier, based on v-SVC [405], for each indi-
vidual protocol and network service; e.g. ICMP, HTTP,
FTP, and Mail. This ensures that each classifier is special-
ized in detecting normal and abnormal characteristics for
one these protocols and services. The application of one-
class classifier is particularly interesting for cases where
there is a skewness in the data. This is in-line with the
fact that normal traffic traces are more common than
malicious network activities. Thus, the one-class classifier
learns the behavior of the dominant class, and dissimilar
traffic patterns are then flagged as an anomaly. Results of
the evaluation can be found in Table 22.
The majority of works in anomaly-based IDS employed

a hybrid of supervised/unsupervised learning techniques.
Panda et al. [345] evaluate several hybrid approaches to
identify the best combination of supervised and unsu-
pervised data filtering and base classifiers for detecting
anomalies. The authors evaluate DT, PCA, stochastic pri-
mal estimated sub-gradient solver for SVM (SPegasos),
ensembles of balanced nested dichotomies (END), Grad-
ing, and RF. They show that RF with nested dichotomies
(ND) and END achieve the best results, with a detection
rate of 99.5% and a FP of 0.1%. It is also the fastest in terms
of performance, requiring 18.13 s to build and provides F-
measure, precision , and recall of 99.7%, 99.9, and 99.9%,
respectively. Enhanced SVM [411] combines a supervised
version of SVM: soft-margin SVM with an unsupervised
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version: one-class SVM. The intuition here is that this
combination will allow to get the best of both worlds: low
FP with ability to detect zero-day attacks. Enhanced SVM
consists of 4 phases:

– Create a profile of normal packets using Self-organized
Feature Map.

– Packet filtering scheme, using p0f [491], based on
passive TCP/IP fingerprinting to reject incorrectly
formed TPC/IP packets.

– GA to perform feature selection
– Temporal correlation of packets during packet pro-

cessing

Enhanced-SVM is only trained with normal traffic. The
normal to abnormal ration in the data set consists of 98.5-
99 to 1-1.5%. Compared to two commercial IDSs, Bro and
Snort, the Enhanced-SVM slightly improves in anomaly
detection accuracy on a real dataset with unknown traffic
traces. However, for known attacks, Snort and Bro sig-
nificantly outperform Enhanced-SVM.Wagner et al. [456]
also leverage a hybrid supervised and unsupervised single-
class SVM to detect anomalies in IP NetFlow records.
A new kernel function is proposed to measure the sim-
ilarity between two windows of IP flow records of n
seconds. The hybrid SVM is evaluated on a normal dataset
obtained from an ISP, with synthetically generated attacks
using Flame [74], and with n = 5 s. Results show that
the hybrid SVM can achieve an ADR of 92%, FP in the
range [0-0.033], and TN in the range [0.967-1]. Finally,
Muniyandi et al. [327] propose a hybrid anomaly detection
mechanism that combines k-Means with C4.5 DT. They
build k clusters using k-Means and employ DT for each
cluster. DT overcomes the forced assignment problem in
k-Means, where k is too small and a class dominates due
to skewed dataset. The authors evaluate the hybrid detec-
tion on the KDD dataset and show that it outperforms
k-Means, ID3, NB, k-NN, SVM, and TCM-KNN, over 6
different metrics, including TP, FP, precision, accuracy, F-
measure, and ROC. However, TCM-KNN achieves better
results in terms of TPR and FPR.

10.2.2 Payload-based anomaly detection
Payload-based anomaly detection systems learn patterns
of normality from packet payload. This provides the ability
to detect attacks injected inside the payload that can easily
evade flow feature-based IDSs. In this subsection, we dis-
cuss ML techniques that have been employed to detect
anomalies using packet payload alone or in conjunction
with flow features.
PAYL [459] use the 1-gram method to model packet

payloads. n-gram is widely used for text analysis. It con-
sists of a sliding window of size n that scans the payload
while counting the occurrence/frequency of each n-gram.
In addition to counting the frequency of each byte in the

payload, the mean and the standard deviation is com-
puted. As the payload exhibits different characteristics
for different services, PAYL generates a payload model
for each service, port, direction of payload, and payload
length range. Once the models are generated, Maha-
lanobis distance is used to measure the deviation between
incoming packets and the payload models. The larger the
distance, the higher the likelihood that the newly arrived
packet is abnormal. The authors leverage incremental
learning to keep the model up to date, by updating the
Mahalanobis distance to include new information gath-
ered from new packets. PAYL’s ability to detect attacks
on TCP connections is evaluated using the KDD dataset
and data traces collected from Columbia University Com-
puter Science (CUCS) web server. PAYL is able to detect
60% of the attacks on ports 21 and 80 with a FP of 1%.
However, it performs poorly when the attacks target appli-
cations running on ports 23 and 25. This is due to the
fact that attacks on ports 21 and 80 exhibit distinctive pat-
terns in the format of the payload, making them easier to
detect than attacks on ports 23 and 25. PAYL can be used
as an unsupervised learning technique under the assump-
tion that malicious payloads are a minority, and will have a
large distance to the profile than the average normal sam-
ples. Hence, by running the learned model on the training
set, malicious packets in the set can be detected, omitted,
and then the models are retrained on the new training set.
Perdisci et al. [356] design Multiple-Classifier Payload-

based Anomaly Detector (McPAD) to infer shell and
polymorphic shell code attacks. Shell code attacks inject
malicious executable code in the packet payload. As
opposed to 1-gram analysis performed by PAYL, McPAD
runs a 2v-gram analysis technique to model the payload
(v =[ 0 − 10] ). It measures the occurrence of a pair of
bytes that are v positions apart. By varying v and apply-
ing feature reduction, different compact representations
of the payload are obtained. Each of these representations
is then fed to a 1-class classifier model and majority vote
is used to make the final prediction. For evaluation, nor-
mal traffic is extracted from two datasets: the 1st week of
KDD dataset and 7 weeks of HTTP traffic collected from
College of Computing School at the Georgia Tech (GAT-
ECH). Attack traffic is collected from a generic dataset in
[204], in addition to synthetically generated polymorphic
attacks [117] and Polymorphic Blending Attacks (PBAs).
In comparison to PAYL, McPAD achieves a DR of 60,
80 and 90% for generic, polymorphic CLET, and shell-
code attacks, respectively, with an FP of 10−5 for all
attacks. While, PAYL reports very low DRs for the same
FP. However, the computational overhead of McPAD is
much higher than that of PAYL with an average pro-
cessing time of 10.92 ms over KDD and 17.11 ms over
GATECH whereas PAYL runs in 0.039 ms and 0.032 ms,
respectively.
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Zanero et al. [493] propose a two-tier architecture for
anomaly detection. The first tier consists of an unsu-
pervised outliers detection algorithm that classifies each
packet. This tier provides a form of feature reduction as
the result of the classification “compresses” each packet
into a single byte of information. The results from the
first tier are fed into the second tier anomaly detec-
tion algorithm. In the first tier, both packet header and
payload are used for outliers detection. The authors com-
pare three different techniques, including SOM, Principal
Direction Divisive Partitioning (PDDP) algorithm and k-
Means, with SOM outperforming PDDP and k-Means in
terms of classification accuracy with a reasonable com-
putational cost. A preliminary prototype that combines a
first tier SOM with a second tier SOM is evaluated over
the Nessus [44] vulnerabilities scans. The results show a
75% improvement in DR over an IDS that does not include
the first tier.
Gornitz et al. [171] leverage semi-supervised Support

Vector Data Description (SVDD) and active learning to
build the active SVDD (ActiveSVDD) model for payload-
based anomaly detection. It is first trained with unlabeled
examples, and subsequently refined by incorporating
labeled data that has been queried by active learning
rules. The empirical evaluation consists of comparing
an unsupervised SVDD with random sampling against
ActiveSVDD. The dataset used for the evaluation is HTTP
traffic recorded within 10 days at Fraunhofer Institute.
Attack data is generated using Metasploit [307] frame-
work. In addition, mimicry attacks are added in the form
of cloaked data to evaluate the ability to detect adversar-
ial attacks. Themodel achieve high accuracy, with random
sampling for online applications with cloaked data, 96%
DR with a very low FP and 64% DR for ActiveSVDD and
SVDD, respectively.

10.3 Deep and reinforcement learning for intrusion
detection

As we contemplate the applications of ML for misuse
and anomaly detection, we observe that all applications of
NN were restricted to networks with at most 2 hidden-
layers. DNNs are attractive for the ability to train large
NNs with several hidden-layers. As we survey the litera-
ture on DL for intrusion detection, we will observe much
larger and deeper NNs in terms of number of nodes in
each layer, and the number of hidden layers. Conceptually,
the results of DNNs get better with more data and larger
models.

10.3.1 Deep learning for anomaly detection
Over the past decade, anomaly detection has particu-
larly benefited from self-taught learning (STL) [213], DBN
[14, 273], and RNN [245]. Once more, all these works
have been evaluated using KDD dataset, and its enhanced

version NSL-KDD [438] dataset. Their results are summa-
rized in Table 24.
In 2007, STL [378] emerged as an improvement over

semi-supervised learning. STL uses unlabeled data from
other, but relevant, object class to enhance a supervised
classification task e.g. using random unlabeled images
from the Internet to enhance the accuracy of a super-
vised classification task for cat images. This is achieved by
learning a good feature representation from the unlabeled
data and then applying this representation to the super-
vised classifier. The potential benefit of STL for anomaly
detection is clear: intrusion detection suffers from the
lack of sufficient amount of labeled data, more specifically
for attacks. To this extent, the work in [213] explore the
application of STL for anomaly detection. Their proposed
model consists of two stages, an Unsupervised Feature
Learning (UFL) stage using sparse auto encoder, followed
by a classification stage that uses the learned features with
soft-max regression (SMR). They evaluate their solution
using the NSL-KDD Cup dataset for 2-class and 5-class
classifications, and compare against a SMR technique that
is not preceded by a UFL stage. The 2-class classification
achieves a higher accuracy of 88.39% compared to 78.06%
of SMR, and outperforms SMR with respect to recall and
F-measure. However, SMR outperforms STL in precision.
Li et al. [273] and Alom et al. [14] explore the use of

DBN for anomaly detection. DBN is an interesting class of
NN, when trained using unlabeled data it works as a fea-
tures selector, and when trained with labeled data it acts
as a classifier. In [273] DBN is used to perform both of
these two tasks. More specifically, an auto-encoder is first
used for dimensionality reduction. The proposed DBN
is composed of multi-layers of RBM and a layer of BP
NN. Unsupervised training is performed on every layer
of RBM and the final output is fed to the BP NN for
classification. Pre-training and pre-tuning the DBN with
auto-encoder over 10 iterations, result in an accuracy of
92.10%, FP of 1.58% and TP of 92.20%. DBN without auto-
encoder achieves an accuracy, FP, and TP of 91.4, 9.02, and
95.34%, respectively.
In [14], the authors perform a compare analysis to eval-

uate the performance of DBN (composed of two-layers
RBM) against against SVM, and a hybrid DBN-SVM. This
comparative analysis was performed using the NSL-KDD
dataset. The results show that DBN runs in 0.32 s, and
achieves an accuracy of 97.5% when trained with only
40% of the NSL-KDD dataset, outperforming SVM and
DBN-SVM. This exceeds the performance, with respect
to training time of similar existing work [400]. In con-
trast, Tang et al. [436] use DNN for a flow-based anomaly
detection in SDNs. They extract six features from the SDN
switches and evaluate the accuracy of anomaly detection
using the NSL-KDD Cup dataset. As the learning rate is
varied, the DNN achieves an accuracy, precision, recall,
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and F-measure in the range [72.05-75.75%], [79-83%],
[72-76%], and [72-75%] , respectively. It is important to
note that for the highest learning rate, DNN achieves
the highest accuracy on the training dataset. However, its
accuracy, recall and F-measure on the test datasets drops.
The authors note that such an accuracy drop occurs with
a high learning rate since the model becomes trained “too
accurately”, i.e. over-fitting. Nevertheless, the accuracy of
the DNN is lower than the winner of the KDD Cup, RF,
which has an accuracy of 81.59%.

10.3.2 Reinforcement learning for intrusion detection (RL)
MARL [407] is a Multi-Agent Reinforcement Learning
system for the detection of DoS and DDoS attacks. MARL
is based on Q-learning, and the system consists of a set of
heterogeneous sensor agents (SA) and a hierarchy of deci-
sion agents (DA). In the proposed setup three SAs and 1
DA are used. Each SA is responsible of collecting either
congestion, delay, or flow-based network metrics. These
collected metrics represent the local state of every SA.
Every SA runs a local RL mechanism to match its local
state to a particular communication action-signal. These
signals are received by the DA, which given a global view
of the state of the network triggers a final action signal
that is forwarded to a human in the loop. If the DA (or the
higher-layer agent in case of a hierarchy of DAs)makes the
appropriate call, all the agents in the system are rewarded.
Otherwise, they will all be penalized. MARL is evaluated
on NS-2 with 7 nodes, where two nodes generate normal
FTP and UDP traffic and one generates the UDP attacks.
The remaining four nodes constitute the SA agents and a
single DA agent. There is a single baseline run and seven
tests are conducted, where each test differs in the normal
traffic, attack patterns, or both. The corresponding accu-
racy, recall, and FPR for each test is presented in Table 24.
MARL is also tested on a dataset that contains mimicry
attacks, it achieved a recall and accuracy of ∼ 30% and
∼ 70%. When little change is inflicted in the traffic pat-
tern, MARL can achieve high 99% accuracy and recall
with 0 FP.
A less conventional application of RL is [85], which

consists of an online IDS based on adaptive NNwithmod-
ified RL. Here RL consists of a feedback mechanism. The
focus is to detect DoS attacks using Cerebellar Model
Articulation Controller (CMAC) NN. The learning algo-
rithm incorporates feedback from the protected system
in the form of system state (i.e. response rate, heartbeat).
The objective is to leverage the system state to assist in
detecting the attacks earlier since the responsiveness of
the system reduces under attack. The authors evaluate
CMAC NN using a prototype application that simulates
ping flooding and UDP packet storm attacks. First, they
assess the system’s ability to autonomously learn attacks.
They find that when the system is trained with gradual

ping flood attack vectors, the error rate is 2.199%, which
reduces to 1.94−7% as the training progresses. The authors
also evaluate the system’s ability to learn new attacks and
recognize learned attacks. The error rate results are pre-
sented in Table 24. Finally, the benefit of the system’s
feedback mechanism illustrates that as attacks progress,
the system state’s responsiveness approaches 0 and the
error rate reaches 8.53−14%.

10.4 Hybrid intrusion detection
We conclude our survey of ML for intrusion detection
by looking at hybrid IDSs that apply both misuse and
anomaly-based intrusion detection. Such a hybrid sys-
tem can make the best of both worlds i.e. high accuracy
in detecting patterns of known attacks, along with the
ability to detect new attacks. Every time a new attack is
detected, it can then be fed to the misuse-detection sys-
tem to enhance the comprehensiveness of its database.We
start off our discussion by looking at the work of Depren
et al. [116] that leverages J.48 DT and SOM for misuse and
anomaly detection, respectively. Three SOM modules are
trained, one for each of the TCP, UDP and ICMP traffic.
The output of the misuse and anomaly detection mod-
ules are combined using a simple decision support system,
that raises an alarm if either one of the modules detect
an attack. The authors evaluate their work over the KDD
Cup dataset and find that their hybrid IDS achieves a DR
of 99.9% with a missed rate of 0.1% and a FP of 1.25%.
Similarly, Mukkamala et al. [325] compare a SVM-based

with an NN-based hybrid misuse and anomaly detection
models. Their models are trained with normal and attack
data and evaluated using the KDDCup dataset. The SVM-
based hybrid model achieves 99.5% accuracy with training
and testing times of 17.77 s and 1.63 s, respectively. While,
three different NNs are trained and tested, each with a dif-
ferent structure of hidden layers. The three NNs achieve
an accuracy of 99.05, 99.25, and 99%, respectively, with a
training time of 18min. Therefore, SVM outperforms NN,
slightly in accuracy and significantly in runtime.
Zhang et al. [494] develop a hierarchical IDS frame-

work based on RBF to detect both misuse and anomaly
attacks, in real-time. Their hierarchical approach is mod-
ular and decreases the complexity of the system. It enables
different modules to be retrained separately, instead of
retraining the entire system. This is particularly useful
in the event of a change that only affects a subset of
the modules. Serial hierarchical IDS (SHIDS) is com-
pared against a parallel hierarchical IDS (PHIDS). SHIDS
begins by training a classifier with only normal data and
as the classifier detects abnormal packets, it logs them in
a database. c-Means clustering [58] groups the data based
on their statistical distributions, and as the number of
attack records in the largest group exceeds a pre-defined
threshold, a new classifier is trained with that specific
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attack data and appended to the end of the SHIDS. PHIDS
on the other hand consists of three layers. The anomaly
and misuse classifiers are in the first two layers, while the
third layer is dedicated to different attack categories. Over
time, the data in each attack category is updated as new
attacks are identified. The performance of RBF is evalu-
ated using the KDD dataset against a Back-Propagation
learning algorithm (BPL). Though, BPL achieves a higher
DR for misuse detection, RBF has a smaller training time
of 5 min compared to 2 h for BPL. Training time is critical
for online IDSs. Further, when training themodel with just
normal data for anomaly detection, RBF outperforms BPL
for each attack category, with respect to DR and FP. Over-
all, RBF achieves a DR of 99.2% and FP of 1.2%, compared
to BPL with a DR of 93.7% and FP of 7.2%. The evaluation
of SHIDS and PHIDS are in Table 25.

10.5 Summary
Our survey on the application of ML for network secu-
rity focused on network-based intrusion detection. We
grouped the work into misuse, anomaly, and hybrid net-
work IDSs. In each category, we expose the different ML
techniques that were applied, including recent applica-
tions of DL and RL. One clear take-away message is the
significant benefit that ML has brought to misuse-based
intrusion detection. It has really improved on the rule-
based systems, and allowed the extraction of more com-
plex patterns of attacks from audit data. It even allowed
the ability to detect variants of known attacks. In the field
of misuse-detection, a preference is given to white-box
models (e.g. DT) as their decision rules can be extracted,
as opposed to black-box models (e.g. NN). Ensemble-
based methods were also heavily employed by training
ML models on different subsets of the dataset or with dif-
ferent feature sets. Ensemble-based methods have been
particularly useful in achieving very fast training time.
While the benefits of ML for IDS is clear, there is a

lot of speculation on the application of ML for anomaly
detection. Despite the extensive literature on ML-based
anomaly detection, it has not received the same traction in
real deployments [415]. Indeed, the most widely deployed
IDS (Snort [45]) is in fact misuse-based [101]. The main
culprit for this aversion is not only the susceptibility of
anomaly detection to high FPs, but also the high-cost of
misclassification in the event of FNs. Compared to the
cost of misclassification in an ads recommender system,
a missed malicious activity can bring down the system or
cause a massive data breach. Another main weakness that
we observe in the literature is that most works consist of
raising an alarm if an anomaly is detected without giv-
ing any hints or leads on the observed malicious behavior
(e.g. the attack target). Providing such semantics can be
extremely valuable to network analysts [415], and even in
reducing FP.

The dataset of choice in the majority of the surveyed lit-
erature has been based on KDD’99, an out-dated dataset.
On one hand, this has provided the community with the
ability to compare and contrast different methods and
techniques. On the other hand, it does not reflect the
recent more relevant types of attacks. Moreover, even
the normal connection traces represent basic applications
(e.g. email and file-transfer) without any inclusion tomore
recent day-to-day applications that swarms the network
(e.g. social media and video streaming). This is further
aggravated by the several limitations and flaws reported
about this dataset [438]. Indeed, there is a dire need for a
new dataset for intrusion detection.
To conclude, most works on the application of ML for

intrusion detection are offline, and amongst the few real-
time IDSs, there is no consideration for early detection
(i.e. detecting a threat from the first few packets of a
flow). Moreover, there is a gap in the ML for intrusion
detection literature with regards to intrusion detection for
persistent threats, or correlating among isolated anomaly
instances over time. Finally, only a handful of works have
actually evaluated the robustness of their algorithm in
the event of mimicry attacks, an aspect of critical impor-
tance as attackers are constantly looking for ways to evade
detection.

11 Lessons learned, insights and research
opportunities

We have discussed the existing efforts in employing
ML techniques to address various challenges and prob-
lems in networking. The success of ML primarily lies
in the availability of data, compounded with improved
and resilient ML algorithms to solve complex problems.
Future networks are envisaged to support an explosive
growth in traffic volume and connected devices with
unprecedented access to information. In addition, these
capabilities will have to be achieved without significantly
increasing CAPEX, OPEX or customer tariffs.
In order to be sustainable in a competitive environ-

ment, network operators must adopt efficient and afford-
able deployment, operations and management. Enabling
technologies for future networks include SDN, network
slicing, NFV, and multi-tenancy, which reduce CAPEX,
increase resource utilization and sharing. Similarly, auto-
nomic network management frameworks coupled with
SDN is envisioned to reduce OPEX. The aforementioned
technologies will allow future networks to host a wide
variety of applications and services, and a richer set of use
cases, including massive broadband, ultra low latency and
highly reliable services, machine to machine communica-
tions, tactile Internet, industrial applications, autonomous
vehicles, real-time monitoring and control.
In this subsection, we describe and delineate prominent

challenges and open research opportunities pertaining to
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the application of ML in current and future networks,
from the network, system and knowledge acquisition
perspectives.

11.1 Network perspective
11.1.1 Cost of predictions
The accuracy of network monitoring data comes at
the cost of increased monitoring overhead (e.g. con-
sumed network bandwidth and switch memory). This
raises the need for network monitoring schemes that
are both accurate and cost-effective. Monitoring appli-
cations in traditional networks rely on a predefined set
of monitoring probes built into the hardware/firmware,
which limits their flexibility. With SDN customizable
software-based monitoring probes can be deployed on-
demand to collect more diverse monitoring data. How-
ever, in many instances, e.g. monitoring traffic volume
over a given switch interface, these probes need to
operate at line rate, which is very expensive over very
high speed links and difficult to achieve in software.
This makes TSF-based approaches for traffic prediction
prohibitive.
Recently, two solutions have been investigated in order

to overcome this issue, (i) traffic sampling and interpo-
lation [274], and (ii) leveraging features other than traf-
fic volume for traffic prediction [365]. Indeed, various
flow sampling techniques (stochastic/deterministic, spa-
cial/temporal, etc.) to reduce monitoring overhead have
been proposed in the literature. Unfortunately, the cur-
rent ML-based solution proposed in [274], is not conclu-
sive and shows contradicting prediction accuracy results.
Instead, Poupart et al. [365] use classifiers to identify ele-
phant flows. Indeed, classifiers operate at a coarser gran-
ularity. Therefore, their accuracy can not be compared to
the accuracy of regression model operating on the same
set of features. Using features other than traffic volumes
for accurate traffic prediction remains an open research
direction.

11.1.2 Cost of errors and detailed reports
ML for anomaly detection has received significant interest
in the literature, without gaining traction in the industry.
This is primarily due to the high FPR [27, 415], making
them inapplicable in an operational setting. FPRs waste
expensive analyst time to investigate the false alarms, and
reduce the trust and confidence in the IDS. Another major
concern with anomaly detection techniques is the lack
of detailed reports on detected anomalies [415]. Typi-
cally, a flag is raised and an alarm is triggered when-
ever there is a deviation from the norm. An efficient
IDS is not only responsible for detecting attacks and
intrusions in the network, it must provide a detailed
log of anomalies for historical data collection and model
retraining.

11.1.3 Complexitymatters
When performing traffic prediction, classification, rout-
ing and congestion control on intermediate nodes in the
network, it is crucial that they consume less time and
computing resources to avoid degradation in network
performance. This requirement is non-trivial, especially,
in resource-constrained networks, such as WANETs and
IoT. Though, performance metrics for ML evaluation are
well-defined, it is difficult to evaluate the complexity of
ML-based approaches a priori. Unlike traditional algo-
rithms, the complexity of ML algorithms also rely on the
size and quality of data, and the performance objectives.
The issue is further exacerbated, if the model is adaptive
and relearning is intermittently triggered due to varying
network conditions over time. The traditional complexity
metrics fail to cover these aspects. Therefore, it is impor-
tant to identify well-rounded evaluation metrics that will
help in assessing the complexity of given ML techniques,
to strike a trade-off between performance improvement
and computational cost.

11.1.4 ML in the face of the newWeb
In an effort to improve security and QoE for end-
users, new application protocols (e.g. HTTP/2 [48], SPDY
[47], QUIC [211]) have emerged that overcome var-
ious limitations of HTTP/1.1. For instance, HTTP/2
offers payload encryption, multiplexing and concurrency,
resource prioritization, and server push. Though, the
WEB applications over HTTP/2 enjoy the benefits of
these enhancements, it further complicates traffic clas-
sification by introducing unpredictability in the data
used for ML. For example, if we employ flow feature-
based traffic classification, the feature statistics can be
skewed, as several requests can be initiated over the
same TCP connection and responses can be received
out of order. Therefore, the challenge lies in exploring
the behavior and performance of ML techniques when
confronted with such unpredictability in a single TCP
connection and even parallel TCP connections [293]
in HTTP/2. Similarly, prioritization requested by differ-
ent WEB clients diminish the applicability of a generic
ML-based classification technique for identifying WEB
applications.

11.1.5 Rethinking evaluation baseline
Often, proposed ML-based networking solutions are
assessed and evaluated against existing non-ML frame-
works. These latter act as baseline and are used to
demonstrate the benefits, if any, of using ML. Unfor-
tunately, these baseline solutions are often deprecated
and outdated. For instance, ML-based congestion con-
trol mechanisms are often compared against default TCP
implementations, e.g. CTCP, CUBIC, or BIC with typi-
cal loss recovery mechanisms, such as Reno, NewReno,
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or SACK. However, Yang et al. [486] applied supervised
learning techniques to identify the precise TCP protocol
used in Web traffic and uncovered that though major-
ity of the servers employ the default, there is a small
amount of web traffic that employs non-default TCP
implementation for congestion control and loss recov-
ery. Therefore, it is critical to consider TCP variants as
comparison baselines that have taken the lead, and are
prominently employed for congestion control and loss
recovery.
ML-based congestion control mechanisms should be

designed and evaluated under the consideration that the
standard TCP is no longer the de facto protocol, and cur-
rent networks implement heterogeneous TCP protocols
that are TCP-friendly. Furthermore, it is a good practice to
consider TCP variants, particularly enhanced for specific
network technologies, such as TCP-FeW for WANETs
and Hybla for satellite networks. ML-based approaches,
such as Learning-TCP [29] and PCC [122], have already
taken these considerations into account and provide an
enhanced evaluation of their proposed solutions. There-
fore, it is imperative to design a standardized set of per-
formance metrics for enabling a fair comparison between
various ML-based approaches to different problems in
networking.

11.1.6 RL in face of network (in)stability and QoS
There are various challenges in finding the right bal-
ance between exploration of and exploitation in RL.
When in comes to traffic routing, various routes must
be explored before the system can converge to the opti-
mal routing policy. However, exploring new routes can
lead to performance instability and fluctuation in net-
work delay, throughput and other parameters that impact
QoS. On the other hand, exploiting the same “opti-
mal” route to forward all the traffic may lead to con-
gestion and performance degradation, which would also
impact the QoS. Different avenues can be explored to
overcome these challenges. For example, increasing the
learning rate can help detect early signs of performance
degradation. While, load balancing can be achieved
with selective routing, which can be implemented by
assigning different reward functions to different types
of flows (elephant vs. mice, ToS, etc.). Furthermore,
instability-awareness at exploration time can be imple-
mented by limiting the scope of the routes to explore
those with highest rewards. Indeed, this requires an in-
depth study to gauge the impact of such solutions on net-
work performance and their convergence time to optimal
routing.
Another direction worth pursuing is to correlate the

reward function of an RL-based routing to a desired level
of QoS. This involves finding ways to answer questions,
such as, which reward function can guarantee that the

delay in the network does not exceed a given threshold?
or, given a reward function, what would be the expected
delay in the network?

11.1.7 Practicality and applicability of ML
Benchmarks used in the literature for the training and
validation of proposed ML-based networking solutions
are often far from being realistic. For instance, ML-based
admission control mechanisms, are based on simulations
that consider traffic from only a small set of applica-
tions or services. Furthermore, they disregard diversity
of QoS parameters when performing admission control.
However, in practice, networks carry traffic from hetero-
geneous applications and services, each having its own
QoS requirements, with respect to throughput, loss rate,
latency, jitter, reliability, availability, and so on. Hence, the
optimal decision in the context of a simulated admission
control mechanism may not be the optimal for a practical
network. Furthermore, often synthetic network datasets
are used in training and validation. Although, ML mod-
els perform well in such settings, their applicability in
practical settings remains questionable. Therefore, more
research is needed to develop practicalML-based network
solutions.

11.1.8 SDNmeets ML
Though, there has been a growing interest in leverag-
ing ML to realize autonomic networks, there is little
evidence of its application to date. Prohibiting factors
include the distributed control and vendor-specific nature
of legacy network devices. Several technological advances
have been made in the last decade to overcome these lim-
itations. The advent of network softwarization and pro-
grammability through SDN and NFV offers centralized
control and alleviates vendor lock-in.
SDN can facilitate adaptive and intelligent network

probing. Probes are test transactions that are used tomon-
itor network behavior and obtain measurements from
network elements. Finding the optimal probe rate will
be prohibitively expensive in future networks, due to the
large number of devices, the variety of parameters to
measure, and the small time intervals to log data. Aggres-
sive probing can exponentially increase the amount of
traffic overhead resulting in network performance degra-
dation. In contrast, conservative probing may have the
risk of missing some significant anomalies or critical net-
work events. Hence, it is imperative to adapt probing rates
that keep traffic overhead within a target value, while
minimizing performance degradation. SDN can leverage
ML techniques to offer the perfect platform to realize
adaptive probing. For example, upon predicting a fault or
detecting an anomaly, the SDN controller can probe sus-
pected devices at a faster rate. Similarly, during network
overload, the controller may reduce the probing rate and
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rely on regression to predict the value of the measured
parameters.

11.1.9 VirtualizationmeetsML
Due to the anticipated rise in the number of devices and
expansion in network coverage, future networks will be
exposed to a higher number of network faults and secu-
rity threats. If not promptly addressed, such failures and,
or attacks can be detrimental, as a single instance may
affect many users and violate the QoS requirements of
a number of applications and services. Thus, there is
a dire need for an intelligent and responsive fault and
security management framework. This framework will
have to deal with new faults and attacks across differ-
ent administrative and technological domains within a
single network, introduced by concepts of network slic-
ing, NFV, and multi-tenancy. For instance, any failure in
the underlying physical resource can propagate to the
hosted virtual resources, though the reverse is not always
true. Hence, it will be nearly impossible for traditional
approaches to locate the root cause or compromised ele-
ments of the fault or an attack, in such a complex network
setting.
On the other hand, ML-based approaches on fault

and security management focus mostly on single ten-
ant in single layer networks. To develop the fault and
security management framework for future networks,
existing ML-based approaches need to be extended or
re-engineered to take into account the notion of multi-
tenancy in multi-layer networks. Due to the versatility of
the problem, DNN can be explored to model complex
multi-dimensional state spaces.

11.1.10 ML for smart network policies
The unprecedented scale and degree of uncertainty in
future networks will amplify the complexity of traffic
engineering tasks, such as congestion control, traffic
prediction, classification, and routing. Although ML-
based solutions have shown promising results to address
many traffic engineering challenges, their time complex-
ity needs to be evaluated with the envisioned dynamics,
volume of data, number of devices and stringent appli-
cations requirements in future networks. To address this,
smart policy-based traffic engineering approaches can
be adopted where operators can efficiently and quickly
apply adaptive traffic engineering policies. Policy-based
traffic classification using SDN has shown promising
results in the treatment of QoS requirements based
on operator-engineered policies [334]. Incorporating ML
to assist in developing and extracting adaptive policies
for policy-based traffic engineering solutions, remains
rather unexplored. One possible avenue is to apply RL
for generating policies for traffic engineering in future
networks.

11.1.11 ML in support of autonomy
Networks are experiencing a massive growth in traffic,
and will continue to grow even faster with the advent
of IoT devices, tactile Internet, virtual/augmented real-
ity, high definitionmedia delivery, etc. Furthermore, Cisco
reports that there is a substantial difference between busy
hour and average Internet traffic, such that in 2016, the
busy hour Internet traffic increased by 51% in compar-
ison to the 32% growth in average Internet traffic [99].
Such difference is expected to grow further in the next
half a decade, where Cisco predicts that the growth rate of
busy hour traffic will be almost 1.5 times that of average
Internet traffic.
To accommodate such dynamic traffic, network opera-

tors can no longer afford the CAPEX for static resource
provisioning as per the peak traffic requirements. There-
fore, network operators must employ dynamic resource
allocation that can scale based on the varying traffic
demand. ML is an integral part of dynamic resource allo-
cation that enables demand prediction, facilitates proac-
tive provisioning and release of network resources. In
addition, contextual information can be leveraged by ML
to anticipate exceptional resource demand and reserve
emergency resource in highly volatile environments.
Networks are also experiencing an exponential growth

in terms of the number and diversity of supported appli-
cations and services. These have stringent and hetero-
geneous QoS requirements, in terms of latency, jitter,
reliability, availability andmobility. It is likely that network
operators may not only be unaware of all the devices in
their network but also unconscious of all the applications
and their QoS requirements. Therefore, it is challenging
to devise efficient admission control and resource man-
agement mechanisms with limited knowledge. Existing
works have demonstrated that both admission control
and resource management can be formulated as learn-
ing problems, where ML can help improve performance
and increase efficiency. A further step would be to explore
if admission control and resource management strategies
can be learned directly from network operation expe-
rience. Considering the intricate relationship between
network experience and management strategies, DL can
be leveraged to characterize the inherent relationship
between inputs and outputs of a network.

11.2 System perspective
11.2.1 Support for adaptive, incremental learning in

dynamic network environments
Networks are dynamic in nature. Traffic volume, network
topology, and security attack signatures, are some of the
many aspects that may change, often in an unexpected
and previously unobserved way. Thus, it is fundamental
to constantly retrain the ML model to account for these
changes. Most ML models are trained offline. Retraining
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a model from scratch can be computationally intensive,
time consuming, and prohibitive. The ability to retrain the
model as new data is generated is fundamental to achieve
fast incremental learning, which remains an open research
direction. Indeed incremental learning comes with special
system needs. In the particular case of RL applied to rout-
ing in SDN, a number of simulations are required before
the model can converge to the optimal observation-to-
action mapping policy. Every time a new flow is injected
in the network, the SDN controller is required to find
the optimal routing policy for that flow, and a number
of simulations are performed as changes are observed in
the link status. This calls for a system that fully exploits
data and model parallelism to provide millisecond-level
training convergence time.

11.2.2 Support for secure learning
ML is prone to adversarial attacks [39], also known
as mimicry attacks, that aim to confuse learning. For
instance, when employing ML for intrusion detection, an
adversarial attack can trick the model into misclassifying
malicious events as benign by poisoning the training data.
Hence, it is fundamental to train robust ML models that
are capable of detecting mimicry attacks. An interesting
initiative worth mentioning is Cleverhans [346], a useful
library that allows to craft adversarial examples. It pro-
vides training datasets that can be used to build robust
ML models, capable of distinguishing legitimate datasets
from poisoned ones, in the particular area of image recog-
nition. There is indeed an urgent need for a system
capable of generating adversarial use cases to be used
in training robust models. Secure learning also demands
a system that protects the training data from leakage
and tampering, enforces privacy, data confidentiality and
integrity, and support the secure sharing of data across
domains.

11.2.3 Architectures for ML-driven networking
Modern networks generate massive volumes of different
types of data (e.g. logs, traffic flow records, network per-
formance metrics, etc.). At 100’s of Gbps, even with high
sampling rates, a single large network infrastructure ele-
ment can easily generate hundreds of millions of flow
records per day. Recently, the availability of massive data
drove rapid advancement in computer hardware and soft-
ware systems, for storage, processing and analytics. This
is evidenced by the emergence of massive-scale datacen-
ters, with tens of thousands of servers and EB storage
capacity, the widespread deployment of large-scale soft-
ware systems like HadoopMapReduce and Apache Spark,
and the increasing number of ML and in particular deep
learning libraries built on top of these systems, such as
Tensor-Flow, Torch, Caffe, Chainer, Nvidia’s CUDA and
MXNet. Mostly open-source, these libraries are capable

of scaling out their workloads on CPU clusters enabled by
specialized hardware, such as GPUs and TPUs.
GPUs are anticipated to be a key enabler for the next

generation SDN [166, 465]. GPU-accelerated SDN routers
are reported to have a much improved packet process-
ing capability. Furthermore, the GPUs on SDN controllers
may be particularly useful for executing ML and DL algo-
rithms for learning various networking scenarios, and
acting according to the acquired knowledge. On the other
hand, smaller, resource constrained, smart networked
devices, are more likely to benefit from a cloud-edge ML
system. A cloud-edge ML system would leverage the large
processing and memory resources, robust networks, and
massive storage capabilities of the cloud for training com-
putationally intensive models and sharing these with edge
devices. Data collection and analytics that require imme-
diate or near-immediate response time would be handled
by edge devices. Light-weight ML software systems, such
as Caffe2Go and TensorFlowLite, would eventually enable
edge devices to by-pass the cloud and build leaner models
locally.

11.3 Knowledge perspective
11.3.1 Lack of real-world data
As we surveyed the literature, we observed that numer-
ous works relied on synthetic data, particularly in resource
and fault management, network security, and QoE/QoS
correlation. Synthetic datasets are usually simplistic and
do not truly reflect the complexity of real-world settings.
This is not surprising, since obtaining real-world data
traces is difficult due to the critical and private nature
of network traffic, especially the payload. Furthermore,
establishing the ground truth is particularly challenging,
given the voluminous amount of traffic making any man-
ual inspection intractable. Although injecting faults and,
or attacks in the network can help produce the required
data as adopted by [285], it is unrealistic to jeopardize
a production network for the sake of generating train-
ing data. Such limitations increase the probability of
ML techniques being ill-trained and inapplicable in real-
world network settings. Thus, it remains unclear how the
numerous works in the literature would perform over
real data traces. Therefore, a combined effort from both
academia and industry is needed, to create public repos-
itories of data traces annotated with ground truth from
various real networks.

11.3.2 The need for standard evaluationmetrics
As we survey existing works, it became apparent that
comparing them within each networking domain is
not possible. This is due to the adoption of non-
standardized performance metrics, evaluation environ-
ments, or datasets [109]. Furthermore, even when the
same dataset is adopted, different portions of the data are
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used for training and testing, thereby inhibiting any possi-
bility for comparative analysis. Standardization of metrics,
data, and environment for evaluating similar approaches
is fundamental to provide the ability to contrast and com-
pare the different techniques, and evaluate their suitability
for different networking tasks. To fulfill this need, stan-
dard bodies such as the Internet Engineering Task Force
(IETF), can play a pivotal role by promoting standardiza-
tion of evaluation procedures, performance metrics, and
data formats through Requests for Comments (RFCs).

11.3.3 Theory andML techniques for networking
As the compute and data storage barriers that thwarted
the application of ML in networking are no longer an
issue, what is now preventing an ML-for-networking suc-
cess story as in games, vision and speech recognition? Lack
of a theoretical model is one obstacle that ML faces in
networking. This concern was raised by David Meyer
during his talk at IETF97 on machine intelligence and net-
working [308]. Without a unified theory, each network
has to be learned separately. This could truly hinder the
speed of adoption of ML in networking. Furthermore, the
currently employed ML techniques in networking have
been designed with other applications in mind. An open
research direction in this realm is to designML algorithms
tailored for networks [306]. Another key issue is the lack
of expertise, that is, ML and networking are two different
fields, and there is currently a scarcity in the number of
people that are experts in both domains. This mandates
more cross-domain collaborations involving experts from
both networking and ML communities.

12 Conclusion
Over the past two decades, ML has been successfully
applied in various areas of networking. This survey pro-
vides a comprehensive body of knowledge on the applica-
bility of ML techniques in support of network operation
and management, with a focus on traffic engineering, per-
formance optimization and network security. We review
representative literature works, explore and discuss the
feasibility and practicality of the proposedML solutions in
addressing challenges pertaining to the autonomic opera-
tion and management of future networks.
Clearly, future networks will have to support an explo-

sive growth in traffic volume and connected devices, to
provide exceptional capabilities for accessing and shar-
ing information. The unprecedented scale and degree of
uncertainty will amplify the complexity of traffic engi-
neering tasks, such as congestion control, traffic predic-
tion, classification, and routing, as well as the exposure
to faults and security attacks. Although ML-based solu-
tions have shown promising results to address many traf-
fic engineering challenges, their scalability needs to be
evaluated with the envisioned volume of data, number

of devices and applications. On the other hand, existing
ML-based approaches for fault and security management
focus mostly on single-tenant and single-layer networks.
To develop the fault and security management framework
for future networks, existing ML approaches should be
extended or re-architected to take into account the notion
of multi tenancy in multi layer networks.
In this survey, we discuss the above issues along with

several other challenges and opportunities. Our find-
ings motivate the need for more research to advance the
state-of-the-art, and finally realize the long-time vision of
autonomic networking.
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Abstract—A significant problem affecting the overall perfor-
mance of Data Center Networks (DCNs) based on Software-
Defined Networking (SDN) is the delay introduced by controllers
to mice flows. In the literature, there exist approaches facing this
problem by compiling and installing paths for mice and elephants
dynamically. However, such approaches have shortcomings re-
lated to the large number of routing rules that the switches
must handle, which may also lead to extensive delays to mice
flows. In this paper, we propose MiceDCER, an algorithm that
efficiently routes mice flows in SDN-based DCNs by assigning
internal Pseudo-MAC (PMAC) addresses to the edge switches
and hosts. Aiming at reducing the number of routing rules,
MiceDCER installs wildcard rules based on the information
carried by the Address Resolution Protocol (ARP) packets. Our
evaluation reveals MiceDCER significantly reduces the number of
rules installed in switches and, therefore, contributes to reducing
the delay in SDN-based DCNs.

Index Terms—SDN, DCN, mice flows, flow routing, MAC
addressing, wildcard rules

I. INTRODUCTION

In Data Center Networks (DCNs) most of the flows are
short-lived and small (i.e., mice), and only very few flows are
long-lived and large (i.e., elephants) [1]. Mice flows are usually
associated with latency-sensitive and bursty applications, such
as Voice over IP and search results [2]. Elephant flows often
belong to massive transfers of data, such as in making backups
of files [3]. Software-Defined Networking (SDN) has been
used for routing mice and elephant flows in DCNs [4]. These
flows impact negatively on the performance of SDN-based
DCNs since large flows tend to almost fully utilize the switch
buffers, introducing delay to mice flows that share these buffers
[5]. Moreover, mice flows usually trigger the continuous
updating of switching tables, which also generates delay.

Several approaches deal with the routing of mice and
elephant flows in SDN-based DCNs by dynamically compiling
and installing paths to the elephants [6], [7] and routing the
mice by using static rules provided by, for instance, the Equal-
Cost Multi-Path (ECMP) protocol. These approaches have
some drawbacks related to the complexity of updating the
routing rules continuously in case of dynamic changes in the
network state, the difficulty of having redundant paths, and the
high number of source-destination routing rules. A switch with
many routing rules creates scalability issues in DCNs because
it increases the time that the switch takes to find the routing
rule for a specific flow. Such increase in time may cause the
dropping of flows.

Other approaches propose to dynamically compile and in-
stall the path for mice and elephants from the SDN controller
[8]. These approaches introduce a delay when the switches
send the first packet of each flow to the controller. This
delay negatively affects the latency-sensitive mice flows [9].
Furthermore, since the controller installs routing rules for each
incoming flow, a large number of incoming flows can overload
the controller, increasing the processing delay [10]. Moreover,
there are also scalability problems faced by the switches
with many routing rules. Several approaches [6]–[8], [11]–
[13] offer alternatives to re-route mice flows considering the
load on links, the limited memory capacity of switches, and the
location of network devices in the topology. However, it is still
necessary a solution to, first, reduce the delay caused to mice
flows by a large number of routing rules in the switches and,
second, avoid sending the first flow packet to the controller.

In this paper, we present an OpenFlow-based network
algorithm, named Mice Data Center Efficient Routing (MiceD-
CER), that performs efficient routing of mice flows in SDN-
based DCNs. The algorithm relies on the Address Resolution
Protocol (ARP) messages to indicate the controller the rules
it should install on the switch tables. Unlike several other
proposals that depend on addressing the final hosts, MiceD-
CER relies on the positioning of switches for traffic routing
and generating wildcard rules to save space in the switching
tables. Instead of receiving the first packet of the flow that
is sent by the switch, the controller intercepts ARP messages
to interpret the addresses and install the necessary rules in
the switch tables. Results reveal that MiceDCER significantly
reduces the number of rules installed in the switches.

The structure of this paper is as follows. In Section II,
we overview the related work. In Section III, we present
MiceDCER and its implementation. In Section IV, we evaluate
MiceDCER. Finally, we conclude the paper in Section V.

II. RELATED WORK

Hedera [6] is a flow scheduling system that takes advantage
of multiple paths in DCN topologies. This system employs
multi-stage switching fabrics to utilize network resources effi-
ciently. Hedera overperforms ECMP in bandwidth utilization
for Global First Fit and Simulated Annealing. However, Hed-
era improves only the forwarding of elephant flows. MiceTrap
[7] aims at improving the performance of mice flows by
reducing the number of rules in the switch tables. MiceTrap
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uses a weighted algorithm to balance the load across multiple
links. However, it has inconsistencies regarding the rules to
install for mice flows. MiceTrap analytically proved better
traffic balancing than ECMP in a non-DCN scenario.

PortLand [8] defines a protocol for discovering the position
of switches in the topology and allows the controller to
assign internal Pseudo-MAC (PMAC) addresses to end hosts.
It supports fault-tolerant PMAC-based routing and seamless
VM migration. Portland does not check which destination
hosts are up, sending vast amounts of information even when
destination hosts are down. Niagara [11] is an algorithm that
achieves precise traffic splitting while being extremely efficient
in the use of the available rule-table space of the switches.
This algorithm generates wildcard rules to handle and split the
flows according to different target weights. Niagara is highly
scalable and outperforms ECMP.

The approaches mentioned above aim at routing efficiently
mice flows in DCNs, dealing with the limited memory ca-
pacity of the switches, the position of the devices in the
topology, and the available bandwidth in the links. However,
these approaches do not relate the number of rules with the
delay introduced on the mice flows. Therefore, a solution is
necessary to reduce the delay caused to mice by a large number
of routing rules in the switches and avoid the sending of the
first flow packet to the controller.

III. MICEDCER
A. Motivation

Figure 1(a) shows three experimental deployments that we
use to explain how a switch table with a large number of
routing rules impacts negatively on the delay of mice flows
in DCNs. The first deployment measures the Round Trip
Time (RTT), the total time the packet takes to go to the
destination and back to the source, in an emulated environment
deployed on Mininet 2.2.2 [14], in which a Ryu controller
[15] handles an Open vSwitch [16] and two hosts by a single
flow-installer algorithm developed in Python [17]. The second
deployment measures the RTT in a virtual environment, in
which the Ryu controller handles an Open vSwitch 2.5.4
and two virtual hosts (connected through a virtual Ethernet
interface) by using the algorithm mentioned above. The third
deployment is to measure the RTT in a physical environment,
in which the Ryu controller handles (using the same algorithm
that the other deployments) an HP 2920 switch that, in turn,
handles communication between two physical hosts through
an OpenFlow VLAN interface. We used computers with Intel
Core i5 2.40GHz (4 cores) processor, 3GB RAM, and Lubuntu
16.04 LTS operative system to run the emulated environment,
the Open vSwitches, and the Ryu Controller.

In the three deployments, we measure the average RTT
for r ∈ R = {1000, 2000, ..., 16000}, where two rules (i.e.,
working rules) are intended to communicate the hosts, and the
remaining are non-working rules. We installed T times the r
flow rules in the switch, setting up the working rules at the
beginning, at the middle, and at the end of the switch routing
table for each t ∈ T , and took the RTT measurement N times

for each t ∈ T . The experiments were conducted by pinging
from a host to another one. In particular, we measure the
average RTT in the first host after receiving the reply packets
from the switch.
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Fig. 1. Motivation showcase.

For each deployment afore-described, Figure 1(b) depicts
the results for T = 30, N = 30 when the working rules are
at the beginning, the middle, and the end of the switch table.
These results reveal that the average RTT for the emulated
deployment stays within a range of [0.08− 0.1] ms regardless
of the number of rules installed. Similarly, the average RTT
for the virtual deployment stays at ∼1.3ms. This higher RTT
value is caused by the virtual links used to connect the virtual
machines. For the physical deployment, there is a significant
change. First, the RTT increases (from ∼0.8ms to ∼2.1ms)
when the number of rules grows. Second, the location of the
rules also impacts the RTT. In fact, if the working routing rules
are at the beginning of the switch table, the RTT is ∼1.1ms.
If the rules are the end, the RTT is ∼2.1ms.

From the experiments above, we learned that, first, RTT
in emulated and virtual deployments remains nearly constant
while varying the number of installed rules. Second, in a phys-
ical deployment, however, the amount of limited memory of
switches implies that the number of installed rules influences
the delay of the packets [18] [19] of mice flows. Thus, we
can state that the number of rules is an issue that needs to
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be addressed to reduce the delay of packets in mice flows in
DCNs based on SDN.

B. Overview

We present an OpenFlow-based algorithm named MiceD-
CER, focused on reducing the delay of mice flows in DCNs. In
particular, MiceDCER addresses three issues: (i) the allocation
of addresses to the hosts, (ii) the internal identification of
these addresses without having to send the first packet of a
flow to the controller; and (iii) the need to install an efficient
routing path. Moreover, the controller also needs to know the
feasible routes for the flows to install the required rules on the
switch tables. When a switch is added the controller executes
an internal method called Topology Discovery. This method
checks which switches are connected, how they connect to
each other, and their internal position by the Link Layer
Discovery Protocol (LLDP).

Figure 2 presents the process to generate and install rules in
MiceDCER that aims at tackling the delay of packets in the
mice flows. The MiceDCER process involves the following
tasks: Generate, Define, Install, and Update. It is noteworthy
that these tasks are executed after the SDN controller obtains
the topology by Topology Overview.

Intercepting
Flow

ControllerSwitch

Start

End

Topology
Overview

Switch

Generate
Address

Define
Routing Rules

Install
Routing Rules

Generated
Address

Routing
Rules

ConfiguringRouting RulesUpdate
Routing Rules

Updating
Rules

Fig. 2. Process to generate and install rules in MiceDCER.

Generate Address. MiceDCER generates the PMAC of the
receiver edge switch (i.e., the switch that received the flow
intercepted by the controller) from the Topology Overview.
This task is composed of two others. The first one generates
the PMAC of the edge switches based on their position in
the topology, while the second task stores the new PMACs
in a table, associating them with the corresponding actual
MAC (AMAC) of each switch. Define Routing Rules. Here,
the MiceDCER algorithm (see Algorithm 1) provides the
generated PMACs of the switches to the controller for defining
the set of rules to install Rins. This definition is performed by
considering the source MAC and IP addresses of the messages,
as well as the input port of the switches. Install Routing
Rules. MiceDCER instructs the controller to install the rules
Rins in the edge switches. Update Routing Rules. When a
significant change in the network occurs, the controller updates
the defined rules Rins. This updating may imply the generation
of new PMACs or the definition of new rules.

It is noteworthy that in MiceDCER, we are assuming that
we are not going to install ARP routing rules on the core or
aggregate switches because the ARP management is done in
the edge layer. Each request ARP message is expected to be
answered with a reply message, which is determined by the
value of its Operation Code field on the ARP packet data. This
value is essential when it comes to the management of ARP
messages required to install the rules on the switches.

Each core switch will have a rule that will connect to each
pod or networking group. The aggregate switches will have
a group rule that provides connection with the core layer,
and a rule for each link they have with the edge layer. The
installation of rules in the edge switches is more complicated
than it is in the upper layers because the PMAC-AMAC
conversion is performed on the edge layer. When the packet
comes from the host, the switch rewrites the source MAC field
with its associated PMAC, and before sending the packet to
its final destination, it rewrites the destination MAC field with
the host AMAC before routing it through its respective port.

C. Algorithm

Inputs and outputs. Our algorithm receives as input an
intercepted ARP message which contains the primary data
A = {opcode, eth src, eth dst, mac src, in port}, where
opcode, eth src, eth dst, mac src, and in port are the
Operation Code, Source IP Address, Destination IP Address,
Source MAC, and the switch input port, respectively. Although
the input port number is not part of the ARP data, our
algorithm uses it to generate rules. MiceDCER also receives
a set of edge switches T = {swi|swi = (id, pmac)} from
the Topology Overview. Here, id represents the defined ID of
the switch swi, while pmac is the PMAC that the algorithm
assigns on swi. It is important to highlight that the defined ID
(i.e., datapath ID) for each swi ∈ T is a 64-bit defined field,
where the 48 least significant bits (LSB) correspond to the
switch MAC, while the 16 most significant bits (MSB) depend
on the implementation of the switch, which varies with each
model. The algorithm also has an ARP stale time threshold Θ
which determines how often the connection between the two
hosts should be checked.

The outputs of MiceDCER are the PMACs and routing
rules to assign to the edge switches. The algorithm provides
two tables for storing PMACs: the first one associates the
PMACs of the hosts (or virtual machines) according to their
IP addresses and AMACs, while the second stores the PMAC
headers corresponding to the AMAC of the edge switches.
MiceDCER generates and assigns the PMACs using the form
pod.pos.port.vmid. Here, pod reflects the pod number of the
edge switch, while pos is its position within the pod. port is,
from its local view, the port number to which the host connects
to the switch, and vmid is the identifier that corresponds to the
virtual machine inside the physical machine (or physical hosts
on the other side of the bridge). The PMAC header represented
in the switch table will have the form pod.pos. ∗ .∗.

Procedures. The algorithm procedures are: generation of
initial rules for the edge switches, intercepted message man-
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Algorithm 1 Rule installation algorithm.

E: Set of edge switches (ToR)
sw: Message receiver switch sw ∈ E
A: Intercepted ARP message data
I: List of known IP addresses
TH : Host PMAC addressing table
TE : Edge switch PMAC addressing table
Θ: ARP stale time threshold

1: Generate initial rules for edges:
2: for each e ∈ E do
3: field← {fieldtypes.ARP};
4: actions← [ACTION CONTROLLER];
5: installRule(e, field, actions);
6: end for

7: Intercepted message management:
8: procedure MESSAGEMANAGEMENT(sw, A)
9: if A.dst ip /∈ I then

10: actions← [ACTION FLOOD];
11: out← packetOut(A, actions);
12: for each e ∈ E do
13: if e 6= sw then
14: generateRequests(e, A);
15: end if
16: end for
17: else
18: if time(A.src ip, A.dst ip) > Θ then
19: checkHostConnection(A.dst ip)
20: else
21: actions← [A.in port];
22: out← packetOut(reply(A), actions);
23: end if
24: end if
25: sw.sendMessage(out);
26: end procedure

27: Generate table entries:
28: procedure GENERATEENTRIES(sw, A)
29: if A.eth src /∈ TH then
30: pmac← generatePmac(sw);
31: add {A.eth src, pmac} to TH ;
32: if sw.id /∈ TE then
33: pmacHeader ← generateHeader(pmac);
34: add {sw.id, pmacHeader} to TE ;
35: end if
36: end if
37: end procedure

agement, and generation of table entries. Generation of initial
rules for the edge switches. MiceDCER initially installs the
routing rules for the edge switches with the ARP field type,
to allow the controller to intercept the ARP messages that
arrive to the switch. The algorithm then performs the following
procedure to install the rules on the switch tables. Intercepted
message management. If the controller does not know the IP
destination address of the intercepted ARP request message,
the controller indicates the receiver switch (i.e., the switch that
received the message intercepted by the controller) to flood
(i.e., sends the packet to all ports excluding the input port),
and instructs the other edge switches to flood with requests.
If the controller knows the IP address, it sends a reply ARP
message back to the source host, or it checks if the destination
host is still connected after the ARP stale time has passed.
Generation of table entries. If the source IP address of the
intercepted message does not exist in the host PMACs table,
MiceDCER proceeds to generate the PMAC and insert the
entry into the table, associating it with the source IP address.
In this procedure, if the defined ID of the receiving switch
is not in the switch PMACs table, the algorithm generates

the PMAC header to add the entry, avoiding to carry out this
process again if the same switch receives the flows of several
directly connected hosts.

IV. EVALUATION AND ANALYSIS

A. Prototype
MiceDCER relies on information in ARP messages for

reducing the number of rules installed by the controller.
MiceDCER is similar to PortLand, in that it assigns PMAC
addresses to the end hosts according to their position in the
topology [8]. However, unlike PortLand, MiceDCER assigns
the PMACs before the hosts start communicating, minimizing
the delays in the transmission of mice flows. Also, unlike
other proposals, MiceDCER is complemented by the Topology
Discovery method to give the controller an overview of the
topology. Once this discovery finishes, our algorithm populates
the switching tables with routing rules. Finally, unlike Hedera
[6] or Presto [13] that focus on forwarding and splitting flows,
respectively, MiceDCER focuses on the establishment of the
most viable routes for mice flows.

We implement MiceDCER on the top of a Python-based
SDN controller. In particular, we use the libraries offered
by the Ryu 4.23 framework to implement the Algorithm
1. This framework supports OpenFlow and ARP that are
the fundamental protocols of MiceDCER. The MiceDCER
implementation is available in [20].

B. Evaluation Scenario
We evaluate our algorithm analytically to verify if it reduces

the delay significantly in the flow packets compared with other
routing protocols based on IP or MAC addresses. To carry
out the evaluation, first, we check the initialization of the
topology with MiceDCER to make sure it installs the correct
rules; we use a FatTree topology since it is the most common
topology used in DCNs. Second, we calculate the number
of switches for each layer in our topology, and the number
of rules installed by the three evaluated solutions namely,
MiceDCER, MAC routing, and IP routing.

C. Results
Figure 3(a) illustrates the interception of ARP messages that

MiceDCER performs. Our algorithm configures the MSB part
of the ID of each switch to indicate its internal position in
the topology. When the controller (i.e., Ryu) starts running
and activates the option of observing the links, MiceDCER
automatically checks this MSB value and installs the rules
that allow the controller to intercept the ARP packets at the
edge switches.

1) Topology: After running Topology Discovery to establish
the switches and their connections, MiceDCER uses LLDP
to determine their position in the topology. We assume edge
switches are established when not receiving LLDP packets
from the half of ports; these ports are connected to hosts.
Switches connected to edge switches become aggregates, and
the connected to aggregates become cores. After determining
the entire topology, MiceDCER assigns the pod and position
values of edge switches to encode their position.
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2) Number of Rules: We first calculate the total number of
routing rules that MiceDCER installs in the switches within
the topology. The total amount of rules per switch (including
group rules) for k-ary FatTree topology can be obtained by
using the Equations (1), (2) and (3) for core, aggregate, and
edge layers respectively: (1) CDC = 3+k, (2) ADC = 5+ k

2 ,
and (3) EDC = 6 + 2

∑k/2
h=1 Mh.

Each of the k2/4 core switches connects with each of the k
pods. Each of the k2/2 aggregate switches has a wildcard rule
which routes to the core layer through a group table and a rule
for each of the k/2 connections with the edge switches. Each
of the k2/2 edge switches has two routing tables, where the
first table contains the rules for matching the source AMAC,
and the second table has the rules for matching the destination
PMAC. The number of rules installed for each table is equal to
the number of VMs Mh for each host h connected to the rack
using a bridged adapter, as the VMs send the packets using
their MAC address. All the switches also have extra rules for
table-miss action and ARP management.

Figure 3(b) illustrates the PMAC-AMAC association that
MiceDCER carries out. The edge switches rewrite the source
MAC field with the host PMAC when receiving the packet,
and rewrite the destination MAC field back to the host AMAC
before sending the packet out.
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Fig. 3. Evaluation of MiceDCER.

Other approaches install a routing rule depending on the
IP address, rather than the MAC of the host or VM [1]. The
total amount of rules for IP-based routing, assuming the use
of wildcard rules and Topology Discovery, is given by the
Equations (4), (5) and (6) for each of the three layers: (4)
CIP = 2 + k, (5) AIP = 3 + k, and (6) EIP = 3 + k

2 +∑k/2
h=1 Mh. The total amount of rules for MAC-based routing

is given by Equations (7), (8), and (9) for each layer: (7)
CMAC = k3

8 , (8) AMAC = k3

8 , and (9) EMAC = k3

4 .
Figure 4 presents the topology elements in a typical Fat-Tree

topology when the number of hosts to handle grows. These
results reveal that the number of switches grows significantly
regarding the number of hosts. Furthermore, 1/5 of switches

in the topology are in the core layer, distributing the remaining
switches between the edge and aggregate layers equitably.
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Figure 5(a) presents the number of rules per edge switch
generated by MiceDCER, IP-based and MAC-based routing
when the number of hosts grows (recall that the edge switches
grows too, see Figure 4). We assume we are using 8 non-
bridged VMs per host. Results reveal that MAC-based and IP-
based routing installs more rules than MiceDCER (e.g., ∼1500
rules per edge switch when using 27648 hosts). Considering
these results, we can conclude that MiceDCER reduces the
number of rules per edge switch significantly when compared
with other routing solutions.

Figure 5(b) presents the number of rules per aggregate
switch generated by MiceDCER, IP-based and MAC-based
routing when the number of hosts grows. These results also
reveal that MAC-based routing installs much more rules than
MiceDCER. The IP-based routing installs approximately the
double of rules than MiceDCER. Thus, we can conclude that
MiceDCER reduces the number of rules per aggregate switch
significantly when compared with the MAC-based and IP-
based routing.

Figure 5(c) presents the number of rules per core switch
generated by MiceDCER, IP-based and MAC-based routing
when the number of hosts grows. These results reveal again
that MAC-based routing installs more rules than MiceDCER.
In turn, the IP-based routing installs about the same amount of
rules as MiceDCER. We can conclude that MiceDCER reduces
or at least generates the same number of routing rules to install
in the core switches.

To sum up, regarding the number of rules to install, MiceD-
CER always outperforms the performance of MAC-routing in
SDN-based DCNs that follows a Fat-Tree topology. The IP-
based protocol also installs more rules than MiceDCER, in the
edge layer. In the core and aggregate layers, MiceDCER and
IP-based protocol have a similar behavior. Considering that
in total, MiceDCER installs fewer routing rules in switching
tables than traditional routing protocols, we can conclude that
it contributes to reduce the delay of mice flows.
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(a) Rules on edge switches.
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(b) Rules on aggregate switches.
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(c) Rules on core switches.

Fig. 5. Rule installation results vs number of hosts for FatTree topology.

V. CONCLUSIONS AND FUTURE WORK

A relevant problem affecting the overall performance of
SDN-based DCNs is the delay introduced to mice flows by the
logically centralized controllers. Aiming at overcoming this
problem, in this paper, we present MiceDCER, an algorithm
for routing efficiently mice flows in such DCNs. In particular,
our algorithm, first, installs rules relying on the information
obtained from ARP messages. Second, it takes advantage of

Topology Discovery to identify the position of the switches
and install the appropriate rules for improving routing. More-
over, MiceDCER generates wildcard rules to save memory in
switching tables. By experimental results, we demonstrate that
MiceDCER significantly reduces the number of rules installed
in switches and, therefore, contributes to reducing the delay
suffered by mice flows.

As future work, we intend to evaluate MiceDCER in other
networks, such as SDWAN and SDWLAN, that follows the
SDN paradigm. Also, we want to implement MiceDCER in
other controllers.
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Abstract—The processing of big data generated by the
Industrial Internet of Things (IIoT) calls for the support of
processing at the edge of the network, as well as at the
cloud data centers. The equal-cost multipath, which is the
default routing technique in the cloud data centers, can de-
grade the network performance when handling mouse and
elephant flows. Such degradation of performance can com-
promise the support of the strict quality of service require-
ments of the IIoT over 5G networks. Novel techniques for
scheduling the elephant flows can alleviate this problem.
Recently, several approaches have incorporated machine
learning techniques at the controller-side in software-
defined data center networks (SDDCNs) to detect elephant
flows. However, these approaches can produce heavy
traffic overhead, low scalability, low accuracy, and high de-
tection time. This article introduces the Network Elephants
Learner and anaLYzer (NELLY), a novel and efficient method
for applying incremental learning at the server side of SD-
DCNs to accurately and timely identify elephant flows with
low traffic overhead. Incremental learning enables NELLY
to adapt to varying network traffic conditions and perform
continuous learning with limited memory resources.
NELLY has been extensively evaluated using real traces
and various incremental learning algorithms. Results show
that NELLY is accurate and supports low classification time
when using adaptive decision trees algorithms.

Index Terms—Data center networks (DCNs), flow clas-
sification, machine learning, software-defined networking
(SDN).
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I. INTRODUCTION

THE Industrial Internet of Things (IIoT) aims at automating
industrial processes that can be supported by the analysis

of big data generated by a large number of interconnected de-
vices [1]. The real-time requirements of industrial applications
and the access demand of massive machine-type communi-
cations call for the employment of the 5G technology in the
foreseen IIoT. In industrial plants, edge devices (fog nodes) will
be used for the processing of delay-sensitive data, while cloud
servers will be employed for the processing of the huge amount
of data generated by sensors. Extracting a value from such big
data will be fundamental for enabling customized and flexible
mass production of goods [2], [3].

To support the big data demand in the IIoT, cloud data centers
provide significant bandwidth capacity for a large number of
servers interconnected by an especially designed network, called
data center network (DCN) [4]. This bandwidth capacity can be
optimized by using multipath routing, which distributes traffic
over multiple concurrent paths [5]. Nowadays, the equal-cost
multipath (ECMP) is the default multipath routing mechanism
for DCNs [6]. However, the ECMP can degrade the performance
of DCNs due to the coexistence of many small short-lived flows
(i.e., mice) and few large long-lived flows (i.e., elephants), since
the ECMP can assign more elephant flows to the same path,
generating hotspots (i.e., some links overused, while others un-
derused). Flows traversing hotspots suffer from low throughput
and high latency. Mice and elephants are characteristic in cloud
data centers running big data analytics technologies [7]–[9], such
as MapReduce and Hadoop, which are pivotal in IIoT systems
for delivering a value from the big data and making business
decisions [10]. Then, similar flows will be present in the cloud
data centers of IIoT systems. As a consequence, DCNs that use
only the ECMP for managing the bandwidth demanded by the
big data in the IIoT likely will not meet the target efficiency
specified for 5G networks.

Recent multipath routing mechanisms have leveraged
software-defined networking (SDN) to face the ECMP limita-
tions; DCNs using SDN are referred to as software-defined data
center networks (SDDCNs). SDN allows a logically centralized
controller to dynamically make and install routing decisions on
the basis of a global view of the network [11], [12]. SDN-based
multipath routing dynamically reschedules elephant flows, while

1551-3203 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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handling mouse flows by employing default routing such as
ECMP [6] and MiceDCER [13]. Reactive flow detection meth-
ods, which are at the heart of SDN-based mechanisms, discrim-
inate elephants from mice by using static thresholds [14]–[16].
However, reactive methods are not suitable for SDDCNs, since
hotspots may occur before the elephant flows are detected.

Novel SDN-based flow detection methods incorporate ma-
chine learning (ML) for proactively identifying elephant
flows [17]. However, ML-based methods operate at the con-
troller side of SDDCNs, requiring the central collection of either
per-flow data [18] or sampling-based data [19], [20]. The central
collection of per-flow data, however, causes problems, such
as heavy traffic overhead and poor scalability. Sampling-based
data, on the other hand, tend to provide delayed and inaccurate
flow information. Moreover, sampling techniques that mitigate
the problem rely on nonstandard SDN specifications. Using ML
on either the switch-side or server-side represents a potential
solution to the controller-side problems, since these locations
enable prompt and per-flow data with low traffic overhead.
Switch-side flow detection methods based on ML are impractical
because they require specialized hardware and put a heavy
processing load on the switches. Conversely, ML-based flow
detection methods at the server side require only software mod-
ifications in the servers; nonetheless, these methods have not
been fully explored.

In this article, we propose a novel flow detection method de-
nominated Network Elephants Learner and anaLYzer (NELLY),
which applies incremental learning at the server side of SDD-
CNs for accurately and timely identifying elephant flows while
generating low control overhead. Incremental learning allows
NELLY to constantly train a flow size classification model from
continuous and dynamic data streams (i.e., flows) [17], [21],
providing a constantly updated model and reducing time and
memory requirements. Thus, NELLY adapts to the variations
in traffic characteristics and performs endless learning with
limited memory resources. We extensively evaluate NELLY
using datasets extracted from real packet traces and incremental
learning algorithms. Quantitative evaluation demonstrates that
NELLY is efficient in relation to accuracy and classification time
when adaptive decision trees algorithms are used. Analytic eval-
uation corroborates that NELLY is scalable, causes low traffic
overhead, and reduces detection time, yet it is in conformance
with SDN standards.

The remainder of this article is organized as follows. Section II
introduces NELLY. Section III presents a quantitative evaluation
of NELLY using incremental learning algorithms and real packet
traces. Section IV compares NELLY to other related work.
Section V concludes this article.

II. NELLY

Fig. 1 introduces NELLY, a flow detection method that applies
incremental learning at the server side of SDDCNs to identify
elephant flows accurately in a reasonable time while generating
low control overhead. NELLY operates as a software component
either in the kernel of the host operating system (OS) or in the
hypervisor of servers in the SDDCN with the aim of monitoring

Fig. 1. NELLY Architecture.

all packets sent by the applications, containers, and virtual
machines. Since NELLY detects elephant flows at their origin,
a small overhead is demanded.

The architecture of NELLY (see Fig. 1) has two subsystems:
Analyzer and Learner. The Analyzer applies a flow size classifi-
cation model for detecting and marking elephant flows on the fly.
The Learner then applies an incremental learning algorithm for
building and updating the flow size classification model. This
model maps online features (i.e., features extracted from the
first few packets of a flow) onto the corresponding class of flows
(i.e., mice or elephants). The processes of the Analyzer and the
Learner run concurrently, as depicted in Algorithms 1 and 2,
respectively.

NELLY is conceived for recognizing and handling elephant
flows in real SDN implementations. NELLY can run on any host
OS or hypervisor. In the control plane, any OpenFlow-compliant
controller (e.g., OpenDaylight) can be used, since NELLY op-
erates at the server side. In the data plane, OpenFlow-compliant
switches (e.g., Open vSwitch) can be employed, since NELLY
requires only that the top-of-rack (ToR) switches include a
preconfigured routing rule to forward elephant flows to the
controller.

A. Analyzer

As illustrated in Fig. 1, the Analyzer consists of four modules:
Monitor, Filter, Classifier, and Marker. The process of each
module is detailed in Algorithm 1. As shown in lines 1 and
2, the Monitor keeps track of flows by extracting the header,
size, and timestamp of each outgoing packet. A flow consists
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Fig. 2. Example of how flow records are created and updated in the FlowRepo.

of subsequent packets sharing the same value for certain header
fields and separated by a time space shorter than a threshold
timeout (θTO). NELLY enables a flexible configuration of these
flow parameters, namely, flow header fields and θTO. For ex-
ample, the flow header fields can be set as the well-known
5-tuple: source IP, source port, destination IP, destination port,
and IP protocol. These flow header fields can also include MAC
addresses and VLAN ID. On the other hand, the configuration
of θTO is discussed in Section II-B.

The Analyzer manages a flow record in the Flow Repository
(FlowRepo) for each observed flow. As illustrated in Fig. 2, the
flow record includes the flow identifier (FlowID), start time,
last-seen time, packet header (e.g., 5-tuple), flow size, the size
and interarrival time (IAT) of the first N packets, as well as the
identified class (i.e., mice or elephants). Note that the IAT of
the first packet is not included because it does not provide
distinctive flow information (i.e., the IAT is always zero for the
first packet of every flow).

As depicted in lines 3–13 in Algorithm 1, the Monitor then
generates a FlowID from the flow header fields of each packet
and checks to see if it exists in the FlowRepo. If this FlowID
is missing (e.g., for packets 1 and 3 in Fig. 2), or if the time
since the last update of an existing record with this FlowID
is longer than θTO (e.g., for packet 4), the Monitor creates
a new record in the FlowRepo (Algorithm 1, lines 25–32).
Otherwise, the Monitor fetches and updates the flow record
(Algorithm 1, lines 33–43) using the FlowID stored in the
FlowRepo (e.g., for packets 2 and 5–10 in Fig. 2). When multiple
flow records sharing the same FlowID exist in the FlowRepo,

the Monitor always works with the most recent one (e.g., for
packets 5–10).

Using the updated flow record, the Filter (Algorithm 1,
line 14) avoids the introduction of a delay in the classification of
a large number of mouse flows (usually latency-sensitive [14],
[15]) by sending the packets of flows with a size below a certain
threshold (θF ) directly to the SDDCN without further processing
(e.g., for packets 1–9 in Fig. 2). The Filter also ensures that the
Classifier receives all the required online features for making the
classification. The online features refer to flow data extracted
from the first N packets of a flow. The Filter then guarantees the
size and IAT of the first N packets of a flow since the maximum
value of N depends on θF . For example, θF = 10 kB would
require an N ≤ 7 over Ethernet; otherwise, data from some
packets would be missed. Consequently, the Classifier operates
once the Monitor has processed packets that increment the size
of flows over θF (e.g., for packet 10).

The Classifier (Algorithm 1, lines 15–18) applies the flow size
classification model to the online features to identify flows as
either mice or elephants. This model results from an incremental
learning algorithm, which maps the online features to the corre-
sponding class of flows used as training data. After applying the
flow size classification model, the Classifier stores the identified
class in the FlowRepo for each flow record with flow size greater
than θF (e.g., elephant for flow of packet 10 in Fig. 2). Therefore,
when processing a packet of a previously identified flow, the
Classifier checks the fetched class from the FlowRepo to avoid
any delay from the classification. The Classifier then reports to
the Marker the class of the flow for each packet. We discuss
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in Section II-B how the Learner collects the training data for
building and updating the flow size classification model.

The Marker (Algorithm 1, lines 19–23) forwards the packets
of flows classified as mice without changes but marks those clas-
sified as elephants (e.g., packet 10 in Fig. 2). To mark a packet,
the Marker sets a predefined value in a code point header field
supported by SDN switches. For example, OpenFlow switches
support matching in two code point header fields. The first of
these is the 6-bit differentiated service code point (DSCP) field
of the IPv4 header. This DSCP reserves a code point space for
experimental and local usage (i.e., ∗ ∗ ∗ ∗ 11, where ∗ is 0 or 1).
The second is the 3-bit 802.1Q priority code point (PCP) field
of the Ethernet header. In practice, NELLY can rely on either

one of these fields, since it is improbable that a data center uses
both DSCP and PCP simultaneously [15].

The Marker can be extended by enabling a flexible configura-
tion of the number of subsequent packets in an elephant flow to
be marked (M ), thus enabling a tradeoff between reliability and
latency. For instance, as M increases, the lesser the probability
that the controller will miss elephant flows due to losses of
marked packets in the SDDCN. However, a higher M introduces
a delay in the Marker for a higher number of packets of elephant
flows. Once the controller has installed a higher priority routing
rule for handling a specific elephant flow across the SDDCN,
the subsequent marked packets of this flow are not forwarded to
the controller.

B. Learner

As depicted in Fig. 1, the Learner consists of four modules:
Collector, Filter, Tagger, and Trainer. The process of each
module is detailed in Algorithm 2. As shown in lines 1–4, the
Collector fetches terminated flows from the FlowRepo at every
interval T . A flow is considered terminated if it remains idle for
longer than θTO. Therefore, the Collector recognizes terminated
flows by checking that a time longer than θTO has passed, since
the last-seen time of the FlowID records in the FlowRepo. Note
that the Collector relies on the FlowID records updated by the
Monitor for the recognition of the terminated flows, so their
actual size can be obtained.

The Collector avoids increasing memory consumption in
NELLY by removing terminated flows from the FlowRepo
(Algorithm 2, line 5). The actual size of terminated flows can
also be further used to provide fixed-memory probability dis-
tributions that support autonomous configuration of flow size
thresholds. Memory requirements in the FlowRepo thus depend
on both T and θTO. T provides a tradeoff between memory
and processing. As T decreases, the Collector removes the
terminated flows from the FlowRepo more quickly, consuming
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TABLE I
DETAILS OF PACKET TRACES AND IPV4 FLOWS OBTAINED USING THE 5-TUPLE HEADER AND θTO = 5 S

less memory, but leading to more processing. In turn, θTO

directly affects the number of FlowID records stored in memory.
As θTO increases, the FlowRepo retains FlowID records for a
longer time. θTO is related to the inactive timeout configuration
of flow rules in SDN-enabled switches, which provides a tradeoff
between flow table occupancy and miss-rate (i.e., when the
packet IAT is greater than the timeout) [22].

The Filter of the Learner (Algorithm 2, line 6) receives the ter-
minated flows from the Collector and reports to the Tagger only
those with size greater than θF . The terminated flows are then
used by the Trainer to build the flow size classification model.
Since the Classifier operates only with flows of a size greater
than θF , the Filter of the Learner prevents the introduction of
noise to the model.

The Tagger (Algorithm 2, lines 7–8) compares the actual size
of the filtered flows to a labeling threshold (θL) so that they can be
tagged as either mice or elephants. θL will vary (e.g., 100 kB or
1 MB) as a function of the traffic characteristics and performance
requirements of SDDCNs. Labeled flows provide the Trainer
(Algorithm 2, line 9) with the ground truth for building a
supervised learning model for flow size classification [17]. This
classification model maps online features (i.e., packet header,
size, and IAT of the first N packets) onto the corresponding
class (i.e., mice or elephants). Recall that the Classifier re-
lies on the flow size classification model to identify elephant
flows.

Since flows represent continuous and dynamic data streams,
the Trainer uses an incremental learning algorithm (e.g., Hoeffd-
ing tree and online ensembles) for building the flow size classi-
fication model. Incremental learning enables updating the flow
size classification model as the Trainer receives labeled flows
over time, rather than retraining from the beginning [17], [21].
Therefore, NELLY adapts to varying traffic characteristics and
performs continuous learning with limited memory resources.
There is no need for the Trainer to maintain labeled flows in
memory. This is an important characteristic of NELLY, since it
helps to reduce the consumption of resources in all the servers
of the SDDCN.

III. EVALUATION

This section presents the evaluation of NELLY in relation
to accuracy and classification time by using real packet traces
and incremental learning algorithms. A generic approach for

designing ML-based solutions in networking [17] is used to
describe and conduct the evaluation of NELLY.

A. Datasets

Two real packet traces, UNI1 and UNI2, captured in university
data centers [23], were employed to evaluate NELLY (Table I
summarizes their characteristics). These two traces are shorter
than 3 h long, but their mice and elephant distributions are similar
to those found in nonpublic traces collected at different periods
along the day [8], [9]. On the other hand, to the best of our
knowledge, neither traces nor datasets of IPv6 traffic in DCNs
are publicly available. In line with that, NELLY was evaluated
using IPv4 traffic only, which represents over 99% of the packets
in UNI1 and UNI2.

Only the following parameters needed to be defined to gen-
erate the datasets: the flow header fields, θTO, and N . First,
the 5-tuple header (i.e., source IP, destination IP, source port,
destination port, and IP protocol) as the flow header fields,
since it sufficiently characterizes IPv4 flows; hereinafter, they
are referred just as flows. Second, θTO = 5 s was established
on the basis of the break-even point analysis between the flow
table occupancy and the miss-rate in OpenFlow switches for
DCNs considered by [22]. Then, since the maximum value of
N depends on θF , N = 7 was set as the maximum for θF =
10 kB. As shown in Table I, the selected θF encompasses all
the potential elephants (i.e., flows carrying more than 95%
of the traffic) and avoids the introduction of the classification
delay to mice (for more than 93% of the flows). Using these
parameters, the UNI1 and UNI2 data traces were processed to
generate the corresponding flow size datasets, each containing
somewhat more than a million flows (see Table I). Since NELLY
only classifies flows greater than θF , those smaller than θF =
10 kB were removed from both datasets. Therefore, the UNI1
and UNI2 datasets consisted of approximately 70 000 and 60 000
flows, respectively.

The datasets [24] included the following flow information:
start time, end time, 5-tuple header, size, and IAT of the first
seven packets, as well as flow size. The start and end times
enabled a more realistic evaluation (see Section III-C). The
5-tuple header and the size and IAT of the first seven packets
represented the online features for the flow size classification
model. The flow size is compared to different θL (e.g., 50,
100, and 500 kB) to label the flows as mice or elephants (i.e.,
classes of interest). Unless otherwise stated, the datasets with
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θL = 100 kB were used. Labeled flows represented the ground
truth for learning and validating the flow size classification
model.

For feature engineering [17], various different data types were
considered for the online features, particularly for the 5-tuple
header. Certainly, the size and IAT of the first seven packets (13
features, since the IAT of the first packet is not included) indi-
cate a measurement, hence, numeric data, whereas the 5-tuple
header contains two IP addresses in dotted-decimal notation (i.e.,
categorical data) and three numeric codes (i.e., nominal data).
However, the huge set of possible categories for IP addresses
(i.e., 232) hinders a real implementation. To address this problem,
the IP addresses were divided into four octets, resulting in a
total of 11 nominal features for the 5-tuple header. To handle
these 11 nominal features as numeric data, a Numeric (Num)
header type was defined. These features were then transformed
into binary digits (bits), generating 104 features for the 5-tuple
header. Considering these binary features, two more header
types were defined: Binary-Numeric (BinNum) to treat binary
features as numeric data (i.e., a value between zero and one) and
Binary-Nominal (BinNom) to handle binary features as nominal
data (i.e., zero or one). Unless otherwise stated, the datasets with
BinNom header were used.

B. Accuracy Metrics

Metrics derived from the confusion matrix were used, includ-
ing the true positive rate (TPR) and the false positive rate (FPR),
thus avoiding the overoptimism of the conventional accuracy
metric caused by an imbalance of classes [17]. In the datasets,
the imbalance between mice and elephants depends on θL. For
example, assuming θL = 100 kB, only 12% of flows above 10 kB
in the UNI1 dataset represent the elephant class (see Table I).
The imbalance grows as θL increases.

Recall that flows classified as elephants are forwarded to the
controller for further processing, thus introducing transmission
and processing delays. Therefore, NELLY aims at detecting
as many elephants, while negatively affecting as few latency-
sensitive mice as possible. Considering elephants as the positive
condition, the TPR describes the proportion of detected ele-
phants, whereas the FPR provides the ratio of negatively affected
mice. Both TPR and FPR range between 0 and 1. Furthermore,
the Matthews correlation coefficient (MCC) was used to analyze
the balance between the TPR and the FPR. The MCC takes all
values from the confusion matrix to provide a measure between
1 and −1. As the MCC gets closer to 1, the difference of the TPR
over the FPR increases, leading to a more accurate classifier. An
MCC between 0 and −1 means that TPR ≤ FPR, which would
be less accurate than a random classifier. In our experiment, the
MCC values were always greater than 0; hence, we use a range
between 0 and 1 to plot TPR, FPR, and MCC in Figs. 3 and 4.

The MCC metric is employed in the performance analysis be-
cause it is recommended for imbalanced datasets (like UNI1 and
UNI2) [25]. The MCC score is only high when the classification
algorithms are doing well in both the positive and negative
elements (i.e., elephants and mice, respectively). The receiver
operating characteristic curve has also proven to be useful

Fig. 3. Accuracy of NELLY with the ARF (left) and AHOT (right) al-
gorithms when varying the labeling threshold (θL) for the UNI1 (top)
and UNI2 (bottom) datasets. (a) ARF for UNI1. (b) AHOT for UNI1.
(c) ARF for UNI2. (d) AHOT for UNI2.

Fig. 4. Accuracy of NELLY with the ARF (left) and AHOT (right) algo-
rithms when varying the range for the inverse weights of elephant flows
(WE ) for the UNI1 (top) and UNI2 (bottom) datasets. (a) ARF for UNI1.
(b) AHOT for UNI1. (c) ARF for UNI2. (d) AHOT for UNI2.

for imbalanced datasets, but it is more appropriate to analyze
classification algorithms that output a real value [26]. Thus,
we preferred the MCC because the output of the incremental
learning classification algorithms employed in this article is a
single class value (either mouse or elephant) rather than the real
value.
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TABLE II
PERFORMANCE OF NELLY WITH DIFFERENT INCREMENTAL LEARNING ALGORITHMS FOR CLASSIFYING FLOWS AS MICE AND ELEPHANTS

The top five results of TPR and MCC are in bold, and the TC results shorter than 17.5 µs, for both UNI1 and UNI2.

C. Experiment Setup

Incremental learning algorithms are commonly evaluated us-
ing the interleaved test-then-train approach [27]. This approach
refers to going through each flow to classify it first by work-
ing only with the online features and then use its actual class
for training the flow size classification model. However, since
flows start and end over time, some order of the flows must be
established. Moreover, under real conditions, some flows start
before a classified flow ends, whereas others end before a new
flow starts. Therefore, the flows are classified at the start time,
and the model is trained at the end time, so the performance
evaluation will be based on more realistic conditions.

The imbalance of classes in the UNI1 and UNI2 datasets was
addressed by training the flow size classification model using
inverse weights, as in [18], i.e., weights (between 0 and 1) in-
versely proportional to the ratio of training instances previously
encountered by the model for each class. If the model is trained
with a single weight (i.e., 1 by default in the massive online
analysis (MOA) tool [27]), it would tend to classify all flows as
mice due to the imbalance of classes.

D. Performance Analysis

To determine the consideration for the best performance of
NELLY, the UNI1 and UNI2 datasets were used with differ-
ent header types (i.e., Num, BinNum, and BinNom), as well
as 50 incremental learning classification algorithms available
in MOA. The performance evaluation included the accuracy
metrics (i.e., TPR, FPR, and MCC) and the classification time
per flow (TC). The algorithms were executed with their default
settings (except for the training weights) and without previous
model initialization.

For the sake of brevity, Table II presents ten algorithms,
namely, adaptive Hoeffding option tree (AHOT), adaptive ran-
dom forest (ARF), Hoeffding tree, k-nearest neighbors (kNN)
with probabilistic adaptive windowing (PAW), Naive Bayes
(NB), online accuracy updated ensemble (OAUE), OzaBag, Oza
and Russell’s Bagging (OzaBag) and Boosting (OzaBoost), rule
classifier with NB (Rule-NB), and stochastic gradient descent
(SGD) for support vector machines (SVMs). These algorithms
were selected on the basis of the best performance results be-
tween algorithms with a similar learning approach. Furthermore,

Table II includes only the best results of each algorithm, taking
into account both accuracy and classification time for a specific
header type. The BinNom headers were found to enable the best
performance of the majority of the algorithms for the UNI1 and
UNI2 datasets. This was due to the fact that most algorithms
achieved greater accuracy using the BinNom headers than the
Num headers for a comparable classification time. The use of
the BinNum headers is strongly discouraged; although similar
or slightly better accuracy results were obtained, there was a
significant increase in the classification time (up to 4×).

The accuracy results show that no single algorithm achieves
the best values of the TPR and MCC for the UNI1 and UNI2
datasets. This is due to the fact that the flow size distribution and
the features of the elephant and mouse flows were specific for
each dataset. Therefore, the top five results were used to analyze
the accuracy performance. Regarding the TC , most algorithms
introduced a classification delay per flow shorter than 17.5 μs,
but this represents only a small percentage (7%) of the round-trip
time (RTT) in DCNs (i.e., 250 μs in the absence of queuing [28]).

Both Hoeffding tree and NB represent the state of the art
in incremental learning algorithms. Their simplicity and low
computational cost enabled a very short delay (TC < 5 μs) that
accounts for only 2% of the RTT in DCNs. However, only the
Hoeffding tree represents a valid alternative for the traffic similar
to that of UNI1 because its TPR and MCC were among the top
five results for the UNI1 dataset. The Hoeffding tree in MOA
uses NB classifiers on the leaves (nodes), which improves the
accuracy without compromising the computational cost.

The ARF, OAUE, OzaBag, and OzaBoost are ensemble-based
algorithms that combine multiple Hoeffding trees (ten in our
evaluation) for improving the accuracy at the expense of increas-
ing the computational cost. The ARF and OzaBoost algorithms
introduced a TC shorter than 7% of the RTT in DCNs. ARF
provided the best MCC and a TPR among the top five for the
UNI1 and UNI2 datasets. OzaBoost can be seen as an option for
the traffic similar to that of UNI2, since it was in the top five
accuracy results only for the UNI2 dataset. In contrast, although
the OAUE and OzaBag algorithms also provided good accuracy
results (particularly for the UNI1 dataset), they introduced a
TC twice longer than the TC of ARF and OzaBoost. This long
TC is because OAUE and OzaBag rely on ensemble methods
(block-weighting and bagging, respectively) that demand more
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computation than those used by ARF and OzaBoost (random
forests and boosting, respectively).

Similar to ARF, the AHOT algorithm figured in the top
five accuracy results for both datasets. Moreover, AHOT only
introduced a TC shorter than 2% (5 μs) and 4% (10 μs) of the
RTT in DCNs for the UNI1 and UNI2 datasets, respectively.
AHOT is capable of improving the accuracy of the Hoeffding
tree algorithm without demanding too much computation by
providing an intermediate solution between a single Hoeffding
tree and an ensemble of Hoeffding trees. AHOT uses additional
option paths (five maximum in our evaluation) to build a single
structure that efficiently represents multiple Hoeffding trees.

The implementations in MOA of the Rule-NB, SGD-SVM,
and kNN-PAW algorithms are strongly discouraged. The Rule-
NB presented accuracy results outside the top five for both
datasets and a TC slightly longer than 7% of the RTT in DCNs.
This is because rule-based algorithms focus on building more
interpretable models than does the Hoeffding tree algorithm,
which increases the computational cost but not necessarily
improves the accuracy. The SGD-SVM algorithm introduced
the shortest classification delay (TC < 1 μs), but it produced
the worst values in the TPR and MCC metrics. The reason for
these values is that MOA implements a very simple SGD-SVM
algorithm that uses a linear kernel, which is not sufficient to
model different patterns in flows of packets. The kNN-PAW
provided the second-worst TPR for both datasets and a very
long classification delay (TC > 450 μs), which increased up to
3000 μs with the BinNum and BinNom headers (i.e., 12× the
RTT in DCNs). This long TC value is a consequence of the
computation of a distance metric by the algorithms based on
kNN every time the classification is performed.

In conclusion, NELLY achieves the best performance by
using the BinNom headers along with the following incremental
learning algorithms.

1) The ARF is good for any type of traffic and if the RTT
is flexible. It achieved the best MCC for the UNI1 and
UNI2 datasets, and it was also the fifth- and second-best
for the TPR while introduced a TC lesser than 7.5% of
the RTT in DCNs.

2) The AHOT is good for any type of traffic and a strict RTT.
The TPR and MCC ranked among the top five for both
datasets, while the TC was shorter than that of the ARF,
especially for the UNI1 dataset.

3) The Hoeffding tree is good for traffic similar to that of
UNI1 and if the RTT is very strict. The TPR was the
second-best and the MCC was the fifth (quite close to the
AHOT) for the UNI1 dataset while introduced a very short
TC . When the RTT constraint takes precedence over the
accuracy, this would be a good option for traffic similar
to that of UNI2 because a very short TC was maintained
while provided the sixth-best TPR and MCC for such
traffic.

The accuracy of NELLY was also evaluated with the ARF and
AHOT algorithms for different values of θL, since this threshold
may vary as a function of traffic and routing requirements. Both
ARF and AHOT ranked among the top five in accuracy for both
datasets with a TC shorter than 7.5% of the RTT in DCNs.

As shown in Fig. 3, the MCC results of both algorithms were
degraded as θL increased, especially for the UNI1 dataset. This is
because the difference between the features of the elephants and
mice becomes less significant as θL increases. In contrast, the
TPR remained very similar as θL increased, except that the ARF
suffered from a significant reduction in the TPR for the UNI1
dataset. Therefore, the AHOT was more robust to variations in
θL for traffic similar to that of UNI1, although the performance
of both algorithms was similar for the UNI2 dataset. Based
on this summary, NELLY with the AHOT algorithm enables
a flexible configuration of θL, while providing great elephant
flow detection in data centers regardless of the type of traffic.
For traffic similar to that of UNI2, both ARF and AHOT rep-
resent valid alternatives for the use of NELLY and the flexible
configuration of θL is possible, since they perform similarly in
terms of elephant detection.

Finally, the effect of the handling of different ranges of the
inverse weights in the two classes on the accuracy of NELLY
with the two algorithms (ARF and AHOT) was analyzed. The
weights of the mice were maintained between 0 and 1, whereas
the weights of the elephants ranged from 0 to WE , where
WE varied from 1 to 5. Fig. 4 shows that both the ARF and
AHOT algorithms achieved a higher TPR for both datasets
as WE increased (up to 94% and 98% of elephant detection,
respectively). These results were expected, since establishing
greater weights for the elephant class makes the learning algo-
rithms increment the influence of the features of the elephant
flows in the classification model. Moreover, the tradeoff be-
tween the TPR and FPR (i.e., MCC) remained quite similar for
UNI1-type traffic, whereas that of UNI2 was degraded as WE

increased. This is due to the greater differences between the
elephants and mice for the UNI1 dataset than for UNI2 when
θL = 100 kB. Therefore, as WE increased for the UNI2 dataset,
the increment of mouse flows wrongly classified as elephants
(i.e., FPR) was greater than that of elephant flows correctly
classified (i.e., TPR). In conclusion, NELLY supports a flexible
configuration of inverse weights for meeting different accuracy
requirements.

IV. COMPARATIVE ANALYSIS

NELLY was compared with the online flow size prediction
(OFSP) [18], the efficient sampling and classification approach
(ESCA) [19], FlowSeer [20], and Mahout [15]. OFSP, ESCA,
and FlowSeer incorporate ML at the controller side of SDDCNs
for proactively detecting elephant flows, whereas Mahout per-
forms reactive detection at the server side. The results reported
by each work for the UNI1 dataset were used to compare
them in relation to learning approach, elephant detection, false
elephants, table occupancy, control overhead, detection time,
network modifications, and performance factors. The works
involving Hedera [16] and DevoFlow [14] were not considered.
These approaches perform reactive flow detection and their lim-
itations hinder real implementation. Hedera causes large control
traffic overhead and has poor scalability, whereas Devoflow
requires custom-made switch hardware and imposes a heavy
burden on switches.

Authorized licensed use limited to: Universidade Estadual de Campinas. Downloaded on April 03,2020 at 02:41:30 UTC from IEEE Xplore.  Restrictions apply. 

292



1370 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 16, NO. 2, FEBRUARY 2020

A. Learning Approach

ML algorithms used for detecting elephant flows can involve
batch or incremental learning. Batch learning refers to the use
of training models based on static datasets (i.e., all training data
are simultaneously available). However, batch learning requires
the storage of unprocessed data to cope with traffic variations in
DCNs, so the models must repeatedly work from scratch. This
is time consuming and prone to outdated models. Conversely,
incremental learning continuously adapts the ML models on
the basis of streams of training data, enabling constantly up-
dated models and reducing time and memory requirements [17],
[21]. The ESCA relies on batch learning, whereas NELLY and
OFSP rely on incremental learning for detecting elephant flows.
FlowSeer is a mixed approach using batch learning for the
identification of potential elephants and incremental learning for
the classification of the potential ones. Mahout has no learning
approach, since it performs reactive elephant detection.

B. Elephant Detection

The main goal of flow detection methods is to identify ele-
phant flows (i.e., TPR). NELLY, OFSP, and FlowSeer all proac-
tively detected more than 95% of elephant flows, whereas the
ESCA detected a maximum of 88.3%. Mahout provides perfect
detection, although this is reactive.

C. False Elephants

Mouse flows mistakenly identified as elephants (i.e., FPR)
are needlessly forwarded to and processed by the controller.
For achieving the highest elephant detection rate, FlowSeer
informed the controller of 29% of mice as potential elephants,
whereas OFSP and ESCA only reported around 2%. NELLY
yielded an FPR of 40%, but this was computed using only 7% of
the flows (i.e., θL ≥ 10 kB). NELLY thus forwards only 2.5% of
mice to the controller. No mouse flow is reported to the controller
by Mahout, since detection is reactive.

D. Table Occupancy

Controller-side flow detection methods install flow table en-
tries in ToR switches for centrally collecting flow data. The
smaller the number of flow table entries, the more efficient is
the resource utilization. OFSP requires one entry per flow, thus
constraining its scalability because of the limited memory in
SDN switches. ESCA and FlowSeer install wildcard entries for
sampling packets of flows. They reported 236 and 50 flow table
entries, respectively, for achieving their highest detection rate
in the UNI1 dataset. Conversely, NELLY and Mahout do not
require flow table entries for collecting data, since they operate
at the server side.

E. Control Overhead

Flow detection methods require ToR switches to send control
packets to the controller, either for the collection of flow data
or for the reporting of detected elephant flows. The smaller the
control overhead, the lower are the link utilization and the impact

on the controller performance (since it has to process fewer
control packets). The overhead of this control was computed
by assuming no loss in the network and a control packet of
64 bytes. OFSP collects information from the first three packets
of each flow, generating a control overhead of 402 kb/s. FlowSeer
collects information from the first five packets of sampled flows
(i.e., 30% of the flow data) and potential elephants, yielding
a control overhead of 288 kb/s. The ESCA reduces the control
overhead to 215 kb/s by using a sampling method that only re-
ports information from the first packet. In contrast, NELLY and
Mahout merely require that ToR switches send information of
flows marked as elephants, greatly reducing the control message
overhead to 4.4 and 1.1 kb/s, respectively.

F. Detection Time

Timely detection of elephant flows enables the controller
to make early decisions to improve routing. OFSP, ESCA,
FlowSeer, and NELLY enable a short detection time by proac-
tively detecting elephant flows. The ESCA reported a detection
time of 1.98 s for achieving the highest detection rate. OFSP
and NELLY detect elephants in a shorter time, since they rely
on the first N packets. On average, the detection time was
0.5 s for OFSP (N = 3) and 0.8 s for NELLY (N = 7). Further
experimentation is needed to evaluate the detection time of
FlowSeer. Nevertheless, the detection time of the latter would be
slightly greater than for ESCA, since it is also based on sampling
and considers the first five packets (ESCA considers only one
packet). In contrast, Mahout relies on a reactive mechanism that
detects elephant flows after their corresponding socket buffer
in a server surpasses a certain threshold. Assuming a small
threshold of 100 kB, the average detection time of Mahout
is 3.8 s. However, unlike ML-based flow detection methods,
the detection time of Mahout becomes longer as the threshold
increases, which may cause hotspots before the traffic carried
by elephant flows reaches the threshold.

G. Network Modifications

ESCA proposes a sampling method that depends on nonex-
isting SDN specifications, hence requiring custom-made switch
hardware. In contrast, OFSP, FlowSeer, NELLY, and Mahout
rely on OpenFlow [29], therefore enabling the use of commercial
switches. Essentially, NELLY and Mahout require the installa-
tion of additional software in the servers, which need only to
be done once with further configuration possible on the basis
of a policy manager or autonomously. This installation can be
carried out by using DevOps automation tools, such as Puppet
and Chef, that support the distribution of software components
to the OSs of servers [30]. Moreover, virtualization platforms,
such as VMWare and Xen, support software distribution to the
servers as updates to the hypervisor without interrupting running
virtual machines (either by live-migration or live-updating) [31].

H. Performance Factors

Depending on the location of the flow detection method,
different factors may affect its performance. Controller-side
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methods (i.e., OFSP, ESCA, and FlowSeer) rely on the resources
available at the controller and ToR switches. The controller
should be powerful enough for detecting all the elephants and
processing the control packets sent by the ToR switches in the
DCN. Similarly, the ToR switches should have enough memory
for installing the required flow table entries. Moreover, the accu-
racy of the controller-side methods can be negatively affected if
the ToR switches drop some of the first packets of the elephant
flows. On the other hand, NELLY and Mahout operate at the
server side, so they depend on servers resources. As NELLY
is based on ML, it requires more resources than does Mahout.
Both server-side methods detect the elephants generated by each
server (i.e., distributed operation). Note that servers should be
able to monitor the first packets of the elephant flows for avoiding
a decrease in accuracy.

V. CONCLUSION

In this article, we introduced NELLY to deal with the in-
accuracy, large overhead, and poor scalability of current flow
detection methods utilized in SDDCNs. NELLY is a novel flow
detection method based on incremental learning that operates
as a software component installed in every server of SDDCNs.
An extensive evaluation demonstrated the accuracy and speed
of NELLY, as well as its generation of low traffic overhead and
adaptation to varying traffic characteristics. NELLY performs
continuous learning and requires limited memory resources
when used with the ARF and AHOT algorithms. The evaluation
also corroborated the scalability of NELLY and the fact that no
modifications in SDN standards are required.

As future work, we intend to implement NELLY as an in-
kernel software component for evaluating its impact cost to
server resources, including processing and memory consump-
tion. Furthermore, we plan to evaluate NELLY in an emulated
SDDCN by installing the software component into micro virtual
machines connected to Open vSwitch instances.

Finally, although this article proved that incremental learning
algorithms were efficient to detect elephant flows in DCNs, there
are still research challenges to be addressed. First, there is no
consistent and accepted method for defining the threshold value
that discriminates between mice and elephants in DCNs. In this
article, we evaluated different thresholds but did not specify
how to select the appropriate threshold value for the traffic and
routing requirements. Second, there was a need to create publicly
available IPv6 dataset to allow the performance of ML-based
elephant detection methods on such a dataset.
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