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ABSTRACT

Numerical simulations via COMSOL Multiphysics software are used to describe the behavior of electrical resistivity of several samples with
rectangular shape typically used in the Montgomery method. The simulation data obtained using four isotropic conductors allowed us to
understand in detail the behavior of the electric potential and electric field of the samples. The results provide an analytical method, which
can substitute the four-probe method with much more simplicity and precision.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0139613

I. INTRODUCTION

The electrical resistivity (ρ) of a given material is one of the
most important physical properties, and its correct determination
has been the object of intense study during the last century.1–5 This
property has been used to classify materials into metals, semicon-
ductors, insulators, and superconductors, which are the basis for
electronic devices, such as resistors, capacitors, diodes, transistors,
and many others.6,7

Several methods have been described for measuring electrical
resistivity.8–19 One of them was first described in 1915 by Wenner,8

who tried measuring the electrical resistivity of the Earth with a
method based on in-line four probes. The voltage drop V is mea-
sured between the two internal contacts, while an electrical current I
is injected through the two external terminals. Later, this method
was used to measure the electrical resistivity of a semiconductor
wafer, being established as a reference procedure of the Ameri-
can Society for Testing and Materials Standards.20 Nowadays, this
method has been widely used to measure the electrical resistivity
of conducting materials and it is well known as the conventional
four-probe method (4P method).1

The 4P method is based on Ohm’s law.1 The four electrodes
are usually arranged along one of the faces of a rectangular sam-
ple, as shown in Fig. 1, which must strictly respect some geometrical
aspects.

Applying an electric field (E) to a conductor, an electric cur-
rent (I) immediately appears and the electrical resistivity can be
calculated from the ratio of the electric field and the current den-
sity (J ≡ I/A).21 ρ is not directly determined in the experiments,
but calculated after measuring the electrical resistance (R), which is
obtained from the ratio of themeasured voltage drop and the applied
current.

The electrical resistivity is calculated by

ρ ≙ RA
l
, (1)

where A ≙ wd is the cross section area of the specimen and l is the
distance between the two points where the voltage drop is measured.

In order to have the precise determination of the electrical resis-
tivity, the geometry of the sample and the electrical contacts must
be well established. To measure the voltage drop, the electric field
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FIG. 1. Schematic view of the electrical contacts in the 4P method for a sample

with rectangular shape, in which (i) the sample geometry must respect
√

A≪ l;
(ii) the voltage contacts should be aligned perpendicular to the distance l; and
(iii) the electrical current terminals must be large enough to have small contact
resistances to avoid Joule self-heating.

must be approximately constant, which is obtained by cutting the

sample with an aspect ratio that respects
√
A≪ l. The voltage

contacts should be point or line-like (see Fig. 1), which must be per-
pendicular to the electrical field lines. Furthermore, both voltage and
electrical current terminals must have very small contact resistance
to avoid thermopower and Joule self-heating effects.

Although widely used, the 4P method has some limitations
due to these experimental requirements. Samples of interest to be
measured are usually in the millimeter size range and many times
are not bars. In addition, electrical contacts cannot be prepared
as pointed out earlier. These typical limitations always provide
electrical resistivity measurements, which have errors as large as
10%–50%.12,13

In this work, the problem of measuring the electrical resistiv-
ity of isotropic samples of finite dimensions using the four-probe
techniques has been revisited. Our previous experience measuring
transport properties of isotropic and anisotropic samples leads us to
modify the Montgomery and the van der Pauw methods.17,18 Those
works allowed us to find ways to calculate the electrical resistivity
of both isotropic and anisotropic samples analytically. However, in
order to understand these methods deeper, we intend to apply them
to several sample geometries of different conducting materials. This
is not a simple experimental task. We have noticed that this could
be done by using numerical simulations. This work reports our first
simulation results obtained from COMSOL Multiphysics software
for rectangular thin samples using the Montgomery method. The
simulations connected with our previous experimental experience
in using the Montgomery and van der Pauw methods for measuring
the electrical resistivity of both isotropic and anisotropic conductors
(see Refs. 17 and 18) provide a method, which is simpler and more
precise than the 4P method.

II. METHODOLOGY

COMSOL Multiphysics software was used to carry out all the
simulations shown in this work.22 This commercial software is
much used for numerical projects in several knowledge areas, such
as electric field, heat and mass flow, fatigue, and environmental
studies.23–28

We have solved the problem of two-dimensional (2D) station-
ary electrical currents in conductive media, considering the equation
of continuity in a stationary coordinate system, based on Ohm’s law,
which states that

J ≙ σE + Je, (2)

where σ is the electrical conductivity (in S/m), E is the electric field
(in V/m), and Je is an externally generated current density (in A/m

2),
which is taken zero in the simulations. In such a case, the static form
of the equation of continuity is given by

∇ ⋅ J ≙ −∇ ⋅ (σ∇V) ≙ 0. (3)

The boundary conditions adopted a thin rectangular domain
with dimensions −L1/2 ≤ x ≤ L1/2, 0 ≤ y ≤ L2, and thickness
L3 ≙ 1 m, which respects L3 <

√
L1L2. Thus, the boundary

conditions were determined in the following way:

VA ≙ V(−L1/2,L2) ≙ −100 V, (4a)

VB ≙ V(L1/2,L2) ≙ 100 V, (4b)

and for any other point in the boundary, the simulations took

n ⋅ J ≙ 0, (4c)

where n is the normal vector at the surface boundary.
In the COMSOL software, the distributions of electric field lines

as well as equipotential lines were easily simulated and the values of
the V , E, I, and J as a function of the positions were recorded. Some
schematic 2D views of the equipotential and electric field lines were
also obtained. For example, Fig. 2(a) displays these lines for a typical
isotropic conductor with rectangular thin geometry.

To verify the distribution of the equipotential and electric field
lines across the samples, the electric potentials of −100 and +100 V
[Eqs. (4a) and (4b)] were used in the A and B poles, as shown in
Fig. 2. They simulated the application of the electrical current in
both poles as done in the Montgomery experiments [see Fig. 2(b)],
whose value is adjusted by the applied voltage (V ≙ VB −VA

≙ 200 V) and the electrical resistance of the samples,

FIG. 2. (a) Typical schematic 2D view of the equipotential and electric field lines for
a rectangular isotropic thin sample of dimensions L1 and L2 obtained using COM-
SOL Multiphysics software. The input electric potentials are applied at the A and B
poles, and the output voltage is measured at C and D corners. The scale with color
represents the voltage change over the entire simulated area. The highlighted ver-
tical gray line represents the zero equipotential line (at x ≙ 0), which divides the
rectangular sample into two symmetric parts. The other two red lines touching the
points C ≙ (L1/2, 0) and D ≙ (−L1/2, 0) are equipotential lines, which provide
V1 ≙ VC − VD, which is crucial for the Montgomery method. (b) The typical sample
geometry used in the Montgomery method.
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which depends on the electrical resistivity of the con-
ducting material and the geometrical parameters L1, L2,
and L3.

III. RESULTS AND DISCUSSION

Figure 3 displays the electric potential (V) and electric field (E)
for four rectangular thin samples with different aspect ratios L1 and
L2. The values of the potential and electric field were collected by
performing a sweep around the A–D–C–B path shown in Fig. 2(a).

Near the negative and positive poles (A and B corners) the val-
ues of electric fields and potentials vary strongly as a function of the
position. On the other hand, on the opposite side of the samples
(D–C path), both V and E are orders of magnitude smaller. Further-
more, it is observed that the shape of the curve for the different sizes
is very similar and can be easily collapsed (not shown).

FIG. 3. Electric potential (V) (a) and electric field (E) (b) as a function of position
along the A–D–C–B path for four rectangular thin samples with different aspect
ratios L1 and L2. The origin was defined at the midpoint of the D–C line. The values
of the potential and electric field were collected by performing a sweep around the
A–D–C–B path shown in Fig. 2(a).

FIG. 4. Electric field (upper curve) and electric potential (lower curve) along the
A–D–C–B path for the sample with L1 ≙ 12 m and L2 ≙ 5 m.

Figure 4 shows the electric field and electric potential in loga-
rithm scales for the A–D–C–B path of the sample with L1 ≙ 12 m
and L2 ≙ 5 m.

The electric field (upper curve) is related to electric potential
(lower curve) by E⃗ ≙ −∇V . It interesting to note that the electric
potential has saddle points at corners C and D, where the electric
field vanishes (see arrows). At the middle point of the D–C path
(x ≙ 0), the electric potential is maximum and the electrical poten-
tial is zero, as expected due to the symmetric arguments. The same
general behavior has been observed for all the simulated samples.

To have a deep insight into the electric behavior in the D–C
path, the electric potential for the four samples is plotted in Fig. 5.

Considering the zero electric potential at x ≙ 0 and the two sad-
dle points at x ≙ ±L1/2, the behavior of the V(x)must be described
by a third-order polynomial, whose boundary conditions impose
that

V(x) ≙ V1

2
(3 x

L1
− 4 x3

L31
). (5)

Figure 5 also displays the fits based on Eq. (5) (red solid
lines). The agreement is excellent and allows one to determine the

FIG. 5. Electric potential along the D–C path for the samples with (a) L1 × L2

≙ 5 × 5 and 5 × 12, and (b) L1 × L2 ≙ 12 × 5 and 12 × 12. Red solid lines are
fits based on Eq. (5).
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V1 ≙ VC −VD value for each sample with high precision either by
using the polynomial fit or from the saddle points.

In Fig. 6 is shown a set of electric potential curves as a function
of the position for samples with a fixed D–C distance (L1 ≙ 5 m) and
different L2.

It is easy to notice that the saddle points are in the same posi-
tion for all the samples as indicated by the small black solid circles
at x ≙ ±2.5 m. Similar behaviors have been observed for samples
with different L1 values, which demonstrate that this is a general
behavior of the rectangular samples in the Montgomery method.14

As previously mentioned, this would be difficult to be performed
experimentally. Thanks to COMSOL Multiphysics software, which
allowed us to do this type of simulation for many samples very fast.

As reported in a previous paper,14,17 there is a simple relation-
ship between the thin rectangular sample and its electrical resistance.
This is given in the modified Montgomery method [see Eq. (10) of
Ref. 17] by

ρ ≙ (π/8)L3R1 sinh(π L2/L1), (6)

where R1 ≙ V1/I1 is the sample resistance in the Montgomery
method and L3 is the samples thickness. Interesting is the behavior
expected for a square sample (L1 ≙ L2), in which the sheet resistance
is given by

ρ/L3 ≙ 4.535 R1. (7)

In order to check the validity of the simulation data obtained in
this work with regard to Eq. (6), in Fig. 7(a) are plotted theV1 values
obtained as described in Fig. 5 as a function of the 1/sinh(πL2/L1)
in the limit L2/L1 ≥ 0.5 for four different metallic materials (Cu, Al,
Pt, and Hg). For this particular case, a constant electrical current of
1 A was used in the simulations of the thin samples (L3 ≙ 1 m).

The linear behavior observed in both log–log (main panel) and
linear (inset) scales in Fig. 7(a) for all the metals unambiguously
demonstrates that Eq. (6) describes the simulated data pretty well.
Furthermore, plotting the electrical resistivity as a function of the
slope obtained from the inset of Fig. 7(a), as displayed in Fig. 7(b),
shows an excellent agreement with pre-factor (π/8) predicted in
Eq. (6).

FIG. 6. Electric potential curves as a function of the position for samples with a
fixed D–C distance (L1 ≙ 5 m) and different L2.

FIG. 7. (a) V1 (electric potential) as a function of the 1/sinh(πL2/L1): The values
were obtained as described in Fig. 5 for the limit L2/L1 ≥ 0.5,using simulations
with a constant electrical current of 1 A. The inset shows the same curve in linear
scale. (b) Electrical resistivity of four metals as a function of the slope obtained
from the inset of (a). The inset displays the same curve in linear scale, where the
slope is equal to π/8. The red dotted lines represent the behavior predicted by
Eq. (6).

Finally, we have noticed that the results shown in this work
allow us to suggest a simple and precise method for determining
the electrical resistivity of isotropic conductors, especially when the
sample is like a thin rectangular block (L1 is comparable to L2 and
L3 ≪

√
L1L2). In such a case, the following advantages have been

observed with regard to the conventional 4Pmethod: (i) contacts can
be placed at the corners of the samples becoming easier to handle
and avoiding short circuits; and (ii) precision to determine electri-
cal resistivity can be improved since the samples can be bigger and
contact smaller than in the 4P method, as well as avoids misorienta-
tion in the contacts. One additional important measurement aspect
has to do with the square sample (L1 ≙ L2). Preparing the sample
directly in a square shape or cutting it in such a shape provides the
easiest way to determine the electrical resistivity, which is directly
calculated by Eq. (7) and square size independent.

To check the method proposed here, the experimental data
reported previously for copper plates and aluminum foils (see
Ref. 17) were compared with the sheet resistance (ρ/L3) predicted by
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Eq. (6). The agreement is excellent, demonstrating that it is easy to
use Eq. (6) or (7) for determining the electrical resistivity of isotropic
samples.

IV. CONCLUSIONS

This work provides a simple method for measuring the electri-
cal resistivity of rectangular isotropic samples. The simulation using
COMSOL Multiphysics software allowed us to study the Mont-
gomery method in much more detail never reported before. The
simulations proved that the analytical method previously reported
can be used in many practical situations. The results show that
the method reported here can be easily used in substitution to the
conventional four-probe method.
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