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Here, we describe the genomic features of the Actinobacteria Kocuria sp. SM24M-10 isolated frommucus of the

Brazilian endemic coralMussismilia hispida. The sequences are available under accession number LDNX01000000

(http://www.ncbi.nlm.nih.gov/nuccore/LDNX00000000). The genomic analysis revealed interesting information

about the adaptation of bacteria to the marine environment (such as genes involved in osmotic and oxidative

stress) and to the nutrient-rich environment provided by the coral mucus.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Direct link to deposited data

http://www.ncbi.nlm.nih.gov/nuccore/LDNX00000000

2. Experimental design, materials and methods

The Kocuria genus was established in 1995 by a taxonomic dissec-
tion of theMicrococcus genus [1]. So far, it comprises the species Kocuria
rosea, Kocuria varians, Kocuria kristinae [1], Kocuria rhizophila, Kocuria
palustris [2], Kocuria polaris [3], Kocuria marina [4], Kocuria atrinae [5],
Kocuria koreensis [6], Kocuria gwangalliensis [7], Kocuria himachalensis
[8], Kocuria aegyptia [9], Kocuria flava, Kocuria turfanensis [10], Kocuria
salsicia [11], Kocuria halotolerans [12], Kocuria carniphila [13], Kocuria
sediminis [14], and Kocuria assamensis [15]. Members of the Kocuria

genus can be found in soil, mammal skin, the rhizosphere, clinical
samples, and several other ecological niches, such as the Antarctic
cyanobacterial mat [3], marine sediment [4], fermented food [5,6],
seawater [7], and sulfide ore [16]. Although isolated from various
sources, the size of the Kocuria genus is relatively small among the
Actinomycetes, which suggests that each species of Kocuria is highly
adapted to its ecological niche [8,9]. Here, we report a draft genome of
Kocuria sp. SM24M-10 isolated from coral mucus, adding new informa-
tion about this genus and its adaptation to the marine environment.

Kocuria sp. SM24M-10was grown overnight in 3mL of liquid GASW
(Glycerol Artificial SeaWater)medium [17] at 30 °C, followed by centri-
fugation. The supernatant was discarded and the cells were used for
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DNA extraction with the Wizard® Genomic DNA Purification Kit
(Promega), according to the manufacturer's protocol. Sequencing of
the genomic DNA was performed at the Life Sciences Core Facility
(LaCTAD) at the State University of Campinas (UNICAMP), using a
paired-end library of 400 bp in a HiSeq2500 Illumina sequencer, and
yielded 65,536,228 paired-end reads of 100 bp. The estimated genome
size was 4.56 Mbp, with coverage of 1437×, based on k-mer count
[18,19]. All reads were preprocessed using NGS QC Toolkit v.2.2.3 [20],
with quality and length cutoffs of 20 and 70 bp, respectively. The assem-
bly was performed with Edena v.3 [21] (m = 41) and resulted in 177
contigs with a total length of 4,346,986 bp, N50 of 45,611 bp, and GC
content of 72.35%. The identification of RNA genes, the open reading
frames (ORFs), and the prediction of protein functions were performed
using the Rapid Annotation SubsystemTechnology (RAST) online server
[22], with the gene caller GLIMMER 3.0 [23]. Kocuria sp. SM24M-10 pre-
sented 4013 coding sequences (CDSs), 49 tRNA genes, and 6 rRNA genes
(two 5S RNA, two 16S, and two 23S). A total of 1650 (42%) protein-
coding genes were classified in 404 subsystems, and a predicted func-
tion was assigned to 1574 of them (Table 1).

The genomic analysis of Kocuria sp. SM24M-10 revealed interesting
information about its adaptation to the marine environment and to the
nutrient-rich environment provided by the coral mucus. The genome
presented 22 genes associated with osmotic stress, and 18 of these
genes were classified as being involved in betaine uptake and biosyn-
thesis. Betaine is an efficient osmolyte that is promptly accumulated in
large amounts in response to osmotic stress [24,25]. Due to symbiosis
with zooxanthellae algae [26], coral tissues may contain exceptionally
high levels of oxygen, which can generate oxidative stress. For this rea-
son, it is expected that bacteria associatedwith coral are able to produce
enzymes to overcome the toxic effects of reactive oxygen species [26].
Several genes involved in the oxidative stress response were found in
Kocuria sp. SM24M-10. Among these genes, 14 were related to the bio-
synthesis of glutathione and its analogs (e.g. mycothiol). Glutathione
plays a role in preventing cellular damage caused by reactive oxygen
species [27,28], while mycothiol provides protection against oxidative
compounds as well as some classes of antibiotics [28]. Genes related
to the catabolism of sugar alcohols, such as glycerol and inositol, were
also observed in the bacteria genome. Both glycerol and inositol are
important photosynthetic products that are released by symbiotic
Symbiodinium algae and are used by corals [29]. The presence of genes
related to the use of these compounds as energy sources demonstrates
the adaptation of Kocuria sp. SM24M-10 to the microenvironment
provided by the coral. The genome also presented genes related to
mechanisms of resistance against antibiotics and toxic compounds.
Considering the fact that Kocuria sp. SM24M-10was isolated from ama-
rine environment exposed to chemicals derived from high levels of
cargo ship traffic, we suggest that some of the resistance genes found
in the genome annotation might have contributed to the survival of
the bacteria in the coral microenvironment. In addition, genes related
to pathways of resistance to heavy metals (cobalt, copper, mercury,
and arsenic) were found in the genome.

In conclusion, the first draft genome of Kocuria sp. SM24M-10
revealed a pool of functional categories related to central metabolism,
together with characteristic properties associated with the response to
osmotic and oxidative stress, carbohydrate metabolism, and resistance

to antibiotics and toxic compounds. These data provide new insights
into the adaptation and survival of microorganisms in marine environ-
ments, as well as the relationship between microorganisms and coral
species.

3. Nucleotide sequence accession number

The draft genome sequence ofKocuria sp. SM24M-10 has been depos-
ited at DDBJ/EMBL/GenBank under accession number LDNX01000000.
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