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Resumo

A reidentificação (ReID) é um problema da área de visão computacional que visa combinar
instâncias de entidades (por exemplo, pessoas, veículos ou bagagens) através de um sistema
de câmeras que não se sobrepõem. Vários fatores tornam a tarefa desafiadora, tais como
oclusões, condições de iluminação, configurações de câmera, diferentes pontos de vista
e fundos complexos das cenas. Diferentes domínios de aplicação podem se beneficiar do
problema de ReID, por exemplo, vigilância e segurança, rastreamento, ciência forense e
robótica. Nesta tese, investigamos esta tarefa em um esquema amplo e abrangente. Como
a pesquisa no ReID evoluiu para um cenário mais real, nossa pesquisa também segue
esta tendência. Iniciamos com a proposição de um método supervisionado para ReID
de pessoas que melhora a representação de atributos de uma rede neural, aprendendo
informações discriminativas de regiões de baixa ativação. Em seguida, avançamos para
um cenário com maior quantidade de identificadores (IDs) e desenvolvemos um método
que alavanca eficientemente os rótulos de atributos para ReID de veículos. Este método
destila informações de atributos específicos de tarefas em vez de seguir a literatura que
utiliza todas as informações de atributos. Finalmente, aplicamos o ReID à outra tarefa,
chamada Rastreamento de Múltiplos Objetos. Investigamos um problema menos explorado
na literatura e mostramos que o uso adaptativo do atributo ReID em objetos altamente
ocluídos durante o treinamento leva a um melhor desempenho. Avaliamos nossos três
métodos propostos em conjuntos de dados amplamente utilizados e mostramos que os
resultados são competitivos.



Abstract

Re-Identification (ReID) is a problem in the field of computer vision that aims to match
instances of entities (for instance, people, vehicles, or luggage) across a system of non-
overlapping cameras. Several factors make the task challenging, such as occlusions, lighting
conditions, camera settings, different viewpoints, and complex scene backgrounds. Different
application domains can benefit from the ReID problem, for example, surveillance and
security, tracking, forensic science, and robotics. In this thesis, we investigate this task
in a broad and comprehensive scheme. Since research in ReID has evolved into a more
real-world scenario, our research also follows this trend. We start by proposing a supervised
method for person ReID that enhances the embedding feature representation of a neural
network by learning discriminative information from low activated regions. We then move
to a scenario with a larger amount of identifiers (IDs) and develop a method that efficiently
leverages attribute labels for vehicle ReID. This method distills task-specific attribute
information rather than following the literature that uses all attribute information. Finally,
we apply ReID to another task, called Multi-Object Tracking. We investigate a less
explored problem in the literature and show that adaptive use of the ReID feature on
highly occluded objects during training leads to better performance. We evaluate our three
proposed methods on widely used benchmarks and show that the results are competitive.
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Chapter 1

Introduction

As cities grow and more security cameras are available in public spaces, there is an
increasing necessity for intelligent surveillance and monitoring systems. An important
capability of these systems is to match entities across non-overlapping views, also known
as Re-Identification (ReID).

ReID has various applications in real-world problems. For instance, during the inves-
tigations of the 2013 Boston Marathon Bombings, police officers went through a great
deal of tedious work to match and track the entities of the attackers across cameras in
restaurants, grocery stores, and parking lots (see Figure 1.1). Similarly, law enforcement
officers have gone through a slow and tedious process to follow hit-and-run incidents, and
the number of fatalities in this type of accidents has increased 26% between 2020 and
2022 in the United States, which is an alarming statistic. Having proper ReID systems
in place would make these processes more efficient. Moreover, in the case of hit-and-run
incidents, a tracking system would help to follow suspects in crowded highways. Other
ReID applications include robotics, forensics, retail and healthcare [87].

In this work, we investigate the ReID problem in several scenarios. Moreover, we
explore how to apply ReID to a closely related task, known as Multi-Object Tracking.
Different approaches were proposed and evaluated on known datasets in these tasks.

We start by exploring the first proposed scenario for the ReId problem: Person Re-
Identification (P-ReID). Specifically, we explore how to generate a more reliable feature
representation. Then, we study a scenario that includes a larger amount of entities, that
is, Vehicle Re-Identification (V-ReID), we leverage extra labels to train a more generic
and invariant model. Finally, we explore an overlooked problem when training models for
Multi-Object Tracking (MOT) using Re-Identification as subtask. In Particular, we show
that Re-Id information should be used adaptively.

1.1 Problem Statement

Re-Identification (ReID) is a challenging computer vision task defined as a retrieval task:
given a query image or video, and a gallery of images or videos, ReID aims to retrieve all
the instances in the gallery that have the identity (ID) as a query (See Figure 1.2). In this
work, we focus on the scenario based on images. The setup of ReID is particular since
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Figure 1.1: Images of the 2013 Boston Marathon Bombings. Attackers are highlighted in
red, black, and white colors.

it is an open-set scenario, that is, the classes/IDs used during training are not the same
during testing.

ReID derived from Multi-Person Tracking, so its initial version was mostly focused on
people, also known as Person ReID. However, there has been an increasing availability of
methods for new scenarios (for instance, Vehicle ReID and Luggage ReID [80, 116]). In
this work, we focus on Person ReID (P-ReID) and Vehicle ReID (V-ReID).

Person ReID considers that we use RGB images. The images of the query and
gallery are already from the bounding boxes of people (See Figure 1.2), whose images
are typically captured with security cameras, so clues such as the faces themselves are
not usable. In this setup, the ReID is mainly based on the appearance of the people
(for instance, pants color, jacket type). Examples of these images are illustrated in
Figure 3.1. There are some variations of Person ReID that include infrared images,
portrait-to-image [39, 40, 41, 100, 105]. However, we focus only on the classic setup in
this work.

Vehicle ReID is analogous to the Person ReID problem, where the images are RGB
of the bounding boxes, captured with security cameras, and the license plates are not a
clue that we can use. However, the datasets for Vehicle ReID made available attribute
labels such as vehicle model, type and color. Examples of these images are illustrated in
Figure 3.2.

Multi-Person Tracking is a specific scenario of Multi-Object Tracking (MOT). MOT
is an important computer vision task that aims to identify and track objects of a target
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Figure 1.2: Example of bounding boxes for query (first image) and gallery (last 4 images).
Gallery images with the same ID as the query are border in green, and red otherwise.

class (for instance, Vehicles and People).
There are multiple research lines in MOT, including tracking-by-detection [55, 74, 111,

113, 114], tracking-by-regression [2, 4, 52, 91] and, more recently, tracking-by-attention [67].
In this work, we focus on tracking-by-detection since it has been widely investigated. This
paradigm has two steps: (i) object detection and (ii) matching affinity. We focus on
leveraging ReID to further improve them. More specifically, we focus on MOT applied to
people because it is closer to the original ReID task definition.

ReID and MOT are closely related, and actually it is possible to argue that matching
affinity could be solved using ReID. However, MOT can leverage the hypothesis of constancy
to use motion and intersection-over-union (IOU) for matching. Moreover, in this work,
ReID is based on images and MOT is based on videos.

1.2 Challenges

We focus on various ReID scenarios, which include P-ReID and V-ReID using supervised
learning. Due to that, the challenges can be separated into data-related and fashion-related.

Data-related challenges for both P-ReID and V-ReID include occlusions, different
viewpoints, illumination conditions, background clutter, and camera settings. These
problems are especially complex because images are usually captured over large periods of
time (for instance, months) in unconstrained scenarios, such as public markets, university
campuses, and city streets. In the case of P-ReID, there is an extra challenge generated by
non-rigid deformation of human bodies. In the case of V-ReID, there is an extra challenge
for the situations where two vehicles with different IDs share the same model/manufacturer.

Fashion-related challenges are associated with the type of approach used. In the
context of supervised methods, the main challenge is feature representation: how to train a
model that can represent the ID of the image being invariant to the previous data-related
challenges? Previous works explore different ideas to solve this problem, such as semantic
parsing, view invariant models using camera information, attributes, attention, adversarial
learning, among others.

In addition, we also explore MOT. Similarly to ReID, the challenges can be separated
into data-related and fashion-related. Data-related challenges in MOT are basically the
same as in ReID; however, the main challenges are the simultaneous occlusions and
interactions between objects.
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In this work, we follow the tracking-by-detection fashion. Thus, the fashion-related
challenges are associated with two of the steps involved (for instance, detection and
matching). For the detection step, the main problem is related to occlusions, different
object sizes, and intra-class variance. For the matching step, the main challenge is to
recover from the missing detections and the object feature representation that is highly
related to ReID.

1.3 Objectives

The main purpose of this thesis is to study and propose novel methods to tackle the
challenges of re-identification and its applications. To accomplish this goal, we stated the
following objectives:

O1: Implement frameworks for experimentation, validation, evaluation and analysis of
re-identification and multi-object tracking approaches.

O2: Propose a method that explores areas of images with low activations to create an
enhanced feature representation.

O3: Develop an approach that leverages attribute labels to create a generic representation.

O4: Propose a method that leverages re-identification for multi-object tracking.

Therefore, this work is guided to answer the following research questions:

Q1: Is it possible to encode rich information from areas of the image that previous
methods consider less relevant for ReID?

Q2: Is all the generic attribute information relevant for ReID?

Q3: How much are occlusions overlooked when applying ReID features to MOT?

1.4 Contributions

The main contributions of our work are listed as follows:

• ReID Representation without extra labels: Not all parts of the input images
are equally relevant to the final feature representation, previous works would focus
on pushing the network to learn task-relevant regions while ignoring low informative
regions. We propose a method that pushes the network to learn to represent low-
informative regions with more discriminative features. In doing so, the feature quality
of task-relevant regions is further improved, creating a better overall final feature
representation.
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• ReID Representation with extra labels: ReID using extra labels (for instance,
object features such as color and type) has been previously explored using a simple
and ineffective design. We propose a novel method that increases the interaction
between the extra labels and image features to create a more robust final repre-
sentation. Furthermore, we propose a generic module that creates a compensated
feature representation that is by definition always better than non-compensated
representation.

• ReID applied to MOT: ReID applied to MOT has ignored an important problem,
where occlusions are too difficult to handle by ReID. Because of this, current MOT
designs tend to confuse the features of different ID objects when objects of the target
class occlude each other. We propose a novel adaptive weight method that will use
ReID features only in the cases where it can be really beneficial.

1.5 Publications

During the development of this research work, we published Top-DB-Net [79] and At-
tributeNet [80], which explore research questions Q1 and Q2, respectively. Furthermore,
we pre-printed ReID guided MOT [81], which explores research question Q3:

1. R. Quispe, H. Pedrini. “Top-BDB-Net: Top Batch DropBlock for Activation En-
hancement in Person Re-Identification”. 25th International Conference on Pattern
Recognition (ICPR), pp. 2980-2987. Milan, Italy, January 2021.

2. R. Quispe, C. Lan, W. Zeng, H. Pedrini. “AttributeNet: Attribute Enhanced Vehicle
Re-Identification”. Neurocomputing, vol. 465, pp. 84-92, November 2021.

1.6 Text Organization

This text is organized as follows. In Chapter 2, we review the literature focusing on
related methods for both ReID and MOT. In Chapter 3, we introduce the metrics used
in the result evaluation, data sets and hardware/software used in the experiments. In
Chapters 4, 5 and 6, we present and discuss our developed methods. Finally, we describe
the concluding remarks of this thesis and some directions for future work in Chapter 7.
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Chapter 2

Background

The term ReID was first stated by Zajdel et al. [109] as a variation to the people tracking
problem [95]. In this chapter, we introduce a background for ReID and MOT, which
includes fundamentals and literature review of relevant related work.

2.1 Fundamentals

This section briefly describes some relevant concepts related to the Multi-Object Tracking
and Re-Identification problems, which aim to help in the understanding of the techniques
developed in this work.

2.1.1 Deep Neural Networks

Machine Learning (ML) [1, 3, 130] has evolved and moved to the use of Deep Neural
Networks (DNNs) in the last ten years. Previously, ML methods focused on designing
features that could accurately represent the input to the intended task. Later, DNNs
created a new paradigm where these features are automatically learned from the data and
research has focused on designing and guiding DNN to learn task-relevant features.

In this work, DNNs are used to tackle the challenging ReID and MOT. The type of
DNNs we most used in this work are Convolutional Neural Networks (CNNs). CNNs
became really popular for computer vision tasks after the outstanding results they achieved
in the ImageNet Challenge [83]. Over the years, the use of Transformers [94] has become
more popular. In this work, we do not use Transformers directly in our methods, but we
compare our results with them.

In our first two approaches, we use ResNet [31]. ResNet was designed to efficiently
train deep models by adding a skip connection between layers, which allows information
to flow better during the learning process. In our third work, we use networks based on
ResNet [31], but with extra modifications such as Deep Layer Aggregation (DLA) [129]
and U-Net [10].
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Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a specific type of Deep Neural Network. The
main difference between this type of network is the use of convolutional kernels that become
the correlation operation [25]. These kernels learn to extract patterns from small parts
(e.g., active fields) from the input image. Stacking multiple layers of these convolutional
layers allows CNNs to learn complex patterns from input images. For instance Figure 2.1
shows learned patterns at different depth layers of a CNN.

Figure 2.1: Examples of CNN learned patterns. At the initial layers, the network learns to
recognize lines in different orientations and is able to recognize human faces in the deepest
layers [54].

ResNet

ResNet is a specific type of CNN [31]. It was designed to alleviate the vanishing gradient
problem. In order to do so, a skip connection is added to each layer, such that the gradient
from deeper layers has a direct backpropagation path to the shallower layers. This CNN
is important for our work since we used it as the backbone for all proposed methods.
Figure 2.2 shows the implementation of the residual block, which is the core part of a
ResNet.

2.1.2 Attention

The concept of attention [29, 72] in DNNs refers to the ability of networks to learn and
focus to extract more information from certain areas of input images. In this work, we use
this concept to improve the overall feature representation and to analyze the effectiveness of
our methods. This concept is closely related to Transformers [94]. These types of networks
are generic feature extractors that were initially used in Natural Language Processing
(NLP) [9, 17, 70], but were later also adopted in computer vision. The main advantage of
attention-based methods is that they assume no prior from the data, are versatile and can
be used in multi-model learning. However, they also require more time and data to train.
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Figure 2.2: Implementation of a residual block. The identity connection allows to alleviate
the vanishing gradient problem [31].

In our first approach, we explicitly use the attention clue to push our network to
learn stronger features. In our second approach, we show that our method improves the
attention that the network learns to represent attributes.

2.1.3 Re-Ranking

Re-Ranking has been widely studied in the context of image retrieval [123]. This process
is described as a refinement step after an initial set of documents (e.g., bounding boxes
for ReID) are retrieved. Figure 2.3 shows an example of the Re-Ranking process where
the distance between retrieved candidates is further used for consistency matching and
refinement.

Figure 2.3: Example of ReID process. First row shows the initial set of retrieved bounding
boxes for query Q, second row shows the list of neighbors (e.g., list of possible matches)
used to refine results, and third row shows the re-ranked results [123].
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2.2 ReID

Although ReID has its origins in tracking, unlike tracking algorithms, ReID does not
depend on the hypotheses of constancy. Thus, it is a more complex problem due to
considerable variations in biometric profile, position, appearance and point of view [95].

In this section, we focus on approaches that are strongly related to our proposed
methods [79, 80], which includes P-ReID and V-ReID. For each scenario, we include a
generic analysis and a table that summarizes the main ideas of the analyzed methods.

P-ReID

Many early works in the ReID context considered it as a classification task. This is
mainly due to the fact that most of the datasets [27] available at that time had only a
few instances of each person. Because of this, various methods based on handcrafted
features [8, 13, 34, 35, 50] were initially proposed.

With the popularization of deep learning and ReID, many datasets with larger amounts
of instances per person in real-world scenarios have been made available [52, 82, 119, 121,
123] and deep networks-based methods have become the standard [126, 128].

This has brought two side effects: (i) the most popular datasets already include
a predefined training and testing splits – which helps with validation protocols and
comparison among methods – and (ii) ReID turned into a retrieval problem – thus,
measures such as Cumulated Matching Characteristics (CMC) and Mean Average Precision
(mAP) are widely used.

Several proposed methods for ReID use specific prior related to a person’s nature, such
as pose and body parts [7, 47, 51, 78, 120]. However, labels such as segmented semantic
regions and body skeleton that are required for these types of methods are not available
in current ReID datasets. Thus, they usually leverage datasets proposed for other tasks
captured in different domains, which introduces noise during training and makes the
learning process more complicated.

On the other hand, there are methods [14, 37, 53, 104] that learn to encode rich
information directly from the input images without relying on other types of signals.
Most methods in this category use the concept of attention in their pipeline. Thus, their
approaches expect the networks to learn to focus on discriminative regions and encode
those parts. However, assuming that the availability of consistently discriminative regions
may introduce errors, since occlusions are a major problem in the context of ReID due to
drastic view changes.

To further improve ReID performance, the literature has proposed re-ranking [84, 123]
and augmentation [122, 124] approaches. The former methods can improve ReID results
by a huge margin, which makes it unfair to compare pipelines that use them with pipelines
that do not use them. Therefore, since several state-of-the-art methods report results
with and without re-ranking, our comparison with them is made separately for these two
scenarios.

Table 2.1 shows an overview of related methods for P-ReID.
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Table 2.1: Overview of relevant methods for P-ReID.

Method Key Ideas

BDB [14] Erases random regions of feature tensor to enhance activations.

IANet [37] Models interdependencies between spatial features and combines
correlated features between body parts, which increases the feature
representation capability of the network.

HA-CNN [53] Focuses on improving methods based on bounding methods by learn-
ing a combination of soft pixel attention and hard regional attention
along with simultaneous optimization of feature representations.

SONA [104] Models local and non-local relationships via second-order feature
statistics.

k-Reciprocal [123] Re-Ranking method based on hypothesis: if a gallery image is similar
to the probe in the k-reciprocal nearest neighbors, it is more likely
to be a true match.

V-ReID

For vehicle ReID, many approaches explore Generative Adversarial Networks (GANs) [45],
Graph Networks (GNs) [63, 86], Semantic Parsing (SP) [68] and Vehicle Part Detection
(VPD) [30, 112] to improve performance. Some of them tend to describe vehicle details [45]
and local regions [30, 112].

PRND [30] and PGAN [112] detect predefined regions (for instance, back mirrors, light,
wheels, among others) and describe them with deep features. Some works aim to handle
drastic viewpoint changes [63, 68].

Some works explore attribute information [28, 58, 62, 76, 98] or combine attributes with
other clues [49, 92, 117]. Most previous attribute-based works use attribute information
to regularize the feature learning [49, 58, 62, 76, 92, 98, 117]. In general, they regress
the attribute classes from the backbone features, along with the ReID supervision based
on the backbone features. However, using separate heads for different tasks ignores the
interaction between the two tasks, where the attribute branches should serve for better
ReID.

Table 2.2 shows an overview of related methods for V-ReID.

2.3 MOT

MOT Methods follow different fashions, including tracking-by-detection [55, 74, 111, 113,
114], tracking-by-regression [2, 4, 52, 91] and more recently tracking-by-attention [67]. In
this work, we focus on tracking-by-detection because its interaction with ReID has been
widely studied.

Tracking-by-detection methods have two steps: detection and association. In the first
step, each frame is processed independently to detect the bounding boxes of the target class
objects. In the second step, the relationship of these bounding boxes is analyzed to assign
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Table 2.2: Overview of relevant methods for V-ReID.

Method Key Ideas

SAVER [45] Modifies the input image with the vehicle details erased using a
GAN. Then, this synthetic image is combined with the input image
to create a new version with the details visually enhanced for ReID.

StRDAN [49] Leverages synthetic and real data to improve the feature represen-
tation capability.

PCRNet [63] Describes each vehicle view based on semantic parsing and also
encodes the spatial relationship between them using GNs.

SAN [76] Proposes a stripe based network that is combined with vehicle
attribute learning. In this case, both stripe and attribute heads
share the backbone.

PAMTRI [92] Estimates vehicle viewpoint to extract key points, segments and
heatmaps. These clues aim to create a view invariant feature.
Moreover, augmentation based on synthetic images and vehicle
attributes are used.

AGNet [98] Uses vehicle attributes to define an attention mask to filter informa-
tion from the backbone feature tensor.

DF-CVCT [117] Uses a GAN to augment viewpoints and leverages vehicle attributes
as gates to regulate the flow of information of different layers of the
backbone in the final representation.

an ID to them. Most of the works tend to focus on the detection step [55, 74, 111, 113] and
a few of them on the second step [114]. Our work also focuses on the first step. Therefore,
in this review, we will focus on those methods. However, we will describe ByteTrack [114]
because we use it in order to compare our method against the state of the art.

Table 2.3 shows a list of related methods for MOT.

2.4 Final Considerations

In this chapter, we introduced key concepts and methods related to our research work. In
the next chapter, we introduce the validation protocols, including metrics and datasets
that we used to validate our approaches.
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Table 2.3: Overview of relevant methods for MOT.

Method Key Ideas

SAVER [45] Modifies the input image with the vehicle details erased using a
GAN. Then, this synthetic image is combined with the input image
to create a new version with the details visually enhanced for ReID.

JDE [101] One of the first works that proposed to use ReID combined with
Detection for MOT. This approach aims to work in real-time and is
anchor-based.

FairMOT [113] This is an evolution on top of JDE [101] as it follows an anchor-free
design. This change pushed the performance and made this method
the best at the time of its publication.

CSTrack [55] This is another evolution on top of JDE [101], which focuses on
the competition between detection and ReID tasks, presenting a
disentangling method that separates the information learned by
each head.

MOTR [111] This is a transformer-based method that aims to unify detection
and association into an end-to-end process. It includes a temporal
aggregation module that aims to track the changes of each branch.

ByteTrack [114] This method focuses on the association step and proposes a two-step
process that uses previously ignored detections and associates them
using a more simple feature representation.

QuasiDense [74] This method introduces dense matching to associate candidate
bounding boxes at each pixel. It combines this process with similarity
learning (for instance, ReID).

TraDes [103] This approach introduces tracking clues in the process of detection
learning. It learns to infer offset by a cost volume, which improves
segmentation and detection.
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Chapter 3

Materials

In this chapter, we present the metrics and datasets used to validate our methods. In
addition, we describe the hardware and software resources used during the experiments.

3.1 Metrics

This section describes the metrics employed to assess the achieved results in the problems
investigated in this thesis.

3.1.1 ReID

ReID can be considered an information retrieval task where, for a given query image, we
aim to retrieve a list of candidate images sorted by the distance to the query and we
expect them to have the ID as the query. Because of this, the most common metrics to
evaluate ReID methods are: Cumulative Matching Characteristic (CMC) curve and mean
Average Precision (mAP).

• CMC: This metric represents the probability that a correct match to the query
ID appears in the first k items of the candidate list. CMC ignores the amount of
ground-truth matches that are in the gallery because only the first match is counted.
In the CMC curve, the abscissa axis represents the k-th rank, whereas the ordinate
axis is defined as

f(k) =
in(k)

#queries
(3.1)

where in(k) is the number of queries that have a relevant element inside the first k

items recovered. To compare methods it is common to consider k = 1, denoted as
rank-1/R1, and k = 5, denoted as rank-5/R5.

• mAP: Different to CMC, mAP metric considers all the retrieved items. It also
considers the order in which they are retrieved. mAP is defined as

mAP =
AP

#queries
(3.2)
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where AP is defined as

AP =

n∑
k=1

P (k)· rel(k)

#relevant items
(3.3)

where n is the number of retrieved items, rel(k) is equal to 1 if the k-th item is

relevant for the query and 0 otherwise, and P (k) =

k∑
i=1

rel(i)

k
.

3.1.2 MOT

MOT algorithms can be measured using various types of metrics, where each of them
focuses on different aspects of the algorithms. For instance, ID metrics focus on how many
of the detected bounding boxes have a correctly assigned ID, while other metrics focus
on how good the detected bounding boxes are. In this work, we used CLEAR metrics,
Detection Metrics and ID Metrics since this thesis focuses on ReID.

• CLEAR Metrics: These metrics have become popular as they consider both the
quality of the detected bounding boxes and the assigned IDs. We use on Multi-Object
Tracking Accuracy (MOTA), which is expressed as:

MOTA = 1− FN + FP + IDSW
GT

(3.4)

where

– FN: number of target bounding boxes that were not detected.

– FP: number of bounding boxes detected that are not target.

– IDSW: number of identity mismatches. This is, if a target x is assigned to track
y and the last known assignment was z ̸= y.

– GT: number of ground truth bounding boxes.

• Detection Metrics: These metrics focus on the bounding box detected. We use
Detection Precision (DP) and Detection Recall (DR), which are defined as:

DP =
DTP

DTP + DFP
(3.5)

DR =
DTP

DTP + DFN
(3.6)

where

– DTP: number of True Positive Detections.

– DFP: number of False Positive Detections.

– DFN: number of False Negative Detections.
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• ID Metrics: This type of metrics compare the ground truth IDs of each bounding
box against their predicted ID. We use IDF1, which is defined as:

IDF1 =
2

1

IDP
+

1

IDR

(3.7)

where
IDP =

IDTP
IDTP + IDFP

(3.8)

IDR =
IDTP

IDTP + IDFN
(3.9)

– IDTP: number of bounding boxes with ID correctly assigned.

– IDFP: number of bounding boxes with false positive IDs assigned.

– IDFN: number of bounding boxes with false negative IDs assigned.

3.2 Datasets

This section presents the main aspects related to the datasets used in our experiments.

3.2.1 ReID

In this work, we tackle two ReID scenarios: Person ReID and Vehicle ReID. We show
an overview of the main characteristics of all the datasets in Table 3.1 and examples of
images in Figures 3.1 and 3.2.

Table 3.1: Overview of characteristics of datasets used for ReID.

Dataset Release Time # Images # Cameras # IDs

CUHK03 2014 13,164 10 1,467
Market1501 2015 32,217 6 1,501
DukeMTMC-ReID 2017 36,441 8 1,812

Vehicle-ID 2016 221,763 2 26,267
VeRi776 2017 50,000 20 776
VeRi-Wild 2019 416,314 174 40,671

Person ReID

• CUHK03 [52]: It was the first dataset large enough for ReID. The images are
obtained from various months of recordings at the Chinese University of Hong Kong.
Initially, the validation protocol was based on 20-fold validation, but later it was
changed to fix a split that includes 767 IDs for training and 700 IDs for testing. It
exhibits recurrently missing body parts, occlusions and misalignment. We tested
its two versions: CUHK03 (D), that uses bounding boxes detected the Deformable
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Part Model (DPM) [19], and CUHK03 (L), that includes manually labeled bounding
boxes.

• Market1501 [119]: It aims to simulate a more real-world scenario, where the images
are captured in a market in front of a campus supermarket using five 12080×1080 HD
cameras and one 720×576 SD camera. The bounding boxes are generated through
the Deformable Part Model (DPM) [19], but their quality is in general worse than
CUHK03(D). This dataset has been commonly used in the ReID literature to fix
training/testing splits, containing 750 training IDs and 751 testing IDs.

• DukeMTMC-ReID [82, 121]: This is the largest dataset we used for Person ReID.
It was originally designed for tracking and then adapted for ReID. It has hand-drawn
bounding boxes with various backgrounds of outdoor scenes. The validation is based
on 702 IDs for training and 702 IDs for testing.

CUHK03 Market1501 DukeMTMC-ReID

Figure 3.1: Examples of images for Person ReID datasets used in our work.

Vehicle ReID

• VeRi776 [61]: It contains images captured from real-world unconstrained surveillance
scenes and includes attribute labels for vehicle color and type. The images present
different viewpoints, illumination, resolutions and occlusions. It includes information
about license plates, but we do not use them. It considers 576 IDs for training and
200 IDs for testing.

• Vehicle-ID [58]: It includes images captured during daytime from multiple surveil-
lance cameras distributed in a small city in China. It has images captured from
either the front or back views. The training set contains 13,134 IDs and the testing
set contains IDs 13,133 vehicles. The testing data is further divided into three sets
with 200 (small), 1,600 (medium) and 2,400 (large) IDs. Some images in this dataset
have attribute labels for vehicle color and type.
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• VeRi-Wild [64]: This is the largest vehicle ReID dataset, where images were
captured from a large urban district (more than 200 km2 captured for a period of one
month for 24 hours. Therefore, it is considered a realistic dataset, containing severe
changes in background, illumination, viewpoint and occlusions. It also includes
attribute labels for vehicle model, color and type. The training set has 40,671 IDs
and the testing set has 10,000 IDs. The testing set is divided into three sets with
3,000 (small), 5,000 (medium) and 10,000 (large) IDs.

VeRI776 Vehicle-ID VeRi-Wild

Figure 3.2: Examples of images for Vehicle ReID datasets used in our work.

3.2.2 MOT

In this work, we focus on MOT using people as the target class. Therefore, we use the
two most popular datasets [15, 69] in this setup. During training, we leverage pre-training
in datasets such as MS-COCO [56] and Crowd Human [85], but they are not the target
datasets for our analysis, so we do not describe them in detail in this section. Table 3.2
shows the main characteristics of MOT17 [69] and MOT20 [15]. Figure 3.3 shows some
image examples.

Table 3.2: Overview of characteristics of datasets used for MOT.

Dataset Release Time # Tracks # Boxes Avg. Density

MOT17 2017 1,331 300,373 21.6
MOT20 2020 1,501 765,465 170.9

• MOT17 [69]: This dataset was an evolution of MOT15 [48] as it focused on more
realistic scenario. The ground truth were labeled from scratch using several detection
algorithms with a more consistent protocol. In our work, we focus on the ground
truth generated using a Faster R-CNN [24]. It has 7 sequences for training and 7
for testing. The testing set is closed, so during ablation we split the training set in
half to analyze our proposed method. Some of its main challenges include different
viewpoints, various weather and illumination conditions, and with/without camera
motion. Extra labels include sitting people, vehicles and occluding objects.
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• MOT20 [15]: It was proposed to further challenge the MOT scenarios. It has 8
sequences with very crowded scenes with up to 246 pedestrians per frame. The
sequences were recorded both outdoors and indoor, including day and night. This
dataset has more than twice as many bounding boxes as MOT17 [69]

Figure 3.3: Examples of images for MOT used in our work.

3.3 Hardware and Software Resources

All experiments require intensive computational power, especially due to the large amount
of images and size of the networks. Our main resources are graphics processing units
(GPUs), which allow faster training of Deep Neural Networks.

The devices are available in the Laboratory of Visual Informatics (LIV) of the Institute
of Computing at University of Campinas (UNICAMP), which is equipped with GeForce
GTX 1080 Ti and TITAN V GPU cards with 11 and 12 GB of memory, respectively. In
addition, we also used clusters from Microsoft Research, specifically nodes with 1, 2, 4
and 8 Tesla v100 GPUs (standard NDv2-series), each GPU with 16 GB of memory.

The main programming language is Python due to the availability of a large number
of libraries for deep learning, numeric computation and image processing. Some libraries
that can be highlighted are NumPy1, SciPy2, scikit-learn3, PyTorch4 and Matplotlib5.

1https://www.numpy.org
2https://www.scipy.org
3https://scikit-learn.org
4https://www.pytorch.org
5https://matplotlib.org

https://www.numpy.org
https://www.scipy.org
https://scikit-learn.org
https://www.pytorch.org
https://matplotlib.org
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3.4 Final Considerations

In this chapter, we introduced the validation protocol and tools used during the development
of our research work. In the next chapter, we introduce our first method for ReID, which
is specifically designed for person ReID and aims to create strong feature representation.
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Chapter 4

Top-DB-Net: Learning Enhanced
Features from Less Activated Regions

In this chapter, we introduce Top-DB-Net, a supervised method for Person Re-Identification
(P-ReID) that focuses on improving the feature embedding learned by the DNN through
the exploration of information from low activated regions.

4.1 Introduction

Numerous approaches have been proposed using person-related information, such as pose
and body parts [7, 47, 51, 78, 120]. However, P-ReID datasets only provide ID labels.
Thus, these methods rely on other datasets proposed for related tasks during the training.
This dependency introduces further errors in predictions and motivates the creation of
general methods that do not learn from outer information.

In this section, we introduce the Top DropBlock Network (Top-DB-Net) for the P-ReID
problem. Top-DB-Net is designed to further push networks to focus on task-relevant
regions and encode low informative regions with discriminative features.

Our method is based on three streams consisting of (i) a classic global stream as most
of the state-of-the-art methods [7, 14, 47, 51, 65, 78, 120], (ii) a second stream drops1 most
activated horizontal stripes of feature tensors to enhance activation in task-discriminative
regions and improve encoding of low informative regions, and (iii) a third stream regularizes
the second stream avoiding that noise generated by dropping features degrades the final
results.

As a result of our proposed method, we can observe in Figure 4.1 that the activation
maps [108] generated by our baseline, focus both on body parts and background, whereas
Top-DB-Net focus consistently on the body with stronger activation to discriminative
regions.

Contrasting our Top-DB-Net with BDB Network [14], there are three differences: (i)
instead of dropping random features, our method drops only features with top (the largest)
activations, which stimulates the network to maintain performance using only features

1We use the terms remove and drop interchangeably to indicate that a tensor region has been zeroed
out.
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Input Baseline Baseline Ours Ours

Figure 4.1: Comparison of activation maps generated by the proposed method and a
baseline [14]. The first column shows the input images, the second and fourth columns
present the activation maps that overlap the input images, and the third and fifth columns
show a mask generated by thresholding the activation maps.

with inferior discriminative power (the lowest activations), (ii) rather than using the same
drop mask for every feature map in the batch, our method creates an independent drop
mask for every input based on its top activations, and (iii) dropping top activated features
creates noise inside the second stream (Figure 4.2), thus we introduce a third stream that
forces the features before the dropping step to be still discriminative for P-ReID, which
works as a regularizer due to the multi-task principle [25].

Input
image

Activation BDB
drop mask

Our
drop mask

Figure 4.2: Input image, its activation map after epoch 120 and drop masks. BDB creates
a random drop mask, while our method creates a mask that drops most activated regions.

We use the same definition for ’batch’ as Dai et al. [14], that is, “group of images
participating in a single loss calculation during training”. The intuition of why our
implementation is better can be explained by analyzing Figure 4.2. For an input image,
we can see that the major activations are over the upper body. BDB Network [14] creates
a random drop mask that, in this case, removes the lower body during training. This
would encourage the network to continue focusing on the upper body. On the other hand,
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our method controls which regions are being dropped and encourages the network to
learn from the lower body. Our results show that this helps during the learning process
(Figure 4.5) and generates activation maps better spread over the foreground (Figure 4.1).

The evaluation of our proposed method is conducted through extensive experiments on
three widely used datasets for P-ReID. We consider the BDB Network [14] as a baseline for
our work and demonstrate that our Top-DB-Net outperforms it by up to 4.7 percentage
points in the CUHK03 dataset [52]. Moreover, our results show competitive results against
state-of-the-art approaches.

4.2 Baseline

We decided to use BDB Network [14] as the baseline for our proposal because of its
similarity with our approach. BDB Network uses ResNet-50 [31] as backbone as in many
ReID works, however, a slight variation is made by removing the last pooling layer. Thus,
a larger feature map is obtained, more specifically, with a size of 2048×24×8.

On top of the backbone, two streams are used. The first stream, also known as global
stream, appends a global average pooling layer to obtain a 2048-dimensional feature vector.
Then, a 1×1 convolution layer is used to further reduce the dimensions. The second
stream, named as Batch DropBlock, randomly removes regions on training batches. We
denote this dropping module as Batch DropBlock. Then a global maximum pooling layer
is appended by creating a 2048-dimensional feature vector. A maximum pooling helps to
dismiss the effect of dropped regions. Finally, a fully connected layer is used to reduce the
feature vector to 1024 dimensions.

Batch DropBlock is defined to remove a region of a pre-established size based on a
ratio of input images. Since BDB Network [14] reports the best results in regions with
a third of height and the same width as the feature map, our Top DropBlock is defined
specifically for the same scenario, this is, removing horizontal stripes.

4.3 Top-DB-Net

Our proposed network shares the same backbone as the baseline. Global, Top DropBlock
and regularizer streams (Figure 4.3) are then appended. Global streams aim to extract
general features directly from the backbone, following various previous approaches [14,
65, 78]. The Top DropBlock stream appends two BottleNeck layers [31] to the backbone
stream and removes horizontal stripes from the most activated regions in order to push
the network to maintain discriminability with less relevant data.

Given a training batch of n images, the most activated (the most informative) stripes
are defined for each image independently: the backbone outputs n feature maps F of
size c×h×w, where c, h and w indicates channels, height and width respectively. We
transform F into an activation map A based on the definition proposed by Zagoruyko and
Komodakis [108]:

A =
c∑

i=1

|Fi|p (4.1)
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Triplet Loss
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Triplet Loss
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Triplet Loss
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Figure 4.3: Proposed Top DropBlock Network (Top-DB-Net). It is composed of three
streams that are able to focus on reliable parts of the input and encode low informative
regions with high discriminative features for enhanced performance. It is trained using
triplet loss and cross entropy. During the testing stage, the outputs of Global and Top
DropBlock streams are concatenated.

where Fi represents every tensor slide of size h×w. Assuming that p > 1 by definition [108],
we will see that p value is not relevant to our approach.

Based on A, we define the relevance R of each stripe rj as the average of the values on
row j:

rj =

w∑
k=1

Aj,k

w
(4.2)

Finally, we can zero out rows with the largest rj values. We denote this module as
Top DropBlock. For the dropping process, we create a binary mask TDM, named Top
Drop Mask, of size c×h×w for every feature map F and apply the dot product between
TDM and G, where G is a tensor with the same size as F , which is the result of applying
two BottleNeck layers [31] on F :

TDMi,j,k =

{
0, if rj ∈ the largest values

1, otherwise
(4.3)

such that 1 ≤ i ≤ c and 1 ≤ k ≤ w.
It is worth mentioning that, from Equations 4.1 to 4.2, rj can be expressed as:

rj =

c∑
i=1

w∑
k=1

|F p
i,j,k|

w
(4.4)
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Thus, the value of p is not relevant because |x|p ≤ |x|p+1 for every p > 1 and we use rj
specifically for ranking.

Due to the |.| function in the rj definition, the most relevant stripes represent areas in
F with values besides zero, both positives and negatives. We can consider those to hold
more discriminative information. By removing them, we push the network to learn to
distinguish between samples with less available information, thus enhancing its capabilities
to encode low discriminative regions. However, if the dropped regions are too large, Top
DropBlock can create noise in G due to false positives generated by removing regions that
represent unique regions between different ID inputs.

To alleviate this problem, we propose a regularizer stream that will help maintain
performance based on the multi-task principle [25]. This stream is only used in the training.
It appends a global average pooling layer to G and is then trained for P-ReID. Thus, it
encourages G to keep the information relevant to the P-ReID.

The loss function used for the three streams is the cross entropy with the label smoothing
regularizer [90] and triplet loss with hard positive-negative mining [33]. During the testing
process, the output of global and Top DropBlock streams are concatenated.

4.3.1 Implementation Details

All our experiments were conducted on a single Tesla v100 GPU. Due to this, we updated
two items in the baseline code2: (i) we trained it with batch size of 64, instead of 128,
and (ii) we reduced the learning rate by a factor of 0.5× because of the “linear scaling
rule” [26] to minimize the effects of training with smaller batch size.

During the training step, input images are resized to 384×128 pixels and augmented
by random horizontal flip, random zooming and random input erasing [22]. As mentioned
previously, our Top DropBlock stream removes horizontal stripes, thus width dropping
ratio is 1. Following our baseline configuration, we use a height drop ratio of 0.3. During
the testing step, no drop is applied.

Top-DropDB-Net follows the same training setup than our baseline, based on Adam
Optimizer [46] and a linear warm-up [26] in the first 50 epochs with initial value of 1e− 3,
then decayed to 1− e4 and 1e− 5 after 200 and 300 epochs, respectively. The training
routine takes 400 epochs. Due to the randomness of the drop masks used in our baseline
and the methods used for data augmentation, we performed each experiment 5 times and
reported the mean and standard deviation. This will allow for a fairer comparison with
our method, baseline and ablation pipelines.

To combine cross entropy loss with label smoothing regularizer [90] and triplet loss
with hard positive-negative mining [33], we used the neck method [65].

4.4 Results

In this section, we show the results for Top-DB-Net. We start with an ablation study
to understand the effects of each stream and compare our Top DropBlock with Random

2We used author’s [14] original source code available at https://github.com/daizuozhuo/
batch-DropBlock-network

https://github.com/daizuozhuo/batch-DropBlock-network
https://github.com/daizuozhuo/batch-DropBlock-network
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DropBlock. Then, we compare our method against the state of the art.

4.4.1 Ablation Study

We evaluate the effects of Top DropBlock and Regularization streams. Furthermore, we
discuss the effects of Top DropBlock during the learning process and compare it to our
baseline.

Influence of the Top DropBlock Stream

In this section, we aim to analyze the effect of our Top DropBlock stream. We train Top-
DB-Net by removing the DropBlock stream and maintaining the global and regularization
streams using the two Bottleneck layers. We refer to this version as “no-drop Top-DB-Net”.
During testing, we concatenate the output of global and regularization branches because
both streams are trained with the same loss function. Results for this comparison are
shown in Table 4.1.

Table 4.1: Influence of Top-DB-Net streams and comparison with baseline.

Market1501 DukeMTMC-ReID CUHK03 (L) CUHK03 (D)

Method mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1

no-drop Top-DB-Net 84.7 ± 0.1 94.4 ± 0.3 72.7 ± 0.2 86.1 ± 0.3 70.7 ± 0.4 73.8 ± 0.6 68.4 ± 0.4 71.9 ± 0.3
no-reg Top-DB-Net 83.9 ± 0.1 93.9 ± 0.2 71.1 ± 0.2 86.1 ± 0.4 71.4 ± 0.4 74.6 ± 0.8 69.4 ± 0.4 73.5 ± 1.0
Top-DB-Net 85.8 ± 0.1 94.9 ± 0.1 73.5 ± 0.2 87.5 ± 0.3 75.4 ± 0.2 79.4 ± 0.5 73.2 ± 0.1 77.3 ± 0.5
Baseline 85.2 ± 0.1 94.1 ± 0.1 73.2 ± 0.2 85.6 ± 0.3 72.2 ± 0.3 74.7 ± 0.6 70.3 ± 0.2 73.7 ± 0.4

In all datasets, we can see that removing the Top DropBlock stream decreases per-
formance, which is also true for the standard deviation. On the Market1501 [119] and
DukeMTMC-ReID [82, 121] datasets, the difference is usually less than 1 percentage points
for mAP and rank-1. However, on the CUHK03 [52, 123] dataset, we can observe significant
differences: performance decreases 4.7 percentage points in mAP and 5.6 percentage points
in rank-1 on CUHK03(L) and decreases 4.8 percentage points in mAP and 5.4 percentage
points in rank-1 on CUHK03(D). The difference in effects between datasets may be related
to the fact that CUHK03 is a more challenging benchmark. This same pattern is repeated
when analyzing the effect of our Regularization stream and baseline.

These results are expected because the global and regularization streams follow the
same optimization logic: push the backbone to encode relevant ReID information from
the input images. On the other hand, when we use our Top DropBlock stream, we further
encourage the backbone to recognize relevant regions and learn to describe less informative
regions with richer features.

Influence of the Regularization Stream

In this section, our goal is to show that the regularization stream, in fact, helps to deal
with the noise generated by the dropping step. For this purpose, we train a version of
the Top-DB-Net without this stream, named “no-reg Top-DB-Net” and compare it to
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120 240 400 120 240 400

Figure 4.4: Activation maps for Top-DB-Net in two images at different epochs. The
number below the images indicates the epoch.

the proposed Top-DB-Net. We can see in Table 4.1 a clear difference when using the
regularization stream.

Using our regularization stream, we observe improvements of 1.9 percentage points
and 1 percentage points for mAP and rank-1, respectively, on Market1501 dataset [119].
DukeMTMC-ReID [82, 121] also shows improvements of 2.4 percentage points for mAP and
1.4 percentage points for rank-1. Similar to previous ablation analysis, the most substantial
changes are for CUHK03 [52, 123]: we can observe improvements of 4.8 percentage points
for rank-1 and 4 percentage points for mAP on CUHK03(L), and 3.8 percentage points for
rank-1 and mAP on CUHK03(D).

Random DropBlock vs Top DropBlock

Results in Table 4.1 show that our Top-DB-Net is better than our baseline in almost all
metrics. The only metric with similar performance is mAP for DukeMTMC-ReID. The
biggest differences are again on CUHK03 [52, 123] dataset, with up to 4.7 percentage points
improvement for rank-1 and 3.2 percentage points for mAP when using our Top-DB-Net.
To further understand the difference in performance, we explore activation maps and their
relation with the core of our method and the baseline: DropBlocks. Figure 4.6 shows the
differences between the two dropping methods.

In Figure 4.5, we compare the evolution of rank-3 at different epochs for our Top-DB-
Net and baseline. We also show the evolution of the activation maps. This example shows
that our Top DropBlock improves the dispersion of activation maps in the foreground
and the feature extraction from images. At 120th epoch, the activations of the query
are similarly spread over the upper body and feet, both in the baseline and our method.
However, we can see that, in the gallery, our method is better spread across the lower
body, causing Top-DB-Net to incorrectly obtain rank-1/2, confusing a person who shares
pants similar to the query. At 240th epoch, we can see that the baseline activations for the
query have barely changed. Moreover, because it focuses only on the upper-body and feet,
it is confused with images of a person with a similar upper body, but wearing a squirt with
similar color instead of pants. On the contrary, our Top-DB-Net changed its activations
for the query between 120th and 240th epochs, and also focused on the lower body.

For this specific example, this is because our Top DropBlock removes the upper body
regions and pushes the backbone to learn from the lower body since the 120th epoch,
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Query R1 R2 R3 Query R1 R2 R3 Query R1 R2 R3

(a) Baseline epoch 120 (b) Baseline epoch 240 (c) Baseline epoch 400

Query R1 R2 R3 Query R1 R2 R3 Query R1 R2 R3

(d) Top-DB-Net epoch 120 (e) Top-DB-Net epoch 240 (f) Top-DB-Net epoch 400

Figure 4.5: Comparison of activation and rank-3 evolution. The top and bottom sets show
images for our baseline and our proposed method, respectively. We can see that using
Top DropBlock, instead of Random DropBlock, makes the activations more spread out
over the person, which helps to create a better feature representation. Correct results are
highlighted in green, whereas incorrect results are highlighted in red.

Feature Map

Random Drop Mask
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IN Bottleneck

(a) Random DropBlock (Baseline)

Feature Map
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(b) Top DropBlock (Ours)

Figure 4.6: Differences between the Batch DropBlock and the proposed Top DropBlock.

which helps to correctly match rank-1/2/3. It is also possible to notice that, because our
Top DropBlock pushes the network to describe low informative regions with rich features,
at 240th epoch, our network has better features to describe lower body regions, so it fixes
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rank-1/2 errors of 120th epoch. Finally, at the 400th epoch, the baseline has still changed
very little the distribution of its activations and still focuses only on the upper body and
feet. It is able to obtain correct rank-2. On the other hand, our method still focuses on the
entire body, retrieves the same correct baseline rank-2 and offers more similarity3 to two
images that show a strong viewpoint change and occlusions. This shows the improvement
of the feature discriminability between 240th and 400th epochs.

Activation plots are useful for the interpretability of networks. In our case, our plots are
generated following Equation 4.1. This equation is also used to define our Top DropBlock
and Top Drop masks. This shows that the same tool used for interpretability can also be
applied during the learning process to enhance discriminability (Table 4.1).

In addition to quantitative improvements, we observe a clear improvement in the
quality of regions where backbone is concentrated. As shown in Figures 4.4 and 4.5, there
is a consistent and significant activation improvement between 120th and 240th epochs,
when they start to focus on broader body parts. From 240th to 400th epochs, we can see
that the activations become more stable and well spread out in the foreground, but with
an enhanced discriminability.

We use the activation definition by Zagoruyko and Komodakis [108] because it adjusts to
our network pipeline and drop objective. However, there is a previous work for ReID [107]
that uses CAM [125], an activation definition that introduces weights for each channel to
enhance the scope of network activation. Previous literature and our findings suggest that
methods used for interpretability may be useful to improve ReID and network activation
in general.

4.4.2 Comparison with State-of-the-Art Methods

Our method focuses on ReID using information extracted only from input images. Thus, in
our comparison with the state of the art, we consider methods in a similar way, for instance,
Zhu et al. [131] used the camera ID and Wang et al. [97] used the image time-stamp during
training. This extra information may bias the models to learn the mapping between the
camera and views or the time needed for a person to move from different viewpoints,
instead of extracting reliable information from images, so that they are not included in
our comparison.

Table 4.2 shows a comparison between our method and state-of-the-art approaches.
We compare the results separately when using re-ranking [123]. Our results are among the
top-6 results for both mAP and rank-1 on Market1501. We have a similar performance
for rank-1 on DukeMTMC-ReID, however, for mAP, we achieved results comparable to
state-of-the-art methods, such as OSNet [128], CAMA [107] and IANet [37]. We obtained
the second best rank-1 on CUHK03(L), third best mAP on both versions of CUHK03
and fourth best rank-1 on CUHK03(D). When using re-ranking, our method achieved
state-of-the-art results on CUHK03(L) and CUHK03(R) in both mAP and rank-1, as well
as best results for rank-1 on DukeMTMC-ReID, second best mAP on DukeMTMC-ReID
and second best on Market1501 in both mAP and rank-1.

3Shortest Euclidean distance between features from query and gallery images.
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Table 4.2: Comparison with state-of-the-art approaches. RK stands for re-ranking [123].
The sub-index indicates the ordinal position of this result (for instance, x3 indicates that
x is the third best result).

Market1501 DukeMTMC-ReID CUHK03 (L) CUHK03 (D)

Method mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1

BoT [65] 85.95 94.5 76.4 86.4 – – – –
PyrNet [66] 86.7 95.23 74.0 87.1 68.3 71.6 63.8 68.0
Auto-ReID [77] 85.1 94.5 – – 73.0 77.9 69.3 73.3
MGN [96] 86.94 95.71 78.43 88.74 67.4 68.0 66.0 66.8
DenSem [115] 87.63 95.71 74.3 86.2 75.2 78.9 73.1 78.23
IANet [37] 83.1 94.4 73.4 87.1 – – – –
CAMA [107] 84.5 94.7 72.9 85.8 – – – –
MHN [5] 85.0 95.14 77.2 89.12 72.4 77.2 65.4 71.7
ABDnet [6] 88.22 95.62 78.52 89.03 – – – –
SONA [104] 88.61 95.62 78.0 89.21 79.21 81.81 76.31 79.11
OSNet [128] 84.9 94.8 73.5 88.65 – – 67.8 72.3
Pyramid [118] 88.22 95.71 79.01 89.03 76.92 78.9 74.82 78.92
Top-DB-Net (Ours) 85.86 94.95 73.5 87.56 75.43 79.42 73.23 77.34

SSP-ReID+RK [78] 90.8 93.7 83.7 86.4 77.5 74.6 75.0 72.4
BoT+RK [65] 94.21 95.4 89.11 90.32 – – – –
PyrNet+RK [66] 94.0 96.11 87.7 90.32 78.72 77.12 82.72 80.82
Auto-ReID+RK [77] 94.21 95.4 – – – – – –
Top-DB-Net+RK (Ours) 94.12 95.52 88.62 90.91 88.51 86.71 86.91 85.71

4.5 Final Considerations

In this chapter, we introduced the Top-DB-Net for person ReID. Person DeID datasets
have less than two thousand different IDs. In the next chapter, we study a more challenging
scenario, that is, Vehicle ReID, where there are datasets with up to forty thousand different
IDs.
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Chapter 5

AttributeNet: Distilling Relevant
Information from Attribute Labels

In this chapter, we introduce AttributeNet, a supervised method for Vehicle Re-
Identification (V-ReID) that efficiently leverages vehicle attribute labels. This method
shows that distilling only task-oriented attribute information is relevant for a better feature
embedding.

5.1 Introduction

Recently, there is a trend to explore additional clues for better V-ReID, such as using
semantic maps [68], attributes (such as type and color) [49, 76, 92, 98, 117], viewpoints [12],
and vehicle parts [12, 63, 112]. In this work, we focus on the exploration of attributes to
enhance the discrimination power of feature representations. Attributes are in general
invariant to viewpoint changes and robust to environment alterations.

Most of the previous attribute-based works [49, 58, 62, 76, 92, 98, 117] share a common
characteristic in their design: a global feature representation is extracted from an input
image using a backbone network (for instance, ResNet [31]), where this feature is followed
by two types of heads, one for re-identification (ReID), and the other for attribute
recognition. We refer to this design as the Vanilla-Attribute Design (VAD) and illustrate a
representative VAD based Network (VAN) in Figure 5.1. One direct way to use the VAD
for V-ReID is to concatenate the embedding features generated from the backbone (that
is, global feature) and the attribute-based modules [62, 76].

VAD aims to drive the network to learn features that are discriminative for both V-
ReID and attribute recognition, where the attributes are in general invariant to viewpoint
and illumination changes. However, there is a lack of effective interaction between the
attribute-based branches and V-ReID branch, where the attribute modules learn features
for attribute recognition but are not explicitly designed to serve for V-ReID. Wang et al.
[98] explores attributes to generate attention masks, but these masks are used only to
filter the information from the global feature instead of introducing the rich attribute
representation into the final feature representation.

We propose Attribute Net (ANet) to enrich the interaction between the attribute
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Figure 5.1: Illustration of VAD based Network (VAN) for V-ReID. It is composed of a
backbone network that learns to extract information from an input image and n branches
to predict attributes based on attention modules. We use this VAN in our ANet as the
first part of our framework.

features and the V-ReID feature. ANet is designed to distill attribute information and
add it into the global representation (from the backbone) to generate more discriminative
features. Figures 5.1 and 5.2 (with input feature maps obtained from the VAN as illustrated
in Figure 5.1) present the proposed ANet. Particularly, we combine the feature maps
of different attribute branches to have a unique and generic representation G of all the
attributes.

We distill the helpful attribute feature from G and compensate it onto the global V-ReID
feature F to have the final feature map J , where the spatial average pooled feature of J is
the final ReID feature for matching. Moreover, we introduce a new supervision objective,
named Amelioration Constraint (AC), which encourages the compensated V-ReID feature
J to be more discriminative than the V-ReID feature F before the compensation from
attribute feature.

The main contributions of this work are:

• We propose a new architecture, named ANet, for effective V-ReID, which enhances
the interaction between the attribute-supervised modules and V-ReID branch. This
encourages the distilled attribute features to serve for V-ReID.
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Figure 5.2: Illustration of the Joint Module. Note that the network to extract feature maps
F , A1, · · · , An is shown in Figure 5.1 and is not shown here. We distill the helpful attribute
feature from G and compensate it onto the global V-ReID feature F to have the final feature
map J , where the spatial average pooled feature of J is the final ReID feature for matching.
Moreover, we introduce a new supervision objective, named Amelioration Constraint (AC),
which encourages the compensated V-ReID feature J to be more discriminative than the
V-ReID feature F before the compensation from attribute feature.

• We introduce an Amelioration Constraint (AC), which encourages the attribute
compensated feature to be more discriminative than the V-ReID feature before
compensation.

Experiments on three challenging datasets demonstrate the effectiveness of our ANet,
which outperforms baselines significantly and achieves state-of-the-art performance.

5.2 AttributeNet

Our proposed AttributeNet (ANet) is designed to exploit attribute information for effective
V-ReID. In previous works that use attributes, there is a lack of interaction between the
global V-ReID head and the attribute regression heads, which makes that the feature
information is not effectively exploited for V-ReID.



50

To address this issue, we propose ANet (as shown in Figures 5.1 and 5.2). It consists
of two parts: VAD based Network (VAN) and Joint Module (JM). VAN is based on a
Backbone with two heads, where one of them is to learn global V-ReID features and the
other to regress attributes. VAN outputs an initial feature representation of V-ReID and
multiple Attribute features from the input image. Then, the JM distills V-ReID-helpful
attribute information and compensates it into the global features. JM promotes the
interaction between the attribute branches and V-ReID branch. Furthermore, we propose
an Amelioration Constraint (AC), which encourages the attribute compensated feature to
be more discriminative than the original V-ReID feature before the compensation.

VAD-based Network

VAD based Network (VAN), shown in Figure 5.1, aims to learn V-ReID features and
regress attributes. This design is similar to previous literature work, where the attribute
branches are expected to drive the learning of robust features since the attributes are in
general invariant to illumination, viewpoints, etc.
Backbone. A backbone network is used to extract feature map F (I) ∈ Rh×w×c from an
input image I, where h, w and c are height , width and channels of F (I), respectively. We
follow the previous works and use ResNet [31] as the backbone.
V-ReID Head/Branch. On top of the backbone feature F (I), we append a spatial
global average pooling (GAP) layer followed by a fully-connected (FC) layer to generate
the V-ReID feature f(I) as

f(I) = Wf · GAP (F (I)) + bf , (5.1)

where Wf and bf denote the weights and bias of the FC layer used to reduce the dimension
of the pooled feature, Wf ∈ Rsf×c and bf ∈ Rsf , where sf is the predefined dimension of
the output. f(I) is followed by Triplet Loss Lf

tri and Cross Entropy Loss Lf
ID.

Attribute Heads/Branches. On top of the backbone feature F (I), we add n attribute
branches for attribute classification, where n is the number of available attributes in the
training dataset, one branch for each attribute. For the i-th attribute branch, we use a
spatial and channel attention module to obtain attribute-related feature Ai(I) ∈ Rh×w×c

as
Ai(I) = F (I) · Atti(F (I)), (5.2)

where Atti(I) ∈ Rc denotes the response of the attention module.
To make classification for the i-th attribute, we apply GAP and a FC layer to get a

feature vector ai as
ai(I) = Wai · GAP (Ai(I)) + bai

, (5.3)

where Wai and bai
denote the weights and bias of the FC layer, Wai ∈ Rsa×c and bai

∈ Rsa ,
where sa is the predefined size of the output. ai(I) is followed by a classifier with a cross
entropy loss Li

Att to recognize which class it belongs to for the i-th attribute.
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In summary, VAN is trained by minimizing the loss LVAN as

LVAN = Lf
tri + Lf

ID + λA

n∑
i=1

Li
Att, (5.4)

where λA is a hyper-parameter for balancing the importance of V-ReID loss and attribute-
related losses.

Joint Module

The Joint Module (JM) is illustrated in Figure 5.2. JM aims to distill V-ReID helpful
information from the attribute features and compensate it to the V-ReID feature for the
final feature matching. First, we merge the attribute feature maps from multiple branches
to have a unified attribute feature map G(I). Then, we distill discriminative V-ReID
helpful information from G(I) and compensate it onto F (I) to create a Joint Feature J(I).
To encourage a higher discriminative capability of the Joint Feature, we introduce an
Amelioration Constraint (AC), which drives the distillation of discriminative information
from G(I) to enhance the original V-ReID feature F (I). The JM promotes the interaction
between the attribute and V-ReID information to improve the V-ReID performance.
Attribute Feature G(I). To facilitate the distillation of helpful attribute features,
we combine all the attribute feature maps Ai(I), where i = 1, · · · , n, to have a unified
attribute feature map G(I). We achieve this by summarizing the attribute feature maps
followed by a convolution layer and a residual connection as

G(I) =
n∑

i=1

Ai(I) + θA(
n∑

i=1

Ai(I)), (5.5)

where θA is implemented by a 1×1 convolutional layer followed by batch normalization
(BN) and ReLU activation, that is, θA(x) = ReLU(WAx), WA ∈ Rc×c. We omit BN to
simplify the notation.

For the combined attribute feature map G(I), we add supervision from attributes to
preserve the attribute information. Given n attributes, mi is the number of classes for
the i-th attribute. There are in total

∏n
i=1 mi attribute patterns. We apply a GAP layer

on G(I) to get the feature vector g(I). Then, the Triplet Loss Lg
tri is used as supervision

to pull the features for the same attribute pattern and push the features for the different
attribute patterns. We name this supervision as Attribute-based Triplet Loss.
Joint Feature J(I). To distill V-ReID-helpful attribute information from G(I) to enhance
F (I), we use two convolution layers to have distilled feature Greid(I)

Greid(I) = θg1(θg2(G(I))), (5.6)

where θg1 and θg2 are implemented similarly to θA but we use a 3×3 convolutional
layer instead of 1×1, θg1(x) = ReLU(Wg1x), θg2(x) = ReLU(Wg2x), Wg1 ∈ Rc×c and
Wg2 ∈ Rc×c.
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By adding Greid(I) onto the V-ReID feature F (I), we have the Joint Feature J(I) as

J(I) = F (I) +Greid(I). (5.7)

J(I) combines V-ReID information from F (I) and the relevant V-ReID-helpful information
from the attributes G(I). Similar to the supervision on F (I), we add Triplet Loss Lj

tri

and Cross Entropy Loss Lj
ID on the spatially average pooled feature j(I), where j(I) is

obtained as
j(I) = Wj · GAP (J(I)) + bj, (5.8)

where Wj and bj represent the weights and bias of a FC layer, Wj ∈ Rsj×c and bj ∈ Rsj ,
sj is the predefined dimension of the output. JM is trained by minimizing LJM

LJM = Lj
tri + Lj

ID + λGL
g
tri, (5.9)

where λG is a hyperparameter balancing the importance of the compensated V-ReID loss
and the attribute related loss.

Finally, we can train the entire network ANet end-to-end by minimizing L

L = LJM + λLVAN, (5.10)

where λ is a hyperparameter to balance the importance of LJM and LV AN . Amelioration
Constraint. To further boost the capabilities of the network, we define the Amelioration
Constraint (AC). AC aims to explicitly encourage j(I) to be more discriminative than
f(I). We separately apply AC for cross entropy loss and triplet loss.

AC for Cross Entropy Loss: For image I, we define it as

ACID(I) = softplus(Lj
ID(I)− Lf

ID(I)), (5.11)

where softplus(·) = ln(1 + exp(·)) is a monotonically increasing function that helps to
reduce the optimization difficulty by avoiding negative values [44]. Lf

ID(I) and Lj
ID(I)

represent the identity cross entropy loss with respect to feature f(I) and j(I), respectively.
Minimizing ACID(I) encourages the network to have a lower classification error for j(I)

than that for f(I).
AC for Triplet Loss: We seek j(I) to represent an enhanced feature of f(I), where j(I)

has a higher discriminative capability than f(I). Thus, we encourage the feature distance
D(·, ·) between an anchor sample/image I and a positive sample I+ to be smaller w.r.t.
feature j(·) than feature f(·). Similarly, we encourage the feature distance D(·, ·) between
an anchor sample/image I and a negative sample I− to be larger w.r.t. feature j(·) than
feature f(·). Then, AC for triplet loss ACtri is defined as

ACtri(I) = softplus(D(j(I), j(I+))−D(f(I), f(I+)))+

softplus(D(f(I), f(I−))−D(j(I), j(I−))).
(5.12)

We notice that training with ACID, ACtri in an end-to-end leads to unstable learning.
Thus, we follow two steps in training. In the first step, we minimize L. In the second step,
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we freeze the backbone (that is, all operations before f) and minimize L′. Compared with
L in (Equation 5.10), the AC losses are enabled and the losses on feature f are disabled in
L′ as

L′ = L+ ACtri + ACID − λ(Lf
tri + Lf

ID). (5.13)

5.3 Implementation Details

In order to implement the backbone for a fair comparison, we follow other works available
in the literature. We use a modified version of ResNet-50 [31] with Instance-Batch
Normalization [73] and remove the last pooling layer to obtain the feature map F (I) for
an image I. Each attention module Atti(I) is based on SE [38] with the reduction ratio of
16. For the FC layers, we set sa = 128 and sf = sj = 512.

We use cross entropy loss with label smoothing regularize [90] and triplet loss with
hard positive-negative mining [33], following the Bag-of-Tricks [65]. For simplicity, we set
λ = 1, λA = 1, λG = 1 and give the same importance to all branches in the network.

In one of the datasets, not all input images have attribute labels. For these samples,
we simply do not backpropagate the losses from Li

Att and Lg
tri. We found this works well

since we use batch size of 512 (4 images per ID) and the missing labels are alleviated by
the other IDs in the batch. Note that these missing labels do not affect our ACID and
ACtri, so ANet can still learn from those cases.

The input images are resized to 256×256 pixels and augmented by random horizontal
flipping, random zooming and random input erasing [22, 126, 127, 128]. All models are
trained on 8 v100 GPUs with NVLink for 210 epochs with Amsgrad. An initial learning
rate is set to 0.0006 and the learning rate is decayed by 0.1 at epochs 60, 120 and 150.
The first learning step minimizes L for the first 150 epochs, then the second step optimizes
L′ for 60 epochs. n = 2 for all datasets, where we consider vehicle color (for instance, red,
yellow, gray, etc.) and type (for instance, sedan, truck, etc.). During testing, the feature
vectors are L2-normalized for matching.

5.4 Results

In this section, we show the results for AttributeNet. We start with an ablation study
to understand the benefits of using attributes in V-ReID and how distilling task-oriented
features is better than using the whole attribute information. Then, we compare our
method against the state of the art.

5.4.1 Ablation Study

Our ablation study contains four subsections. In the first two subsections, we analyze the
effectiveness of our ANet and its components (i.e., Joint Module and AC). In the third
subsection, we aim to analyze the design of previous methods using attributes represented
by VAN. Specifically, we analyze the effects of using attributes to define attention masks,
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instead of the FC layers, which are common in existing works. The final subsection studies
the influence of hyperparameters λA, λG and λ, as well as IBN and LS.

Effectiveness of using Attributes on V-ReID

We first evaluate the effects of using attributes in V-ReID and show the comparisons in
Table 5.1. Baseline denotes the scheme which generates feature f using only the backbone,
without using attribute-related designs. VAN denotes the vanilla scheme that explores
attributes as shown in Figure 5.1, using the same backbone as Baseline. For our VAN,
we can use the V-ReID feature f(i) (i.e., VAN(f)), or use the concatenation of f(I)

and attribute features ai(I), i = 1, · · · , n (i.e., VAN(fa)) in inference. We can see that:
(i) VAN(f), where the attributes regularize the feature learning, outperforms Baseline
significantly on Vehicle-ID and VeRi-Wild. Specially, using attributes improves the rank-1
by 0.5 percentage points for VeRi776, 2.8 percentage points at rank-1 and 3.3 percentage
points at rank-5 for Vehicle-ID, 6.6 percentage points in mAP and 1.3 percentage points
at rank-1 for VeRi-Wild; (ii) using VAN(fa) has lower performance than VAN(f). This is
because not all the attribute information ai(I) is equally important for V-ReID. Allocating
the relative contributions of each attribute is needed to have satisfactory results. Hence
how to distill task-oriented attribute information to efficiently benefit V-ReID is important,
which is what our ANet aims to address.

Table 5.1: Ablation study on the effectiveness of our designs. We indicate the feature
vector used for testing using the symbol in parenthesis.

VeRi776 Vehicle-ID VeRi-Wild
Small Medium Large Small Medium Large

Method mAP R1 R1 R5 R1 R5 R1 R5 mAP R1 mAP R1 mAP R1

Baseline 78.1 96.1 81.3 94.4 77.7 90.6 75.8 88.5 78.1 94.6 72.2 92.5 64.0 88.7
VAN (f) 78.1 96.6 84.1 96.5 80.4 93.6 78.4 91.8 83.1 94.5 78.3 93.5 70.6 90.0
VAN (fa) 77.3 96.5 81.5 95.0 78.5 92.0 76.3 89.6 81.9 94.1 76.9 93.1 69.2 89.4
ANet (j) w/o AC 79.8 96.9 85.0 96.7 80.9 94.1 79.0 91.8 84.6 96.1 79.9 94.4 72.9 91.5
ANet (j) 80.1 96.9 86.0 97.4 81.9 95.1 79.6 92.7 85.8 95.9 81.0 94.5 73.9 91.6

VAN: Attention vs Fully Connected

We use VAN as our attribute-based baseline, which is similar to previous works that explore
vehicle attributes. However, previous works commonly used simple FC layers, instead of
attention blocks for the attribute branches. Using attention facilitates the distillation of
attribute features. As shown in Table 5.2, attention outperforms the use of FC layers
by 1.2 percentage points in rank-1 on Vehicle-ID, as well as 1.4 percentage points and 1
percentage points in mAP on VeRi776 and VeRi-Wild datasets, respectively.

ANet: A Superior Way to Distill Attributes Information

We propose ANet to distill attribute information for more effective V-ReID. Here, we
study the effectiveness of our Joint Module design and the AC losses. Table 5.1 shows the
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Table 5.2: Comparison of choice for implementation of attribute branches for the attribute-
based baseline VAN. fc represents an implementation using fully connected layers and att
represents an implementation based on SE attention blocks. Results for Vehicle-ID and
VeRi-Wild are reported using their small scale test set.

VeRi776 Vehicle-ID VeRi-Wild

Method mAP R1 R1 R5 mAP R1

fc 76.7 95.8 83.3 96.0 82.1 94.3
att 78.1 96.6 84.1 96.5 83.1 94.5

comparisons. We can see that: (i) our final scheme ANet (j) significantly outperforms
the basic network VAN (f), by 2.0 percentage points in mAP on VeRi776, 1.9 percentage
points/1.5 percentage points/1.5 percentage points in Rank-1 on Small/Medium/Large
scales of Vehicle-ID, 2.7 percentage points/2.7 percentage points/3.3 percentage points in
mAP on Small/Medium/Large scales of VeRi-Wild; (ii) our proposed AC losses, which
encourages higher discrimination after the compensation of distilled attribute feature
than that before, is very helpful to promote the distill of discriminative information from
attribute feature for V-ReID purpose.

These results show that the interaction between the V-ReID and attribute features of
VAN improves the network performance, thanks to the distillation of V-ReID oriented
attribute features.

To better understand the effects of ANet, we visualize the attention maps of G(I) and
Greid(I) and show some in Figure 5.3. G(I) encodes generic features of the attributes,
where the activations are flatter and do not have a special focus on the vehicle parts.
In contrast, Greid(I) represents a portion of the information of G(I) that is helpful for
V-ReID. We can observe that the activation maps focus more on the vehicle.

Input

G(I)

Greid(I)

Figure 5.3: Comparison of activation maps. The first row represents the input images,
second and third row their corresponding activation maps for G(I) (attribute features)
and Greid(I) (attribute features oriented to V-ReID), respectively. The first column is the
query image, the second to sixth columns represent the vehicle retrieved at rank-1, rank-2,
rank-3, rank-4 and rank-5.
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To further analyze the effectiveness of our proposed ANet, we compare our interaction
design with that using attributes such as attention, which we refer to as ANet (att). In
ANet (att), attention is learned based on attributes using CBAM [102] and is used to
generate attribute-guided features similar to AGNet [98]. In this case, J(I) is defined
through Equation 5.14 as

J(I) = F (I) · CBAM(G(I)) + F (I). (5.14)

We compare the performance of ANet (att) with our Anet in Table 5.3. We can see
that using attention directly to increase the interaction between attribute and ReID heads
is not as effective as ours. Distilling the ReID-relevant information from the attribute
head defined by Greid provides a superior performance. Furthermore, ANet (att) has a
performance similar to the simple baseline VAN.

Table 5.3: Comparison of our interaction design with that using attributes as attention.
Note that the results for Vehicle-ID and VeRi-Wild are reported using their small scale
test set.

VeRi776 Vehicle-ID VeRi-Wild

Method mAP R1 R1 R5 mAP R1

Baseline 78.1 96.1 81.3 94.4 78,1 94.6
ANet (att) 78.2 96.1 83.9 96.2 84.9 95.5
ANet 80.1 96.9 86.0 97.4 85.8 95.9

Hyperparameter Analysis

Both hyperparameters λA (in Equation 5.4) and λG (in Equation 5.9) balance the impor-
tance of the attribute information in the total loss. We study their influence and show the
results in Table 5.4. We can see that assigning the same weight for both attribute and
V-ReID signals (e.g., λA = λG = 1) provides the best results.

Interestingly, assigning a low weight to the attribute signals (e.g., λA = 0.01 and
λG = 0.01) decreases their impact and results in inferior performance. Furthermore, giving
high weights to attribute signals (e.g., λA = 100 and λG = 100) is better than assigning
them with rather low weights. This shows the importance of the attribute information in
our pipeline for V-ReID. Finally, λ (in Equation 5.10) balances the importance of VAN
and JM.

We observe that a high weight to VAN (e.g., λ = 100) significantly decreases the
performance, where the contribution of our JM is small. The best weight to combine VAN
and JM is λ = 1. Based on this analysis, we set λA = λG = λ = 1 and use these values in
the remaining experiments.

In both our baseline scheme and final scheme, we follow the common practice and
use Instance Batch Normalization (IBN) and Label Smoothing (LS). Here, we study the
influence of IBN and LS on the performance of our ANet and show the results in Tables 5.5
and 5.6, respectively.
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Table 5.4: Ablation study on the influence of λA, λG and λ. We evaluate using VeRi776
by keeping the non-tested hyperparameters fixed. For example, in order to analyze λA, we
set λG = 1, λ = 1.

XXXXXXXXXXXXResults
λA 0.01 0.1 1.0 10.0 100.0

mAP 59.1 79.4 80.1 77.5 65.9
R1 88.6 96.5 97.1 96.2 91.4
R5 94.7 98.6 98.6 98.4 96.1
XXXXXXXXXXXXResults

λG 0.01 0.1 1.0 10.0 100.0

mAP 60.3 61.7 80.1 76.7 68.1
R1 90.0 90.9 97.1 95.8 91.6
R5 95.2 95.5 98.6 98.6 96.7
XXXXXXXXXXXXResults

λ
0.01 0.1 1.0 10.0 100.0

mAP 78.3 79.7 80.1 64.4 56.4
R1 96.8 96.4 97.1 92.1 87.9
R5 98.3 98.2 98.6 96.3 94.5

Table 5.5: Influence of Instance Batch Normalization (IBN). Results for Vehicle-ID and
VeRi-Wild are reported using their small scale test set.

VeRi776 Vehicle-ID VeRi-Wild

Method mAP R1 R1 R5 mAP R1

Baseline w/o IBN 69.5 91.0 71.5 83.1 69.2 89.2
Baseline 78.1 96.1 81.3 94.4 78,1 94.6
ANet w/o IBN 78.4 96.2 84.4 96.9 85.6 95.7
ANet 80.1 96.9 86.0 97.4 85.8 95.9

Table 5.6: Influence of Label Smoothing (LS). Results for Vehicle-ID and VeRi-Wild are
reported using their small scale test set.

VeRi776 Vehicle-ID VeRi-Wild

Method mAP R1 R1 R5 mAP R1

Baseline w/o LS 73.2 93.2 73.8 88.4 74.3 90.1
Baseline 78.1 96.1 81.3 94.4 78,1 94.6
ANet w/o LS 79.0 96.8 85.8 97.2 85.7 95.5
ANet 80.1 96.9 86.0 97.4 85.8 95.9

For IBN, we can observe a considerable decrease of 1.7 percentage points in mAP on
VeRi776 when not using IBN, whereas a decrease of 0.7 percentage points in R1. For
Vehicle-ID, the difference is also significant, a decrease of 2.4 percentage points for R1 and
0.5 percentage points for R5. For VeRi-Wild, not using IBN has a smaller effect than on
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other datasets, that is, 0.2 percentage points in both R1 and mAP.
Without using LS, there is a decrease of 1.1 percentage points in mAP on VeRi776,

1.2 percentage points in R1 on Vehicle-ID, 0.1 percentage points in mAP on VeRi-Wild,
respectively. In general, we can observe that IBN has a more significant importance than
LS in the final performance.

To analyze each of the weights λA, λG and λ for our loss functions, we conduct an
independent analysis per parameter (for instance, in order to analyze lambdaA, we evaluate
5 different values for it and fix λG = λ = 1). Results are shown in Table 5.4.

5.4.2 Comparison with State-of-the-Art Methods

We compare our method with approaches that also use attributes information [42, 49, 76,
92, 98, 117]. We also compare our method with the most recent approaches that leverage
clues/techniques, such as vehicle parsing maps [68], vehicle parts [30, 112], GANs [45],
Teacher-Student (TS) distillation [43, 75], camera viewpoints [12, 75], and Graph Networks
(GN) [63, 86]. HPGN creates a pyramid of spatial graph networks to explore the spatial
significance of the backbone tensor. PCRNet [63] studies the correlation between parsed
vehicle parts through a graph network. VAnet [12] learns two metrics for similar viewpoints
and different viewpoints in two feature spaces, respectively.

We also compare against FastReid [32], a strong baseline network for re-identification
that performs an extensive search of hyperparameters, augmentation methods, and use some
architecture design tricks to achieve excellent performance. Moreover, we implemented our
design on top of it by taking it as our backbone, which we named ANet + FastReid. Note
that the reported results of FastReid were obtained by our running of their released code.

Tables 5.7, 5.9 and 5.8 show the comparisons on VeRi776, Vehicle-ID, and VeRi-Wild,
respectively.

VeRi776. Compared with attribute-based methods (first group in Table 5.7), our
scheme ANet+FastReid outperforms the best results in this group by 5.1 percentage
points in mAP; and 1.5 percentage points for rank-1 and rank-5. By comparing with
methods that do not use attributes, we can see that it performs the second best in mAP,
and achieves the best for rank-1 and rank-5. VKD [75] is better than ours in mAP and is
inferior to ours at rank-1 and rank-5, where VKD uses camera labels in training to be
viewpoint-invariant and trains a model based on the Teacher-Student framework.

Vehicle-ID. Our method outperforms attribute-based methods (first group in Table 5.9)
consistently. For rank-1, our scheme ANet+FastReid outperforms the best attribute-based
method by 8.2 percentage points, 4.4 percentage points and 4.9 percentage points for
small, medium and large scales, respectively. When compared with methods using other
clues, ours achieves the best results on the large set and competitive performance on the
other sets.

VeRi-Wild. Previous attribute based methods have not yet reported results for this
latest dataset. From Table 5.8, we can see that our schemes ANet and ANet+FastReid
achieve the best performance in mAP.

PVEN [68] is a method based on semantic parsing to describe each vehicle view and
region. It has better results on rank-1/rank-5 but it is not as competitive as in the two
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Table 5.7: Comparison of our proposed method against state-of-the-art approaches on
VeRi776. The first and second best results are marked in bold and underline, respectively.

Method Clues mAP R1 R5

PAMAL [93] attributes 45.0 72.0 88.8
MADVR [42] attributes 61.1 89.2 94.7
DF-CVTC [117] attributes 61.0 91.3 95.7
PAMTRI [92] attributes 71.8 92.8 96.9
AGNet [98] attributes 71.5 95.6 96.5
SAN [76] attributes 72.5 93.3 97.1
StRDAN [49] attributes 76.1 – –

VAnet [12] viewpoint 66.3 89.7 95.9
PRND [30] veh. parts 74.3 94.3 98.6
UMTS [43] TS 75.9 95.8 –
PCRNet [63] GN + parsing 78.6 95.4 98.4
SAVER [45] GAN 79.6 96.4 98.6
PVEN [68] parsing 79.5 95.6 98.4
HPGN [86] GN 80.1 96.7 –
VKD [75] viewpoint + TS 82.2 95.2 98.0

Baseline attributes 78.1 96.1 98.3
ANet (Ours) attributes 80.1 97.1 98.6
FastReid [32] backbone 81.0 97.1 98.3
ANet + FastReid (Ours) attributes 81.2 96.8 98.4

Table 5.8: Comparison of our proposed method against state-of-the-art approaches on VeRi-
Wild. The first and second best results are marked in bold and underline, respectively.

Small Medium Large

Method Clues mAP R1 R5 mAP R1 R5 mAP R1 R5
UMTS [43] TS 82.8 84.5 – 66.1 79.3 – 54.2 72.8 –
HPGN [86] GN 80.4 91.3 – 75.1 88.2 – 65.0 82.6 –
PCRNet [63] GN + parsing 81.2 92.5 – 75.3 89.6 – 67.1 85.0 –
SAVER [45] GAN 80.9 94.5 98.1 75.3 92.7 97.4 67.7 89.5 95.8
PVEN [68] parsing 82.5 96.7 99.2 77.0 95.4 98.8 69.7 93.4 97.8

Baseline attributes 78.1 94.6 98.5 72.2 92.5 97.3 64.0 88.7 95.6
ANet (Ours) attributes 85.8 95.9 99.0 81.0 94.5 98.1 73.9 91.6 96.7
FastReid [32] backbone 84.8 95.7 98.9 80.0 94.5 98.1 73.2 91.5 96.7
ANet + FastReid (Ours) attributes 86.9 96.5 99.2 82.5 95.2 98.3 75.9 92.5 97.2

previous datasets.
We observed that none of the existing methods consistently achieve the best results on

all the datasets. This may be because different datasets have different main challenges. Our
proposed ANet shows a more consistent state-of-the-art performance on all the datasets,
thanks to the generic capabilities of attributes on V-ReID.
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Table 5.9: Comparison of our proposed method against state-of-the-art approaches on
Vehicle-ID. The first and second best results are marked in bold and underline, respectively.

Small Medium Large

Method Clues R1 R5 R1 R5 R1 R5
PAMAL [93] attributes 67.7 87.9 61.5 82.7 54.5 77.2
AGNet [98] attributes 71.1 83.7 69.2 81.4 65.7 78.2
DF-CVTC [117] attributes 75.2 88.1 72.1 84.3 70.4 82.1
SAN [76] attributes 79.7 94.3 78.4 91.3 75.6 88.3

PRND [30] veh. parts 78.4 92.3 75.0 88.3 74.2 86.4
SAVER [45] GAN 79.9 95.2 77.6 91.1 75.3 88.3
UMTS [43] TS 80.9 – 78.8 – 76.1 –
PVEN [68] parsing 84.7 97.0 80.6 94.5 77.8 92.0
PCRNet [63] GN + parsing 86.6 98.1 82.2 96.3 80.4 94.2
VAnet [12] viewpoint 88.1 97.2 83.1 95.1 80.3 92.9
HPGN [86] GN 89.6 – 79.9 – 77.3 –

Baseline attributes 81.3 94.4 77.7 90.6 75.8 88.5
ANet (Ours) attributes 86.0 97.4 81.9 95.1 79.6 92.7
FastReid [32] backbone 85.5 97.4 81.8 95.3 79.9 93.8
ANet + FastReid (Ours) attributes 87.9 97.8 82.8 96.2 80.5 94.6

5.5 Final Considerations

In the last two chapters, we introduced methods for person and vehicle ReID, respectively.
In the next chapter, we study how to apply these ReID features to the Multi-Object
Tracking task.
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Chapter 6

AReID: Rethinking Re-Identification
and Occlusions for Multi-Object
Tracking

6.1 Introduction

Multi-Object Tracking (MOT) is a relevant task for the computer vision community because
it can be applied in various domains, for instance, smart cities, security monitoring, action
recognition, crowd behavior analysis, among others.

The most common approach used by MOT is the tracking-by-detection [55, 59, 101,
113, 114]. This type of approach has two steps: detection and matching. In the first
stage, we detect the objects in each frame of the video. In the second stage, we match the
identities of the detections to create the final tracks. A common design pattern in this type
of work is to train an end-to-end object detector considering each frame independently.

For association, a combination of Intersection-over-Union (IoU), motion and other
features are then used to match the detections. It is worth mentioning that association tends
to be fully unsupervised and the relation between objects in different frames is not modeled
during training, but there has been recent work that uses Transformers [11, 67, 106, 111]
in order to model these relationships and interactions.

Among the tracking-by-detection approaches, there is a group of approaches that
leverage ReID [55, 55, 74, 101, 101, 113, 113]. All these methods follow a common design
pattern, where they add a head for ReID parallel to the detection heads during training.
During matching, they use the ReID features in combination with features such as IoU
and motion.

However, there is a fundamental difference between MOT and ReID training. For
ReID, the model input is the bounding box of the target object that has already been
segmented. In contrast, for MOT, the model input is the entire scene containing the
multiple target objects and considerable background. To address this difference, the current
MOT literature focuses on the centroid of the target object and projects its position onto
the output tensor, then uses only this centroid during training and association (Figure 6.1).

Representing ReID features focusing only on the centroids of the target objects has
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Figure 6.1: Vanilla design of ReID-based MOT methods. For the ReID head, they only
use the centroid of the projections of the bounding boxes. This is different from ReID
methods, where the complete backbone output tensor is used to learn ID features.

several problems that have been overlooked by the current literature, the first problem
that would arise is that the centroid might not hold enough information to encode the
identity of the object. In this work, we do not focus on this problem because, in MOT,
the occlusions between target objects is a more important problem to address. In fact, our
results show a regression in performance when using bounding box projection.

Occlusions between target objects is an issue for current ReID-based MOT methods
because the centroid of the occluded object may be within the bounding box of the
occluded object. This problem is even more common when we consider that the height and
width of the output tensor of the backbone is a fraction of the input image (Figure 6.2).

In order to address this issue, we apply an adaptive use of ReID features (AReID).
Specifically, before backpropagating the ReID loss of each target object, we compute the
overlap between objects and give a lower weight to objects with high occlusion. This
simple but effective method shows consistent improvements over various ReID-based MOT
methods and datasets.

The main contributions of this approach are:

• We investigate the problem of occlusion between target objects. This has been an
overlooked problem in the current literature and we conjecture that there is great
potential to further boost the MOT effectiveness.

• We develop an occlusion-based weighting method that adaptively chooses the amount
of ReID information that will be backpropagated.
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Figure 6.2: Overlap between target objects. We can see that the centroid of some objects
can be occluded by other target objects. This introduces noise to the ReID head during
training because it learns to represent the person ID in red and green with person features
in blue.

6.2 Adaptive ReID Features

Our proposed adaptive use of ReID features (AReID) is a generic module that can be
added to any ReID-based MOT approach. By using AReID, we regulate the amount of
ReID information that is used during training.

The core design of previous works follows the pattern explained in Figure 6.1. However,
some works may have more elaborated designs between the ReID and Detection heads. For
instance, CSTrack [55] aims to disentangle ReID and Detection features, FairMOT [113]
and JDE [103] have different objectives for the Detection head because of use of anchors.
We will define our AReID generically and not go into the details of the Detection head. For
the sake of this work, we can assume that the Detection head learns to output bounding
boxes corresponding to the position of the target objects.

Backbone. A backbone network extracts the feature map F (I) ∈ Rh×w×c from an
input image I ∈ Rh′×w′×3, where h, w, c are the height, width and channels of F (I),
respectively. In addition, h′ and w′ are the height and width of I. We assume that I is
in the RGB space. The implementation of the network may change depending on the
method. Some authors use U-Net-like networks [103, 113], while others may be based on
ResNet [114].

ReID Head. Each input image I has associated a list of bounding boxes B =

{b1, b2, . . . , bn}, where each bi = {xi
l, y

i
l , x

i
h, y

i
h}, i ∈ {1, ..., n} is represented by the four

coordinates, such that (xi
l, y

i
l) represents the upper left corner and (xi

h, y
i
h) represents the

right lower corner of the bounding box bi. Notice that we can calculate the centroid of bi
as

ci = (cix, c
i
y) = (

xi
l + xi

h

2
,
yil + yih

2
) (6.1)

Moreover, each bi as an associated identity idi used to track the target object across
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frames.
To project ci into F (I), we have to consider the difference of size in height and width

of I and F (I), usually F (I) is smaller than I. Let us define

sch =
h′

h

scw =
w′

w

(6.2)

Then the projected centroid is expressed as:

c′i = (c′ix, c
′i
y ) = (

cix
scw

,
ciy
sch

) (6.3)

An important aspect here is that some works would add extra layers on top of F (I)

before projecting ci. For simplicity, we do not consider this case, but the process is
analogous.

Then, we calculate the centroid features f(I)i ∈ R1×1×c by extracting the row feature
at F (I)[c′iy , c

′i
x, :]. The centroid feature is later followed by Cross Entropy Loss LID.

Adaptive ReID Weight

LID aggregates the average loss of each f(I)i, which means that each centroid feature is
equally considered to adjust the network weights during backpropagation. However, due
to occlusions between target objects, there are cases where f(I)i is not completely reliable
and introduces noise into the learning process.

Let us consider bounding boxes bi and bj with i ̸= j where bj occludes bi. Then, we can
compute an occlusion score oci with 0 ≤ oci ≤ 1 which intuitively expresses the amount of
bi that is occluded by bj , a value of oci close to 0 means that bi is not occluded and a value
of oci close to 1 means bi is completely occluded. Then, we can refine LID to adaptively
consider ReID information.

LID =

n∑
i=1

liID

n
(6.4)

where liID is the Cross Entropy Loss of each individual bounding box bi. Then, we can
define an adaptive L′

ID as:

L′
ID =

n∑
i=1

g(oci)l
i
ID

n
(6.5)

where g(oci) with 0 ≤ g(oci) ≤ 1 is a function to weight the ReID features based on the
amount of occlusion.

In this work, we experimented several definitions of amount of occlusion, which include
IoU, a self defined asymmetric IoU, and ObjectBox [110]. We also tested various definitions
of w(oci) that include linear and hinge-like definitions. Finally, we train the network end-
to-end using our newly defined L′

ID.
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Association

The association step aims to match the identity of bounding boxes detected in two

consecutive frames I and J . Let
I

B = {
I

b1,
I

b2, . . . ,
I

bn} and
J

B = {
J

b1,
J

b2, . . . ,
J

bm} be the set of
detected bounding boxes for frames I and J , respectively. Then, we can define an affinity
matrix D ∈ Rn×m that indicates the cost of associating the detected objects in frames
I and J , the definition of this cost is a combination of IoU, motion and ReID feature
similarity. Since each bounding box in I can be associated with a unique bounding box in
J , we can use D to solve the assignment problem using the Hungarian algorithm, then we
will have the association with the minimum cost.

In the case of MOT, our goal is to associate the existing tracks with the detections
in the new frame J . The existing tracks can be represented by the position of the last
known detections (for instance, image I). Then, the process is similar to the one described
previously. Notice that n ̸= m, so we can have objects that are new in J and objects that
were in I but disappear (for example, objects entering frame or occluded).

We have a mechanism that activates and deactivates tracks accordingly. An important
detail is how ReID features are managed for tracks. Given the ReID feature Featt at time
t associated with a track, then its ReID feature ReIDt is defined as:

ReIDt = αReIDt−1 + (1− α)Featt (6.6)

where ReIDt−1 represents the ReID feature of the track at time t − 1. In this way the
ReID features are aggregated across time creating a more robust representation as more
bounding boxes are added to the track.

6.3 Implementation Details

We tested our proposed AReID in several MOT methods. For ablation studies, we used
FairMOT [113] and CSTrack [55] because they are standard methods using ReID on MOT.
For comparison with the state of the art, we introduced our method into ByteTrack [114],
which was originally designed without ReID.

The backbone used by FairMOT [113] is a ResNet-34 combined with Deep Layer
Aggregation (DLA) [129], CSTrack [55] backbone is based on Feature Pyramid Network
(FPN) [57], and ByteTrack [114] backbone is based on CSPNet [99].

The Detection head used by FairMOT [113] has three parts. The first one learns
to detect the centroid of the bounding box, whereas the second and third parts aim to
estimate the height, width and offset of the centroid. This method is anchor free. In
contrast, CSTrack is not anchor free and follows the standard objective of F-RCNN [24],
that is, two coordinates of the bounding box, height and width. ByteTrack uses the PAN
head [60] for detection.

The ReID heads for FairMOT [113] and CSTrack [55] composed of two convolutional
layers with a 3×3 kernel size and standard ReLU and Batch Normalization layers. For
ByteTrack, we added two convolutional layers to each level of the pyramid feature, which
allows us to perform ReID at multiple levels. Then, we have independent Cross Entropy
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Losses for each level. Notice that ByteTrack is not a new MOT method but an optimization
in the association step, and the state-of-the-art results reported by the authors are based
on YOLOX [21].

Input images are resized to 1088×608 for both FairMOT [113] and CSTrack [55], and
1440×800 for ByteTrack [114]. FairMOT [113] and CSTrack [55] are trained for 30 epochs
with two V100 GPUs using Adam and SGD optimizers, respectively. ByteTrack [114] is
trained for 60 epochs using SGD on four v100 GPUs.

We set α = 0.9. For oci, we calculate the maximum amount of occlusion against any
other bounding box j with i ̸= j. We compare IoU, our non-symmetric IoU that changes
the denominator of classical IoU to the area of bounding box i, and ObjectBox [110],
a novel occlusion metric that considers the distance between centers and boundaries of
detections. For g(oci), we consider three functions and set thr = 0.8:

• Linear
g(oci) = 1− oci (6.7)

• Threshold

g(oci) =

{
0 if oci > thr

1 otherwise
(6.8)

• Hinge

g(oci) =

{
0 if oci > thr

1− oci otherwise
(6.9)

All of these networks were pre-trained using MS-COCO [56]. Both MOT17 and MOT20
give only labels for the training set, and test set labels are closed. To report results against
the state of the art, we use their validation server1. During the ablation analysis, we
considered only MOT17 [69] using half of each video for training and the other half for
testing. For MOT20 [15], we also followed the same protocol.

6.4 Results

In this section, we show the results of our proposed AReID. We start with an ablation
study to analyze and comprehend the effect of each of the parts of our AReID. Then, we
compare our method with the state of the art.

6.4.1 Ablation Study

In the first part, we analyze the effect of using the full bounding box projection versus
using only the centroid for ReID feature representation. Then, we analyze the effects of
different oci configurations. We also analyze the effects of g(oci). Finally, after analyzing
the AReID modules, we compare them to our baselines. This includes an in-depth look at
the learned ReID features and qualitative analysis.

1https://motchallenge.net/

https://motchallenge.net/
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Centroid Feature for ReID

We mentioned that a problem with the current ReID design is that only the projected
centroid. Hence, a natural solution to this would be to consider the projection of the
bounding box followed by a pooling layer. Formally, we can define the projection b′i =

{x′i
l , y

′i
l , x

′i
h, y

′i
h} of bounding box bi analogously to c′i. Then, we define the projecting

bounding box feature f ′(I)i ∈ R1×1×c as:

f ′(I)i = Pool(F (I)[y′il : y′ih , x
′i
l : x′i

h, :]) (6.10)

where Pool is the average pooling operation over the first two dimensions of f ′(I)i.

Table 6.1: Comparison of using centroids and full bounding box to project ReID features
using FairMOT [113] and MOT17 [69] ablation setup.

Method IDF1 DR DP MOTA

centroid 73.70 78.50 90.61 69.58
complete 70.95 78.20 89.78 68.37

The results of comparing centroid projected f(I)i and bounding box projected f ′(I)i
are shown in Table 6.1. We can see that using complete projection of bounding boxes
actually leads to worse results than using only the centroid. The reason for this is the
occlusion between target objects. We already explained this problem when we analyzed
centroids, where it is natural to think that this problem is further amplified when using
complete bounding box projection because the amount of overlap with noise is even greater,
creating less reliable ReID features. Signaling this, we can see that the largest drop is in
IDF1, which basically means that complete is worse at associating IDs.

Occlusion Definition oci

Here we compare different definitions for oci. For this comparison we fix g(oci) to Linear,
the results are shown in Table 6.2

Table 6.2: Comparison of different definitions of oci using FairMOT [113] and MOT17 [69]
ablation setup.

Method IDF1 DR DP MOTA

IoU 73.70 78.50 90.61 69.58
Asymmetric IoU 73.46 79.57 91.62 70.51
ObjectBox 73.87 79.74 91.95 70.75

We can consider IoU as the baseline for this analysis because it is the most intuitive
definition for occlusion. Asymmetric IoU already gives improvements of 1.07 points for DR,
1.01 points for DP and 0.93 points in MOTA, and a small regression in IDF1. The reason
for this improvement is that each oci is the maximum occlusion between the bounding
boxes i and j, with vanilla IoU oci = ocj holds, but if j is the occluding object, then its
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score should be lower. Similarly, ObjectBox has an asymmetric definition and we can see
that it pushes the IoU results even further. However, its difference from the Asymmetric
IoU is less than 1 point in all metrics.

Weight Function g(oci)

In this section, we compare the three definitions of g(oci). We fix oci to ObjectBox because
it gives the best performance. The results are shown in Table 6.3.

Table 6.3: Comparison for different definitions of g(oci) using MOT17 [69] ablation setup.

Method IDF1 DR DP MOTA

Linear 73.87 79.74 91.95 70.75
Threshold 74.47 80.17 92.80 70.94
Hinge 73.98 80.15 92.73 71.16

We can see that the Linear definition achieves lower results more clearly in DP. However,
if we consider the other metrics, the difference is in general less than 1, which is low. We
consider MOT as the main metric because it considers both ID and Detection quality.
Thus, Hinge is the best function for g(oci).

AReID: Enhancing MOT with Adaptive ReID

Our proposed AReID aims to improve MOT performance by adjusting how we leverage
ReID features during the training process. In this section, we compare the vanilla use of
ReID information with our adaptive method. For this analysis, we decided to compare
extend our validation protocol and consider FairMOT [113] and CSTrack [55] in both
MOT17 [69] and MOT20 [15].

Table 6.4: Comparison of vanilla use of ReID and proposed AReID.

MOT17

Method IDF1 DR DP MOTA

FairMOT 73.70 78.50 90.61 69.58
FairMOT + AReID 73.98 80.15 92.73 71.16
CSTrack 66.24 67.91 90.72 59.57
CSTrack + AReID 66.44 69.27 90.73 60.55

MOT20

Method IDF1 DR DP MOTA

FairMOT 78.00 86.45 89.11 75.07
FairMOT + AReID 78.68 88.48 89.23 76.03
CSTrack 72.25 76.94 88.47 66.12
CSTrack + AReID 72.87 78.57 88.53 67.32
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The most important conclusion from this table is that our proposed AReID gives
consistent gains across datasets and methods. The largest improvements are consistently
in DR (that is, up to 2.03 points), meaning that the amount of correctly detected objects
by AReID is larger, which actually pushes MOTA. The largest gain in MOTA is 1.58
points for MOT17 [69], whereas the largest improvement in MOTA is 0.96 points for
MOT20 [15].

In Figure 6.3, we take a closer look at the learned ReID features. When comparing
detection ReID features against each other (third column) and tracking features against
each other (fifth column), the perfect ReID feature would define an identity matrix, the
diagonal should be red and everything else should be blue. We can see that for both cases
the diagonal has the highest values. However, for our AReID, there are more regions in
orange suggesting a lower quality of ReID features. This is expected because the ReID
head of our method has less sample supervision as some of the samples are simply ignored.

Figure 6.3: Comparison of ReID features for Vanilla (top) and proposed AReID (bottom).
The first column corresponds to the detections, second column is the ReID features of
the detections, the third column is the cosine distance matrix between detection ReID
features, the fourth column is ReID embedding of the tracks, the fifth column is the cosine
distance matrix between track ReID features, and the sixth column is the cosine distance
matrix between detections and track ReID features.

If we observe the last column, the perfect ReID feature would push that each row
has only one column with high value and everything else with low value (blue). We can
see again that, for our AReID, there are more regions with orange. This means that our
AReID overall learns less reliable ReID features than Vanilla models. However, it is no
problem for MOT because, during detection, our adaptive methods help to recognize more
bounding boxes (for instance, increase in DR) and during association only the maximum
similarity is considered, which will ignore other near distance values.

We can also analyze in which cases Vanilla is better and in which our proposed AReID
is better. Since scenes can be crowded, it is difficult to manually compare which detections
are missing in each method. We then plot only the difference. In Figure 6.4, we show in
red the bounding boxes correctly detected by our AReID and missed by Vanilla, in green
the objects missed by our Vanilla and correctly detected by Vanilla method, and in blue
the objects correctly by both method but with a large displacement.
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Figure 6.4: Comparison of difference in detections between Vanilla and proposed AReID.
The correct detections of our AReID are shown in red, the correct detections of Vanilla in
green, and detections correctly predicted but with large displacement between Vanilla and
AReID are shown in blue.

We can see that our AReID is good at detecting highly occluded objects. We can also
see various discrepancies in the position of the detections (for instance, in blue).

6.4.2 Comparison with State-of-the-Art Methods

In order to compare with the state of the art, we introduce our method to ByteTrack [114].
We compare our AReID with the methods using ReID features [74, 113], Transformer-based
methods [67, 106, 106] and methods with the best open results on both datasets [16, 18,
36, 71].
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The results for MOT17 [69] are shown in Table 6.5. The sub index indicates the ordinal
position of the results. We can see that adding Vanilla ReID to ByteTrack increases by
0.4 percentage points for IDF, 0.3 percentage points for DR, 0.7 percentage points for
DP and 0.4 percentage points for MOTA. However, using our AReID increases by 0.8
percentage points for IDF, 0.7 percentage points for DR, 1.8 percentage points for DP and
1 percentage points for MOTA. This shows that our method consistently improves MOT
performance. Moreover, our proposed AReID achieves the best results in DR and MOTA
and the top three results in IDF1 and DP.

Table 6.5: State-of-the-art comparison for MOT17 [69]. The sub index indicates the
ordinal position of the results.

Method IDF1 DR DP MOTA

FORTracking [71] 77.7 85.91 94.4 80.4
QuoVadis [16] 77.7 85.2 95.0 80.3
SelfAT [36] 79.81 84.7 95.0 80.0
StrongSORT [18] 79.52 84.7 94.5 79.6
MOTR [111] 75.0 83.2 95.3 78.6
TransCenter [106] 62.2 78.1 95.0 73.2
Quasi-Dense [74] 66.3 74.0 94.0 68.7
TraJE [23] 61.2 71.4 95.6 67.4
MPTC [88] 65.8 64.8 97.61 62.6

ByteTrack 77.3 85.2 95.0 80.3
ByteTrack + ReID (ours) 77.6 85.4 95.7 80.7
ByteTrack + AReID (ours) 78.13 85.91 96.82 81.31

The results for MOT20 [15] are shown in Table 6.6. Similarly to MOT17 [69], our
AReID shows consistent improvements over Vanilla ByteTrack + ReID. Specifically, we
show improvements of 0.7 percentage points for IDF1 and DP, 1.6 percentage points for
DP and 1.2 percentage points for MOTA. Our AReID has the best results for DR and
MOTA, and third best results for IDF1 and DP.

6.5 Final Considerations

In this chapter, we investigate how to apply ReID features to the Multi-Object Tracking
problem. In the next chapter, we conclude the thesis with some final remarks and directions
for future work.
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Table 6.6: State-of-the-art comparison for MOT20 [15]. The subindex indicates the ordinal
position of the results.

Method IDF1 DR DP MOTA

QuoVadis [16] 75.7 83.1 94.2 77.8
SelfAT [36] 76.62 78.1 96.31 75.0
StrongSORT [18] 77.01 77.2 96.02 73.8
QDTrack [20] 73.8 79.5 94.6 74.7
FairMOT [113] 68.4 82.5 78.5 59.6
CrowdTrack [89] 68.2 75.5 94.7 70.7
TrackFormer [67] 65.7 72.9 94.9 68.6
TransCenter [106] 49.6 71.8 85.3 58.5

ByteTrack 75.2 83.1 94.2 77.8
ByteTrack + ReID (ours) 75.7 83.5 94.9 78.5
ByteTrack + AReID (ours) 75.93 83.81 95.83 79.11
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Chapter 7

Conclusions

Re-Identification (ReID) is an important task that has various applications in control and
surveillance of public spaces. For this reason, it has been an active research topic in the
last few years. Its main challenges are inherent to the setup in which the data is collected,
which includes major changes in viewpoint, illumination conditions, occlusions, among
other factors. In addition to these difficulties, there are other challenges directly associated
with the design of the proposed approaches, such as feature representation and invariance.

ReID can be leveraged by other tasks, for instance, Multi-Object Tracking (MOT).
This task has several similar challenges to ReID. However, its main challenge is how to
model simultaneous interactions and occlusions.

In this work, we presented our research in ReID considering various configurations of
this problem, which includes Person ReID (P-ReID) and Vehicle ReID (V-ReID). For both
cases, we focused on improving the feature representation with and without extra non-ID
labels. Furthermore, we studied MOT methods that leverage ReID features to improve
how ReID features are used. By splitting our work into these three studies, we were able
to gain a broad understanding of ReID and its application in other tasks. In addition, our
results pushed the state of the art on several fronts.

In our first approach, we explored P-ReID. We developed Top-DB-Net, a method to
learn improved features from less activated regions. Top-DB-Net aims to improve overall
feature representation by eliminating highly informative (for instance, highly activated)
regions during training, which drives the network to learn to represent less informative
regions with more reliable features. The results show improvements of up to 4.8 percentage
points in mAP and 5.6 percentage points in rank-1.

In our second approach, we explored V-ReID. This setup tends to be more difficult
than P-ReID because the number of objects, classes, and inter-class invariance is larger.
We developed ANet, a method for distilling relevant information from attribute labels.
Previous work using attribute labels has followed what we defined as the Vanilla-Attribute
Design, ANet breaks this pattern and improves the interaction between the attribute-
supervised branch and the ReID branch. Moreover, our proposed Amelioration Constraint
pushes the performance even further. The results show that using our ANet increases
mAP by up to 3.3 percentage points and rank-1 by 1.9 percentage points.

In our third approach, we explored ReID leveraged on MOT. Methods of the literature
have overlooked occlusion between target class objects in their designs. We developed
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AReID, a method that adaptively uses ReID features. AReID considers the maximum
overlap of each bounding box and uses it to weight the ReID information. The results
show an improvement in all metrics.

With the experiments presented in this thesis, we can answer the research questions
introduced in Chapter 1:

Q1: Is it possible to encode rich information from areas of the image that previous
methods consider less relevant for ReID?

From the experiments shown in Subsection 4.4.1, we can see that Top-DB-Net can
successfully learn rich information from less activated areas. Importantly, random
dropping regions instead of our proposed method leads to worse results, which
makes it clear that learning to represent rich information from low activated areas is
important. Moreover, we can see that Top-DB-Net tends to have a more uniform
distribution of attention.

Q2: Is all the generic attribute information relevant for ReID?

Based on the experiments shown in Subsection 5.4.1, we can see that not all the
attribute information is equally relevant. Specifically, by using our proposed task-
relevant attribute information, we improved the mAP by 3.9 percentage points and
the rank-1 by 4.5 percentage points. Furthermore, selecting task-oriented features
also improves the activation maps, as shown in Figure 5.3.

Q3: How much are occlusions overlooked when applying ReID features to MOT?

The results in Subsection 6.4.1 show how occlusions between target objects are
overlooked. In particular, using our AReID, we improved 2.03 percentage points
in detection recall and 1.58 percentage points in MOT Accuracy. Furthermore, we
showed that the effects of occlusion extend to the centroid against the argument of
the full bounding box projection.

In this work, we presented novel approaches to ReID in a broad scheme. We consider
that there are still several promising lines of investigation in this research topic, some of
these research topics are based on follow up questions of the results shown in this thesis
but others are related with some limitations of current literature. Some directions for
future work are listed as follows:

• Unsupervised ReID: The cost of labeling data for ReID is high, so unsupervised
learning has a great potential to reduce the total cost of deploying ReID systems.
The research trend in recent years has been in this direction. However, there is still
a considerable gap between supervised and unsupervised performance.

• Cross-Dataset Evaluation and Domain Generalization for ReID: In a more realistic
scenario, it may be impossible to obtain images of the deployment environment
before we have a functioning ReID system. Therefore, it is crucial to train models
that can generalize to new data distributions. From a research point of view, this
can be simulated by training and testing on different datasets or combinations of
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datasets and we would like the trained model to perform similarly to the model
when trained and tested on the same dataset.

• Adaptive Association: Our proposed adaptive use of ReID features is primarily in
the first step of tracking-by-detection. However, it makes sense to also add a similar
stage during the association step to further boost results.

• End-to-End MOT: Most tracking-by-detection methods are basically supervised
trained detectors with an unsupervised association step. It makes sense to join these
two steps in a single end-to-end pipeline so that the training of the detector can
benefit from the feedback from the association step.

• Real World ReID: An assumption of ReID definition is that for every query there is
at least one element in the gallery that matches its ID. In real life, this is not always
the case. Having a reliable way of finding these cases is something that has been
poorly researched. Similarly, end-to-end ReID systems consist of an initial step of
segmentation that has not been analyzed at the same time as ReID.
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