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a function of the time after the respective merger, C − C0. The UHE neutrino emission spectrum

is assumed to follow a power law distribution ∝ �−2
a . Using these assumptions, ! (C − C0) is

probed, taking into account the instantaneous effective area of the Pierre Auger Observatory to

UHE neutrinos and the 3D sky localizations of the sources. No UHE neutrino candidates have

been found and upper limits on ! (C − C0) are obtained for the hypothetical cases of emissions

lasting 24 hours and 60 days after the merger, respectively. The corresponding upper limit on
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telescopes.
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1. Introduction

The Pierre Auger Observatory near Malargüe in the Province of Mendoza, Argentina, is the

largest and most precise UHE cosmic ray (UHECR) detector in the world. The Observatory consists

of several detection systems, one of which is the surface detector (SD), a triangular grid consisting

of 1660 water-Cherenkov detectors (WCDs) with a 1.5 km spacing. Overall, the SD covers an

area of 3000 km2 at an average altitude of 1400 m above sea level, corresponding to a vertical

atmospheric depth of 875 g/cm2. Each WCD is filled with 12 tons of ultra-pure water. Charged

particles from extensive air showers (EASs) cause the emission of Cherenkov radiation in the water,

which is detected using photomultiplier tubes (PMTs). The PMT signals are used to determine EAS

properties such as the arrival direction, energy, and identity of the primary particle. The Pierre

Auger Observatory has been taking data since the beginning of 2004. Its components are described

in detail in [1].

Searches for steady fluxes – both diffuse and direction-dependent – of UHE neutrinos, carrying

energies beyond 1017 eV, with the Pierre Auger Observatory have been successfully performed [2, 3],

substantially constraining several source scenarios. These searches rely on the distinguishability of

inclined EASs induced by UHECRs from those induced by UHE neutrinos, based on the difference

in the shower particle compositions reaching the ground, which are associated with different signal

shapes as a function of time in the PMTs. UHE neutrinos are thought to originate from UHECRs,

being produced either at UHECR sources or during their propagation through the Universe [4–8].

As neutrinos are electrically neutral, they are not deflected in magnetic fields, and their arrival

directions thus point back to their origins. In addition, neutrinos are only subject to the weak

interaction, such that they can reach Earth from virtually arbitrary distances due to the lack of

attenuation. In conclusion, neutrinos are a suitable component in multi-messenger campaigns in

combination with any other astrophysical messenger particle.

The LIGO Scientific Collaboration discovered BBH mergers with the very first directly detected

GWs in 2015, initiating the era of GW astronomy [9, 10]. Starting with this discovery, the

LIGO Scientific Collaboration and Virgo Collaboration (LVC) have so far reported the detection of

GWs from 62 BBH mergers. Searches for counterpart signals via other messengers have yielded

coincident detections for some events [11–13], none of which have been sufficiently significant

to claim a discovery. We present an application of UHE neutrino searches with Auger following

up these BBH merger GW events. Finding no UHE neutrinos in coincidence, we constrain the

emission of UHE neutrinos by BBH mergers with a simple isotropic standard candle hypothesis.

This work is an enhancement of a previously presented combined search that used only the first

21 published GW events from BBH mergers [14]. Besides the extended set of sources, we improved

the method by taking into account the full provided 3D sky localization probability density function

(PDF) and added a 60-day follow-up search period to the already established period of 24 hours in

order to probe a potential long-term emission.

In the following sections, the follow-up search methods, parameters, and results are discussed.

2. LIGO/Virgo Binary Black Hole Merger Event Information

The 62 BBH merger events followed up for this work originate from three different sets:
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1. The GW event catalogue GWTC-1 [15], containing 11 high-confidence GW events from the

LIGO/Virgo runs O1 and O2, 10 of which are most likely from BBH mergers. The other

event is the binary neutron star merger GW170817, which is not considered in this work but

has been followed up separately [16].

2. The GW event catalogue GWTC-2 [17], containing high-confidence GW events from the

LIGO/Virgo run O3 until the end of September 2019. This part of O3 is also called O3a. In

accordance to [17], the 36 events with the lighter object’s mass <2 > 3 "⊙ in this catalogue

are taken as BBH mergers. The GWTC-2 data release contains different parameter estimations

for each source, including a suitable weighted average, which is used for this work.

3. The 18 high-confidence BBH merger events of the remaining part of LIGO/Virgo run O3,

called O3b and published via public alerts [18–33]. High confidence of a BBH merger is

assumed for each event with an associated probability ?BBH > 0.75 to originate from a BBH

merger. Considering all GW events, it turns out ?BBH is either larger than 0.88 or very close

to zero, so the analysis is not sensitive to small variations of this quantity. All events that have

been retracted or found to be most likely of terrestrial origin are excluded from the analysis.

For each BBH merger event, the time of the merger C0 as well as the 3D sky localization PDF has

been provided by LVC. The directional part of the sky localization PDF is given in terms of discrete

probabilities %?,B for each source B to be located in the direction of a healpix pixel ? [34]. The

distance part of the 3D localization PDF is given in terms of conditional probability distributions

Π?,B (A), with the luminosity distance parameter A , provided for each source B in each healpix pixel

?. It is parametrized as a normal distribution times A2. The overall 3D localization PDF is the

product of these two parts, such that the probability of any source B to be located in a spherical

coordinate bin defined by a healpix pixel ? and a distance bin [d, d+Δd] is %?,B ·
∫ d+Δd

d
Π?,B (A) dA.

3. Ultra-high Energy Neutrino Sensitivity of the Pierre Auger Observatory

To quantify the direction-dependent sensitivity to UHE neutrinos, as discussed in [3], the

effective area of the SD for UHE neutrino detection �eff(�a , \, C − C0) as a function of the local

zenith angle \ and neutrino energy �a is used. It reflects the geometrical area of the SD and the

efficiency of the neutrino detection and identification. Its explicit time dependence originates from

minor short-term changes in the status of the SD, that are applied implicitly in the final calculation.

We defineA(\, C) =
∫ ∞

0
�−2
a �eff(�a , \, C) d�a as the effective area folded with an �−2

a neutrino

spectrum, which is a common assumption for UHE neutrino searches. Figure 1 shows the average

of A(\, C) for the year 2016, the benchmark time period for effective areas used in [3]. Variations of

A with \ are notable and exhibit a strong peak at \ = 90.8◦. Note that the healpix pixels provided

by LVC are substantially smaller than the expected angular resolution for reconstructed neutrinos.

This implies that the discretization of A(\, C) to A? (C), using that \ is a function of ? and C, does

not affect the precision of this analysis.

3
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evaluated using the Gauss error function. The zenith-angle dependence of �eff is contained in its

pixel index ?, which, at a given time, always yields a fixed zenith angle. We furthermore identify

the energy integral
∫ ∞

0
�−2
a �eff, ? (�a , C) d�a = A? (C) as in Figure 1.

The non-observation of neutrino candidates with a background low enough to be compatible

with zero allows to set the 90 % C.L. upper limit #up,a = 2.44 [35]. Taking the time integral as

a sum over discrete 1-second-long time bins 8 and applying no prior on the form of the isotropic

UHE neutrino luminosity upper limit allows to solve Equation 1 for it:

!up,8 =
#up,a

)

©­«
∑
B

∑
?nΩ90 (B)

%?,BA?,B,8

∞∫
0

Π?,B (A)

A2
dA
ª®¬
−1

. (2)

The denominator ) is a product of two factors: the number of time bins, over which the upper limit

of observed neutrino candidates is evenly distributed as both the number of observed candidates as

well as the number of expected background events are the same at all times (zero); and the time bin

width, which originates from the differential dC from the time integration in Equation 1.

6. Results

The resulting isotropic UHE neutrino source luminosity upper limit !up,8 for the 24-hour follow-

up period is shown in Figure 2, where the contributions from the individual LVC observational runs

are indicated as well. Runs that contribute predominantly to the combined sensitivity at certain

times are represented by lower values for these times in Figure 2. The upper limit obtained by

combining all runs is below 10
47 erg

s for most of the considered period. Approximately 22.4 hours

after the merger, the combined sensitivity is maximal, leading to the exclusion of a universal

isotropic UHE neutrino source luminosity above approximately 2.2 · 10
46 erg

s . The variations of

the combined limit are smaller than those for single runs, as the variations in the visibilities of all

sources are averaged out. As expected, the combination of sources and runs substantially improves

the sensitivity to the source class of BBH mergers compared to single sources or runs. The time

integral of !up,8 yields the upper limit on the total emitted energy in terms of neutrinos per source,

�up, still assuming an emission ∝ �−2
a . The resulting value for �up is approximately 6.0 · 10

51 erg.

The results for !up,8 for the 60-day follow-up period are shown in Figures 3 and 4. Figure 3

shows the combined limit for the 60-day search period with one line representing each sidereal day.

It illustrates both the daily periodicity and variations of the 60-day luminosity limit. The periodicity

originates from the periodic visibility of the sources while the variations originate from the time

dependence ofA(C), which reflects minor changes in the status of the SD such as individual stations’

communication systems suspending or resuming. The luminosity limit values are approximately a

factor of 60 smaller than the ones for the 24-hour follow up in accordance to Equation 2, where it

is shown that the limit scales with the inverse of the search period duration.

A representation of the 60-day limit analogous to Figure 2 with the same time resolution would

have frequent and large oscillations of the lines, making it barely discernible. Therefore, Figure 4

shows the combined limit for the 60-day search period in terms of the (sidereal) daily mean value. It

illustrates the stability of the time-dependent limit over the 60-day search period both for the overall

limit as well as for the contributions of the individual runs. The combination of the runs increases

5
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the sources’ instantaneous visibility. The corresponding upper limit on the total neutrino emission

energy per source during the 24 hours after the merger is 6.0 · 10
51 erg. This is a factor of ∼ 2.2

more constraining than the value corresponding to the previously published search [14], while

approximately 3 times as many sources have been followed up. The reason for this worse than

linear improvement of the energy limit with the number of sources is the increasing sensitivity of

the LIGO and Virgo detectors from run to run, leading to a larger average distance of BBH mergers

being reported for the later runs. These more distant BBH mergers contribute less to the luminosity

limit than the mergers of the earlier runs, which are on average closer to Earth.

The 60-day search, corresponding to a longer emission duration, leads to overall approximately

60 times smaller values for !up(C − C0) than the 24-hour search, as expected from Equation 1, which

indicates that the same upper limit on the total number of neutrino induced events, #up,a , is dis-

tributed over a longer time period ) . Another interpretational approach would be an approximately

60 times larger total exposure with the same statistical constraints by zero detected neutrinos and

an expected background also very close to zero, which is the reason why the same value of #up,a

applies to both search periods. The combined luminosity limit as a function of sidereal time is

similar for every considered sidereal day after the merger as shown in Figure 3. This similarity is a

consequence of the periodic course of the Pierre Auger Observatory’s field of view. The deviations

between the lines in Figure 3 are due to changes in the status of the SD over the course of the 60

days. Figure 4, which shows the sidereal daily mean values of !up(C − C0), illustrates that these

deviations are overall small for the combined limit. For O1, an LVC run with only three sources, the

deviations over the 60 days are substantial, demonstrating that the combined limit’s time stability

is another benefit of the source stacking, along with the substantial improvement of the sensitivity

itself as compared to single source searches. The upper limit on the total neutrino emission energy

per source during the 60 days after the merger is 6.3 · 10
51 erg, which is close to the value for the 24

hour search period because the time integration yielding this limit balances the longer time period

) in the denominator in Equation 1. The proximity in the energy upper limits for the two periods

further confirms the temporal stability of the stacking search.

As the neutrino emission energy limit is – to first order – independent of the observation

duration, it is a robust basis for interpretations and comparisons. It corresponds to approximately

"⊙2
2/300, whereas the BBH mergers with published emitted GW energies typically emit a few

"⊙2
2 [15, 17]. This means that the limit is strong enough to be constraining or at least highly

relevant for theoretical considerations such as in [36], keeping in mind the assumptions made for this

work, in particular the isotropic emission and the �−2
a flux. Another comparison is possible with

similar searches performed with IceCube [37], which impose limits in the range of 1.37 · 10
52 erg

through 1.80 · 10
55 erg to BBH mergers of the GWTC-1 catalogue. A simple combination of the

energy upper limits from [37] by adding the inverse of the energy limits, which would be proportional

to the exposure, and taking the inverse of the result yields an upper limit on the universal isotropic

neutrino emission energy of �up,IC ∼ 10
52 erg, whereas the corresponding value for these sources

with Auger is ∼ 2.3 · 10
52 erg. As the search by IceCube is focusing on a lower energy range, this

result emphasizes the complementarity of the two observatories, while the previously discussed

stronger constraint on the universal neutrino emission when considering all sources shows the

strength of this stacking analysis method.
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