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RESUMO

Na primeira parte deste trabalho é estabelecido um método amplo para obter
boa colocacao local de equagbes dispersivas nos espagos de Sobolev com peso H*(R) n
L*(|z|*dz). Aplicamos este método a vérias equacoes dispersivas como a equacio de
Ostrovsky-Stepanyams-Tsimring, a equacao de Kawahara, um modelo de quinta ordem e
o sistema de Hirota-Satsuma. A segunda parte do trabalho é dedicada a demonstrar a
optimalidade da relacao entre o decaimento e a regularidade obtida no método desenvolvido;

usando a equacao de Korteweg-de Vries modificada como exemplo.

Porfim, como uma aplicacao direta da teoria desenvolvida nos espacos com
peso, na parte final sdo obtidos resultados de tipo blow-up dispersivo de solugdes para a

equacao de Kawahara e para o sistema de Hirota-Satsuma.

Palavras-chave: Espacos de Sobolev com peso, Decaimento polinomial, Blow-up disper-

sivo, Boa colocagao local.



ABSTRACT

In the first part of this work we establish a wide method to obtain local well-
posedness of dispersive equations in the weighted Sobolev spaces H*(R) n L?(|z[*dz). We
apply this method for several dispersive equations such as the Ostrovsky-Stepanyams-
Tsimring equation, the Kawahara equation, a fifth order model, and the Hirota-Satsuma
system. The second part of this work is devoted to show that the relation between decay and
regularity obtained with the developed method is optimal; using the modified Korteweg-de

Vries equation as example.

Finally, as a direct application of the theory in weighted spaces, we obtain
results related to the dispersive blow-up of solutions to the Kawahara equation and

Hirota-Satsuma system.

Keywords: Weighted Sobolev spaces, Polynomial decay, Dispersive blow-up, Local well-

posedness.
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INTRODUCTION

Nonlinear dispersive equations are equations of the form
oyw —im(D)u + N(u) = 0, (1)

where v = u(x,t), z € R", t € R, m(D) is an operator defined as a Fourier multiplier based
on a real-valued m and N is a nonlinear function. These kind of equations have been
extensively studied in the last decades due to the fact they are models that arise from
several physical phenomena, specially in the case of wave propagation. A fundamental
aspect in the theory of dispersive equations is the study of well-posedness. Following Kato
(see [34]), we say that the initial-value problem (IVP)

ou(z,t) = f(u), xeR" teR,

(2)
u(z,0) = ug(x),

is locally well-posed in the Banach space Y if the next two conditions are satisfied:

1. For each initial datum ug € Y there exist 7' > 0 and a unique solution u in the space
([0, T];Y).

2. The data-solution map wug — u is continuous from Y to C([0,T];Y).

In case T' can be selected arbitrarily large, we say the IVP is globally well-posed in Y. It is
worth to emphasize that condition 1 above is actually requiring two things: the existence of
a unique solution and its persistence in the functional space Y along time. The persistence

property is one of the main concerns of this work.

Initial value problems associated to several dispersive equations have been
considered extensively in the literature. Classical methods such as the contraction principle
have been employed to obtain local well-posedness in functional spaces measuring regularity

of the solutions (see for instance [12], [34], [37] and the references therein). In [34], when
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studying the well-known Korteweg-de Vries (KdV) equation (see (4) below), Kato also
considered spaces that, in addition to smoothness, also measure the decay of the solutions.
Among the possibilities, persistence in the spaces Z,;, := H*(R") n L*(|z|**dz) plays
an important role. The relation between decay and regularity displayed by the Fourier
transform suggest the study of the persistence in such spaces. Several classical results
support the existence of a natural bond between the two spaces involved in the definition
of Zsy.

In the past years, new techniques based on Besov or Bourgain spaces have been
used to address the IVP associated to many dispersive equations in low regularity spaces,
unfortunately, the relation between decay and regularity under these new technologies
is not well understood yet. Earlier works dealing with persistence in the spaces Z,,; are
based on formulas that interchange weights with the group associated to the linear part of
the underlying equation. In [26], [27] and [28], based on the commutative properties of the
operators I'; = x; + 2itd;, the authors used the equality

%" uy = T, where T' = (I'y,...,T,) and a € N,

together with calculus inequalities for the operators I'; to show that if ug € Z,, 5, with

m, k integers, then the IVP associated with the Schrodinger equation,

i0u 4+ Au 4 plu|*tu =0, a>1,

(3)
u(z,0) = ug(x),

has a unique solution
we C(0,T]s Zus) o ([0, T; LL(R™) ~ L¥(Jald)),

for appropriate m and k. Here (p, q) is some admissible pair. This result for indices m, k

not necessarily integers was obtained by Nahas and Ponce in [46, Theorem 1].

In [34], Kato considered the following IVP

o+ u+ a(u)d,u =0 zeR, teR, 0

u(z,t) = uo(z),

where a(u) is a real-valued C* function. If a(u) = u we have the Korteweg-de Vries (KdV)
equation. The KdV equation was derived in [38] as a model describing the propagation
of waves in one dimensional dispersive media. From the mathematical point of view,
this equation has been widely studied in the literature, see for instance [15], [34], [37]
and the references therein. Also, if a(u) = u* we obtain the modified Korteweg-de Vries
(mKdV) equation and if a(u) = u* for k > 2 a positive integer, we obtain the generalized
Korteweg-de Vries (gKdV) equation . Using the operators I'; := x — 3t0 and A := 6, + 02,
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Kato showed that [I';, A] = 0 and used this to note that both, U(t)(zuy) and I'tU (t)uo,
are solutions of the problem

Au =0,

u(0) = zuy.
Therefore, it follows that U(t)(zug) = I'tU(t)ug. The latter can be translated into the

formula

aU (t)uo(x) = U(t)zug(x) + 3tU(t)(2up) (). (5)

Using (5), Kato proved the local well-posedness of (4) in Z,, for r > 1 integer. This was

later extended by Nahas [44] to non-integer indices.

Another example of a model studied in the spaces Z,; is the Benjamin-Ono
equation
opu + ’Hé’iu + uu, = 0,

where H denotes the Hilbert transform

HY(E) = —isgn(€) F(€).

For integers s and b, persistence in these spaces was first studied by Iorio in [31]. For
non-integer indices the persistence properties were established by Fonseca and Ponce in
[24]. For the study of the IVP associated with other dispersive equations we refer the
reader to [7], [8], [18], [19], [21], [23], [33], [48] and references therein.

Our first concern in this thesis is to study decay properties of solutions for linear
problems for several dispersive equations. More precisely, we are interested in discussing
the problem

ou+ Lu=0, zxzeR" tek,
(6)
u(0) = o,

where L is a linear operator satisfying l/}? (&) =ip(¢ )f(£ ) for some continuous real-valued

function ¢ and ug € Z,,. Via Fourier transform, the solution of (6) is given by
Ult)ug(z) = u(z, t) = (e7#O0)Y (z),

where {U (t)}scr is the associated linear group. We shall assume that the phase ¢ : R" — R
is regular enough (see conditions (A) and (B) below) in order to define a group in H*(R).

The KdV case (when ¢(¢) = —€?) is one of the best understood due to the
physical significance of the model. Denote with U(t) the linear group associated to the
linear part of (4), that is,

U f@) = (¢€F) @) (7)
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To study u in the spaces L*(|z|*) it is necessary to look at expressions of the form

|z[’u(x, t). Taking into account the Duhamel formulation of solutions

t
u(z,t) = U(t)uo(x) — f Ut —tu(z, t')ou(z, t')dt, (8)

0
the relation between the unitary group U(t) and the weights |z|” needs to be understood.
Recently, using one version of the Stein derivative (which is not directly depending on
the Fourier transform), the formula in (5) was later generalized to weights with fractional

powers in [22]. It was proven that for b € (0,1) we have

|2]°U (t)uo(x) = Ut)(|2|"uo) () + U){Pea(@o(€))}" (), 9)

where the residual term {®,;(%y(£¢))}" can be estimated in terms of the L? norm of the

fractional derivative D?"uy. The authors used the following version of Stein’s derivative:

Do f(x) = lim 1J| i flety) - /@), (10)

0t Cq |yt

The main advantage of this version relies on the fact that for suitable functions f, it
follows that D, (f) = |€|*f. This allowed the authors to recover the unitary group after a

convenient application of a Leibniz-type rule for Stein derivatives.

Note that a close inspection of both, (5) and (9), suggest that one can expect
a bond between the regularity index s and the twice the decay 2b.

In Theorem 1.5 below we prove that if ug is in Z, := H*(R) n L*(|z|**dz) for
b < s/K then the IVP (6) has a solution u satisfying the inequality

" u(t)] 22 < C {1 + [t])uo

sz + |z uol| 2 } (11)

where | - ||s2 denotes the norm in H*(R"). The parameter K is related to the greatest
dispersion present in L. Note that (11) indeed establishes that the solution of (6) persists
in Z;, for any time interval. A similar result to (11) was obtained in [9, Theorem 1.11].

The authors considered a phase function given by

B(E) =D Cie%, EeR", Bre (L),
j=1

J

and established the inequality
llzl"u(®)]z2 < Clllal"uolz2 + A(uo| gaw),

where b > 1, A is a non negative continuous function and a(b) := rlnax(][)’j| — 1)b. Their
yeensP

proof relies on estimates based on the differential equation itself. On the other hand, our

approach to prove (11) follows the ideas of Nahas and Ponce [46] and relies on estimates

based on Stein’s derivative D of the phase function (see (12) below). In consequence, we
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are able to include weights with 0 < b < 1 and establish the same interpolation inequality
with A(z) = (1 + |t|)z and a(b) = Kb.

We point out that (11) may be seen as an alternative to (9) in the sense that
it interchanges weights with the group but also accepts several dimensions and a wide
variety of phase functions. On the other hand, in contrast with (9) we lose the punctual
identity. A disadvantage of (11) compared to (9), is the impossibility of using Strichartz
type estimates once (11) has been applied. This prevents the application of the theory
developed here in the context of estimates that do not rely on the L*-based Sobolev spaces.
An example of this situation is the nonlinear Schrédinger equation in which the inequalities

used to prove local well-posedness are based on the spaces L} (R").

The main tool to prove (11) is the estimate presented in Lemma 1.9 (below),
which in turn is based on previous results that faced persistence properties for particular
equations such as in [8], [22] and [46]. Some other works in which related computations
have been done are [23] and [33]. In [46], the authors dealt with the Schrodinger equation;

using the Stein derivative defined as

Dyt - ([ LI, 12

|z — y[rt2

They estimated D°(e"#*)(z) by exploiting the radial behavior of the integral

i(=2Vtzy+lyl?) _ 1|2
f e .

|y|n+2b

This estimate was later extended in [8] for D*(¢")(z) when dealing with the Ostrovsky
equation. We follow these ideas to generalize it for phase function satisfying weak regularity
conditions. Roughly speaking, we require ¢ to be locally Lipschitz with some conditions

on how the Lipschitz constant varies in space (see conditions (A) and (B) below).

It is worth mentioning that the modulus present in the definition of D generates
cancellation of oscillations when f is of the form e”?, preventing estimate (11) to be in
terms of the group associated to ¢, in contrast with (9). This issue restrict optimal
applications of (11) for some nonlinear equations, in which the problem can be resolved
using regularization via Sobolev embedding but that might imply extra constraints in the

regularity index s that may not match the best local well-posedness result available.

As a direct application of (11) we prove local well-posedness results in weighted
spaces for several physical models, including local and non local models and a system of

equations. The first model we are interested in is the Kawahara equation. Consider the

IVP
Opu + audyu + BoPu+yPu =0, (z,t) e R x R,

u(z,0) = ug(x),

(13)
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where «, 5, are real numbers with ay # 0. The Kawahara equation was derived in [35]
as a model equation describing solitary-wave propagation in media where the first-order
dispersion coefficient is anomalously small. It also arises in modeling gravity-capillary
waves on a shallow layer and magneto-sound propagation in plasma. Several results for
the IVP (13) can be found in the current literature. In particular, the local well-posedness
in the Sobolev spaces was established in [17] for s > 1/4. By using Bourgain’s spaces, the
Sobolev index for the local well-posedness of (13) may be pushed down to s > —7/4 (see,
for instance, [13]). However, since the work in [17] was established with the technique
introduced in [37] (which uses Strichartz’s estimates, smoothing effects, and a maximal
function estimate combined with the contraction mapping principle), we use it instead to
establish in Chapter 2 that (13) is locally well-posed in Z,, for s > 1/4 and 0 < b < s/4.

Now, consider the Hirota-Satsuma system

O — a(Pu + 6ud,u) = 2rvow, (o,t) e R x R,
O + v + 3udv = 0, (14)
u(0,2) = ug(x), v(0,2) = vy(x),

where u and v are real-valued functions of the variables x,¢ € R and a,r are nonzero real
constants. The system (14) was derived in [29] and describes interactions of two long waves
with different dispersion relations. Concerning local well-posedness in H*(R) x H* (R) via
contraction principle, in [1, Theorem 2.1] it was proved to be locally well-posed for s’ = s
with s > 3/4. By performing a natural modification of the Banach space, (11) was used to
establish the system is locally well-posed in Z, ) x Z,, for s > 3/4 and 0 < b < s/2.

Next we consider the IVP associated with the so-called Ostrovsky-Stepanyams-
Tsimring (OST for short) equation

Opu + O2u — n(Hou + HoPu) + udyu = 0, reRt >0,

(15)
u(0,x) = up(x),

where 77 > 0 is a real constant and H is the Hilbert transform. The equation in (15) was
derived by Ostrovsky, Stepanyams and Tsimring [47] to describe the radiational instability
of long waves in a stratified shear flow. The IVP (15) in classical Sobolev spaces was
considered in [11, Theorem 1.1]. The authors used an improved smoothing effect to prove
local well-posedness in H*(R) for s = 0. In Chapter 2 we prove it is also locally well-posed

in Zgp for s > 0and 0 < b < s5/2.

Next we consider another fifth-order model by replacing the first-order derivative

in the nonlinear part of (13) by a second-order derivative. More precisely, we consider the
following IVP
Opu + aud?u + Bou + yPu =0, (z,t) e R x R,

(16)
u(z,0) = up(x),
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where again «, 3,7 are real numbers with ay # 0. The local well-posedness of (16) in
H*(R) was established in [51] for s > 5/4. We prove it is also locally well-posed in Z;; for
s>5/4and 0 <b < s/4

Note from (9), (11) and the results mentioned above that the upper bound for
decay s/K > b seems to be mandatory. In this work we also study if such condition is
optimal. A positive answer was obtained in the sense that if the decay b of the solution
exceeds s/K, say b = s/K + ¢, then the solution is actually more regular than initially
considered and the regularity index seems to be s + K¢e. The first result in this direction
was proved for the KdV equation and it is due to Isaza, Linares and Ponce [32]. The
authors proved that if the solution of the KdV equation in L?*(R) is so that in two different
times it accepts a decay of |z|* for some a > 0, then the solution, which was initially only
in L?(R), is in H**(R). A similar result was later obtained by Bustamante, Jiménez and
Mejia in [6] for the fifth-order KdV equation

oyu + (72u + ud,u = 0,
starting with a solution in H?(R).

The idea used in [32], is to develop a bootstrap argument depending on the
size of . In each step the authors perform energy estimates in an accurate way to obtain
decay for the solution and its derivative. More precisely, for a > 0 they established that
for almost every t € [to, 1] it follows that dyu(t)(x)* V2 € L*(R) and for all t € [to,t]
that u(t)(z)* € L}(R). By considering f := (x)* Y2u(t*), for some t* € [to, 1], the latter
implies that Jf := (<§>]?)V and (x)/2f are in L?(R). Using interpolation (see Lemma 1.4

below), the following bound was obtained:

HJIG (<x>(179)%f)
In order to give a conclusion about J°u, for some s € R, it was required the equality
(1—6)/2+a—1/2 =0, that is, § = 2 and therefore they proved u(t*) € H**(R).

< c|JfII@ 70, 0€(0,1). (17)

!

In [32] the authors suggested that the proof extends to the mKdV equation. It
appears that some adjustments are required to raise according to the size of . For instance,
if & > 1/2 the same choice of § done in (17) might not be the best due to the constraint
6 < 1. Moreover, regardless of the choice of 6, the most regular scenario for J% leads to
H*(R). This concern exhibits the needing of increase the regularity over f, that is, to get

a higher estimate than J f; while the role of « is re-escalated to fit (1 —0)/2+a&—1/2 =10
1
with 6 € (0,1). One natural way of doing this reads as follows: in case o € (;, r—;—] we
can take 0" to the mKdV equation and prove that 0" 'u(t)(x)* % is in L*(R), where
& = a—r/2 € (0,1/2]. By setting f := () Y2u(t*) it might be seen that J"™'f and

(x)?f are in L*(R). Interpolating as in (17) we would get

700 (00 1) < el FII AR B (0,1),
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From the condition (1 —#)/2 4+ & — 1/2 = 0 we obtain § = 2« — r, which is in (0,1).
Unfortunately this interpolation will not lead to the best estimate for J*u because (r +1)6

is less than or equal to the expected gain of regularity 2« and only attains it when
a=(r+1)/2.

Given that only an increase in the regularity does not resolve on its own, in the

proof of Theorem 3.7 (below) we not only increase the spatial derivatives of u but we also

+1
consider some decay for them. We manage to prove that in the general case o € (;, 7”2]’
for almost every ¢ in a subinterval of [tg, t1] we have
()32 ly(t) e LA(R)  and  (2)%u(t) € L*(R). (18)

By considering f := (x)® Y20 u(t*) it is noted that .J f and (x)"2f are in L*(R). Therefore
interpolating analogous to (17) with § = 2& we would obtain J**d%u(t*) € L*(R), that is
to say, u(t*) e H**(R).

The optimal relation in the general case s/K > b is discussed in Chapter 5.
Partial results for the Kawahara equation, the OST equation and some perturbations of
the KdV are possible to be extended as in the mKdV case. A generalized setting (such as

the one in (6)) is one of the topics of current research.

Finally, to stand out the importance of studying dispersive equations in weighted
Sobolev spaces, this work carry on with a study of dispersive blow-up properties. The
phenomenon of dispersive blow-up was first identified by Benjamin, Bona and Mahony
in [2] for the linear KAV equation. Roughly speaking the authors proved the existence of
an infinitely smooth bounded initial data such that the corresponding solution blows-up
in finite time in the L® norm. The pioneer mathematical work studying the existence of
solutions for nonlinear dispersive equations presenting a behavior similar to the linear
KdV is due to Bona and Saut [4]. In that paper the authors considered the generalized

nonlinear KdV equation
o+ u+uto,u =0 keZ',

and constructed initial data in H*(R) n C*(R), for a suitable choice of £, such that the
corresponding solution satisfies

lim  |u(z,t)] = +oo0, (19)

(@)= (T, ts)

where (z,,t,) is a point in R x (0, 00); moreover, the solution u is continuous except at
(24, t4). The strategy of the authors was first to construct a solution of the linear problem
satisfying (19) and then, using the decay properties of the solutions in weighted spaces,
they showed that the nonlinear part do not destroy that behavior. This emphasizes the
linear feature of this kind of singularity and makes it different, for instance, of the blow-up

in Sobolev norms where the effects of the nonlinearity are stronger.
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After that, in [42], the authors addressed the same question for k£ > 2 but with
a simplified approach. Indeed, the authors showed that in this situation is sufficient to
show that the integral part of the solution in the Duhamel formulation is more regular than
the linear one. More precisely, they established if the initial datum belong to H*(R), s > 1,
then the corresponding integral part belongs to C'(R; H***(R)). This was enough to prove
the existence of dispersive blow-up. More recently, in [41], using fractional weighted spaces,
the authors also improved the results of [4] in the case k = 1, i.e., for the KdV equation.

For additional results concerning dispersive blow-up we refer the reader to [3], [5], [39]
and [40].

Although the ideas employed below may be applied to several models, we
will pay particular attention to the Kawahara equation and the Hirota-Satsuma system.
Similar results to the ones we prove in Chapter 4 were obtained in [41] for the KdV
equation, in [40] for the two-dimensional Zakharov-Kuznetsov equation, and in [39] for the
Schrodinger-KdV system. We first emulate the ideas of [41] to construct a smooth initial
data such that the global solution of the associated linear IVP has an infinite number of
discontinuities; at these times the linear low cannot be smooth, which is then identified
as the dispersive blow-up taking place at x = 0. Then it is shown that the integral term
in Duhamel formulation of solutions is smoother than the linear part, which unleash

regularity on the linear term.

This thesis is organized as follows. In Chapter 1 we introduce notation and
some preliminary and linear results used through this thesis. In particular, (11) is proved.
Chapter 2 is devoted to prove local well-posedness in weighted Sobolev spaces for several
models. Chapter 3 analyzes the relation between decay and regularity using the mKdV
equation as example. In Chapter 4 the weighted theory developed in Chapter 2 is applied
to obtain dispersive blow-up of solutions to the Kawahara equation and Hirota-Satsuma

system. Finally, in Chapter 5 further results and current research topics are discussed.

Part of this thesis is already published in a scientific article format (see [43]).
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CHAPTER 1

PRELIMINARIES AND LINEAR ESTIMATES

This chapter is devoted to develop the linear theory related to the study of
persistence in weighted Sobolev spaces, including the proof of (11). We first introduce the

notation used in this thesis.

1.1 Notation

We use C' and M to denote several constants that may vary from line to line.
Sometimes we use subscript or parenthesis to indicate dependence of parameters; for
instance C, = C(¢) means that the constant C' depends on ¢. We shall write a ~ b,
where a and b are two positive numbers, when there exists a constant C' > 0 such that
C™'a < b < Ca. Given a real number r, we use 7" (respect. 7~) to mean r + ¢ (respect.

r — ¢) for some sufficiently small ¢ > 0.

By L? = LP(R"), 1 < p < +o0, we denote the standard Lebesgue space endowed
with the usual norm. If w is a weight (a non negative measurable function), by LP(wdz)
(or LP(w) for short) we denote the space LP with respect to the measure w(z)dz. Given a
function f defined on R", f and f" stand, respectively, for the Fourier and inverse Fourier

transforms of f. The operators D® and .J® are defined via Fourier transform as

Daf(§) = &P f(§) and  Jof(§) = (&)°f(£),
where (z) := (1 + |z|*)"/%. Given s € R, by H* = H*(R") we mean the L?-based Sobolev
space of order s. For 1 < p < o0 and b € R, the space L}(R") is defined as L}(R") =
(1 — A)™Y2LP(R™). Note that in the case p = 2 and b = s, L3(R") is nothing but the
Sobolev space H*(R"). In particular, the norm in H*(R") is given by

1

e = [l = ( [a- |€|2)8|f(€)|2d§)2 |

R'Il

| /]
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We write Z,; to denote to the weighted Sobolev space H*(R) n L*(|z[*dx). The so-called
Schwartz space is denoted by S(R).

Given a function f = f(x,t) of the variables x and ¢, sometimes we use || f| »
to indicate that we are taking the LP norm with respect to the variable x only. Also, given
T > 0 we use L% to denote the LP space over the interval [0,7]. For 1 < ¢q,r < o0, the

norm in the mixed space LLL! is given by

HfHLqTL; = HHf(ta )HLQ

q -
Ly

Similar considerations apply to the space L] L%. In the case both indices agree, that is
q=r, wehave | flrs = |flrzr, = [flzr,-
1.2 Commutator and interpolation estimates

In this section we recall some commutator and interpolation estimates which
will be useful below. We start with the following commutator estimate for homogeneous

derivatives.

Lemma 1.1. Let s € (0,1). Then
(i) For1l <p < w,
|1D*(fg) = fD°g = gD*fllo» < Cllglie | D* 1o

(ii) For 1 <1, p1,p2,q1,q2 < O satisfying

it holds
ID*(fg)lr < C| fllzo [D*gllzar + C|D* f| Loz | g 1o -

(iii) For 1 < p1,p2,q1,q2 < 0 satisfying

we have

ID*(fg) — fD*g — gDsfHL;LZ’T < CHQ”LilL‘?Tl HDS}CHL’;QL‘;2~

Proof. For part (i) see Theorem A.12 in [37]. For part (ii) see Proposition 3.3 in [14]. For
(iii) see Theorem A.13 in [37]. O
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Denote with A, the Muckenhoupt class on R"™. More precisely, given 1 < p < o0,
the Muckenhoupt class A, consists of all weights w such that

““”WQQJ<“@(@JWP“”@H<@ (1)

where the supremum is taken over all cubes (Q < R"; additional details and properties
may be seen in [16] and [30]. The next result is a version of the Kato-Ponce commutator

estimate in weighted spaces.

1 1 1
Lemma 1.2. Let1 <p,g < and 1/2 <{ < © besuchthatz —+—.Ifve A, we A,
p q

1
and s > max{0,n(= — 1)} or s is a non-negative even integer, then for all f,g € S(R™) we

14

have

|1D*(f9) = D%, 8 < CID FllrwlglLow ) F IVl 1D gl pawy- (1.2)

q

Proof. See Theorem 1.1 in [16]. O

We also need the following characterization for the boundedness of the Hilbert

transform in weighted spaces.

Lemma 1.3. The Hilbert transform is bounded in LP(wdzx), 1 < p < oo, if and only if

we A,

Proof. See Theorem 9 in [30]. O

We finally introduce two interpolation inequalities.

Lemma 1.4. Assume a,b> 0,1 <p <o and 6 € (0,1). If J*f € LP(R") and {x)’f €
LP(R™) then
[t = T% £l poeny < CI)" Fl poamy | T fl Lo (1.3)

The same holds for D instead of J. Moreover, for p = 2 we have
[ 7% (<)1) | paqny < CUEY PGy 17 12 sn- (1.4)

Proof. Inequality (1.4) follows from (1.3) in view of Plancherel’s identity. The proof of

(1.3) follows using Hadamard’s three lines theorem. See Lemma 4 in [46]. O

1.3 Weighted inequalities

As briefly mentioned in the introduction, we consider the linear problem

du+ Lu=0, xeR" tekR,
u(0) = wy,

(1.5)
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A~

where if (&) =ip(&) f(&) and ¢ is a continuous real-valued function satisfying the regularity
conditions
There exists a continuous function ¢g : R" — R, ¢ > 0 except maybe at x = 0,

so that for all z,y € R" with |x — y| < |z| we have |¢(x) — ¢(y)| < g(z)|z — yl.

There exists C' > 0 such that for all x,y € R" satisfying |z — y| = |z| we have

[¢(x) — d(y)| < Clo — y|* for some a > 1.

Note that by taking = 0 in condition (B) we deduce that |¢(y)| < C(1 + |y|*) for any
y € R™. In particular, from Stone’s theorem one can see that L generates a unitary group
in H*(R"), for any s € R.

Some examples of phase functions satisfying (A) and (B) are given below. We

will present the proofs to the Appendix A. Assume k€ Z" and i € {1,...,n}.

1. Let ¢ : R — R be given by ¢;(x) = z*. In this case we may take g(z) := Cy|z|*™"
and a = k. In the particular case k = 3 we see that ¢;(z) = 2” is the phase function

associated to the linear KdV equation.

2. Let ¢y : R" — R be given by ¢o(x) = |z|*. Here we may take again g(z) = Cy|z|"
and a = k. Note that for & = 2 we obtain ¢y(x) = |2|* which is the phase function

associated to the linear Schrodinger equation.

3. Denote by 7 := (21,...,%i_1,Tis1,-..,2,). The functions ¢4 : R* — R defined by
¢s(x) = x| 7%, also satisfy (A) and (B). In this case g(z) = C|z|* and a = 3.

4. Define ¢ : R" — R as ¢i(x) = z¥. Then ¢} also satisfies (A) and (B) with
g(x) = Cilz/*"! and a = k. Alternatively, we may also take g(z) = Cy|z;|*™ (see
[7]). By taking ¢(z) = ¢j(x) + é3(x) = 2 + 21|21]%, we see that ¢ is the phase

function associated with the linear n-dimensional Zakharov-Kuznetsov equation,

5. More generally, for 3 € N", by taking ¢5 : R” — R as ¢5(z) = 2’ we obtain that it
satisfies (A) and (B) with g(x) = Cﬂm\ﬂlﬂ and a = |3].

The main theorem of this thesis, concerning persistence of solutions of linear

IVPs in weighted Sobolev spaces is proved in Section 1.5 (below) and reads as follows.

Theorem 1.5. Let p € Z" and assume that ¢1, . .., ¢, satisfy conditions (A) and (B) with
gi(z) < Ci(1 + |z|*), for some ki e Z* and C; > 0,i=1...,p. Set




Chapter 1. Preliminaries and Linear Estimates 26

and K :=max{k;,i = 1,...,p}. Let L be the linear operator defined by Lf = <@<I>(§)]?> ’
and assume 0 < s < K. Ifue C([-T,T], H*(R™)) is the solution of the IVP

diu+ Lu=0, zeR" tekR,

(1.6)
u(0) = up € Zyp, := H*(R™) n L*(|x[*dx),
with 0 < b < s/K, then u satisfies the inequality
Ilzl"u(®)]z2 = |2 U(t)uoll 2 < C{(1 + [t))uollsz + Nz *uolz2} , (1.7)

where | - ||s2 denotes the norm in H*(R"™) and C' depends on K, p, s and n.

The condition s < K in Theorem 1.5 can be eliminated as described in Section 1.5 below.

1.4 Stein derivative

In this section we discuss the technical tools involving Stein’s derivatives. Let
us begin by recalling the definition of Stein derivative D. For any real number b € (0,1)

and a measurable function f define
_ 2\ 2
D)= ([ HOLG )

The next theorem gives a useful characterization of the spaces LY(R") due to
Stein [49].

2
Theorem 1.6. Let be (0,1) and —|—n2b < p <. A function f belongs to Ly(R™) if and
n

only if f € LP(R™) and D°(f) e L*(R™). In addition,

| o = 1 lp = [ flze + 1D (H)lze = 1 £lze + [D° ()] o (1.8)

From (1.8) one sees that the norm in L?(R™) may be given in terms of either D° or D°. The

advantage of using Stein’s derivative is that it is useful to perform pointwise computations.

Next we estate a Leibniz type rule for DP.

Lemma 1.7. For be (0,1) and measurable functions f and g, we have

D'(fg)(x) < If=D"(g9)(x) + |g(2) D" (f)(), (1.9)

and

ID*(f)lze < 1/D"(9) Iz + [gD"(f) 2. (1.10)
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Proof. This was proved in Proposition 1 in [46]. The idea is to use the triangle inequality

after an addition and subtraction of f(y)g(x) to get

Db(fg)(z) = (f " ‘fg(y@;”ég(@‘zdy);

. ( [ Moot g<y>>|2dy>% N ( [ Lo~ f@))pdy);

|y|n+2b |y|n+2b

= A(fg)(x) + g(«)[D"(f)(x) (1.11)
< [flD"(9)(@) + |g()[D"(f)(x),

where

A(fg) = ( [V <y><g‘<;’rz+—2bg<y>>|2 dy)%’

which proves (1.9).

Now, using Fubini-Tonelli’s Theorem we obtain

JA(fg)]z2 = < f n f |f(y>(g’§jz:2bg(y))|2dyd:c)é

_ f(y)? Wd dg;%
<f{>2<g>i2.fn L y)

Therefore, (1.10) follows from (1.11). O

We also may prove the following.

Proposition 1.8. Let be (0,1) andpe Z*, p = 2. Assume h; : R" - C,i=1,...,p, are

D' (H hz-) (@) < 2P 0)@ [T I (112)

measurable. Then

i=1
J#i

Proof. Note that D(f)(x) is always a positive quantity. So the proposition follows by
induction on p just by iterating (1.9). O

Now we establish a pointwise estimate for the Stein derivative of phase functions
satisfying (A) and (B).

Lemma 1.9. Let be (0,1). Suppose ¢ : R" — R satisfies the conditions (A) and (B). For

any t € R and x € R" we have
Db () (z) < C {1+(1+ |t|)g(m)b}, (1.13)

where g(x) is as in (A) and the constant C > 0 depends on n,b and ¢.
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Chapter 1.
Proof. We follow a similar strategy to the one applied in [46, Proposition 2|. Let x € R"

be nonzero. Then,

: : 1/2 . 2 1/2

, itd(x) _ ezw(y)f et —ew) _ 1

Db lt¢(-) — f |€ d — f d = I
(e )(x) n |a: _ y|n+2b Y n |x _ y|n+2b Yy

To simplify notation, by B(a, R) we mean the closed ball of radius R > 0 centered at the

point a in R"™. Split R™ into the following three sets:
By = B(z,g(x) "), Ey:= B(x,g9(x)™") n B(x,|z]) and Es := B(z,g(z)™') n B(z, |z])¢,

where A° means the complement of the set A in R™. Let I;, j = 1,2, 3, be the integral I with
the integration over R" replaced by the integration over E;. Since, clearly, I < C(I;+13+13)

we see that it suffices to estimate I;.

In what is coming after, the inequalities
(1.14)

e — 1] <2 and | -1/ < 0], 0eR,

shall be used repeatedly without being mentioned.
The idea to estimate [; is to use (1.14) and then to explore the radial feature

of the resulting function. We begin by estimating I;:

4 1/2 © =1 1/2
—d <C, d
(JE1 |z — y[n+2 y) <L(m)1 b2 r)

o0 1/2
= Unb (J 7,12bd7,> < Cn,b (g(iL')Qb) 12 = Cn,bg(wy}‘

g(x)~1

L
(1.15)

N

For I, we need to divide into two cases.
Case 1, g(x)~! < |z|. In this case, By = B(z, g(x)™"). So, by using condition (A) we deduce

N

/2 1/2
tg(z)|z — y|? ! —n—
oo ([ MO0 < Culgto o g

Es B(z,9(z)~1)

|z — y[t2

g(z)1 1/2
< Cyaltlg(a) ( f rl%d'r)
0

1/2
= Cynsltlg(x).

I
(1.16)

= Compltlg() (9(2)*7?)
Case 2, |z| < g(z)™'. Here we have Ey = B(z, |z|) < B(x, g(x)™"). Hence, we can use the

same calculations done in Case 1 to obtain
it 0w _ 1 12 )
dy < Conpltlg(z)”.

Lo (|
( Blag@-) |z —y[*?

Finally we estimate I3. Note that Fj is an annulus and it is empty if |z| = g(z)~'. So we
will always assume that |2| < g(z)~'. Here we divide the proof into three cases.

(1.17)
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Case 1, 1 < |z|. In this case we promptly obtain

4 1/2 g(@)~! 12
I3 < (J dy) =C, J p 2y
By [T =y o

(1.18)
() 12 12
< C, J P20y < Cp (1 — g(x)%) < Chp.
1
Case 2, |z| <1 < g(x)~*. We split s into the sets
E31 = Eg M B(l’, 1) and E32 = E3 M B(.CC, 1)C
Using condition (B), since 2a — 1 > 1, we get
/2
v —yl* 2° 1
I3 < (C f ———dy + ———dy
? FE3q |.§U - y’n+2b FE3o ‘x - y‘TL—FQb
! g(@)~* 12
< Cyn J 7’2“12bdr+f 2y
|| 1
(1.19)

1 g(z)~* 1/2
< Cyn f r=2dr + f r 172y
|| 1

< Clynp (1= 2[>2) + (1 = g(2)™))

Case 3, g(x)~! < 1. Here we use condition (B) again to obtain

a /2 (ac)fl 2a+n—1 1/2
o=yl ' fg r
I <C ——d =Cyn —d
3 G (JES |z — y| 2 Yy b, ] ynt2b r

1 1/2 1 1/2 (1.20)
< Cyn (J r2a_1_2bd7’) < Cyn <f r1_2bdr)
|| ||

= Cymsp (1 _ |$‘2—2b)1/2
From estimates (1.15)-(1.20) we obtain (1.13), which proves the theorem for x # 0. Finally,
if x =0 and ¢(0) > 0, the proof above remains equal. In case g(0) = 0, we divide R" into
EY = B(0,1/2) and Ey = B(0,1/2). Note that, as in (1.15), it can be seen that I{ < Cy ..
Also, the argument in (1.20) remains equal for I3. We therefore have D’(e™*0)(0) < Cy s

and the proof of the lemma is completed. n

< Cynp-

Remark 1.10. [t is worth mentioning that Lemma 1.9 is still valid if we impose only the

weaker condition

(A7)

There exists g : R" — R measurable, g > 0 except maybe at 0, such that
for all z e R™ if [z — y[ < 1 then [¢(z) — o(y)| < g(z)[z — yl.
instead of (A) and (B). The idea is to consider the sets
By = B(z,g(x)™")¢, Ey:=B(x,9(x)™") n B(x,1) and Es:= B(x,g(x)™") n B(x,1)",

and to note that the estimate of Es is the exactly (1.18).
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1.5 Proof of Theorem 1.5

This section is devoted to prove Theorem 1.5. The main tool is the point-wise

estimate established in Lemma 1.9.

Proof of Theorem 1.5. It suffices to prove the theorem with b = s/K. So, assume f :=
ug € L?(|x|*dz) n HX*(R™). We already now that L generates a unitary group, say, {U(t)}
in H*"(R") such that U(t)f = (e‘“‘b(')f)v. From Plancherel’s theorem and (1.8) we have

[T () f |12 = [ D*(e**O f)] 12
< Cle™*Ofl 12 + CID (O f) 12 (1.21)
< C|flz + CID" (O f) 2.

Hence we need to estimate the quantity |D’(e~#®C )H 2. According to (1.10) and (1.12)

we have

~

|DP (e 0 [ g2 < | FDP(eO) 2 + e P ODY(f)] 12
< —itdi( + |D? N 2
( ) . ID”(f)z (1.22)
p ~
< Z (7 O) 1]+ D).
=1 L2
In view of Lemma 1.9,
FY D e O) <O f {1+ (1+ [t])gi()"}
i=1 12 i=1 2
R p
<O AL+ @+ )+ [2[*)}
=1 2
) - (1.23)
<CIf AL+ @+ )2+ [2)*"}
=1 L2

<c+ ) |+ 7] |
1+ 1) e

where the constant C' depends on n, b, K and p. Moreover, since f € L*(|z|*dz) n L*(R™)
we have f € H®(R™) and by Theorem 1.6,

D" (N2 < Clfllze + CID*(Plzz = Clf Iz + Clll* £ 2. (1.24)

Gathering together estimates (1.21)-(1.24) the proof of Theorem 1.5 is complete. O

Under the hypotheses of Theorem 1.5, the condition s < K can be eliminated.

That is, a similar estimate to (1.7) holds when b > 1. The idea is to obtain a formula
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interchanging weights with integer powers with the associated group. Denote I'; :=
x —t(P'()")". Consider A := 0, + L. It can be seen that AT, = T A and therefore
[I't, A] = 0. Note that both, U(t)xug and I';U(t)ug, are solutions of the problem

Au =0,

u(0) = xuy,
and therefore U(t)zug = I'tU(t)ug. The latter can be translated into the formula

2U(t)ug(z) = Ut)zue(z) + tU(E){P'(§)Uo}" (). (1.25)

Define the operators £ and R as follows: for a suitable f (a Schwartz function
for instance), set Ef = xf and Rf = t{q)’(f)fg}v. Under this notation, (1.25) can be
rewritten as zU(t)ug = U(t)(E + R)ug. By iterating this formula, for m € Z* we have

2"U (t)up(z) = U(t)(E + R)"up(x). (1.26)

Let s > 0 be arbitrary. Write s = mK + a, where m € Z" and a € [0, K). It is enough to
consider the case b = s/K, that is, b = m + a/K =: m + a, where a € [0,1).

Let us assume first @ = 0. Define J = {AC {0,1,...,m} | 22 = m} We
€A
have
[[2]°U (t)uoll2 = [&™Ut)uol2 = [U)(E + R)"uollz = |(E + R)™uol-

< Z HRjOEjl Rj2 L ijUOH2- (1-27)

Note the sum above include all the terms present in the expansion of (E + R)™. To
simplify the exposition we are going to use ®(¢) = cx&%*! so that Rf = toX f. For any
{jOajly s ajm} € J we have

Rl = oo (08 (o))
= [¢]Pm—atim | g0 (lefQ) I, '
where J¢ 1= {Z]l | i even and 0 < i < x} and f; := 087" (@71 082 (- 05 Imug)); @ even.
By the product rule and the fact |02 | < c{x)* " for Iy < j; we have
Kjo

|02 (@7 fa)l2 < Cjy D [y 0ok 070 fy
lo=0
lo<J1
o N | (1.29)
< Cjy Y [y oo Gota=ho(zh f) .
lo=0
lo<j1
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32
Using the product rule again we have
KJS—lo
H<x>J1 loaK(JoJrjz) lo(xjsf )H CJOJQ Z H<x>j1+j3*10712af(j0+j2)*loflzf4H2
lo=0
la<j3
e (1.30)
<Cp ), K@yttt
lo=0
l2<j3
where L, {Zl | i even and 0 < ¢ < }and Jo = {Z]’ |iodd and 1 < m}.From
(1.29) and (1.30)
KJ¢ KJ5—Lo
|07 (a7 fo) 2 < Cig Z Z [z —teay 5t £y (1.31)
lo=0 [2=0
lo<j1 12<y3
We continue this process m* := |m/2| times to get
KJe KJE KJ,ﬁLflngm*,g KJe I
R < Copy S S e S Kyt i gy
lo=0 Il2=0 Lo =0
lo<ji l2<y3 Lyt Jom# 41
m* KJE—Lo; o
+ K jm— Lo
<Cn2, DI L e A ¥
loi
l21i]21+1
(1.32)

, o _ KJ9_+Kjm—Lm—1
We proceed to estimate each of the terms |(z)/m-1—Em-15,""m=1 "

'LL()HQ.
First recall ug € H*™(R) n L*(|z|*™dx). We interpolate as follows: take 6 satisfying the
condition 2mf = K(JS,_| + jm) — Lm—1, that is,
o — K(JS 1+ Jm) — Lin—

Km— K(JS 1+ Jm) + Lin—1

Note 0 € (0,1) since KJS, | — L1 > 0 and Km > K(JS,_; + jm). Moreover,

Km — K(JS 1 + jm) + L
1-0= )
Km

Consider
(Jo_y — Lim—1)Km
b= Km — K(Jm  + Jm) + L1
This way (1 —6)8 = Jo_ — Ly—1. Also, since J5, | + Jo | + jm = m it is easy to see
B < m. Interpolating using (1.3) we get

K(J¢ im ) — L — _
[y =L pEUmoatam)=Em=1, 0 O DEMug |8 <Y g |1~

\ (1.33)
< Cluollgm,2 + C{x) ug 2.
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Note (1.33) can be used to continue estimate (1.32) after an application of
Lemma 1.3. Taking this into account, from (1.27), (1.28), (1.32) and (1.33) we get

[T ()uoll2 < Co(1 + [¢)” {uolxnz + <) ol 2} - (1.34)

Let us consider now a € (0,1). Using Theorem 1.5, we have

2" U (t)uoll2 = [|z|*2™U (t)uollz = [|2]"U#)(E + R)™uol

(1.35)
CA+ [EDAIE + B)™uo|ka + [[|2|*(E + R)™uol2} -
Arguing as done to get (1.32) we have that
[[*(E+R)™ugls < D, [C@)*RPEMR® - Rl
{jO"'7jTYL}eJ
i KJE—Lo;
R Y Y Y e
{.]0 ]m}EJl lo;=
121<321+1
(1.36)

Recall ug € HRME™R) ~n L*(|z|***?™dx). We interpolate as follows: take # so that

K(m+a)d = K(J.,_y + jm) — Lim—1, that is,

K<Je 1 +]m - mel)

0 =
Km+ Ka

Since Km + Ka > K(JS,_| + jm) and KJ;,_| — L,,—1 > 0 we guarantee 6 € (0,1). The

latter forces )
Ka+ Km + Lm—l - (‘]51—1 + ]m)

Km+ Ka

1-6=

and therefore
(JO_1+a— Ly_1)(Ka+ Km)

5= Km+ Kaxt Lin1— K(JS | + jm)
is so that (1 —0)8 = Jo_y +a— Ly, with 8 < m + a. Thus, using Lemma 1.3 and
interpolating using (1.3) we get

[y Pmmrtemtm=t (Y D, ) K tdm)=Emvy |y < CIDRO KM g |3 <2) Puol| 5~
) (1.37)
< CHU()”HK(m+a) + CH<JI> U()HQ.

Hence
[2|*(E + R)™uoll2 < Con(1 + [t)™ {[luo]l rccmsar + <) uo]2} - (1.38)

Now, for [(E + R)™ug| gxe we estimate |JX(E + R)™ug|, as follows.

[JUE + R)Mugllz < Y [t | TR (990 (2710372 - 019 u) ) s

{j0,mim}ed (1.39)
< Cmp (L™ Y KO (6592 - Im iy ) .
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Arguing as in (1.29)-(1.32) we have

m* J2i+1
L R T (S T | A o S S 103 L R e T
=0 l2;41=0
loi+1<Kjoito

(1.40)
Note each of the terms on the right right-hand side of (1.40) can be estimated via
interpolation. Take 6 so that Ka + KJS,_| + Kjy, — Lin—1 = (1 — 0)(Ka + Km), that is,

Km— (KJ¢ |+ Kjm — Lim_1)

9 =
Km+ Ka
It can be seen that 0 is in (0, 1). This forces to set

(S = L) (Ka + Km)
- Km— (kJgoy + jm — Lin1)’

(67

which is less that or equal to m + a. Interpolating and using Lemma 1.3 we have

[(eyKart B thim—Lmoa glm1 =it |, < C<EYK KMy Dt |30

(1.41)
< Clug| grasm + C|<x)™ ugl|s.

Combining (1.40) and (1.41) we obtain,
|(E + B)™uollsrrce < Conc(1+ [¢)™ {lluo s + [<2) w02} - (1.42)
Finally, from (1.35), (1.38) and (1.42) we conclude

[°U (t)uollz < Coc(1+ [EDY*H {Juolxn2 + [<2) uo]|2} - (1.43)
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CHAPTER 2

WELL-POSEDNESS IN WEIGHTED SPACES

This chapter is devoted to prove local well-posedness results in the spaces Z.
In all cases, the main idea is to use the technique introduced in [37] which combines
Strichartz-type estimates, Kato’s smoothing effects and a maximal function estimate with
the contraction mapping principle to obtain a unique fixed point (the solution) of the

corresponding integral equation.

2.1 Kawahara equation

We first recall the local theory in H*(R).

Theorem 2.1. ([17, Theorem 3.5]) Let ug € H*(R), s > 1/4. There exists T > 0, depending
on o, B,y and |ugl|s2, such that (13) has a unique solution satisfyingu e C([=T,T]; H*(R))

and

lufzare + HazuHL‘lTL;C + HD:SE+2UHL§CCL2T + HDS@EUHL;L?T < 0. (2.1)

Moreover, for any T' € (0,T) there exists a neighborhood V' of ug in H*(R) such that the
map g — U(t), from V into the class defined by (2.1), with T instead of T, is Lipschitz.

We briefly describe how Theorem 2.1 is proved. Denote by W (¢) the unitary
group associated to the linear part of the problem (13), that is,

W (t)uo(z) = (ei“—v@%?’mo) " (2). (2.2)
For M,T > 0 and s > 1/4, consider the space

X1 = {we O(-T, T); H'(R)) | A" (w) < M},
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where

AT (w) = e |wlls2 + |0zwlpa e + [wlraze + HDSHU}HL;;OLQT + | D30sw a2

In [17] the authors showed that the integral equation
U(u)(t) = W(t)ug + « Lt Wt —t') (udu)(t")dt (2.3)
is a contraction in X7, with
AT(W(u)) < Cllug|sz + CTYAT (u)?, (2.4)

for some C' > 0 and any u € Xj,.

Moreover, the following lemma was established:

Lemma 2.2. Let s > 1/4 and 0 < T < 1. If A" (u) < oo then ud,u € L*([-T,T]; H*(R))

and

<JT | (udu) ()2, dt’) " < CAT(w).

=T

Proof. See Lemma 3.3 in [17]. O

Note that the phase function ®(r) = —y2° + Sa* satisfies the conditions of

Theorem 1.5. Hence, we are in a position to prove the following.

Theorem 2.3. In addition to hypotheses of Theorem 2.1, assume ug € L*(|z[*dx) for
b < s/4. There exists T = T (||ug
class defined by (2.1) with Zs,, instead of H*(R). Moreover, for any T" € (0,T) there exists
a neighborhood V' of ug € Zsy, such that the map o — u(t), from V into the class defined
by (2.1), with Zsy, instead of H*(R) and T" instead of T, is Lipschitz.

z,,) > 0 such that (13) has a unique solution u in the

Proof. Set A\ (w) := max ||z|®w] 2 and consider the space

Y i={we C(-T,T]; Zsp) | O (w) < M}, where QT (w) = AT(w) + A\ (w).

To see that W maps Y} into itself we need to estimate it in the norm A} . For any u € X},

using (1.7) and Hoélder’s inequality we get
[l (u)] 2 < C {(1 + T)luolls,z + llz*uoll iz + TY2(1 + T)udzul 2 oy
+T1/2H‘x’b“aﬂﬁuHL%L%} : (2.5)

According to Lemma 2.2 we have |[ud?ul| r2ms < CAT (u)?. Besides, using Holder’s inequality

we obtain

llefud,uliges < max lalulzzlosul e < TN (@]l < T'O7 R (26)
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Hence, from (2.5) and (2.6) we conclude
A (w) < C{L+T)uols + [z uol 2 + (1 + T)T¥* + TV*)QT (u)?} . (2.7)
Finally, by combining (2.4) and (2.7) we obtain
QT (U(u)) < C{(1+ T)|uolls2 + |2 uo|rz + (1 + T)T¥* + T2)QT (u)?} .
By taking M = 2C {2|uos2 + [|2|"uofr2} and 0 < T' < 1 such that
C(L+T)(T** +TYV*)M < ;

we infer that W : Y}, — Y}, is well defined. The rest of the proof carry on from standard

arguments. OJ

Theorem 2.3 is a local well-posedness result. Taking a careful look to the way
in which )\g was estimated, a persistence result can be obtained. More precisely we have

the following corollary.

Corollary 2.4. Let uw € C([-T,T]; H*(R)) be the solution provided by Theorem 2.1.
Suppose there exists t* € [—T,T] such that |z|’u(t*) € L*(R) for 0 < b < s/4. Then
ue C([-T,T; Zsp).

Proof. We first recall that 7 in Theorem 2.1 is such that 4CTY2M = 1, where M =
2Cug|s.2. That means

1
T = mi 1, ———— . 2.
m{ 64O4||u<o>z,2} 28)

Note from (2.5), (2.6) and (2.7) we have that for any 7" < T

G (w) < O+ T u(0)s2 + Clllzu(0) 12 + C(T") (1 + T)AT (u)®

’ ’ (29>
+ C(T) AT AT (u)AF ().
Combining the latter with (2.8) we have that
/ 1 1 /
(0 < O+ DOlia + dlabulOlis+ 10+ DM+ 37 @)
1 1 '
< 201u(O) + Ollefu(0)] s + 5M + DA (u).
From (2.10) we obtain the a priori bound
» 12 4

M) < 200z + 5Ol u(0)]2 (211)

Now, consider ty(z) := u(t*) and the IVP (13) with initial data @y. Applying
Theorem 2.3 there exists a local solution @ € C([—Ty + t*,t* + Ty|; Zsp). By uniqueness

we have

uwe C([-T,T); H*(R)) n C([~Ty + t*,t* + To); Zss),
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where 0 < Ty < 1 is chosen so that

2C(1 + To) (T2 + Ty/*) My < 1 with My = 4C||iig|ls.2 + 2C|| x| o] r2- (2.12)

Therefore
Tyt (2.13)
° 7 202 ME '
Note
lio]s2 = Ju(t®)]s2 < max [u@)]s2 < M = 2C|u(0)]s 2
and 19 A
|20 = = (e u(t*) 12 < AG (u) < 3 Clu(0)]s2 + gCH!xV’U(O)HLz-

Hence

48 8
M, < §C2Hu(0)us,2 + §H|:L‘|bu(0)HL2 =: M M,. (2.14)

According to the definition of T we have

1 1
To( M) = > =
o(Mo) 32C2M2 ~ 32C%(M M,)?

L T* > 0. (2.15)

Since (2.15) is valid in the whole interval [T, T], we can reapply the weighted
local theory 27'/T*-times to obtain u e C([-T,T; Zss). O

2.2 The Hirota-Satsuma system

We first state the local well-posedness result in H*(R) x H*(R).

Theorem 2.5. ([1, Theorem 2.1]) Let a # 0 and s > 3/4. Then for any uy,vo € H*(R),
there exist T = T (||uos.2, |vo]s2) > 0 and a unique solution (u,v) of problem (14) such
that

u,ve C([-T,T]; H*(R)), 0yu,d,ve LyLE, Dio,u, D30, ve LYLA,

) : (2.16)
u,ve LyLT, Oy, Opv € LY L.

Moreover, for any T' € (0,T) there exist neighborhoods V' of ug in H*(R) and V' of vy in
H*(R) such that the map (1y, 0y) — (@, 0) from V x V' into the class defined by (2.16),
with T' instead of T, is Lipschitz.

Denote by U,(t) the unitary group associated with the linear part of the first
equation in (14), that is, U,(t)f = (e’it“&af)v and set U(t) = U_1(t). It is clear that
conditions (A) and (B) are satisfied by the phase function ®(x) = ax®, for any a # 0.

We recall the strategy to prove Theorem 2.5. For T" > 0 set

AL (w) = max [w(t)az + 10cwlry e + [D20swlers + (1 + T) P |wliarg + 10w ez -
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In [1] it was shown that the map W(u,v) = (¥ (u,v), ¥o(u,v)) defined by

t

Uy (u,v)(t) = Uy(t)ug + f Ua(t — t")(6aud,u — 2rvd,v)(t")dt’,

O

W, 0)(t) = U (#)vy — 3f Ut — ) (udy0) () dE,

0

is a contraction in the space
Xiy = {(u,v) € C([-T, T}, H*(R)) x C([-T.T], H*(R)) | A{ (u) + A{ (v) < M},
for a suitable choice of the parameters 7" and M with
AT(W1(u,v)) + AT (Ws(u,v)) < Cllug|s2 + Cllvofsz + CTY(TYV* + (1 +T)V?)M?, (2.17)

for some universal constant C' > 0 and any (u,v) € X1,. From the contraction mapping

principle one obtains the unique solution.

Theorem 2.6. Assume, in addition to the hypotheses in Theorem 2.5, that ug, vy €
L?(|z|*dx) with b < s/2. Then there exist T = T(||ug|z..,[vo
solution (u,v) of (14) such that u,v are in the class defined by (2.16) with Zs instead of
H*(R).

z..) > 0 and a unique

Moreover, for any T' € (0,T) there exist neighborhoods V' of ug in Zsp(R) and V' of vy in
Zsp such that the map (Ug, Vo) — (4, D) from V x V' into the class defined by (2.16) with
Zsyp instead of H*(R) and T" instead of T, is Lipschitz.

Remark 2.7. In case a = 0, the idea developed below can be carried on with simpler

computations and lead to a similar result. See Theorem 2.2 in [1].

Proof of Theorem 2.6. We follow the same strategy described above. Consider

AT (w) = e (ol s,

We are going to prove that W(u,v) is a contraction in the space
Vi = {(u,v) € C([-T,T], Zsp) x C([-T,T], Zsp) | QL (u) + QI (v) < M},

endowed with the norm [|(u,v)|| := QF (u) + QL (v), where QF (w) = AL (w) + AT (w) and
T, M > 0 will be determined later.
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We begin by estimating ¥, (u, v) for (u,v) € Y. In view of (2.17) it suffices to

estimate AT (W, (u,v)). Using Minkowski’s inequality we obtain
T
" @1 (u, v)2z < Nlol"Ua(t)uol 2 + J [l Ua(t — ') (6audou + 2rvozv) (t')]| Lz dt
0
T
< [ Va(t)uo 22 +f (| Ua(t = #)6audou) (t')| L2 dt’
0

T
+ f |(J2 P U (t — ) 2rvo,) ()| 2 dt’
0

<T+1II+1II.
(2.18)

In view of (1.7),
I < Cllzuo|r2 + C(1+T)|ugs.2. (2.19)

for some positive constant C' (depending on s). Another application of (1.7) combined

with Hoélder’s inequality gives
T
1T < J C’H(|m|buﬁxu)(t’)HL% + C(1 4+ T)|(udu)(t")| s 2dt
0
< OT (4 ) {leudeul iy iz + Ideul g + D3 wéau) sz

Since AST contains the L7 H® norm, the last two terms in the above inequality have already

been estimated in [1, Theorem 2.1]; more precisely,
udsul iz s + | D) 202 < CTYA(TY 4 (L4 TN (2.20)
To bound the remaining term we use Holder’s inequality to deduce

2| udpulps 2 < TV e 2 Puf g2 100wl pa e < TYHQE (u))? < TV M.

Hence
IT <CTY*(1 4+ T)(TY* + (1 + T)V*) M. (2.21)

A similar computation establishes
IIT < CTY(1 + T)(TY* + (1 + T)V*) M. (2.22)
Estimates (2.19)-(2.22) yield

A (W4 (u, ) < Cf|2lPuo|rz + C(1 + T)|ugls2 + CTYA(1 + T)(TY* + (1 + T)*) M>.
By using the same argument it can be seen that

T
N (Ws(u, v) < [l2"U(t)vol e +f [°U (t = ) (udv) (¢')]| 2 dt’
0

< Oz 2 + C(1 + T)|vols2 + CTY2(1 + T)(TY* + (1 + T)"*)M™.
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Collecting these estimates we get
Q7 (U1(u,0)) + Q7 (Ta(u,v)) < C{IHIE!”UoIILg +[a"volz2 + (1 + T)(Juols2 + Hvo\ls,z)}
+CTY* (1 + T)(TY* + (1 + T)VA) M.

By choosing
M = 2C{|[euollzz + llzl*vol2 + 2(luolsa + [o0]s2) ]

and 0 < T < 1 sufficiently small such that
20TYV2(1 + T)(TY* + (1 + T))M < 1,

we deduce that ¥ : Y — Y is well defined. Moreover, similar arguments show that W is
a contraction. The rest of the proof follows from standard arguments; thus we omit the
details. O

Corollary 2.8. Let ue C([-T,T]; H*(R)) be the solution of (14) provided by Theorem
2.5. Suppose there exists t* € [T, T] such that |z|’u(t*) € L*(R) for 0 < b < s5/2. Then
uwe C([-T,TY; Zsp).

Proof. The proofs follow in a similar manner as done in Corollary 2.4. O]

2.3 The OST equation

In [11], the authors proved the following theorem.

Theorem 2.9. (/11, Theorem 1.1]) Let ug € H*(R) with s = 0. Then there exist T > 0
and a unique solution of the IVP (15) such that

we C(0, T B*(R)), J0sulys s + D00 3 < 0,

. (2.23)
Jall 2 o0 + 1D%el 2 < 2,

1 1 1
for 2 < p1 < o and q; defined through the relation — + — = 5 Moreover, for any

b1 ¢
T" € (0,T) there exists a neighborhood V' of ug in H*(R) such that the map Uy — u(t),

from V into the class defined by (2.23), with T instead of T, is Lipschitz.

Besides Strichartz’s estimates, the authors used the contraction principle with

a refined smoothing effect for the group
V(t)ug = (e Vi) ", where ®(&) = —¢* —n([¢] - |¢). (2.24)

In particular the next lemma was established.
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1 2
Lemma 2.10. Ifupe H*(R),0<s<1,0<T <1 and~y:= min{i, ES}, then
10V (H)uo 2. e < CT7|| Dol 12,
for some constant C' > 0 depending on 1 and s.

Proof. See Corollary 2.2 in [11]. O

As before, we rush an overview of the proof of Theorem 2.9. Consider the space
Xy =A{we C([0,T; H*(R)) | AT(w) < M},
with

5
A (w) = ; Al (w) 1= max [wlsz + 100l g 1+ 1D° 0wl 13

+ T w) gz g + T | D] g o,

where v(p;) is a positive constant depending only on p;. The authors, in [11] then proved
that the map ¥ : X7, — X7, defined by

t

T(u)(t) = V(t)ug — J (V(t — t)udyu)(t)dt,

0

is a contraction, for a suitable choice of T" and M satisfying
AT (W (u)) < Clugllse + CT®I M2, (2.25)
for some positive constant C' and any u € X3,

Theorem 2.11. Let ug € Z,p, with s > 0 and b < s/2. There exist T = T(||ugl|z,,) > 0
and a unique u in the class defined by (2.23), with Zs, instead of H*(R), which is the
solution of the IVP (15). Moreover, for any T" € (0,T) there exists a neighborhood V' of
Uy in Zsp such that the map g — u(t), from V into the class defined by (2.23), with Z
instead of H*(R) and T' instead of T, is Lipschitz.

In order to prove Theorem 2.11, note that the phase ® in (2.24) satisfy the
conditions of Theorem 1.5 because it is a combination of particular cases of functions ¢

mentioned in Chapter 1. We therefore may use (1.7).

Proof of Theorem 2.11. We provide details for the computations when 0 < s < 1. Set
v = min{1/2,2s/3}. For 0 < T < 1, in addition to the norms in A, consider A} (w) :=

T 0wl 12 e and M(w) = H]:c|waLoToLg. Define

Y = {we O(0,T]; Zsp) | Q" (w) < M} where Q7 (w) = AT (w) + M\ (w) + A (w).
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We will show that for suitable choices of M and T, the map ¥ : Y}, — Y}, is
well defined and is a contraction. From (2.25) it remains to estimate the norms A{ and AL.

In view of Lemma 2.10 we have
t

o,V (1) f (V (=t Yudou) ()t

Ao (U(u) < T8V (D)uol gz + T
0

L2 L%

¢
< C|D%ugl|2 + C ‘D;J (V(=t"ud,u)(t')dt’
0

L2 (2.26)
T
< Cllula + | 1D5ude)(t) 12t

0
= C(lluolls2 +1)-
According to the fractional Leibniz rule (see Lemma 1.1) we have
| D3 (uau)| 2 < Cllul o [ D3 0ul Loy + Cllozu] o [ Dy Lo
Therefore, from Holder’s inequality, we deduce
I'< CH“”L%L?} HD;aIuHL%Lﬁl + C||§xu||L2TL§1 ||D§ZUHL2TL§1 < T (u)”.

We conclude from (2.26) that

A (T (w) < Clug|s2 + CTPIQT (u)?.
Besides, using Theorem 1.5, we get

T
@ (u)lzz < 12"V (t)uollLz +L [V (t = ) (udou) ()], dt’

T

< C(1+T)|luols2 + C||\:v]buo|\L% + OJ (1 + T)|udpulsdt’
0 (2.27)

T
+ CJ ||z |Pudyul 2 dt’
0

= C(1+T)|uolls2 + Cs||x|uo|r2 + 1T + I11.

The term II can be estimated as done with I (actually, this term has already been

estimated in the H*(R) local theory). In particular, we obtain
IT<C(+T)T"PIAT(w)? < (1 + T)T7PIQT (1), (2.28)
In what comes to 11 we use Holder’s inequality as follows:
111 < CT[aud,ul e < O max ol |0l
< CTYV*NE () AE (u) < CTYV*HQT (u)?. (2.29)
From (2.27)-(2.29) we conclude

M(u) < C(1+T)|uo|so + Cll|zPuol|zz + C(1 + T) (T + T7PNQT (1)2.,
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Gathering together the above estimates we finally obtain
QT (W(u)) < C(1+ T)uols2 + CJ|7|Puolzz + C(1 + T)(TYV* + TP QT (u)?.
By setting M = 2C {2|uo|s2 + [|#|’uo|r2} and taking 0 < T < 1 such that

C(1+ T) (T + TP M <

N[ —

it can be seen that ® : Y;; — Y} is well defined. Moreover, similar arguments show that
¥ is a contraction. To finish the proof we use standard arguments, thus, we omit the
details. O

Remark 2.12. In [20], using a purely dissipative method, the author established the local
well-posedness of (15) in H*(R) for s > —3/2. However, as we already said, the relation
between decay and low reqularity is not well understood; so, we are not able to establish a

local well-posedness result in Zsy, for indices s < 3/4.

Corollary 2.13. Letue C([-T,T]; H*(R)), with s > 0, be the solution of (15) provided by
Theorem 2.9. Suppose there exists t* € [T, T] such that |x|>u(t*) € L*(R) for 0 < b < s/2.
Then ue C([-T,T1; Zss).

Proof. The proof follows in a similar manner as done in Corollary 2.4. [

2.4 A fifth-order equation

In what comes to (16), the following was established in [51, Theorem 1.1].

Theorem 2.14. Suppose v < 0. Let ug € H*(R), s = 5/4. There exists T = T (||ug|s2) >
0 such that (16) has a unique solution satisfying

we C([-T, T H'R)),  |ulzzrgy < oo, [07ul e < oo,

2.30

Moreover, for any T' € (0,T) there exists a neighborhood V' of ug in H*(R) such that the
map g — u(t), from V into the class defined by (2.30), with T" instead of T, is Lipschitz.

The idea is to consider positive constants 7" and M and the space
Xy = A{we O([-T,T]; H*(R)) | A" (w) < M},
where

A (w) = max fwllsz + lozwles e + lwlrzeg + D" 2wl e .
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Let W (t) be as in (2.2). For s > 5/4, and suitable choices of T" and M, in [51] the authors
showed that the integral equation

t
U(u)(t) = W(t)ug + ozf W (t —t') (ud?u)(t')dt'
0
maps X}, into itself, is a contraction and satisfies
AT(W(u)) < Clug|se + CTYV2AT (u)?,

for some C' > 0 and any u € X},.

Moreover, they showed the following lemma:

Lemma 2.15. Let 0 < T < 1 and s = 5/4. If A" (u) < oo then ud?u e L*([-T,T); H*(R))

and
1/2

(JTT w2y, dt’) < CAT(u)

where C' > 0 depends only on a, 3, 7, and s.

Proof. See Lemma 3.2 in [51]. O

Theorem 2.16. In addition to the hypotheses of Theorem 2.14, assume ug € L?(|z|*dx)
for b < s/4. There exists T = T(|ug||z,,) > 0 such that (16) has a unique solution u in
the class defined by (2.30) with Zsy instead of H*(R). Moreover, for any T' € (0,T) there
exists a neighborhood V' of ug € Zs;, such that the map Uy — u(t), from V into the class
defined by (2.30), with Zs,, instead of H*(R) and T' instead of T, is Lipschitz.

Proof of Theorem 2.16. The proof follows by setting A (w) := max ||z|’w| 2 and arguing
as in the proof of Theorem 2.3. ’ O]

Corollary 2.17. Let ue C([-T,T]; H*(R)) be the solution of (16) provided by Theorem
2.14. Suppose there exists t* € [T, T] such that |z|’u(t*) € L*(R) for 0 < b < s/4. Then
uwe C([-T,T; Zsp).
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CHAPTER 3

REGULARITY VERSUS DECAY

In this chapter we discuss the relation between regularity and decay displayed
in Theorem 1.5, using the mKdV equation as example. More precisely, we consider the
IVP

o+ Bv+ 0?00 =0, z,telR.

(3.1)
v(x,0) = vo(x).

The idea is to work somehow in the opposite direction to what was done in Chapter 2.
Instead of starting with a regular initial data having some decay, we start from an initial
data having decay and we show this would imply an increment in its regularity in the

sense of Theorem 3.7 below.

3.1 Linear estimates
We first recall one result related to the linear group U(t) defined in (7).
Lemma 3.1. For ug € L*(R) we have
| DU (t)uo | pare < cluol r2- (3.2)
Proof. See Theorem 3.7 in [37]. O

Here we introduce the precise formulation of (9).
Theorem 3.2. Let be (0,1). If ug € Zaopp then for allt € R and for almost every x € R
[2]°U()uo(x) = Ut) (2] uo) () + U (£){Pes(@0(€))} () (3.3)

with
[T @) {Pep(to(€))} |2 < e(1 + [t]) |uol ar=e. (3.4)
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Moreover, if in addition one has that for 5 € (0,b)
DP(|z|’up) € L*(R) and uy € H ™ (R) (3.5)
then for all t € R and for almost every x € R
D (|z"U (t)uo) (z) = U (t)(D"|a|"uo) (x) + U () (D" ({@es(T0)(€)} ) (x)  (3.6)

with
| DP({®16(100) ()} )2 < (1 + [t])] o grovas. (3.7)

Proof. See Theorem 1 in [22]. O

3.2 Local theory results

We gather some useful results regarding the existence of solutions to (3.1) in

Sobolev and weighted Sobolev spaces.

Theorem 3.3 (Local theory). Let s = 1/4. Then for any vy € H*(R) there exists
T = T(|DY*vo|z2) = (| DY ol 2) and a unique solution v(t) of (3.1) such that

ve C([0,T]; H*(R)), (3.9)
|D30av] g1z, + D574 000] 0 52 + | Divllsnge + vl arg < o0 (3.9)

and
1020 Lo 2. < 0. (3.10)

Moreover, there exists a neighborhood V of vy in H*(R) such that the map 0y — 0(t) from
V into the class defined by (3.8) - (3.10) is smooth.

We briefly mention a few aspects related to the proof of Theorem 3.3; for the
details we refer the reader to [37, Theorem 2.4]. The authors used the Banach fixed point

theorem in the space
X! ={veC([0,T); H*[R)) | A"(v) < a}, (3.11)

where

T = W0 75 s 0 8_1/4
AT () = Jvlzgms + |1D*0uvll oz, + [ D374 000] 052 (3.12)

+ 1D3vl s o + [vlpazz + [0wvllLz Lz -

It was shown that, for a = 2¢|vo| 14 and T such that 2ca®T"? < 1, the operator

U, (v) = U(t)vg — f: Ut —t)(v?00)(t)dt (3.13)
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has a unique fixed point in X 3“ . In particular, it was proved that

T
J | (v20,0) || p2dt’ < cTY2AT (v)*. (3.14)

0

Theorem 3.4. The IVP (3.1) is globally well-posed for initial data ug € H*(R), s > 1/4.

Proof. See Theorem 3 in [15] and Theorem 1.2 in [25]. O

Theorem 3.5 (Local theory in weighted spaces). Let v € C([0,T]; H*(R)) denote the
solution of (3.1) provided by Theorem 3.3. If vg € Zsp with s = 2b then the solution
satisfies

ve C([0,T]; Zsp) and ”‘x’S/QUHLngTO < 0. (3.15)

For any T" € (0,T) there exists a neighborhood V of vy in Zsy such that the map 0o — 0(t)
from V into the class defined by (3.8)-(3.10) and (3.15) with T" instead of T is smooth.

Essentially, the proof follows in a similar fashion as the one in Theorem 3.3 by considering

the norm
pr () == AT () + ||2[*0] s o + 120 1 12 (3.16)

and using Theorem 3.2 (we refer the reader to Theorem 1 in [45]).

As breifly mentioned in the introduction, in [32] it was shown that

Theorem 3.6. Let u e C(R, L*(R)) be the global solution of the IVP (4), with a(u) = u,
provided by the local well-posedness theory in L*(R). If there exist o > 0 and two different
times ty, t1 € R such that

|z|*u(x, to), |z|*u(z,t)) e L*(R), (3.17)

then u e C(R, H**(R)).

Based on the proof of Theorem 3.6 and taking some ideas from teh proof of

Theorem 1.6 in [6], we proved the following result.

Theorem 3.7. Let vy € HY4(R). Let ve C ([0, T7; H1/4(R)) be the solution provided by
Theorem 3.3. Assume there exist ty,t1 € [0, T with tg < t; and o > 0 such that

lz|*v(ty) € L*(R) and |z|*v(t;) € L*(R). (3.18)

Then v e C ([0,T]; H**(R)).

Note that in Theorem 3.7 when « € (0,1/8] there is no gain of extra regularity. This

is consistent with the weighted local theory in which the solution persists in HY*(R) n
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L?*(|z[*dx) whenever b < 1/8. Another way to formulate Theorem 3.7 is to replace (3.18)
with
2|8+ (ty) € L2(R) and |z|Y***v(t;) € L*(R)

and the conclusion v € C ([0, T]; H**(R)) with v e C ([O, T; Hit2e (]R)) instead.

From the proof of Theorem 3.7 it will be clear that it remains valid for
vo € H*(R) for any s > 1/4. In fact, the following corollary is a direct consequence of this
fact.

Corollary 3.8. Let vg € H*(R), s = 1/4. Let v be the global in-time solution provided by

Theorem 3.4. Assume there exist tg,t1 € R and a > 0 such that
lz[3 %% (ty) € LA(R) and |z|>*v(t;) € L*(R).
Then v e C ([-T,T); H****(R)) for any T > 0.

Proof. Without loss of generality assume T > max{|to|, [t1]} be arbitrary. Note that ug €
Hi(R) with the respective solution v € C([-T,T); Hi(R)) so that |z|*v(t;) are in L*(R)
fori=10,1and & = g + a > 0. By Theorem 3.7 we obtain that v e C([-T,T]; H**(R)).

The result follows since 2& = s + 2a.. O

Remark 3.9. We may interpret Theorem 3.7 and Corollary 3.8 as an ill-posedness result
in the following sense: assume vy belongs to Ys) = (HS(R)\HS+(R)> N L*(|z|*dz) for
s,be R with b > s/2 = 1/8, then the corresponding solution of the mKdV equation does
not belong to Ysp.

3.3 Proof of Theorem 3.7

The proof is presented in four cases, in which the first three are required to
be done explicitly because of technical details involving the size of the truncated weights
with respect to the regularity of the solution. The fourth case provides a construction of

the solution in a general setting.

Without loss of generality assume ¢y = 0.

3.3.1 Case a€ (0,1/2].

Let {vomtm < CF(R) be a sequence converging to vy in H*(R). Denote with
v () € H*(R) the corresponding solution provided by Theorem 3.3 with initial data vo,.
By regularity of the data-solution map we can assume all the v,,’s are defined in [0, 7]
with vy, converging to v in C ([0,T7]; H*(R)).



Chapter 3. Regularity versus decay 50

For N € N, denote

(x)** —1 xel0,N],

(Z&N(I) = 5
(2N)= x € [3N, ).

Let <z~58“7N be a regularization of $g7N such that for j = 1,2,... we have W gbo N| ¢ with ¢
independent on N. Set ¢ = ¢ y to be the odd extension of gbo’ N, that is,

on(z) 1= (bgLN(I) v el0.) (3.19)
_¢8,N<_$) T e (_OO’ O)

Note that ¢y = 0

Take the mKdV equation for v, and multiply it by v,,¢xn. After integration by

parts in space we get:

1d

3 1 1
o7 v2 pndr + = J(@ V) 2Py dr — Jv oW dx 4Jvfn¢’]\,d$ =0. (3.20)

Integrating over [0, ;] we get:

t1 t1 1 t1
fvfn(tl)gzﬁNdx—fvgmqﬁNdx—i—?) f f(agcvm)ng’Ndxdt—f Jufnqsﬁ)dxdt—QJ fufngzsgvdxdt:o.
0 0 0
(3.21)

For m large enough we have
t1 t1
‘—f Jvfn(bg\?;)da:dt‘ < cf Jvfnda:dt < chmH%zt < CHUOmH%2t < 2cti|lvo3. (3.22)
0 0 Tty rty
Also,
L (o4, " 4 4 4
-5 Uy, O dadt| < c v, dedt < CtlHUmHLiLf‘i‘ < CH“mHLngg < 2HUHLng§- (3.23)
0 0
From (3.21)-(3.23) we get that for m » 1

j f (svm)*Sdrdt < c(luol} + [0l ) + [vodh213 + lo(t) N3

(3.24)
< c(fJvoll3 + 074z + I<2)*vol72 + K2)™0(t1)]172)-
Thus .
lim supj J(ﬁxvm)%’]\,daﬁdt < M, (3.25)
m—0o0 0

where M > 0 depends on HUOHZ1/4,Q7 |v(t1){x)*| 2 and HUHLiLi’j'

We claim that, for any fixed N € N, the left hand side of (3.24) converges to

Ltl J(ﬁxv)%’]\,daydt
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as m — o0. Indeed,

t1
(7 wUm)? — (Ov) ] gb'Ndxdt‘ < CJ J |02V — 0p0|| 02Uy + Opv|dadt
0 3N,3N]

< | Opvm — aSEUHLflL,%[fIiN,:iN]HazUm + axUHLfng[f:iN,:iN]
< exllOsm = Gtllprs, (10vmlzgrs + 100l ez )

— 0,
m—0o0

(3.26)

where we used (3.10) together with the continuous dependence on the initial data.

In view of (3.25), we therefore have

J f& v)@drdt <

Since ¢y is even and for > 1 we have that ¢y () = 20(w)** 2 ~ (x)*
—00

we deduce

t1
f f (0,v)*(x)** tdadt < chm 1an f (0,v)?Pydadt < (3.27)
0 Jz|>1 |z|>1

Moreover,
t1
J J (0pv)*x)** dadt = J (0,0)* @y Mdtdr < ¢ 0pv]|Fw 2 < 0. (3.28)
|lz|<1 |lz|<1 £
From (3.27) and (3.28) we conclude

t1
J J(&xv)2<x>2“_ld1‘dt < oo,
0
which implies
(x)*120,v e L*(R) for almost every ¢ € [0,t,]. (3.29)

Arguing in a similar fashion as done to obtain (3.29) but using ¢y as the even
extension of ¢% instead, it can be seen that for any t € [0,t;] we have (z)*v € L*(R)
(see also [32, page 143]). Set t, € [0,#;] so that (z)*V20,v(t,) € L*(R). By writing
f = {&)*"2u(t,), from (3.29) it can be seen that J'f € L?*(R). From Lemma 1.4, for
0 € (0,1) we have that

|79y 2 )2 < e I )< 2 (3.30)

Setting § = 2 we have that o — 1/2 + (1 — 6)/2 = 0 and therefore we conclude J**v(t,) €
L*(R), that is,

v(ty) e H*(R). (3.31)

An iterative argument involving the proof of Theorem 3.3 with initial data
iy = v(t,) shows that v € C([0, T]; H**(R)). Moreover, using Theorem 3.5 it can be seen
that the fact (z)*v(t,) € L*(R) imply v is in the class defined by (3.8) - (3.10) and (3.15)
with Zs, o instead of H*(R).



Chapter 3. Regularity versus decay 52

332 Case e (1/2,1].

Since o > 1/2, it can be seen that |z|"?v(t;) is in L*(R) for i = 0,1. There-
fore, the conclusion of the previous case holds in H'(R). In particular we know v €
C ([0,T]; Z1,1/2) with (x)* 20,0 in L*(R) for almost every ¢ € [0,#;] and & € (0, 1/2]. We
claim the latter now also holds for « € (1/2,1].

Let {vom}m < Cy’(R) be a sequence converging to vy in Zj1/,. Denote with
() € H®(R) the corresponding solution provided by Theorem 3.5 with initial data vo,,.
By regularity of the data-solution map we can assume all the v,,’s are defined in [0, T]
with v, converging to v in C ([0,T]; Zy,12). By following the same steps done to obtain
(3.29) we note that all remains equal except for the fact |(¢f y)'| is no longer bounded
above independent on N. So, what is left is to estimate the terms involving (¢§ ). In

fact, instead of estimate (3.23) we argue as follows:

t1 t1
J Jvﬁlé’jvdxdt < cf |Vl 2 fvi(@dxdt
0 0
< ol mlvale) 3, < ctilvallz,,, < 2ol s,
Also, for estimate (3.26) we note that |¢)y| < ey with ¢y depending on N. Since N is

fixed, the same computations remain valid.

Under these considerations, arguing as in (3.20)-(3.28) it can be seen that for

almost every t € [0, ;] we have
()20, € L*(R), (3.32)

which proves our claim. Moreover, a similar analysis (without evaluating the limit as

m — (X)) ShOWS Lhat fOI‘ m ].arge eHOU.gh
xty

with M depending on |vo|z, , ,, ||<:E>“_1/20(t1)||L3 and HU”L?iZl,l/z' Assume without loss of
generality that
() V20,0(t;) are in L*(R) for i = 0, 1. (3.34)

Note in case (3.34) is not true, we can take a smaller subinterval [t§,¢]] < [0, 1] in which
the end points satisfy (3.34).

Consider now ¢y = ¢ 5 build as done in (3.19) but based on the function

(Y1 -1 w€e]0,N],

in () = -
(2N)™ x € [3N, ).

Take 0, to the mKdV equation for v, and multiply it by d,v,,¢n to get

DWW N + 30°W Wi PN + 20 W3, ON + V2 Wy Op W = 0, (3.35)
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where we denote w,, := 0,v,,. Integration by parts yields
1d

1
o7 wfnqudx—i—; J(&xwm)%’]\,dx—Q wan¢§\?})da:+JQUmwf’n(bNdx—i—nglwm(?xwm(bNdx =0.

Note that, in terms of w,,, the first three terms above remain the same as in (3.21) for
the mKdV equation and the respective estimates are analogous. The only difference relies
on the terms coming from the derivative of the non-linearity v2,d,v,,. Integrating by parts

in the space variable we have that for ¢ € [0,¢]:
ZJvmwf’nqudx = -2 fvfnwmﬁxwmd)]vdx — fvfnwfﬂgzﬁ?vdx.
Since, for m large enough we have

< clvml g lwmliz < clvmliem < 2evliem, (3.36)

U V2 w? dhda
we only need to focus on the term

t1
’—f fvfnwmﬁxwm@vdxdt .
0

We proceed as follows: first we note that

t1
[ [rmtonasa) < Vol ooz, 1o . @30
0

Let us estimate each term on the right-hand side of (3.37). From the continuous dependence

(see (3.9) with s = 1), for m large enough
HagUmHLgfol < QCHaiv”L;OLfl-
Also, from (3.33) we know that for m » 1,

|k

A

M, (3.38)

lis, < cl@* 20,z
Finally, for the term vanqb%QHL%Ltoi, we note that HU?n(?#HL%L:‘; < vaqﬁ]lv/4||i4L§o. Using the
@ty

integral equation and the fact |py|Y* < ¢(z)®® we have that

t1
o sty < [0S0 Ovonlissz + [ @YU = O oonlussgdt. (339
0
In view of (3.2) and (3.3) we obtain

H<95>3/8U(75)UOmHLiLgo1 < ||U(t)<$>3/8vom||Lng§ + U () {®e3/5 (o) ()} | Lare
< | DY@y Bogm| ra + | DV Py 5s(T0) ()} |12 (3.40)
< o JYH2) Bvom 12 + | DY@y 58 (T0) ()} [ 12

Interpolating using Lemma 1.4 gives

| TYAYE Fllia < el JLFI R I I35 (3.41)
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Also, according to (3.7) we get

| DY @0ss(NE)} 12 < e(1+ t0)] - (3.42)
We combine (3.41) and (3.42) into (3.40) to obtain for m large that

<)Y B U (#)vom |z < el Trvomll s Kz 2vom 73" + clvom s
(3.43)
< QCHUO ||Zl,1/2 :

For the other term in (3.39), we argue in a similar fashion applying (3.41) and
(3.42) to get

t1
f H<$>3/8U(t - t/)vfnaxvm”L%Lgi dt’
0
t1

t1
J [T (v2,0 vm)Hl/4|y<x>1/%2 0 vm]\3/4dt te(l+t) f |02, 0| 2t
0

t1
< CJ (Hv OV | 1 +c|\<x>1/21) 0 vaLz) dt’.
0

(3.44)
According to (3.9), (3.15) and (3.16), for m » 1,
t1
f 1<) 202 0 U || L2dt" < c[{a) 2 0pvmv?, HLz
< el Pl 1ostnl gy 349)
< cpvm)® < 2cp(v)’,
where we used the continuous dependence on the initial data.
Combining (3.14) and (3.45) it follows from (3.44) that
t1
J @Y SU (= )02, 00l s ) < M, (3.46)
0

where M depends on several norms in which v is known to be finite. From (3.39)-(3.46)

we conclude
[ 65| pare < M. (3.47)

Gathering (3.35)-(3.47) we can emulate the argument in (3.20) -(3.25) to

conclude

31
lim supJ f((?xwm)%']\,dxdt < M, (3.48)
0

m—00
with M depending on vz, ,,, and [{x)*v(t1)|z2 among other norms in which v is known
to be finite.

Note that the convergence argument done in (3.26) can be mimicked with w;, instead of
v, and using the continuous dependence in the norm |0%v,, | 1 2 provided by the local
z 1

theory.
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Continuing as in (3.27) and (3.28) it can be seen that

(x)*10,w e L*(R) for almost every t € [0,t,]. (3.49)

From (3.32) and (3.49) there exists ¢, € [0,t,] such that (x)%f and J'f
are in L*(R); where f denotes the function (x)* '0,v(t,). Interpolating as in (1.3) with
0 = 2a — 1 we conclude v(t,) € H**(R). Once more, an iterative argument shows that
v e O([0,T]; H**(R)). Moreover, it can be seen that v is in the class defined by (3.8) -
(3.10) and (3.15) with Zy,, instead of H**(R).

3.3.3 Case a € (1,3/2].

By setting o = 1 in the result of the previous case and using the local theory
in weighted spaces we have that v e C ([0, T]; Zo.1) with (x)"?0%u(t) € L*(R) for almost
every t € [0,#1] and k = 1,2. We claim that (z)* *0%v(t) is in L*(R) for almost every
t € [0,1]. Indeed, let {vom}m = C5°(R) be a sequence converging to vy in Zs ;. Denote
with v, (-) € H(R) the corresponding solution provided by Theorem 3.5 with initial data
vom- By regularity of the data-solution map we can assume all the v,,’s are defined in
[0, 7] with vy, converging to v in C ([0,T]; Z2.1).

The idea is to emulate what was done from (3.35) to (3.49) noticing that |¢} v
is not longer uniformly bounded above independent on N. We re-estimate the related

terms as follows.

Instead of inequality (3.36) we do

t1
'— J Jvfn(ﬁmvmyqﬁ’l]\,dacdt
0

o[ [ aeummPrtrds < el ol Jowuml,

< @) 20l 2 vml e < Cloml,, < 20l

(3.50)

Instead of (3.37) we argue as follows:

t1
‘— f fvfnﬁmvm@%vmgbwdxdt
0

< [€a)* 2o iz K2y 2 0rvml 12, [030m oz - (3.51)

Note that for m large we have HaiUmHLwa < cH&ivHLng , which is finite because of the
b 1 b 1

local theory.
Using (3.33) with o = 1, for m » 1 it follows that [(2)20,vp |2 < M where M depends
xtq

on |vo]z,,, and H<:U>1/221(t1)\|,;3 among other norms for v.
For the term [(z)*?v2 2 Lz we have that
<o) o e < Iy o gz

t1 (352)
< @ U Omliss + | K@U = phvnlissg
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According to (3.3) and (3.2),

[y U (#)vom | pare < U0  vom sz + [UE){Prs/a@om ()} |Lare

c| Dy @) vom 2 + | Dy {Peaa (Tom (€)} [ 22 (3.53)
< o /@) vomll 2 + | DY { @134 (Tomn (€)1} 12

N

Interpolating with 6 = 1/8, it follows

|24y o2 < ] T2v0m ] fa 1<2)® Tvom || T
< CHUOmHHQ + C||<:E>U0m||L% (354)

< c|vom| 2y, -

Also, by (3.7) we have

| D2 @34 (B0 ()} < e(1+ t1)[vomll s < clvom|lza,- (3.55)

Thus, for m large enough H<!E>3/4U(t)vomHL3Lg§ < 2¢|vo| 2y, -

For the remaining term in (3.52), we use (3.41) and (3.42) to get

t1
f@wwﬁ—w@@%uﬁwf
0

t

t1 1
<o | IR IRl e + L+ ) [ 1ol

0 0

t1
< cf (Hviﬁxvam + cH<x>vfné’xvaL%) dt'.
0

(3.56)

Using the continuous dependence on the initial data, for m large enough we have

t1
| Watarvalizdt < ckatromodluy, 2 < el Povaliz, e Ponliz, Tonlss vz

S C”<x>1/2amvm”L§t1 [vml e 11 T ) oy, ez
< C||<m>1/25xvm||Lit1 ||Um||L§<i Zi,1)2 (H'UmHL;Xl?HZ + ‘|<m>vm|‘L§‘1’LE) < M’

(3.57)

where we interpolated with § = 1/2 and used (3.33) with « = 1. Note M depends on
HUHL?; Z,., among other norms in which v is known to be finite. Combining (3.14) and (3.57)

it follows that for m » 1
t1
J KU (t— )220 | ot < M, (3.58)
0 1

where M depends on |vo|z,, and [{z)*v(t)| 12 among other norms in which v is known
to be finite.
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From (3.52)-(3.58) we conclude
@ e < Ky vmrazgy < M. (3.59)
zhig Tt
Under these two modifications, an analogous argument as the one developed in
(3.35)-(3.49) supports that for almost every t € [0,¢;] we have
(x)*10%u(t) e L*(R), (3.60)

which proves our claim. Note also that, if in the proof of (3.60) the convergence in m is

skipped, we may that for m » 1
[y v 2, < M, (3.61)

with M depending on norms in which v is finite.

In what follows, without loss of generality, assume we have that (x)**0%v(t;)
are in L*(R) for i = 0,1. Next we claim that (z)**20%y € L*(R) for almost every
te [0, tl]

Indeed, Denote w,, := 03v,, and define ¢y = ¢3 \ as done in (3.19) based on

= ()**2—1 =xe[0,N],
Pon(T) = —_
(2N)* x € [3N, ).
Applying 02 to the mKdV equation for v, and multiplying it by w,,¢x we have
O W Wi ON + C2W WOy + (2(8xvm)3 + 60,0y Uy Wy, + viﬁxwm) Wmon = 0.  (3.62)

Integrate (3.62) by parts in space. After an extra integration over [0, ;] we get that
t1 t1

wan(O)@vdx - Jw;(t1)¢Ndx +3 f J (Opt0n,)* Py dazdt — f f w? ¢ dudt+
0 0

t1 t1 t1
4f J(ﬁggvm)gwmgb]vdxdt + 12f fvmé’xvmwfngb]vd:ndt + QJ Jvfnﬁwwmwmgb]vdxdt =0
0 0 0
(3.63)

Note
t1
]4 [ <axvm>3wm¢Ndwdt'<c<x>1/QazvmLz ey wnlis Jorvmle (3.64)
0 ztl ztl ztl

where the terms H<33>1/ancUmHL§t and H<x>“‘1é’§vaLgt were estimated in (3.33) and (3.61).

The term |0 vy, Lz, may estimated via Sobolev embedding.

We conclude for m large enough that

t1
f J(éxvm)3wm¢wdxdt < M, (3.65)
0
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where M depends on several norms related to v such as |vglz,, and [<x)20,0(t)|| 2.

For the next term, using (3.61), we have that for m large that

t1
\12 N vmaxvmw;¢Ndxdt\ < clomliz, |8vml iz, w2, 6w1,
0 : (3.66)

< clvmle e [G@) w3, < M.
On the other hand,

t1
2" [ sumumondsa] < Vol 16wl o,
0

By the local theory we have that for m » 1
||aacwm||Lg0L§1 < CHaivaLchfl < 2CHU||L§§H2-

and

lwmllzz, < clvligz,-
Finally, for H<x>vfn\|L%Lg§ < H<x>1/2vm\|iiL§§ we note
[ 2vmll e < ey omll sz < M, (3.67)
where we used (3.59).
We conclude that for m large enough we have

t1
‘2 f J V2 Op W Wy dadt| < M. (3.68)
0

Combining (3.65) - (3.68) into (3.63) and arguing as in (3.20)-(3.28) it can be

seen that .
J J(&zw)2<x>2“_2dx < o0;
0

that is,
(x)*3230(t) € L*(R) for almost every t € [0,1,]. (3.69)

Using (3.60) and (3.69) it follows via interpolation that for some t, € [0, ¢;] we have
v(t,) € H**(R). (3.70)

The latter implies v € C ([0, T]; H**(R) n L*(|z[**dz)) as before.
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334 Caseace (r/2,(r+1)/2],r=3.

It is enough to prove by induction that for any n € {2,3,...,r} it follows that

n n+1

for all g in <

,— | with 8 < «a, we have
27 2

() ""2%u(t) € L*(R),

B—n/2—1/2 An+1 2 (3.71)
(@) 0y u(t) € L*(R),

for almost every t in a closed subinterval I of [0,¢;]. In such case, setting n = r and § = «
and interpolating as in (3.30), there would exists ¢, € [0,%;] such that v(t,) € H**(R),

which leads to the desired conclusion.

Note the "base" case (n = 2) follows from (3.60) and (3.69). For the inductive
step, assume (3.71) is valid for n — 1. We will prove it is also valid for n. Using the
inductive hypothesis with 5 = n/2; it can be seen that, for f = <m>ﬂ_"/2+1/26;‘v, we have
J'f and (z)f are in L*(R). Interpolating as in (1.3), there exists t,, € [0,;] such that
v(tee) € H"(R). It can be seen that this implies v € C([0,T]; H"(R)). Moreover, since
a > n/2, using Theorem 3.5 it can be seen that v e C([0,T]; Z,n/2).

Recall, via Sobolev embedding, that for £k =1,2,...,n— 1:
|05v]ee < c|vlan. (3.72)

In addition, using Lemma 1.3 and interpolation, for any t € [0,7] we have that

K&y opvliz < clolfall ey ol 3" < elvlz,,.p00 (3.73)
where 6 = k/n and j = (n —k)/2.
. . n n+1l )
Without loss of generality assume I = [0,t;]. Let 8 € 5 Ty with

B < a. we claim that (z)*~"20"(t) € L*(R) for almost every t € [0,t,]. In fact, let
{vom}m < C7 (R) be a sequence converging to vy in Z, . Denote with v,, € S(R) the
corresponding solution provided by Theorem 3.5 with initial data vy,,. By regularity of

the data-solution map we can assume all the v,,’s are defined in [0, T] with v, converging

to v in C ([0, T]; Zn ).

Consider ¢y = Qb?n—l)w built as in (3.19) from the function

(@)t =1 we0,N],

O iyn(@) =
DN (2N)25-"1 2 e [3N, o).

Applying 0" to the mKdV equation for v,, we get

O2m + 022y + 02 (02, 000m) = 0, 2 = 0" LUy,
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We focus only on the non-linear terms. Note

(o) = DY (”‘_1> ( )aﬂuna 00K,

k<n—1j<k

after multiplication by 0" 'v,,¢n and integration we get
J f@" Ym0 (02 0pvm ) o dadt

n—1\(k\ (" [ e ; —j
Z Z( )(j)L f@m Ym0 0,09 0,, 0T 0y, P dacdt. (3.74)

k<n—1j<k

23 )6)

We estimate the Ay ;’s by cases.

Case Al, if £ = 0.

ool < 107 vmlluz, [vmdn T2z, [1050ml 12, lomen 2z, (3.75)
< CHUmHLg<1>H2 \|J1<$>1/va”Lg§L§. H<$>3/20m||L§§Lg-
Note that interpolating with # = 1/n we have
| 74) P omllz 12 < elloml e n ) V0|50 < lvmllig (3.76)
Using that 3/2 < n/2, (3.75) and (3.76) we conclude that for m large enough
[Avol < clvlie s, ., (3.77)

Case A2, if k£ # 0.

Note in this case, since n = 3 we have |¢y| < c(x)? < «(z)"*?2. Using this and (3.72) -
(3.73) we have, for any j € {0,1,...,n — 1} and m » 1, that

Akl < el oy vmllog, 107 vml g, <) 20 v 2, <)@ =200 vy 2

xtq zty

n/2 2-20 <3'78)
< clomlze o lvm |2 s [@)" *om 72T < clvlies, .

From (3.77) and (3.78) and arguing for z,, analogous to what was done in (3.20)-(3.29)

for v, it can be seen that
(x)P20my(t) e L*(R) for almost every t € [0,1,]. (3.79)

Also, for m large enough
[y =205 vm (1) 12, < M, (3.80)

where M depends on HUHL;?ZM/Q, HUOHZM/2 and H<x>ﬂ_”/22m(t1)HL%.
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From (3.79) there exist t§ < t¥ so that (z)*~"20"u(t%) and (z)* 20" (t¥) are in L*(R).
For simplicity we denote [¢;,¢]] with [0,¢;] again.

Let us now prove (z)?~("D/20m+1y,(1) is in L*(R) for almost every t € [0,].

Construct ¢y = gzﬁi n as in (3.19) but based on the function

()P~ —1 2z e[0,N],

3 x) =
Ponnt) (2N)?*="  ze[3N,x).

Denote wy, := 0J,vy,. Take 0, to the mKdV equation for v,, and multiply it by w,,¢n. We

get for the non-linear part

t1 t1
f meﬁz(vfn@mvm)(jﬁ]vdxdt = 2 Z <Z> (?) f Jwm8Z+1_kvmaivm§§_jvm¢1\/dxdt
0 0

k<n j<k

=22 ()

(3.81)
Let us consider some cases.
Case B1, if £ = 0.
Using (3.9), (3.47) and (3.80) we have that for m large enough
n 1/2 1/2
[Bool < |0y oz iz [wmdn ez, 105N |12z
(3.82)
< cHﬁﬁ“vmllL;oLgl ||<$>B_n/2”‘~0mHLfgt1 \|Um<$>l/4H%ng; < M,
where M depends on ||| L# 2, ,,» Among other norms in which v is finite.
Case B2, if k = n.
Note that in case j = 0 or j = n, using (3.80) we have for m » 1
|Bn,n| = |Bn,0| < CHaacvaLft va”Lﬁ ||<I>6_n/2wm“%2
) 5 /12 , (3.83)
< Clvmlig oK) w72, < M
Now, if j e {1,...,n — 1} we use (3.72), (3.73) and (3.79) to get for m large that
|Bugl < @)™ Pwmlfa, 1<) 200012, 10%vm ]z, 107 0ml 125,
< cvml T g |2 Pl 22, Nomlze 2,00 (3.84)
1 Tty

M.

N

Case B3, if ke {1,...,n—1}.
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In this case we argue in a similar manner as done in case B2. Namely, for m » 1:

Bigl < el ™ B, [P0 0], [0m oz, 105 Vv,
< clomle @Y 2w, [2) 2 2, (3.85)
@ty
< M.

With these estimates of the non-linear part, it can be seen (as done in (3.20)-
(3.28)) that
t1
J J(§§+lv)2<x>2ﬂ_("+l)dxdt < o0, (3.86)
0

which implies

()P~ D2on41, () e LA(R) for almost every t € [0, #1]. (3.87)

From (3.79) and (3.87) the inductive step follows.
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CHAPTER 4

DISPERSIVE BLOW-UP

In this section we use the local theory developed in Chapter 2 to study dispersive
blow-up properties regarding the Kawahara equation (13) and the Hirota-Satsuma system

(14). Weighed local theory is crucial to overcome some estimates that end up being done

in LL(R).

4.1 The Kawahara Equation

The main result of this section is Theorem 4.1 below. It is proved in two steps:
we first build a C™ initial data whose associated solution to the linear part of the equation
fails to be C? in a sequence of times. Then it is proved that the nonlinear part of the
solution will not make it worse in the sense we can obtain a nonlinear smoothing effect

that reduces the regularity properties of the solution to the linear term.

Theorem 4.1. Assume v < 0 and 38 + 10y > 0. There exists an initial data uy €
C*(R) n H> (R) such that the solution u € C([0,T]; H'*> (R)) given by Theorem 2.3
satisfies

u(t7) e C*(R\{0}) and u(t") ¢ C°(R),

for some t* € (0,T).

4.1.1 Construction of the initial data

Let f : R — R be defined by f(z) := e 2"l Set ¢(z) := (f+f)(z) = ;em(l v

2|z|). Tt is not difficult to see that ¢ € H”* (R) n L*((x)™* dz), ¢ € C}(R\{0})\C*(R),
e“¢ e L*(R), and e “¢ € L*(R).
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Assume for the moment that uy has the form
0
ug(x) == Y a;W(—0j)d(), (4.1)
j=1
where W (t) is the unitary group defined in (2.2), 0 > 0 is fixed and «a; will be defined

later.

Proposition 4.2. Assume v < 0 and 35 + 10y > 0. For any o > 0 there exists a sequence
{a;} such that the function ug in (4.1) belongs to C*(R) n H7* (R) n L*((x)™* dz). In
addition, the associated global-in-time solution w € C(R; H/? (R)) of the linear part of
the IVP associated to the Kawahara equation (13) satisfies

(i) For anyt > 0 with t ¢ cZ" we have u(-,t) € C*(R).

(ii) For anyt e oZ" we have u(-,t) € C*(R\{0})\C*(R).
Proof. The proof is based on Section 3 of [41]. For the sake of completeness we carry on the
details here. We first prove ug € C*(R). For that it suffices to show that e™"uy € C*(R).

Thus, in view of Sobolev’s embedding, it suffices to prove that 07 (e “ug) € L*(R), for any

m € Z". To prove this, let us consider the IVP

diw+ Lw =0, t<0,
w(z,0) = e %o,

where
Lw = 5w + 5y0%w + (B + 107) 2w + (38 + 107)%w + (38 + 5y)0pw + (B + 7)w.

For one hand, since 0;(e"w) + 302 (e"w) + vd2(e"w) = 0 and e*w(x,0) = ¢(x) we deduce
that W(t)o(z) = e®w(x,t). On the other hand, it is easy to see that the solution of the
above IVP is

w(z,t) = W(t>675fyt(9§67107t8§€7(36+107)t(9§ <6fx+(25+4fy)t¢<l, — (38 + 57)75)) '
Hence,
e*IW(t)qS(:c) _ W<t)675'yt6§67107t6367(3,3+10'y)t63 (efz+(25+4'y)t¢(x _ (35 + 57)0) _

Next using Plancherel’s theorem and the facts that v < 0 and 35 + 10y > 0 we deduce

|05 (7" W (1)) 12 < €7@ 1OV e CITN G (2 — (36 + 5)t) | 2
cme” BNt (4.2)
< ;
(38 + 107)[t])*/2

where c,, is a constant depending on m and we have used that e “¢ € L*(R).
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Inequality (4.2) now yields

8

|02 (e uo) | 2 < Z a;| o7 (e W (=0j)¢) |12

e (Btad

35 + 107)oj)m2

Mg ||

By choosing «; such that the above series converges for any m € Z* (for instance, take

Q= ¢=7*). we conclude that ug € C*(R).

Since W(t) is bounded in H*(R), the fact ug € H/? (R) n L*((x)7*" dz) follows directly
from inequality (1.7) and the properties of ¢.

Before proving (i) and (ii), let us now consider the IVP
diw+ Lw =0, t>0,
w(z,0) = e,
where
Lw = v32w — 5ydtw + (B + 107) 2w — (38 + 107) 02w + (38 + 57y)0pw — (B + 7)w.
Here we have W (t)¢(z) = e “w(x,t) and w is given by the expression
w(x, t) _ W(t)€5'yt6§e—lovt6§6(3ﬁ+107)t6§ (em—(25+47)t¢(x B (35 + 57)75)) '
Thus,
a;n(exw(t)¢(x)> _ a;nw<t>e5'yt8;§6—(26+10'y)t8§6(3ﬂ+10'y)t0326 (ew—(25+47)t¢(x o (36 + 57)75))
with

07 ("W (1)) |2 < [€me™ CHHOVIE o €2~ Oz — (36 + 57)1) |1
et (4.3)
S ;
(38 + 10y)t)™2

where we used that "¢ € L*(R).

We now establish conditions (i) and (ii). To see that (i) holds, assume ¢t > 0
is so that ¢ ¢ oZ". As before, it is enough to prove e "W (t)ug € H™(R) for all m € Z*.
From (4.2), (4.3) and the fact that ¢ is symmetric, we get

0

|07 (e7*W (t)ug) |12 < Z a; |0 (e W (t — 0)9)| .
= (4.4)

B+~

24 G+ 07— g

By our choice of «;, the rightmost series in (4.4) is finite for all m € Z*.
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Finally, to prove (ii), assume ¢ = on, for some n € Z*. We have

W (thuo = and + > ;W (a(n — j))¢.
j=1
j#n

Using the above arguments, we may show that the series belongs to C*(R). The conclusion
then follows because ¢ € C*(R\{0})\C*(R). O

4.1.2 Nonlinear smoothing

The goal of this section is to prove that the integral term in the Duhamel formu-
lation (2.3) of the solution of (13) is more regular than the solution of the corresponding

linear equation.

We begin by recalling some useful inequalities.

Lemma 4.3. Assume T € (0,1) and let W (t) be as in (2.2).

(i) For any ¢ € L*(R),
| D*W ()¢ ez < Cllolrz- (4.5)

(ii) If f € L L2 then

¢
sup |D? | Wit = )f(.)d| < Clfluys (46)
[0,T1] 0 2 o
3 ,
(iii) For any 6 € (0,1), -1 < a < 3 and ¢ € L*(R),
fa
D= W (t)elrgre < Clelrz, (4.7)

where p =2/(1 —0) and ¢ = 10/0(c + 1).

Proof. For (4.5) see [17, Theorem 2.6]. Estimate (4.6) follows from (4.5) and a duality
argument. For (4.7) see [17, Theorem 2.4]. O

With the above inequalities in hand we are able to prove the following result.

13
Proposition 4.4. Let s > 5 and assume ug € H*(R) n L*(|z|*?dz). Let u(t) be the
solution of the IVP (13) provided by Theorem 2.3,

u(t) = W(t)ug + Jot W(t —t")(udu)dt’ =: W(t)ug + Z(t), tel0,T]. (4.8)

Then, Z(t) e H*"'(R) for any t € [0, T].
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Proof. From Theorem 2.3 we already know that Z(t) € H*(R). So we only need to prove
that D*™ Z(t) € L*(R). Note that in the proof of Theorem 2.3 we have assumed 0 < T’ < 1;

thus, in view of (4.6) we have

t
HDS+1 f W (t —t')(ud,u)dt’
0

SO )l
x

< C (JuD 2]y + [ u] Gt )
=C (I + II) ,

where [Ds_l, u] Opu = D¥ N (udu) — uD* '0,u. According to Holder’s inequality,

I'< HuHLg/s»LgTHDS_lé’quLgT = 11 1>.

In order to estimate I; we use Holder’s inequality again to get
L < €)™ ez ey ull g s < CTY? [y ] s,

1
where r > 3" Using the embedding HY%(R) < L3(R) together with the interpolation (1.4)
we get
I < CTY|JYS ) ul g < CTl/SHJSUHHLﬁgH<~’U>S/4UHEOGL2a (4.9)
where § = 1/6s. Note that to apply (1.4) we have written r = (1 — G)Z, therefore the

1 13
condition r > — forces s > 5 According to the weighted local theory the right-hand side
of (4.9) is finite.

On the other hand, from Holder’s inequality and the Strichartz estimate (4.7)
2
with = 3 and a = 0 it follows that
I < Tl/lo”Dkla:vUHLlTSLg < T1/10|‘D8715xU0HL1T5Lg

t
+ Y0 Ds_léxW(t)f W (=t ud,udt
0

Ly

. (4.10)
< CTl/loHDsuOHL; + CTMOJ | D*(uépu)| ;2 dt’
O xT

< CTl/loHDsuoHLg + CT3/5|]D5(u8xu)HL2T,
which is finite according to Lemma 2.2.

From (4.9) and (4.10) we conclude that [ is finite.

It remains to prove I is finite. For that let us introduce the weights v = w =
{x)", with r > 1 to be determined latter. By setting ¢/ = 2 and p = ¢ = 4 we see that

vPwi = {x)". Since {(x)" € Ay, from Holder’s inequality and Lemma 1.2 we obtain

1T < O™ 2| |[€@)[D* " ul Ol 12,

r/4 mys—1 r/4 r/4 r/4 1ys—2 (411>
< C K&y D tul g [ <) Ol 4 + <) O] 14 |[<2)™* D*~* O s

Iz -
L
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Because D = Hd, we infer from Lemma 1.3 that
[<x) D2 0pu] s = () HD* M| s < C<a) " D* M 14,
which, from (4.11), yields

I1 < C|<ay"* D* ullpa €)™ O s

2
LT

< O |y Dt

+ C [ <zyopul 7
2 T CIKe  aulza]

< C Ky D> 1 1y 1y = CIL + CIL,

11+ C Iy dyul s

We begin estimating I/; by using (1.3) (with D instead of J):

IIll/Q _ H ”<x>r/4DsfluHL.quc

11 < C | [@)rulfa | Dol }?

Lz
< C| <@ ul o + |D%ul 4 I (4.12)
< CTY Ky ull e s + CTY3| D%l s 1,
where
he(0,1), a-= ‘i__é, and b= 4%. (4.13)

For the term H<:v>bu||,;39L% we use the embedding HY4(R) — L*(R) and (1.4) to obtain

[e) ullpgrs < Ol (@) w)ligiz < Ol ul pghs ey ulze s < o, (4.14)
with .
Ae(0.1), As=, and (1—M2=b. (4.15)
4
Conditions (4.13) and (4.15) leave 6 = 47701, which is in the interval (0,1) provided
S —

1
§>1r+ T Hence, if r = 1 + € for some 0 < ¢ < 11/12 we see that (4.14) holds for any
s > 13/6.

For the second term on the right-hand side of (4.12), according to the choice

of # and r above, we have

s—1 452 —5s+1 e 1 e(b + 4e)
=s+e

“TT0 45— (5+ 49 bs—5—4e  ds—b_de

Therefore, by assuming ¢ sufficiently small we may write

a=s+ + €

4s — B

3 1

_F_
4s —5
gives § > 0 and we may write a = 3/8 + s — §. We employ the Strichartz estimate (4.7)

where £ > 0 is also small enough. By setting § =

, our assumption s > 5
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1 3
With6=§anda=§toget

t
| D%l s < [DPSW(£) D* o 15 1 + HD?)/SW(t)J W (—t") D>~ (ud,u)dt’
0

L5 L4

T 4.16
< | D* |1z + f | D* O ud,ul| 2 dt (4.16)
0

< HUO‘ Hs + CT1/2Huaxu”L%Hs < OO,

where the right-hand side of the above inequality is finite thanks to Lemma 2.2. This

proves [1[; < co.

To see that I, is finite we proceed in exactly the same manner by noticing

that 11, is almost the same as I1; but with less derivatives. Indeed, from Lemma 1.3 and
(1.2),

15, = |Gy " HDul s, < CKa)"* Dulyy,

< OTY 2y | e s + CTY| DT 1 10
with (as in (4.14))
[€ay Oul g < ClTY (Y o) 1212 < O T ul 7 <o)y ule z < 0.

Besides, since

1 4s — 1 L4 4 L 3+
= = E = —
1—0 ds—5—de 1s—5 g "
~ 4 ~
for € > 0 small and n = §+475+é< s, as done in (4.16) we deduce
5_

_1
HDl"’UHLSTLg = HD?’/E‘D"UHLSTL;;
< Cllugln + CTY?|udsul 12

< Cllug|ps + CTl/QHu&quLzTHS < 0.

This shows that I, is finite and completes the proof of the proposition. O

Proof of Theorem 4.1. Let ug € C*(R) n H? (R) n L*((x)7* dz) be the initial data
constructed in Proposition 4.2. Let u(t), t € [0, 7], be the corresponding solution. We may

assume that o is sufficiently small such that o € (0,7"). Thus, for t* = o,
t*
u(t*) = W({t*)uo + f W(t* — ") (uo,u)dt’ = W(t*)ug + Z(t*).
0

From Proposition 4.4 we know that Z(t*) € H%_(R) < C*(R). Since W (t*)uy €
C3*(R\{0})\C*(R), the conclusion then follows from Proposition 4.2. O
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4.2 The Hirota-Satsuma system

In a similar fashion as done in Section 4.1, the main result of this section
(Theorem 4.5 below) is proved in two steps. We first construct an appropriate initial
data for the linear IVP associated to (14) and then we show that the integral part of the

solution is smoother than the linear one.
_ 2
Theorem 4.5. There exists an initial data (ug, vy) € (C’OC (R) n H*? (R)) such that the

_ 2
solution (u,v) € <C’([0,T]; H3/? (R))) of the IVP (14) given by Theorem 2.6 satisfies

(w,0)(-,t*) € (C'R0}))"  and (u,0)(- ") ¢ (C'(R))",
for some t* € (0,T).

4.2.1 Construction of the initial data

Let {U,(t)} and {U(t)} be the unitary groups introduced in Section 2.2. In [41,

Section 3] the authors showed that, for some suitable sequence {a;},

0
wo(x) = Z o;U(—j)e 2!
j=1
belongs to
CP(R) n L*(R) n H¥* (R) n L*((x)¥* dx)
and satisfies:
(i) for any t ¢ Z, U(t)wy € C*(R);
(ii) for any t € Z, U(t)wy € C*(R\{O})\C*(R).
Here, with a slightly modification of their proof and by taking
0 0
up(z) = Z a;jUs(—oj)e "l and  wy(z) := 2 o;U(—aj)e (4.17)
j=1 J=1
for some real constant o, we can show the following.

Proposition 4.6. The functions in (4.17) satisfy

(ug, vo) € (COO(R) N H¥? (R) n L2(<x>3/2dx))2 :

_ 2
Moreover, the associated global-in-time solution (u,v) € (C(R; H*? (R))) of the linear
part of the IVP (14) satisfy

(i) For any t >0 with t ¢ oZ" we have (u,v)(-,t) € (C*(R))*.

(ii) For anyt e oZ" we have (u,v)(-,t) € (CI(R\{O})\CI(R))Q.

Proof. See Section 3 in [41] (see also Lemma 3.2 in [39]). O
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4.2.2 Nonlinear smoothing
Let us start by recalling some linear estimates.

Lemma 4.7. For any a # 0 and up € L*(R) we have

| D4 U (t)uo ] 22 < Calluo z2, (4.18)
|02Ua(t)uo e 2. < Calluol 2 (4.19)

and
HDazl/lea(t)uOHL§0/13L1T5 < Ca”UOHL2~ (4.20)

Proof. For (4.18) and (4.19) see Theorems 3.5 and 3.7 in [37]. Estimate (4.20) follows
interpolating (4.18) and (4.19); indeed, it suffices to define the family of analytic operators
T.ug = D**D'*U,(t)uy, 0 < Re(z) < 1 and apply the Stein interpolation theorem ([50,
Theorem 4.1] with z = T (see a similar result in Corollary 3.8 of [37]). O

We also recall the following Strichartz estimate
Lemma 4.8. For any a # 0 and up € L*(R),

HDaG/QUa(t)uoHLqTLg < Cllug e, (4.21)

where (q,p) = <0(a6+ 1 3 0) and (6,«) € (0,1) x [0,1/2].

Proof. See Lemma 2.4 in [36]. O

With these tools in hand we can prove the following smoothing property.

7 11
Proposition 4.9. Let §<5<% and (uo,vo) € (H*(R) N Lz(]x|sdx))2. Let (u,v)(t) be
the solution of the Hirota-Satsuma system (14) provided by Theorem 2.6 and given by

u(t) = Uy(t)uo + f U (t — t')(6aud,u — 2rvd,) () dt' := U, (t)ug + Z1(t)

9%

v(t) = U(t)vy + BJ Ut —t") (udo)(t)dt' := U(t)vg + Z5(t).

Then, Z;(t) € H**s(R), i = 1,2, t € [0,T].

Proof. We show the computations for Z, same procedure apply to Z;. Since Z5(t) € H*(R)
it suffices to show that |]Ds+éZ2( t)|| 2 is finite. We follow partially the ideas in [39, Lemma
5.2]. For that, first note that (4.19) and duality give

sup

< Olflzsez- (4.22)

JUt—t )dt
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Hence, using (4.22), Lemma 1.1 (part (iii)), and Holder’s inequality we infer
|DEza()] |, < CID™3 (o) sy
< CHDS’%(uaxv) — uD* 80,0 — 5,;UDS’%uHLiL%
+ CluD 80,0 112 + Cl 00 D" Su| 12
< Ol gy | D** 4ol s, + 0] syl D™l s o
< C{I + L1},

To see that [ is finite we combine the ideas developed in Section 2.2 together

1 2
with [41] and the proof of Lemma 5.2 in [39]. Indeed, using (4.21) with o = 2 0= 3 and
p = q = 6, we obtain

t
|D**%0l|ys, < |DSU()D*vollgs, + H DEU(1) J U(~t) D* (ud,v) (') dt!
0

L8y
T

< C|D*ug| 2 + C J ludy]| 2 dt
0

< Clluglls2 + CT? |udv g2 -

The last term in the above inequality has already been shown to be finite in the local
theory (see for instance (2.20)). This shows that HDS%UHL% is finite. To see that |u o5 5

T z T
is finite we need to use the local theory in weighted spaces. In fact, from Holder’s inequality,

1+
Sobolev embedding and (1.4) we deduce, for some r = 5

[ull s < Cl@) ull s, < CTYP <) ull pry
< CHJ1/6(<x>ru)||L$L%
< Ol Koy uldess,

with )\g = r and g < (1 — \)s. Since s > 7/6 we may take A = — to conclude that [ is
s

finite.

In view of (4.20),

¢
0. U(t) J U(—t"uovdt’

11 < HaxU(t)Uo”Lio/lsL%? +
’ 0

LgO/ISL%?
T

< C|HD"™/ 20|12 + C j D/ 2(ud,0)| , dt
0

< Clloollsz + CTY2 |udso] 13 o < o0,

7 13
where in the last inequality we used that # is bounded in L? and the fact that s > 6 > Iz
Again, the term |ud,v|| 124+ may be bounded as done in the local theory.
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In what comes to Il we argue as follows. For v > 7/20 (to be chosen latter)

we have

I, < H<l‘>77HL20/7|’<I>7D87%UHL30/13 < CH<SL’>7D87%UHL30/13.
B zT zT

Set Z(t) = U,(—t)Z4(t). Using Hélder’s inequality in time and (3.3) we get

< O3/ ‘ ( vys—2 ) gl
I, <CT { Ud(t) ({x)"D* 6wy Lto 08 + | Ua(0){ Py, D* 50} L2009
Y s—3 5 S/_é\ v
+ ‘ Ua<t) <<ZI7> D 621) L%?Lio/l?) + 'Ua(t>{¢)t,’yD 6Z1} L%SLio/lg} '

Next, by setting v = 5/12 and using Strichartz estimate (4.21) with o = 0 and 6 = 2/15

we deduce
11, < CT¥(1 + T) { |2y D" Bugllz2 + | D¥*Sug|12 + [ D Fu
@y D8 Zi g + [ DR 2z + | D212 (4.23)

v

e + | Z1]

< CTY(1 4 T) {|\<x>7DS_%U0||L2 + [(2Y"D* 8 21|12 + |uo)|

Since

A gedt’,

T
s < Cf [(6aud,u — 2rvo,v)|
0

we can prove that | Z; | g is finite in a similar fashion as done in the local theory. Therefore,
to conclude 11 is finite it only remains to bound the first two terms on the right-hand
side of (4.23), which can be estimated using (1.3) and the weighted local theory. In fact,

first note that from (1.3),

5
[<2) D S up| 2 < Cl<ayuo 127 [ D*uo |72 < o0,

-5 3
where \ = and (1 — )\)g =7=15 Also, setting N(u,v) = 6aud,u — 2rvd,v and
s
using (1.7) we have
5 = T 5
ey D E 2l < | @ V(=)D E N )
0

<C(+T) f K2y D8 N (u, 0) 1= + | N (u, )|

0

psdt’

< €1+ ) {Kay DN () gz + TN G, 0) e -

The second term in the right-hand side of the above inequality can be bounded as it was
6s—5
done in (2.20). For the first term, note that for ¢ € [0,7] and A = i

we have

defined above,

[y D* 6N (u,v) 12 < Oy N(u, v) |1 [ D*N (u, v) 22
< O (|<a)*2N (u, v) |1z + [D*N(u,v)]12) -
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Hence,
[y DN (1, 0)leysz < OO+ TYTY { [N 0) g + I DN (w,0) gz }

where both terms, |[(2)¥?N (u, )| 222 and [D*N(u,v)|L2 2, can be estimated using the

local theory in weighted spaces as in (2.21). This completes the proof of the Proposition. [

With Proposition 4.9 in hand, following the same idea as in the proof of Theorem 4.1, we

can prove Theorem 4.5; so we omit the details.
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CHAPTER b

FURTHER RESULTS AND FUTURE RESEARCH

In this chapter we briefly discuss some further research topics that can be
derived and understood from the methods and theorems proved in the previous chapters
of this thesis.

In Chapter 3 it was shown for the mKdV equation that s/2 > b is an optimal
relation between decay and regularity. Such relation is natural once (5) and (9) are
considered in L*(R). A more general version of (5) was mentioned in (1.25) in terms of
®'(€). When this equation is seen in L*(R) the inequality (1.7) arises. This inequality
suggest that the relation s/K > b should be optimal, at least, for the dispersive models in
the scope of conditions (A) and (B).

Partial results were obtained for the Kawahara and OST equation. Their
extension to a full result such as Theorem 3.7 is currently under research. For instance,
in the case of the Kawahara equation, if the solution v € C ([T, T]; H*(R)) provided by
Theorem 2.1 is so that there exist two times t; # ¢, such that u(t,)|z|*T® and u(ty) ||/
are in L*(R) it is expected that u € C ([-T,T]; H****(R)). A first approach arguing in a
similar fashion as done in Chapter 3 suggest this holds for a € (0, 7/32].

Note in this case K = 4 and therefore s/K agrees with 1/2 when s = 2.
Basically, such first approach should be the base case to raise within the size of « as done
in the proof of Theorem 3.7; the main issue is that the range (0, 7/32] is slightly less than
the expected (0, 1/4].

For the OST equation, a similar result can be obtained from L*(R). If u €
C([~T,T); L*(R)) is the solution provided by Theorem 2.9 and if for any « € (0, 1/2] there
are ty # t; such that |z|*u(t;) € L*(R), i = 0, 1; then u € C([-T,T]; H**(R)).

The proof of the latter is done pretty much in the same manner exposed in

Section 3.3.1 except for the smoothing effect which in this case is really stronger. It is



Chapter 5. Further results and future research 76

expected that this can be easily extended as in Chapter 3 for a full range of «, even in a
more general setting when the regularity of the solution is small compared to the smoothing
effect in Lemma 2.10. Note the OST equation can be seen as a member of a general class
of perturbation of the KdV equation introduced in [10]. The authors considered the IVP

associated to the equation
owu + O2u+nLu +ud,u =0, v € R, (5.1)

where 1 > 0 is a parameter and L is defined via Fourier transform by m(f ) = —=®d(&u(f)
with

n 2m

P(¢) = Z Zcz‘jfi|f|j, cij €ER, compm = —1; (5.2)

j=0i=0
and ® bounded above.

When ® (&) is of the form ® (&) = [£[F™ — |¢|* with k = 1 we would have the
OST equation. Theorem 2.11 can be extended to these perturbation when ® = ¢, with
k € Z". Note for this phase function the value of K defined in Theorem 1.5 is K = k + 1.
More precisely, if we consider the IVP

O+ 02 +nLlu +udyu =0, t >0, xeR.
u(z,0) = ug(x),

(5.3)

where > 0 and [/Ja(f) = —®,(£)u(¢) with k € Z* and assume ug € Z,, for s > 0 with
0 < b < s/(k+1), there would exist 7" > 0 and a unique solution v € C([0,T]; H*(R)) - --

A relation of type s/(k + 1) = b is expected to be optimal, which is particularly
curious because a first approach suggested that an extra decay of « in two different times
would imply a gain of regularity of 2« rather than the expected gain of (k + 1)c. This

interesting fact is not contradictory but yet being subject of research at this moment.

In the more general case, at least for high regularity, one can expect a similar
behaviour with respect for the persistence of solutions in weighted Sobolev spaces. In fact,
if we consider the IVP (5.3) where ﬁb(f) = —P(&u(é) and @ is a real-valued bounded
function defined by

O(E) = Y D e lgr (5.4)

Jj=Jjo i=io
for ig, jo, m, ne Z*U{0}, 1 < jo < m, with ¢;yj, # 0, ¢ = —1. Then for an initial data
ug € HS(R> A L2(|x|2bdx) Where m4+n<s< (m + n)(2(]0 + Z()) + ].) aIld b < 2(7718_{_”/)

the solution u € C([0,T]; H*(R) provided by Theorem 1.1 in [10] persists in Zj .

It might result clarifying to address the question of the optimal relation between
s and b in high regularity due to the fact the method used to establish such persistence in

Zsyp 1s also an energy estimate when compared to the proof of Theorem 3.7.



Chapter 5. Further results and future research 7

Finally, in what comes to dispersive blow-up of solutions, to complement the
results presented in Chapter 4, a non-local model should be the natural continuation of
the work. One first step is to consider (5.3) in which the strong smoothing effect presented
by the linear group should imply a similar strong nonlinear smoothing effect in the sense
of Proposition 4.4. It also would require a generalization to the construction of the initial
data whose solution associated to the linear part of the equation present infinitely many

times with lack of regularity and adapts itself to the equation in consideration.

The attainability of results such as the existence of a nonlinear smoothing effect
presented in Proposition 4.4 seems to be plausible in a more general context. From the
computations done in Chapter 4, it appears that these kind of results might be obtained
in a reasonably similar fashion for dispersive equations whose phase function fit in the
description of (A) and (B) and whose local well-posedness in weighted Sobolev spaces is
done using the classical Kenig-Ponce-Vega method. A unified approach is then being a

subject of research.
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APPENDIX A

SOME PHASES SATISFYING (A) AND (B)

We give some examples of functions satisfying conditions (A) and (B).

A multivariate polynomial

Let 3 e N™ with || = 1. Consider ®(x) = 2°. We have

5 (e

bz —w) = ¢(2)] = |(z — w)” — 27| =

a<f @
5 —a « 6 —|a «
=25 (a o= cwpel < 3 (7)ol
a<f a<sp
a#0 a#0
B —la al—
< ful 3 ()l (A1)
a<p
a#0

From (A.1), if |w| < |z| we have

[9(r —w) — é(z)| < |wl Z (g) || 181l | ] led =1 = o] Z (i) 2] = O] B fu].

a<pB a<sp
a#0 a#0

Similarly, in case |z| < |w| from (A.1) it follows that

ot =) = 8(a)] < ul 3 ()l ol = ol
a<f
a#0

Notice that in this case are included the phases ¢, ¢4 and ¢5 presented in Chapter 1.
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Modulus raised to an integer power

Set k € Z*. We claim ¢(z) = |z|* satisfy conditions (A) and (B). Notice that
@ —wl* = [z]* = (jz = w| = |z]) Y] |z — w[7 " | (A.2)

Suppose that for all « € [0, 1] we have 0 # oz + (1 —«)(z —w). By the mean value theorem

we have |z — w| — |z| = V|| - w where (V|- |); = z;|z|~". Hence

k-1 k—1
9z = w) = 6(@)| = [Vl&eu] -0 2 lo = w7l < [Tl [lwl 3 lo — w5l
j=0 j=0

k—1
< Jw| ) (2] + [w)* 77 el (A.3)

=0
Now, if |w| < |z|, from (A.3) we conclude

k-1

Bz —w) = d(a)] < Jw] Y, 2l))* 7 |zl < Cile* .

=0
Similarly, in case |z| < |w]|, from (A.3) we conclude

k—1

¢z —w) = d(@)] < Jw| Y 2wl wl = elwl®.

§=0

On the other hand, if for some a € [0,1) we have 0 = az + (1 — a)(z — w),
then we have x = (1 — a)w. The latter implies |z| < |w|. In this situation we only need to

prove condition (B). Namely,
(2 —w) = o(a)] = [|lz —w| = |$HZ o — w|* 7 !
ki . .
< (Jo = w| + [zf) Z —w|* !

< (Jw] + 2|z) Z ] + [w])* 7 =)
k—1

< 3w| Y 2wl = Cylw|®.

J=0

Finally, if & = 1 we would have z = 0, we obviously have |z| < |w| and (B)
holds trivially. O]

The computation above cover the phase function ¢o defined in Chapter 1
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Phase ¢3
Denote by & := (z1,...,%i_1,Tis1,...,2,). Consider ¢(x) = ¢5(z) := 24|77,
for i € {1,...,n}. We need to show conditions (A) and (B) are satisfied.
We have
|¢(x_w)_¢ = ‘ _wz)|mz z xz‘ H
= [(zi — wy) (|57 — 28 - @i + |8if*) — 2l &[]
:l 20,85 - Wy + | Wi* — wi| Ti* + 2wiTy - W; — w0y ‘
< 2l | Tl [ @] + | [0 + [l |25 + 2|ewi] |3l [ @3] + Jws|[0;*  (A.4)
Using Young’s inequality we have
L P
ssdlallo] <20l (5 + 50) = jaija
and
SR o wil? ) N
o] < 20 (M0 4 05 = ja
2 2
We continue (A.4) with
(2 —w) — ¢(x)] < [@if |[2* + | [ + [l |25 + |73 [w]* + [w;][@;]?
< |wl|z* + J2]|w]* + [wllz* + z|Jw]* + |w]|w]*
< |wl(|=* + 2|2||w] + [w]?). (A.5)

Now, if |w| < |z| we have
[Pz —w) = d(x)] < [wl|(j]* + 202* + [2*) = Claf*fw].
Similarly, if |z| < |w| we have

|6(z —w) = ¢(@)] < Jw|(Jwl* + 2Jw]* + |w]*) = Clw]”.
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