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Gutin’s book [1] or Bondy and Murty’s book [2]. 

Let D be a digraph with vertex set ( )V D  and arc set ( )A D . We only con-

sider finite digraphs without loops and multiple arcs. Given two vertices u and v 

of ( )V D , we denote an arc from u to v by uv. In this case, we say that u domi-

nates v, and we denote this by u v→ . We say that u and v are adjacent if 

u v→  or v u→ ; otherwise, we say that u and v are non-adjacent. If u v→  

and v u→ , then we denote this by u v↔ ; we also say that { },u v  is a digon. 

If every pair of distinct vertices of D are adjacent, then we say that D is a semi-

complete digraph. A digraph H is a subdigraph of D if ( ) ( )V H V D⊆  and  

( ) ( )A H A D⊆ ; moreover, if every arc of ( )A D  with both vertices in ( )V H  

is in ( )A H , then we say that H is induced by ( )X V H= , and we write  

[ ]H D X= . If uv is an arc of D, then we say that u and v are incident in uv. We 

say that a digraph H is inverse of D if ( ) ( )V H V D=  and  

( ) ( ){ }:A H uv vu A D= ∈ . The underlying graph of D, denoted by ( )U D , is the 

simple graph defined by ( )( ) ( )V U D V D=  and ( )( ) { :E U D uv u=  and v are 

adjacent in }D . 

We say that a vertex u is an in-neighbor (resp., out-neighbor) of a vertex v if 

u v→  (resp., v u→ ). Let X be a subset of ( )V D . We denote by ( )N X
−  

(resp., ( )N X
+ ) the set of vertices in ( )V D X−  that are in-neighbors (resp., 

out-neighbors) of some vertex of X. We define the neighborhood of X as  

( ) ( ) ( )N X N X N X
− += ∪ ; when { }X v= , we write ( )N v

− , ( )N v
+  and  

( )N v . We say that v is a source if ( )N v
− = ∅  and a sink if ( )N v

+ = ∅ . 

For disjoint subsets X and Y of ( )V D  (or subdigraphs of D), we say that X 

and Y are adjacent if some vertex of X and some vertex of Y are adjacent. More-

over, X Y→  means that every vertex of X dominates every vertex of Y,  

X Y⇒  means that there exists no arc from Y to X and X Y֏  means that 

both X Y→  and X Y⇒  hold. When { }X x=  or { }Y y= , we write  

x Y֏  and X y֏ . 

A path P in a digraph D is a sequence of distinct vertices 
1 2 kP v v v= ⋯  such 

that for all iv  in P, ( )1i iv v A D+ ∈  for 1 1i k≤ ≤ − . Whenever it is appropriate, 

we treat P as being the subdigraph of D with vertex set ( ) { }1 2
, , , kV P v v v= ⋯  

and arc set ( ) { }1
:1 1i iA P v v i k+= ≤ ≤ − . We say that P starts at 

1
v  and ends at 

kv . We also say that 
1
, kv v  are endvertices of P and 

1
v  is the initial and kv  is 

the final of P; to emphasize this fact we may write P as 
1 kv Pv . Also, whenever it 

is convenient, we may omit the initial or the final in the notation as 
1

v P  or 

kPv . We denote by i jv Pv  a subpath of P where 1 i j k≤ ≤ ≤ . We define the 

length of P as 1k − . We denote by 
kP
���

 the class of isomorphism of a path of 

length 1k − . If ( ) ( )V P V D= , then we say that P is a Hamilton path of D, and 

in this case, we say that D is traceable. Let ,P Q  be paths in D. If P ends at some 

vertex v and Q starts at some vertex u such that v u→ , then we denote by PQ 

the concatenation of P and Q. We use this notation only if PQ is a path. 

A cycle C in D is a sequence of vertices 
1 2 1kC v v v v= ⋯  such that 

1 2 kv v v⋯  

is a path, ( )1kv v A D∈  and 2k ≥ . Whenever it is convenient, we also treat C 
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as the subdigraph of D with vertex set ( ) { }1 2
, , , kV C v v v= ⋯  and arc set  

( ) { }1
:1i iA C v v i k+= ≤ ≤  where subscripts are taken modulo k. We define the 

length of C as k. If k is odd, then we say that C is an odd cycle. We denote by 

kC
���

 the class of isomorphism of a cycle of length k. If ( ) ( )V C V D= , then we 

say that C is a Hamilton cycle of D, and we also say that D is hamiltonian. We 

say that D is an acyclic digraph if D does not contain cycles. We also say that C is 

a non-oriented cycle if C is not a cycle in D, but ( )U C  is a cycle in ( )U D . In 

particular, if a non-oriented cycle C has length three, then we say that C is a 

transitive triangle in D. 

Let D be a digraph. A subset S of ( )V D  is a stable set if every pair of vertices 

in S is non-adjacent in D. The cardinality of a maximum stable set in D is called 

the stability number of D and is denoted by ( )Dα . A collection of disjoint 

paths   of D is a path partition of ( )V D , if every vertex in ( )V D  belongs 

to exactly one path of  . Let S be a stable set of D. We say that S and   are 

orthogonal if ( ) 1V P S∩ =  for every P∈ . 

Let G be a connected graph. A clique is a set of pairwise adjacent vertices of G. 

The clique number of G, denoted by ( )Gω , is the size of maximum clique of G. 

We say that a vertex set ( )B V G⊂  is a vertex cut if G B−  is a disconnected 

graph. If [ ]G B  is a complete graph, then we say that B is a clique cut. A (prop-

er) coloring of G is a partition of ( )V G  into stable sets { }1
, , kS S⋯ . The chro-

matic number of G, denoted by ( )Gχ , is the cardinality of a minimum coloring 

of G. We say that G is perfect if for every induced subgraph H of G, the equality 

( ) ( )G Hω χ=  holds. Moreover, we say that a digraph D is diperfect if ( )U D  

is perfect. 

2. Introduction 

Some very important results in graph theory characterize a certain class of graphs 

(or digraphs) in terms of certain forbidden induced subgraphs (subdigraphs). 

The most famous one is probably Berge’s Strong Perfect Graph Conjecture [3]. 

Berge showed that neither an odd cycle of length at least five nor its complement 

is perfect. He conjectured that a graph G is perfect if and only if it contains nei-

ther an odd cycle of length at least five nor its complement as an induced subdi-

graph. In 2006, Chudnovsky, Robertson, Seymour and Thomas [4] proved Berge’s 

conjecture, which became known as the Strong Perfect Graph Theorem. 

Theorem 1 (Chudnovsky, Robertson, Seymour and Thomas, 2006). A graph 

G is perfect if and only if G contains neither an odd cycle of length at least five 

nor its complement as an induced subgraph.  

In this paper we are concerned with two conjectures on digraphs which are 

somehow similar to Berge’s conjecture. Those conjectures relate path partitions 

and stable sets. We need a few definitions in order to present both conjectures. 

Let S be a stable set of a digraph D. An S-path partition of D is a path partition 

  such that S and   are orthogonal. We say that D satisfies the α-property if 

for every maximum stable set S of D there exists an S-path partition of D, and we 
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say that D is α-diperfect if every induced subdigraph of D satisfies the α-property. 

A digraph C is an anti-directed odd cycle if 1) 
1 2 2 1 1kC x x x x+= ⋯  is a non-oriented 

odd cycle, where 2k ≥  and 2) each of the vertices 
1 2 3 4 6 8 2
, , , , , , , kx x x x x x x⋯  is 

either a source or a sink (see Figure 1). 

 

 

Figure 1. Examples of anti-directed odd cycles with length five and seven, respectively. 

 

Berge [5] showed that anti-directed odd cycles do not satisfy the α-property, 

and hence, they are not α-diperfect, which led him to conjecture the following 

characterization for α-diperfect digraphs. 

Conjecture 1 (Berge, 1982). A digraph D is α-diperfect if and only if D does 

not contain an anti-directed odd cycle as an induced subdigraph. 

Denote by B  the set of all digraphs which do not contain an induced an-

ti-directed odd cycle. So Berge’s conjecture can be stated as: D is α-diperfect if 

and only if D belongs to B . In 1982, Berge [5] verified Conjecture 1 for diper-

fect digraphs and for symmetric digraphs (digraphs such that if ( )uv A D∈ , 

then ( )vu A D∈ ). In the next three decades, no results regarding this problem 

were published (with the exception of a survey by Hartman [6]). In [7] [8], Sam-

binelli, Silva and Lee verified Conjecture 1 for locally in-semicomplete digraphs 

and digraphs whose underlying graph is series-parallel. In [9], Freitas and Lee 

verified Conjecture 1 for arc-locally (out) in-semicomplete digraphs. To the best 

of our knowledge, these papers are the only ones related to Conjecture 1 that 

were published recently. 

In an attempt to understand the main difficulties in proving Conjecture 1, 

Sambinelli, Silva and Lee [7] [8] introduced the class of Begin-End-diperfect di-

graphs, or simply BE-diperfect digraphs, which we define next. 

Let S be a stable set of a digraph D. A path partition   is an SBE-path parti-

tion of D if 1)   and S are orthogonal and 2) every vertex of S is the initial or 

the final of a path in  . We say that D satisfies the BE-property if for every 

maximum stable set of D there exists an SBE-path partition. We say that D is 

BE-diperfect if every induced subdigraph of D satisfies the BE-property. Note 

that if D is BE-diperfect, then it is also α-diperfect, but the converse is not true 

(see the digraph in Figure 2(b)). A digraph C is a blocking odd cycle if 1)  

1 2 2 1 1kC x x x x+= ⋯  is a non-oriented odd cycle, where 1k ≥  and 2) 
1

x  is a 

source and 
2

x  is a sink (see Figure 2). Note that every anti-directed odd cycle 

is also a blocking odd cycle. 



L. I. B. Freitas, O. Lee 

 

 

DOI: 10.4236/ojdm.2022.123003 33 Open Journal of Discrete Mathematics

 

 

Figure 2. Examples of blocking odd cycles with length five and three, respectively. 

 

Sambinelli, Silva and Lee [7] [8] showed that blocking odd cycles do not satis-

fy the BE-property, and hence, they are not BE-diperfect, which led them to 

conjecture the following characterization of BE-diperfect digraphs. 

Conjecture 2 (Sambinelli, Silva and Lee, 2018). A digraph D is BE-diperfect if 

and only if D does not contain a blocking odd cycle as an induced subdigraph.  

Denote by D  the set of all digraphs which do not contain an induced block-

ing odd cycle. So Conjecture 2 can be stated as: D is BE-diperfect if and only if D 

belongs to D . Sambinelli, Silva and Lee [7] [8] verified Conjecture 2 for locally 

in-semicomplete digraphs and digraphs whose underlying graph are se-

ries-parallel or perfect. In [9], Freitas and Lee verified Conjecture 2 for arc-locally 

(out) in-semicomplete digraphs. Note that a diperfect digraph belongs to D  if 

and only if it contains no induced transitive triangle. 

The rest of this paper is organized as follows. In Section 3, we present some 

structural results for α-diperfect digraphs and BE-diperfect digraphs. In Section 

4, we present some structural results for 3-anti-circulant digraphs and we verify 

both Conjecture 1 and Conjecture 2 for these digraphs. In Section 5, we present 

some final comments. 

3. Some Structural Results 

In this section, we present some structural results for BE-diperfect digraphs and 

α-diperfect digraphs. Let D be a digraph and let S be a maximum stable set of D. 

Since every SBE-path partition of D is also an S-path partition, it follows that if D 

satisfies the BE-property, then D also satisfies the α-property. Moreover, the 

principle of directional duality states that every structural result in a digraph has 

a companion structural result in its inverse digraph. Note that a digraph D is 

BE-diperfect (resp., α-diperfect) if and only if its inverse digraph is BE-diperfect 

(resp., α-diperfect). 

Let us start with the following structural lemma. 

Lemma 1. Let D be a digraph such that every proper induced subdigraph of D 

satisfies the BE-property (resp., α-property). Let S be a maximum stable set in D. 

Let 
1 2 kP v v v= ⋯  be a path of D such that ( )V P S∩ =∅ . If there exists a ver-

tex u in ( )D V P−  such that u S∉ , ( )N u
+ ≠ ∅  and ( ) ( )N u V P

+ ⊆ , then D 

admits an SBE-path partition (resp., S-path partition).  

Proof. Let i be the minimum in { }1, 2, ,k⋯  such that iu v→ . Let i kP v Pv′ = . 

Note that ( ) ( )N u V P
+ ′⊆ . Let ( )D D V P′ ′= − . Note that u is a sink in D′ . 
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Since ( )V P S′ ∩ = ∅ , S is a maximum stable set in D′ . By hypothesis, D′  is 

BE-perfect. Let ′  be an SBE-path partition of D′ . Let R be a path in ′  such 

that ( )u V R∈ . Since u is a sink in D′ , it follows that R ends at u. Since  

iu v→ , the collection { }( ) { }R RP′ ′− ∪  is an SBE-path partition of D.  

By the principle of directional duality, we have the following result. 

Lemma 2. Let D be a digraph such that every proper induced subdigraph of D 

satisfies the BE-property (resp., α-property). Let S be a maximum stable set in D. 

Let 
1 2 kP v v v= ⋯  be a path of D such that ( )V P S∩ =∅ . If there exists a ver-

tex u in ( )D V P−  such that u S∉ , ( )N u
− ≠ ∅  and ( ) ( )N u V P

− ⊆ , then 

D admits an SBE-path partition (resp., S-path partition).  

The next lemma is similar to Lemma 1, but it provides a different technique. 

Lemma 3. Let D be a digraph such that every proper induced subdigraph of D 

satisfies the BE-property (resp., α-property). Let S be a maximum stable set in D. 

Let 
1 2 kP v v v= ⋯  be a path of D such that ( )V P S∩ =∅ . If there exists an arc 

1 2
u u  in ( )A D  such that 

1
u S∉ , { } ( )1 2

,u u V P∩ =∅ , 
2kv u→  and  

( ) ( ) { }1 2
N u V P u

+ ⊆ ∪ , then D admits an SBE-path partition (resp., S-path parti-

tion).  

Proof. Let i be the minimum in { }1, 2, , k⋯  such that 
1 iu v→ . Let i kP v Pv′ = . 

Note that ( ) ( ) { }1 2
N u V P u

+ ′⊆ ∪ . Let ( )D D V P′ ′= − . Since ( )V P S′ ∩ = ∅ , 

S is a maximum stable set in D′ . By hypothesis, D′  is BE-diperfect. Let ′  

be an SBE-path partition of D′ . Let R be a path in ′  such that ( )1
u V R∈ . If 

R ends at 
1

u , then since 
1 iu v→ , it follows that the collection { }( ) { }R RP′ ′− ∪  

is an SBE-path partition of D. So we may assume that P does not end at 
1

u . Since 

( ) ( ) { }1 2
N u V P u

+ ′⊆ ∪ , it follows that 
1 2

u u  is an arc in R. Let 
1

w  and 
pw  be 

the endvertices of R. Let 
1 1 1

R w Ru=  and let 
2 2 pR u Rw= . Since 

1 iu v→  and 

2kv u→ , the collection { }( ) { }1 2
R R P R′ ′− ∪  is an SBE-path partition of D.  

By the principle of directional duality, we have the following result. 

Lemma 4. Let D be a digraph such that every proper induced subdigraph of D 

satisfies the BE-property (resp., α-property). Let S be a maximum stable set in D. 

Let 
1 2 kP v v v= ⋯  be a path of D such that ( )V P S∩ =∅ . If there exists an arc 

1 2
u u  in ( )A D  such that 

2
u S∉ , { } ( )1 2

,u u V P∩ =∅ , 
1 1

u v→  and  

( ) ( ) { }2 1
N u V P u

− ⊆ ∪ , then D admits an SBE-path partition (resp., S-path parti-

tion).  

Next, we show that if a digraph D contains a special partition of its vertices, 

then D admits an SBE-path partition (resp., S-path partition). 

Lemma 5. Let D be a digraph such that every proper induced subdigraph of D 

satisfies the BE-property (resp., α-property). Let S be a maximum stable set of D. 

If ( )V D  admits a partition ( )1 2 3
, ,V V V  such that 

1 2 3
V V V֏ ֏ , [ ]2

D V  is ha- 

miltonian, 
2

2V ≥  and 
2

1V S∩ ≤ , then D admits an SBE-path partition (resp., 

S-path partition).  

Proof. Let 
2

k V= . Let 
1 2 kC v v v= ⋯  be a Hamilton cycle in [ ]2

D V . Let B be 

a subset of 
2

V S−  with cardinality 1k −  (note that B exists because 
2

2V ≥  

and 
2

1V S∩ ≤ ). Without loss of generality, we may assume that kv  is the ver-
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tex in 
2

V B− . Let D D B′ = − . Since B S∩ =∅ , S is maximum in D′ . By 

hypothesis, D′  is BE-diperfect. Let ′  be an SBE-path partition of D′ . Let P 

be a path in ′  such that ( )kv V P∈ . First, suppose that P does not start at kv . 

Let w be the vertex in P that immediately precedes kv . Let 
1

P Pw=  and let 

2 kP v P= . Since 
1 2 3

V V V֏ ֏  and ( ) 2 kV D V v′ ∩ = , it follows that w in 
1

V . 

Let 
1 2 1kR v v v −= ⋯ . Since 

1 2
V V֏ , it follows that 

1
w v→ . Since 

1k kv v− → , we 

conclude that the collection { }( ) { }1 2
P P RP′ − ∪  is an SBE-path partition of D. 

So we may assume that P starts at kv . Let w be the vertex in P that immediately 

follows kv . Let 
1 kP v=  and let 

2
P wP= . Let 

1 2 1kR v v v −= ⋯ . Since 
2 3

V V֏ , 

it follows that 
1kv w− → . Since 

1kv v→ , we conclude that the collection  

{ }( ) { }1 2
P P RP′ − ∪  is an SBE-path partition of D.  

Next, we prove some lemmas to α-diperfect digraphs. 

Lemma 6. Let D be a digraph such that every proper induced subdigraph of D 

satisfies the α-property. Let S be a maximum stable set of D. Let 
1 2

v v  be an arc 

of ( )A D . Then, 

1) If 
1

v S∉  and ( ) { }2 1
N v v

− = , then D admits an S-path partition,  

2) If 
2

v S∉  and ( ) { }1 2
N v v

+ = , then D admits an S-path partition.  

Proof. By the principle of directional duality, it suffices to prove (1). Let 

1
D D v′ = − . Since 

1
v S∉ , S is a maximum stable set in D′ . By hypothesis, D′  

is α-diperfect. Let ′  be an S-path partition of D′ . Let P be a path in ′  

such that ( )2
v V P∈ . Since ( ) { }2 1

N v v
− = , it follows that P starts at 

2
v . Since 

1 2
v v→ , the collection { }( ) { }1

P v P′ − ∪  is an S-path partition of D.  

Lemma 7. Let D be a digraph such that every proper induced subdigraph of D 

satisfies the α-property. Let S be a maximum stable set in D. Let 
1 2 kP v v v= ⋯ , 

1k > , be a path of D such that ( ) { }( )1
V P v S− ∩ = ∅ . If there exists a vertex u 

in ( )D V P−  such that kv u→  and ( ) ( )N u V P
− ⊆ , then D admits an S-path 

partition.  

Proof. Let 
2 kP v Pv′ = . Let ( )D D V P′ ′= − . Since ( )V P S′ ∩ = ∅ , S is a ma- 

ximum stable set in D′ . By hypothesis, D′  is α-diperfect. Let ′  be an S- 

path partition of D′ . Let R be a path in ′  such that ( )u V R∈ . Since  

( ) ( )N u V P
− ⊆ , it follows that R starts at u or 

1
v u  is an arc of R. If P starts at u, 

then since kv u→ , it follows that the collection { }( ) { }R P R′ ′− ∪  is an S- 

path partition of D. So suppose that 
1

v u  is an arc of P. Let 
1

w  and 
pw  be the 

endvertices of R. Let 
1 1 1

R w Rv=  and let 
2 pR uRw= . Thus the collection  

{ }( ) { }1 2
R R P R′ ′− ∪  is an S-path partition of D.  

By the principle of directional duality, we have the following result. 

Lemma 8. Let D be a digraph such that every proper induced subdigraph of D 

satisfies the α-property. Let S be a maximum stable set in D. Let 
1 2 kP v v v= ⋯  

be a path of D such that ( ) { }( )kV P v S− ∩ = ∅ . If there exists a vertex u in 

( )D V P−  such that 
1

u v→  and ( ) ( )N u V P
+ ⊆ , then D admits an S-path 

partition. 

4. 3-Anti-Circulant Digraphs 

In this section, we verify both Conjecture 1 and Conjecture 2 for 3-anti-circulant 
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digraphs which we define in this section. 

Let D be a digraph. We say that a set { } ( )1 2 3 4
, , ,v v v v V D⊆  is an anti-P4 if  

1 2
v v→ , 

3 2
v v→  and 

3 4
v v→ . Whenever it is convenient, we may write an 

anti-P4 as 
1 2 3 4

v v v v→ ← → . Since every anti-directed odd cycle and every 

blocking odd cycle of length at least five contains an induced anti-P4, it seems 

interesting to study digraphs that do not contain anti-P4 as an induced subdi-

graph. Motivated by this observation, we study the class of 3-anti-circulant di-

graphs defined by Wang [10] because they satisfy this property. 

Let D be a digraph. We say that D is 3-anti-circulant if for every anti-P4 

1 2 3 4
v v v v→ ← →  in D, it follows that 

4 1
v v→  (see Figure 3(a)). Note that 

the inverse of D is also a 3-anti-circulant digraph. So we can use the principle of 

directional duality whenever it is convenient. Moreover, note that every 

3-anti-circulant digraph belongs to B , and the only possible induced blocking 

odd cycle in a 3-anti-circulant digraph is a transitive triangle (see Figure 3(b)). 

 

 

Figure 3. Examples of 3-anti-circulant digraphs. 

 

Moreover, Wang also characterized the structure of a strong 3-anti-circulant 

digraph admitting a partition into vertex-disjoint cycles and showed that the 

structure is very close to semicomplete and semicomplete bipartite digraphs. 

This characterization does not seem to help in proving both conjectures for 

these digraphs. So we use a different approach. First, we need the following defi-

nitions. 

Let S be a maximum stable set of a digraph D. Denote by B
+  (resp., B

− ) the 

subset of ( )V D S−  such that B S⇒  (resp., S B⇒ ). Moreover, let  

( ) ( )B V D B B S
± + −= − ∪ ∪ , that is, B

±  is a set of those vertices that both do-

minate and are dominated by some vertex in S (see Figure 4). Note that B
+ , 

B
−  and B

±  are pairwise disjoint and since S is a maximum stable set in D, it 

follows that ( )V D S B B B
+ − ±= ∪ ∪ ∪ . 

 

 

Figure 4. Illustration of B
+

, B
±

 and B
−

. 
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Let us start with a simple and useful structural lemma. 

Lemma 9. Let D be a 3-anti-circulant digraph. Let S be a maximum stable set 

in D. Then, for every v in B
+  and for every u in B

− , it follows that  

( ) 1N v B
− +∩ ≤  and ( ) 1N u B

+ −∩ ≤ . 

Proof. Note that by the principle of directional duality, it suffices to show that 

( ) 1N v B
− +∩ ≤ . Towards a contradiction, suppose that ( ) 1N v B

− +∩ > . So 

let 
1 2
,v v  be vertices in ( )N v B

− +∩ . By definition of B
+ , there exists a vertex 

y in S such that 
1

v y→ . Since 
2 1

v v v y→ ← →  and D is 3-anti-circulant, it 

follows that 
2

y v→ , a contradiction because 
2

v B
+∈ . Thus ( ) 1N v B

− +∩ ≤  

and ( ) 1N u B
+ −∩ ≤ .  

4.1. Begin-End Conjecture 

In this subsection, we verify Conjecture 2 for 3-anti-circulant digraphs. In order 

to do this, we need the following auxiliary result by Freitas and Lee [9]. 

Lemma 10 (Freitas and Lee, 2021). Let D be a digraph such that every proper 

induced subdigraph of D satisfies the BE-property (resp., α-property). If D has a 

stable set S such that ( )N S S≤ , then D satisfies the BE-property (resp., α- 

property).  

Initially, we present an outline of the main proof. Let D be 3-anti-circulant 

digraph and let S be a maximum stable set in D. Note that every induced subdi-

graph of D is also a 3-anti-circulant digraph. Thus it suffices to show that D sa-

tisfies the BE-property. First, we show that if D∈D , then there exists no arc 

connecting vertices of distinct sets in B
+ , B

−  and B
± . Next, we show that 

B
+ , B

−  and B
±  are stable. This implies that S B B B

+ − ±≥ ∪ ∪ , and hence, 

it follows by Lemma 10 that D satisfies the BE-property. 

In the next three lemmas we show that if ( )U D  contains a cycle C of length 

three such that C contains a digon and ( )V C S∩ ≠ ∅ , then D admits an SBE- 

path partition. 

Lemma 11. Let D be a 3-anti-circulant digraph such that every proper in-

duced subdigraph of D satisfies the BE-property. Let S be a maximum stable set 

in D. Let 
1 2

v v↔  be a digon in D S− . If there exists a vertex 
3

v  in  

( ) { }1 2
,V D v v−  such that 

3
v S∈  and { }1 2 3

, ,D v v v    contains a 
3

C
���

, then D 

admits an SBE-path partition.  

Proof. With loss of generality, assume that 
2 3

v v→  and 
3 1

v v→ . Let  

{ }1 2
,D D v v′ = − . Since { }1 2

,v v S∩ =∅ , S is a maximum stable set in D′ . By 

hypothesis, D′  is BE-diperfect. Let ′  be an SBE-path partition of D′ . Let P 

be a path in ′  such that ( )3
v V P∈ . If ( ) { }3

V P v= , then the collection 

{ }( ) { }3 1 2 3
v v v v′ − ∪  is an SBE-path partition of D. So we may assume that  

( ) 1V P > . By the principle of directional duality, we may assume that P starts at 

3
v . Let 

3 1 2 kP v w w w= ⋯ . Next, we show by induction on k that 
1kw v→  or  

2kw v→  holds. First, suppose that 1k = . Since 
2 1 3 1

v v v w→ ← →  and D is 

3-anti-circulant, it follows that 
1 2

w v→ . Now, assume that 1k > . By induction 

hypothesis, 
1 1iw v− →  or 

1 2iw v− →  for some { }2, ,i k∈ ⋯ . Since 
1 2

v v↔  and 
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1i iw w− → , it follows that 
1iw v→  or 

1iw v→ . Thus 
1kw v→  or 

2kw v→ . 

Since 
1 2

v v↔ , the collection { }( ) { }1 2
P Pv v′ − ∪  or { }( ) { }2 1

P Pv v′ − ∪  is 

an SBE-path partition of D.  

From now on, we prove some results for 3-anti-circulant digraphs that belong 

to D . 

Lemma 12. Let D be a 3-anti-circulant digraph such that every proper in-

duced subdigraph of D satisfies the BE-property. Let S be a maximum stable set 

in D. Let 
1 2

v v↔  be a digon in D. If D∈D  and there exists a vertex 
3

v  in 

( ) { }1 2
,V D v v−  such that { }1 2 3

,v v v→  and { }1 2 3
, ,v v v S∩ ≠ ∅ , then D admits 

an SBE-path partition.  

Proof. The proof is divided into two cases depending on whether 
3

v S∈  or 

3
v S∉ . First, we prove the following claim. 

Claim 1. If there exists a vertex ( ) { }4 1 2 3
, ,v V D v v v∈ −  such 

4 3
v v→ , then 

{ }1 2 3
, ,D v v v    is a complete digraph.  

Since { }1 2 3
,v v v→ , 

1 2
v v↔  and D is 3-anti-circulant, it follows that  

{ }1 2 4
,v v v→ . Since 

2 4 1 3
v v v v→ ← → , we conclude that 

3 2
v v→ , and hence, 

2 3
v v↔ . Since 

1 4 2 3
v v v v→ ← → , it follows that 

3 1
v v→ , and hence, 

1 3
v v↔ . 

Thus { }1 2 3
, ,D v v v    is a complete digraph. This ends the proof of Claim 1. 

Case 1. 
3

v S∉ . If ( ) { }3 1 2
,N v v v

− ≠ , then it follows by Claim 1 that  

{ }1 2 3
, ,D v v v    is complete, and hence, the result follows by Lemma 11. So  

( ) { }3 1 2
,N v v v

− = . If 
2

v S∈  (resp., 
1

v S∈ ), then since ( ) { }3 1 2
,N v v v

− =  and 

3
v S∉ , the result follows by Lemma 4 with 

1 1
u v=  (resp., 

1 2
u v= ), 

2 3
u v=  and 

2
P v=  (resp., 

1
P v= ). 

Case 2. 
3

v S∈ . Since { }1 2 3
,v v v→ , { }1 2

,v v S∩ =∅ . We may assume by 

Lemma 11 that 
1 3

v v֏  and 
2 3

v v֏ . Thus it follows by Claim 1 that  

( ) { }3 1 2
,N v v v

− = . First, suppose that there exists a vertex 
4

v  in ( ) { }2 1 3
,N v v v

+ − . 

Since 
1 3 2 4

v v v v→ ← → , it follows that 
4 1

v v→ . Since 
4 1 2 3

v v v v→ ← → , 

we conclude that 
3 4

v v→ . Since D∈D , there exists at least one digon in  

{ }2 3 4
, ,D v v v   ; otherwise, { }2 3 4

, ,D v v v    is an induced transitive triangle. Since 

2 3
v v֏  and ( ) { }3 1 2

,N v v v
− = , it follows that 

2 4
v v↔ . Thus the result follows 

by Lemma 11 applied to { }2 3 4
, ,D v v v   . So we may assume that  

( ) { }2 1 3
,N v v v

+ = . Let 
1

P v= . Since 
2

v S∉ , { } ( )2 3
,v v V P∩ =∅ , 

2 1
v v→ ,  

1 3
v v→  and ( ) ( ) { }2 3

N v V P v
+ ⊆ ∪ , the result follows by Lemma 3 with  

1 2
u v=  and 

2 3
u v= . This finishes the proof.  

By the principle of directional duality, we have the following result. 

Lemma 13. Let D be a 3-anti-circulant digraph such that every proper in-

duced subdigraph of D satisfies the BE-property. Let S be a maximum stable set 

in D. Let 
1 2

v v↔  be a digon in D. If D∈D  and there exists a vertex 
3

v  in 

( ) { }1 2
,V D v v−  such that { }3 1 2

,v v v→  and { }1 2 3
, ,v v v S∩ ≠ ∅ , then D ad-

mits an SBE-path partition.  

The following lemma states that we may assume that for every transitive tri-

angle T in D∈D , ( )V T S∩ =∅ . 

Lemma 14. Let D be a 3-anti-circulant digraph such that every proper in-
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duced subdigraph of D satisfies the BE-property. Let S be a maximum stable set 

in D. If D∈D  and D contains a transitive triangle T such that ( )V T S∩ ≠ ∅ , 

then D admits an SBE-path partition.  

Proof. Let ( ) { }1 2 3
, ,V T v v v= . Without loss of generality, assume that 

1 2
v v→  

and { }1 2 3
,v v v→ . Since D∈D , there exists at least one digon in T; otherwise, 

T is an induced transitive triangle. If 
1 2

v v↔  (resp., 
2 3

v v↔ ), then the result 

follows by Lemma 12 (resp., Lemma 13). Thus 
1 3

v v↔ . If 
2

v S∈ , then the re-

sult follows by Lemma 11. So { }1 3
,v v S∩ ≠ ∅ . Without loss of generality, as-

sume that 
3

v S∈ . We show next that ( ) { }1 2 3
,N v v v

+ = . Suppose that there ex-

ists a vertex 
4

v  in ( ) { }1 2 3
,N v v v

+ − . Since 
2 3 1 4

v v v v→ ← →  and D is 3-anti- 

circulant, we conclude that 
4 2

v v→ . Also, since 
4 2 1 3

v v v v→ ← → , it follows 

that 
3 4

v v→ . Thus the result follows by Lemma 12 applied to { }1 3 4
, ,D v v v   . 

So we may assume that ( ) { }1 2 3
,N v v v

+ = . Let 
2

P v= . Since 
1

v S∉ ,  

{ } ( )1 3
,v v V P∩ =∅ , 

1 2
v v→ , 

2 3
v v→  and ( ) ( ) { }1 3

N v V P v
+ ⊆ ∪ , the result 

follows by Lemma 3 with 
1 1

u v=  and 
2 3

u v= . This finishes the proof.  

The next lemma states that we may assume that B B B
− ± +∪ ⇒ . 

Lemma 15. Let D be a 3-anti-circulant digraph such that every proper in-

duced subdigraph of D satisfies the BE-property. Let S be a maximum stable set 

in D. If D∈D  and there are vertices 
1

v B
+∈  and 

2
v B B

− ±∈ ∪  such that  

1 2
v v→ , then D admits an SBE-path partition.  

Proof. By definition of B
+ , there exists a vertex 

1
y  in S such that 

1 1
v y→ . 

By definition of B
±  and B

− , there exists a vertex 
2

y  in S such that 
2 2

y v→ . 

Towards a contradiction, suppose that 
1 2

y y≠ . Since 
2 2 1 1

y v v y→ ← →  and 

D is 3-anti-circulant, it follows that 
2 1

y y→ , a contradiction because S is stable. 

So 
1 2

y y= , and hence, the result follows by Lemma 14 applied to { }1 2 1
, ,D v v y   . 

By the principle of directional duality, we have the following result. 

Lemma 16. Let D be a 3-anti-circulant digraph such that every proper in-

duced subdigraph of D satisfies the BE-property. Let S be a maximum stable set 

in D. If D∈D  and there are 
1

v B B
+ ±∈ ∪  and 

2
v B

−∈  such that 
1 2

v v→ , 

then D admits an SBE-path partition.  

We show next that if D∈D , then we may assume that B
±  is a stable set. 

Lemma 17. Let D be a 3-anti-circulant digraph such that every proper in-

duced subdigraph of D satisfies the BE-property. Let S be a maximum stable set 

in D. If D∈D  and B
±  is not stable, then D admits an SBE-path partition.  

Proof. Let 
1 2
,v v  be adjacent vertices in B

± . Without loss of generality, as-

sume that 
1 2

v v→ . By definition of B
± , there are vertices 

1 2
,y y  in S such 

that 
1 1

v y→  and 
2 2

y v→ . Since S is stable and D is 3-anti-circulant, it follows 

that 
1 2

y y= , and hence, the result follows by Lemma 14 applied to { }1 2 1
, ,D v v y   . 

The next lemma states that if D contains an anti-P4 disjoint from S, then D 

admits an SBE-path partition. 

Lemma 18. Let D be a 3-anti-circulant digraph such that every proper in-

duced subdigraph of D satisfies the BE-property. Let S be a maximum stable set 

in D. If D∈D  and D contains an anti-P4 disjoint from S, then D admits an 

SBE-path partition.  
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Proof. Let { } ( )1 2 3 4
, , ,v v v v V D⊆  be an anti-P4 in D such that  

1 2 3 4
v v v v→ ← → . Since D is 3-anti-circulant, we conclude that 

4 1
v v→ . We 

show next that 
2

v B
+∈  and 

3
v B

−∈ . Note that by the principle of directional 

duality, it suffices to show that 
3

v B
−∈ . Moreover, we may assume by Lemma 

15 that B B B
− ± +∪ ⇒ . Towards a contradiction, suppose that 

3
v B

−∉ . Since 

3
v S∉ , it follows that 

3
v B B

+ ±∈ ∪ . If 
3

v B
+∈ , then since { }3 2 4

,v v v→  and 

B B B
− ± +∪ ⇒ , we conclude that { }2 4

,v v B
+⊂ . Since 

4
v B

+∈ , it follows that 

1
v B

+∈ , and hence, ( )2
1N v B

− +∩ > , a contradiction by Lemma 9. If 
3

v B
±∈ , 

then since 
3 4

v v→ , it follows by Lemma 17 that 
4

v B
±∉ . By Lemma 16,  

4
v B

−∉ . So 
4

v B
+∈ . Since 

4
v B

+∈  and B B B
− ± +∪ ⇒ , it follows that  

1
v B

+∈ . By definition of B
± , there exists a vertex y in S such that 

3
v y→ . 

Since 
1 2 3

v v v y→ ← → , we conclude that 
1

y v→ , a contradiction because  

1
v B

+∈ . Thus 
3

v B
−∈  and 

2
v B

+∈ . 

Now, let 
1 4 1 2

P v v v=  and let 
2 3 4 1

P v v v= . Towards a contradiction, suppose 

that ( ) ( )3 1
N v V P

+ ⊆/  and ( ) ( )2 2
N v V P

− ⊆/ . So let 
1 2
,w w  vertices such that 

1
w  in ( ) ( )2 2

N v V P
− −  and 

2
w  in ( ) ( )3 1

N v V P
+ − . First, suppose that  

1 2
w w= . Since D∈D , there exists at least one digon in { }2 3 1

, ,D v v w   ; oth-

erwise, { }2 3 1
, ,D v v w    is an induced transitive triangle. Since 

2
v B

+∈  and  

B B B
− ± +∪ ⇒ , we conclude that 

1 3
w v↔ , and since 

3
v B

−∈ , the result fol-

lows by Lemma 16. So we may assume that 
1 2

w w≠  (see Figure 5(a)). 

 

 

Figure 5. Illustration for the proof of Lemma 18. 

 

Since { }1 2 3 2 4
,w v v w v→ ← → , we conclude that { }2 4 1

,w v w→ . Since  

1 2 3 2
v v v w→ ← → , 

2 1
w v→ . Also, since 

4 1 2 1
v w w v→ ← → , we conclude 

that 
1 4

v v→ , and hence, 
1 4

v v↔  (see Figure 5(b)). Since 
3 4 1 2

v v v v→ ← → , 

it follows that 
2 3

v v→ , a contradiction because 
2

v B
+∈ , 

3
v B

−∈  and  

B B B
− ± +∪ ⇒ . Thus ( ) ( )3 1

N v V P
+ ⊆  or ( ) ( )2 2

N v V P
− ⊆ . Since  

{ }1 2 3 4
, , ,v v v v S∩ =∅ , the result follows by Lemma 1 with 

3
u v=  or by Lemma 

2 with 
2

u v= .  

In the next lemmas, we show that if D∈D , then B
+  and B

−  are stable. To 

do this, we show that there exists no arc 
1 2

v v  in D such that 
1

v B B
+ −∈ ∪  and 

2
v B

±∈ . 

Lemma 19. Let D be a 3-anti-circulant digraph such that every proper in-

duced subdigraph of D satisfies the BE-property. Let S be a maximum stable set 

in D. If D∈D  and there are adjacent vertices 
1 2
,v v  in ( )V D  such that  

1
v B B

+ −∈ ∪  and 
2

v B
±∈ , then D admits an SBE-path partition.  
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Proof. By the principle of directional duality, we may assume that 
1

v B
+∈ . 

Also, we may assume by Lemma 15 that B B B
− ± +∪ ⇒ . So 

2 1
v v֏ . By defini-

tion of B
+ , there exists a vertex 

1
y  in S such that 

1 1
v y֏ . By definition of 

B
± , there exists a vertex 

2
y  in S such that 

2 2
v y→ . 

Claim 1. ( )1
N v B

− +∩ =∅ .  

Towards a contradiction, suppose that there exists 
3

v B
+∈  such that 

3 1
v v→ . 

Since 
3 1 2 2

v v v y→ ← →  and D is 3-anti-circulant, it follows that 
2 3

y v→ , a 

contradiction by definition of B
+ . Thus ( )1

N v B
− +∩ =∅ . This finishes the 

proof of Claim 1.  

If ( ) { }1 2
N v v

− = , then since { }1 2
,v v S∩ =∅ , the result follows by Lemma 2 

with 
2

P v=  and 
1

u v= . So there exists a vertex 
3

v  in ( )1 2
N v v

− − . By defini-

tion of B
+ , 

3
v S∉ . By Claim 1, 

3
v B B

± −∈ ∪ . The rest of proof is divided into 

two cases depending on whether 
3

v B
±∈  or 

3
v B

−∈ . 

Case 1. 
3

v B
±∈ . Recall that 

2 2
v y→  with 

2
y S∈ . Since 

2
v B

±∈ , we may 

assume by Lemma 17 that 
2

v  and 
3

v  are non-adjacent. By definition of B
± , 

there exists a vertex 
3

y  in S such that 
3 3

v y→ . Towards a contradiction, sup-

pose that 
3 2

y y= . Since 
3 2 2 1

v y v v→ ← → , we conclude that 
1 3

v v→ , a con-

tradiction because B B B
− ± +∪ ⇒ . So 

3 2
y y≠ . Since 

3 1 2 2
v v v y→ ← → ,  

2 3
y v→ . Also, since 

2 1 3 3
v v v y→ ← → , 

3 2
y v→  (see Figure 6).  

 

 

Figure 6. Illustration for the proof of Lemma 19. 

 

Claim 2. { }( ) ( ) { }2 3 2 3
, ,N y y B B v v

− − ±∩ ∪ = .  

By definition of B
− , { }( )2 3

,N y y B
− −∩ =∅ . Towards a contradiction, sup-

pose that there exists a vertex { }4 2 3
,v B v v

±∈ −  such that 
4 iv y→  for some 

{ }2,3i∈ . Since 
4 1i iv y v v→ ← → , we conclude that 

1 4
v v→ , a contradiction 

because B B B
− ± +∪ ⇒ . So { }( ) ( ) { }2 3 2 3

, ,N y y B B v v
− − ±∩ ∪ = . This ends the 

proof of Claim 2. 

Claim 3. { }( ) { }2 3 1
,N v v S v

+ − = .  

Towards a contradiction, suppose that there exists ( ) { }( )4 1
v V D S v∈ − ∪  

such that 
4iv v→  for some { }2,3i∈ . Then, { }1 2 3 4

, , ,v v v v  is an anti-P4 dis-

joint from S, and hence, the result follows by Lemma 18. So we may assume that 

{ }( ) { }2 3 1
,N v v S v

+ − = . This finishes the proof of Claim 3.  

Claim 4. If there exists a vertex 
4

v  in ( ) { }( )1 2 3
, ,V D S v v v− ∪  such that  

4 iv v→  for some { }2,3i∈ , then 
4

v B
−∈  and ( ) { }4 2 3

,N v v v
+ = . Moreover, 

{ }( ) { }2 3 4
,N v v S v

− − = .  

Without loss of generality, assume that 
4 3

v v→ . Since B B B
− ± +∪ ⇒ , 
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4
v B

+∉ . Since { }2 3
,v v B

±⊆ , it follows by Lemma 17 that 
4

v B
−∈  (see Figure 

7). 

 

 

Figure 7. Illustration for the proof of Lemma 19. 

 

By definition of B
− , ( )4

N v S
+ ∩ =∅ . Now, we show that ( ) { }4 2 3

,N v v v
+ ⊆ . 

First, suppose that 
4 1

v v→ . Since D∈D , there exists at least one digon in 

{ }1 3 4
, ,D v v v   ; otherwise, { }1 3 4

, ,D v v v    is an induced transitive triangle. Since 

B B B
− ± +∪ ⇒ , 

3 4
v v↔  which contradicts Claim 3. So ( )1 4

v N v
+∉ . Now, let 

5
v  be a vertex in ( ) { }4 2 3

,N v v v
+ − . By definition of B

−  and since 
4

v B
−∈ , it 

follows that 
5

v S∉ . Since 
2 3 4 5

y v v v→ ← → , we conclude that 
5 2

v y→ . Since 

5 2 2 1
v y v v→ ← → , we conclude that 

1 5
v v→ . Thus since  

{ }1 3 4 5
, , ,v v v v S∩ =∅  and 

1 5 4 3
v v v v→ ← → , the result follows by Lemma 18. 

So ( ) { }4 2 3
,N v v v

+ ⊆ . If ( ) { }4 iN v v
+ =  for some { }2,3i∈ , then it follows by 

Lemma 1 with iP v=  and 
4

u v=  that D admits an SBE-path partition. Thus  

( ) { }4 2 3
,N v v v

+ = . Moreover, if { }( ) { }2 3 4
,N v v S v

− − ⊃ , then D contains an an-

ti-P4 disjoint from S, and hence, the result follows by Lemma 18. Thus  

{ }( ) { }2 3 4
,N v v S v

− − = . This ends the proof of Claim 4.  

Claim 5. If { }( )2 3
,N v v S

− − ≠ ∅ , then ( ) { }1 2 3
,N v v v

− = .  

Let 
4

v  be a vertex in { }( )2 3
,N v v S

− − . It follows by Claim 4 that  

( ) { }4 2 3
,N v v v

+ =  and { }( ) { }2 3 4
,N v v S v

− − = . Suppose that there exists a ver-

tex 
5

v  in ( ) { }1 2 3
,N v v v

− − . By definition of B
+ , 

5
v S∉ . Since  

5 1 2 2
v v v y→ ← → , 

2 5
y v→ . Also, since 

4 3 2 5
v v y v→ ← → , 

5 4
v v→ . Since 

{ }1 3 4 5
, , ,v v v v S∩ =∅  and 

3 1 5 4
v v v v→ ← → , it follows by Lemma 18 that D 

admits an SBE-path partition. So we may assume that ( ) { }1 2 3
,N v v v

− = . This 

ends the proof of Claim 5.  

The rest of proof is divided into two subcases depending on whether  

{ }( )2 3
,N v v S

− − ≠ ∅  or { }( )2 3
,N v v S

− − = ∅ .  

Subcase 1. { }( )2 3
,N v v S

− − ≠ ∅ . Let 
4

v  be a vertex in { }( )2 3
,N v v S

− − . It 

follows by Claim 4 that ( ) { }4 2 3
,N v v v

+ =  and { }( ) { }2 3 4
,N v v S v

− − = . By 

Claim 5, ( ) { }1 2 3
,N v v v

− = . Let { }2 3
,D D v v′ = − . Note that 

1
v  is a source and 

4
v  is a sink in D′ . Since { }2 3

,v v S∩ =∅ , S is a maximum stable set in D′ . 
By hypothesis, D′  is BE-perfect. Let ′  be an SBE-path partition of D′ . Let 

1 2
,P P  be distinct paths in ′  such that 

1
P  starts at 

1
v  and 

2
P  ends at 

4
v . 

Thus the collection { }{ } { }1 2 2 1 2 3
, ,P P v P P v′ − ∪  is an SBE-path partition of D.  

Subcase 2. { }( )2 3
,N v v S

− − = ∅ . By Claim 3, { }( ) { }2 3 1
,N v v S v− = . Let  

1
D D v′ = − . Since 

1
v S∉ , S is a maximum stable set in D′ . Let ′  be an 
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SBE-path partition of D′ . Let 
1

P  be a path in ′  such that ( )2 1
v V P∈  and 

let 
2

P  be a path in ′  such that ( )3 2
v V P∈ . In D′ , { }( )2 3

,N v v S⊂ . So it 

follows that both 
1

P  and 
2

P  have length one. If 
1

P  ends at 
2

v  or 
2

P  ends 

at 
3

v , then since 
2 1

v v→  and 
3 1

v v→ , the collection { }( ) { }1 1 1
P Pv′ − ∪  or 

{ }( ) { }2 2 1
P P v′ − ∪  is an SBE-path partition of D. Thus 

1 2 1
P v w=  and  

2 3 2
P v w=  with 

1 2
,w w S∈ . Since { }2 3 1

,v v v→ , 
2 1

v w→  and 
3 2

v w→ , we 

conclude that 
1 3

w v→  and 
2 2

w v→ . Thus the collection  

{ }( ) { }1 2 2 2 1 1 2
, ,P P w v v w v′ − ∪  is an SBE-path partition of D.  

Case 2. 
3

v B
−∈ . By definition of B

− , ( )3
N v S

+ ∩ =∅ . If there exists a ver-

tex 
4

v  in ( ) { }3 1 2
,N v v v

+ − , then since { }1 2 3 4
, , ,v v v v S∩ =∅  and  

2 1 3 4
v v v v→ ← → , the result follows by Lemma 18. Thus ( ) { }3 1 2

,N v v v
+ ⊆ , 

and hence, since { }1 2 3
, ,v v v S∩ =∅ , the result follows by Lemma 1 with  

2 1
P v v=  and 

3
u v= . This ends the proof. 

Now, we show that if D∈D , then we may assume that there exists no arc 

1 2
v v  in D such that 

1
v B

+∈  and 
2

v B
−∈ . 

Lemma 20. Let D be a 3-anti-circulant digraph such that every proper in-

duced subdigraph of D satisfies the BE-property. Let S be a maximum stable set 

of D. If D∈D  and there are adjacent vertices 
1 2
,v v  in ( )V D  such that  

1
v B

+∈  and 
2

v B
−∈ , then D admits an SBE-path partition.  

Proof. We may assume by Lemma 15 that B B B
− ± +∪ ⇒ . So 

2 1
v v֏ . If 

( ) { }1 2
N v v

− = , then since { }1 2
,v v S∩ =∅ , the result follows by Lemma 2 with 

2
P v=  and 

1
u v= . So there exists a vertex 

3
v  in ( )1 2

N v v
− − . Since 

1
v B

+∈ , 

3
v S∉ . Since 

2
v B

−∈ , ( )2
N v S

+ ∩ =∅ . If there exists a vertex 
4

v  in  

( ) { }2 1 3
,N v v v

+ − , then since { }1 2 3 4
, , ,v v v v S∩ =∅  and 

3 1 2 4
v v v v→ ← → , the 

result follows by Lemma 18. So we may assume that ( ) { }2 1 3
,N v v v

+ ⊆ . Since 

{ }1 2 3
, ,v v v S∩ =∅ , it follows by Lemma 1 with 

3 1
P v v=  and 

2
u v=  that D 

admits an SBE-path partition. This finishes the proof.  

We show next that we may assume that B B
+ −∪  is a stable set. 

Lemma 21. Let D be a 3-anti-circulant digraph such that every proper in-

duced subdigraph of D satisfies the BE-property. Let S be a maximum stable set 

of D. If D∈D  and B B
+ −∪  is not a stable set, then D admits an SBE-path 

partition.  

Proof. If there are adjacent vertices 
1 2
,v v  in ( )V D  such that 

1
v B

+∈  and 

2
v B

−∈ , then the result follows by Lemma 20. Let 
1 2

v v  be an arc in  

D B B
+ − ∪  . By the principle of directional duality, we may assume that 

{ }1 2
,v v B

+⊆ . Towards a contradiction, suppose that ( ) { }2 1
N v v

− ⊃ . Let 
3

v  be 

a vertex in ( )2 1
N v v

− − . By definition of B
+ , 

3
v S∉ . Moreover, we may as-

sume by Lemmas 20 and 19 that 
3

v B
+∈ . By definition of B

+ , let y be a vertex 

in S such that 
1

v y→ . Since 
3 2 1

v v v y→ ← → , we conclude that 
3

y v→ , a 

contradiction by definition of B
+ . Thus ( ) { }2 1

N v v
− = . Since { }1 2

,v v S∩ =∅ , 

it follows by Lemma 2 with 
1

P v=  and 
2

u v=  that D admits an SBE-path parti-

tion.  

Finally, we are ready for the main result of this subsection. 
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Theorem 2 Let D be a 3-anti-circulant digraph. If D∈D , then D is BE-di- 

perfect. 

Proof. Let S be a maximum stable set of D. Since every induced subdigraph of 

D is also a 3-anti-circulant digraph, it suffices to show that D satisfies the 

BE-property. Towards a contradiction, suppose the opposite and let D be a 

counterexample with the smallest number of vertices. Note that if D′  is a proper 

induced subdigraph of D, then D′  is a 3-anti-circulant digraph, and hence, by 

the minimality of D, it follows that D′  satisfies the BE-property. Thus D does 

not satisfy the BE-property. It follows by Lemmas 17 and 21 that both B
±  and 

B B
+ −∪  are stable. Thus it follows by Lemmas 19 and 20 that B B B

+ − ±∪ ∪  is 

stable. Since S is a maximum stable set of D, S B B B
+ − ±≥ ∪ ∪ . Thus we con-

clude by Lemma 10 that D satisfies the BE-property, a contradiction. This ends 

the proof.  

4.2. Berge’s Conjecture 

In this subsection, we verify Conjecture 1 for 3-anti-circulant digraphs. Recall 

that every 3-anti-circulant digraph belongs to B . The proof is divided into two 

cases depending on whether D contains an induced transitive triangle or not. 

Lemma 22. Let D be a 3-anti-circulant digraph such that every proper in-

duced subdigraph of D satisfies the α-property. If D contains an induced transi-

tive triangle T, then D satisfies the α-property.  

Proof. Let S be a maximum stable set in D. Let ( ) { }1 2 3
, ,V T v v v= . Without 

loss of generality, assume that { }1 2 3
,v v v֏  and 

1 2
v v֏ . First, we prove some 

claims.  

Claim 1. ( )3
3N v

− ≤ . Moreover, if there exists ( ) { }4 3 1 2
,v N v v v

−∈ − , then 

4 1
v v→  and 

2 4
v v→ .  

Towards a contradiction, suppose that there are distinct vertices 
4 5
,v v  in  

( ) { }3 1 2
,N v v v

− − . Since { }4 5 3 1 2
,v v v v v→ ← →  and D is 3-anti-circulant, it 

follows that { }2 4 5
,v v v→ . Since { }1 3 2 4 5

,v v v v v→ ← → , we conclude that  

{ }4 5 1
,v v v→ . Also, since 

5 3 2 4
v v v v→ ← → , it follows that 

4 5
v v→ . Now, 

since 
2 5 4 3

v v v v→ ← → , it follows that 
3 2

v v→ , and hence, 
2 3

v v↔ , a con-

tradiction because 
2 3

v v֏ . Thus ( )3
3N v

− ≤ . Moreover, note that if there 

exists ( ) { }4 3 1 2
,v N v v v

−∈ − , then 
4 1

v v→  and 
2 4

v v→ . This ends the proof 

of Claim 1.  

Claim 2. { }1 2
,v v S∩ ≠ ∅ .  

Suppose that { }1 2
,v v S∩ =∅ . First, suppose that there exists a vertex 

4
v  in 

( ) { }3 1 2
,N v v v

− − . By Claim 1, it follows that ( ) { }3 1 2 4
, ,N v v v v

− = , 
4 1

v v→  and 

2 4
v v→ . Let { }1 2

,D D v v′ = − . Since { }1 2
,v v S∩ =∅ , S is a maximum stable 

set in D′ . By hypothesis, D′  is α-diperfect. Let ′  be an S-path partition of 

D′ . Let P be a path in ′  such that ( )3
v V P∈ . Since ( ) { }3 1 2 4

, ,N v v v v
− = , it 

follows that P starts at 
3

v  or 
4 3

v v  is an arc of P. If P starts at 
3

v , then since 

1 2
v v→  and 

2 3
v v→ , the collection { }( ) { }1 2

P v v P′ − ∪  is an S-path parti-

tion of D (note that if ( ) { }3 1 2
,N v v v

− = , then the result follows by previous ar-
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gument). Thus 
4 3

v v  is an arc of P. Let 
1

w  and 
pw  be the endvertices of P. Let 

1 1 4
P w Pv=  and 

2 3 pP v Pw=  be the subpaths of P. Since 
4 1

v v→ , 
1 2

v v→  and 

2 3
v v→ , the collection { }( ) { }1 1 2 2

P Pv v P′ − ∪  is an S-path partition of D. So 

we may assume that { }1 2
,v v S∩ ≠ ∅ . This finishes the proof of Claim 2.  

Claim 3. { }2 3
,v v S∩ ≠ ∅ .  

By the principle of directional duality, the result follows by Claim 2. This ends 

the proof of Claim 3.  

By Claims 2 and 3, it follows that 
2

v S∈ . First, suppose that there exists a 

vertex 
4

v  in ( ) { }3 1 2
,N v v v

− − . By Claim 1, it follows that ( ) { }3 1 2 4
, ,N v v v v

− = , 

4 1
v v→  and 

2 4
v v→ . Let 

2 4 1
P v v v=  and 

3
u v= . Since ( )( )2

V P v S− ∩ = ∅ , 

1
v u→  and ( ) ( )N u V P

− ⊆ , it follows by Lemma 7 that D admits an S-path 

partition. So we may assume that ( ) { }3 1 2
,N v v v

− = . 

Now, suppose that ( ) { }2 3
N v v

+ = . Since 
3

v S∉ , the result follows by Lemma 

66. So we may assume that there exists a vertex w in ( ) { }2 1 3
,N v v v

+ − . Since 

1 3 2
v v v w→ ← → , we conclude that 

1
w v→ . Let 

2 1
P v wv=  and let 

3
u v= . 

Since ( )( )2
V P v S− ∩ = ∅ , 

1
v u→  and ( ) ( )N u V P

− ⊂ , the result follows by 

Lemma 7. This finishes the proof.  

We show next that if D contains no induced transitive triangle, then D satis-

fies the α-property. 

Lemma 23. Let D be a 3-anti-circulant digraph such that every proper in-

duced subdigraph of D satisfies the α-property. If D contains no induced transi-

tive triangle, then D satisfies the α-property.  

Proof. Since every blocking odd cycle of length at least five contains an in-

duced anti-P4 and D is 3-anti-circulant, it follows that D contains no blocking 

odd cycle of length at least five. Moreover, D contains no induced transitive tri-

angle, and this implies that D belongs to D . So by Theorem 2 D satisfies the 

BE-property, and hence, the α-property.  

Now, we prove the main result of this subsection. 

Theorem 3. Let D be a 3-anti-circulant digraph. Then, D is α-diperfect.  

Proof. Since every induced subdigraph of D is also a 3-anti-circulant digraph, 

it suffices to show that D satisfies the α-property. If D contains an induced tran-

sitive triangle, then the result follows by Lemma 22. Thus D contains no induced 

transitive triangle, and hence, the result follows by Lemma 23. This ends the 

proof.  

5. Concluding Remarks 

In this paper, we presented two conjectures related to maximum stable set and 

path partition in digraphs. We verified both Conjectures 1 and 2 for 3-anti-circulant 

digraphs. These digraphs do not contain anti-P4 as an induced subdigraph. We 

believe that studying the structure of these digraphs should help towards ob-

taining a proof of both conjectures in the general case. 

Furthermore, an interesting and natural continuation in study of the structure 

of these digraphs is to analyze digraphs which for every anti-P4 1 2 3 4
v v v v→ ← → , 
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it follows that 
1

v  and 
4

v  are adjacent. Here, we believe this could be a chal-

lenging problem. 
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