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1. Introduction

The Pierre Auger Observatory [1] is the world’s largest cosmic ray observatory. It is located in

the province of Mendoza, Argentina, near the town of Malargüe. One of the primary goals of the

Observatory is to measure the energy spectrum of cosmic rays.

The Observatory consists of two main parts, the array of surface detector stations (SD) that

extends over 3000 km2 and the detector composed of 27 fluorescence telescopes (FD) that overlook

the atmosphere above the array. These detectors operate both separately and also using a common

trigger sequence in a hybrid regime. The energy spectrum of cosmic rays is measured using several

detection techniques as explained in Section 2. Different techniques allow us to derive the energy

spectrum in different energy ranges. The high-elevation Auger telescopes (HEAT), an extension of

the FD, are used to obtain the spectrum at energies below 1017 eV. Between 1017 eV and 1018.4 eV

the SD with 750 m spacing provides the most precise measurement while, at the highest energies,

the horizontally looking FD telescopes and the SD with 1500 m spacing are utilized.

The energy spectrum measurements performed using the above mentioned techniques are

then combined into a single estimate covering the energy range from 6 PeV up to the highest

energies. Individual measurements, the combination procedure, and spectral features observed in

the combined spectrum are discussed in Section 3.

2. Methods

At the Pierre Auger Observatory, two fundamentally different classes of measurements utilizing

two complementary detectors are used to derive the energy spectrum. The SD measures particle

showers on the ground, while the FD telescopes detect fluorescence and Cherenkov light emitted

by showers during their propagation through the atmosphere.

The first class relies on the SD data and divides into three separate methods as explained in

Section 2.1. These measurements provide a larger exposure due to the near–100% duty-cycle of

the SD. The signals at ground measured by the SD are calibrated against the almost calorimetric

estimations of the shower energy provided by the FD, allowing us to measure the spectrum with a

high efficiency and with an energy scale which is largely independent of air shower simulations and

of assumptions in hadronic interaction models.

The second class uses events detected by the FD. Within this class is the hybrid method utilizing

SD information to assist in the reconstruction of the shower axis, and the Profile–Constrained

Geometry Fit (PCGF) method applied to Cherenkov–dominated events. A disadvantage of these

methods lies in the reduced FD duty cycle (≈ 13% considering clear moonless nights) and in

the necessity for extensive Monte Carlo (MC) simulations to estimate the exposure to cosmic ray

showers. The FD measurements benefit from a very good energy resolution and the Cherenkov–

dominated events allows us to lower the energy threshold to a range not yet accessible to the SD. In

the future, measurements from the SD 433 m array [2] will extend the SD capabilities.

2.1 Surface detector

The SD array is composed of individual stations arranged on a triangular grid with a spacing

of 1500 m covering an area of approximately 3000 km
2. Additionally, an area of 24 km

2 inside the
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Figure 1: Exposure of SD and FD measurements to cosmic ray showers as a function of energy (left) and
calibration functions of the SD energy estimators to the energies reconstructed by the FD (right).

1500 m array is covered by a denser array with a spacing of 750 m. Their spacings and areas are

chosen according to the energy ranges probed by the two arrays. Individual SD stations utilize the

water–Cherenkov technique of particle detection, thus they are sensitive to both the electromagnetic

(EM) and muonic components of showers.

The 1500 m array is sensitive to cosmic ray showers with incident zenith angles up to 80
◦,

but showers with zenith angles above 60
◦ (so-called "inclined" showers) are reconstructed with a

different method [3] to those at lower zenith angles ("vertical" showers) [4, 5]. This is mandatory

because for inclined showers the signal is dominated by muons that are deflected in the geomagnetic

field producing an asymmetric footprint on the ground. For events with zenith angles below 60
◦,

dominated by EM particles, this effect is negligible. The 1500 m array is fully efficient in the

detection of showers, regardless of the primary mass composition, above 2.5 EeV and 4 EeV in the

case of vertical and inclined reconstruction, respectively.

The array with 750 m spacing is designed to measure at lower energies, and is fully efficient

from 0.1 EeV, assisted by an additional set of dedicated triggers [6, 7].

The aperture of all SD methods is calculated geometrically by summing the contributions from

individual hexagonal cells under operation. With the use of a monitoring database, we then obtain

the exposure as an integral of the aperture in time. Thus the exposure of SD measurements is

independent of energy and is depicted in the left panel of Fig. 1 for all three SD methods.

The energy estimate for the SD array (�SD) is obtained by means of a calibration procedure

based on coincident SD and FD measurements. Events detected by both detectors can be used to

obtain a relation between the SD energy estimator (Σ in the following) and the FD energy. This is

performed using the calibration function �FD = �Σ�, where �FD is the energy obtained with the

FD, and � and � are calibration parameters.

The energy estimators in the reconstruction of vertical showers are parameters (38 and (35 for

the SD 1500 m and SD 750 m measurements, respectively. These parameters are corrected for the

average shower size attenuation in the atmosphere using the constant intensity cut method [4]. In the

case of inclined reconstruction, the corresponding energy estimator is #19, the scaling factor of the

two dimensional muon density map on the ground used to fit the signal recorded by the SD [3]. The
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calibration curves are shown in the right panel of Fig. 1 and are used to estimate the energy for the

bulk of SD events. The systematic uncertainty in the energy scale is 14% [8], almost constant with

energy, being dominated by the uncertainty in the absolute calibration of the FD telescopes. Finally,

using the data sets that provide the energy calibration curves, we determine the ratio distributions

of the SD energy to the FD energy. By fixing the FD energy resolution to 7 − 9% (an estimation

addressed in [9]) we infer the resolution of SD energy. These estimates decrease with energy from

about 20% to slightly below 10% for all the energy estimators.

2.2 Fluorescence detector

The FD of the Pierre Auger Observatory is composed of 27 telescopes located at four sites

overlooking the SD 1500 m array. Each site houses 6 horizontally–looking telescopes and, addi-

tionally, 3 telescopes of HEAT are located at the Coihueco site in the vicinity of the SD 750 m

array. Horizontally–looking telescopes cover the field of view between 0
◦ − 30

◦ in elevation, while

HEAT telescopes look higher at elevations of 30
◦ − 60

◦ in their default mounting position.

There are two methods of air shower reconstruction used for FD measurements. The hybrid

approach utilizes the time information from the SD to constrain the arrival time and impact point of

the shower at the ground, which significantly improves the angular precision of the reconstruction.

This method is applicable to events where the signal in the FD is dominated by fluorescence light,

i.e. when showers are seen from the side. The amount of fluorescence light needed to trigger the

horizontally–looking telescopes is sufficient for showers with energies above roughly 1 EeV, the

threshold for the hybrid spectrum measurement.

The second approach to the shower axis determination uses the Profile–Constrained Geometry

Fit (PCGF), originally developed by the HiRes collaboration [10]. This method scans over all shower

geometries compatible with the arrival times of photons at individual pixels of the FD camera and

for each such geometry calculates a trial energy deposit profile of the shower in the atmosphere. The

geometry that provides the best expectation of the energy deposit profile from a cosmic ray shower

is chosen [11]. On one hand, the precision of the PCGF reconstruction is generally lower than that

obtained from the hybrid method. On the other hand, it is currently the best reconstruction method

for events dominated by Cherenkov light for which the hybrid reconstruction cannot be used due to

the proximity of the impact point of the shower to the position of the FD telescope. This proximity

is a consequence of the beamed nature of Cherenkov light around the shower axis.

The exposure calculation of both FD reconstruction methods relies on detailed simulations of

extensive air showers, light emission in the atmosphere, and the detector status described for hybrid

measurements in [12]. For the Cherenkov–dominated events we utilize the same machinery except

for the SD–related part. At the Pierre Auger Observatory, a detailed monitoring of the detector and

atmosphere status is performed and stored for each 10 minute interval. This allows us to precisely

determine the response of the FD to showers at a particular time. A re-examination of these MC

simulations, which also take into account the badly calibrated telescope camera pixels that occur

from time to time in the data acquisition, has led to an improved estimation of the exposure of the

hybrid measurement that has resulted in a better hybrid-based estimation of the energy spectrum in

comparison with the one reported in [13].

The lowest energy events accessible at the Observatory are reconstructed using the PCGF

method, utilizing the fact that these showers trigger the FD with Cherenkov light which decreases
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Figure 2: Systematic uncertainty of the exposure, �, to Cherenkov–dominated events caused by uncon-
strained composition of cosmic rays (left) and systematic changes in the energy assignment (right), both
as a function of energy. The exposure uncertainty that would be present in the case of no FV cuts is also
shown in the right panel. �GSF-mix signifies the exposure with the benchmark composition assumption, �+/−

represents the exposure after the energy assignment shift, and �0 is that assuming the nominal energy.

the energy threshold of the measurement. For this purpose we use events detected by the 9 telescopes

at the Coihueco site. The FD trigger sequence was originally designed to reduce the number of

Cherenkov–dominated triggers to provide the lowest possible dead time for high energy fluorescence

measurements. A fraction of events that do not pass all trigger criteria is randomly stored. This

fraction is 10% in the case of HEAT which results in a minimum bias data stream exploited in the

calculation of the Cherenkov energy spectrum.

Changes to the reconstruction procedure described in [11] include a better description of

Cherenkov light emission from showers, tuned to detailed 3D simulations in CORSIKA [14] using

the CERENKOV option. We have also applied new selection cuts that helped to reduce the energy

reconstruction bias to below 5% over the whole investigated energy range. The energy reconstruction

resolution evolves from 12% at 10
15.8 eV down to 6% at 10

18 eV. These reconstruction effects are

corrected for in the forward–folding procedure of the combined fit, see Section 3. Moreover, the

HEAT calibration was recently updated which improved the agreement between energy estimates

from the HEAT and Coihueco telescopes.

The exposure of the PCGF measurement, as derived from realistic MC simulations, is visualized

in Fig. 1. It is associated with several systematic uncertainties. The most important is the dependence

of the exposure on the mass composition of cosmic rays. We use primary fractions derived from the

Global Spline Fit model [15] as a benchmark assumption for the mass composition. Simulations of

pure beams are then used to assess the composition uncertainty of the exposure. It accounts for up

to 15% and is depicted in the left panel of Fig. 2. We have checked that the spectra calculated for

zenith angles below and above 45
◦ differ by less than ±10% in flux. This is compatible with the

mass composition uncertainty of exposure in the corresponding zenith angle ranges.

Another uncertainty in the exposure is caused by a possible dependence of the FD trigger

threshold on a systematic shift in the assignment of shower energy [12]. By changing the energy

assignment we account for a potentially different number of photons emitted from the shower

resulting in a different number of detected photo–electrons needed to trigger the FD telescope.

This uncertainty is reduced by fiducial volume (FV) cuts that act on the shower distance to the FD

telescope and the viewing angle of the shower maximum. The effect of these cuts on the exposure

5
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Figure 4: Combined energy spectrum multiplied by �3 together with the fit function (dashed line).

The measurements are combined together into a single estimate of the spectrum through

a forward–folding approach. First, we evaluate uncertainties uncorrelated between methods to

separate them from the common uncertainty in the energy scale, the dominant uncertainty of the

combined spectrum. Uncorrelated uncertainties are crucial for the combination because they serve

as constraints on adjustable shifts in exposure, XE, together with shifts in the energy calibration

parameters of individual SD measurements, X� and X�. Along with systematic uncertainties, we

also utilize migration matrices of the individual measurement methods. These matrices describe

the bin–to–bin migration of events between energy bins of true and reconstructed energy, thus

taking into account energy reconstruction resolutions and biases. Using the migration matrices and

measured energy distributions we apply the forward–folding procedure assuming a model for the

energy spectrum that describes the data over the full energy range. This model is a function of a set

of spectral parameters. Their values together with the values of XE, X� and X� that best describe

the numbers of detected events in all data sets are found by maximizing a combined likelihood. The

likelihood is the product of the Poissonian terms, accounting for the difference between expected

and measured rates per energy bin, and the Gaussian constraints on exposure and energy. The

method is a generalization of the approach described in [6].

The combined spectrum and the fit function are shown in Fig. 4. The contributing spectra

are found to be in agreement within their uncorrelated systematic uncertainties. At the end of the

maximization, the normalization of Cherenkov and inclined spectra are shifted up by about 7% and

5%, respectively. The 750 m array spectrum normalization is shifted down by 2% while the shifts

for the other two spectra are negligible.

The model for the energy spectrum used in the forward–folding fit is a sequence of six power–

laws with spectral indexes W0, . . . , W5 and five break energies �01, . . . , �45,

� (�) = �0

(

�

1016 eV

)−W0 4
∏

8=0

[

1 +

(

�

�8 9

)
1

l8 9

] (W8−W 9)l8 9

, 9 = 8 + 1, (1)
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where �0 is a normalization parameter and l8 9 determine the width of the transitions between the

power laws.

The best-fit parameters, with statistical and systematic uncertainties, are presented in Tab. 1.

Data show with high significance the inflection points commonly called the 2
nd knee, the ankle

and the abrupt suppression at the highest energies. Just above 10
19 eV, the spectrum manifests an

instep steepening point whose first observation was reported only recently [5, 16] and is now also

confirmed by the Telescope Array [17]. Finally, for the first time, we report the flattening called the

low energy ankle at 28 PeV whose origin, together with that of the 2
nd knee, is probably connected

to changes in the mass composition of cosmic rays originating in our Galaxy [15, 18].

Table 1: Parameters of the best fit of Eq. (1) to the combined spectrum. The first uncertainty is statistical
and the second one systematic. The fit has been performed with a set of transition width parameters that well
describe the data: l01 = l12 = 0.25 and l23 = l34 = l45 = 0.05 [5].

�0 = (8.34 ± 0.04 ± 3.40) × 10
−11 km−2sr−1yr−1eV−1

W0 = 3.09 ± 0.01 ± 0.10

low energy ankle �01 = (2.8 ± 0.3 ± 0.4) × 10
16 eV W1 = 2.85 ± 0.01 ± 0.05

2
nd knee �12 = (1.58 ± 0.05 ± 0.2) × 10

17 eV W2 = 3.283 ± 0.002 ± 0.10

ankle �23 = (5.0 ± 0.1 ± 0.8) × 10
18 eV W3 = 2.54 ± 0.03 ± 0.05

instep �34 = (1.4 ± 0.1 ± 0.2) × 10
19 eV W4 = 3.03 ± 0.05 ± 0.10

suppression �45 = (4.7 ± 0.3 ± 0.6) × 10
19 eV W5 = 5.3 ± 0.3 ± 0.1
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