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The Inventory Access Point (IAP) is the single-item lot-sizing problem where a single customer faces 
demands in a discrete planning horizon, and the goal is to find a replenishment policy that minimizes the 
total inventory and ordering costs. While the uncapacitated version is polynomial, only a 3-approximation 
is known for the capacitated case. We improve this factor to 2.619 and, as a byproduct, we also improve 
the best factor for SIRPFL, which is a variant with multiple depots and customers.

 2021 Elsevier B.V. All rights reserved.

1. Introduction

Inventory and routing problems are observed in many sectors of 
the industry, as inventory management and delivery planning nor-
mally contribute to a large share of a company’s operating costs. 
Since both types of decision are highly correlated, unified models 
are used to minimize all costs at once [12]. The Inventory Routing 
Problems (IRPs) form a class of problems that integrate inventory 
and routing variables [2]. In such a model, given a set of depots 
and a fleet of vehicles, the goal is to find a best delivery policy to 
serve a set of customers. Each customer faces demands for items 
over a discrete planning horizon and has associated storage costs.

Even when considering decisions of inventory or routing indi-
vidually, several studied problems are NP-hard, such as Lot-Sizing 
Problem [13], the Joint Replenishment Problem [7], the Facility 
Location Problem [10], the Vehicle Routing Problem [6], among 
others. Thus, many works on unified problems have considered 
heuristics or approximation algorithms. For general versions of IRP, 
when the routing cost is a function of the set the participating cus-
tomers, there are sub-logarithm approximation algorithms [3,11], 
and it is open whether such versions admit constant-factor approx-
imations. Recent studies have focused on designing constant-factor 
approximation for special cases of IRP [4,5,8,9].
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One of these simplifications is the Star Inventory Routing Prob-
lem with Facility Location (SIRPFL), introduced by Jiao and Ravi [9]. 
This problem allows for multiple depots, but assumes that trips 
are direct connections from the depot to the associated customers. 
The special case with only a single depot and a single customer is 
known as the Inventory Access Point (IAP) and is of particular im-
portance, as an algorithm for IAP can be used as a sub-routine for 
SIRPFL [4].

1.1. Problem definitions

In SIRPFL, we are given a metric space V with distance function 
w and a number T of periods indexed from 1 to T . There is a 
subset F ⊆ V representing depots (a.k.a. facilities) and a subset 
N ⊆ V representing customers. For each customer i and period t , 
there is a demand for dit ≥ 0 items that must be shipped from an 
open depot j and delivered at i in a period s ≤ t . There are three 
costs involved: (i) the cost to open a depot j is f j ≥ 0, (ii) the cost 
to ship items from an open depot j to a customer i is w( j, i) ≥
0, and (iii) the cost to hold a unit of demand from period s to 
period t in the inventory of customer i is hist ≥ 0. The goal is to 
open a subset of depot as well as determining which customers 
are served by each open depot in each period, while minimizing 
the total opening, shipment and holding costs.

We assume that holding costs are monotonic, that is, for each 
customer i and any three periods r ≤ s ≤ t , we have hirt ≥ hist . This 
implies that zero-inventory policies are optimal for the uncapaci-
tated case, i.e., a trip for a customer is only placed when there are 
no items in its inventory [1]. In the Uncapacitated SIRPFL, we as-
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Table 1

Improved approximation ratios for IAP and SIRPFL.

Problem Previous work This paper

Capacitated Splittable IAP 3 [9] 2.619
Capacitated Unsplittable IAP 6 [9] 4.562
Capacitated Splittable SIRPFL 3.236 [4] 2.905
Capacitated Unsplittable SIRPFL 6.029 [4] 4.649

sume that a trip can include any number of items, while in the 
Capacitated SIRPFL, each trip must include at most U items. The ca-
pacitated variant has two forms: in the Capacitated Splittable SIRPFL, 
the dit items demanded at customer i in period t can be split into 
multiple trips, whereas in the Capacitated Unsplittable SIRPFL, all dit
items must be delivered by a single trip.

IAP is the special case of SIRPFL with a single customer and 
a single depot. Thus, we only need to decide in what periods we 
place trips, and how many items we drop off in these periods. For 
IAP, we can assume without loss of generality that all demands (for 
all periods) are strictly positive. As in the case of SIRPFL, there are 
three variants of IAP: Uncapacitated IAP, Capacitated Splittable IAP, 
and Capacitated Unsplittable IAP.

1.2. Related works

The uncapacitated version of IAP reduces to the classical single-
item lot-sizing problem, that can be solved by a dynamic program-
ming algorithm in polynomial time [13]. Jiao and Ravi [9] showed 
that the capacitated unsplittable version is NP-hard, and it is cur-
rently open whether the splittable case is also NP-hard. They gave 
a 3-approximation for Capacitated Splittable IAP, which implies a 
6-approximation for Capacitated Unsplittable IAP, which has cur-
rently the best known factor. Later, they used the algorithms for 
IAP to give LP-rounding approximation algorithms the Uncapaci-
tated, Capacitated Splittable and Capacitated Unsplittable versions 
of SIRPFL, that achieve approximation factors of 12, 24 and 48, re-
spectively.

Subsequently, Byrka and Lewandowski [4], also using algo-
rithms for IAP as sub-routines, reduce SIRPFL to a concave cost 
variant of Uncapacitated Facility Location (UFL), leading to a 1.488-
approximation for Uncapacitated SIRPFL, a 3.236-approximation for 
Capacitated Splittable SIRPFL, and a 6.029-approximation for Ca-
pacitated Unsplittable SIRPFL.

1.3. Our results

In this work, we improve the approximation factor for Ca-
pacitated Splittable IAP from 3 to 2.619. As a consequence, we 
also improve the approximation factor for Capacitated Unsplit-
table IAP, Capacitated Splittable SIRPFL, and Capacitated Unsplit-
table SIRPFL. The key idea for the improvement is modifying the 
3-approximation by Jiao and Ravi, leading to a tighter analysis of 
the approximation factor. A summary of our results is presented in 
Table 1.

The rest of the text is organized as follows. First, in Section 2, 
we review the 3-approximation by Jiao and Ravi for Capacitated 
Splittable IAP. Then, in Section 3, we present our improvement of 
the algorithm for Capacitated Unsplittable IAP and discuss the im-
plications of these changes for Capacitated Unsplittable IAP and the 
capacitated versions of SIRPFL.

2. The 3-approximation by Jiao and Ravi

Let W be the distance between the unique depot and the 
unique customer, dt be the customer demand in period t , hst be 
the cost to hold one item at the costumer from period s to t , 

and Hst = hstdt . The Capacitated Splittable IAP can be formulated 
as the following mixed integer linear program, where variable xst
represents the fraction of demand dt that is delivered by a trip in 
period s, and ys indicates the number of trips on period s.

min
T

∑

s=1

W ys +
T

∑

t=1

t
∑

s=1

Hstxst

s.t.
t

∑

s=1

xst ≥ 1, t ≤ T , (1)

ys ≥
T

∑

t=s

xstdt
U

, s ≤ T , (2)

ys ≥ xst, t ≤ T , s ≤ t, (3)

xst ≥ 0, t ≤ T , s ≤ t, (4)

ys ∈ Z
+, s ≤ T . (5)

Constraints (1) ensure that all demands must be satisfied be-
fore its expiration period. Constraints (2) provide a lower bound 
on the number of trips that can be placed considering the vehi-
cle’s capacity. Constraints (3) are valid inequalities for the model 
since it imposes the condition that if the customer is not visited 
once in the period s, then no demand can be satisfied in period s.

Let (x, y) be an optimal solution of the linear relaxation of the 
formulation, and, for each t ≤ T , define st as the maximum period 
such that 

∑t
s=st xst ≥ 1

2 . The LP-rounding procedure proposed by 
Jiao and Ravi is given in Algorithm 1.

Algorithm 1 Visit rule for Capacitated Splittable IAP.
1: Initialize A ← ∅, S ← ∅
2: while there is any unsatisfied demand do

3: Denote by t the unsatisfied demand period with the latest st
4: A ← A ∪ {t}
5: S ← S ∪ {st }
6: Satisfy t by dropping off dt items on period st
7: for unsatisfied demand period t̂ ≥ st do

8: satisfy t̂ by dropping off dt̂ items on period st
9: end for

10: end while

11: return the visit set S

Note that each demand t ∈ A is satisfied in st (these demands 
are called anchors) and all demands t̂ that have been satisfied in st
have st̂ ≤ st , since otherwise t̂ would have been processed before 
t . Also, note that all intervals of the form [st , t] for an anchor t ∈ A
are disjoint, by the construction of the algorithm.

Jiao and Ravi [9] showed that the solution produced by the al-
gorithm has holding cost at most 2 times the holding cost in the 
objective function of the linear relaxation, and the routing cost 
at most 3 times the routing cost in the objective function, thus 
implying that their algorithm is a 3-approximation. To derive an 
improved approximation, we would like to balance the factors that 
multiply holding and routing costs. Intuitively, one might want to 
decrease the routing cost, while possibly increasing the holding 
cost.

3. An improved 2.619-approximation

In the improved approximation, we use the same LP-rounding 
procedure given in Algorithm 1, but define st as the maximum pe-
riod such that 

∑t
s=st xst ≥ α for some parameter 0 < α < 1. Thus, 

the original algorithm corresponds to the choice of α = 1/2.
In the following, we analyze the modified algorithm. Let (x, y)

be an optimal solution of the relaxation. First, we bound the hold-
ing cost.
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Lemma 1. The holding cost of the solution is at most 1
1−α

T
∑

t=1

t
∑

s=1
Hstxst .

Proof. Consider the demand of some period t . We first analyze the 
case that t ∈ A. It follows that t is served on period st , incurring a 
holding cost of Hst t . Since 

∑t
s=1 xst = 1, we have 

∑st
s=1 xst ≥ 1 −α, 

as otherwise st would not be maximal. Since Hst is monotonic, this 
implies

Hstt(1 − α) ≤ Hstt

st
∑

s=1

xst ≤
st

∑

s=1

Hstxst ≤
t

∑

s=1

Hstxst . (6)

Now, we assume that t /∈ A. Let s′ be the last period in S such 
that s′ ≤ t . Then, the holding cost of t is Hs′t . Since t was not 
chosen to be an anchor, we know that st ≤ s′ . Again we have 
∑st

s=1 xst ≥ 1 − α, then 
∑s′

s=1 xst ≥ 1 − α. Thus, as before, we have

Hs′t(1− α) ≤ Hs′t

s′
∑

s=1

xst ≤
s′

∑

s=1

Hstxst ≤
t

∑

s=1

Hstxst . (7)

By adding up (6) or (7) for every period t , the lemma fol-
lows. �

The routing cost is bounded by the following lemma.

Lemma 2. The routing cost of the solution is at most (1 + 1
α ) 

∑T
s=1 W ys .

Proof. Let Ds be the set of periods satisfied in the period s by 
the Algorithm 1. The number of trips in a period s ∈ S can be 
computed as

n(s) =
⌈

∑

t∈Ds

dt
U

⌉

≤
∑

t∈Ds

dt
U

+ 1. (8)

Thus, the total number of trips in the solution is

n(S) =
∑

s∈S

n(s) ≤
∑

s∈S

(
∑

t∈Ds

dt
U

+ 1) =
∑

s∈S

∑

t∈Ds

dt
U

+ |S|

=
T

∑

t=1

dt
U

+ |S|. (9)

From constraints (1) and (2), we can bound the first term in the 
right side of (9) as

T
∑

s=1

ys ≥
T

∑

s=1

T
∑

t=s

dt
U

xst =
T

∑

t=1

t
∑

s=1

dt
U

xst =
T

∑

t=1

dt
U

. (10)

For the second term in the right side of (9), we use |S| = |A|. 
By construction, the intervals [st, t] are disjoint for t ∈ A and 
∑t

s=st xst ≥ α, thus

1

α

T
∑

s=1

ys ≥ 1

α

∑

t∈A

t
∑

s=st

ys ≥ 1

α

∑

t∈A

t
∑

s=st

xst ≥ 1

α

∑

t∈A

α = |A| = |S|,

(11)

where the second inequality follows from constraint (3).
Combining (10) and (11), we get n(S) ≤ (1 + 1

α ) 
∑T

s=1 ys . Since 
each trip incurs cost W , the lemma follows. �

Now, consider a (λh, λr)-approximation for the Capacitated 
Splittable IAP being a bi-factor approximation algorithm that pro-
vides a solution with a cost limited to λh times the optimal hold-
ing cost plus λr times the optimal routing cost. According to Lem-
mas 1 and 2, the following is immediate.

Lemma 3. Algorithm 1 is a ( 1
1−α , 1 + 1

α )-approximation algorithm for 
Capacitated Splittable IAP.

To optimize the approximation factor, we equate the factors of 

holding and routing costs, by fixing α =
√
5−1
2 ≈ 0.618. By substi-

tuting α in Lemma 3, we obtain the following result.

Theorem 1. There is a 2.619-approximation algorithm for Capacitated 
Splittable IAP.

Consequences for related problems Jiao and Ravi [9] showed that it 
is possible to convert any Capacitated Splittable IAP feasible solu-
tion into a Capacitated Unsplittable IAP feasible solution that has 
the same holding cost and that makes at most twice as many vis-
its as the splittable solution. Combined with Lemma 3, this implies 
that there is a ( 1

1−α , 2 + 2
α )-approximation algorithm for Capaci-

tated Unsplittable IAP. Optimizing the approximation factors again, 

by fixing α =
√
17−1
4 ≈ 0.781, we obtain a 4.562-approximation 

for Capacitated Unsplittable IAP.
Byrka and Lewandowski [4] considered a variant of Uncapac-

itated Facility Location called the Per-Client Non-decreasing Con-
cave Connection Cost Facility Location (NCC-FL). They reduced each 
version of SIRPFL to NCC-FL, by solving instances of the corre-
sponding versions of IAP as a sub-routine to compute the con-
nection costs between each customer and depot. They showed 
that a ρ-approximation for IAP implies a max{λ f , ρ(1 + 2e−λ f )}-
approximation for SIRPFL, where λ f ≥ 1 is a parameter of the algo-
rithm for NCC-FL. By substituting ρ and choosing λ f appropriately, 
we improve the approximation factors of Capacitated Splittable 
SIRPFL and Capacitated Unsplittable SIRPFL to 2.905 and 4.649, re-
spectively.
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