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Resumo
Um feixe sem torção E em P3 é chamado de quasitrivial se E__ “ O‘r

P3 e dimpE__{Eq “ 0.
Enquanto esses feixes são sempre µ-semiestáveis, eles nem sempre são semiestáveis. Nós
estudamos o espaço de módulos de Gieseker–Maruyama N pr, nq de feixes semiestáveis
de posto r em P3 com h0

pE__{Eq “ n via o esquema Quot de pontos QuotpO‘r
P3 , nq. Nós

mostramos que N pr, nq é vazio quando r ą n, enquanto N pn, nq não têm pontos estáveis
e é isomorfo ao produto simétrico Symn

pP3
q. Nosso resultado principal é a construção de

uma componente irredutível de N pr, nq de dimensão 2n` rn´ r2
` 1 quando r ă n. Além

disso, esta é a única componente quando n ď 10.

Palavras chaves: espaços de módulos, esquema Quot, estabilidade, quasitrival.



Abstract
A torsion free sheaf E on Pd is called quasitrivial if E__ “ O‘r

P3 and dimpE__{Eq “ 0.
While such sheaves are always µ-semistable, they may not be semistable. We study the
Gieseker–Maruyama moduli space N pr, nq of rank r semistable quasitrivial sheaves on
P3 with h0

pE__{Eq “ n via the Quot scheme of points QuotpO‘r
P3 , nq. We show that

N pr, nq is empty when r ą n, while N pn, nq has no stable points and is isomorphic to
the symmetric product Symn

pP3
q. Our main result is the construction of an irreducible

component of N pr, nq of dimension 2n` rn´ r2
` 1 when r ă n. Furthermore, this is the

only irreducible component when n ď 10.

Keywords: moduli spaces, quot scheme, stability, quasitrivial.



Abstrait
Une faisceau E sans torsion sur Pd est dite quasitriviale si E__ “ O‘r

P3 et dimpE__{Eq “ 0.
Bien que de telles faisceaux soient toujours µ-semistables, elles peuvent ne pas être semi-
stables. Nous étudions l’espace des modules de Gieseker–Maruyama N pr, nq de rang r
des faisceaux quasitrivaux semi-stables sur P3 avec h0

pE__{Eq “ n via le schéma de
Quot des points QuotpO‘r

P3 , nq. Nous montrons que N pr, nq est vide lorsque r ą n, tandis
que N pn, nq n’a pas de points stables et est isomorphe au produit symétrique Symn

pP3
q.

Notre résultat principal est la construction d’une composante irréductible de N pr, nq de
dimension 2n` rn´ r2

` 1 lorsque r ă n. De plus, c’est la seule composante irréductible
lorsque n ď 10.

Mots clés: espaces de modules, schéma Quot, stabilité, quasitrivalité.
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Introduction

Let Mpr, c1, c3, c3q denote the Gieseker–Maruyama moduli space of semistable
rank r sheaves on P3 with the first, second and third Chern classes equal to c1, c2 and c3,
respectively. Maruyama proved in [18] that the space Mpr, c1, c3, c3q is a projective scheme.
However, the geometry of such a scheme remains largely unknown, despite the efforts of
many authors in the past four decades, and questions about connectedness, irreducibility,
the number of irreducible components, and so on, remain open.

When r “ 1 and c1 “ 0 (which can always be achieved after twisting by an
appropriate line bundle), one gets that Mp1, 0, c2, c3q is isomorphic to the Hilbert scheme
Hilbd,gpP3

q of 1-dimensional schemes of degree d “ ´c2 and genus g “ c3´ 2c2 [15, Lemma
B.5.6], which is known to always be connected [7]. Not much is known in general when
r ě 2, though:

1. Mp2, c1, c2, c3q is irreducible for c3 “ c2
2 ´ c2 ` 2 when c1 “ 0, or c3 “ c2

2 when
c1 “ ´1, see [24, Theorem 1.1] and the references therein;

2. Mp2, 0, 2, c3q has 2 irreducible components when c3 “ 2 and it has 3 irreducible
components when c3 “ 0 [13, Section 6].

3. Mp2,´1, 2, c3q has 2 irreducible components when c3 “ 2 and it has 4 irreducible
components when c3 “ 0 [1, Main Theorem 3].

Moreover, the moduli spaces in items (2) and (3) are connected. For higher values of c2,
one can check that the number of irreducible components of Mp2, c1, c2, 0q grows with c2,
see [5, Proposition 3.6]; it is not known whether Mp2, c1, c2, c3q is always connected.

The goal of this work is to explore a somewhat exotic case, namely

Mpr, 0, 0,´2nq “: N pr, nq,

whose points correspond to quasitrivial rank r sheaves, that is, semistable rank r sheaves
E on P3 such that E__ “ O‘r

P3 and dimpE__{Eq “ 0; this nomenclature is borrowed from
Artamkin [2]. The motivation comes from its close relationship, described in the body of
the paper, between N pr, nq and the Hilbert and Quot schemes of points in P3. Moreover,
even though the main focus of this paper is the moduli space of semistable quasitrivial
sheaves, we also provide some results regarding µ-semistable quasitrivial sheaves.

First, we study µ-semistable sheaves E on Pd with rkpEq ě 1 and c1pEq “

c2pEq “ 0, and show that they are always extensions of ideal sheaves of subschemes of Pd

of codimension at least 3, see Theorem 2.8 below. In addition, we prove that the moduli



Introduction 13

space of such sheaves is a GIT quotient of a Quot scheme QuotpO‘r
Pd , uq, where u is a

polynomial of degree less than or equal to d´ 3, see Theorem 2.12.

We then focus on the case d “ 3, for which we can get more concrete and
precise results. Here is the main result of this work.

Main Theorem.

1. N pr, nq is empty whenever r ą n or n ă 0.

2. N pn, nq is isomorphic to Symn
pP3
q.

3. If r ă n, then N pr, nq has an irreducible component of dimension 2n` rn´ r2
` 1.

Moreover, if n ď 10, N pr, nq is irreducible.

The bound on n comes from the fact that the variety Cpnq of triples of nˆ n
commuting matrices is known to be irreducible precisely for n ď 10; in fact, our conclusion
is that N pr, nq is irreducible whenever Cpnq is.

The thesis is organized as follows. We assume that the reader is familiar with
Hartshorne’s book [8]. The first chapter is devoted to some preliminaries that are not
covered in Hartshorne’s book and that we are going to use several times in the course of
the work. The first section treats torsion free and reflexive sheaves, as well as their stability.
In the second section, we briefly introduce the general theory to spectral sequences, with
more focus on the local-to-global spectral sequence. In Section 3 we recall the theory of
moduli spaces in general, and specialize this theory to the Quot scheme and the moduli
space of semistable sheaves. The last section of the first chapter is dedicated to the study
of Families of extensions, where we do a walk-through to Lange’s paper [16], recalling the
main results that we are going to use.

In Chapter 2, we start by studying reflexive sheaves on Pd with vanishing Chern
classes in Section 2.1; we prove a key technical result about the triviality of these sheaves,
which is subsequently used in the following sections. In Section 2.2 we begin exploring
the relation between semistable sheaves and 3-codimensional quotients of the trivial sheaf
on Pd, and extensions of a sheaf of ideals. In Section 2.3 we give a criterion that tells
when a torsion free sheaf coming arising as the kernel of an element of QuotpO‘r

Pd , uq is
(semi)stable, and explain the relation between sheaf (semi)stability and the GIT-stability
with respect to the natural action of GLr on QuotpO‘r

Pd , uq.

We then start Chapter 3 by restricting the results obtained so far to P3. Here
is where we establish items (1) and (2) of the Main Theorem. Here is where we construct
an irreducible component for N pr, nq. We begin constructing an irreducible component
for N p2, nq, which will serve as an induction step for the construction of an irreducible
component for N pr, nq done in the final section of this chapter.
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We work over the complex numbers C. Every cohomology is taken over P3 as
well as the Ext sheaves and Ext groups unless otherwise stated, that is, H i

pF q “ H i
pP3, F q,

etc. For a torsion free sheaf E, (semi)stable always means Gieseker (semi)stability, while
µ-(semi)stability refers to stability in the sense of Mumford–Takemoto. As usual, we denote
by the lower capital letters the dimension of the respective cohomology or Ext group:
hipF q “ dimH i

pF q and extipF,Gq “ dim ExtipF,Gq.
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Introdução

Seja Mpr, c1, c3, c3q o espaço de módulos de Gieseker–Maruyama de feixes
semiestáveis de posto r em P3 com primeira, segunda e terceira classes de Chern iguais à
c1, c2 e c3, respectivamente. Maruyama provou em [18] que o espaço Mpr, c1, c3, c3q é um
esquema projetivo. No entanto, a geometria desse esquema continua muito desconhecida,
apesar do esforço de diversos autores nas últimas quatro décadas, e questões sobre
conexidade, irredutibilidade, número de componentes irredutíveis, e assim por diante,
continuam abertas.

Quando r “ 1 e c1 “ 0 (o que é sempre possível depois de torcer por um
fibrado de linha apropriado), temos que Mp1, 0, c2, c3q é isomorfo ao esquema de Hilbert
Hilbd,gpP3

q de esquemas de dimensão 1, grau d “ ´c2 e genus g “ c3 ´ 2c2 [15, Lemma
B.5.6], o que é conhecido por ser sempre conexo [7]. Em geral, nada é muito conhecido
para r ě 2, temos:

1. Mp2, c1, c2, c3q é irredutível para c3 “ c2
2 ´ c2 ` 2 quando c1 “ 0, ou c3 “ c2

2 quando
c1 “ ´1, veja [24, Theorem 1.1] e as referências contidas no mesmo;

2. Mp2, 0, 2, c3q tem 2 componentes irredutíveis quando c3 “ 2 e tem 3 componentes
irredutíveis quando c3 “ 0 [13, Section 6].

3. Mp2,´1, 2, c3q tem 2 componentes irredutíveis quando c3 “ 2 e tem 4 componentes
irredutíveis quando c3 “ 0 [1, Main Theorem 3].

Além disso, os espaços de módulos nos itens (2) e (3) são conexos. Para valores maiores de
c2, é possível mostrar que o número de componentes irredutíveis de Mp2, c1, c2, 0q cresce
com c2, veja [5, Proposition 3.6]; não é conhecido se Mp2, c1, c2, c3q é sempre conexo.

O Objetivo deste trabalho é explorar um caso exótico, isto é, Mpr, 0, 0,´2nq “:
N pr, nq, cujo os pontos correspondem à feixes quasitriviais de posto r e dimpE__{Eq “ 0;
essa nomenclatura foi emprestada de Artamkin [2]. A motivação vem por sua relação
próxima, descrita no corpo do texto, entre N pr, nq e o esquema de Hilbert e o esquema
Quot de pontos em P3. Além disso, apesar de que o foco principal é o espaço de módulos
de feixes quasitriviais semiestáveis, nós também mostramos diversos resultados sobre feixes
quasitriviais µ-semiestáveis.

Primeiro, estudamos feixes µ-semiestáveis E em Pd com rkpEq ě 1 e c1pEq “

c2pEq “ 0, e mostramos que eles sempre são extensão de ideais of subesquemas de Pd de
codimensão pelo menos 3, veja o Teorema 2.8 abaixo. Adicionalmente, provamos que o
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espaço de módulos de tais feixes é o quociente GIT do esquema Quot QuotpO‘r
Pd , uq, em

que u é um polinômio de grau menor ou igual à d´ 3, veja o Teorema 2.12.

Depois focamos no caso em que d “ 3, em que focamos em resultados mais
concretos e precisos. O principal resultado deste trabalho é o seguinte.

Teorema Principal.

1. N pr, nq é não vazio sempre que r ą n ou n ă 0.

2. N pn, nq é isomorfo à Symn
pP3
q.

3. Se r ă n, então N pr, nq tem uma componente irredutível de dimensão 2n`rn´r2
`1.

Além disso, se n ď 10, N pr, nq é irredutível.

A cota superior de n vêm do fato de que a variedade Cpnq de triplas de matrizes
nˆ n comutantes é conhecida por ser irredutível precisamente para n ď 10; in fact, our
conclusion is that N pr, nq é irredutível sempre que Cpnq o é.

A tese está organizada da seguinte forma. Assumimos que o leitor está fa-
miliarizado com o livro de Hartshorne [8]. O primeiro capítulo é destinado a algumas
preliminares que não são abordadas no livro de Hartshorne e que usaremos várias vezes no
decorrer do trabalho. A primeira seção trata de feixes reflexivos e sem torção, bem como
sua estabilidade. Na segunda seção, apresentamos brevemente a teoria geral das sequências
espectrais, com mais foco na sequência espectral local-global. Na Seção 3, relembramos a
teoria dos espaços de módulos em geral, e especializamos essa teoria para o esquema de
Quot e o espaço de módulos de feixes semistáveis. A última seção do primeiro capítulo é
dedicada ao estudo de Famílias de extensões, onde fazemos um walk-through ao artigo de
Lange [16], relembrando os principais resultados que iremos utilizar.

No Capítulo 2, começamos estudando feixes reflexivos em Pd com o anulamento
da primeira e segunda classes de Chern na Seção 2.1; provamos um resultado técnico
fundamental sobre a trivialidade desses feixes, que é posteriormente usado nas seções a
seguir. Na seção 2.2, começamos a explorar a relação entre feixes semestáveis e quocientes
3-codimensionais do feixe trivial em Pd e extensões de feixes de ideais. Na seção 2.3, damos
um critério que informa quando um feixe livre de torção surge como o núcleo de um
elemento de QuotpO oplusr

Pd , uq é (semi)estável, e explica a relação entre a (semi)estabilidade
do feixe e a estabilidade GIT com respeito à ação natural de GLr em QuotpO‘r

Pd , uq.

Em seguida, iniciamos o Capítulo 3 restringindo os resultados obtidos até agora
a P3. Aqui é onde estabelecemos os itens (1) e (2) do Teorema Principal. O Capítulo 4 é
dedicado à construção de um componente irredutível para N pr, nq. Começando a construir
um componente irredutível para N p2, nq, que servirá como uma etapa de indução para a
construção de um componente irredutível para N pr, nq feito na seção final deste capítulo.
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Nós trabalhamos sobre os números complexos C. Toda cohomologia é tomada
sobre P3 assim como os feixes Ext e grupos Ext, a menos que o contrário seja explicitado, isto
é, H i

pF q “ H i
pP3, F q, etc. Para um feixe sem torção E, (semi)estabilidade sempre significa

a (semi)estabilidade de Gieseker, enquanto µ-(semi)estabilidade se refere a estabilidade no
sentido de Mumford–Takemoto. Como de usual, vamos denotas pelas letras minúsculas
a dimensão do respectivo grupo de cohomologia ou grupo Ext: hipF q “ dimH i

pF q e
extipF,Gq “ dim ExtipF,Gq.
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Introduction

Soit Mpr, c1, c3, c3q l’espace des modules de Gieseker–Maruyama des faisceaux
de rang r semistable sur P3 avec les première, deuxième et troisième classes de Chern égales
à c1, c2 et c3, respectivement. Maruyama a prouvé dans [18] que l’espace Mpr, c1, c3, c3q

est un schéma projectif. Cependant, la géométrie d’un tel schéma reste largement inconnue,
malgré les efforts de nombreux auteurs au cours des quatre dernières décennies, et les
questions sur la connexité, l’irréductibilité, le nombre de composants irréductibles, etc.,
restent ouvertes.

Lorsque r “ 1 et c1 “ 0 (ce qui peut toujours être obtenu après torsion par un
faisceau de lignes approprié), on obtient que Mp1, 0, c2, c3q est isomorphe au schéma de
Hilbert Hilbd,gpP3

q de schémas à 1 dimension de degré d “ ´c2 et de genre g “ c3´2c2 [15,
Lemme B.5.6], qui est connu pour être toujours connecté [7]. On ne sait pas grand-chose
en général quand r ě 2, cependant:

1. Mp2, c1, c2, c3q est irréductible pour c3 “ c2
2 ´ c2 ` 2 lorsque c1 “ 0, ou c3 “ c2

2

lorsque c1 “ ´1, voir [24, Théorème 1.1] et les références qu’il contient;

2. Mp2, 0, 2, c3q a 2 composantes irréductibles lorsque c3 “ 2 et il a 3 composantes
irréductibles lorsque c3 “ 0 [13, Section 6].

3. Mp2,´1, 2, c3q a 2 composantes irréductibles lorsque c3 “ 2 et il a 4 composantes
irréductibles lorsque c3 “ 0 [1, Main Theorem 3].

De plus, les espaces de modules dans les éléments (2) et (3) sont connectés. Pour des
valeurs plus élevées de c2, on peut vérifier que le nombre de composantes irréductibles de
Mp2, c1, c2, 0q croît avec c2, voir [5, Proposition 3.6]; on ne sait pas si Mp2, c1, c2, c3q est
toujours connecté.

Le but de cet article est d’explorer un cas quelque peu exotique, à savoir
Mpr, 0, 0,´2nq “: N pr, nq, dont les points correspondent au faisceaux quasirivial rang r,
soit le semi-stable rang r faisceau E sur P3 tel que E__ “ O‘r

P3 et dimpE__{Eq “ 0; cette
nomenclature est empruntée à Artamkin [2]. La motivation vient de sa relation étroite,
décrite dans le corps de l’article, entre N pr, nq et les schémas de points de Hilbert et
Quot dans P3. De plus, même si l’objectif principal de cet article est l’espace des modules
des faisceaux quasitrivaux semistables, nous fournissons également quelques résultats
concernant les faisceaux quasitrivaux µ-semistables.

Premièrement, nous étudions les faisceaux µ-semistables E sur Pd avec rkpEq ě
1 et c1pEq “ c2pEq “ 0, et montrons que ce sont toujours des extensions de faisceaux



Introduction 19

idéaux de sous-schémas de Pd de codimension au moins 3, voir le théorème 2.8 ci-dessous.
De plus, nous montrons que l’espace des modules de tels faisceaux est un quotient GIT
d’un schéma de Quot QuotpO‘r

Pd , uq, où u est un polynôme de degré inférieur ou égal à
d´ 3, voir le théorème 2.12.

On se concentre alors sur le cas d “ 3, pour lequel on peut obtenir des résultats
plus concrets et précis. Plus précisément, voici le résultat principal de cet article.

Théorème Principall.

1. N pr, nq est vide chaque fois que r ą n ou n ă 0.

2. N pn, nq est isomorphe à Symn
pP3
q.

3. Si r ă n, alors N pr, nq a une composante irréductible de dimension 2n` rn´ r2
` 1.

De plus, si n ď 10, N pr, nq est irréductible.

La borne sur n vient du fait que la variété Cpnq de triplets de nˆ n matrices
de commutation est connue pour être irréductible précisément pour n ď 10 ; en fait, notre
conclusion est que N pr, nq est irréductible chaque fois que Cpnq l’est.

La thèse est organisée comme suit. Nous supposons que le lecteur est familier
avec le livre de Hartshorne [8]. Le premier chapitre est destiné à quelques préliminaires qui
ne sont pas abordés dans le livre de Hartshorne et que nous allons utiliser plusieurs fois au
cours de l’ouvrage. La première section traite des faisceaux sans torsion et réfléchissantes,
ainsi que de leur stabilité. Dans la deuxième section, nous présentons brièvement la théorie
générale des séquences spectrales, en nous concentrant davantage sur la séquence spectrale
du local au global. Dans la section 3, nous rappelons la théorie des espaces de modules
en général, et spécialisons cette théorie au schéma de Quot et à l’espace de modules des
faisceaux semi-stables. La dernière section du premier chapitre est consacrée à l’étude
des Familles d’extensions, où nous faisons un tour d’horizon de l’article de Lange [16],
rappelant les principaux résultats que nous allons utiliser.

Au chapitre 2, nous commençons par étudier les faisceaux réflexifs sur Pd avec
des classes de Chern évanouissantes dans la section 2.1; nous prouvons un résultat technique
clé sur la trivialité de ces faisceaux, qui est ensuite utilisé dans les sections suivantes. Dans
la section 2.2 nous commençons à explorer la relation entre les faisceaux semi-stables et
les quotients codimensionnels à 3 du faisceau trivial sur Pd, et les extensions du faisceau
d’idéaux. Dans la section 2.3 nous donnons un critère qui indique quand une gerbe sans
torsion apparaît comme le noyau d’un élément de QuotpO‘r

Pd , uq est la (semi)stabilité, et
explique la relation entre la (semi)stabilité du faisceau et la stabilité GIT par rapport à
l’action naturelle de GLr sur QuotpO‘r

Pd , uq.
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Nous commençons ensuite le chapitre 3 en restreignant les résultats obtenus
jusqu’à présent à P3. C’est ici que nous établissons les éléments (1) et (2) du théorème
principal. Le chapitre 4 est dédié à la construction d’une composante irréductible pour
N pr, nq. Nous commençons à construire une composante irréductible pour N p2, nq, qui
servira d’étape d’induction pour la construction d’une composante irréductible pour
N pr, nq faite dans la section finale de ce chapitre.

On travaille sur les nombres complexes C. Chaque cohomologuey est repris
P3 ainsi que les faisceaux Ext et les groupes Ext sauf indication contraire, c’est-à-dire
H i
pF q “ H i

pP3, F q, etc. Pour une faisceau sans torsion E, (semi)stable signifie toujours
(semi)stabilité de Gieseker, tandis que µ-(semi)stabilité fait référence à la stabilité au sens
de Mumford–Takemoto. Comme d’habitude, nous désignons par les lettres majuscules
inférieures la dimension de la cohomologie ou du groupe Ext respectif : hipF q “ dimH i

pF q

et extipF,Gq “ dimExtipF,Gq.
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1 Preliminary

We assume the reader is familiar with the basics of algebraic geometry, that is,
Hartshorne’s book from Chapters 1 to 3. In this chapter we cover some the notions not
contained in that, but in which we are going to use in this work. Of course, the reader is
encouraged to read the original references for more details. We begin studying torsion free
and reflexive sheaves and their stability.

1.1 Stability of sheaves
In this section we recall some useful definitions and results concerning torsion

free sheaves and the stability of sheaves, which plays an important role in constructing
the moduli spaces that we are going to deal in this work. The reader can check [12, 21] for
more details.

1.1.1 Torsion free and reflexive sheaves

Let X be a smooth projective variety.

Definition 1.1. A coherent sheaf F over X is torsion free if every stalk Fx is a torsion
free OX,x-module; that is fa “ 0 for f P OX,x, a P Fx implies a “ 0 or f “ 0.

As an example of torsion free sheaves, we have that vector bundles (locally free
sheaves) are torsion free and subsheaves of torsion free sheaves are again torsion free.

Now given a coherent sheaf F we have the canonical morphism from F to its
double dual F__

µ : F Ñ F__,

and one can see that F is torsion free if, and only if, µ is a monomorphism. In fact, when
we say torsion free sheaf, we usually keep in mind the equivalent property above.

Definition 1.2. A coherent sheaf F over X is said to be reflexive if µ : F Ñ F__ is an
isomorphism.

In particular, reflexive sheaves are torsion free.

Proposition 1.3. The dual of any coherent sheaf is reflexive.

Proof. [21, Corollary 1.2]

Lemma 1.4. A reflexive sheaf of rank 1 is a line bundle.
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Proof. [21, II, Lemma 1.1.15].

We end this section with a result about the singularity set of torsion free and
reflexive sheaves.

Definition 1.5. Let F be a coherent sheaf on a scheme X. We define the singularity set
of F by

SpF q “ tx P X | Fx is not free over OX,xu.

Proposition 1.6. The singularity set of a torsion free sheaf is at least 2-codimensional.
The singularity set of a reflexive sheaf is at least 3-codimensional.

Proof. [21, II, Corollary 1.1.8 and Lemma 1.1.10].

1.1.2 µ-stability

Let E be a torsion free coherent sheaf of rank r on Pn. Define the slope of E as

µpEq :“ c1pEq

rkpEq .

Definition 1.7. Let E be a torsion free coherent sheaf on Pn. We say that E is µ-
(semi)stable if for every coherent subsheaf 0 ‰ F Ă E

µpF q ă pďqµpEq.

Theorem 1.8. Let E be a torsion free sheaf over Pn. The following statements are
equivalent:

1. E is (semi)stable.

2. µpF q ă pďqµpEq for all coherent subsheaves F Ă E with 0 ă rkF ă rkE whose
quotient E{F is torsion free.

3. µpQq ą pěqµpEq for all torsion free quotients E � Q with 0 ă rkQ ă rkE.

Proof. [21, II, Theorem 1.2.2].

In view of the above theorem, we will use the equivalent statement that is more
suitable according to each situation.

Lemma 1.9.

1. Line bundles are µ-stable.
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2. The sum E1‘E2 of two µ-semistable sheaves is µ-semistable if, and only if, µpE1q “

µpE2q.

3. E is µ-(semi)stable if, and only if, E_ is.

4. E is µ-(semi)stable if, and only if, Epkq is.

Proof. [21, II, Lemma 1.2.4]

1.1.3 Gieseker stability

Let E be a coherent torsion free sheaf over Pn and let PEptq be its Hilbert
Polynomial. We define the reduced Hilbert polynomial of E as

pEptq :“ PEptq

rkpEq .

Definition 1.10. We say that E is (semi)stable if for every coherent subsheaf F Ă E

with 0 ă rkF ă rkE we have
pF ptq ă pďqpEptq.

We also have a similar theorem as we did with the µ-stability.

Theorem 1.11. Let E be a torsion free sheaf over Pn. The following statements are
equivalent.

1. E is (semi)stable.

2. For every coherent subsheaf F Ă E, 0 ă rkF ă rkE, with torsion free quotient
E{F

pF ptq ă pďqpEptq.

3. For every torsion free quotient E � Q, 0 ă rkQ ă rkE,

pQptq ą pěqpEptq.

Lemma 1.12. µ-stable torsion free coherent sheaves over Pn are also stable. Semistable
sheaves over Pn are also µ-semistable.

Proof. [21, II, Lemma 1.2.12].

Lemma 1.13. Stable sheaves E over Pn are simple, that is, EndpEq – C.

Proof. [21, Theorem 1.2.9].
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1.2 Spectral Sequences
In this section, we recall the basics of spectral sequences and, in the end, we

define the local-to-global spectral sequence, which we use several times in this work. The
reader can check [19] for more about spectral sequences. We begin with an informal
motivation.

Let us say that we want to compute H˚ where H˚ is a graded vector object,
which, for simplicity, we will assume is a graded vector space. Suppose also that H˚ is
filtered, that is, we have

H˚
Ą ¨ ¨ ¨ Ą F nH˚

Ą F n`1H˚
Ą ¨ ¨ ¨ Ą t0u.

For example, let Hn
“ 0 for n ă 0, then

F pH˚
“ ‘něpH

n

gives a filtration for H˚.

Definition 1.14. Given H˚ and F ˚ as above we define the associated graded vector space
as

Ep
0pH

˚
q :“ F pH˚

F p`1H˚
.

In good cases, we can recover H˚ up to isomorphism by taking

H˚
– ‘

8
p“0E

p
0pH

˚
q.

Note that in our previous example one has that

Ep
0pH

˚
q “

F pH˚

F p`1H˚
“

‘něpH
n

‘něp`1Hn
“ Hp,

which implies that H˚
– ‘

8
p“0E

p
0pH

˚
q.

Thus we can consider as a first approximation to H˚ the associated graded
vector space to a filtration.

Remark 1.15. We can make Ep
0pH

˚
q to a bigraded object: define F pHr :“ F pH˚

XHr

and take
Ep,q

0 “
F pHp`q

F p`1HHp`q .

We say that the index p is the filtration degree and the index q is the complementary
degree.

Note that Ep
pH˚

q “ ‘
8
q“0E

p,q
0 and Hr

“ ‘p`q“rE
p,q
0 .

Now we can define the first notion of a spectral sequence.
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Definition 1.16. A (first quadrant, cohomological) spectral sequence, is a sequence of
differential bigraded vector spaces, that is, for r “ 1, 2, . . . and p, q ą 0, we have a vector
space Ep,q

r . Furthermore, each bigraded vector space E˚,˚r is equipped with a linear mapping

dr : E˚,˚r Ñ E˚,˚r ,

which is a differential of bidegree pr, 1´ rq, meaning that dr ˝ dr “ 0 and

dr : Ep,q
r Ñ Ep`r,q`1´r

r .

Finally, for all r ě 1, E˚,˚r`1 – HpE˚,˚r , drq, that is,

Ep,q
r`1 “

kerpEp,q
r Ñ Ep`r,q`1´r

r q

ImpEp´r,q`r´1
r Ñ Ep,q

r q
.

We usually call the objects Er as the r-th page of the sequence.

Remark 1.17. Let Ep,q
r be a spectral sequence. If r ą maxpp, q ` 1q, then dr “ 0 and, in

this case, Ep,q
r`1 “ Ep,q

r . Which also implies that Ep,q
r “ Ep,q

r`k for k ě 0. We denote this
vector space by Ep,q

8 .

Definition 1.18. Let pE˚,˚r , drq be a spectral sequence. We say that pE˚,˚r , drq converges
to a graded vector space H˚ if H˚ has a filtration F ˚ and

Ep,q
8 “ Ep,q

0 pH
˚
q “

F pHp`q

F p`1Hp`q
.

So our initial objective is approximated if we can find a spectral sequence
converging to H˚.

Definition 1.19. We say that a spectral sequence pE˚,˚r , drq collapse at the N -th page if
dr “ 0 for r ą N .

Remark 1.20. Note that if pE˚,˚r , drq collapse at N , then

E˚,˚N – E˚,˚N`1 – ¨ ¨ ¨ – E˚,˚8 .

Spectral sequences can arise from various forms, for example: filtered differential
modules, exact couples, double complex or Grothendieck’s theorem. We will use the latter
one to construct the local-to-global spectral sequence.

Let A, B and C be abelian categories and let F : A Ñ B and G : B Ñ C

functors. Grothendieck’s theorem relates the derivated functors of F and G with the
derivated functor of G ˝ F .

Theorem 1.21 (Grothendieck). Suppose that F and G are covariant functors, G is left
exact and F takes injectives to G-acyclic objects. Then there is a spectral sequence with

Ep,q
2 – pRpGqpRqF paqq

and converging to R˚pG ˝ F qpaq for a P A.
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Now we can define the local-to-global spectral sequence. For a scheme X and a
coherent sheaf G on X we take G “ H0

pX,´q and F “ Homp´,Gq. So Grothendieck’s
theorem says that we have a spectral sequence with second page

Ep,q
2 “ Hp

pX, ExtqpF ,Gqq

converging to Ext˚pF ,Gq. This is called the local-to-global spectral sequence.

Assume that for a given F and G, the spectral sequence collapses at the second
page. Then, from Remark 1.15, we have

ExtrpF ,Gq “ ‘p`q“rHp
pX, ExtqpF ,Gqq.

To illustrate how to work with this spectral sequence, we will explicit the details
of a formula contained in [13] about torsion free sheaves with 0-dimensional singularities
on P3.

Example 1.22. Let E be a torsion free sheaf with 0-dimensional singularities on P3, that
is, we have the following exact sequence

0 Ñ E Ñ E__ Ñ QE Ñ 0,

where dimQE “ 0. Then

3
ÿ

j“0
p´1qj extjpE,Eq “ χpHompE,Eqq ´ h0Ext1pE,Eq ` h0Ext2pE,Eq.

First thing to note is that Ext1pE,Eq and Ext2pE,Eq are 0-dimensional sheaves,
while Ext3pE,Eq “ 0. Now the second page E2 of the local-to-global spectral sequence for
the pair pE,Eq is given by:

���
���

��: 0
H0Ext3pE,Eq

���
���

��: 0
H1Ext3pE,Eq

���
���

��: 0
H2Ext3pE,Eq

���
���

��: 0
H3Ext3pE,Eq

H0Ext2pE,Eq
���

���
��: 0

H1Ext2pE,Eq
���

���
��: 0

H2Ext2pE,Eq
���

���
��: 0

H3Ext2pE,Eq

H0Ext1pE,Eq
d01

2

++

��
���

���:
0

H1Ext1pE,Eq
��

���
���:

0
H2Ext1pE,Eq

��
���

���:
0

H3Ext1pE,Eq

H0HompE,Eq H1HompE,Eq H2HompE,Eq H3HompE,Eq

The third page E3 will be now given by
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H0Ext2pE,Eq

d02
3

**

ker d01
2

H0HompE,Eq H1HompE,Eq coker d01
2 H3HompE,Eq

Finally, the fourth page E4 will be the following.

ker d02
3

ker d01
2

H0HompE,Eq H1HompE,Eq coker d01
2 coker d02

3

Note now that d4 “ 0, so the spectral sequence collapse on page 4. By Remark
1.15, we can write

• Ext1
pE,Eq “ H1HompE,Eq ‘ ker d01

2 .

• Ext2
pE,Eq “ ker d02

3 ‘ coker d01
2 .

• Ext3
pE,Eq “ coker d02

3 .

Analysing the map d01
2 via the exact sequence

0 // ker d01
2

// H0Ext1pE,Eq
d01

2 //

''

H2HompE,Eq // coker d01
2

// 0

Im d01
2

''

77

0

77

0

we have that

• dim ker d01
2 “ h0Ext1pE,Eq ´ dim Im d01

2 .

• dim coker d01
2 “ h2Ext1pE,Eq ´ dim Im d01

2 .
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Doing the same analysis to the map d02
2 with sequence

0 // ker d02
3

// H0Ext2pE,Eq
d02

3 //

''

H3HompE,Eq // coker d02
3

// 0

Im d02
3

''

77

0

77

0

we have

• dim ker d02
3 “ h0Ext2pE,Eq ´ dim Im d02

3 .

• dim coker d02
3 “ h3HompE,Eq ´ dim Im d02

3 .

Finally, comparing the above equations we get
3
ÿ

j“0
p´1qj extjpE,Eq “ χpHompE,Eqq ´ h0Ext1pE,Eq ` h0Ext2pE,Eq.

1.3 Moduli spaces
We briefly introduce to the general theory of moduli spaces, then introduce

the two moduli spaces that we are concerned with in this work.

1.3.1 General theory

A moduli problem is essentially a classification problem: we want to classify
certain geometric objects up to some notion of equivalence. For example, if we want to
classify vector bundles on a fixed variety up to isomorphism or closed subschemes of a
given scheme. We begin with the notion of a naive moduli problem. Following Hoskins’
lecture notes [11].

Definition 1.23. A naive moduli problem is a collection A of objects (in algebraic
geometry) and an equivalence relation „ on A.

Definition 1.24. Let pA,„q be a naive moduli problem. Then an extended moduli
problem is given by

1. Sets AS of families over S and an equivalence relation „S on AS, for all schemes S,

2. Pullback maps f˚ : AS Ñ T , for every morphism of schemes T Ñ S, satisfying the
following properties:

a) pASpec k,„Spec kq “ pA,„q;
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b) for the identity id : S Ñ S and any family F over S, we have id˚ F “ F ;

c) for a morphism f : T Ñ S and equivalent families F „S G over S, we have
f˚F „T f

˚G;

d) for morphisms f : T Ñ S and g : S Ñ R, and a family F over R, we have an
equivalence pg ˝ fq˚F „T f

˚g˚F .

For a family F over S and a point s : Spec k Ñ S, we write Fs :“ s˚F to
denote the corresponding family over Spec k.

Lemma 1.25. A moduli problem defines a functor M given by

MpSq :“ tfamilies over Su{ „S
Mpf : T Ñ Sq “ f˚ : MpSq Ñ MpT q.

We will often refer to a moduli problem simply by its moduli functor. A good
answer to a moduli problem would be a scheme that represents our given moduli functor,
that is the notion of fine moduli space.

Definition 1.26. Let M : Scho Ñ Set be a moduli functor. A scheme M is a fine moduli
space for M if it represents M.

The above definition says that if M is a fine moduli space for M, then there
is a natural isomorphism η : M Ñ Homp´,Mq. Hence, for every scheme S, we have a
bijection

ηS : MpSq ÐÑ HompS,Mq

In particular, if S “ Spec k, then the k-points of M are in bijection with the
set A{ „. Furthermore, these bijections are compatible with morphisms T Ñ S, that is,
we have a commutative diagram

MpSq
ηS //

Mpfq

��

HompS,Mq
homp´,Mqpfq
��

MpT q ηT

// HompT,Mq

The natural isomorphism η : M Ñ Homp´,Mq determines an element U “ η´1
M pidMq;

that is, U is a family over M (up to equivalence).

Definition 1.27. Let M be a fine moduli space for M. The family U P MpMq corre-
sponding to the identity morphism on M is called the universal family.
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This family is called the universal family, as any family F over a scheme S (up
to equivalence) corresponds to a morphism f : S ÑM and, moreover, as the families f˚U
and F correspond to the same morphism idM ˝f “ f , we have

f˚U „S F ;

that is, any family is equivalent to a family obtained by pulling back the universal family.

Not every moduli functor has a fine moduli space; thus we arrive at a weaker
answer: a coarse moduli space.

Definition 1.28. A coarse moduli space for a moduli functor M is a scheme M and a
natural transformation of functors η : M Ñ hM such that

1. ηSpec k : MpSpec kq Ñ hMpSpec kq is bijective.

2. For a scheme N and natural transformation ν : M Ñ hN , there exists a unique
morphism of schemes f : M Ñ N such that ν “ hf ˝ η, where hf : hM Ñ hN is the
corresponding natural transformation.

1.3.2 Quot scheme

The Quot scheme is a fine moduli space that generalises the Grassmannian in
the sense that it parametrizes quotients of a fixed sheaf. It is an important technical tool
in many branches of algebraic geometry, for example, in the construction of many moduli
spaces as we will see the example of the moduli space of semistable sheaves.

Let Y be a projective scheme and F be a fixed coherent sheaf on X. Then
one can consider the moduli problem of classifying quotients of F , that is, we consider
surjective sheaf morphisms q : F Ñ Q up to the equivalence relation

pq : F Ñ Qq „ pq1 : F Ñ Q1q ô ker q “ ker q1.

Equivalently, pq : F Ñ Qq „ pq1 : F Ñ Q1q if there is a sheaf isomorphism Φ : Q Ñ Q1

such that the following diagram commutes

F q //

q1   

Q

Φ
��

Q1.

Thus we get a naive moduli problem. The next definition gives the extended
moduli problem.

Definition 1.29. Let F be a coherent sheaf over Y . Then for any scheme S, we let
FS :“ π˚Y F denote the pullback of F to Y ˆ S via the projection πY : Y ˆ S Ñ Y . A
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family of quotients of F over a scheme S is a surjective OYˆS-linear morphism of sheaves
over Y ˆ S

qS : FS Ñ Q,

such that Q is flat over S. Two families qS : FS Ñ Q and q1S : FS Ñ Q1 are equivalent if
ker qS “ ker q1S. As flatness is preserved by base change, we can pullback families, then we
let

QuotY pFq : SchÑ Set

denote the associated moduli functor.

Definition 1.30. For a fixed ample line bundle L on Y , we have a decomposition

QuotY pFq “ YPPQrtsQuotP,LY pFq

into Hilbert polynomials P taken with respect to L.

Next Theorem shows the existence of a fine moduli space for the Quot functor.

Theorem 1.31. Let Y be a projective scheme and L be an ample invertible sheaf on Y .
Then for any coherent sheaf F over Y and any polynomial P , the functor QuotP,LY pFq is
represented by a projective scheme QuotP,LY pF q.

When F “ OY then the Quot scheme, turns to be the Hilbert scheme,
parametrizing closed subschemes of Y .

1.3.3 Semistable sheaves

A moduli space of semistable sheaves is a scheme that is in some sense in
natural bijection to equivalence classes of semistable sheaves on some fixed polarized
projective scheme pX,Hq. As we will see, the expression natural bijection will become the
notion of coarse moduli space and the equivalence will turn out to the S-equivalence.

This moduli space can be constructed as a quotient of a certain Quot scheme
by a natural group action. Although we will not do this construction with full details here,
this section contains the basics definitions and results that we are going to use in the
course of the next chapters. We begin recalling some definitions important to defining the
moduli functor.

Definition 1.32. Let E be a semistable sheaf of dimension d. A Jordan-Holder filtration
of E is a filtration

0 “ E0 Ă E0 Ă ¨ ¨ ¨ Ă El “ E,

such that the factors gripEq “ Ei{Ei´1 are stable with reduced Hilbert polynomial ppEq.
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Proposition 1.33. Jordan-Holder filtration always exist. The graded object grpEq :“
‘igripEq does not depend on the choice of the Jordan-Holder filtration.

Proof. [12, Proposition 1.5.2].

Definition 1.34. Two semistable sheaves E1 and E2 with the same Hilbert polynomial
are called S-equivalent if grpE1q – grpE2q.

Definition 1.35. A semistable sheaf E is called polystable if E is the direct sum of stable
sheaves.

Now we can define the moduli functor.

Let pX,OXp1qq be a polarized projective scheme over an algebraically closed
field k. For a fixed polynomial P P Qrzs define a functor

M1 : pSch{kqo Ñ Sets

as follows. If S is an object in Sch{k, let M1
pSq be the set of isomorphism classes of

S-flat families of semistable sheaves on X with Hilbert polynomial P . And if f : S 1 Ñ S

is a morphism in Sch{k, let M1
pfq be the map obtained by pulling-back sheaves via

fX “ f ˆ idX :
M1
pfq : M1

pSq Ñ M1
pS 1q

rF s Ñ rf˚XF s.

If F P M1
pSq is an S-flat family of semistable sheaves, and if L is an arbitrary

line bundle on S, then F b p˚L is also an S-flat family, and the fibers Fs and pF b p˚Lqs “
Fs bkpsq Lpsq are isomorphic for each point s P S. It is therefore reasonable to consider the
quotient functor M “ M1

{ „, where „ is the equivalence relation:

F „ F 1 ô F – F 1 b p˚L

for F, F 1 P M1
pSq and for some L P PicpSq. Note that this definition depends on the

polarization and we will write MOXp1qpP q if we want to emphasize this fact.

We will see that there is always a projective coarse moduli space for this
moduli functor (see Theorem 1.37). In general, however, there is no hope that M can be
represented, i.e. to exist a fine moduli space for M as the next lemma shows.

Lemma 1.36. Suppose M is a coarse moduli space for M. Then S-equivalent sheaves
correspond to identical closed points in M . In particular, if there is a properly semistable
sheaf F , (i.e. semistable but not stable), then there is no fine moduli space for M.

Proof. [12, Lemma 4.1.2].
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Next Theorem shows the existence of a coarse moduli space for the functor M.

Theorem 1.37. There is a projective scheme MOXp1qpP q such that it is a coarse moduli
space for the moduli functor MOXp1qpP q. Closed points in M are in bijection with S-
equivalence classes of semistable sheaves with Hilbert polynomial P .

Proof. [12, Theorem 4.3.4].

1.4 Families of extensions
In this section, we review the results contained in [16] that we are going to use

in the course of this work. We begin by recalling the definition of the relative-Ext sheaves
following Birkar’s notes [3].

Definition 1.38. Let f : X Ñ Y be a morphism of ringed spaces, and let MpXq and
MpY q be the category of OX-modules and OY -modules respectively. Let F be a OX-
module. We define the functor Extpf pF,´q to be the right derived functors of the left exact
functor f˚HomOX

pF,´q : MpXq ÑMpY q.

We now note that from the above definition we can derive several types of
cohomologies by considering special cases.

Remark 1.39.

1. If Y is just a point, then Extpf pF,Gq is the usual Ext group ExtpOX
pF,Gq, that is,

ExtpOX
pF,Gq “ ExtpOX

pF,Gq is the right derived functors of the left exact func-
tor HomOX

pF,´q. Moreover, note that the usual cohomology functor Hp
pX,´q –

ExtpOX
pOX ,´q because we have HomOX

pOX ,´q – H0
pX,´q.

2. If f is the identity, then instead of Extpf pF,Gq we write ExtpOX
pF,Gq. That is,

ExtpOX
pF,´q are the right derived functors of the left exact functor HomOX

pF,´q,
the usual Ext sheaves. In particular, Ext0OX

pOX , Gq – G and ExtpOX
“ 0 if p ą 0

because the functor HomOX
pOX ,´q – ´ is exact and so its right derived functors

are trivial.

3. Since f˚HomOX
pOX ,´q “ f˚p´q, we have Rpf˚p´q “ Extpf pOX ,´q. The functors

Rpf˚p´q are the right derived functors of the left exact functor f˚, the usually called
higher direct images defined in [8].

Theorem 1.40. The sheaf Extpf pF,Gq is the sheaf associated to the presheaf

U ÞÑ ExtpOf´1U
pF |f´1U , G|f´1Uq
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on Y . In particular, for any open subset W Ď Y , we have

Extpf pF,Gq|W – Extpf pF |f´1W , G|f´1W q.

Proof. [3, Theorem 1.1.3].

Theorem 1.41. Let 0 Ñ F 1 Ñ F Ñ F 2 Ñ 0 be an exact sequence of OX-modules. Then,
for any OX-module G, we get a long exact sequence

¨ ¨ ¨ Ñ Extpf pF 2, Gq Ñ Extpf pF,Gq Ñ Extpf pF 1, Gq Ñ Extp`1
f pF 2, Gq Ñ ¨ ¨ ¨

We can also generalize the local-to-global spectral sequence defined in Section
1.2 to its relative version as follows. Let f : X Ñ Y and g : Y Ñ Z be morphisms of
ringed spaces and let h “ g ˝ f . Then we have a commutative diagram of functors

MpXq
α //

γ
$$

MpY q

β

��
MpZq

in which α is the functor f˚HomOX
pF,´q, β is the functor g˚ and γ is the functor

h˚HomOX
pF,´q.

Theorem 1.42. For any OX-module G, there is a spectral sequence

Ep,q
2 “ Rpg˚Extpf pF,Gq ùñ Extp`qh pF,Gq

When Z is just a point and f is the identity map, then we recover the spectral
sequence described in Section 1.2.

Now let X be a projective variety over a field k and let F and G coherent
sheaves on X. We know that the vector space Ext1

XpF,Gq parametrizes the extensions of
F by G over X and there is an universal extension of p˚1F by p˚1G on X ˆ Ext1

XpF,Gq

such that for every k-rational point v P Ext1
XpF,Gq its restriction to X ˆ tvu is just the

extension represented by v, where p1 : X ˆ Ext1
XpF,Gq Ñ X is the projection. Moreover,

P “ PpExt1
XpF,Gqq parametrizes the classes of nonsplitting extensions of F and G on X

modulo k˚ and there is a universal family of extensions of p˚1F by p˚1Gbp˚2OPp1q on XˆP
such that for every k-rational point p of P its restriction to X ˆ tpu represents just the
class of extensions given by p.

The rest of the section aims to generalize these results to the relative case,
which will be used later in this work. For this, we follow [16].

Let f : X Ñ Y be a flat projective morphism of noetherian schemes and
let F and G be coherent OX-modules, flat over Y . We want to know how does the
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group ExtiXy
pFy, Gyq varies as a function of y P Y . To do this, we will find some relation

between these groups and the i-th relative Ext-sheaf Extif pF,Gq, which turns out to be a
generalization of Grothendieck’s base change theory for cohomology.

Take a fixed projective embedding of X over Y , whence the invertible sheaves
OXpnq are defined, and consider a morphism u : Y 1 Ñ Y of noetherian schemes. Let
X 1
“ Y 1 ˆY X and pi denote the i-th projection.

Lemma 1.43. There is an integer NpGq such that Extip2pOX 1p´nq, GbY Mq “ 0 for all
n ě NpGq, i ě 1 and quasi-coherent OY 1-modules M .

Proof. [16, Lemma 1.1].

Now take a locally free resolution J‚ Ñ F Ñ 0 with Jj :“ OXp´kjq
lj and

kj ě NpGq, and consider the complex L‚ with Lj :“ f˚HomOX
pJj, Gq “ f˚Gpkjq

l
j.

Corollary 1.44.

1. L‚ is a complex of coherent locally free OY -modules.

2. For every quasi-coeherent OY 1-module M , there is a canonical isomorphism

p2 ˚HomOX1
pp˚1Jj, GbY Mq Ñ Lj bY M.

3. For every quasi-coherent OY 1-module M and every i ě 0 there is a canonical
isomorphism

Extip2pp
˚
1F,GbY Mq Ñ H i

pL‚ bY Mq.

Proof. [16, Corollary 1.2]

For evert quasi-coherent OY -module M , define

Ci
pMq :“ H i

pL‚ bY Mq.

Then we have the canonical homomorphism

Ci : OY bY 1 M Ñ Ci
pMq.

Using Corollary 1.44 it yields, for every u : Y 1 Ñ Y of noetherian schemes, the
base change homomorphism

τ ipuq : u˚Extif pF,Gq Ñ Extip2pp
˚
1F, p

˚
1Gq.

Using a locally free resolution of F and the ordinary base change theorem for
the flat morphism u : Y 1 Ñ Y we get the following proposition.
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Proposition 1.45. For every flat morphism u : Y 1 Ñ Y of noetherian schemes and every
i ě 0 the base change homomorphism τ ipuq is an isomorphism.

Restricting to an open affine set in Y , the base change property applies directly
in our situation to give the following base change theorem for relative Ext-sheaves.

Theorem 1.46. Let y P Y be a point and assume the base change morphism τ ipyq :
Extif pF,Gq bY kpyq Ñ ExtiXy

pFy, Gyq to be surjective. Then

1. there is a neighbourhood U of y such that τ ipy1q is an isomorphism for all y1 P U ;

2. τ i´1
pyq is surjective if and only if Extif pF,Gq is locally free in a neighbourhood of y.

If τ ipyq is an isomorphism for all y P Y we say that Extif pF,Gq commutes with
base change. This implies that τ ipuq is an isomorphism for all u as above.

1.4.1 Universal Families of Extensions

Now we construct a family of extensions that parametrizes all extensions of
Fy by Gy on Xy for all points y P Y . After we turn to the construction of a family of
extensions that parametrizes all classes of nonsplitting extensions of Fy by Gy on Xy

modulo the equivalence relation identifying families which differ by a nonzero constant.
To do this we will assume for this subsection that Ext0f pF,Gq and Ext1f pF,Gq commute
with base change.

First, note that by Theorem 1.46, Ext1f pF,Gq is locally free on Y . For every
morphism g : S Ñ Y , consider the pullback diagram

XS
qS //

pS

��

X

f
��

S g
// Y

(1.1)

and define
EpSq :“ H0

pS, Ext1pS
pq˚SF, q

˚
SGqq.

If α : S 1 Ñ S is a morphism over Y , define a map Epαq : EpSq Ñ EpS 1q by composing

H0
pS, Ext1pS

pq˚SF, q
˚
SGqq Ñ H0

pS 1, α˚Ext1pS
pq˚SF, q

˚
SGqq Ñ H0

pS 1, Ext1pS
pq˚S1F, q

˚
S1Gqq,

where the last map is given by τ 1
pαq.

Since Ext1f pF,Gq commutes with base change, so does Ext1pS
pq˚SF, q

˚
SGq and E

is a contravariant functor from the category of noetherian Y -schemes to the category of
sets.
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Proposition 1.47. Suppose Ext1pF,Gq commutes with base change for i “ 0, 1. Then
the functor E is representable by the vector bundle V “ V pExt1f pF,Gq˚q over Y associated
to the locally free sheaf Ext1f pF,Gq˚.

Proof. [16, Proposition 3.1]

Now for the construction of the family for nonsplitting extensions, we need the
projection formula for relative Ext-sheaves.

Lemma 1.48. For every coherent locally free OY -module M and every i ě 0 there is a
canonical isomorphism

Extif pF,Gq bY M Ñ Extif pF,Gb f˚Mq.

For g : S Ñ Y we can consider de pullback diagram (1.1) and we define

PEpSq :“ set of invertible quotients of Ext1pS
pq˚SF, q

˚
SGq

˚.

If α : S 1 Ñ S is a morphism over Y and Ext1pS
pq˚SF, q

˚
SGq Ñ L Ñ 0 is an invertible

quotient, then Ext1pS
pq˚SF, q

˚
SGq is locally free and commutes with base change, and hence

Ext1pS1
pq˚S1F, q

˚
S1Gq

˚
“ α˚Ext1pS

pq˚SF, q
˚
SGq

˚
Ñ α˚LÑ 0

is an invertible quotient of Ext1pS1
pq˚S1F, q

˚
S1Gq

˚. Therefore we get a map PEpαq : PEpSq Ñ
PEpS 1q and altogether a contravariant functor from the category of noetherian Y -schemes
to the category of sets.

Proposition 1.49. Suppose Extif pF,Gq commutes with base change for i “ 0, 1. Then
the functor PE is representable by the projective bundle P “ P pExt1f pF,Gq˚q associated
to the locally free sheaf Ext1f pF,Gq˚.

Corollary 1.50. Suppose Y is reduced and Extif pF,Gq commutes with base change for
i “ 0, 1. Then there is a family of extensions pepqpPP of q˚PF by q˚PG b p˚POP p1q over
P “ P pExt1f pF,Gq˚q which is universal on the category of reduced noetherian Y -schemes
for the classes of families of nonsplitting extensions of q˚SF by q˚SG b p˚SL over S with
arbitrary L P PicpSq modulo the canonical operation of H0

pS,O˚
Sq.

Corollary 1.51. Suppose Ext0f pF,Gq “ 0 and Ext1f pF,Gq commutes with base change.
Then there is an extension peP q

q˚PGb p
˚
POP p1q Ñ EP Ñ q˚PF Ñ 0

on XP , P “ P pExt1f pF,Gq˚q, which is universal on the category of noetherian Y -schemes
for the classes of extensions of q˚SF by q˚SGb p˚SL on XS with arbitrary L P PicpSq, which
split nowhere over S, modulo the canonical operation of H0

pS,OS˚q.
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Remark 1.52. If X is a projective variety over a field k, every coherent sheaf F or G is
flat over k and, by Proposition 1.45, Ext1f pF,Gq commutes with base change for i “ 0, 1.
Therefore we get the universal family of extensions over P pExt1

XpF,Gq
˚
q mentioned in the

beginning of this subsection as special case of Corollary 1.50.
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2 Torsion free sheaves with c1 “ c2 “ 0

2.1 Semistable reflexive sheaves with vanishing Chern classes
A particular case of a result due to Simpson, see [25, Theorem 2], establishes

that if F be a µ-semistable reflexive sheaf on a smooth projective variety X with c1pF q “

c2pF q “ 0, then F an extension of µ-stable locally free sheaves with vanishing Chern
classes.

When X is a projective space, we can prove the following refinement, which will
be very relevant to achieve the goals of this work. From now on, stability and µ-stability
of sheaves on X “ Pd are measured with respect to the hyperplane divisor.

Lemma 2.1. Let F be a µ-semistable reflexive sheaf of rank r on Pd with d ě 3. If
c1pF q “ c2pF q “ 0, then F is isomorphic to O‘r

Pd .

Proof. The first step is to show that the only µ-stable locally free sheaf with vanishing Chern
classes on Pd is OPd . Indeed, let G be a µ-stable locally free sheaf with vanishing Chern
classes on Pd and take a 2-dimensional linear subspace ℘ Ă Pd; by [17, Theorem 3.1], G|℘ is
a µ-stable locally free sheaf with c1pG|℘q “ c2pG|℘q “ 0. Following [17, proof of Proposition
8.2], we have that hompG|℘, G|℘q “ 1, ext2

pG|℘, G|℘q “ hompG|℘, G|℘p´3qq “ 0 and

χpG|℘, G|℘q “ r2
´∆pG|℘q “ 1´ ext1

pG|℘, G|℘q ď 1.

But ∆pG|℘q “ 0 since F |℘ has vanishing Chern classes, thus r “ 1 and G|℘ – O℘. We
then conclude that F – OPd , as desired.

Since extensions of trivial bundles on Pd are always trivial, Simpson’s result
implies that F – O‘r

Pd .

In particular, we note that every µ-semistable reflexive sheaf F on Pd with
c1pF q “ c2pF q “ 0 is also semistable. As we will see below, this is no longer true if one
considers torsion free sheaves with vanishing first and second Chern classes.

Theorem 2.2. Let X be a smooth projective variety such that every µ-stable reflexive
sheaf with c1 “ c2 “ 0 is a line bundle. If E is a semistable reflexive sheaf with c1 “ c2 “ 0,
then its Jordan-Holder filtration has factors in Pic0

pXq.

Proof. We argue by induction on rkpEq “ r. If E is a rank 2 semistable reflexive sheaf
with c1 “ c2 “ 0, then by Simpson’s result, E must be an extension of µ-stable locally
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free sheaves with vanishing Chern classes, that is, we can write E in the following short
exact sequence

0 Ñ LÑ E Ñ L1 Ñ 0,

where L and L1 are in Pic0
pXq. Thus we can take

0 Ă L Ă E

as the desired Jordan-Holder filtration.

Now suppose the result valid for rank less then r and let E be a semistable
reflexive sheaf with c1 “ c2 “ 0. Again, by Simpson’s result, there exists a filtration of E

0 “ G0 Ă G1 Ă ¨ ¨ ¨ Ă Gk Ă E,

such that each quotient is a µ-stable locally free sheaf with vanishing Chern classes. Let
F :“ Gk and F 1 :“ E{Gk and consider the following exact sequence

0 Ñ F Ñ E Ñ F 1 Ñ 0.

Since F 1 is a µ-stable locally free with vanishing Chern classes, the hypothesis
implies that F 1 P Pic0

pXq. Now we can apply the induction hypothesis to F which has
rank r ´ 1, and we get a Jordan-Holder filtration of F

0 “ F0 Ă F1 Ă ¨ ¨ ¨ Ă Fl Ă F

whose factors are in Pic0
pXq. Finally, we take

0 “ F0 Ă F1 Ă ¨ ¨ ¨ Ă Fl Ă F Ă E,

and this is a Jordan-Holder filtration for E which satisfies our requirements.

The hypothesis that every µ-stable reflexive sheaf with c1 “ c2 “ 0 is a line
bundle is valid whenever the fundamental group is abelian, this is true by Corlette-Simpson
correspondence [25, Corollary 1.3]. Examples of such varieties are Fano varieties, rational
surfaces, abelian varieties, K3 surfaces, products of the previous ones, quotients of simply
connected varieties by finite abelian groups (e.g., Enriques surfaces).

The following theorem is essentially the same Theorem 2.2 for surfaces with
stronger assumptions, where we make the proof by hand, without relying on Simpson’s
results.

Theorem 2.3. Let X be a smooth projective surface with KX ¨ H ď 0 and satisfying
χpOXq “ 1. If E is a semistable reflexive sheaf (with respect to H) with c1 “ c2 “ 0, then
its Jordan-Holder filtration has factors in Pic0

pXq.
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Proof. Let E be a semistable reflexive sheaf with c1 “ c2 “ 0 and let

0 “ F0 Ă F1 Ă ¨ ¨ ¨ Ă Fl “ E,

be a Jordan–Holder filtration of E. We need to show that every quotient Fl{Fl´1 is in
Pic0

pXq. We will prove that every stable sheaf F with c1 “ c2 “ 0 on X is a line bundle,
so the statement will follow.

For a stable rank r sheaf F on a smooth projective surface Hirzebruch-Riemann-
Roch formula [12, p. 103] gives us

χpOXq ´ χpF, F q “ ∆pF q ´ pr2
´ 1q ¨ χpOXq, (2.1)

where ∆pF q “ 2rc2pF q ´ pr ´ 1qc1pF q
2 and χpF, F q “

2
ÿ

i“0
p´1qi extipF, F q.

Let us assume first that KX ¨ H ă 0. So in this case, if F is stable, then
hompF, F q “ 1 and ext2

pF, F q “ hompF, F b ωXq which is 0 because KX ¨ H ă 0 so
pF ą pFbωX

[12, Proposition 1.2.7]. Since c1 “ c2 “ 0 implies that ∆pF q “ 0, equation
(2.1) gives us

χpF, F q “ χpOXqr
2
´∆pF q

ñ r2
“ χpF, F q

ñ r2
“ 1´ ext1

pF, F q

ñ r2
ď 1.

Therefore the rank of a stable sheaf F must be equal to 1. In this case, since
F is torsion free, we have the canonical monomorphism F ãÑ F__, which gives us the
following short exact sequence

0 Ñ F Ñ F__ Ñ QÑ 0 (2.2)

with dimQ “ 0. It follows that F__ is a rank 1 reflexive sheaf, thus a line bundle. By
sequence (2.2), c1pF

__
q “ 0. Let L´1 be the inverse of F__ and twist sequence (2.2) to

obtain
0 Ñ F b L´1

Ñ OX Ñ QÑ 0.

So F b L´1 is some sheaf o ideals IZ with dimZ “ 0. Therefore F “ IZ b L with
L P Pic0

pXq. But c2pIZpLqq “ lengthpZq “ 0, that is, Z is empty which implies that F is
a line bundle as desired.

If KX ¨ H “ 0, then we still have hompF, F q “ 1, but now ext2
pF, F q “

hompF, F b ωXq ď 1. If hompF, F b ωXq “ 0 we are in the previous case. If hompF, F b
ωXq “ 1, then equation (2.1) gives us

r2
ď

2
χpOXq

“ 2.

Then r “ 1 and the proof goes exactly like the above case again.
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2.2 Quot scheme and extensions of ideals
Let us now turn our attention to general µ-semistable sheaves (not necessarily

reflexive) on Pd, starting by understanding how they are related to 3-codimensional
quotients of the trivial sheaf.

Let pϕ,Qq be an element of the Quot scheme QuotpO‘r
Pd , uq with u P Qrts such

that degpuq ď d´ 3, that is, ϕ : O‘r
Pd Ñ Q is an epimorphism onto a sheaf Q with Hilbert

polynomial PQptq “ uptq. Now let E :“ kerϕ. In that case, we have a short exact sequence

0 Ñ E Ñ O‘r
Pd Ñ QÑ 0. (2.3)

As E is a subsheaf of a locally free sheaf, E is a torsion free sheaf of rank r.

Now let us calculate the Hilbert polynomial and the Chern classes of E. By
sequence (2.3) and additivity of the Hilbert polynomial, we have that

PEptq “ PO‘r

Pd
ptq ´ PQptq

“ r ¨

ˆ

t` d

d

˙

´ uptq.

Note that the first and second Chern classes of Q are zero as well as the first and second
Chern classes of O‘r

Pd , so it follows, from the multiplicative property of Chern classes, that
the first and second Chern classes of E are also equal to zero.

Proposition 2.4. Given pϕ,Qq P QuotpO‘r
Pd , uq with r ą 1 and uptq P Qrts such that

degpuq ď d´ 3, then the sheaf E :“ kerϕ is strictly µ-semistable.

Proof. Applying Homp´,OPdq to sequence (2.3) we have

0 Ñ Q_ Ñ pO‘r
Pd q

_
Ñ E_ Ñ Ext1pQ,OPdq.

Since codimpQq ě d´ 3, we have that Q_ “ 0 “ Ext1pQ,OPdq by [12, Proposition 1.1.6],
so that E_ – pO‘r

Pd q
_
– O‘r

Pd . Therefore E is µ-semistable by Proposition 1.9.

Next, we establish a converse to the previous claim.

Proposition 2.5. Let E be a µ-semistable sheaf of rank r on Pd with c1pEq “ c2pEq “ 0.
Then there is pϕ,Qq P QuotpO‘r

Pd , uq with degpuq ď d´ 3 such that E – kerϕ.

Proof. Since E is a torsion free sheaf, we have a canonical monomorphism E ãÑ E__; let
QE denote its cokernel. Then we have a short exact sequence

0 Ñ E Ñ E__ Ñ QE Ñ 0. (2.4)
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We claim that E__ “ O‘r
Pd . First, since E is torsion free, we have dimQE ď d ´ 2 by

Proposition 1.6. It follows that we can write the Hilbert polynomial of QE as PQE
ptq “

atd´2
` uptq for some u P Qrts with degpuq ď d´ 3. Hence, by sequence (2.4),

PE__ptq “ PEptq ` PQE
ptq

“ r ¨

ˆ

t` d

d

˙

´ n` atd´2
` uptq.

In this case we have c1pE
__
q “ c1pEq “ 0 and c2pE

__
q “ ´a; by hypothesis, E__ is a

µ-semistable reflexive sheaf of rank r.

Therefore, by the Bogomolov inequality, we have that c1pE
__
q
2
´4c2pE

__
q ď 0.

Thus c2pE
__
q ě 0 which implies that a ď 0. But a, being the leading coefficient of the

Hilbert polynomial of QE, must be greater or equal to 0. Therefore a “ 0.

We conclude that E__ is a µ-semistable reflexive sheaf of rank r in P3 with
c1pE

__
q “ c2pE

__
q “ 0. Therefore, by Lemma 2.1, E__ – O‘r

P3 and PQE
ptq “ uptq as we

desired.

Remark 2.6. Following the proof of Proposition 2.5, we can see that if E is a µ-semistable
sheaf of rank r on P3 with Chern classes c1pEq “ c2pEq “ 0, then c3pEq ď 0. In other
words, there are no µ-semistable sheaves with Chern classes c1 “ c2 “ 0 and c3 ą 0 on P3.

Clearly, the ideal sheaf IZ of a subscheme Z Ă Pd of codimension at least 3 is
a µ-stable sheaf with Chern classes c1 “ c2 “ 0. However, such µ-stable sheaves do not
occur in higher rank.

Corollary 2.7. There are no µ-stable sheaves E of rank r ě 2 on Pd with Chern classes
c1pEq “ c2pEq “ 0.

Proof. If E a µ-stable torsion free sheaf of rank r ě 2 with Chern classes c1pEq “ c2pEq “ 0
and cdpEq “ ´2n, then by Proposition 2.5, we have that E__ “ O‘r

P3 . On the other hand,
Proposition 1.9 implies that E__ is µ-stable, giving a contradiction.

Since a µ-semistable sheaf of rank r ě 2 with Chern classes c1 “ c2 “ 0 is not
µ-stable, it is natural to consider its µ-Jordan–Hölder filtration, namely a filtration

0 “ F0 Ă F1 Ă ¨ ¨ ¨ Ă Fk “ E (2.5)

such that the factors Gi :“ Fi{Fi´1 of the filtration are µ-stable sheaves with µpGiq “ 0.

Theorem 2.8. If E is a µ-semistable sheaf on Pd with rkpEq ě 1 c1pEq “ c2pEq “ 0,
then E is an extension of ideal sheaves of subschemes of Pd of codimension at least 3.
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Note that this statement can be regarded as a generalization of [25, Theorem
2] for torsion free sheaves on Pd.

Proof. We show that each factor of the Jordan–Hölder filtration of E is the ideal sheaf of
a subscheme in Pd of codimension at least 3. We argue by induction on the length of the
filtration, denoted by k in display (2.5).

If k “ 1 then E is actually µ-stable, and Corollary 2.7 implies that rkpEq “ 1,
so in fact E is the ideal sheaf of a 3-codimensional subscheme of Pd.

Assume that k ą 1, and consider the epimorphism ηk : E � Gk, so that
Fk´1 “ ker ηk. We then obtain a diagram of the form

0

��

0

��

0

��
0 // Fk´1 //

��

F__k´1
//

��

Q1 //

f

��

0

0 // E //

ηk

��

O‘r
P3 ϕ

//

η__k

��

Q //

��

0

0 // Gk
//

��

G__k //

��

Q2 //

��

0

0 0 0

Note that G__k is a µ-stable reflexive sheaf with c1pG
__
k q “ 0. In addition, the fact that

G__k is the quotient of the semistable sheaf O‘r
P3 implies that c2pG

__
k q “ 0, so the proof

of Lemma 2.1 implies that G__k “ OP3 ; since codimpQ2q “ 3, we get that Gk is the ideal
sheaf of a 3-codimensional scheme.

It also follows that Fk´1 is a µ-semistable sheaf of rank r´ 1 and Chern classes
c1pFk´1q “ c2pFk´1q “ 0. By induction hypothesis, the factors of the Jordan–Hölder
filtration of Fk´1, which coincide with Gi for i ă k (the factors of the Jordan–Hölder
filtration of E), are ideal sheaves of a 3-codimensional subschemes of P3.

In particular, as a consequence of the previous Theorem, if E is a µ-semistable
rank 2 torsion free sheaf with c1pEq “ c2pEq “ 0, then we can write E as extension in the
following way:

0 Ñ IZ Ñ E Ñ IZ1 Ñ 0 (2.6)

where Z,Z 1 Ă Pd are subschemes of codimension at least 3.

More generally, we can use the Jordan–Hölder filtration for semistability to
obtain the following statement.
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Lemma 2.9. Let E be a semistable sheaf on with c1pEq “ c2pEq “ 0 on Pd. There
are pψ,QF q P QuotpO‘s

Pd , vptqq and pψ1, QGq P QuotpO‘pr´sq

Pd , PE ´ vq for some polynomial
v P Qrts with degpvq ď d´ 3 such that E can be written as an extension

0 Ñ F Ñ E Ñ GÑ 0,

with F “ kerψ being semistable and G “ kerψ1 being stable.

Proof. Since E is semistable, by [12, Proposition 1.5.2], we have a Jordan-Holder filtration

0 “ E0 Ă E1 Ă ¨ ¨ ¨ Ă El “ E,

that is, each Ei is semistable with reduced Hilbert polynomial pE and each quotient
Ei{Ei´1 is stable also with reduced Hilbert polynomial pE, for i ą 0.

Now we can take F “ El´1, so G “ E{El´1. By the above, F is semistable and

G is stable. Finally, note that the Hilbert polynomial of G is PGptq “ PEptq ¨
rkpGq
rkpEq , thus

G must be of the desired form. Similarly, the same thing must happen to F as desired.

2.3 Moduli spaces of semistable sheaves on Pd with c1 “ c2 “ 0

Consider first the following action of GLr » AutpO‘r
Pd q on QuotpO‘r

Pd , uq:

g ¨ pϕ,Qq :“ pϕ ˝ g,Qq. (2.7)

Note that g ¨ pϕ,Qq is clearly in QuotpO‘r
Pd , nq again. Propositions 2.4 and 2.5 lead to the

following theorem characterizing the set of isomorphism classes of µ-semistable sheaves.

Theorem 2.10. There is a bijection between the set of isomorphism classes of µ-semistable
sheaves E of rank r with Chern classes c1pEq “ c2pEq “ 0 on Pd, and the set of orbits
QuotpO‘r

Pd , uq{GLr for u P Qrts given by uptq :“ r ¨

ˆ

t` d

d

˙

´ PEptq

Proof. Let pϕ,Qq, pϕ1, Q1q be points in QuotpO‘r
Pd , uq lying in the same GLr-orbit, that

is, there is some g P GLr such that pϕ,Qq “ g ¨ pϕ1, Q1q “ pϕ1 ˝ g,Q1q. Hence, there is an
isomorphism f : QÑ Q1 such that f ˝ ϕ “ ϕ1 ˝ g. Let E “ kerϕ and E 1 “ kerϕ1 be the
corresponding µ-semistable sheaves given by Proposition 2.4. Thus we can consider the
following diagram

0 // E //

h

��

O‘r
Pd

ϕ //

g

��

Q //

f

��

0

0 // E 1 // O‘r
Pd

ϕ1
// Q1 // 0.

(2.8)
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Since g and f are isomorphisms, the snake lemma implies that h : E Ñ E 1 is also an
isomorphism as desired.

Now let E and E 1 two isomorphic µ-semistable sheaves on Pd with Chern
classes c1 “ c2 “ 0 and let h : E Ñ E 1 be an isomorphism. By Proposition 2.5, let pϕ,Qq
and pϕ1, Q1q the corresponding elements in QuotpO‘r

P3 , uq. Since E__ » pE 1q__ » O‘r
Pd , we

obtain an induced morphism h__ : O‘r
Pd Ñ O‘r

Pd which is an isomorphism, since h is. We
then construct a commutative diagram like the one in display (2.8), with g “ h__. In
particular, we get an isomorphism f : QÑ Q1 and a commutative diagram

O‘r
Pd

ϕ //

ϕ˝g
!!

Q

f

��
Q1,

that is, pϕ,Qq “ pϕ1 ˝ g,Q1q in QuotpO‘r
Pd , nq. Therefore pϕ,Qq “ g ¨ pϕ1, Q1q.

Proposition 2.5 implies that every semistable sheaf E on Pd with c1 “ c2 “ 0
can be realized as kerϕ for some pϕ,Qq P QuotpO‘r

Pd , uq for u P Qrts with degpuq ď d´ 3.
However, the converse is not true; Theorem 2.11 below provides a characterization of those
pϕ,Qq P QuotpO‘r

P3 , uq for which kerϕ is semistable.

Theorem 2.11. Let pϕ,Qq in QuotpO‘r
Pd , uq for u P Qrts with degpuq ď d ´ 3, and let

E “ kerϕ. Then E is not psemiqstable if, and only if, there is a torsion free sheaf F ãÑ E

with F “ kerψ for some pψ,QF q in QuotpO‘s
Pd , vq satisfying 0 ă s ă r and

v ă pďq
s ¨ u

r
.

Proof. Let us analyse torsion free subsheaves F ãÝÑ E with rkF “ s and 0 ă s ă rkE
such that the quotient E{F “ G is torsion free. Since F and G are torsion free we can
form a diagram

0

��

0

��

0

��
0 // F //

��

F__ //

��

QF

��

// 0

0 // E //

��

O‘r
Pd

��

// Q //

��

0

0 // G //

��

G__ //

��

QG

��

// 0

0 0 0 .

By Proposition 2.4, E is µ-semistable, thus c1pF q ď c1pEq “ 0. Now we begin examining
the reduced Hilbert polynomials of E and F . For a polynomial pptq, we write rpsi for the
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coefficient of the ti term. Note that rpEsd “ rpF sd. By the Riemann–Roch Theorem, we
can write rPF sd´1 “

1
2c1pF q ` s and rPEsd´1 “ r. It follows that

rpF sd´1 “
c1pF q

2 ¨ s ` 1 and rpEsd´1 “ 1.

If c1pF q ă 0, then F does not destabilize E, so we can assume c1pF q “ 0.

Note that QF being a subsheaf of Q, has codimension 3, thus c1pQF q “

c2pQF q “ 0. By the multiplicative property of Chern classes on short exact sequences, we
have c1pF q “ c1pF

__
q and c2pF q “ c2pF

__
q. Again by the Riemann–Roch Theorem, one

can check that rPF__sd´2 “ ´2c2pF q `
11
6 s and rPO‘r

P3
sd´2 “

11
6 r. Thus,

rpF__sd´2 “ ´
2c2pF q

s
`

11
6 and rpO‘r

P3
sd´2 “

11
6 .

Now, if c2pF q ą 0, then F does not destabilize E. If c2pF q ă 0, then we would have
pF__ ą pO‘r

P3
so HompF__,O‘r

P3 q “ 0 by [12, Proposition 1.2.7], and this cannot happen.
Therefore we can assume c2pF q “ 0 and, in this case, by Lemma 2.1, F__ – O‘r

Pd . That is,
F “ kerψ, for ψ in QuotpO‘s

Pd , vq, where v is a polynomial with degree ď d´ 3.

Finally, we have pE ´ pF “
v

s
´
u

r
. It follows that, pE ă pďq pF if, and only

if,
v ă pďq

u ¨ s

r
.

Let pϕ,Qq be an element in QuotpO‘r
Pd , uq and let E “ kerϕ. We can also

relate the (semi)stability of E given in the above theorem with GIT-stability applied
to the GLr-action on QuotpO‘r

Pd , uq given by (2.7). To do this, we use the results in [12,
Lemma 4.4.5]. Essentially, let V be a finite dimensional C-vector space; a closed point
pϕ,Qq in QuotpV bOP3 , uq is GIT-(semi)stable if, and only if, for every non-trivial proper
linear subspace V 1 Ă V and the induced subsheaf Q1 :“ ϕpV 1 bOP3q Ă Q, the following
inequality holds:

PQ1 ą pěq
dimpV 1q ¨ PQ

dimpV q . (2.9)

Theorem 2.12. Let pϕ,Qq be an element in QuotpO‘r
Pd , uq and let E “ kerϕ. Then pϕ,Qq

is GIT-(semi)stable with respect to the GLr action in display (2.7) if, and only if, E is
(semi)stable.

Proof. Note that the existence of a subspace V 1 Ă V satisfying (2.9), means that kerpV 1b
OPd Ñ ϕpV 1 b OPdqq is a torsion free sheaf F and F ãÑ E. In this case we have the
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following diagram

0 // F //

��

V 1 bOPd
//

��

ϕpV 1 bOPdq “: QF
//

��

0

0 // E // V bOPd

ϕ // Q // 0.

(2.10)

So (2.9) translates to
PQF

ă pďq
dim V 1 ¨ PQ

dim V
“

rkF ¨ PQ
rkE ,

which is the inequality given in Theorem 2.11.

On the other hand, if F is a torsion free sheaf F “ kerψ with F ãÑ E as in
Theorem 2.11, we can choose V 1 to agree with the composition F ãÑ E ãÑ V bOPd and
obtain the diagram (2.10) again such that the inequality (2.9) is satisfied.

Therefore, pϕ,Qq is GIT-(semi)stable if, and only if, E “ kerϕ is (semi)stable.

As an immediate consequence, we can write the moduli space MP
d of semistable

sheaves on Pd with Hilbert polynomial given by P ptq “ r ¨

ˆ

t` d

d

˙

´ uptq for a given

polynomial u P Qrts with degpuq ď d´ 3 as a GIT-quotient.

Corollary 2.13. MP
d is the GIT-quotient of QuotpO‘r

Pd , uq by GLr.

Remark 2.14. Cazzaniga and Ricolfi recently provided in [4] a characterization of the
affine Quot scheme QuotpO‘r

Ad , nq as a moduli space of framed torsion free sheaves on
Pd with Chern character pr, 0, . . . , 0,´nq. We observe that this moduli space is different
from the moduli spaces MP

d described above, when uptq is a constant polynomial, in two
ways: first, we do not considers framings; second, a framed torsion free sheaf need not be
semistable.

Corollary 2.13 leads us to believe that

dim MP
d “ dim QuotpO‘r

Pd , uq ´ r
2
` 1.

Indeed, let take pQ,ϕq P QuotpO‘r
Pd , uq such that E :“ kerϕ is stable. Applying the functor

HompE, ¨q to the exact sequence (2.3), we obtain

0 Ñ HompE,Eq Ñ HompE,O‘r
Pd q Ñ HompE,Qq Ñ Ext1

pE,Eq Ñ 0

since
Ext1

pE,O‘r
Pd q » Hn´1

pEp´n´ 1qq‘r “ 0

since Hn´2
pQq “ Hn´1

pQq “ 0 because codimQ ě 3. Moreover, we have that

HompE,O‘r
Pd q “ H0

pE_q‘r;
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since E_ » O‘r
Pd , we get that hompE,O‘r

Pd q “ r2. In addition, the stability of E guarantees
that hompE,Eq “ 1, thus

dimTEMP
d “ ext1

pE,Eq “ hompE,Qq ´ r2
` 1

“ dimTpϕ,Qq QuotpO‘r
Pd , uq ´ r

2
` 1,

where TEMP
d and Tpϕ,Qq QuotpO‘r

Pd , uq denote the Zariski tangent spaces of MP
d and

QuotpO‘r
Pd , uq, respectively.
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3 Moduli spaces of semistable quasitrivial
sheaves on P3

We are finally ready to focus on the main character of this paper, namely the
Gieseker–Maruyama moduli space

N pr, nq :“ Mpr, 0, 0,´2nq with r, n ě 1

of semistable quasitrivial sheaves of rank r on P3 and Chern classes c1pEq “ c2pEq “ 0,
and c3pEqq “ ´2n; note that the Hilbert polynomial of such a sheaf is given by PEptq “

r ¨

ˆ

t` 3
3

˙

´n, while Remark 2.6 implies that it is enough to consider n ą 0. Let N st
pr, nq

denote the (open, possibly empty) subset consisting of stable sheaves.

In this chapter we will show that N pr, nq is irreducible for n ď 10, and we
will construct an irreducible component of N pr, nq. First, we will construct an irreducible
component for N p2, nq, and later this will serve as an induction step to prove the general
result.

The first observation is that N p1, nq coincides with the Hilbert scheme of
0-dimensional subschemes of P3 with length n. Therefore we will focus on r ě 2, and our
initial task is to check whether N pr, nq is non-empty. To do this, we begin by translating
how the results established in the previous sections translate to this particular case.

Every sheaf E P N pr, nq is also µ-semistable, therefore Proposition 2.5 implies
that E is kerϕ for some pϕ,Qq P QuotpO‘r

P3 , nq for n P N. For the converse, Proposition
2.4 says that every kerϕ is µ-semistable for pϕ,Qq P QuotpO‘r

P3 , nq. Lemma 2.9 allows us
to express E as an extension

0 Ñ F Ñ E Ñ GÑ 0,

with F P QuotpO‘s
P3 , kq semistable and G P QuotpO‘r´s

P3 , n ´ kq stable, for some k P
t1, . . . , n ´ 1u and s P t1, . . . , r ´ 1u. Moreover, when r “ 2 this implies that E is an
extension of sheaf of ideals

0 Ñ IZ Ñ E Ñ IZ1 Ñ 0

where Z and Z 1 are 0-dimensional subschemes of P3 with h0
pOZq ` h

0
pOZ1q “ n.

The criterion obtained in Theorem 2.11 applied to our case translates into the
following claim: E “ kerϕ for pϕ,Qq P QuotpO‘r

P3 , nq is (semi)stable if, and only if, there
is a torsion free sheaf F ãÑ E with F “ kerψ for some pψ,QF q in QuotpO‘s

P3 , kq satisfying
0 ă s ă r and

k ă pďq
s ¨ n

r
.
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For the rank 2 case, this criterion reduces to check whether there is a sheaf of ideals
IZ ãÑ E satisfying

k ă pďq
n

2
where k “ h0

pOZq.

Finally, Corollary 2.13 yields that N pr, nq is the GIT–quotient of QuotpO‘r
P3 , nq

by GLr.

Proposition 3.1. N pr, nq “ H for r ą n.

Proof. Let E be a semistable sheaf with c1pEq “ c2pEq “ 0. By Proposition 2.5, we can
write E as kerϕ for pϕ,Qq in QuotpO‘r

P3 , nq. We must have H0
pEq “ 0, since otherwise we

would have a section OP3 ãÑ E, and then pOP3 ą pE, destabilizing E, but we are assuming E
to be semistable. Now taking cohomologies on the exact sequence 0 Ñ E Ñ O‘r

P3 Ñ QÑ 0
we have an injective map

0 Ñ H0
pO‘r

P3 q Ñ H0
pQq

which forces r ď h0
pQq “ n. Therefore, N pr, nq “ H for r ą n.

The next lemma will help us treat the case where r “ n ą 1 to study N pn, nq.

Lemma 3.2. Let E be a semistable rank n torsion free sheaf with c1pEq “ c2pEq “ 0
and c3pEq “ ´2n. Then E is stable if, and only if, n “ 1.

Proof. If n “ 1, then E “ Ip for some p P P3, therefore stable.

Now assume n ą 1 and E stable. By Lemma 2.9, we can write E as extension
of G and F with F semistable and G stable. Moreover F is the kernel of some map
O‘s

P3 Ñ QF Ñ 0 with h0
pQF q “ k and G is the kernel of O‘pr´sq

P3 Ñ QF Ñ 0 with
h0
pQGq “ n´ k. Since E is stable, by Theorem 2.11, we must have

k ą
n ¨ s

r
“ s.

In this case, n´k ă r´ s and, by Proposition 3.1, N pr´ s, n´kq “ H. That is, G cannot
be stable, providing a contradiction.

Proposition 3.3. If n ą 1, then N st
pn, nq “ H, and N pn, nq “ Symn

pP3
q.

Proof. First part of the statement is given by Lemma 3.2. To do the last part we will show
that every E P N pn, nq is S-equivalent to a sum of ideals ‘ni“1Ipi

.

By Lemma 2.9, we can write E as extension of F “ kerψ and G “ kerψ1 for
pψ,QF q P QuotpO‘s

P3 , kq and pψ1, QGq P QuotpO‘pr´sq
P3 , n ´ kq. Since E is semistable, by

Theorem 2.11, we must have k ě s ¨ n

r
“ s. But if k ą s, then n´k ă r´s and this cannot

happen, because G is stable. It follows that s “ k, which implies that r´ s “ n´ k as well.
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That is, if E P N pn, nq, then we can write E as extension of F and G with F P N pk, kq
and G P N st

pn´ k, n´ kq. Moreover, by Lemma 3.2, we must have F P N pn´ 1, n´ 1q
and G “ Ip for some p P P3.

By the argument above, write 0 Ñ F1 Ñ E Ñ Ip1 Ñ 0 with F1 P N pn´1, n´1q.
Now note that we can do the same with F1 and write 0 Ñ F2 Ñ F1 Ñ Ip2 Ñ 0 for
F2 P N pn´ 2, n´ 2q, and so on. Going through this induction process, we find a filtration

0 “ Fn Ă Fn´1 Ă ¨ ¨ ¨ Ă F2 Ă F1 Ă F0 “ E, (3.1)

where each factor Fi{Fi`1 is the ideal sheaf of a point Ipi`1 , for i P t0, . . . , n ´ 1u. Since
each factor of this filtration is stable and with the same reduced Hilbert polynomial, we
conclude that (3.1) is a Jordan–Holder filtration for E and grpEq “ ‘ni“1Ipi

. Therefore E
is S-equivalent to ‘ni“1Ipi

. Note that the points pi need not be distinct, and the graded
object associated to the Jordan–Holder filtration is only unique up to ordering; we therefore
obtain the desired ismorphism with the symmetric product Symn

pP3
q.

We will later show that N st
pr, nq ‰ H when r ă n, see Chapter 3 below. For

now, we shift our attention to the irreducibility of N pr, nq.

Our starting point is the fact that the affine Quot scheme QuotpO‘r
A3 , nq is

irreducible for n ď 10, see [9]. In order to see that the same holds for the projective Quot
scheme QuotpO‘r

P3 , nq, we will use the following technical lemma.

Lemma 3.4. Let X be the union of two irreducible subschemes A and B, and let C be
the intersection of A and B. Assume C is open in A and B. Then X is irreducible

Proof. The closure of A in X is the same as the closure of C in X. Indeed, a function
vanishing on C vanishes on A because C is open in A. Also, the closure of B in X is the
same as the closure of C in X. Since X “ AYB, we conclude that X is the closure of C
in X. But C is an open subset of an irreducible scheme A; thus X is irreducible.

As a simple consequence, we have:

Lemma 3.5. If QuotpO‘r
Ad , nq is irreducible, then QuotpO‘r

Pd , nq is irreducible.

Proof. Fix coordinates rx0 : x1 : . . . : xms for Pd and letHi “ txi “ 0u so Ai :“ PdzHi – Ad.
For pϕ,Qq P QuotpO‘r

Pd , nq, if SupppQq X Hi “ H, then we can restrict ϕ to Ai and we
obtain an element of QuotpO‘r

Ad , nq. Since we are assuming QuotpO‘r
Ad , nq to be irreducible,

we can write QuotpO‘r
Pd , nq as union of irreducible subschemes such that the two-by-two

intersection is open inside those two. Therefore, by induction and the previous lemma, we
get the statement.
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In particular, we conclude that QuotpO‘r
P3 , nq is irreducible for n ď 10. Theorem

2.11 implies that N pr, nq is the GIT-quotient of QuotpO‘r
P3 , nq by GLr. Thus, whenever

QuotpO‘r
P3 , nq is irreducible, N pr, nq is also irreducible. We have therefore established the

following claim.

Corollary 3.6. N pr, nq is irreducible for n ď 10.

We will construct an explicit irreducible component of N pr, nq in Theorem 3.17
(case r “ 2) and in Theorem 3.23 (case r ě 2) below. When n ď 10, Corollary 3.6 tells us
that this is the only component, and provides an explicitly description of N pr, nq.

Remark 3.7. Let Cpd, nq the variety consisting of d-tuples of nˆn commuting matrices. In
[14], the authors classified the components of Cpd, nq for n ď 7, which gives a classification
of the components of QuotpO‘r

Ad , nq for n ď 7, and in [9, Proposition 6.1] the authors proved
that the number of irreducible components of the affine quotient scheme QuotpO‘r

A3 , nq is
always smaller than or equal to the number of irreducible components of Cp3, nq (regardless
of the value of r). Therefore, we can conclude that N pr, nq is irreducible whenever Cp3, nq
is.

Determining whether Cp3, nq is irreducible is an interesting open problem.
Currently, Cpnq is known to be irreducible for n ď 10 but reducible for n ě 29, see
[6, 10, 23, 22, 26, 27]. Although not yet published, it is also claimed that Cp3, nq is
irreducible for n “ 11, see [10, p. 27].

3.1 Irreducible component of N p2, nq

The main goal of this section is to show that N st
p2, nq is nonempty and

construct an irreducible component of N p2, nq for each n ě 3. First, let us analyze the
case of N p2, 3q which will motivate the notion of unbalanced sheaves later in this chapter.
Next lemma ensures stability when E is an extension in the most “balanced" way.

Lemma 3.8. Let n be a positive odd integer and let E P Ext1
pIZ1 , IZq where Z and Z 1

are 0-dimensional subschemes of P3 of length n` 1
2 and n´ 1

2 , respectively. Then E is
stable if, and only if, E is not the trivial extension IZ ‘ IZ1 .

Proof. Clearly, if E “ IZ ‘ IZ1 , then E is not stable. Thus we get the “if" part of the
lemma. Now assume E is not stable, that is, there is an injective map IY ãÝÑ E with
h0
pOY q ď

n´ 1
2 . Let us consider two separate cases: when h0

pOY q ă
n´ 1

2 and when

h0
pOY q “

n´ 1
2 .

In the first case, since h0
pIZ1q “

n´ 1
2 and h0

pIY q ă
n´ 1

2 , it follows that
HompIY , IZ1q “ 0. Thus, as we did in the theorem above, we can consider the commutative



Chapter 3. Moduli spaces of semistable quasitrivial sheaves on P3 54

diagram
0

��

0

��
0 // IY

��

id //// IY

��

0

  
0 // IZ // E // IZ1 // 0.

Again, as pIY
ą pIZ

, HompIY , IZq “ 0 and then the map IY Ñ E is zero. A contradiction.
Therefore, first case does not happen.

Now assume h0
pOY q “

n´ 1
2 “ h0

pOZ1q. In this case, pIY
“ pIZ1

and then the
composition IY Ñ E Ñ IZ1 must be an isomorphism. Hence the sequence

0 Ñ IZ Ñ E Ñ IZ1 Ñ 0

splits, and E “ IZ ‘ IZ1 like we wanted.

The previous lemma tell us that if n is odd and E is a nonsplit extension

0 Ñ IZ Ñ E Ñ IZ1 Ñ 0,

in which we are in the most balanced case, that is, h0
pOZq “

n` 1
2 and h0

pOZ1q “
n´ 1

2 ,
then E is always stable.

Proposition 3.9. If E is an element of Ext1
pOP3 , IZq for Z P HilbnpP3

q with n ą 1, then
E can be written as an element of Ext1

pIY 1 , IY q for some 0-dimensional subschemes Y, Y 1

of P3.

Proof. Consider the short exact sequence

0 Ñ IZ Ñ E Ñ OP3 Ñ 0 (3.2)

Now let p P Z and let f : IZ Ñ Ip be the induced injective morphism. Applying Homp´, Ipq
to sequence (3.2) we get that

0 Ñ HompOP3 , Ipq Ñ HompE, Ipq Ñ HompIZ , Ipq Ñ Ext1
pOP3 , Ipq.

Note that HompOP3 , Ipq “ H0
pIpq “ 0 and Ext1

pOP3 , Ipq “ H1
pIpq “ 0. Hence

HompE, Ipq – HompIZ , Ipq

and we can lift f and consider the following diagram

0

��
0 // IZ //

f

��

E //

��

OP3 // 0

0 // Ip id
// Ip.
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Thus, by the snake lemma, we have the exact sequence

0 Ñ K Ñ OP3 Ñ OZztpu Ñ C Ñ 0,

where K “ kerpE Ñ Ipq and C “ cokerpE Ñ Ipq. The image of OP3 Ñ OZztpu is some OY

for Y Ď Zztpu. It follows that K “ IY and, therefore we can write

0 Ñ IY Ñ E Ñ IY 1 Ñ 0

with Y, Y 1 0-dimensional subschemes of P3.

By Theorem 2.11 and Theorem 2.8, a stable sheaf with Chern classes c1 “ c2 “ 0
and c3 “ ´6 must be an element of Ext1

pOP3 , IZq for some Z P Hilb3
pP3
q or Ext1

pIp, IZq

for some Z P Hilb2
pP3
q. By Proposition 3.9, the first case does not happen, thus we have

to analyze just sheaves coming from Ext1
pIp, IZq. Note that this is the most balanced case

for our case of n “ 3, hence by Lemma 3.8, any nontrivial element in Ext1
pIp, IZq is indeed

stable.

Lemma 3.10. Let Z,Z 1 be 0-dimensional subschemes of P3 with Z X Z 1 “ H. Then
Ext1pIZ1 , IZq “ 0 and

(i) Ext1
pIZ1 , IZq “ H1

pHompIZ1 , IZqq “ H1
pIZq,

(ii) Ext2
pIZ1 , IZq “ H0

pExt2pIZ1 , IZqq “ H0
pExt3pOZ1 ,OP3qq “ H0

pOZ1q

(iii) Ext3
pIZ1 , IZq “ 0.

Proof. Let Z,Z 1 be 0-dimensional subschemes of P3 with Z X Z 1 “ H and consider the
short exact sequence

0 Ñ IZ Ñ OP3 Ñ OZ Ñ 0. (3.3)

Note that ExtipOZ1 ,OP3q “ 0 for i ď 2 by [12, Proposition 1.1.6], and, since Z X Z 1 “ H,
we have ExtjpOZ1 ,OZq “ 0 for every j. It follows that if we apply HompOZ1 ,´q to (3.3)
we get ExtipOZ1 , IZq “ 0 for 0 ď i ď 2 and Ext3pOZ1 , IZq “ Ext3pOZ1 ,OP3q.

Now observe that HompOP3 , IZq “ IZ and ExtipOP3 , IZq “ 0 and apply
Homp´, IZq to sequence

0 Ñ IZ1 Ñ OP3 Ñ OZ1 Ñ 0, (3.4)

so we have HompIZ1 , IZq “ IZ , Ext2pIZ1 , IZq “ Ext3pOZ1 , IZq “ Ext3pOZ1 ,OP3q and
Ext1pIZ1 , IZq “ Ext3pIZ1 , IZq “ 0.

Using the above isomorphisms and vanishings, the local-to-global spectral
sequence turns as follows



Chapter 3. Moduli spaces of semistable quasitrivial sheaves on P3 56

��
���

���
��: 0

H0pExt3pIZ1 , IZqq
��

���
���

��: 0
H1pExt3pIZ1 , IZqq

��
���

���
��: 0

H2pExt3pIZ1 , IZqq
��

���
���

��: 0
H3pExt3pIZ1 , IZqq

H0pExt2pIZ1 , IZqq
���

���
���

�: 0
H1pExt2pIZ1 , IZqq

���
���

���
�: 0

H2pExt2pIZ1 , IZqq
���

���
���

�: 0
H3pExt2pIZ1 , IZqq

��
���

���
��: 0

H0pExt1pIZ1 , IZqq
��

���
���

��: 0
H1pExt1pIZ1 , IZqq

��
���

���
��: 0

H2pExt1pIZ1 , IZqq
��

���
���

��: 0
H3pExt1pIZ1 , IZqq

H0pHompIZ1 , IZqq H1pHompIZ1 , IZqq
���

���
���

�: 0

H2pHompIZ1 , IZqq H3pHompIZ1 , IZqq.

Therefore, the spectral sequence collapses in the second page and we have the following.

(i) Ext1
pIZ1 , IZq “ H1

pHompIZ1 , IZqq “ H1
pIZq;

(ii) Ext2
pIZ1 , IZq “ H0

pExt2pIZ1 , IZqq “ H0
pExt3pOZ1 ,OP3qq “ H0

pOZ1q;

(iii) Ext3
pIZ1 , IZq “ H3

pIZq “ 0;

where the equality H0
pExt3pOZ1 ,OP3qq “ H0

pOZ1q follows from Serre’s duality and the
local-to-global spectral sequence applied to the pair pOZ1 ,OP3q, in which it collapses in
the second page because the sheaves ExtipOZ1 ,OP3q are 0-dimensional sheaf, so all the
higher cohomology groups vanishes.

Now to construct an irreducible component of N p2, 3q we start studying
Ext1

pIp, IZq with the case where all points are distinct from each other, that is, E P

Ext1
pIp, Iq1,q2q. By Lemma 3.10, we have that ext1

pIp, Iq1,q2q “ 1, that is, we have a unique
extension of Ip and Iq1,q2 up to scalar multiplication.

Consider S “ Sym3
pP3
qz∆, where ∆ denotes the diagonals of Sym3

pP3
q to

ensure that we choose 3 distinct points. In this case, as we seen above, S can be regarded
as a flat family of stable (by Lemma 3.8) sheaves on P3 with Chern classes c1 “ c2 “ 0
and c3 “ ´6. Thus we get a morphism S Ñ N p2, 3q and we denote by S the closure of the
image of S in N p2, 3q. Theorem 3.14 bellow ensures that S is an irreducible component of
N p2, 3q.

The problem with using “balanced" sheaves to construct an irreducible compo-
nent for n ą 3 is that the dimension of the family obtained in a similar construction is not
enough to fill a irreducible component. We will see that the family of extensions that will
give us an irreducible component will be nonsplit extensions of the following form

0 Ñ IZ Ñ E Ñ Iq Ñ 0.
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This motivates the following definition.

A rank 2 torsion free sheaf E is said to be unbalanced if it satisfies a non-split
exact sequence of the form

0 Ñ IZ Ñ E Ñ Iq Ñ 0. (3.5)

where Z is a 0-dimensional scheme. Note that unbalanced sheaves are µ-semistable, since
they are obtained as an extension of µ-stable sheaves with the same slope. Proposition 2.5
then implies that an unbalanced sheaf E satisfies the exact sequence

0 Ñ E Ñ O‘2
P3 Ñ QÑ 0,

and one can check that dimQ “ 0, thus E is quasitrivial; note that c3pEq “ ´2ph0
pOZq`1q.

Note that Lemma 3.10 yields Ext1
pIq, IZq ‰ 0 when q R Z and h0

pOZq ą 1,
thus showing that unbalanced quasitrivial sheaves E do exist when c3pEq ď ´4

Lemma 3.11. Let E be a µ-semistable quasitrivial sheaf of rank r on P3. If HompE, Iqq ‰ 0,
then q P SupppE__{Eq.

Proof. Let E be a quasitrivial sheaf of rank r, so that E_ » E__ “ O‘r
P3 ; set Q :“ E__{E.

Take a point q P P3 and apply the functor Homp¨, Iqq to the exact sequence

0 Ñ E Ñ O‘r
P3 Ñ QÑ 0

we conclude that HompE, Iqq » Ext1
pQ, Ipq, since h0

pIqq “ h1
pIqq “ 0. Since dimQ “ 0,

the spectral sequence of local to global Ext’s yields the first of the following isomorphisms

Ext1
pQ, Ipq » H0

pExt1
pQ, Ipqq » H0

pExt2
pQ,Opqq,

with the second identification being a consequence of Ext1
pQ, Ipq » Ext2

pQ,Opq. Thus if
HompE, Iqq ‰ 0, then Ext2

pQ,Opq ‰ 0, which implies that p P SupppQq.

Next, we argue for the existence of stable unbalanced sheaves.

Proposition 3.12. For each pair pq, Zq consisting of a point q and a reduced 0-dimensional
scheme Z not containing q with h0

pOZq ě 2, there exists a stable unbalanced sheaf
E P Ext1

pIq, IZq such that for every p P Z there is an epimorphism ε : E Ñ Ip with
ker ε » IZ1 where Z 1 “

`

Zztpu
˘

Y tqu. In particular, N st
p2, nq ‰ H for every n ě 3.

Proof. Let Z̃ “ tp1, ¨ ¨ ¨ , pnu be a reduced 0-dimensional scheme, and set

Zj :“ tp1, ¨ ¨ ¨ , pnuztpju.

Consider the morphism ϕ : O‘2
P3 Ñ OZ̃ given by the choice of vectors

˜

αi

βi

¸

P C2 for i “ 1, . . . , n with
˜

αi

βi

¸

‰

˜

αj

βj

¸

for all i ‰ j
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and let E “ kerϕ. Fix j P t1, . . . , nu and choose pa, bq P C2 such that

pa, bq P pC ¨ pαj, βjqqK and pa, bq R pC ¨ pαi, βiqqK, @i ‰ j,

where C ¨ pαi, βiq is the C-vector space generated by pαi, βiq and V K is the orthogonal
complement of a subspace V Ă C2.

The choice of such vector pa, bq gives a section of O‘2
P3 such that the image of

the composition
OP3

pa,bq
Ñ O‘2

P3 Ñ OZ̃

is precisely OZj
, leading to the following commutative diagram:

0

��

0

��

0

��
0 // IZj

��

// OP3 //

��

OZj
//

��

0

0 // E //

��

O‘2
P3

//

��

OZ̃
//

��

0

0 // Ipj
//

��

OP3 //

��

Opj
//

��

0

0 0 0
That is, E P Ext1

pIpj
, IZj

q for all j “ 1, . . . , n. We claim that E is stable.

Indeed, if E is not stable, by Theorem 2.11, then there is a sheaf of ideal
IY ãÑ E such that h0

pOY q ď
n

2 . Let pk P Z̃ such that pk R Y and consider E as an element
of Ext1

pIpk
, IZk

q. Hence we have the following diagram.

0

��

0

��
0 // IY

��

IY
0

  ��
0 // IZk

// E // Ipk
// 0

The composition IY Ñ E Ñ Ipk
is zero by the choice of pk R Y . Thus the monomorphism

IY ãÑ E must factor through IZk
; but is also zero since h0

pOZq ď
n

2 ă n´ 1. Hence the
monomorphism IZ ãÑ E is zero, which is impossible.

Having established the existence of stable rank 2 quasitrivial sheaves, we now
provide a characterization of strictly semistable quasitrivial sheaves.

Proposition 3.13. A rank 2 quasitrivial sheaf E on P3 is strictly semistable if and only if
it is an extension of ideal sheaves IZ and IZ1 , where Z and Z 1 are 0-dimensional subschemes
of the same length.
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Proof. If E is a strictly semistable quasitrivial sheaf of rank 2, then the fact that E can
be expressed and an extension of ideal sheaves IZ and IZ1 with h0

pOZq “ h0
pO1

Zq is a
consequence of Theorem 2.8.

Conversely, we argue that every extension of IZ1 and IZ is semistable. Let
E P Ext1

pIZ1 , IZq with h0
pOZq “ h0

pO1
Zq “ l and assume that E is not semistable,

that is, there exists an injective morphism IY Ñ E; since pIY
ą pE, we conclude that

dim Y “ 0 and h0
pOY q ă l. In that case, we have the inequality between the reduced

Hilbert polynomials pIY
ą pIZ1

and, it follows that, HompIY , IZ1q “ 0. Hence we can form
the following diagram

0

��

0

��
0 // IY

��

id //// IY

��

0

  
0 // IZ // E // IZ1 // 0.

Again, pIY
ą pIZ

implies that HompIY , IZq “ 0. Hence the map IY Ñ IZ in the diagram
is zero. Since the diagram commutes, the map IY Ñ E is also zero, thus providing a
contradiction.

Therefore, any extension of ideals with the same length is semistable as desired.

It follows that N p2, 2k ` 1q “ N st
p2, 2k ` 1q for every k ě 1; furthermore,

there is a bijection between the set of S-equivalence classes of strictly semistable sheaves
within N p2, 2kq and the symmetric product Sym2

´

HilbkpP3
q

¯

.

The next step is to describe the Zariski tangent space TEN pr, nq » Ext1
pE,Eq

when E is a stable quasitrivial sheaf.

Lemma 3.14. Let E P N st
pr, nq. If Q “ E__{E satisfies the following condition

ext1
pQ,Qq ´ hompQ,Qq “ 2n,

then ext1
pE,Eq “ 2n` rn´ r2

` 1. In particular, if E is a stable rank 2 unbalanced sheaf
with c3pEq “ ´2n, then ext1

pE,Eq “ 4n´ 3.

Proof. If E is stable, then h0
pEq “ 0 and hompE,Eq “ 1. The long exact sequence of

cohomology induced the exact sequence

0 Ñ E Ñ O‘r
P3 Ñ QÑ 0, (3.6)

yields h1
pEq “ h0

pQq ´ r ¨ h0
pOP3q “ n´ r.
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Applying the functor HompQ,´q to (3.6) we obtain:

HompQ,Qq – Ext1
pQ,Eq and Ext1

pQ,Qq – Ext2
pQ,Eq.

Next, applying the functor Homp´, Eq to (3.6) and we get the following exact sequence

0 Ñ HompE,Eq Ñ Ext1
pQ,Eq Ñ H1

pEq‘r Ñ Ext1
pE,Eq Ñ Ext2

pQ,Eq Ñ 0. (3.7)

It follows that

ext1
pE,Eq “ 1` rpn´ rq ´ hompQ,Qq ` ext1

pQ,Qq

“ rn´ r2
` 1` 2n,

as desired. When E is a rank 2 unbalanced sheaf, then, as we observed in the paragraph just
before Lemma 3.10, the quotient sheaf Q is the structure sheaf of a reduced 0-dimensional
scheme, which fulfills the hypothesis in the first part of the lemma.

Returning to the case r “ 2, Lemma 3.14 indicates that we should construct
an irreducible family of stable rank 2 quasitrivial sheaves on P3 of dimension 4n´ 3.

In order to construct the family of stable quasitrivial sheaves we are looking
for, we will recall certain general results regarding relative Ext sheaves to fix our notation,
see Section 1.4 or [16, 3] for more details. Let f : X Ñ Y be a morphism of schemes, and
let MpXq and MpY q be the category of OX-modules and OY -modules respectively. Let
F PMpXq. We define Extpf pF,´q to be the right derived functors of the left exact functor
f˚HomOX

pF,´q : MpXq ÑMpY q.

Let f : X Ñ Y a flat projective morphism of noetherian schemes and F , G
coherent OX-modules, flat over Y . For every u : Y 1 Ñ Y of noetherian schemes, we have
the base change morphism

τ ipuq : u˚Extif pF,Gq Ñ Extip2pp
˚
1F, p

˚
1Gq,

where p1 and p2 are the projections in the following diagram

X ˆY Y
1 p1 //

p2
��

X

f
��

Y 1 u
// Y.

If y P Y and u : Spec kpyq Ñ Y is the respective map, we denote the base change morphism
by

τ ipyq : Extif pF,Gq bY kpyq Ñ ExtiXy
pFy, Gyq.

The following result due to Lange will be used several times; see [16, Theorem
1.4].
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Theorem 3.15. Let y P Y be a point and assume the base change morphism τ ipyq :
Extif pF,Gq bY kpyq Ñ ExtiXy

pFy, Gyq to be surjective. Then

1. there is a neighbourhood U of y such that τ ipy1q is an isomorphism for all y1 P U ;

2. τ i´1
pyq is surjective if and only if Extif pF,Gq is locally free in a neighbourhood of y.

Our next lemma is the crucial technical fact to be explored in the desired
irreducible family of quasitrivial sheaves.

Lemma 3.16. Let f : X Ñ Y be a projective morphism of noetherian schemes with Y
reduced, and let F and G be coherent sheaves on X flat over Y . If Ext3

Xy
pFy, Gyq “ 0 and

the dimension of ExtiXy
pFy, Gyq is constant for i “ 1, 2 for all y P Y , then the base change

morphism τ 1
pyq is an isomorphism for every y P Y and Ext1f pF,Gq is locally free.

Proof. Since Ext3
Xy
pFy, Gyq “ 0, the base change morphism is τ ipyq is trivially surjective.

By the first item of Theorem 3.15, we have that the sheaf Ext3f pF,Gq is zero and item piiq

shows that τ 2
pyq is surjective. Applying Theorem 3.15 again for i “ 2, we get that τ 2

pyq

is an isomorphism. Moreover, [20, Lemma 1, p. 51] implies that Ext2f pF,Gq is local free.
Finally, applying Theorem 3.15 again for i “ 1, we obtain that τ 1

pyq is an isomorphism
and, since ext1

Xy
pFy, Gyq is constant, [20, Lemma 1, p. 51] implies that Ext1f pF,Gq is locally

free.

We are finally in position to construct the family of quasitrival sheaves we are
looking for; let Hi the universal sheaf for the Hilbert scheme of i points on P3

ˆHilbipP3
q.

Consider the following diagram

Hilb1
pP3q ˆ Hilbn´1

pP3q

P3 ˆ Hilb1
pP3q ˆ Hilbn´1

pP3q

p1tt p2 **

f

OO

P3 ˆ Hilb1
pP3q P3 ˆ Hilbn´1

pP3q,

Let

U :“ tpq, Zq P Hilb1
pP3
q ˆ Hilbn´1

pP3
q | q R Z , Z “ Zredu

open
Ă Hilb1

pP3
q ˆ Hilbn´1

pP3
q,

and set X :“ P3
ˆ U with π : X Ñ U being the canonical projection. Define E i :“

Extiπpp˚1H1, p˚2Hn´1
q. Let pq, Zq be a point in U and let τ ipq, Zq be the corresponding base

change morphism, that is,

τ ipq, Zq : Extiπpp˚1H1, p˚2Hn´1
q b kpq, Zq Ñ ExtiP3pIq, IZq.
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Proposition 3.10 and Lemma 3.16 shows us that E1 is locally free on U . Note that, by
Theorem 3.15, τ 0

pq, Zq is an isomorphism, that is, for every pq, zq P U we have

τ 0
pq, Zq : Ext0πpp˚1H1, p˚2Hn´1

q b kpq, Zq
„
Ñ HomP3pIq, IZq.

However, HomP3pIq, IZq “ 0 for every pair pq, Zq P U , which implies that

Ext0πpp˚1H1, p˚2Hn´1
q “ 0

as well. In this case, by [16, Corollary 4.5], there is an universal extension H on P3
ˆH

with H :“ PppE1
q
_
q such that for every h P H, the restriction Eh :“ H|P3ˆthu is a nonsplit

extension of two sheaf of ideals of 0-dimensional subschemes of P3 of the following form

0 Ñ IZ Ñ E Ñ Iq Ñ 0. (3.8)

In other words, every member Eh of the family H satisfies the exact sequence in display
(3.8), and therefore is an unbalanced sheaf; since stability is an open condition, Proposition
3.12 guarantees that there is an open subset H 1

Ă H whose projection H 1
Ñ U is surjective

and such that Eh is stable for every h P H 1. Therefore, H|H 1 is a family of stable rank
2 quasitrivial sheaves parametrized by the scheme H 1, whose dimension can be easily
computed as follows

dimH 1
“ dimU ` ext1

pIq, IZq ´ 1 “ 3` 3pn´ 1q ` n´ 3 “ 4n´ 3.

Moreover, Lemma 3.14 yields ext1
pE,Eq “ 4n´ 3.

Theorem 3.17. For every n ě 3, N p2, nq contains an irreducible component of dimension
4n´ 3.

Proof. Now N p2, nq is a coarse moduli space, so our family H on XˆH 1 gives us a modular
morphism Ψ : H 1

Ñ N p2, nq whose image is precisely the subset of stable unbalanced
sheaves. However, as we have seen in Proposition 3.12, the representation of an unbalanced
sheaf as an extension of the ideal sheaf of a point by the ideal sheaf of a 0-dimensional
scheme is not unique, meaning that the morphism Ψ is not injective. Nonetheless, we
argue that it is a quasi-finite map.

Indeed, note that the Lemma 3.11 shows that an unbalanced sheaf can be
represented as an extension of an ideal sheaf of a point by an ideal sheaf of a reduced
0-dimensional scheme in at most n different ways. In other words, if E P Im Φ Ă N p2, nq,
then Φ´1

pEq consists of at most n different points.

This means that the dimension of image of Ψ in N p2, nq is equal to the
dimension of H. Since every E P Im Ψ satisfies

dimTEN p2, nq “ ext1
pE,Eq “ 4n´ 3 “ dim Im Ψ

we conclude that the closure of Im Ψ within N p2, nq is an irreducible component of N p2, nq,
as desired.
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3.2 Irreducible component of N pr, nq

In this section we will construct an irreducible component of N st
pr, nq whenever

r ă n, where the previous section will serve as an induction step.

We begin by generalizing the notion of unbalanced sheaf introduced in the
previous section to quasitrivial sheaves of any rank r ě 2.

A quasitrivial sheaf E of rank r is called unbalanced if it admits an epimorphism
E Ñ Iq to an ideal sheaf of a point q P P3, and it does not admit a morphism Iq Ñ E such
that the composition E Ñ Iq Ñ E is the identity. Note that if E is unbalanced, then one
can consider the kernel of E Ñ Iq and the following exact sequence

0 Ñ F Ñ E Ñ Iq Ñ 0,

with F being a µ-semistable quasitrivial sheaf of rank r ´ 1 and c3pF q “ ´2pn ´ 1q.
Moreover, the second condition in the definition implies that the above sequence does not
split. Therefore, the present definition generalizes to quasitirival sheaves the notion of
unbalanced rank 2 torsion free sheaves present at the beginning of Section 3.1.

Next lemma guarantees the existence of stable unbalanced sheaves.

Lemma 3.18. Let r ă n be positive integers. There exists a stable unbalanced sheaf
E P N pr, nq such that E can be written as an extension of the following form

0 Ñ F Ñ E Ñ Ip Ñ 0,

with F P N pr ´ 1, n´ 1qst and tpu Y SuppQF “ tp1, . . . , pn} distinct points in P3.

Proof. Let p1, . . . , pn be n points in P3 distinct with each other. Let pϕ,Op1Y...Ypnq be
an element in QuotpO‘r

P3 , nq. Note that ϕ is defined by the choice of n vectors in Cr:
αi “ pα1,i, . . . , αn,iq for i “ 1, . . . , r. Choose αi’s such that αi ‰ αj for i ‰ j, defining a
matrix

αnˆr “

»

—

—

–

α1,1 ¨ ¨ ¨ α1,r
... . . . ...

αn,1 ¨ ¨ ¨ αn,r

fi

ffi

ffi

fl

.

Now, we can choose a matrix

Arˆr´1 “

»

—

—

–

a1,1 ¨ ¨ ¨ a1,r´1
... . . . ...
ar,1 ¨ ¨ ¨ ar,r´1

fi

ffi

ffi

fl

such that the product α ¨ A has the row i equal zero for i “ 1, . . . , n. The choice of A in
this way gives a map O‘r´1

P3 Ñ O‘r
P3 such that the composition O‘r´1

P3 Ñ O‘r
P3

ϕ
Ñ Op1Y...Ypn
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vanishes at Opi
. So we can form a diagram

0

��

0

��

0

��
0 // F //

��

O‘r´1
P3

//

��

Op1Y...Yp̂iY...Ypn
//

��

0

0 // E //

��

O‘r
P3

//

��

Op1Y...Ypn
//

��

0

0 // Ipi
//

��

OP3 //

��

Opi
//

��

0

0 0 0.

That is, for every choice of 1 ď i ď n, we can write E as extension of F and Ipi
with

SupppQF q “ tp1, . . . , p̂i, . . . , pnu.

We claim that E must be stable. Indeed if E is not stable, that is, there is
F 1 ãÑ E such that

h0F 1 ă
rkF 1 ¨ n

r
, (3.9)

by Theorem 2.11. By the above construction, we can write E as extension of F and Ipi

such that pi R SuppQF 1 “ H. By Lemma 3.20, HompF 1, Ipi
q “ 0, so we have the following

diagram
0

��

0

��
0 // F 1

��

F 1

��

0

  
0 // F // E // Ipi

// 0.

Now we have h0
pQF q “ n´ 1, and note that

h0QF

rkF “
n´ 1
r ´ 1 “

n´ r ` r ´ 1
r ´ 1 “

n´ r

r ´ 1 ` 1 ą n´ r

r
` 1 “ n

r
.

By (3.9), it follows that,

h0F 1 ă
rkpF 1q ¨ n

r
ă

rkpF 1q ¨ h0pQF q

rkpF q .

But since F is stable, this cannot happen. Therefore E must be stable.

Corollary 3.19. If r ă n, then N pr, nqst ‰ H.

Lemma 3.20. Let pϕ,QF q P QuotpO‘r
P3 , nq and pψ,QGq P QuotpO‘s

P3 , kq such that the
support of QF and QG does not intersect. Let F “ kerϕ and G “ kerψ. Then

ext1
pG,F q “ rkpGqph0

pF q ` h0
pQF q ´ rkpF qq,
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and
hompG,F q “ rkG ¨ h0

pF q.

Proof. We have two short exact sequences:

0 Ñ F Ñ O‘r
P3 Ñ QF Ñ 0 (3.10)

and
0 Ñ GÑ O‘s

P3 Ñ QF Ñ 0. (3.11)

Apply HompQG,´q to sequence (3.10) and we get

0 Ñ HompQG, F q Ñ HompQG,O‘r
P3 q Ñ HompQG, QF q

Ñ Ext1
pQG, F q Ñ Ext1

pQG,O‘r
P3 q Ñ Ext1

pQG, QF q. (3.12)

Note that, by the local-to-global spectral sequence and the hypothesis that SupppQF q X

SupppQGq “ H, it follows that ExtipQG, QF q “ 0 for i ě 0. By Serre’s duality,

ExtipQG,O‘r
P3 q – H3´i

pQGq
‘r.

Since dimQG “ 0, we have ExtipQG,O‘r
P3 q “ 0 for i ď 2. Thus, by (3.12), ExtipQG, F q “ 0

for i ě 0.

Now apply Homp´, F q to (3.11) to get

0 Ñ HompQG, F q Ñ HompO‘s
P3 , F q Ñ HompG,F q

Ñ Ext1
pQG, F q Ñ Ext1

pO‘s
P3 , F q Ñ Ext1

pG,F q Ñ Ext2
pQG, F q. (3.13)

By the above, (3.13) give us

HompG,F q – H0
pF q‘s and Ext1

pG,F q – H1
pF q‘s.

Finally, taking cohomologies on (3.10),

0 Ñ H0
pF q Ñ

–Cr

h nl j

H0
pO‘r

P3 q Ñ H0
pQF q Ñ H1

pF q Ñ

0
h nl j

H1
pO‘s

P3 q .

Taking dimensions:
h1F “ h0F ` h0QF ´ rkF,

and note that the same holds for G. Summing up everything,

ext1
pG,F q “ rkG ¨ h1

pF q

“ rkpGqph0
pF q ` h0

pQF q ´ rkpF qq.
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By Lemma 3.14, we must find a flat family of stable sheaves on N pr, nq with
dimension 2n` rn´ r2

` 1. For the rank 2 case, our component was given, essentially, by
PpExt1

pIp, IZqq, for p P P3 and Z “ tp1, . . . , pn´1u all distinct from each other. By Lemma
2.9, we can write E P N pr, nq as extension of F P N ps, kq and G P N st

pr´s, n´kq. Hence,
we can try to find a combination of rs, ks such that the dimension of PpExt1

pG,F qq “

2n` rn´ r2
` 1.

Suppose N ps, kq has an irreducible component Hs,k of dimension 2k`sk´s2
`1.

In this case the dimension of this family would be given by:

Hs,k
h nl j

2k ` sk ´ s2
` 1`

Hr´s,n´k
h nl j

2pn´ kq ` pr ´ sqpn´ kq ´ pr ´ sq2 ` 1`

Ext1 G,F
h nl j

pr ´ sqpn´ kq´1. (3.14)

Moreover, we could assume F and G to be stable since stability is an open property.

Now, in order to this to work we need to find which values rs, ks satisfies (3.14)
equal to 2n` rn´ r2

` 1. Solving this in terms of rs, ks we find

rs, ks “ rs, n´ r ` ss,

that is, for each choice of s, we take k “ n´ r`s and we would have Hs to have dimension
2n` rn´ r2

` 1.

Now observe that by choosing 1 ď s ď r so k “ n ´ r ` s, that is, F is in
N ps, n´ r ` sq and, in this case, G is in N pr ´ s, n´ pn´ r ` sqq “ N pr ´ s, r ´ sq. But
since we are assuming F and G to be stable, by Lemma 3.2, the only case that we need to
consider is when r ´ s is equal to 1, hence G “ Ip for p P P3. We now make this precise
following the idea used for the rank 2.

We will argue by induction. The case r “ 2 is already done, so suppose we
have a family Hr,n that gives us an irreducible component Hr,n of N pr, nq with dimension
2n ` rn ´ r2

` 1, that is, Hr,n is sheaf on P3
ˆ Hr,n such that for every h P Hr,n,

Hr,n|h P N pr, nqst.

Proposition 3.21. Let F and G be torsion free sheaves on P3 defined by the sequences

0 Ñ F Ñ O‘r
P3 Ñ QF Ñ 0 (3.15)

and
0 Ñ GÑ O‘s

P3 Ñ QG Ñ 0, (3.16)

where QF and QG are supported on 0-dimensional subschemes of P3. If SuppQF X

SuppQG “ H, then

• Ext1
pF,Gq “ rkpF q ¨H1

pGq,
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• Ext2
pF,Gq “ rkpGq ¨H0

pQF q

• Ext3
pF,Gq “ 0.

Proof. First, taking cohomologies on the sequences defining F and G we obtain that
H2
pF ptqq “ H2

pGptqq “ 0 for all t P Z. Now, apply HompQF ,´q to sequence (3.16)
and we obtain ExtipQF , Gq “ 0 for i “ 0, 1, 2 and Ext3

pQF , Gq – rkG ¨ H0QF . Apply
Homp´, Gq to sequence (3.15) and we get Ext3

pF,Gq “ 0, Ext2
pF,Gq “ rkG ¨ H0

pQGq

and Ext1
pF,Gq “ rkF ¨H1

pGq, as we wanted.

Remark 3.22. Let F be a torsion free sheaf on P3 defined by sequence (3.15). Note that
if F is stable, then H0

pF q “ 0. Therefore, taking cohomologies on sequence (3.15), we get
that H0

pQF q “ H0
pO‘r

P3 q ‘H
1
pF q, that is

h1
pF q “ h0

pQF q ´ rkpF q. (3.17)

Consider the following diagram

Hilb1
ˆHr´1,n´1

P3 ˆ Hilb1
ˆHr´1,n´1

p1uu p2 ))

f

OO

P3 ˆ Hilb1 P3 ˆHr´1,n´1,

where Hr´1,n´1 denotes the irreducible component given by the induction hypothesis on
N pr ´ 1, n´ 1q.

Define

U :“ tpy, F q P Hilb1
ˆHr´1,n´1 | y R SuppQF , SuppQF “ pSuppQF qredu

as an open subset of Hilb1
ˆHr´1,n´1 and let X :“ P3

ˆ Y with π : X Ñ U the projection.

Let E i :“ Extiπpp˚1H1, p˚2Hr´1,n´1q. By Proposition 3.21 and Lemma 3.16, E1 is a
locally free on Hilb1

ˆHr´1,n´1 sheaf whose fibres over a point py, F q P P3
ˆN pr´1, n´1qst

is Ext1
pIy, F q for every y R SuppQF .

Note that HomP3pIp, F q “ 0 for every F P N pr ´ 1, n´ 1qst. So, by Theorem
3.15, E0

“ 0 and [16, Corollary 4.2] implies that there is an universal extension H on
X ˆ H with H “ PppE1

q
˚
q such that for every h P H, the restriction H|h is a nonsplit

extension the following form

0 Ñ F Ñ E Ñ Iy Ñ 0. (3.18)

In other words, every member Eh of the family H satisfies the exact sequence
in display (3.18), and therefore is an unbalanced sheaf; since stability is an open condition,
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Proposition 3.18 guarantees that there is an open subset H 1
Ă H whose projection H 1

Ñ U

is surjective and such that Eh is stable for every h P H 1. Therefore, H|H 1 is a family of
stable rank r quasitrivial sheaves parametrized by the scheme H 1, whose dimension can
be computed as follows

dimH 1
“ dimU ` ext1

pIp, F q ´ 1
“ 3` 2pn´ 1q ` pr ´ 1qpn´ 1q ´ pr ´ 1q2 ` 1` pn´ 1´ pr ´ 1qq ´ 1
“ 2n` rn´ r2

` 1.

Note that Lemma 3.14 implies ext1
pE,Eq “ 2n` rn´ r2

` 1.

Theorem 3.23. Let r ă n be positive integers. N pr, nq contains an irreducible component
of dimension 2n` rn´ r2

` 1.

Proof. N pr, nq is a coarse moduli space, so our family H on X ˆH 1 gives us a modular
morphism Ψ : H 1

Ñ N pr, nq whose image is precisely the subset of stable unbalanced
sheaves. However, as we have seen in Proposition 3.18, the representation of an unbalanced
sheaf as an extension of the ideal sheaf of a point by a quasitrivial sheaf supported in
a 0-dimensional scheme is not unique, meaning that the morphism Ψ is not injective.
Nonetheless, we argue that it is a quasi-finite map.

Indeed, note that the Lemma 3.11 shows that an unbalanced sheaf can be
represented as an extension as in (3.18) in at most n different ways. In other words, if
E P Im Φ Ă N pr, nq, then Φ´1

pEq consists of at most n different points.

This means that the dimension of image of Ψ in N pr, nq is equal to the dimension
of H. Since every E P Im Ψ satisfies

dimTEN pr, nq “ ext1
pE,Eq “ 2n` rn´ r2

` 1 “ dim Im Ψ

we conclude that the closure of Im Ψ within N pr, nq is an irreducible component of N pr, nq,
as desired.

We end this chapter with a graph that summarizes our results.
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Here N pr, nq is represented by the points in the picture where n is running along
x-axis and r along y-axis. Red dots are the points where r “ n and we have the bijection
with Symn

pP3
q. Green dots are the points where we know that N pr, nq is irreducible,

therefore our component constructed in Chapter 3 gives a description to N pr, nq. Yellow
dots are the points are we have an irreducible component, but we do not know whether it
is the only one. As we have seen in Chapter 3, we should only care about points bellow
the line r “ n, because N pr, nq “ H whenever r ą n.

Remark 3.24. We have restricted ourselves to P3 from Chapter 3 onwards because we
believe that this is the most interesting case, deserving special attention; as explained in
Remark 3.7, it is on dimension 3 that we have irreducibility results for the Quot schemes
of points. However, most of the results contained in these sections can be generalized to
higher dimensional projective spaces with little effort. Indeed, one can check that the
moduli space of quasitrivial sheaves on Pd, namely the moduli space of semistable sheaves

MP
d for P ptq “ r ¨

ˆ

t` d

d

˙

´ n,

admits an irreducible component of dimension

pr ´ 1` dqn´ r2
` 1

when r ă n, and whose generic point corresponds to a stable unbalanced sheaf.
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