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O arquivo digital corresponde à versão final da Tese defendida pelo aluno Leonardo José
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Resumo

O modelo de carga–transferência de carga–polarização dipolar, baseado na Teoria
Quântica de Átomos em Moléculas, consegue estimar valores teóricos das derivadas do
momento de dipolo elétrico molecular e intensidades no infravermelho com pequeno erro
numérico. Valores calculados com métodos teóricos sofisticados tendem a concordar com
os valores experimentais dentro de uma pequena margem de erro.
Para os modos normais fora–do–plano, incluir os momentos de dipolo atômico e, con-
sequentemente, o termo de polarização dipolar, é mandatório para obter uma descrição
acurada das mudanças na densidade eletrônica durante pequenas amplitudes vibracionais.
A inclusão do termo de polarização dipolar também é importante para descrever corre-
tamente a densidade eletrônica para distorções de maior amplitude. No caso do modo
normal fora–do–plano, a tendência dos átomos sp2 em adotar uma geometria sp3 cresce
com a amplitude da distorção angular partindo da geometria de equiĺıbrio. Os termos de
polarização também são importantes para reproduzir as intensidades no infravermelho,
dado que modelos contendo apenas cargas atômicas irão subestimar a transferência de
carga por ignorar os efeitos de relaxação de contrapolarização.
Considerando os modos normais de estados de transição SN2 , a principal contribuição
para a intensidade tem origem nos termos de transferência de carga entre o nucleófilo
e o grupo de sáıda, passando pelo carbono eletrof́ılico. Quando os átomos vibram den-
tro do modo normal imaginário, as mudanças na densidade eletrônica do sistema são
consistentes com o mecanismo de reação. Particularmente, a direção dos termos de trans-
ferência de carga corresponde à direção do movimento dos elétrons representado pelo uso
das clássicas setas curvas. A diferença entre os termos de transferência de carga do nu-
cleófilo e do grupo de sáıda reflete a tendência do átomo de carbono em receber elétrons.
Contribuições de polarização dipolar resultam da inversão da geometria molecular e da
substituição do grupo de sáıda por um nucleófilo com diferente eletronegatividade. Esses
resultados mostram que o modelo de carga–transferência de carga–polarização dipolar
pode, portanto, ser empregado no estudo de reações qúımicas.
Vibrações moleculares são determinadas por constantes de força provenientes das
derivadas de segunda ordem da energia do sistema. Como a energia total resulta de
uma soma de contribuições atômicas, a constante de força também pode ser dividida em
termos atômicos. Para calcular esses termos, modifica-se o método das matrizes FG de
Wilson adicionando uma terceira dimensão à matriz Hessiana, contendo as derivadas de
segunda ordem dos termos IQA. O método é capaz de reproduzir valores experimentais e
teóricos.
A magnitude das constantes de força recebe maior contribuição da componente de
Coulomb a de potenciais intra–atômicos. Contribuições de troca e correlação são mais
importantes para as constantes de força de estiramento de moléculas diatômicas homonu-
cleares. O aumento da ordem de ligação é associado com um aumento da componente de
Coulomb da constante de força. O refinamento da metodologia deve levar a um melhor
entendimento da superf́ıcie de energia potencial, tornando-se uma ferramenta auxiliar na
construção de campos de força.



Abstract

A charge-charge transfer-dipolar polarization model, based on the Quantum Theory of
Atoms in Molecules, successfully estimates theoretical dipole moment derivatives and in-
frared intensities determined directly from wavefunction calculations within numerical
errors. High quality quantum level calculations usually agree with experimental measure-
ments within a few percent.
For out–of–plane vibrations, the inclusion of atomic dipole moments, i.e. dipolar polariza-
tion effects, is very important to obtain accurate electronic density descriptions for small
amplitude vibrations. They can be expected to be just as important for large molecu-
lar distortions. For out–of–plane bendings, the sp2 to sp3 tendency will be increased for
larger angular movements from equilibrium. These polarizations have been found to be
important for predicting accurate intensities for most molecules. Models containing only
atomic charges will tend to underestimate charge transfer owing to the charge transfer –
dipolar polarization vibrational relaxation effect.
Considering the imaginary normal mode of SN2 transition states, the principal contri-
butions are the charge transfers that occur between the nucleophile and leaving group
through the carbon atom. As the atoms vibrate, the changes in the molecular electronic
density are consistent with the mechanism of the reaction itself and the direction of CT
vectors corresponds to the movement of electrons as described by the classical curved
arrows representation of the reaction mechanism. The difference between the charge
transfer of the nucleophile and the leaving group indicates the tendency of carbon to
receive charge along the reaction coordinate. Dipolar polarizations contributions results
from the inversion of the molecular geometry and from the substitution of LG by Nu with
different electronegativities. These results show that the charge- charge transfer-dipolar
polarization QTAIM formulation provides a much more accurate and detailed description
of electronic density changes for small amplitude vibrations than other available models.
It can readily be applied to larger molecular distortions as well and may be useful to study
chemical reactivity.
Molecular vibrations are determined by force constants, which arise from the potential
energy second derivatives. Since the energy of a molecular system results from a sum
of atomic terms, the force constant can also be divided into atomic contributions. In
order to calculate such contributions, a modification of Wilson’s FG method was made,
in which a new dimension is added to the Hessian matrix. The new dimension contains
second derivatives of IQA contributions to the total energy of the system. The method is
able to reproduce experimental and theoretical data obtained with analytic methods.
The magnitude of the force constants receive major contributions from the Coulomb and
intra–atomic potentials. Exchange-correlation contributions, however, appear as deter-
mining factors only for the homonuclear diatomic molecules. The increase in bond order
is accompanied by the increase in the Coulomb contribution, while exchange-correlation
and intra-atomic terms remain almost unchanged. Although the results herein are incipi-
ent, the refinement of the methodology can lead to a better understanding of the potential
energy surface and can act as an auxiliary tool in designing force fields for molecular me-
chanics.
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Chapter 1

Atoms in Molecules

The concept of “atom” was first introduced by early Greek philosophers.
Thales of Miletus proposed water to be the primordial matter of all things. Anaximenes
adopted a similar idea, defining air as primordial matter. Heraclitus, in turn, attributed
this same property to fire. The first definition of an atomistic philosophy, however, came
from Democritus (470-380 BCE). Although we cannot treat Democritus’ atom as a real
scientific model, the similarities between his hypothesis and the modern concept of atom
are startling. The properties of his atoms are as follows:

� The number of atoms is infinite, they are identical in nature, but differ in size and
shape. The observed characteristic of things arises not only from their different
shapes, but also from their relative positions;

� Atoms are always in ceaseless motion, that can be changed through pressure.

These properties were sufficient to describe the different states of aggregation of matter
(solid, liquid, and gas) and lead to an exact definition of “density”[1].

Later, Empedocles, Aristotle and other philosophers also contributed to the
atomistic philosophy. Democritus’ ideas, however, were never forgotten and the first
scientific model of the atom would see the light two thousand years later, formulated by
John Dalton (1766-1844). Dalton was himself highly influenced by Newton’s (1642-1727)
corpuscular theory that was based in Boyle’s (1626-1691) theory of the behavior of gases.
Dalton’s observations on pressure and solubility of gases in water lead him to assume that
atoms are indivisible solid particles that can combine to form “compound atoms”. This
assumption allowed the determination of relative atomic weights and chemical formulas
[2].

The next great advance in the atomic theory was the discovery of the electron
by J. J. Thomson (1856-1940). Since atoms are neutral in charge, the existence of electrons
led Thomson to state that an atom was not just a small solid particle, but a sphere
of positive charges that has electrons attached to it. A couple of years later, Ernest
Rutherford (1871-1937) was analyzing the scattering pattern of alpha particles through
a very thin gold foil. He discovered that the atom was not a massive sphere, but it was
composed of one small and positively charged nucleus surrounded by electrons[3].

However, the model of Rutherford faced a problem, it could not properly ex-
plain the spectra of hydrogen, and there was no explanation of why the electrons does not
collapse into the nucleus, as predicted by the Coulomb law. The explanation came through
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the works of Niels Bohr (1885-1962). Influenced by the photoelectric effect described by
Einstein, Bohr proposed the following postulates:

� An atom can only exist in stationary states, which corresponds to a well-defined
value for the total energy of the system;

� If any frequency of radiation is emitted by the atom, then the radiation energy
equals the difference between two stationary state energies.

Bohr determined the quantized energy level of the hydrogen by restricting the
momentum of electron orbits to integer multiples of the reduced Planck constant. The full
understanding of the energy quantization came with the introduction of the Schrödinger
(1887-1961) wave–equation:

ĤΨ = EΨ (1.1)

where Ĥ is the Hamiltonian operator, Ψ is the wavefunction and E is the energy eigen-
value. When solving equation 1.1 the quantization of the energy eigenvalues emerges
naturally, since the equation can only be solved for certain values of E. For most ap-
plications in chemistry, although analytic solutions are only available for hydrogen and
hydrogen-like atoms, ab initio methods can solve equation 1.1 for a molecular system with
great accuracy, being the state of art1 in the theoretical framework.

According to the School of Copenhagen interpretation, the squared wavefunc-
tion is a probability distribution from which the molecular electronic density function, ρ,
and the corresponding energy can be obtained. Every observable property of a molecule
can be obtained directly from ρ (which is, itself, observable) through some mathematical
operation. Properties of atoms and any information about their existence in a molecule
are provided by the Quantum Theory of Atoms in Molecules (QTAIM) formulated by
Richard Bader[4]. The brilliancy of Bader’s theory relies on the fact that it does not try
to define atoms to build molecules, but it starts from a well–defined molecule and extract
the atoms from its electronic density.

1.1 Quantum Theory of Atoms in Molecules

The QTAIM can be summarized to a set of topological elements that identify
the atoms and their corresponding atomic basins in the molecular electron density. Once
the atomic basins are found, atomic properties are obtained via the integration of ρ
within the limits of each atomic basin. Consider a molecular system of N electrons into
the nuclear arrangement whose coordinates are simply denoted by X⃗ and the coordinates,
both spatial and spin, of the electrons are denoted by x⃗. The wavefunction of this system
is Ψ(x⃗; X⃗). After solving equation 1.1 the probability density of finding electron 1 in the
infinitesimal space dτ1 is equal to:

∑
spins

[∫
dτ⃗2

∫
dτ⃗3 · · ·

∫
dτ⃗NΨ(x⃗; X⃗)∗Ψ(x⃗; X⃗)

]
dτ⃗1 (1.2)

1Dirac equation accounts for relativistic effects, however, the Schrödinger equation remains the base
of theoretical and quantum chemistry.
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(a) electron density, ρ, of
H2O. The lateral bar indi-
cates the magnitude of the
electron density in units of
e · bohr−3.

(b) Gradient vector field,
∇ρ, of H2O. Dotted lines
corresponds to the inter-
atomic (zero-flux) surfaces.

(c) Laplacian of the elec-
tron density, ∇2ρ, of H2O.
The lateral bar indicates the
magnitude of the electron
density in units of e ·bohr−5.

Figure 1.1: Contour plots of ρ, ∇ρ, and ∇2ρ of the water molecule in the σv plane of
symmetry, calculated at the MP2/cc-pVTZ level of theory.

Therefore, the electron density is given by multiplying this probability by the total number
of electrons in the system:

ρ(x⃗; X⃗) = N
∑
spins

[∫
dτ⃗2

∫
dτ⃗3 · · ·

∫
dτ⃗NΨ(x⃗; X⃗)∗Ψ(x⃗; X⃗)

]
dτ⃗1 (1.3)

note that the electron density is also the probability density of finding electrons in dτ⃗ .
The contour plot of ρ for the water molecule is shown in Figure 1.1a. Near

the nuclei, the electron density increases, forming a cusp as consequence of the electron
concentration in the core shell of atoms. At the infinity, the electron density becomes
null. The black lines indicate isodensity surfaces, which means that every point on the
line have the same value of ρ. Starting from the the most external line, the value of ρ in
each isodensity surface is: 0.001, 0.002, 0.004, 0.008, 0.02, 0.04, 0.08, 0.2, 0.4, 0.8, 2.0,
4.0, 8.0, 20.0, 40.0 and 80.0 e · bohr−3.

The gradient of the electron density, in Figure 1.1b, is a set of vectors that
are always perpendicular to the isodensity surfaces and point towards the direction of
increasing electron density. The vectors start at infinity, where the electron density is
null, and end at a maximum point near a nucleus critical point. Following the vectors,
one will notice the existence of a particular surface that does not contain any gradient
path, i.e. at every point of this surface the gradient vector field flux is zero, that is:

n⃗ · ∇⃗ρ = 0 (1.4)

with n⃗ being the normal vector to the surface. This surface is called interatomic, or
zero-flux, surface and defines the boundaries of atoms in a molecular system. With the
definition of the intratomic surface, the atomic properties can be obtained by integrating
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over the atomic basin.2 The volume, v(ΩA), of atom A, for example, is given by:

v(ΩA) =

∫
ΩA

dτ⃗ (1.5)

Plenty of information about the electronic structure can be accessed using a function that
is also defined by ρ, such a function is the Laplacian of the electron density, ∇2ρ, as shown
in 1.1c. The Laplacian measures the curvature of ρ. In regions where the curvature is
negative, one finds a concentration3 of electron density, while regions where the curvature
is positive will present a depletion of electron density. That means:

∇2ρ

{
< 0 if ρ is locally concentrated

> 0 if ρ is locally depleted
(1.6)

The structure of∇2ρ correlates with the valence shell electron pair repulsion (VSEPR) and
redefines classical chemical concepts while using only the electron density as reference[5].

1.1.1 Atomic Properties

To extracted atomic properties from the molecular electron density we make
use of operators. The expectation value of an observable Ô is defined as:

⟨Ô⟩ =
∫

dτ⃗

∫
N

2

[
Ψ∗ÔΨ+ (ÔΨ)Ψ∗

]
dτ⃗ ′ (1.7)

with τ⃗ ′ being the spin coordinate. If the operator Ô is Hermitian4, the equation becomes:

⟨Ô⟩ =
∫
dτ⃗N

∫
Ψ∗ÔΨdτ⃗ ′ (1.8)

The second integral in equation 1.8 is a density function of the operator Ô. In this way,
it is convenient to introduce a property density function, ρO, which is:

ρO = N

∫
Ψ∗ÔΨdτ⃗ ′ (1.9)

and the observable value is simply:

⟨Ô⟩ =
∫
ρOdτ⃗ (1.10)

2According to Bader, an atom is the union of the nuclear attractor and its associated basin.
3The electronic density always decreases in the direction away from nuclei, however, in regions where

the electronic density is concentrating the decrease in electronic density occurs slower than in regions of
electronic depletion.

4The expectation value of an Hermitian operator is real and ⟨Ψ|Ô|Ψ⟩ = ⟨ÔΨ|Ψ⟩.
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Once the interatomic surfaces are found and the atomic basins are defined, the
expectation value of Ô for atom A can be calculated by setting up the integration limits:

⟨ÔΩA
⟩ =

∫
ΩA

ρOdτ⃗ (1.11)

1.2 QTAIM Charges and Dipoles

Considering the operator Ô in Equation 1.11 to be equal to 1, the resulting
integral will represent the electronic population, N(Ω), of atom A, that is:

N(ΩA) =

∫
ΩA

ρdτ⃗ (1.12)

which is the number of electrons inside the limits of the atomic basin. The atomic charge
of atom A, qΩA

, is simply the difference between the population and the atomic number
of A:

qΩA
= ZΩA

−NΩA
= ZΩA

−
∫
ΩA

ρdτ⃗ (1.13)

The resulting charge from the equation above is called AIM-charge 5 and, due
to the probabilistic nature of electrons, it isn’t restricted to integer numbers.

Determining the atomic charge, however, is often insufficient to describe some
molecular properties. For example, if one tries to reproduce the dipole moment of the
CO molecule using only AIM charges, the result does not agree the experimental data.
Aligning the molecule with the Cartesian z-axis and positioning the C atom at the left-
hand side, the magnitude of the experimental dipole moment, obtained with microwave
spectroscopy, is 0.112± 0.005 D pointing toward the O atom.

Considering that the dipole moment vector always points to the positive end,
we found a contradiction: considering only point charges, the oxygen must have a small
and positive charge, which isn’t supported by the difference in electronegativity of C and
O. The problem with this analysis is that it does not account for the anisotropy of the
electron density distribution inside the atomic basins. For example, using only atomic
charges, the molecular dipole moment is equal to:

p⃗ =
N∑

A=1

qΩA
r⃗ΩA

(1.14)

where N is the number of atoms in the molecule and r⃗ is the position vector.
The AIM charges for carbon and oxygen in CO at the QCISD/aug-cc-pVTZ

level of theory are +1.224e and −1.224e, respectively. If the dipole moment is calculated
using only the atomic charges its magnitude is equal to 6.646D. Not only the value of
the dipole moment is bigger than the experimental data, but its direction points to the
carbon atom. The explanation behind the disagreement between AIM and experimental
data relies on the fact that atoms in molecules cannot be taken as spherical and isotropic

5AIM-charges are also called “zero-flux” charges as a reference to the interatomic surfaces.



23

Figure 1.2: The experimental dipole moment for carbon monoxide is 0.112D. The electric
dipole moment vector always points to the positive end, or oxygen atom.

entities. In order to properly calculate the molecular dipole moment, one needs to include
the atomic dipole moments, mΩA

. In this, way we can write:

p⃗ =
N∑

A=1

[qΩA
r⃗ΩA

+ m⃗ΩA
] (1.15)

where the Cartesian components of the AIM atomic dipole moment of atom A are given
by[4]:

mΩ,x = −
∫
ΩA

xΩA
ρ(τ⃗)dτ⃗ (1.16)

mΩ,y = −
∫
ΩA

yΩA
ρ(τ⃗)dτ⃗ (1.17)

mΩ,z = −
∫
ΩA

zΩA
ρ(τ⃗)dτ⃗ (1.18)

where xΩA
, yΩA

, zΩA
means that the vector components are centred on the nucleus. Using

the Laplacian function, the anisotropy of the electron density in each atomic basin is
evidenced. The ∇2ρ(τ⃗) of the CO molecule is presented in Figure 1.3.

The red color indicates regions where there is a concentration of electron den-
sity. For the carbon atom we see a concentration of electrons on the left-hand side, so
the atomic dipole moment points to the right. For the oxygen atom we see a concen-
tration of charge near the interatomic surface, resulting in a atomic dipole moment that
also points to the right-hand side. Calculated atomic dipoles moments of C and O are,
respectively, 4.204D and 2.478D pointing to the positive direction of z. The sum of the
atomic dipoles with the charge contribution reproduces the experimental dipole moment
without contradicting the chemical knowledge.

1.3 The Interacting Quantum Atoms

The Interacting Quantum Atoms (IQA) [6] is an increasingly popular Energy
Decomposition Scheme (EDS) [7] based on QTAIM. The IQA approach was proposed in
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Figure 1.3: Laplacian of the electron density of carbon monoxide. The white dotted line
indicates the intratomic surface. According to the AIM population analysis, the carbon is
the positive atom as expected by the electronegativity series. The atomic dipole moments,
however, point to the oxygen atom. The summation of these vectors results in a dipole
moment vector pointing towards the oxygen atom, reproducing the experimental dipole
moment.

2005 and was inspired by earlier works[8, 9] that invoked six-dimensional integration to
obtain atomic contributions to potential energies. The IQA approach consists of divid-
ing the molecule’s total energy, ETotal

IQA , into a sum of intratomic and interatomic energy
components. The total molecular energy is then recovered by summing each individual
atomic energy contribution, EA

IQA, according to

ETotal
IQA =

N∑
A=1

EA
IQA (1.19)

where N is the total number of atoms in the system and A labels the atoms. Each atomic
term can be expanded as a sum of intra- and interatomic contributions such that equation
1.19 becomes

ETotal
IQA =

N∑
A=1

EA
Intra +

N−1∑
A=1

N∑
B>A

V AB
Inter (1.20)

where V AB
Inter corresponds to the potential energy between atoms A and B. The intratomic

terms encompasses the kinetic, T , as well as the electron-electron, Vee, and electron-
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nucleus potential energies Ven

EA
Intra = TA + V AA

ee + V AA
en (1.21)

EA
Intra can be seen as a measure of the intrinsic stability of an atom in the

molecule and turns out [10, 11] to behave like classic steric repulsion in van der Waals
complexes, as proven by successful fits to the Buckingham potential. The interatomic
contribution can also be split into several terms, that is:

V AB
Inter = V AB

nn + V AB
en + V AB

ne + V AB
ee (1.22)

The subscripts “e” and “n” stand for electron and nucleus, respectively. The term V AB
en

refers to the potential energy between the electrons from atom A and the nucleus of atom
B, whereas V AB

ne is the potential energy between the nucleus of atom A and electrons from
atom B.

The electron correlation term [12] is hidden inside both intratomic and inter-
atomic electron-electron potential, as stated by the following equations, 1.23 and 1.24:

V AA
ee = V AA

coul + V AA
xc (1.23)

V AB
ee = V AB

coul + V AB
xc (1.24)

Note that V AB
xc and V AA

xc both combine the exchange and electron correlation
energy. All interatomic terms are obtained directly from the integration of the electron
density over the volumes of both topological atoms A and B.

1.3.1 IQA terms from density matrices [6, 12]

Once the desired multi-electron wavefunction is found, the first- and second-
order density matrices can be respectively obtained as follows:

ρ1(τ⃗1, τ⃗ ′1) = Ne

∫
Ψ(τ⃗1, . . . , τ⃗Ne)Ψ(τ⃗ ′1, . . . , τ⃗Ne)

∗dτ⃗2 · · · dτ⃗Ne (1.25)

and

ρ2(τ⃗1, τ⃗2) =
Ne(Ne − 1)

2

∫
Ψ(τ⃗1, . . . , τ⃗Ne)Ψ(τ⃗1, . . . , τ⃗Ne)dτ⃗3 · · · dτ⃗Ne (1.26)

where τ⃗n is the vector encompassing both the spatial coordinates and the spin coordinates
for electron n while Ne is the total number of electrons.

According to the Born-Oppenheimer approximation, the multi-electron Hamil-
tonian is given by (in atomic units):

HNe = T̂ + V̂en + V̂ee = −
Ne∑
n=1

1

2
∇2

n −
Ne∑
n=1

N∑
A=1

ZA

rnA
−

Ne−1∑
n=1

Ne∑
l>n

1

rnl
(1.27)
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where T̂ is the one-electron kinetic energy operator, while V̂en and V̂ee correspond respec-
tively to the attractive electron-nucleus potential and electron-electron repulsive poten-
tial. The quantities rnA and rnl respectively refer to the distance between electron n and
nucleus A, and that between electron n and electron l while ZA is the nuclear charge
associated with atom A. The total energy is given by

ETotal = EElectronic + Vnn (1.28)

with the potential energy between two nuclei simply defined as

Vnn =
N−1∑
A=1

N∑
B>A

V AB
nn =

N−1∑
A=1

N∑
B>A

ZAZB

rAB

(1.29)

The electronic energy is obtained by solving the Schrödinger equation

ĤNeΨ(τ⃗1, . . . , τ⃗Ne) = EElectronicΨ(τ⃗1, . . . , τ⃗Ne) (1.30)

which results in

EElectronic =

∫ ∞

−∞
T̂ ρ1(τ⃗1, τ⃗

′
1)dτ⃗1 +

∫ ∞

−∞
V̂enρ1(τ⃗1, τ⃗

′
1)dτ⃗1

+

∫ ∞

−∞

∫ ∞

−∞
V̂eeρ2(τ⃗1, τ⃗2)dτ⃗1dτ⃗2 (1.31)

In order to compute individual terms for each atom, the topological partition-
ing method is invoked. For example, the kinetic energy contribution for atom A can be
written as:

TA =

∫
ΩA

T̂ ρ1(τ⃗1)dτ⃗1 (1.32)

The monoelectronic interatomic terms are obtained as follows:

V AB
en =

∫
ΩA

V̂ B
enρ1(τ⃗1, τ⃗

′
1)dτ⃗1 = −

∫
ΩA

ρ1(τ⃗1)ZB

r1B
dτ⃗1 (1.33)

The two-electron terms are obtained from the second-order density matrix,
which describes how electrons interact with each other

V AB
ee =

∫
ΩA

∫
ΩB

ρ2(τ⃗1, τ⃗2)r
−1
12 dτ⃗1dτ⃗2 (1.34)

if A = B, then:

V AA
ee =

1

2

∫
ΩA

∫
ΩA

ρ2(τ⃗1, τ⃗2)r
−1
12 dτ⃗1dτ⃗2 (1.35)

Equation 1.35 contains the Coulomb, V AB
Coul, exchange, V

AB
x , and correlation,
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V AB
corr, energy terms, which are made visible by rearranging:

V AB
ee =

∫
ΩA

∫
ΩB

ρ2(τ⃗1, τ⃗2)r
−1
12 dτ⃗1dτ⃗2 =

∫
ΩA

∫
ΩB

ρ(τ⃗1)ρ(τ⃗2)r
−1
12 dτ⃗1dτ⃗2

−
∫
ΩA

∫
ΩB

ρ1(τ⃗1, τ⃗2)ρ1(τ⃗2, τ⃗1)r
−1
12 dτ⃗1dτ⃗2 +

∫
ΩA

∫
ΩB

ρcorr2 r−1
12 dτ⃗1dτ⃗2

= V AB
Coul + V AB

x + V AB
corr (1.36)

Exchange and correlation terms are typically lumped together in the exchange-correlation
term V AB

xc = V AB
x + V AB

corr. Note that V AB
x is related to the covalency degree between

atoms A and B, as well the bond order[13]. The classical electrostatic term,V AB
coul , on the

other hand is related to the bond polarity and the degree of ionicity. The final term,
V AB
corr is responsible to increase the magnitude of the nucleus-electron potential energy

and decrease the electron-electron repulsion. All these terms constitute the so-called fine
structure[14] of ρ2.

∗ ∗ ∗

This chapter contains excerpts from texts previously published by the author. The fol-
lowing material was reprinted with permission:
Silva, A. F., Duarte, L. J., Popelier, P. L., Contributions of IQA electron correlation
in understanding the chemical bond and non-covalent interactions. Structural Chemistry,
31(2), 507-519, 2020, Springer Nature.
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Chapter 2

Experimental Infrared Intensities

Gas–phase vibrational intensities provide quantitative measures of dipole mo-
ment changes for small molecular distortions. These changes can be interpreted in terms
of changes in electronic density owing to molecular bond extensions and angle deforma-
tions. As such, they are important for testing quantum chemical and force field models
aimed at explaining chemical reactivity. As intensities are very sensitive measures of elec-
tronic density changes, they are also significant for assessing the quality of molecular wave
functions.

Many gas phase infrared intensities of fundamental bands were measured, from
the 1950s through the 1970s with dispersive infrared spectrometers having a wavelength
selector which encompasses a narrow slit and a segregating device, earlier a prism but
later on a diffraction grating (see Figure 2.1a). Owing to finite slit width problems,
these instruments had resolutions of a few wavenumbers[15, 16]. To accurately measure
integrated band intensities, the sample gas was usually subjected to high pressures through
the addition of an inert transparent gas in the sample cell. In this way, the rotational
lines were pressure broadened to a width comparable to the instrument resolution[17, 18].

Besides being work-intensive, errors could occur owing to incomplete pressure
broadening or even from pressure induced absorptions. Unlike the conventional dispersive
instruments, Fourier Transform Infrared spectrometers (FTIR), schematized in 2.1b, per-
forms a continuous spectral scan of a sample resulting in an interference pattern, called
an interferogram. The interferometer is coupled to a microcomputer that controls data
acquisition and processing.

Sharpe et al. at the Pacific Northwest National Laboratory (PNNL)[19–21]
made an impressive experimental advance. Through modifications in the traditional FTIR
apparatus, they were able to correct artifacts related to the source of IR light and interfer-
ence of black–body radiation. The spectra obtained with the modified equipment is made
available to the public at the National Institute of Standards and Technology (NIST)
Chemistry WebBook (webbook.nist.gov/chemistry). In their database, it is possible to
find hundreds of spectra obtained with spectrometers having much better resolutions,
about 0.1 cm−1, than those used for the earlier measurements. This is comparable to the
line widths of most rotational–vibrational transition bands at atmospheric pressure, so
little pressure broadening is necessary to obtain more accurate intensity values than those
determined with the low-resolution instruments. Moreover, uncertainties in absorbance
values were minimized by measuring multiple (usually 9 or 10) path length-concentration
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(a) Elements of a dispersive spectrometer. (b) Iterferometer used in FTIR spectrome-
ters.

Figure 2.1: A comparative drawing between dispersives and FTIR spectrometers.

burdens and fitting a weighted Beer’s law plot for each wavenumber channel.
An example of a PNNL spectra in given in Figure 2.2, a zoom is applied on the

region between 740 and 810 cm−1. Notice that it is possible to identify the fine lines of the
P and R branch. Given the high resolution and quantitative nature of their experimental
spectra, the PNNL intensities will be used as validation of the results presented in this
thesis. We start by comparing the new experimental data with the dispersive data and
ab initio calculations.

Figure 2.2: FITR spectrum of F2CO from the NIST/PNNL. A zoom-in of the 740-810
cm−1 region reveals the ro-vibrational transitions[19].

The intensity, A, in km · mol−1 of a normal mode is obtained by integrating
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Figure 2.3: Energy levels of a harmonic oscillator. The eigenvalue of Ψn is En.

the spectrum over the respective band, that is:

A =
1

γl

∫ ν̃f

ν̃i

ln

(
Po

Pf (ν̃)

)
dν̃ (2.1)

where ν̃i and ν̃f are the band limits, γ is the concentration and l is the optical path. Theo-
retical intensities, on the other hand, can be analytically obtained through the transition
dipole moment or numerically obtained by using elements of the Atomic Polar Tensor
(APT). If the first option is chosen and considering a harmonic model, the IR intensity
is given by:

A = ν̃m→n
8NAπ

3

3ch
⟨ψo

n|p̂|ψo
m⟩ (2.2)

where ν̃m→n is the vibrational frequency of the normal mode, p̂ is the dipole moment
operator and ψo

n and ψo
m are the wavefunctions of state n and m. The energy levels

associated with Ψn are schematized in Figure 2.3 Note that in order to be active in the
IR spectra a normal mode must obey the selection rules:

� The derivative o the molecular dipole moment with respect to the normal mode
coordinate is not null;

� m and n must differ by one unit, i.e. n−m = ±1.

2.1 FTIR and Dispersive Gas–Phase Fundamental In-

frared Intensities of halomethanes

For this initial study, the halomethane molecules were chosen to compare the
early low resolution results with intensities integrated from the NIST/PNNL data base
for two major reasons: first, these molecules contain some very weak bands, of a few
km · mol−1, as well as some very intense ones, of more than a 1000 km · mol−1; second,
there is a simple electronegativity model [22] permitting estimations of intensity sums
for substituted methane molecules. Carbon atom intensity contributions depend on the
average electronegativities of the terminal hydrogen and halogen atoms for this family
of molecules whereas the terminal atom contributions are constant values, dependent on
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their own electronegativities[22, 23]. Interestingly the square root of the carbon atom
intensity contribution is linearly related to the carbon 1s electron ionization energy that
is associated with the atomic charge on carbon[24].

The band intensities of the experimental PNNL spectra were integrated with
a homemade program, while low resolution intensity values were obtained from earlier
experimental work elsewhere in the literature that obeyed the following criteria for most
bands:

1. intensities must have been measured for all the fundamental ro-vibrational bands.

2. dispersions of Beer’s law plots must have been reported to obtain error estimates.

3. if the investigated molecule contained hydrogen atoms, error estimates must have
been reported for at least two isotopomers.

In order to obtain theoretical data, methane, fluoromethane and chloromethane
molecules had their geometries optimized and infrared intensities calculated at QCISD
level with aug-cc-pVTZ basis set with the Gaussian09 program[25]. Taking the com-
putational cost into account, the fluorochloromethane geometry optimization and inten-
sities were calculated at QCISD level of theory with the cc-pVTZ basis set. For the
bromomethanes MP2/cc-pVTZ was used. For iodomethane, a pseudopotential basis-set
(cc-pVTZ-PP) was used also at MP2 level.

Table 2.1 contains integrated intensity values calculated from the PNNL library
spectra, low resolution intensity values from work published in the last half of the 20th

century and the theoretical values calculated in this work. The frequency values to label
the fundamental bands were obtained by inspection of maximum absorbance values in the
PNNL spectra.

The low-resolution values are averages and standard deviations of data taken
from the cited references when more than one is given[26–56]. In a few cases no error
estimate could be made. Of the 60 bands listed in Table 2.1, 30 PNNL and low-resolution
intensity differences are within one standard deviation of the error estimate for the low
resolution values, five have residuals between one and two standard deviations and two
pairs have discrepancies between 2 and 3 standard deviations and three low resolution
intensity values are more than three standard deviations from their PNNL value. Of the
45 possible comparisons between the PNNL and low-resolution intensities, in Table 2.1, a
Root Mean Square Error (RMSE) of 23.5 km·mol−1 is calculated. This difference is greatly
inflated by three bands, ν̃ = 795 cm−1 of CCl4 and ν̃ = 846 cm−1 of CFCl3 that have
PNNL intensity values that are 66.7 and 57.4 km ·mol−1 above their low resolution values
and the overlapped bands, ν̃ = 1109 cm−1, 1210 cm−1, for CF3Cl that has a low resolution
intensity 102.5km · mol−1 superior to the PNNL value. Removing these intensities from
the calculation the RMSE is almost halved to 12.4 km ·mol−1

The rest of the possible comparisons in Table 2.1 have frequencies below 600
cm−1 and are not measurable with the PNNL spectrometers, so the low-resolution inten-
sities are remarkably good considering all the difficulties inherent in their measurement.

For most bands the PNNL values are larger than the low-resolution values.
This can be seen in the plot given in Figure 2.4, where the differences between the PNNL
and the low-resolution intensities are shown for each molecule. There is only one signif-
icant negative difference owing to the ν̃ = 1109 cm−1, 1210 cm−1 overlapped bands of
CF3Cl with the high intensity estimate for the low resolution measurement as mentioned
above. Of course, incomplete pressure broadening has long been known to be one of the
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Table 2.1: Frequencies,ν in (cm−1), and intensity values,(km · mol−1), from PNNL, APNNL, earlier
work Alow res., and ab initio calculations, Acalc, at four quantum levels: Fluoro- and chloromethanes at
QCISD/aug-cc-pVTZ, fluorochloromethanes at QCISD/cc-pVTZ, CH3Br at MP2/cc-pVTZ and CH3I at
MP2/cc-pVTZ(C,H) + cc-pVTZ-PP(I) level.

Molecule ν
∑

APNNL
∑

Alow res.
∑

Acalc

CH4 3157 67.6 68.4 ± 3.2[26, 37, 48] 67.8
1358 33.1 33.9 ± 1.9 28.3

CH3F 2980, 3006 90.0 80.3 ± 6.6[51, 52] 85.3
1464, 1467 9.7 9.5 ± 0.6 10.4
1048, 1182 108.9 103.8 ± 9.5 102.6

CH3Cl 2966, 3042 35.4 28.9 ± 2.1[51, 53–55] 31.6
1355, 1455 20.9 19.3 23.2

732 25.0 23.7 24.8
1015 4.0 3.5 ± 0.7 3.1

CH3Br 2972, 3056 23.8 22.3 ± 1.5 22.9
1305, 1445 26.6 27.0 ± 1.5 31.7

611 10.6 9.9 ± 1.8 10.2
952 7.1 7.2 ± 0.1 7.7

CH3I 2970 11.53 12.7 ± 0.9[56] 12.4
1251 21.56 20.7 ± 0.5 24.7
533 1.87 1.9 ± 0.0 0.4
3061 2.38 2.2 ± 0.1 1.6
1440 10.25 10.6 ± 0.2 9.5
880 9.19 8.9 ± 0.1 15.9

CH2F2 2948, 3014 69.9 64.6 ± 12.0[27–29] 65.6
1508, 1435 10.7 10.3 ± 0.6 16.6

1111, 1178, 1090 364.82 333.9 ± 41.6 363.2
529 N.A.i 4.8 ± 0.3 5.4

CHF3 3035 24.3 24.3 ± 0.7[30–32, 48] 24.0
1141, 1157 658.4 629.0 ± 65.6 654.3

700 13.2 13.3 ± 1.0 14.2
1378 88.0 86.1 ± 2.7 108.5
508 N.A. 4.6 ± 0.3 5.7

CF4 1298 1172.7
1123.5 ± 145.3

[39, 44–46, 48, 49] 1198.8
632 12.9 12.3 ± 1.6 16.2

CH2Cl2 2997 6.9 7.1 ± 0.3[29–33] 5.7
1430 0.8 1.5 ± 1.2 0.0

714, 757 131.4 107.2 ± 17.3 127.6
896 1.1 2.6 ± 2.0 0.9
1268 31.5 29.7 41.0

CHCl3 3034 0.2 0.4 ± 0.1[34–36] 1.0
678, 773 262.1 242.5 253.4

366 N.A. 0.5 0.3
1219 35.3 34.5 ± 6.4 45.0
262 N.A. 0.1 ± 0.1 0.1

CF3Cl 1109, 1212 984.9
1087.4 ± 112.5
[38, 40, 41, 47] 1061.0

785 28.8 31.5 ± 5.1 34.3
476 N.A. 0.0 0.0
562 N.A. 3.3 ± 0.3 5.0
348 N.A. 0.0 0.1

CF2Cl2 1095, 1152 467.49 467.6 ± 11.9[29, 40, 41] 504.9
442 N.A. 0.2 0.0
665 10.21 12.3 11.5
261 N.A. 2.6 0.0
475 N.A. 0.1 0.0
915 358.4 324.8 ± 20.9 375.2
432 N.A. 0.1 0.5

CFCl3 1085 161.76
158.0 ± 12.5

[40, 42, 43, 47] 179.3
539 0.11 1.1 1.5
147 N.A. 0.3 0.0
846 445.73 388.3 ± 21.4 468.7
394 N.A. 0.1 0.0
243 N.A. 0.0 0.0

CCl4 795 388.68 322 ± 60[34] 372.4
310 N.A. 0.20 ± 0.05 0.0

i Not Available
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most important sources of error in intensity measurements. At sufficiently high pressures
the rotational fine structure becomes completely smeared out to give bands smoother
contours. In these situations, the apparent intensity approaches the intensity that would
be measured if the slit width error were negligible. Insufficient pressure broadening is
expected to result in underestimates of the integrated intensity. This has been shown on
comparing the Wilson–Wells method with curve of growth measurements[15].

Figure 2.4: Graph of the differences between the PNNL and the earlier low resolution
infrared intensities reported in the literature.

In order to see the effect of basis set and electron correlation treatment level
on the theoretical values, it is convenient to examine their intensity sums for the fluoro-
chloromethanes for comparison with the experimental values. Table 2.2 contains the
QCISD/aug–cc–pVTZ, QCISD/cc–pVTZ and MP2/aug–cc–pVTZ calculated intensity
sums as well as the PNNL and low-resolution intensity sums.

Table 2.2: Experimental and theoretical infrared intensity sums for the fluorochlorometh-
anes (km ·mol−1).

Molecule PNNL Low resolution QCISD/aug–
cc–pVTZ

QCISD/cc–
pVTZ

MP2/aug–cc–
pVTZ

CH4 100.7 102.2 96.0 100.1 81.5
CH3F 208.6 193.6 203.4 213.0 195.7
CH2F2 445.4 408.8 445.5 459.6 446.7
CHF3 810.8 752.7 801.1 814.0 813.2
CF4 1185.6 1135.8 1214.7 1287.5 –

CH3Cl 85.3 75.4 82.6 87.2 76.8
CH2Cl2 171.7 148.1 175.2 181.8 173.9
CHCl3 297.6 277.4 299.3 316.4 316.1
CCl4 388.7 322.0 372.4 412.5 407.6
CClF3 1013.7 1122.2 – 1100.4 1068.2
CCl2F2 836.1 807.7 828.3 892.1 857.7
CCl3F 607.6 547.8 – 649.5 627.2
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The agreement between the PNNL and QCISD/aug–cc–pVTZ values is quite
good with an RMSE of only 8.4 km · mol−1. As the average of these PNNL intensities
is 135.8 km · mol−1 this corresponds to a 6.2% difference. The RMSE between the low-
resolution values and these theoretical ones is almost three times as much, 20.2 km·mol−1,
owing to the lower precision of the earlier measurements as mentioned earlier.

One of the largest differences between the PNNL and the theoretical QCISD/aug–
cc–pVTZ values occurs for ν̃ = 1378 cm−1 of CHF3 of 20.5 km ·mol−1, which has a 88.0
km · mol−1 experimental value for a 23% difference. The 1198.2 km · mol−1 calculated
value for ν̃ = 1298 cm−1 of CF4 overestimates the 1172.7 km ·mol−1 experimental value
by 25.5 km · mol−1 but this corresponds to only 2.2% of the band intensity. The next
largest deviation occurs for the experimental asymmetric stretching intensity of CCl4,
that is 16.3 km ·mol−1 larger than the calculated value. All other deviations are less than
10 km ·mol−1.

The use of an augmented basis set is warranted to obtain good accuracy. The
use of QCISD/cc–pVTZ basis sets for these same molecules results in an RMSE that is
twice as big as the one for the augmented basis set, 16.2 km · mol−1. The agreement
between the total PNNL intensities of fluorochloromethanes and the QCISD/cc–pVTZ
values is 32 km ·mol−1, whereas this difference is only a little higher for the low-resolution
values, 38 km · mol−1. These values seem high as the fluorochloromethanes have some
very intense bands. Their average PNNL intensity is 307.2 km ·mol−1, so these differences
correspond to 10.4% and 12.4% of the RMSE value. Based on these results, the use
of more accurate experimental intensity values becomes increasingly more important as
highly sophisticated basis set and electron correlation treatment alternatives are compared
to determine best agreements between theory and experiment.

2.1.1 Atomic contributions and the Electronegativity Model

The electronegativity model for intensities has been developed using low res-
olution intensities that were available at the time[22, 23]. This model assumes that
the mean dipole moment derivatives of the carbon atoms depend only on the average
electronegativities of their halogen substituents. Furthermore the halogen mean dipole
moment derivatives depend only on their own electronegativities. The model expresses
the total molecular intensity as a sum of individual atomic contributions, AA:

3N−6∑
k=1

Ak =
3N∑
A=1

AA (2.3)

where the sum on the left contains all the fundamental infrared intensities and the one
on the right sums over all the atoms in the molecule. As the squares of dipole moment
derivatives are proportional to the intensities these derivative can be used to calculate the
atomic contributions to the intensities. A training set consisting of CH4, CH3I, CH3Br,
CH3F, CHCl3, CHF3 and CF4 was used to determine the dynamic atomic contributions
for the halomethane family. This set of molecules, except for CH3Br and CH3I, is identical
to the one used in earlier study[23] with low resolution intensities. Training set atomic
contributions can then be used to calculate the total intensities of the other halomethanes.

Table 2.3 contains the atomic contributions obtained using the intensities of
both the high and low–resolution spectra. As can be seen, the agreement is very good
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with the largest difference of 27.8 km · mol−1 occurring for the carbon contribution for
CF4. This is less than 3% of its high-resolution estimate. Included in this table are theo-
retical values of these contributions calculated from QCISD/cc–pVTZ wave functions[57].
These dynamic intensity contributions correspond to the portion of the total intensity
obtained by displacing just the carbon, hydrogen, fluorine or chlorine atom according to
the molecule’s normal coordinates and summing over all the 3N − 6 vibrations. Figure

Table 2.3: Atomic contributions obtained using the intensities of both the PNNL, AC
PNNL,

and low-resolution spectra, AC
low res, and those calculated, AC

calc, at the QCISD/cc-pVTZ
level and cited in reference[58] (in km ·mol−1).

Molecule AC
PNNL AC

low res AC
calc

CH4
i 5.1 5.1 0.3

CH3F
i 95.7 97.9 86.3

CH2F2 299.4 307.1 303.8
CHF3

i 616.2 632.8 638.3
CF4

i 1046.0 1073.8 1029.7
CH3Cl

i 31.2 31.6 33.7
CH2Cl2 79.2 81.1 140.3
CHCl3

i 149.2 153.1 265.7
CCl4 241.3 246.4 354
CFCl3 389.5 398.3 542.9
CF2Cl2 573 586.5 735.9
CF3Cl 791.8 811 905.3

Terminal Atom Intensity Contribution
AH 10.3 18.1 17.3±8.1
AF 50.7 56.4 56.5±7.4
ACl 6.4 8.0 12.0±3.0

i Calibration set molecules used in reference [23]

2.5 contains a graph of the carbon and halogen atomic contributions obtained using the
electronegativity model and the high-resolution intensities against the QCISD/cc–pVTZ
values. As can be seen the fluoromethane results for carbon are very accurate as all their
points fall on the line representing exact agreement. On the other hand, the chloro- and
fluorochloromethane points deviate from this line by as much as 163 km · mol−1. The
higher the number of chlorines in the molecule the larger the deviations become. Only
the fluoromethane molecules appear to strictly follow the electronegativity model whereas
the molecules containing the more polarizable chlorine atoms deviate from it.

Figure 2.6 presents a plot of the square root of the dynamic carbon contri-
bution against the average electronegativity of the terminal atoms. The Mulliken-Jaffe
values in previous study were also used here: H, 7.17; F 12.18 and Cl, 9.38. As can
be seen there, all the dynamic contributions obtained from the PNNL spectra and the
electronegativity model show excellent agreement as expected. The QCISD/cc–pVTZ
values for the fluoromethanes are in good agreement with the electronegativity model
values whereas deviations with a pattern similar to those in Figure 2.5 are observed for
molecules containing chlorine.

These new atomic contributions, calculated with PNNL data, were used to
predict intensity values for a test set of halomethanes similar to a previous study[22].
The only fluoromethane not included in the data set, CH2F2, has an electronegativity
estimate of 421.4 km ·mol−1 within 24.0 km ·mol−1 of the experimental intensity sum of
445.4 km ·mol−1. On the other hand, the CH2Cl2 has a model estimate 58.3 km ·mol−1
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Figure 2.5: Graph of the carbon, hydrogen and halogen atomic contributions obtained us-
ing the electronegativity model and the high–resolution intensities against the QCISD/cc–
pVTZ values. The red dotted line represents the perfect agreement between the two
quantities.

below the experimental sum of 171.7 km · mol−1. The electronegativity model value
calculated from the atomic contributions for CCl4 has an error twice as large, -120.4
km · mol−1. As the number of chlorine atoms in the molecule increases, so does the
differences in the electronegativity estimates.

Figure 2.6: Plot of the square root of the dynamic carbon contribution [km
1
2 · mol− 1

2 ]
against the average electronegativity of the terminal atoms.
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In his pioneering work on Electron Spectroscopy for Chemical Analysis (ESCA),
Siegbahn [59] showed that the carbon 1s electron ionization energies corrected for their
nearest neighbor atom potentials are linearly related to the theoretical atomic charge of
carbon for a large number of molecules. Later our group showed that this corrected ion-
ization energy was linearly related to the mean dipole moment derivative of carbon, an
invariant of the atomic polar tensor determined from all the fundamental intensities of
a molecule[22]. This invariant is closely related to another tensor invariant, the effective
charge. The square of the effective charge weighted by the inverse atomic mass is an
atomic partition term of the molecular intensity sum[60]. One can expect that a simple
relation exists between these core electron ionization energies and the square root of the
dynamic carbon contribution.

This is indeed true as can be seen in Figure 2.7 where the experimental carbon
1s ionization energies are plotted against the square root of the dynamic carbon contribu-
tions determined from the electronegativity model and the intensities obtained from the
PNNL fluorochloromethane spectra.

Figure 2.7: Plot of experimental carbon 1s ionization energies corrected for the nearest
neighbor potentials [eV ] against the square root of the dynamic carbon contributions from

the electronegativity model with PNNL intensities [km
1
2 · mol− 1

2 ]. The square Pearson
coefficient between the quantities is equal to 0.995.

As shown there, an excellent linear relationship is found. This certainly could
be expected for molecules that have electronic structure changes consistent with the elec-
tronegativity model expectations. Electronic structure changes for their vibrations depend
mostly on movement of the equilibrium atomic charges of the molecule. As the dynamic
carbon contributions are determined by the displacement of only the carbon atom it is
not surprising that the square root of its intensity contribution is simply related to the
carbon 1s electron ionization energy.
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2.2 FTIR and Dispersive Gas–Phase Absolute IR In-

tensities of Hydrocarbons Fundamental Bands

The hydrocarbon low resolution intensities used as reference in this section
follow the same three criteria as the intensities of halomethanes. The experimental data for
methane were obtained from four different references[26, 37, 48, 51], acetylene intensities
from three sources[61–63], ethylene[64, 65] and propyne[66, 67] from two, and ethane [68],
allene [69] and cyclopropane[70] each from a different laboratory. Molecular geometries
were optimized and theoretical intensities were obtained at the QCISD/6-311++G(3d,3p)
level of theory. QCISD/aug-cc-pVTZ intensities and frequencies where taken from the
Computational Chemistry Comparison and Benchmark DataBase (CCCBDB), except for
allene and propyne for which calculations were performed by our group. MP2/cc-pVTZ
results were obtained from reference[71].

Table 2.4 contains the intensity values of the fundamental vibrations of the
hydrocarbons determined from the PNNL spectral library. Overlapped bands were not
separated so their intensity sums are given. Low resolution values are given in the adjacent
column with their error estimates. In cases of multiple determinations, inter–laboratory
standard errors were determined. Ethane, allene and cyclopropane have absolute inte-
grated intensity determinations from only one laboratory. As such, regression dispersion
errors from Beer’s law plots reported for the measurements are given in the above men-
tioned table.

Figure 2.8 shows a normal distribution plot for the differences between the
PNNL and the low resolution intensities. Points near the red line follow the normal
distribution behaviour expected for random measurement errors. Only three points in
the upper right corner have serious deviations from the line. The point for the 2840–
3220 cm−1 overlapped bands of C3H6 has a residual of 8.7 km ·mol−1, whereas the Beer’s
law dispersion estimate of the standard deviation of the low resolution value is only
3.5 km ·mol−1[50]. The 650–850 cm−1 C2H2 value has a residual of 8.4 km ·mol−1, much
less than the experimental error estimate of 21.0 km · mol−1. The point for the sum of
the intensities of the overlapped 825–1125 cm−1 bands of ethylene also falls far from this
line with a PNNL value 6.2 km ·mol−1 larger than the low resolution average. In spite of
the above complications the RMSE between the PNNL intensities and the low resolution
averages is only about two and a half times larger than the estimated error of the low
resolution values of ±2.5 km · mol−1. As can be seen in Figure 2.8 only six of the low
resolution intensities have higher values than their PNNL counterparts.

Table 2.4 also contains QCISD level results for the hydrocarbons calculated
with the cc–pVTZ and 6–311G+(3d,3p) basis sets. The QCISD/6–311G++(3d,3p) values
have an RMSE of 4.4 km · mol−1 compared with the PNNL values. Points for these
theoretical values have been included in Figure 2.9. QCISD/6–311G++(3d,3p) values
above 40 km ·mol−1 tend to be positioned a little higher than the line representing exact
agreement. The QCISD/cc–pVTZ results have an RMSE with the PNNL intensities about
the same as the one for QCISD/6–311G++(3d,3p), 4.9km ·mol−1.

Figure 2.9 shows a graph of both the low resolution and theoretical QCISD/6-
311++G(3d,3p) intensity values against those determined from the PNNL spectral library
for this report. The agreement is excellent between the low resolution and PNNL values,
with an RMSE of only 3.1 km · mol−1. Half of the PNNL values agree with the low
resolution averages within one standard deviation, seven differ by two standard deviations
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Table 2.4: Experimental ranges for frequencies (in cm−1) and experimental intensities for
both PNNL and low resolution measurements and calculated intensities for three basis
sets at the QCISD level (in km ·mol−1).

Molecule
Frequency

range APNNL Alow res.

A
6-311++G

(3d,3p)
A

cc-pVTZ
A

aug-cc-pvtz

CH4 2830-3200 66.7 67.5±1.5 72.9 69.3 67.8
1200-1400 32.9 33.5±0.8 29.3 30 28.2

C2H2 3175-3380 72.5 70.2±4.3 78.7 84.7 84.3
650-850 185.4 177±21.0 183.6 181.6 182.5

C2H4 825-1125 88.6 82.4±2.5 93.3 89.1 91.4
2900-3300 41.4 39.4±2.2 36.8 34.1 31.9
1360-1521 10.5 10.1±0.2 7.5 8.6 8.5

C2H6 2830-3092 175.3 171±1.5 186.3 177.7 174.2
1310-1627 17.4 17.4±0.4 16.2 15.5 15
760-900 6.1 6.1±0.1 4.6 5.3 5.1

C3H4

(propyne) 3250-3380 45.0 44.2±2.4 49.4 53.2 53.3
2800-3150 31.3 33.8±3.1 32.4 30.6 28.4
2090-2180 5.0 5.3±0.3 3.7 2.9 4.2
1350-1650 17.4 19.4±1.3 15.1 14.5 15.7
750-1125 1.5 1.1±0.4 1.1 1.1 0.9
559-720 90.1 87.9±5.0 90.7 89.4 90

C3H6 2840-3220 77.4 68.7±3.5 74.8 69.2 65.5
750-980 33.9 31.6±0.6 39.3 39.7 40.5

1380-1500 3.1 1.8±0.1 0.8 1.4 1.2
960-1100 21.3 20.3±0.3 13.3 15.3 14.1

C3H4

(allene) 2930-3040 7.1 5.5±0.8 2.5 2.3 1.5
1890-2000 50.3 47.8±1.2 54.7 51.4 59.6
1346-1450 17.3 6.1±1.3 1.7 2.5 2.5
3040-3190 3.5 3.5±0.6 2.4 1.6 1.4
950-1150 8.7 8.6±1.8 6.1 3.9 5.8
700-950 94.7 91.6±2.0 99 103.5 99.9

and three values within three deviations. Even then these deviations are very small,
2.3 and 1.3 km · mol−1. The low resolution points tend to fall slightly below the line
representing exact agreement between the intensity estimates in Figure 2.9. This is why
the linear behaviour of the points in Figure 2.8 passes a little to the right of the graph
origin.

QCISD/aug–cc–pVTZ calculations were undertaken to obtain still more ac-
curate intensity estimates with the aim of obtaining better agreement with the PNNL
intensity values. However an RMSE of 5.41 km ·mol−1 was obtained, which is a bit higher
than the differences found for more modest basis sets. RMSE calculated between these
theoretical values and the low resolution intensities were slightly higher than those for the
PNNL values, 5.9 km ·mol−1.

Comparing PNNL intensity values with low resolution results for the fluoro-
chloromethanes, an RMSE of 26.6 km · mol−1 was found corresponding to an intensity
range from close to zero to 1073.8 km ·mol−1. The intensity range for the hydrocarbons
treated here is much smaller, 1.5 to 185.4 km ·mol−1 as are their RMSE of 3.1 km ·mol−1.
Both of these differences are about 2% of their intensity ranges.

Galabov et al.[57] performed infrared intensity calculations at about 75 dif-
ferent quantum levels for methane and acetylene among other small molecules. Best



40

Figure 2.8: Normal plot of the difference between the PNNL and the low resolutions
intensities. Points falling close to the red line follow the normal distribution expected
behavior for random measurement error.

Figure 2.9: Comparative graph of the low–resolution experimental and the QCISD the-
oretical intensities against the experimental values determined from the PNNL spectral
library (km ·mol−1).

overall agreement was obtained with highly correlated wavefunctions, QCISD, CCSD and
CCSD(T), combined with Dunning’s correlation consistent aug-cc-pVXZ (X = 3 − 5)
basis sets. These level of theory leads to best agreement with both the PNNL and low
resolution averages for methane in Table 2.4, specially the TZ2P(f,d) and cc-pVTZ basis
sets at the CCSD(T) level.
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The most notable disagreement between experimental and theoretical intensi-
ties in Table 2.4 occurs for the CH stretching mode of acetylene. The PNNL and average
low resolution values of 72.5 and 70.2 km · mol−1 are substantially lower than our theo-
retical results that range from 78.7 to 84.7 km · mol−1. Of the 75 quantum levels given
in reference[57], the lowest is 74.7 km ·mol−1, still higher than both experimental values.
This value was obtained with the relatively poor DZP basis set at the CCSD(T) level.
The use of more extensive basis sets led to higher values, most falling within the range
of our theoretical values in Table2.4. Their CCSD(T) level calculation with an aug–cc–
pVTZ basis produces an 81.8 km ·mol−1 value compared with our QCISD value of 84.3
km ·mol−1.

The theoretical data are in good agreement with the experimental intensities
from NIST/PNNL, especially when high level of theory and augmented base are utilized.
However, even when smaller basis sets are applied, there is no significant increase in the
RMSE. As such, the NIST/PNNL intensities will be used as reference, in this thesis, to
the development of new theoretical methods and models that can interpret the physical
phenomena behind the IR absorption phenomena.

2.3 Concluding Remarks

The high–resolution infrared spectra obtained by NIST/PNNL research groups
are impressive and can be used to validate the theoretical data, either obtained from
ab initio calculations or empirical models developed using low-resolution intensities from
dispersive instruments. One of these models is the electronegativity model for partitioning
of IR bands of halomethanes, allowing physical interpretations of atomic contributions to
the electron density changes that occur with the vibrational movement.

In the next chapter, ab initio method will be invoked to construct the Charge
– Charge Transfer – Dipolar Polarization (CCTDP) model, which calculates atomic con-
tributions directly from the electron density using the principles of the Quantum Theory
of Atoms in Molecules.

∗ ∗ ∗

This chapter contains excerpts from texts previously published by the author. The fol-
lowing materials were reprinted with permission:
Duarte, L. J., Silva, A. F., Richter, W. E., Bruns, R. E., FTIR and dispersive gas
phase fundamental infrared intensities of the fluorochloromethanes: Comparison with
QCISD/cc-pVTZ results. Spectrochimica Acta Part A: Molecular and Biomolecular Spec-
troscopy, 205, 269-275, 2018, Elsevier.
Duarte, L. J., Bruns, R. E., FTIR and dispersive gas phase absolute infrared inten-
sities of hydrocarbon fundamental bands. Spectrochimica Acta Part A: Molecular and
Biomolecular Spectroscopy, 214, 1-6, 2019, Elsevier.
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Chapter 3

Decomposition of Infrared Intensities

Chemical properties of atoms and molecules arise from their electronic struc-
tures. Electrons are distributed around nuclei following a probability density that is de-
termined by the solution of the Schrödinger equation. Considering the Born-Oppenheimer
approximation, the wavefunction is parameterized by the positions of nuclei, which are
considered stationary. Molecules, however, present a dynamic behavior, vibrating and
rotating all the time around their equilibrium positions. When an atom moves within a
normal coordinate of vibration, it perturbs the electronic density of the entire molecule.
The magnitude, direction and sense of the perturbation is expressed by the APT[72–74].
Each element of the APT is the derivative of one component of the molecular dipole
moment with respect to an atomic displacements.

When analysing a band in the IR spectrum, the APT can be obtained exper-
imentally through matrix manipulation if band intensities, normal coordinates, equilib-
rium geometries and permanent molecular dipole moments are previously known [15, 75,
76]. Even with the lower resolution dispersive spectrometers available in the 60-70’s, the
determination of APTs was accurate and the results compatible with the chemical knowl-
edge[77] . As computing resources became more accessible, SCF calculations allowed the
computation of the APT directly from theory through simple numerical calculations. Its
theoretical determination consists of optimizing the molecular structure and finding its
equilibrium geometry, from which 6N non-equilibrium geometries are generated, with N
being the number of atoms in the molecule. Each one of the non-equilibrium geometrical
configurations is obtained by displacing an atom in either the positive or negative direc-
tion of one of the Cartesian axes (x, y, z). A summary of this procedure is presented in
Figure 3.1.

AIM atomic charges and dipoles are obtained for each one of the non–equilibrium
geometries and utilized to compute molecular dipole moments. At this point, the inclu-
sion of atomic polarizations is crucial to properly describe the APT without corrupting
its physical meaning[78]. When using charge models that do not provide explicit deter-
mination of atomic polarizations, one may find that the APT values are often correctly
obtained; however, on careful examination, the absence of explicit atomic polarization
terms can lead to chemically inconsistent results. The importance of including atomic po-
larizations becomes more evident when studying planar molecules, for which the atomic
out–of–plane motions[79] prevent any charge transfer to occur and the interplay between
charges and dipoles is essential to represent the dynamic nature of the molecular struc-
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Figure 3.1: Flowchart of the theoretical procedure applied to calculate the APT derivatives
from single point SCF calculations.

ture[78]. This will be explained in detail later.
Once the molecular dipole moment of each nonequilibrium geometry is deter-

mined, the APT elements are calculated by numerically differentiating the dipole moment
with respect to the atomic displacements that generated them. If the normal coordinates
of the vibrational modes are previously known, the juxtaposition of the N APTs allows
the computation of infrared intensities.

As the total intensity of a band is proportional to the square of the molec-
ular dipole moment derivative with respect to the normal coordinate, the evaluation of
infrared intensities by means of APT elements contains insightful information about the
dynamic nature of chemical systems. The development of the Charge - Charge Transfer
- Dipolar Polarization (CCTDP) model [80] over the past 15 years allows the interpre-
tation of infrared intensities and has been fruitful in solving key problems in chemistry,
e.g. identifying characteristic electronic density changes for functional groups [81] and
amino acids [82], describing out-of-plane displacements in planar molecules[83–85] and
explaining the infrared band intensifications owing to hydrogen bond formations[86–88].

3.1 The CCTDP Model for Infrared Intensities

Since the dipole moment is a vector that measures the charge separation in a
system, indicating its polarity, the molecular dipole moment derivative can be decomposed
into atomic charge and atomic dipole contributions. We start by rewriting equation 1.15
in terms of the σ Cartesian component of the dipole moment of an N atom molecule, that
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is:

pσ =
N∑

A=1

[qAσA +mA,σ] (3.1)

where σ = 1, 2, 3 are the axes x, y, z, respectively. qA and σA are the charge of the
atom A and its Cartesian position on the σ axis. mA,σ is the σ component of the Ath

atomic dipole. The derivative of the component σ of the dipole moment with respect to
the Bth atomic Cartesian coordinate, θB, evaluated at equilibrium geometry is given by:

∂pσ
∂θB

=

{
qB +

∑N
A=1 σA

∂qA
∂θB

+
∑N

A=1
∂mA,σ

∂θB
if σ = θ∑N

A=1 σA
∂qA
∂θB

+
∑N

A=1
∂mA,σ

∂θB
if σ ̸= θ

(3.2)

with σ, θ = 1, 2, 3 and A,B = 1, 2, · · ·N . The atomic charge derivatives in both cases of
Equation 3.2 correspond to atomic charge rearrangements occurring for atomic displace-
ments of the Bth atom resulting in Cartesian position–weighted charge transfer terms.
The last terms in these equations represent changes in the atomic dipole components for
Cartesian atomic displacements and are called dipolar polarizations.

For each atom, equation 3.2 generates nine derivatives that arise from the
combination of the dipole moment directions in rectangular Cartesian space with the
spatial coordinates. The derivatives are APT elements of PX. The APT of the Bth atom
is given by:

P
(B)
X =


∂px
∂xB

∂px
∂yB

∂px
∂zB

∂py
∂xB

∂py
∂yB

∂py
∂zB

∂pz
∂xB

∂pz
∂yB

∂pz
∂zB

 (3.3)

where the diagonal elements correspond to the first case of Equation 3.2 and off-diagonal
elements correspond to the second case. The tensor describes how the electronic density
will change as any atom is displaced from its original position.

Within the harmonic oscillator–linear dipole moment approximation, the in-
frared intensity is proportional to the square of the molecular dipole moment derivative
with respect to the vibrational normal coordinate. The conversion of the Cartesian APT
(PX)

(B) into the vector of derivatives with respect to the normal coordinate Q is done
with the help of the L(B) matrix that is:

(PX)
(B)

3×3 · L
(B)

3×1 = (PQ)
(B)

3×1 (3.4)

where each element of LB is a derivative of the σB component with respect to Q.
Since the square of a vector is equal to the sum of squares of its Cartesian

components, the IR intensity, A, of the Qk normal mode is 1:

Ak =
NAπ

3c2

[(
∂px
∂Qk

)2

+

(
∂py
∂Qk

)2

+

(
∂pz
∂Qk

)2
]

(3.5)

where k = 1, 2, · · · , 3N − 6 for an N atom non-linear molecule or k = 1, 2, · · · , 3N − 5 for
linear molecules. NA is the Avogadro’s constant and c is the speed of light.

1See Appendix B.
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Dipole moment derivatives with respect to normal coordinates involve simul-
taneous displacements of all atoms in the molecule. As such, each Cartesian component
of the dipole moment derivative with respect to the normal coordinate must consider
contributions from atomic displacements in all directions:

∂pσ
∂Qk

=
N∑

B=1

(
N∑

A=1

3∑
θ=1

∂pσA

∂θB

∂θB
∂Qk

)
=

N∑
B=1

(
∂pσ
∂Qk

)(B)

(3.6)

and substituting equation 3.2 in equation 3.6

(
∂pσ
∂Qk

)(B)

= qB
∂σB
∂Qk

+
N∑

A=1

3∑
σ=1

(
σA
∂qA
∂θB

+
∂mA,σ

∂θB

)
∂θB
∂Qk

(3.7)

leading to:

(
∂pσ
∂Qk

)(B)

= qB
∂σB
∂Qk

+
N∑

A=1

[
σA

(
∂qA
∂Qk

)(B)

+

(
∂mA,σ

∂Qk

)(B)
]

(3.8)

noticing that
(

∂pσ
∂Qk

)(B)

is an element of (PQ)
(B).

Each one of the terms in the right side of equation 3.8 corresponds to an atomic
parcel of the Charge–Charge Transfer–Dipolar Polarization model. The first term is the
atomic charge of the Bth atom weighted by its displacement within the normal coordinate
Qk, i.e. the Charge (C) contribution.

The first term in the summation corresponds to weighted changes in atomic
charges as the molecule vibrates. Since the overall molecular charge must be conserved,
any fraction of electronic density lost by one atom will be gained by the other(s). For this
reason, the term is named the Charge Transfer (CT) contribution of the CCTDP model.

The last term corresponds to rearrangements that occur for electronic densities
of individual atoms. They arise from electronic density asymmetries in the domains of
each atom. These polarizations are atomic dipole derivatives and correspond to Dipolar
Polarization (DP) contributions to the CCTDP model. In simplified notation, equation
3.6 becomes:

∂pσ
∂Qk

=
N∑

B=1

[(
∂pσ
∂Qk

)(B)

(C)

+

(
∂pσ
∂Qk

)(B)

(CT )

+

(
∂pσ
∂Qk

)(B)

(DP )

]
(3.9)

and the labels of the CCTDP contributions are always written inside parenthesis.
At this point, it is important to stress that the contributions have a mechan-

ical weight that are proportional to the inverses of the square roots of atomic masses.
Therefore, lighter atoms tend to have greater charge contributions than heavier atoms,
even if their atomic charges are smaller in absolute values.
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3.2 CCTDP Classification of IR Intensities

In this section, the CCTDP model is applied to a group of 29 molecules in-
cluding hydrocarbons, halomethanes and the X2CY (X = F, Cl; Y = O, S) molecules
whose theoretical intensities have already been reported in the literature[89]. Intensities
of all the active normal modes of these molecules have been measured and, when possible,
their accuracy and precision have been estimated using measurements on isotopomers
containing deuterium atoms instead of hydrogen.

We start by substituting equation 3.9 into equation 3.5 and summing over all
atoms. In this way, the IR intensity of normal mode k becomes:

Ak =
NAπ

3c2

3∑
σ=1

[(
∂pσ
∂Qk

)2

(C)

+

(
∂pσ
∂Qk

)2

(CT )

+

(
∂pσ
∂Qk

)2

(DP )

+

2

(
∂pσ
∂Qk

)
(C)

(
∂pσ
∂Qk

)
(CT )

+ 2

(
∂pσ
∂Qk

)
(C)

(
∂pσ
∂Qk

)
(DP )

+

2

(
∂pσ
∂Qk

)
(CT )

(
∂pσ
∂Qk

)
(DP )

]
(3.10)

the first three terms are charge, charge transfer, and dipolar polarization contributions
to the intensities, whereas the last three terms correspond to interactions between these
dipole moment derivative contributions. In order to simplify the expression, the (CT )2,
(DP )2 and 2(CTDP ) are combined into a a single contribution:

Ak(CTDP) =

NAπ

3c2

3∑
σ=1

[(
∂pσ
∂Qk

)2

(CT )

+

(
∂pσ
∂Qk

)2

(DP )

+ 2

(
∂pσ
∂Qk

)
(CT )

(
∂pσ
∂Qk

)
(DP )

]
(3.11)

Each of the first two terms have large positive values, and often, their sum is almost
completely cancelled by the large negative values of the charge transfer—dipolar polar-
ization interaction. Often these much smaller net values are seen to be the result of
atomic charge transfer within the molecule that is accompanied by dipolar polarizations
in opposite directions to one another. This is called the counter–polarization effect.

The two interaction terms involving the equilibrium charge factor can be given
as:

Ak(CCT,CDP) =

NAπ

3c2

3∑
σ=1

[
2

(
∂pσ
∂Qk

)
(C)

(
∂pσ
∂Qk

)
(CT )

+ 2

(
∂pσ
∂Qk

)
(C)

(
∂pσ
∂Qk

)
(DP )

]
(3.12)

and interpreted as an interaction between equilibrium atomic charge movements and the
sum of differential changes to the electronic densities of these atoms. The IR intensity
becomes:

Ak = Ak(C) +Ak(CTDP) +Ak(CCT,CDP) (3.13)
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where Ak(C), Ak(CTDP), and Ak(CCT,CDP) are the charge, charge transfer-–dipolar polariza-
tion, and the interaction contribution to the IR intensity of normal mode k. Almost all
of the CCTDP parameters reported here were obtained from works that can be found in
the literature[71, 80, 89, 90]. The QCISD electron correlation treatment level and the cc–
pVTZ, 6–31G(2d,2p), and 6–31G(3d,3p) basis sets were used for almost all molecules. All
the theoretical intensities reproduce the experimental intensities within 11.4 km ·mol−1.
This error can be compared with experimental values ranging from zero to 493 km ·mol−1

and having an average of 59.5 km ·mol−1. Furthermore, an RMSE of only 5.0 km ·mol−1 is
found between the intensities calculated directly from the molecular wave function and the
values obtained by the CCTDP model. Such error arises mostly from the AIM properties
derivatives that are numerically calculated. The objective of this section is to differenti-
ate the electronic structure changes that accompany vibrations using the CCTDP model
applied to the characteristic group intensities of the CH, CF, and CCl stretching and
bending vibrations.

3.2.1 CH Stretching Modes

Table 3.1 contains the A(C), A(CTDP), and A(CCT,CDP) contributions along with
the total calculated intensity values of the CH stretching vibrations. The charge contri-
bution, with an average value of 2.5 km · mol−1, are usually substantially smaller than
the A(CTDP) contributions, that have an average of 16.8 km ·mol−1. As such, the sum of
A(CTDP), and A(CCT,CDP) can recover much of the total intensity values.

In Figure 3.2 there are only a few small deviations from the red line representing
exact agreement between the A(CTDP) + A(CCT,CDP) total calculated intensities for the
CH stretching modes. The charge contributions are less than 2 km · mol−1 for all of
these molecules, except for C2H2, which has a 25.2 km · mol−1 charge contribution and
contributions ranging between 2.2 and 9.5 km · mol−1 for the CH stretches of propyne,
CH2F2, CHF3, CH2Cl2, and CHCl3.

Acetylene and propyne have acidic hydrogens as they are bonded to sp hy-
bridized carbon atoms, and one would also expect higher charge contributions for the
hydrogen and carbon atoms in halomethane molecules with multiple fluorine and chlorine
substituents. All the CH stretching modes for the difluoro- and dichloroethylenes have
very small charge contributions of less than 2.4 km ·mol−1.

In summary, deviations from the line indicate a greater contribution of the
equilibrium charge on the hydrogen atom, either by the inductive effect of electronegative
substituents, such as F, or by the greater s character of the carbon atom. Removing
from consideration the CH stretching vibrations of the sp CH bonds, the A(CTDP) and
the A(CCT,CDP) sum estimate the CH stretching intensities for the other molecules studied
here with only a 2.5 km · mol−1 RMSE. These calculated intensities range from zero to
62 km · mol−1 with an average value of 18.4 km · mol−1. It should be mentioned that
all the CH stretching vibrations have individual charge transfer and dipolar polarization
contributions of opposite sign; i.e., they follow a charge transfer—counterpolarization
model[71].

The counterpolarization effect occurs when the charge–transfer and the dipolar–
polarization contributions have opposite signs. In Figure 3.3a the red arrow indicates the
direction of displacement of one hydrogen atom in methane. When the hydrogen moves,
it atomic charges increases, i.e. electronic density is transferred from H to the C atom.
As a response to the charge transfer, the electron density in each atomic basin polarizes
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Table 3.1: Charge, charge transfer – dipolar polarization contributions to the CH stretch-
ing intensities of the difluoro-and dichloroethylenes, fluorochloromethanes and hydrocar-
bons. Values in km ·mol−1.

Molecule Ak(C) Ak(CTDP) Ak(CCT,CDP) Ak(CTDP) +Ak(CCT,CDP) Ak

cis-C2H2F2 0.7 6.1 4.0 10.1 10.8
0.3 2.3 -1.7 0.6 0.9

trans-C2H2F2 0.1 2.1 1.0 3.1 3.2
1,1-C2H2F2 0.4 5.4 2.9 8.3 8.7

0.2 0.0 0.2 0.2 0.4
cis-C2H2Cl2 1.0 7.7 -5.7 2.0 3.0

0.4 4.3 2.6 6.9 7.3
trans-C2H2Cl2 2.4 3.8 6.0 9.8 12.2
CH4 0.0 21.7 1.4 23.1 23.1
CH3F 0.3 23.7 5.3 29.0 29.3

1.7 19.8 11.6 31.4 33.1
CH2F2 2.2 26.5 15.1 41.6 43.8

5.4 16.5 18.9 35.4 40.8
CHF3 6.6 11.2 17.2 28.4 35.0
CH3Cl 0.2 28.3 -5.2 23.1 23.3

1.1 12.3 -7.5 4.8 5.9
CH2Cl2 2.2 19.0 -13.0 6.0 8.2

5.0 6.3 -11.2 -4.9 0.1
CHCl3 7.7 6.6 -14.2 -7.6 0.1
C2H2 25.2 20.8 44.7 65.5 90.7
C2H4 1.5 34.5 -14.4 20.1 21.6

0.6 17.8 -6.4 11.4 12.0
C2H6 0.3 47.9 7.7 55.6 55.9

1.1 46.5 14.0 60.5 61.6
C3H6 1.1 42.2 -13.2 29.0 30.1

0.2 25.5 -4.6 20.9 21.1
C3H4(allene) 0.5 4.7 -1.8 2.9 3.4

1.5 7.1 -6.4 0.7 2.2
C3H4(prop. sp) 9.5 19 26.8 45.8 55.3
C3H4(propyne) 0.1 14.3 1.7 16.0 16.1

0.4 8.8 3.4 12.2 12.6
C6H6 0.0 24.8 0.0 24.8 24.8

in the opposite direction. This counterpolarization effect is represented by the grey vec-
tors. The contour plots in Figures 3.3b and 3.3c show the Laplacian of the electronic
density along a CH bond at the equilibrium position and after the stretching of the bond.
Regions of concentrated electronic density are represented by the red colour. Notice that
the negative region elongates towards the carbon as the bond stretches.

3.2.2 CH Bending Modes

The CCTDP contributions for bending normal modes are listed in Table 3.2.
The in–plane sp3 CH bending vibrations also tend to have larger Ak(CTDP) contributions
(average of 7.9 km · mol−1) compared with Ak(C) charges (average of 4.6 km · mol−1),
that is a consequence of the small hydrogen charge. Figure 3.4 contains the sum of the
Ak(CTDP) and A(CCT,CDP) interaction contributions for the CH bending modes against
their total intensities. In–plane bendings are represented by squares (□), while out–of–
plane vibrations are represented by the diamond shapes (⋄). This sum shows excellent
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Figure 3.2: Sum of the A(CTDP) and A(CCT,CDP) against the total calculated intensity for
CH stretches.

agreement with the total intensities for all the sp3 CH bending vibrations except for
the asymmetric CH bend of CH2F2 and CH bendings of CH2Cl2. The Ak(CTDP) and
A(CCT,CDP) sum estimates the sp3 CH bendings with an RMSE of 3.8 km ·mol−1 whereas
this error is 9.2 km ·mol−1 for the sp2 CH bendings. The largest discrepancy occurs for
the sp CH bend of propyne. These values can be compared with the total calculated
intensities that range from zero to 106 km ·mol−1, besides the larger discrepancies for the
sp acetylene and propyne CH bendings.

The CH out–of–plane bending vibrations are, in general, more intense than the
in–plane modes. The explanation behind this phenomena is the fact that out–of–plane
vibrations have zero charge transfer2 contributions[91–93]. As such, there are only dipolar
polarization contributions to the total intensity and no counterpolarization effect occurs,
i.e., theirAk(CTDP) andAk(CCT,CDP) terms contains only dipolar polarization contributions.
The Ak(CTDP) average for the out–of–plane bendings is much larger than the average of it
in–plane counterpart, which is equal to 7.9 km ·mol−1.

These results are strongly supported by experimental evidence. For the bend-
ing vibrations, the experimental CH bending intensity average for the out-of-plane modes
is 65.7 ± 20.0 km ·mol−1, more than 5 times the in-plane value of 12.6 ± 10.4 km ·mol−1.
As an example, the larger out–of–plane bending experimental intensity for ethylene, 82.1
± 2.5 km ·mol−1, compared to its in–plane bendings, 0.3 ± 0.0 and 10.1 ± 0.2 km ·mol−1,
has long been a subject of discussion in the spectroscopic community[64, 94, 95]. Similar
situation holds for benzene for which the measured out–of–plane bending intensity is more
than 10 times larger than the in-plane one, 86.4 and 3.6 km ·mol−1, respectively[96–98].

2The null charge transfer in out–of–plane bending is detailed in Chapter 4
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(a) Counterpolarization ef-
fect on a CH bond. The red
arrow indicates the displace-
ment direction of the hydro-
gen atom in the normal co-
ordinate. The CT and DP
have opposite directions.

(b) ∇2ρ of a CH bond in
methane at the equilibrium
geometry. Red regions indi-
cates concentration of elec-
tronic density.

(c) ∇2ρ of the stretched CH
bond in methane. Red re-
gions indicates concentration
of electronic density.

Figure 3.3: Couterpolarization effect on a CH bond. When the CH bond stretches,
electronic density is transferred from the H to the C atom. In response to the charge–
transfer, the atomic electronic densities polarize in the opposite direction. Vectors always
point to the positive end.

Figure 3.4: Sum of the A(CTDP) and A(CCT,CDP) against the total calculated intensity for
CH bendings. In–plane bending normal modes are represented by square(□) and out–
of–plane bendings are represented by diamonds (⋄). Notice that out–of–plane vibrations
are, in average, more intense than in–plane vibrations.

3.2.3 CF and CCl Stretching Modes

As might be expected considering the electronegativity scale, the CF stretching
mode intensities are dominated by the A(C) term resulting from larger atomic charges.
Their average value of 200.0 km · mol−1 in Table 3.3 is more than 10 times larger than
the average value of the A(CTDP) values, 14.9 km ·mol−1.



51

Table 3.2: Charge, charge transfer – dipolar polarization contributions to the CH bending
intensities of the difluoro-and dichloroethylenes, fluorochloromethanes and hydrocarbons.
Values in km ·mol−1.

Molecule Ak(C) Ak(CTDP) Ak(CCT,CDP) Ak(CTDP) +Ak(CCT,CDP) Ak

cis-C2H2F2 21.4 0.2 4.0 4.2 25.6
6.5 3.0 8.8 11.8 18.3

trans-C2H2F2 10.9 0.0 -0.5 -0.5 10.4
1,1-C2H2F2 11.4 6.6 -17.3 -10.7 0.7

12.9 0.1 2.6 2.7 15.6
cis-C2H2Cl2 1.3 3.2 -4.0 -0.8 0.5

0.8 12.7 -6.3 6.4 7.2
trans-C2H2Cl2 2.4 7.5 8.6 16.1 18.5
CH4 0.0 11.3 -1.3 10.0 10.0
CH3F 1.0 0.6 1.5 2.1 3.1

0.4 5.0 -2.7 2.3 2.7
CH2F2 3.9 0.6 -3.1 -2.5 1.4

7.8 4.1 11.4 15.5 23.3
CH3Cl 3.0 29.3 -18.6 10.7 13.7

0.8 1.7 2.4 4.1 4.9
CH2Cl2 5.8 6.0 -11.8 -5.8 0.0

8.5 89.0 -55.0 34.0 42.5
C2H4 1.4 3.1 4.2 7.3 8.7

0.5 1.4 -1.7 -0.3 0.2
C2H6 0.6 9.4 -4.6 4.8 5.4

0.6 7.5 -4.3 3.2 3.8
1.9 6.8 -7.2 -0.4 1.5

C3H6 0.4 0.3 -0.5 -0.2 0.2
0.6 0.1 0.2 0.3 0.9
0.6 3.5 2.9 6.4 7.0

C3H4(allene) 10.3 1.7 -2.3 -0.6 9.7
8.7 1.4 -6.8 -5.4 3.3

C3H4(propyne) 0.3 0.5 0.6 1.1 1.4
0.0 9.6 -0.8 8.8 8.8
3.4 10.0 -11.6 1.8 9.7

C3H4(prop. sp) 19.0 12.6 30.8 43.0 62.4
C6H6 0.0 3.5 0.0 3.5 3.5

Out–of–Plane modes
cis-C2H2F2 11.9 80.7 -61.9 18.8 30.7
trans-C2H2F2 0.4 60.0 -9.3 50.7 51.1
1,1-C2H2F2 2.5 37.6 19.2 56.8 59.3
cis-C2H2Cl2 0.5 30.7 7.6 38.3 38.8
trans-C2H2Cl2 2.5 16.7 12.9 29.6 32.1
C2H2 25.2 14.9 38.7 53.6 78.8
C2H4 2.0 64.5 22.7 87.2 89.2
C6H6 0.0 106.2 0.0 106.2 106.2

Excellent agreement between these values can be seen with few exceptions. The
discrepancy for the one mode of CHF3 is owed to a 55.6 km ·mol−1 Ak(CTDP) contribution,
although Ak(C) is dominant, 311.3 km · mol−1. However, one normal mode of the F2CS
and one of cis-C2H2F2 have Ak(CTDP) values of 59.7 and 47.6 km ·mol−1, which are larger
than their charge contributions. For all these CF modes, the charge and interaction sum
estimates the total CF stretching intensities with an RMSE error of 23.3 km ·mol−1 for
intensities ranging from 3.7 to 470.9 km ·mol−1 and averaging 201.7 km ·mol−1.

The CCTDP contributions of Cl stretching intensities are presented in Table
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Table 3.3: Charge, charge transfer – dipolar polarization contributions to the CF stretch-
ing intensities of the difluoroethylenes, fluorochloromethanes, hexafluorobenzene, F2CO
and F2CS. Values in km ·mol−1.

Molecule Ak(C) Ak(CTDP) Ak(CCT,CDP) Ak(C) +Ak(CCT,CDP) Ak

cis-C2H2F2 62.9 0.1 -4.5 58.4 58.5
9.6 47.6 42.7 52.3 99.9

trans-C2H2F2 106.4 18.7 89.2 195.6 214.3
1,1-C2H2F2 34 12.3 40.9 74.9 87.2

123.5 21.7 103.6 227.1 248.8
F2CO 21.4 5.5 21.7 43.1 48.6

515.3 13.5 -166.7 348.6 362.1
F2CS 2.9 0.1 0.7 3.6 3.7

44.3 59.7 102.8 147.1 206.8
CH3F 58.9 5.3 35.1 94 99.3
CH2F2 150 4.8 -53.8 96.2 101

162.7 5.5 59.6 222.3 227.8
CHF3 311.3 55.6 -263.2 48.1 103.7

308.8 1.7 -45.8 263 264.7
CF4 660.8 30.7 -285 375.8 406.5
CClF3 390.1 3.8 77 467.1 470.9

422 11.6 -140 282 293.6
CCl2F2 226.3 4.3 62.5 288.8 293.1

242.9 1.1 -32.5 210.4 211.5
CCl3F 111.8 7.9 59.5 171.3 179.2
C6F6 233.9 0.4 19.3 253.2 253.6

3.4. For this type of vibrational mode, the intensity average value is 104.7 km · mol−1,
about half the average of the CF stretching normal mode, but still five times greater than
the average intensity of the CH stretching. The average Ak(C) contribution of CCl stretch
is 33.6 km · mol−1, compared with an average value of 2.5 km · mol−1 for CH stretching
and 200.0 km ·mol−1 for CF atretching.

The averages of theAk(C) andAk(CTDP) contributions are very similar, 33.6 and
40.7 km ·mol−1. However, these CCl stretching modes follow different CCTDP patterns.
Intensities of mode of cis-C2H2Cl2, CH2Cl2, CHCl3, CClF3, CCl2F2, and two modes of
CCl3F have much larger charge contributions compared to their Ak(CTDP) ones and are
estimated quite well by the Ak(C)+Ak(CCT,CDP) sum with only a RMSE of 12.6 km ·mol−1

compared to an average calculated intensity of 97.2 km ·mol−1. The other modes present
a Ak(CTDP) contributions much larger than their charge contributions and are estimated
by Ak(CTDP) + Ak(CCT,CDP) with a 10.3 km · mol−1 error for an average intensity of 96.7
km ·mol−1.

3.2.4 CF and CCl Bending Modes

Charge and charge transfer–dipolar polarization intensity contributions for the
CF and Cl bending modes are given in Table 3.5. Besides the Ak(CCT,CDP) interaction
term, the sums of Ak(C) and Ak(CTDP) contributions are also given. The CF bending
modes have much smaller intensities than the CF stretchings, with values ranging from
about zero to only 65 km ·mol−1. Their average value is 10.3 km ·mol−1, about 20 times
smaller than that of the CF stretching intensities. This can be understood examining the
Ak(C), Ak(CTDP), and Ak(CCT,CDP) contributions. The Ak(C) and Ak(CTDP) have about the
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Table 3.4: Charge, charge transfer – dipolar polarization contributions to the CCl stretch-
ing intensities of the chloroethylenes, chloromethanes, Cl2CO and Cl2CS. Values in
km ·mol−1.

Molecule Ak(C)

Ak
(CTDP)

Ak(CCT,

CDP)

Ak(C)+

Ak(CCT,

CDP)

Ak(CTDP)+

Ak(CCT,

CDP) Ak

cis-C2H2Cl2 5.5 3.6 8.9 14.4 12.5 18.0
0.8 50.9 12.9 13.7 63.8 64.6

trans-C2H2Cl2 7.3 49.8 38.2 45.5 88.0 95.3
Cl2CS 0.8 9.8 5.7 6.5 15.5 16.3

4.3 253.9 -66.0 -61.7 187.9 192.2
Cl2CO 0.2 14.4 3.5 3.7 17.9 18.1

85.3 119.1 201.7 287.0 320.8 406.1
CH3Cl 6.0 6.1 12.1 18.1 18.2 24.2
CH2Cl2 12.0 0.0 0.5 12.5 0.5 12.5

12.2 53.9 51.4 63.6 105.3 117.5
CHCl3 16.6 3.2 -14.5 2.1 -11.3 5.3

17.2 53.9 60.9 78.1 114.8 132.0
CCl4 18.1 55.8 63.5 81.6 119.3 137.4
CClF3 66.8 5.4 -37.9 28.9 -32.5 34.3
CCl2F2 9.0 9.9 -18.9 -9.9 -9.0 0.0

242.8 14.3 117.8 360.6 132.1 374.9
CCl3F 1.4 0.0 0.1 1.5 0.1 1.5

98.0 29.2 107.0 205.0 136.2 234.2

same sizes but opposite signs compared with their interaction values. Even though these
sums and interactions have relatively large magnitudes, they cancel each other resulting
in small net intensities.

As for the CH out–of–plane bendings, the charge transfer contribution is zero
for the out–of–plane CF bendings, and the charge transfer–counterpolarization effect does
not occurs. The average Ak(CTDP) contribution for the out–of–plane bendings is 147.7
km · mol−1 that is much larger than the values for the in–plane bendings, 18.2 km ·
mol−1. In contrast to the CH bendings, the dipolar polarization contribution to the dipole
moment derivative has an opposite sign to the charge contribution for the CF bendings.
Since the negatively charged fluorine atoms are displaced in an opposite direction to the
accumulation of electron density owing to polarization for the out–of–plane bend, there is
a canceling effect. In terms of the intensity contributions, the negative Ak(CCT,CDP) terms
cancel the sums of Ak(C) and Ak(CTDP) to a large extent resulting in small out–of–plane
intensity values that are of comparable size to the in–plane ones.

The CCl bending modes also have very small intensities with a calculated
average of 2.4 km·mol−1 compared to the CCl stretching mode average of 104.7 km·mol−1.
Again, Ak(C) and Ak(CTDP) sums and the Ak(CCT,CDP) contributions tend to cancel one
another. The largest calculated intensity occurs for CCl2F2, 11.5 km ·mol−1 followed by
8.0 and 5.8 km ·mol−1 for trans-C2H2Cl2 and cis-C2H2Cl2. All of the other CCl calculated
intensities for the bending modes are less than 1 km ·mol−1. As found for the CH and CF
bending vibrations, the average Ak(CCT,CDP) contribution for the out–of–plane bendings,
15.2 km · mol−1, is also larger than the Ak(CCT,CDP) average of 2.8 km · mol−1, for the
in–plane CCl bending modes.

The experimental out–of–plane F2CO value[99] of 30.6 km ·mol−1 is in good
agreement with the QCISD/cc–vPTZ value of 35.8 km · mol−1 and it is 3 times larger
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Table 3.5: Charge, charge transfer and dipolar polarization contributions to the CF and
Cl bending intensities of the difluoro-and dichloroethylenes, fluorochloromethanes, X2CY
(X = F, Cl; Y = O, S) and hexafluorobenzene in km ·mol−1.

Molecule Ak(C) Ak(CTDP) Ak(CCT,CDP) Ak(CTDP) +Ak(CCT,CDP) Ak

cis-C2H2F2 13.3 4.5 -15.5 17.8 2.3
65.7 7.4 -44.2 73.1 28.9

trans-C2H2F2 104 28.4 -108.6 132.4 24.0
1,1-C2H2F2 35.6 31.8 -67.3 67.4 0.1

2.5 2.8 2.8 5.2 10.5
F2CO 29.2 10.1 -34.5 39.3 4.8

95.5 48.2 -135.6 143.7 8.1
F2CS 20.1 2.7 -14.9 22.8 7.9

0.1 1.9 0.7 2.0 2.7
CH2F2 38.7 15.4 -48.8 54.1 5.3
CHF3 97.7 36.6 -119.6 134.3 14.7

48.1 1.3 15.9 49.4 65.3
35.4 17.8 -50.3 53.2 2.9

CF4 68.7 34.7 -97.6 103.4 5.8
CClF3 14.1 14.4 -28.5 28.5 0.0

43.3 24.9 -65.7 68.2 2.5
1.5 2.0 -3.4 3.5 0.1
0.2 0.1 -0.3 0.3 0.0

CCl2F2 20.9 18.1 -38.9 39 0.1
18.4 12.9 -30.8 31.3 0.5
31.3 4.9 -24.6 36.2 11.6

C6F6 47.2 31.6 -77.2 78.8 1.6
cis-C2H2Cl2 0.6 0.3 -0.9 0.9 0.0

5.0 0.0 0.8 5.0 5.8
trans-C2H2Cl2 8.1 0.0 -0.1 8.1 8.0
Cl2CS 0.3 0.1 0.2 0.4 0.6

3.3 2.1 -5.3 5.4 0.1
Cl2CO 0.1 0.0 0.1 0.1 0.2

16.4 26.4 -41.6 42.8 1.2
CH2Cl2 2.4 0.7 -2.5 3.1 0.6
CHCl3 3.6 1.7 -4.9 5.3 0.4
CCl4 1.1 1.2 -2.3 2.3 0.0

Out–of–Plane
trans-C2H2F2 110.4 68.3 -173.6 178.7 5.1
1,1-C2H2F2 123 84.5 -203.9 207.5 3.6
C6F6 305.7 224.6 -524.1 530.3 6.2
F2CO 608.7 349.4 -922.3 958.1 35.8
F2CS 39.4 11.8 -43.1 51.2 8.1
trans-C2H2Cl2 7.1 5.2 -12.6 12.3 -0.3
Cl2CO 94.3 38.7 -120.9 133 12.1
Cl2CS 6.0 1.8 -6.6 7.8 1.2

than the experimental value [100] for H2CO, 9.9 km ·mol−1. The small H2CO intensity
occurs because the negatively charged oxygen atom is displaced in the opposite direction
to the dipolar polarization. The F2CO value is higher owing to an exceptionally high
charge contribution of 608 km · mol−1. Displacements of three very negatively charged
atoms give rise to this exceptionally high charge contribution.
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Figure 3.5: Counterpolarization effect during the stretching of a chemical bond. The red
arrow indicates the displacement direction. The curved line shows the electron flux going
from B to A̧. The ellipses below the atoms represent the atomic basin polarizations. Total
charge-transfer and dipolar polarization vectors are represented by the grey arrows.

3.3 Probing the Robustness of the CCTDP model

From the previous section, it is clear that the intensity of CH, CF, and CCl
stretchings are dependent on the counterpolarization effect. Similar behaviour was al-
ready reported for normal modes of carbonyl group[101]. As a general rule, if, during a
atomic displacement, the atomic charges become more negative along one direction of the
molecule the atomic dipoles change, so that their poles in the opposite direction become
more negative as illustrated in Figure 3.5.

As the charge transfer and dipolar polarization contributions to the changes
in dipole moment on molecular distortion have opposite signs their sums are very small.
Furthermore they result in very large positive and negative contributions to the infrared
intensity. The CH stretching mode of methane presents a good example of this cancella-
tion. A positive intensity contribution of 2373.6 km ·mol−1 calculated at the QCISD/cc–
pVTZ level almost exactly cancels the negative contribution of -2304.6 km · mol−1. So
the QCISD/cc–pVTZ estimate of the methane CH stretching contribution is only 69.0
km ·mol−1 in excellent agreement with the experimental value of 67.5 km ·mol−1. How-
ever one might expect the charge transfer and dipolar polarization contributions to be
very sensitive to different quantum level estimations as it is usually a small difference of
two large estimated quantities.

We now examine the QTAIM/CCTDP model results for the CH, CF, and
CCl stretching and bending distortions of the fluoro- and chloromethanes to determine to
what extent the charge transfer and dipolar polarization cancellations affect the calculated
intensities. The robustness of the QTAIM/CCTDP parameters are determined examining
results calculated at three quantum levels, MP2/6–311G++(3d,3p), QCISD/cc–pVTZ,
and QCISD/aug–cc–pVTZ. Model robustness is necessary for a proper description of
the electronic density changes occurring for small molecular distortions. As such this
information is relevant for investigations involving larger distortions and even chemical
reactivity.

Table 3.6 contains the contributions Ak(CTDP) for the three quantum levels.
Inspection shows that the inclusion of the augmented (s, p, d, and f) functions in the
basis set produced only minor changes in its magnitude. The agreement between the
QCISD/cc-pVTZ and QCISD/aug–ccpVTZ levels is excellent with a correlation coefficient
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Table 3.6: Charge transfer and dipolar polarization contributions sum to IR intensities
of the fluoro- and chloromethanes at the MP2/6–311G++(3d,3p), QCISD/cc–pVTZ, and
QCISD/aug–cc–pVTZ quantum levels. Values presented in km ·mol−1.

Molecule Normal mode MP2–6-311++(3d,3p) QCISD/cc-pVTZ QCISD/aug-cc-pVTZ
CH4 CH str. 10.98 22.21 21.71

CH bend 19.66 9.51 11.26
CH3F CH str. 23.74 27.73 23.70

CH bend 0.08 0.63 0.63
CF str. 8.89 7.22 5.24
CH str. 7.56 18.00 19.59
CH bend 9.80 5.37 5.04
mixed 4.47 2.75 3.71

CH2F2 CH Str. 20.55 25.61 26.46
CH bend 1.96 0.52 0.60
CF str. 2.26 3.28 4.76
CF bend 10.14 11.32 9.73
CF str. 16.26 7.57 5.46
CH bend 11.39 15.86 15.37
CH bend 5.25 25.61 16.50
CF str. 1.54 11.77 4.14

CHF3 CH str. 4.57 7.33 11.21
CF str. 0.41 2.13 1.70
CF bend 42.51 68.21 55.63
CH bend 27.45 39.95 36.64
CF str. 1.59 1.60 1.31
CF bend 14.69 18.75 17.81

CF4 CF str. 9.93 34.90 30.75
CF bend 28.24 39.14 34.68

CH3Cl CH str. 23.02 29.11 28.32
CH bend 16.07 30.74 29.34
CCl str. 6.05 6.20 6.16
CH str. 3.25 10.27 12.27
CH bend 4.10 1.70 1.68
CH bend 3.70 1.89 1.71

CH2Cl2 CH str. 9.48 16.96 18.95
CH bend 1.95 6.77 5.97
CCl str. 0.00 0.02 0.00
CCl bend 0.00 0.01 0.00
CH str. 0.31 3.99 6.29
mixed 3.17 1.82 1.33
CH Bend 67.99 88.37 88.96
CCl str. 61.77 51.06 53.91

CHCl3 CH str. 0.53 4.00 6.56
CCl str. 3.62 4.46 3.15
CCl bend 1.55 1.72 1.68
CH bend 47.28 61.53 59.77
CCl str. 63.79 55.38 53.87
mixed 0.47 1.04 0.71

CCl4 CCl str. 64.58 47.18 55.80
CCl bend 1.62 1.38 1.15

of 0.988. The RMSE of 3.3 km ·mol−1 is much smaller than the range of the QCISD/aug–
cc–pVTZ values from 0.0 to 89.0 km · mol−1. The variations in the contribution values
on changing the electron correlation level from MP2 to QCISD and the basis set from 6–
311G++(3d,3p) to aug–cc–pVTZ are much larger as would be expected. The correlation
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coefficient between these levels of theory is noticeably smaller, 0.934, with a RMSE of 7.8
km ·mol−1, more than twice the analogous value previously cited.

Table 3.7: Charge transfer–dipolar polarization contribution for CH, CF, and CCl stretch-
ings and bendings (km · mol−1) for the MP2/6–311G++(3d,3p), QCISD/cc–pVTZ, and
QCISD/aug–cc–pVTZ quantum levels.

2*
Normal
Mode

MP2
6–311G++(3d,3p)

QCISD
cc–pVTZ

QCISD
aug–cc–pVTZ

c Ak(C) Ak(CTDP) Ak(C) Ak(CTDP) Ak(C) Ak(CTDP)

CH stretch 2.7 11.3 3.4 15.5 2.6 16.1
CH bend 7.0 16.0 9.9 21.9 9.0 20.9
CF stretch 233.4 2.9 275.4 5.2 283.3 3.4
CF bend 46.5 23.9 60.1 34.4 62.0 29.5
CCl stretch 11.1 33.3 13.7 27.4 14.1 28.8
CCl bend 1.5 0.8 2.0 0.9 2.0 0.8

The average Ak(C) and Ak(CTDP) values at the three quantum levels are given
for the CH, CF, and CCl stretching and bending vibrational modes in Table 3.7. These
parameters at the QCISD level are very similar for both basis sets. The charge contribu-
tion changes are within 1 km ·mol−1 except for the charge contribution of the CF stretch.
It is 7.9 km ·mol−1 larger when calculated with the augmented basis set compared with
the cc–pVTZ basis at the QCISD level. However, this contribution is very large with a
QCISD/aug–cc–pVTZ estimate of 283.3 km ·mol−1. This difference corresponds only to
2.8% of this charge contribution. The CTDP contributions are also in excellent agreement
with the largest difference of 4.9 km ·mol−1 occurring for the CF bend on augmenting the
basis set at the QCISD level.

The differences are larger comparing the values obtained at the QCISD level
with the MP2/6–311G++(3d,3p) calculations. The Ak(CTDP) parameters have the largest
difference of 5.6 km ·mol−1 for the QCISD/aug–cc–pVTZ of the CF bending estimate that
is only a bit larger than the 4.9 km ·mol−1 difference cited above. The largest difference
between these levels occurs for the CF charge contribution estimate, 49.9 km ·mol−1 that
is 17.6% larger than the QCISD/aug–cc–pVTZ value.

In spite of these numerical differences, the interpretation of the electronic struc-
ture changes occurring for these vibrations is the same for all three quantum levels. These
results are a strong statement of the robustness of the QTAIM/CCTDP model. The three
different theory levels used are of similar quality, although the QCISD/aug–cc–pVTZ level
is significantly better when compared to MP2/6–311++G(3p,3d). When it comes to the
electronic correlation treatment, it is pretty clear that second order Møller Plesset pertur-
bation theory is conceptually very different from quadratic configuration interaction with
single and double excitations. The basis sets used are also rather different, even though
they are both triple zeta.

The 6–311G++(3p,3d) basis set is smaller than cc–pVTZ. The Pople’s set has
308 primitive functions while the Dunning’s set has 449 primitives for CCl4. One might
say that, even though the 6–311G++(3p,3d) set is smaller, it is more thorough than
cc–pVTZ (without the augmentation), as it has both diffuse and polarization functions,
which is not the case for cc–pVTZ. The aug–cc–pVTZ basis set, however, is a very large
basis set that has s, p, d, and f functions included to add diffuse character to the wave
function. Regardless of all the differences mentioned above, and even though there are
some minor differences in the magnitude of specific contributions (charge transfer or
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dipolar polarization), the overall analysis of electronic density changes during vibrations
remains unchanged.

3.4 Concluding Remarks

Changes in molecular electronic density as the molecule vibrates can be de-
scribed as movements of the static equilibrium atomic charges and changes in the atomic
electronic densities that are represented by intramolecular charge transfer and atomic
dipolar polarization effects. The inclusion of atomic dipoles along with atomic charges
obtained from QTAIM allows a characterization of the natures of the electronic density
changes occurring for different kinds of molecular vibrations. The CH stretchings and
bendings have dominant charge transfer-dipolar polarization contributions, the CF and
CO stretches have dominant charge contributions and the CF and CCl bends have charge
and charge transfer-dipolar polarization contribution sums that are mostly canceled by
the CCT and CDP interaction contributions. This successful classification has not been
achieved previously using models with only static atomic charge and charge transfer pa-
rameters.

Moreover, the charge transfer–counterpolarization effect occurs in the major-
ity of vibrations reported in this thesis. The most recurring instances in which the coun-
terpolarization effect does not take place is for the out-of-plane bending modes, where
symmetry imposes a zero charge transfer constraint. For these molecules, the inclusion
of atomic dipole moments is mandatory to properly reproduce the infrared intensity. In
fact, the polarization of the atomic basins is the main factor behind the rehybridization
moment, a key component used to explain the huge intensity difference between the out–
of–plane normal mode of benzene and hexafluorobenzene. this topic is explored in the
next chapter.

∗ ∗ ∗

This chapter contains excerpts from texts previously published by the author. The fol-
lowing materials were reprinted with permission:
Duarte, L. J., Richter, W. E., Silva, A. F., Bruns, R. E. Quantum theory of atoms in
molecules charge–charge transfer–dipolar polarization classification of infrared intensities.
The Journal of Physical Chemistry A, 121(42), 8115-8123, 2017, American Chemical
Society.
Silva, A. F., Duarte, L. J., Bruns, R.E., Probing the robustness of the charge-charge
transfer-dipolar polarization model and infrared intensities. Journal of Molecular Model-
ing 24(7), 1-7, 2018, Springer.



59

Chapter 4

Out–of–Plane vibrations

The previous chapter mentioned that charge–transfer is always null for an out-
of-plane normal mode. Considering this fact, earlier studies explained the high intensity
of benzene CH out-of-plane bending by introducing the “rehybridization” moment.

Taking the benzene molecule for example: if the molecule rests over the xy
Cartesian plane (see Figure 4.1) then, during the molecular vibration, the hydrogen atom
is displaced in the z direction and the sp2 carbon atom is forced to adopt a sp3 geometry.
This means that s character is injected into the pz orbital, allowing the π electrons to
concentrate in the opposite direction of the distorted molecular plane. The molecular
dipole moment derivative will reflect this concentration of electrons and, therefore, the
normal mode will be intense in the IR spectrum.

Figure 4.1: Positioning system for planar molecules and normal coordinates for out–
of–plane bending vibrations.

⊙
indicates out–of–plane displacements in the positive

direction of z axis.

The problem with this explanation is that it relies on the interpretation of
orbitals. Since atomic and molecular orbitals are not observable, they are mathematical
functions that do not exist in the tangible world. The electron density, however, is a
quantum observable and a real physical object. If the rehybridization moment determines
the intensity of the out–of–plane bending, then this effect can also be interpreted in terms
of the electron density.

Here, an in–depth analysis on this topic is made. We start by investigating
the CH bending of benzene, substituted benzene and other aromatic molecules.
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4.1 The Charge Transfer Equals Zero

Dinur and Hagler[91, 92] have presented a first-principles proof that intramolec-
ular charge transfer does not occur for out–of–plane vibrations of planar molecules. In
fact, there are two factors that make this statement to be always true. The first one is a
geometric constraint that ensures that the sum of the charge–transfer terms is zero, re-
gardless of the derivative values and/or the molecular positioning in the reference frame.
The second one is an electronic effect that arises from the system’s chemistry.

Dinur’s proof is as follows: if the molecular plane coincides with the Cartesian
xy plane, than the pz component of the dipole moment derivative with respect to the
out–of–plane normal coordinate, Qoop, becomes:

∂pz
∂Qoop

=
N∑

A=1

qA
∂zA
∂Qoop

+
N∑

A=1

(
zA

∂qA
∂Qoop

+
∂mA,z

∂Qoop

)
(4.1)

Since the system is closed, the charges must be conserved and are, therefore,
subject to the constraint:

N∑
A=1

∂qA
∂Qoop

= 0 (4.2)

solving equation 4.2 for atom A = 1, one obtains:

N∑
A=1

zA
∂qA
∂Qoop

=
N∑

A=2

(zA − z1)
∂qA
∂Qoop

(4.3)

As the molecule is planar and rests over the Cartesian xy plane, the term
zA − z1 in equation 4.3 is zero for every atom A. Consequently, the charge–transfer term
in equation 4.1 is zero.

The second factor that makes the charge–transfer term null is related to the
fact that any infinitesimal change in the atomic charge is the same for negative and
positive angular displacements. At the equilibrium position, the atomic charge is either a
maximum or a minimum point, implying that every charge derivative with respect to out–
of–plane displacement equals zero. This is shown in Figure 4.2. The points in the graph
were obtained trough single point calculations starting from the equilibrium structure of
benzene. The hydrogen atoms were displaced along the z positive and negative directions.
Hydrogen AIM charges were obtained using the AIMAll software[102].

A symmetry argument can also be utilized do clarify this point. The hydrogen
atom, when displaced in the positive direction (+∂α) has its atomic charge increased
(+∂q). Because of the symmetry, the exact same increase must occur when the hydro-
gen is displaced in the negative direction(−∂α), as shown in Figure 4.3. The overall
charge change during the atom’s movement in the positive direction is +∂q

+∂α
while the

overall change in the negative direction is +∂q
−∂α

. During the molecular vibration, these
contributions cancel each other, resulting in the null charge transfer contribution.

A similar analysis can be made on the atomic polarizations. Given the same
reference system, changes in the hydrogen atomic dipole moment are of the same magni-
tude if the atom is displaced in the positive or negative direction. However, the atomic
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Figure 4.2: Atomic charge and its derivatives with respect to displacements perpendicular
to the molecular plane. The grey line correspond to the hydrogen charge during benzene
out–of–plane normal mode. The red line correspond to the charge derivative. Notice that
at the equilibrium geometry, the charge derivative is zero.

Figure 4.3: Schematic representation of a CH Bond in a planar molecule during an out–
of–plane angular bending vibrational movement. Note that the infinitesimal changes in
the charge q are the same for both negative and positive angular movements, α. By
symmetry, as pointed out by the red arrows, the overall change in charge during this
vibration is null, resulting in a charge transfer derivative equal to zero.

dipole moment is not a scalar, but a vector, giving those changes opposite signs. At
equilibrium, the atomic dipole is always an inflection point with respect to out–of–plane
displacements, as shown in Figure 4.4.

The consequence of the existence of the inflection point is that the atomic
dipole derivative is a maximum (or minimum, depending of the phase of vibration) at the
equilibrium. While the charge–transfer term does not contributes to the IR intensity of the
out–of–plane bendings, the dipolar–polarization term is the highest possible. The proper
description of atomic dipoles is, therefore, mandatory in order to correctly calculate the
IR spectra of planar molecules.
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Although these considerations are made within the harmonic model, it is im-
portant to notice that the planar geometry of the molecule causes the nullity of the charge
transfer term even when corrections for anharmonicity are included.

Figure 4.4: Atomic dipole and its derivative with respect to displacements perpendicular
to the molecular plane. The grey line corresponds to the hydrogen z component of the
atomic dipole moment during benzene out–of–plane normal mode. The red line corre-
spond to the atomic dipole derivative.

4.2 CH Out–of-Plane Bending Intensities of Benzene

Molecules

Due to the mass of hydrogen, the normal coordinate of the CH out-of-plane
dipole moment derivatives in the substituted benzenes can be approximated by movements
of only the hydrogen atoms in the direction perpendicular to the benzene plane as their
displacements are much larger than those of the carbon and substituent atoms. This
modifies equation 4.1 that can be approximated by summing over only the hydrogen
atoms in the substituted benzenes, that is:

∂pz
∂Qoop

=

NH∑
A=1

[
qA

∂zA
∂Qoop

+
N∑

B=1

(
zB
∂qB
∂zA

∂zA
∂Qoop

+
∂mB,z

∂zA

∂zA
∂Qoop

)]
(4.4)

where NH is the number of hydrogen atoms that moves in the out–of–plane normal coor-
dinates.

However, as demonstrated in the previous section, the out–of–plane bending
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vibrations have no charge transfers, so we can write:

∂pz
∂Qoop

=

NH∑
A=1

(
qA

∂zA
∂Qoop

+
N∑

B=1

∂mB,z

∂zA

∂zA
∂Qoop

)
(4.5)

The first term in this equation gives the contributions of the static hydrogen charge
displacements whereas the second gives the contributions from atomic dipole changes on
the displaced hydrogens and other atoms. The summation over all atoms, N , inside the
parenthesis is necessary as movements of the hydrogen atoms can provoke polarizations
on the other atoms.

Taking the square of this derivative and multiplying by NAπ
3c2

gives the intensity
contribution for the displacements of the hydrogen atoms in the out–of-plane normal
coordinate:

Aoop =
NAπ

3c2

(
∂pz
∂Qoop

)2

=
NAπ

3c2

NH∑
A=1

NH∑
B=1

qAqB
∂zA
∂Qoop

∂zA
∂Qoop

+

2
NAπ

3c2

NH∑
A=1

qA
∂zA
∂Qoop

NH∑
B=1

N∑
C=1

∂mC,z

∂zB

∂zB
∂Qoop

+
NAπ

3c2

NH∑
A=1

N∑
B=1

∂mB,z

∂zA

∂zA
∂Qoop

NH∑
C=1

N∑
D=1

∂mD,z

∂zC

∂zC
∂Qoop

(4.6)

In order to simplify equation 4.6, we introduce the symbols AC2 , A2CDP and
ADP2 to represent the squared charge contribution, the charge and dipolar polarization
interaction and the squared dipolar polarization contribution. Equation 4.6 becomes:

Aoop = AC2 +A2CDP +ADP2 (4.7)

4.2.1 Ab Initio Calculations

The B3LYP/6–311++(d,p) level of theory was used as well as the geometry of
a set of substituted benzenes with the GAUSSIAN09 program[25] that also provides the
Hessian matrices and the L matrices that contains the Cartesian coordinates derivatives
with respect to the normal coordinates1. The IR intensities were analytically calculated
by GAUSSIAN09 and numerically calculated from the atomic charges and dipoles by
the PLACZEK[103] program. From the equilibrium geometry, PLACZEK generates 6N
distorted geometries with each atom being displaced 0.01Å in the positive and negative
directions for each Cartesian coordinate. Each one of these distorted geometries had
their electron densities integrated by the AIMALL program[102] within the atoms in
molecules criteria to obtain the charges and dipoles for each atom. Once these values were
obtained, the polar tensor elements were calculated by simple numerical differentiation.
This procedure can also be reproduced using the Theovib python library in appendix E.

1See Appendix C.
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4.2.2 Calculated and Experimental Intensities

The intensity values determined from the spectra in the PNNL library are
given in Figure 4.5 along with values calculated at the B3LYP/6–311++(d,p) level. The
theoretical values are plotted against the experimental ones, showing that the B3LYP
values tend to overestimate the experimental ones with an RMSE of 8.7 km ·mol−1. This
accuracy seems reasonable as the intensities range from close to zero to 105.1km ·mol−1.
The B3LYP benzene out–of–plane CH bending intensity of 122.1 km ·mol−1 is about 20%
higher than the PNNL experimental value of 105.1 km·mol−1. This out–of–plane intensity
has been measured using low resolution instruments and pressure broadening techniques
by two research groups[96, 104] presenting values of 88.2 km ·mol−1 and 84.6 km ·mol−1.
Higher level ab initio QCISD/cc–pVTZ calculations provide an out–of–plane CH intensity
for benzene of 106.2 km ·mol−1 in almost exact agreement with the value from the PNNL
spectral library, 105.1 km ·mol−1. Table 4.1 contains the charge and dipolar polarization

Figure 4.5: Experimental NIST/PNNL intensities versus calculated B3LYP/6-
311++G(d,p) intensities (both in km ·mol−1).

contributions to the fundamental intensities. The QTAIM/CCTDP total intensity is a
sum of the charge, AC2 , dipolar polarization ADP2 , and charge–polarization interaction
terms, A2CDP ,as specified by equation 4.7 . These values are given in the first columns of
Table 4.1 with their sum in the fifth column. As can be seen there, the agreement with the
B3LYP/6–311++(d,p) values is excellent with a RMSE of only 2.1 km ·mol−1, confirming
the validity of the assumption that the dynamic hydrogen intensity contributions are
sufficient for estimating the total intensities.

The dipolar polarization contributions are much larger than the charge contri-
butions for most of these out–of–plane CH bends. In fact, the polarization contribution
and its interaction with the charge explains almost all of the total intensities. The agree-
ment is excellent with a small 4.6 km ·mol−1 RMSE. The largest deviation occurs for the
755 cm−1 band of fluorobenzene for which the polarization terms sum to 67.0 km ·mol−1

and the total calculated intensity is 81.2 km · mol−1. This is expected as the very elec-
tronegative fluorine atom tends to drain electrons from its next-neighbour hydrogen atoms
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resulting in the largest charge contribution in Table 4.1, 14.1 km ·mol−1.
Figure 4.6 shows a comparison involving the individual charge, polarization,

and their interaction contributions to the calculated intensities. The charge contributions
are much smaller than the dipolar polarization contributions. The charge–polarization
interactions are only large owing to their larger dipolar polarization factors. Even the
largest charge contribution in Table 4.1 for the “q” mode of fluorobenzene vibration is
about half the size of its polarization contribution. This is one of the few substituted
benzene vibrations for which this interaction term is greater than the dipolar polarization
one.

Table 4.1: CCTDP contributions and their sums for the CH out–of–Plane bending
intensities (in km ·mol−1) and estimates made with simpler models

CCTDP Model Simple Model
Molecule Mode AC2 ADP2 A2CDP ADP2+

A2CDP

Aoop Equation
4.9

Equation
4.10

Carbon
con-

tribu-
tion

1,2-Dichlorobenzene a 5.68 36.48 28.80 65.29 71.02 72.96 71.67 78.29
b 0.70 0.34 0.92 1.26 2.01 2.05 3.05 3.33
c 3.00 5.88 8.32 14.20 17.30 26.10 30.67 33.50

1,3-Dichlorobenzene d 3.70 22.21 18.20 40.37 44.06 40.67 41.10 44.90
e 2.96 4.76 7.41 12.17 15.13 14.04 18.16 19.84
f 0.05 0.02 0.03 0.05 0.17 0.03 0.32 0.35

1,4-Dichlorobenzene g 7.80 23.78 27.10 50.86 59.00 60.77 63.63 69.51
h 0.86 23.31 8.94 32.25 33.11 37.32 35.79 39.10

Benzaldehyde i 6.32 25.54 25.40 50.91 57.25 57.84 54.63 59.68
j 6.56 1.55 -6.31 -4.76 1.84 2.04 2.32 2.53

Benzene k 1.86 100.90 27.40 128.34 130.22 129.45 128.85 140.75
l 1.75 14.20 10.00 24.20 25.95 31.18 32.96 36.00

Chlorobenzene m 2.87 38.72 21.00 59.72 62.73 61.57 58.18 63.55
n 0.68 0.88 1.42 2.30 3.19 2.60 3.95 4.31
o 0.05 0.05 0.06 0.11 0.18 0.04 0.03 0.03
p 0.18 21.73 -4.07 17.66 17.84 20.63 26.28 28.71

Fluorobenzene q 14.14 27.54 39.4 66.97 81.20 64.88 65.79 71.87
r 4.75 0.68 3.51 4.19 9.04 3.59 8.18 8.94
s 0.01 0.13 -0.04 0.09 0.14 0.02 0.22 0.24

Nitrobenzene t 0.24 28.41 5.07 33.48 33.87 49.12 44.72 48.85
u 3.41 0.07 0.81 0.88 4.38 4.15 7.38 8.06

Naphthalene v 2.06 99.32 28.70 127.98 130.26 118.53 110.07 120.24
w 0.08 3.63 0.98 4.61 4.71 5.18 4.07 4.45

4.2.3 L-Matrix Element Dependence

Figure 4.7 shows the directions of the displacements of all the ring hydrogens
in all the 23 out–of–plane vibrations. Note that, in comparison with Figure 4.6, the vibra-
tions where all hydrogen atoms are vibrating in phase and moving in the same direction
usually have larger dipolar polarization contributions. If the hydrogens all move above
the benzene ring, the individual dipolar polarizations of the electronic densities will sum
constructively, resulting in a larger dipole moment change. On the other hand, if the
hydrogens move in opposite directions, the atomic dipolar polarizations will cancel each
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Figure 4.6: Static charge AC2 , dipolar polarization ADP2 , and interaction A2CDP contribu-
tions for all vibrational modes. Note the predominance of the dipolar polarization terms.

other, resulting in a small intensity. This is especially evidenced by the “a” and “b”
vibrations of 1,2-chlorobenzene. Mode “a” has all the hydrogens moving in the same
direction so the dipolar polarization vectors sum constructively, but mode “b” has two
hydrogens moving above the ring while two hydrogens are moving below it, so their contri-
butions to the dipole moment change will cancel, resulting in a much smaller polarization
contribution and intensity.

By far, the largest polarization values occur for benzene and naphthalene.
The benzene vibration, of course, has all six CH bonds bending in the same direction,
resulting in a 128 km · mol−1 intensity contribution. Naphthalene has two out–of–plane
CH bending vibrations. The one with eight CH bendings in the same direction has a
polarization value about the same as that of benzene. Its other vibration has four CH
bonds bending in a direction opposite to the other four. Its total polarization contribution
is only 3.6 km · mol−1. All the vibrations having appreciable polarization contributions
between 20 and 40 km · mol−1 have CH bendings predominantly in the same direction
whereas those with contributions less than 5 km · mol−1 have CH bendings in opposite
directions.

It appears that the out–of–plane CH bending dipole moment derivatives in-
crease with the net sum of the hydrogen atom displacements. This is indeed true, as can
be seen in Figure 4.8 where the square roots of the intensities calculated at the B3LYP/6–
311++G(d,p) level are plotted against the sum of the hydrogen atom displacements per-
pendicular to the benzene plane. The correlation coefficient between these values is 0.979

and the regression line has a slope of 4.7 km
1
2 ·mol−

1
2 · amu

1
2 and an intercept that passes

through the origin. As a test of this relation, the B3LYP intensities of the out-of-plane
vibrational modes of seven different molecules with N-fused benzene rings (N = 3, 4, 5),
represented in Figure 4.9, have been included in the graph of Figure 4.8. For this test
set, the net sums of the perpendicular hydrogen displacements were able to predict the

intensities with a root-mean-square error of only 1.22 km
1
2 ·mol−

1
2 · amu

1
2 .
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

(u) (v) (w)

Figure 4.7: Schematic representation of the 23 out–of–plane vibrations investigated in
this section.

⊙
and

⊗
indicates, respectively, out–of–plane displacements in the positive

and negative direction of z axis.
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This excellent linear fit suggests that the electronic factors causing the CH out–of–plane
intensities for the substituted benzenes are very similar.

Figure 4.8: Linear dependence of square root of experimental intensities and the sum of
the hydrogen out–of–plane displacements. The linear regression is expressed in the form
y = ax+ b. The white dots are the 23 vibrational modes in Figures 4.7 2. The grey dots
are the test set listed in Figure 4.9.

4.2.4 A Simple Model

Examination of the values of the individual terms in equation 4.5 shows that
the CCTDP model can be further simplified. Dipole moment changes owing to polar-
izations of the substituent atoms are small for the out–of–plane CH bends and can be
neglected. For this reason, the electron density changes for the out–of–plane CH bends
can be simply described by displacements of the hydrogen static charges and the atomic
dipole changes on the hydrogen and carbon atoms. As such equation 4.5 takes the form:

∂pz
∂Qoop

=

NH∑
A=1

(
qA +

NH∑
B=1

∂mB,z

∂zA
+

NC∑
C=1

∂mC,z

∂zA

)
∂zA
∂Qoop

(4.8)

where NC and NH are the total number of these carbon and hydrogen atoms. Notice
that A and B are dummy variables for hydrogen labels and C is the dummy variable
for carbon atom labels. The derivatives of the atomic dipoles in this equation are of two
types, polarizations of the carbon and hydrogen atoms involved in the CH bend and those
polarizations owing to the other atoms in the aromatic ring. The latter are calculated to
be very small and provide negligible contributions to the infrared intensities, except for
the polarization terms of the two nearest neighbour carbon atoms directly bonded to the

displaced CH bond
(

∂mnbrA,z

∂zA

)
. So, equation 4.8 can be simplified even more.
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(a) Molecule I: 92.84 km ·
mol−1

(b) Molecule II: 89.39 km ·
mol−1

(c) Molecule III: 97.91 km ·
mol−1

(d) Molecule IV: 108.18 km ·
mol−1

(e) Molecule V: 82.16 km ·
mol−1

(f) Molecule VI: 16.51 km ·
mol−1

(g) Molecule VII: 85.80 km ·
mol−1

Figure 4.9: N-Fused benzene ring molecules (N = 3, 4, 5) and intensities used as test set

∂pz
∂Qoop

=

NH∑
A=1

(
qA +

∂mA,z

∂zA
+
∂mCA,z

∂zA
+
∂mnbrA,z

∂zA

)
∂zA
∂Qoop

(4.9)

with
∂mCA,z

∂zA
being the polarization of the carbon atom bonded to the displaced hydrogen.
The terms in parenthesis are contributions to elements of the atomic polar

tensor of the substituted benzenes. These quantities are presented in Table 4.2 for hy-
drogen and the ring carbon atoms bonded to hydrogen and their neighbouring carbon
atoms. The hydrogen atom charges are very similar with an average of 0.036 ± 0.018
e. The atomic polarization derivatives for carbon have an average of 0.214 e with a 7%
standard deviation, 0.016 e. The hydrogen atomic dipole moment derivatives are also
almost constant, -0.043 ± 0.002 e. The same can be said about the neighbouring carbon
atom derivatives, which is -0.052 ± 0.007 e.

These standard deviations for the electronic parameters are all less than 0.02
e, indicating they are transferable among the substituted benzenes. As such, the model
can use average values moving the electronic factors out from the sum in equation 4.9:

∂pz
∂Qoop

=

(
qA +

∂mA,z

∂zA
+
∂mCA,z

∂zA
+
∂mnbrA,z

∂zA

) NH∑
A=1

∂zA
∂Qoop

(4.10)

These average values can be used to estimate all the intensities of the 23 out–of–plane
vibrations. The intensities of the CH out–of–plane bending modes of the substituted
benzenes can be expressed by the sum of only four transferable electronic parameters,
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Table 4.2: Equilibrium charge of hydrogen atoms and atomic polarization dipole moment
derivatives (in units of e) with respect to hydrogen atom displacements.

Molecule qA
∂mA,z

∂zA

∂mCA,z

∂zA

∂mnbrA,z

∂zA

1,2-Dichlorobenzene 0.051 -0.043 0.200 -0.046
0.033 -0.043 0.214 -0.061
0.033 -0.043 0.225 -0.061
0.051 -0.043 0.199 -0.047

1,3-Dichlorobenzene 0.051 -0.045 0.203 -0.045
0.038 -0.041 0.210 -0.060
0.051 -0.045 0.210 -0.049
0.070 -0.045 0.183 -0.033

1,4-Dichlorobenzene 0.054 -0.043 0.194 -0.047
0.054 -0.043 0.199 -0.049
0.054 -0.043 0.194 -0.047
0.054 -0.043 0.199 -0.049

Benzaldehyde 0.028 -0.042 0.219 -0.053
0.026 -0.043 0.226 -0.049
0.063 -0.048 0.185 -0.052
0.029 -0.042 0.218 -0.056
0.029 -0.041 0.218 -0.057

Benzene 0.017 -0.042 0.226 -0.053
0.017 -0.042 0.237 -0.053
0.017 -0.042 0.235 -0.053
0.017 -0.042 0.226 -0.053
0.017 -0.042 0.237 -0.053
0.017 -0.042 0.235 -0.053

Chlorobenzene 0.045 -0.044 0.207 -0.044
0.028 -0.042 0.219 -0.057
0.028 -0.042 0.213 -0.057
0.045 -0.044 0.208 -0.044
0.025 -0.043 0.226 -0.055

Fluorobenzene 0.049 -0.046 0.216 -0.038
0.028 -0.042 0.218 -0.056
0.028 -0.042 0.213 -0.056
0.049 -0.046 0.221 -0.038
0.023 -0.044 0.231 -0.054

Nitrobenzene 0.038 -0.042 0.202 -0.057
0.087 -0.052 0.174 -0.040
0.087 -0.051 0.174 -0.040
0.038 -0.042 0.209 -0.058
0.036 -0.042 0.209 -0.059

Naphtalene 0.017 -0.042 0.229 -0.054
0.019 -0.043 0.229 -0.055
0.017 -0.042 0.225 -0.056
0.017 -0.042 0.228 -0.054
0.019 -0.043 0.232 -0.056
0.017 -0.042 0.226 -0.056
0.019 -0.043 0.229 -0.055
0.019 -0.043 0.232 -0.055

Average 0.036 -0.043 0.214 -0.052
Std. Dev. 0.018 0.002 0.016 0.007
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the displaced equilibrium hydrogen charge, and the carbon and hydrogen atomic dipole
derivatives of the bent CH bonds and their nearest neighbour carbon dipole derivatives,
multiplied by the sum of the amplitudes of the perpendicular displacements of the hydro-
gen atoms out of the benzene ring plane for the normal coordinate.

The results of equation 4.9 are given in the third last column of Table 4.1
and those assuming transferability, equation 4.10, in the second last column. The results
using the individual electronic parameters have an rms difference 6.0 km · mol−1 when
compared with the B3LYP/6–311++(d,p) intensities. On assuming transferability this
difference is only 1.1 km · mol−1 higher, 7.1 km · mol−1, an increase much less than the
expected experimental error.

Accurate intensity estimates can also be made using only the electronic param-
eters of the carbon atoms as the hydrogen charge displacement (0.036 e) and its dipolar
polarization (-0.43 e) almost cancel each other. These values are given in the last column
of Table 4.1. As can be seen there, the estimated intensities using only the carbon atom
parameters are all 9.2% higher than those calculated with all the parameters of equation
4.10.

4.2.5 The Origins of the Rehybridization Moment

The rehybridization moment during the out–of–plane vibration consists of
changes that occur in the electron density of the CH bond when the sp2 carbon is forced
into a nonplanar configuration, which tends toward sp3 geometry as the hydrogen atom
moves out of the molecular plane. Steele and Wheatley[98] defined the rehybridization
moment as the difference between the dipole moment derivative of the out–of–plane vibra-
tion (a2u) and the in-plane vibration (e1u), and they obtained a value of 0.3 D · radian−1.
This value agrees with the results of Spedding and Whiffen[96]. They found a CH dipole
moment of 0.61 D · radian−1 for the a2u mode and 0.3 D · radian−1 for the e1u modes.

From our proposed model, the dipole moment derivative for the a2u mode
can be obtained using the terms in parenthesis of equation 4.10, as show in Figure 4.10.
Considering a displacement of 15° for the CH bond out of the plane of the aromatic ring,
taking the projection along z, multiplying by and finally dividing by the displaced angle,
we obtain a value of 0.80 D · radian−1, which is slightly higher than the value of 0.69
D · radian−1 found by Cole and Michell[104], which was obtained from an average of 51
aromatic compounds.
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Figure 4.10: The dipole moment of the CH bond for the out–of–plane vibration can be
obtained from the angular coefficient of Equation 4.10. Here, a displacement of 15° in the
z-axis direction was used to estimate the out–of–plane normal coordinate. Converting
the values from electron · Angstrom(e.Å) to Debyes (D), a value of 0.80 D · radians−1

was obtained for the bond moment of the CH bond, which is in agreement with literature
values mentioned in the text.

Note that the simple model provides a detailed physical interpretation of the
rehybridization moment. When the hydrogen of the CH bond moves in the positive
direction along the z-axis, the point charges of the CH hydrogen and carbon atoms give
rise to a dipole moment, whose magnitude is equal to the first term of the electronic
parameter coefficient of the model described by equation 4.10. This dipole moment is
almost completely canceled by the hydrogen dipolar polarization, the second term in the
model. This phenomenon is accompanied by the appearance of a large atomic dipole
moment that emerges as the sp2 orbital tends toward the nonplanar sp3 geometry. The
magnitude of this dipole moment corresponds to the third term inside the parenthesis of
equation 4.10. Once the carbon atom of the displaced CH bond is polarized, it induces
polarizations on the neighbouring carbon atoms in the opposite direction (last term inside
the brackets of equation 4.10). The total rehybridization moment is then described as the
resultant of these four effects. This interpretation is summarized in Figure 4.11.

Figure 4.11: Components of the rehybridization moment (not to scale): The dashed arrow
indicates the point charge contribution and the solid arrows indicate the atomic dipole
moment contributions
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4.2.6 Benzene and Hexafluorobenzene

The intensity of the out–of–plane CH bending in benzene is 130 km · mol−1,
whereas the intensity for the CF bending in hexafluorobenzene is below 5 km ·mol−1. In
Chapter 3, the difference between the CH and CF out–of–plane bending was associated
with the large negative atomic charge of fluorine. Considering the components of the
rehybridization moment, displacements of the fluorine atoms in the positive z direction
results in a charge contribution pointing in the negative direction, in contrast to the pos-
itive contribution in benzene, annihilating the polarization contribution from the carbon
atoms.

4.2.7 Notes on Anharmonicity

In this chapter, it was shown that within the harmonic approximation the
charge–transfer contribution for out–of–plane bending of planar molecules is always equal
to zero due to symmetry constraints, i.e. any infinitesimal change in atomic charges dur-
ing the vibration will be the same for both the positive and negative phases of the normal
coordinate, making the dipole moment derivative equal to zero at the equilibrium. How-
ever, when anharmonicity is to be considered, one needs to include the second derivative
of the molecular dipole moment with respect to the normal coordinate. Although the first
derivative of charge is equal to zero, that is not necessarily true for the second derivative.

Starting with equation 4.1, the second derivative of the molecular dipole mo-
ment is:

∂2pz
∂Q2

oop

=
N∑

A=1

∂qA
∂Qoop

∂zA
∂Qoop

+
N∑

A=1

qA
∂2zA
∂Q2

oop

+
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∂zA
∂Qoop

∂qA
∂Qoop

+
N∑

A=1
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∂2qA
∂Q2

oop

+
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∂2mA,z

∂Q2
oop

(4.11)

As the charge derivative is equal zero, equation 4.11 is simplified to:
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(4.12)

since the system is closed, no charge can leave the system, so the sum of the atomic charge
second derivatives becomes:

N∑
A=1

∂2qA
∂Q2

oop

= 0 (4.13)

solving equation 4.13 for atom A = 1 and substituting in equation 4.14:
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∂Q2
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(4.14)

For a planar molecule, zA − z1 is always zero. Therefore, the anharmonic charge-transfer
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term is also zero, that is:
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∂Q2
oop

(4.15)

The same derivation applies for higher order derivatives.

4.3 IR Intensities of Fundamental Bands for Out–

of–Plane bending in Ethylene and Dichloro and

Difluoroethylenes

Intensities calculated at the M06-2X/aug–cc–pVTZ level for out–of–plane bend-
ings in ethylene, dichloroethylene, difluoroethylene and their deuterated analogues are
given in Table 4.3 along with the experimental intensity. Ethylene, with small equilib-
rium atomic charges of 0.016 and -0.031 e for the hydrogen and carbon atoms has the
largest experimental intensity, 82.1 km ·mol−1[64, 65]. In contrast, cis-C2H2F2 with larger
atomic charges, 0.611 and -0.691 e for carbon and fluorine, has less than half the ethylene
intensity, 29.6 km · mol−1 . The CH and CD bending intensities of 1,1-difluoroethylene
[105] have values of 60.3 and 28.9 km · mol−1 and are much larger than those of the
corresponding CF bendings, 0.3 and 5.9 km · mol−1. Similar behaviour is found for the
out–of–plane bendings of trans-C2H2F2 and C2D2F2, for which the CH and CD intensities
are two to four times larger than the values for the CF bendings [106]. The changes in the
electron density occurring for the CH and CF bendings are similar to the ones occurring
for the out–of–plane bending in benzenes.

The data in Table 4.3 can be classified into three groups, the CH and CD
bendings, the CF and CCl bendings and mixed bending modes. The C2H4 and high
frequency modes of 1,1– and trans–C2H2F2 and trans–C2H2Cl2 have experimental inten-
sities ranging from 48.0 to 82.1 km ·mol−1. Experimental CD bending intensities of C2D4,
1,1– and trans-C2D2F2 range between 27.8 and 44.8 km · mol−1. These smaller values
are expected as the amplitudes of the CD bendings are smaller than those for CH. The
range of intensities for the CD vibrations is almost half of the one for CH owing to the
larger mass of the deuterium atom. The CF bendings of 1,1– and trans-C2H2F2 and their
deuterated analogues have much smaller experimental intensities ranging from 0.3 to 12.7
km · mol−1. These values are close to the theoretical value of 4.5 km · mol−1 calculated
for C2F4. The CCl bend of trans-C2H2Cl2 also has a weak experimental intensity of 0.1
km · mol−1. Although the experimental intensity has not been measured for the CCl
bending vibration of 1,1-C2H2Cl2 it does have a small theoretical value of 5.6 km ·mol−1.

The differences between the high CH and CD out–of–plane bending intensities
relative to the very low CF and CCl intensities can be understood by examining the
theoretical charge and polarization contributions to their dipole moment derivatives. The
CH bending intensities are characterized by a small average charge and large dipolar
polarizations contributions having the same sign, reinforcing one another and resulting
in larger intensity values. On the other hand, the CF bending vibrations have charge
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Table 4.3: Total charge and dipolar polarization contributions to the dipole moment
derivative and IR intensities km · mol−1 of out–of–plane bending vibrations of ethylene,
tetrafluoroethylene and difluoro- and dichloroethylenes as well their isotopologues. Fre-
quencies (cm−1)and experimental intensities( Aexp) are also reported.

Molecule Mode Freq. Aexp AC2 ADP2 A2CDP Aoop

C2H4 CH 1002 82.1 1.1 79.1 18.9 99.0
C2D4 CD 758 44.8 0.7 45.5 10.9 57.1
C2F4 CF 428 396.5 316.5 -708.6 4.4
cis-C2H2F2 Mixed 818 29.6 2.1 68.4 -23.8 46.7
cis-C2D2F2 Mixed 640 17.6 14.7 70.5 -64.5 20.7
1,1-C2H2F2 CH 855 60.3 10.9 27.8 34.9 73.6

CF 648 0.3 84.8 85.4 -170.1 0.1
1,1-C2D2F2 CD 716 28.9 44.6 0.6 -10.4 34.8

CF 599 5.9 53.8 106.7 -151.6 8.9
trans-C2H2F2 CH 953 56.7 2.0 49.3 19.7 71.0

CF 343 12.7 122.8 80.2 -198.5 4.5
trans-C2D2F2 CD 705 27.8 1.2 47.6 -15.1 33.7

CF 333 12.6 116 71.5 -182.2 5.3
cis-C2H2Cl2 Mixed 736 35.2 7.2 20.8 24.5 52.5

CH 928 2.9 26.8 17.8 47.5
1,1-C2H2Cl2 CCl 472 0.4 3.3 2.3 6.0
trans-C2H2Cl2 CH 969 48.0 13.3 14.0 27.4 54.7

CCl 201 0.1 8.8 6.1 -14.6 0.3

and dipolar polarization values of opposite signs. These contributions almost completely
cancel each other resulting in very small net dipole moment derivatives and IR intensities.

(a) Out–of–plane bending of ethylene. (b) Out–of–plane bending of fluoroethy-
lene.

Figure 4.12: Relative displacements of the hydrogen and fluorine atoms with their ac-
companying carbon atom polarizations for normal coordinates of out–of–plane bendings
of ethylene and fluoroethylene. Red arrows indicate the displacement of atoms. Grey
arrows indicate the direction of the charge and dipolar polarization contributions.

The polarizations of carbon atom’s electron densities of C2F4 are of about the
same size as those in ethylene although they have negative signs. The positive phase
of the normal coordinate has fluorine atom displacements in the negative z direction as
shown in Figure 4.12 with polarizations of the carbon electronic densities in the opposite
direction. The carbon charge and polarization contributions largely cancel one another
and together account for an estimated intensity of 14.7 km ·mol−1. The fluorine atomic
charges and polarizations reinforce those on the carbon atoms resulting in a 4.5 km ·mol−1
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intensity estimate.
Dipolar Polarization of the carbon atom electron densities in the opposite

direction to the displacements of the hydrogen and fluorine atoms of cis-C2H2F2 and its
deuterated analogue provide the dominant contributions (0.129 and 0.121 e · amu− 1

2 ) to
their dipole moment derivatives. These are twice the size of all the charge contributions
that are between -0.06 and +0.05 e ·amu− 1

2 for cis-C2H2F2 and -0.07 and +0.03 e ·amu− 1
2

for cis-C2D2F2. Even though the fluorine equilibrium charges (-0.691 e) are much larger
than the hydrogen ones (+0.080 e) their contributions to the dipole moment derivatives
are smaller owing to their much larger masses resulting in their relatively small vibration
amplitudes. The electron density changes for the cis-C2H2Cl2 bend are similar to those
of cis-C2H2F2 except for the smaller chlorine charges and higher atomic masses resulting
in a negligible dipole moment derivative contribution of -0.002 e · amu− 1

2 .
1,1–C2H2F2 has two distinct out–of–plane bendings characterized as CH and

CF vibrations. The CH bend has larger carbon atom polarizations than any of the charge
contributions. By far the larger polarization occurs for the carbon atom of the methylene
group, 0.425 e · amu− 1

2 . Its polarization is in the opposite direction to the displaced
hydrogen atoms. Dipolar polarization (-0.141 e ·amu− 1

2 ) occurs for the other carbon atom
bonded to the relatively stationary fluorine atoms. Even this polarization is more than
twice as large as any of the charge contributions and the small polarization of the hydrogen
and fluorine atoms. In fact, the carbon atoms polarization alone result in an intensity
value of 79.0 km · mol−1, only 5 km · mol−1 higher than the theoretical values. Dipolar
polarization of the carbon atoms also occurs for the CF bending vibration. The electron
density of the CF2 group carbon is polarized in the opposite direction to the displaced
neighbouring fluorine atoms (-0.266 e · amu− 1

2 ). For this vibration the large positive
charge on the carbon bonded to the electronegative fluorine atoms makes a substantial
contribution, +0.261 e · amu− 1

2 , canceling almost all this carbon polarization consistent
with the very small experimental intensity of 0.3 km · mol−1. Similar dipole moment
derivative contributions explain the small theoretical estimate, 6.0 km · mol−1, of the
out–of–plane CCl bend of 1,1–C2H2Cl2.

The trans isomer has distinct out–of–plane bending vibrations with the CH
bend having an intensity more than four times that of the CF bend. The CH bend has
a polarization contribution (0.225 e · amu− 1

2 ) about five times larger than the charge one

(0.045 e · amu− 1
2 ). In contrast both charge and polarization contributions are large and

have opposite signs (+0.355 and -0.287 e ·amu− 1
2 ) accounting for the small intensity of the

CF bend. A similar situation occurs for trans-C2D2F2 bendings with negligible charge and
large polarization contributions for the CD bend and large-opposite sign contributions for
the CF bend.

4.4 The Unavoidable Failure of Point Charges

Considering only point charges, the molecular dipole moment will be given
only by the sum of the atomic charges multiplied by the position of the atom. Instead of
using equation 1.15, the following applies:

p⃗ =
N∑

A=1

qΩA
r⃗ΩA

(4.16)
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this means that the dipole moment derivatives for the out–of–plane bendings will be
reduced to only the equilibrium atomic charges, while the models based on charges and
dipoles will describe this total derivative as a combination of equilibrium charges and
changes in the atomic polarizations. The σ component of the dipole moment derivative
with respect to the out–of–plane normal coordinate is:

∂pσ
∂Qoop

=

{∑N
A=1 qA

∂σA

∂Qoop
atomic charges only∑N

A=1 qA
∂σA

∂Qoop
+
∑N

A=1
∂mA,σ

∂Qoop
charges and dipoles

(4.17)

In order to compare the outcome from these two approaches for intensities of out–of–
plane vibrations, the complete IR intensity analyses for ethylene, cis-difluoroethylene,
benzene and F2CO were carried out. Moreover, two linear molecules (CO2 and HCN)
were also included since their angular bendings are also subject to the zero charge transfer
constraint. QTAIM[4], Hirshfeld [107], DDEC6 [106], CM5[108], ADCH[109], VDD[110],
NPA[111] and CHELPG[112] models were investigated, as multiple representatives for
each case of equation 4.17.

QTAIM, Hirshfeld and DDEC6 models will automatically reproduce the dipole
moment if both charges and dipoles are employed. ADCH also satisfies the static dipole,
but employing only atomic charges, whereas CM5 aims to reproduce the experimental
molecular dipole moment, which may not have the same value determined from the wave-
function. Conversely, VDD and NPA charges do not reproduce the molecular dipole
moment from the wavefunction. CHELPG parameters were computed under three differ-
ent situations: point charges, without constraint to reproduce the dipole moment from
the wavefunction (labeled CHELPG-q); point charges, but constrained to reproduce the
dipole moment (CHELPG-qcd); and atomic charges and atomic dipoles, again constrain-
ing the entire set to reproduce the dipole moment (CHELPG-qmcd).

It is important to stress that the inclusion of atomic polarizations does not
make the atomic charges and dipoles from QTAIM, Hirshfeld, DDEC6 and CHELPG-
qmcd conceptually equivalent. They belong to a common group but their electron density
changes can be completely different and even incompatible with one another, depending
on the relative magnitudes of their charges and dipoles. The same can be said about the
different models with only point charges.

The charges and dipoles from these models were used to calculate the electron
density changes accompanying vibrations, in order to determine their infrared intensities.
Table 4.4 shows the wavenumbers and intensities for some of the IR active vibrations of
ethylene, cis-difluoroethene, benzene, F2CO and HCN. Only vibrations with intensities
larger than 10.00 km · mol−1 were considered so inherent numerical errors will be small
compared to the total intensities.

The table was divided and colored in a way to facilitate the interpretation of
the results. The second and third columns contains frequency and intensities obtained
directly from Gaussian09[25]. Columns 4–7 show the results for the four charge models
that employ both atomic charges and atomic dipoles, whereas columns 8–12 show the
results from the models employing only atomic charges. The intensities from Gaussian
are used as reference. Grey cells show the values that deviate from the reference by at
least 8 km ·mol−1 from the target values.

It is evident that models including atomic dipoles perform much better. Ex-
cept for a few results from CHELPG-qmcd, all results approach the target values within
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numerical accuracy. Notice that the ways in which these models are defined may be
completely different (starting from reference atomic densities and then iterating them for
DDEC6 and Hirshfeld, from ESP fit for CHELPG-qmcd and from the topology of the
molecular density for QTAIM), but nearly all of them are equally capable of accurately
reproducing all these intensities.

A totally different situation is found for the results from the point charge
models. CHELPG-q, VDD and NPA charges disagree with the target intensities for
almost all vibrations. Only three intensities from CHELPG-q, two from VDD and one
from NPA match those from the wavefunctions. This was expected since the IR intensity
depends on the derivative of the molecular dipole moment, and if the chosen model cannot
reproduce even the static equilibrium dipole moment predicting its derivatives will be even
more unlikely. One might expect CM5 charges to perform better than CHELPG-q and
VDD, since CM5 charges were developed to reproduce the experimental dipole moment,
but this is not the case. Parametrization for the experimental dipole moment prevents
these charges from capturing the real modifications in the wavefunctions of the distorted
geometries.

Point charge models that reproduce the dipole moment of the wavefunction,
CHELPG-qcd and ADCH are capable of accurately calculating the intensities of all vi-
brations for each molecule but one, specifically the out–of–plane modes (which are in bold
face in table 4.4).

The static charges from the equilibrium geometry completely determine the
charge contribution in equation 4.17. Since the distortions lead to rearrangements in
the electron density, the charges must vary, and the new charges calculated for the dis-
torted geometries are also constrained to agree with the non-equilibrium dipole moments;
the difference between these charges and equilibrium ones determines the charge trans-
fer term. Therefore, for in–plane vibrations, combination of charge and charge transfer
contributions satisfactorily reproduce the correct dipole moment derivative and thus the
correct IR intensity. However, since for out–of–plane vibrations the charge transfer term
vanishes, the intensities will be erroneous predicted because the equilibrium charges can-
not describe changes in the electron density distribution as the atoms move in the normal
coordinate.

The reason why all charge and dipole models can accurately reproduce the
IR intensity is evident. Even though the charge transfer term vanishes, there is still an
additional degree of freedom available in the form of the dipolar polarization term, which
ensures the correct calculation of the dipole moments of distorted geometries and hence the
intensities. In other words, explicit consideration of atomic polarizations is necessary for
quantitative assessment of IR intensities of out–of–plane vibrations. A general conclusion
is that reproducing the dipole moment is a necessary, but not sufficient condition for
accurate and meaningful prediction of dipole moment derivatives and IR intensities. The
inclusion of atomic dipoles is mandatory for accurate intensity estimates as well as for
any study focused on the electron density changes accompanying molecular distortions,
including (but not restricted to) vibrations.
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4.5 The Rehybridization Moment in Boron Trihalides

Although the existence of the rehybridization dipole moment has been dis-
cussed so far in terms of the carbon atom, the same approach can be taken for any planar
molecule. In this section, the out–of–plane bendings of boron trihalides (and borane) will
be investigated. Figure 4.13 presents the atom positioning and numbering scheme utilized
here. As the molecular plane of all molecules is the xy plane, the only elements of the L
matrix that are not null are those in the z direction. Expanding these terms equation 4.1
then becomes

∂pz
∂Qoop

= qB
∂zB
∂Qoop

+
∂mB,z

∂zB

∂zB
∂Qoop

+
∂mX1,z

∂zB

∂zB
∂Qoop

+

∂mX2,z

∂zB

∂zB
∂Qoop

+
∂mX3,z

∂zB

∂zB
∂Qoop

+ · · ·+ qX3

∂zX3

∂Qoop

+
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∂zX3

∂zX3

∂Qoop

+
∂mX2,z

∂zX3

∂zX3

∂Qoop

+
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∂zX3

∂zX3

∂Qoop

+
∂mX3,z

∂zX3

∂zX3

∂Qoop

(4.18)

notice that the subscripts correspond to the atomic symbols as showed in Figure 4.13.

Figure 4.13: Out–of–plane normal coordinates of boron trihalides and borane. X = F,
Cl, Br or H.

To simplify the analysis and reduce the number of terms, the Lmatrix elements
are transformed by considering only the relative displacements of atoms with respect to
the position of the boron atom. In doing so, the boron equilibrium charge contributions
become equal to zero and its original displacement values are redistributed into those of

the Xi atoms. The relative displacement terms,
∂z′B

∂Qoop
and

∂z′Xi

∂Qoop
, are defined as:

∂z′B
∂Qoop

= 0 and
∂z′Xi

∂Qoop

=
∂zXi

∂Qoop

− ∂zB
∂Qoop

for i = 1, 2, 3 (4.19)

The dipole moment derivative can, then, be approximated by

∂pz
∂Qoop

≈
3∑

i=1

∂mB,z

∂zXi

∂z′Xi

∂Qoop

+ qX1

∂z′X1

∂Qoop

+
3∑

i=1

∂mX1,z

∂zXi

∂z′Xi

∂Qoop

+

qX2

∂z′X2

∂Qoop

+
3∑

i=1

∂mX2,z

∂zXi

∂z′Xi

∂Qoop

+ qX3

∂z′X3

∂Qoop

+
3∑

i=1

∂mX3,z

∂zXi

∂z′Xi

∂Qoop

(4.20)
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The first term on the right-hand size of equation 4.20 corresponds to the polarization
derivative of the sp2 central atom, B, that is forced to assume a sp3-like geometry for
out–of–plane displacements of the terminal atoms.

Table 4.5 presents the intensities determined by the quantum chemical param-
eters of equation 4.18 and the approximate intensities from equation 4.20. This transfor-
mation is exact, although the L matrix elements are calculated within a molecular–fixed
coordinate system and the use of relative displacements is equivalent to using a space-fixed
system with the boron atom always at its origin, which does not suffices the Eckart condi-
tions. The RMSE for the approximate intensities is very small, 0.64 km ·mol−1 (or 0.18%
of the average intensity). The BF3 intensities calculated at the QCISD/aug-cc-pVTZ level

Table 4.5: CCTDP (Aoop), approximate and decision tree transferred intensities (in km ·
mol−1) of boron halides and borane.

Molecule Freq. Aoop Equation 4.20 Decision tree model
BH3 1162.43 81.76 81.77 81.77
BF3 697.52 106.05 105.05 104.89
BCl3 460.11 6.26 5.75 6.03
BBr3 393.64 0.75 0.91 0.91
BH2F 1097.60 74.80 77.85 76.49
BHF2 944.07 74.04 75.09 77.06
BH2Cl 1014.37 28.54 27.35 26.85
BHCl2 800.87 12.63 12.32 13.53
BH2Br 990.40 21.11 19.96 19.43
BHBr2 752.30 6.98 6.93 8.02
BF2Cl 607.40 51.74 48.26 53.20
BFCl2 530.46 21.96 23.31 21.44
BF2Br 576.64 41.07 37.34 35.00
BFBr2 478.60 10.39 10.02 11.90
BCl2Br 437.50 3.64 2.67 2.45
BClBr2 415.23 1.69 2.16 0.00

RMSE 0.64 2.10

are in excellent agreement with experimental results. An out–of–plane experimental in-
tensity value[113] of 108.8 km·mol−1 measured from the gas phase high–resolution spectra
of the NIST/PNNL library is very close to the theoretical estimate of 106.1 km ·mol−1.
The experimental in–plane stretching[113] and bending[114] intensities of 871.3 and 27.1
km ·mol−1 are in very good agreement with the QCISD/aug-cc-pVTZ values, 888.7 and
27.3 km ·mol−1. As such, it appears that this theoretical level adequately describes the
electron density changes owing to the BF3 vibrations. The BCl3 and BBr3 experimental
intensity data are limited but their stretching intensities of 700.8 and 555.6 km ·mol−1 are
in good agreement with the QCISD/aug–cc–pVTZ results of 703.76 and 570.56 km·mol−1.

Table 4.6 shows the charge, dipolar polarization, and their interaction contri-
butions for each molecule and the average sums of the atomic contributions. These values
are given in the last column of Table 4.6 and their sums for all the atomic contributions
of each molecule result in the intensity values given in the second column of Table 4.5.
One can notice that the interaction terms between the charge and the dipolar polarization
contributions are always negative. This means these contributions have opposite signs,
i.e. they correspond to dipole moment changes with different polarities. An individual
displacement of an equilibrium atomic charge perpendicular to the molecular plane results
in a net polarization of its corresponding atomic dipole in the opposite direction. The
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charge and dipolar polarization sums are of about the same size as the negative charge
and polarization interactions. This results in the small total atomic contribution values
in the last columns of Table 4.6.

Figure 4.14 contains a bar graph of the atomic contributions for each molecular
vibration. Just as found for the individual atoms, the charge and polarization sums are
large and positive. These are almost completely cancelled by their negative interaction
terms. Even though each of these contributions can be as large as 1000 km ·mol−1, their
sums are at least an order of magnitude smaller. Their total intensity values in Table 4.5
range from 0.8 to 106.1 km ·mol−1.

Figure 4.14: Stacked bar chart for charge, polarization, and their interaction contributions
to the total intensities obtained at the QCISD/aug–cc–pVTZ level. As the charge and
dipolar polarization contributions have opposite signs, the interaction term almost cancels
completely the infrared intensity.

These induced atomic dipole moments from the atomic displacements are di-
agrammed in Figure 4.15 for the out–of–plane vibrations of BH3 and BF3.
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As the positively charged boron atom is displaced above the molecular plane
resulting in a positive dipole contribution, the polarization of its electron density occurs in
the same direction, providing a negative contribution. Movements of the terminal atoms
also result in opposite signs for the charge and dipolar polarization contributions also
represented by similar length arrows pointed in opposite directions. This charge counter-
polarization phenomenon has already been observed in the CH vibrations of hydrocarbons.
The heavier the atom, the smaller the charge and dipolar polarization contributions for

(a) BH3 (b) BF3

Figure 4.15: Schematic representation of dipole moment derivatives vectors for the out–of–
plane normal modes of BH3 and BF3. The red arrows correspond to the normal coordinate
displacements.

the terminal atoms. From Table 4.6, the average for the ADP2 contributions are 306.64
km·mol−1 for hydrogen, 17.58 km·mol−1 for fluorine, 9.78 km·mol−1 for chlorine, and 3.57
km ·mol−1 for bromine. The average values for the charge contributions are 452.74, 35.65,
13.19, and 4.46 km · mol−1, respectively. Besides electronic effects, these values are also
caused by the mechanical influences of atomic mass in the determination of normal coordi-
nate. The lighter the atom, the greater its displacement within the vibrational movement.
As a consequence, the polarization it provokes on the central and other terminal atoms is
greater than for the displacement of the heavier atoms.

Relative Displacements and Rehybridization Moments

Equation 4.20 contains five less terms than equation 4.18, making it more
convenient for machine–learning applications and can be rewritten in a simpler way as:

∂pz
∂Qoop

≈
3∑

i=1

R(Xi)
∂αXi

∂Qoop

(4.21)

where R(Xi) is the rehybridization moment (in D · radians−1) of atom i defined by

R(Xi) = 4.8

(
qxi

+
∂mB,z

∂z′xi

+
3∑

j=1

∂mxj ,z

∂z′xi

)
∂z′xi

∂αxi

(4.22)
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and
∂αXi

∂Qoop
is the angular relative displacement of atom i, that is:

∂αxi

∂Qoop

=
∂z′xi

∂Qoop

∂αxi

∂z′xi

(4.23)

Note that the boron equilibrium charge term is not included as it is fixed in the molecular
plane within the approximation leading to these equations.

The average rehybridization moment for the H, F, Cl, and Br atom are -0.26
± 0.08, -0.69 ± 0.10, -0.33 ± 0.12, -0.23 ± 0.11 D · radians−1 respectively. As these
standard deviations are much larger than those calculated for the substituted benzene
parameters, poor intensity predictions are obtained showing that the boron parameters
are not transferable for the boron molecules.

The reason behind such a poorly transferability is the wide range of electroneg-
ativities of X atoms. The molecules studied here present more diversified chemical envi-
ronments than exist in the benzenes, for example, requiring a more sophisticated model
that can transfer CCTDP parameters from atoms in similar chemical environments. In
order to improve the transferability, it is necessary to define a set of criteria to specify
the similarity of fragments and select those most appropriate for transference. A simple
Machine–Learning Decision-Tree algorithm, discussed in the next section, can be the basis
of a similarity transference procedure to predict CCTDP parameters that result in more
accurate intensity values.

4.5.1 Transferability of AIM Parameters

In order to implement the transference procedure, a simple decision–tree algo-
rithm was applied to the electronic parameters of equation 4.20. Four molecules, BHFCl,
BHFBr, BHClBr, and BFClBr, were added to our data set to optimize the model pa-
rameters. The data set was split into a training set of only eight molecules, where
X1 = X2 = X3 or X1 ̸= X2 ̸= X3, and a test set of 12, where X1 = X2 ̸= X3 or
X1 ̸= X2 = X3.

Because of the nature of our system and the limited number of molecules,
we are not able to produce a validation set to optimize the hyper–parameters of our
model. The amount of data is limited even for performing an n-fold cross–validation
procedure without compromising the error estimate. Considering that we are dealing
with all possible combinations of the BX1X2X3 molecules, i.e., it is not possible to add
new molecules to our data or to produce another test set, we decided to combine the test
and validation sets. We are aware that this methodology could introduce bias into the
hyper–parameter determinations.

The predicted properties correspond to the dipole moment derivative and point
charge terms of equation 4.20. For each term, a decision tree has been constructed using
only training set CCTDP parameter values. The algorithm was trained to find the best
set of decision trees that reduce the mean absolute error (MAE) of each derivative in the
training set and reduce the RMSE of all the intensities. In this way, it is not necessary
to determine CCTDP models for the test set models but only calculate their intensities
directly with a quantum chemical program. This saves considerable computer time as
QTAIM atomic charges and dipoles need not be calculated. The features were organized
so that X1 corresponds to the lighter atom and X3 corresponds to the heavier one. This
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causes each tree to be different from the others that predict the same type of electronic
term.

Compared with the test set CCTDP values determined from the ab initio
wave functions, small RMSE values, between 0.0101 and 0.0565 e, were obtained for
charges and derivatives with absolute magnitudes ranging from 0.0380 to 0.8600 e. A
more critical analysis of these errors can be made examining the graphs in Figures 4.16
and 4.17 for which decision–tree CCTDP parameters are plotted against those obtained
at the QCISD/aug–cc–pVTZ quantum level.

Figure 4.16 contains the halogen atomic charge values. Almost all the transfer-
ence values have points close to the perfect agreement line except for three. The outlier
on the far left side corresponds to BH2F, for which the fluorine charge was assigned a
value expected for hydrogen. The two other outliers correspond to BH2Cl and BClBr2,
where Cl charges were estimated by values similar to those for H and Br. Such outliers
were generated because the composition of our training set does not allow the model
to learn all the different chemical environments that exist in the test set. The presence
of outliers could be reduced if it were possible to increase the size and diversity of the
training set. The percentage RMSE for the test set charge estimates range from 0.42
to 2.35%. Figure 4.17 contains the CCTDP parameters estimated for derivatives of the

Figure 4.16: Graph of estimated atomic charges obtained from the optimized decision
trees against QTAIM charges calculated at the QCISD/aug-cc-pVTZ level (in e).

atomic dipoles with respect to atomic displacement. The polarization points in the upper
right hand quadrant correspond to polarizations occurring for the electron densities of
the displaced atoms. Overall agreement is good with RMSE between 1 and 1.5%. These
derivative values ranging from 0.25 to 0.45 e are significantly higher than the derivatives
for polarizations of neighbouring atoms to the displaced atom. Although the points of
the training set values of these derivatives ranging from 0.05 to 0.15 e are on the perfect
agreement line, the estimated test set derivatives appear to be randomly scattered about
it.
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Figure 4.17: Graph of estimated atomic dipole derivatives obtained from the optimized
decision trees against QTAIM derivatives calculated at the QCISD/aug-cc-pVTZ level (in
e).

4.5.2 Interpreting the rehybridzation moment

Boron and the halogen atoms have large electronegativity differences. This
is reflected in the boron atomic charge values that range from 1.84 to 2.55 e in the
trisubstituted borons. The inclusion of atomic dipoles to account for polarization effects
counteracts the change in dipole moment owing to the perpendicular displacement of the
atomic charges. The atomic contributions to the intensities in Table 4.6 are useful for
diagnosing changes in molecular dipole moments of the boron trihalides at the atomic
level. The square roots of these charge and polarization contributions multiplied by
the appropriate unit conversion factor yields the charge and polarization dipole moment
derivatives for the normal coordinate displacement of each atom in the molecule.

The boron atoms are displaced in the positive direction, as depicted in Figure
4.15, for all vibrational movements of positive charge in the positive direction results in
positive induced dipoles. On vibration, the boron sp2 orbital tends toward an sp3 orbital
resulting in polarization of electron density in the positive direction and a negative induced
moment. The opposite derivative signs for the terminal atoms arises from electron density
polarizations in the opposite direction to that of the displaced atoms.

The hydrogen and boron charge derivatives of borane have similar absolute
magnitudes, 0.670 and 0.607 e · amu− 1

2 . This is due to the much larger perpendicular
displacement of the hydrogen atoms. The hydrogen and boron DP derivatives also have
similar sizes and opposite signs to the charge derivatives, -0.522 and -0.473 e·amu− 1

2 . Each
of these polarization values are about 80% of their charge values. The sum of the charge
and polarization derivatives are +0.148 and +0.134 e ·amu− 1

2 . The squares of these values
results in the hydrogen and boron atom contributions to the borane molecular intensity,
21.3 and 17.5 km ·mol−1. The sum of these atomic contributions for the atoms in BH3,
21.3 + 17.5 = 81.4 km · mol−1, in agreement with the CCTDP quantum value in Table
4.5.



88

The boron charge derivative of +0.767 e · amu− 1
2 for BF3 has a magnitude

about four times larger than the fluorine one, +0.195 e · amu− 1
2 . The polarization deriva-

tives -0.466 and -0.118 e ·amu− 1
2 cancel the charge derivatives to a large extent. The sums

of these derivatives yield +0.301 and +0.077 e · amu− 1
2 . The boron and fluorine dynamic

contributions to the BF3 molecular intensity are 88.3 and 5.8 km · mol−1, respectively.
The hydrogen charge derivatives have the largest average owing to the large displacements
of the hydrogen atoms in the normal coordinates. The average values for the halogens
decrease as their atomic weights increase, resulting in smaller normal coordinate displace-
ments. The polarization derivatives are negatively correlated with the charge derivatives
and have magnitudes that are about 70–90% smaller.

4.6 Concluding Remarks

Due to the lack of charge transfer, the out–of-plane intensities are sensitive
probes for the importance of atomic dipole moments. Using a set of substituted benzene,
it was possible to demonstrate that the rehybridization moment, an old factor used explain
the infrared intensity of benzene and hexafluorobenzene, is mostly determined by atomic
dipole moments that arise from the uneven distribution of the electron density inside each
atomic basin as the atoms move within a vibrational movement.

Population analysis schemes that neglect the atomic dipole moments cannot
reproduce the intensity of out–of–plane normal modes. When dealing with other normal
modes, even if the atomic polarizations are ignored, the charge transfer term acts as a
correction factor for the derivative of the molecular dipole moment, ensuring that the total
intensity is calculated correctly. However, when the CT term is absent and the population
analysis scheme does not consider the polarization of the atoms, the intensity is calculated
using only with the equilibrium charge. Since intensity is a dynamic property, it cannot
be expected that a property calculated at the equilibrium geometry will be sufficient for
its calculation. Thus, out–of–plane normal modes constitute an experimental evidence in
favor of including atomic dipole moments when we want a dynamic description of electron
density and can be used as an evaluation tool for the quality of charge models.
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Chapter 5

Infrared Intensification and

Hydrogen Bond Stabilization

IR spectroscopy has long been considered one of the most successful techniques
for studying hydrogen bonding[115]. The most notable spectral changes occur for the AH
stretching band, although other bands are also perturbed. The position of this band often
decreases by up to several hundred wavenumbers, but by far, the most striking change
occurs for the band intensity that can increase by a factor of 10 or even more. The
symmetric OH stretching intensity in the gas-phase water molecule[87] is only 3.0 ± 0.4
km · mol−1, but in the water dimer, its intensity increases to 144 km · mol−1 (estimated
error of 20%) [116]. This spectral change provides a very sensitive probe of H-bonding in
the water dimer. Although strong hydrogen bonds show a red frequency shift, blue shifts
occur for weaker ones, and these are accompanied by intensity decreases[117].

Iogansen[118] has published a review of about 150 papers reporting correla-
tions between experimental values of the formation enthalpies and the square root of
the intensifications of the H-bond stretching mode for 138 donor–acceptor pairs in CCl4,
CH2Cl2, C6H6, and C2Cl4 solvents, HOD in liquid water at 11 different temperatures, and
equimolar mixtures of chloroform with 15 different bases.

Hydrogen bond stretching intensification has been investigated in the past[71,
119], but a definitive chemically meaningful explanation for both the intensity enhance-
ment and its relation with the enthalpy of formation has yet to be given. These in-
tensities provide information on changes in electronic structures of the complexes and
donor molecules as their acidic protons are displaced. In fact, the dominant change in the
molecular geometry on H-bond formation is an elongation of the donor AH bond in the
complex. For this reason, the AH stretching intensities can be expected to shed light on
the electronic changes that are related to the stability of the H–bonds. One might expect
that these same changes occur as the AH donor bond lengthens on complex formation.
This is not the only instance in which IR–related properties were shown to be ingrained in
fundamental experimentally measured chemical information or indeed chemical reactivity.

Electronic structure changes for molecular vibrations are successfully described
using the QTAIM, including some hydrogen bonding systems[120]. Within this formal-
ism, a charge, charge transfer, and dipolar polarization model has been used to accurately
reproduce the theoretical infrared intensities of most molecules for which experimental
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atomic polar tensors have been determined[80]. Indeed, QTAIM studies have already
been carried out for some H–bonding complexes where electronic structure changes are in-
terpreted using equilibrium atomic charge displacement, interatomic charge transfer, and
dipolar polarization as the proton is displaced from its equilibrium position[87]. QTAIM
also permits the partitioning of the total intensity into atomic contributions, which are
very convenient to access information about the A–H···D–B model system, composed
of the most relevant atoms of H-bond formation. With QTAIM, the importance of each
atom in hydrogen bond intensification can be assessed. As these intensifications are corre-
lated with the formation energies, the atomic intensity contributions could provide useful
information as to the electronic structure changes that are important to understand the
origins of H-bond stabilization.

QTAIM models are reported with the aim of explaining IR hydrogen bond
stretching intensification and its relation to hydrogen bond stability in terms of charge,
charge transfer, and dipolar polarization atomic parameters. Taking computer demand
and theoretical interest into consideration, the model systems used here involve small
donors, HF and HCl, with nine different small bases, HF, HCl, NH3, H2O, HCN, acetoni-
trile, acetaldehyde, formaldehyde, and formic acid electron donor molecules. Although
the experimental evidence of the proportionality between the enthalpy of formation and
A–H stretching band intensification was observed in condensed phases for other more
complex systems, one can expect that this behaviour also exists for the simpler isolated
gas–phase complexes as well.

5.1 The CCTDP Model for Infrared Intensification

Figure 5.1: Schematic representation of the hydrogen bond complex. “A” represents all
atoms in the acid molecule, while B represents all atoms in the base molecule. H is
the hydrogen atom and D is the electron pair donor atom of the Lewis base. The AH
bond is aligned with the Cartesian z axis. Red arrow represents the AH stretch normal
coordinate.

The hydrogen–bond complexes are represented in Figure 5.1. The square root
of the hydrogen bond intensification, as defined by Iogansen[118], is:

∆A
1
2 = A

1
2
Complex −A

1
2
Acid (5.1)

introducing equation 3.10, yields:
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As the AH bond is aligned with the Cartesian z, it is possible to consider
only pz contributions to the IR intensity. Considering the AH normal mode, the IR
intensification becomes:
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3c2
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∂pz
∂QAH
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(CT )

+∆
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∂pz
∂QAH

)
(DP )

]
(5.3)

The calculations show that about 90% of the total intensity is accounted by
only the hydrogen displacement of the vibration. The hydrogen atom intensity contribu-
tion permits a simple interpretation of the intensity behaviour in terms of intra-acid, and
intermolecular charge transfer and acid and base polarizations. The hydrogen contribu-
tion along the z-axis can be expressed as:

∂pz
∂QAH

≈
(

∂pz
∂QAH

)(H)

≈ qH +
N∑

C=1

(
zC
∂qC
∂zH

+
∂mC,z

∂zH

)
(5.4)

The individual values obtained by this equation for the three CCTDP contributions are
investigated for their relations with the changes in enthalpy and the total hydrogen bond
intensifications. This further simplifies the analysis to only the equilibrium atomic charge
of hydrogen, qH , and the changes in atomic charges weighted by their z component equilib-
rium coordinates and changes in the atomic dipole moments of all the atoms. The QTAIM
theory provides all these parameter values necessary for numerical evaluation. This per-
mits an electron density description of specific charge transfer and dipolar polarization
changes as the hydrogen bonded atom is displaced from its equilibrium position.

Considering only the AH proton donor molecule, the electron donor atom of
the base, D, and its nearest neighbour, B, and for complexes with the donor aligned along
the z-axis, equation 5.4 becomes:

∂pz
∂QAH
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(5.5)

From the charge conservation law:

∂qH
∂zH

= − ∂qA
∂zH

− ∂qB
∂zH

− ∂qD
∂zH

− · · · (5.6)

substituting into equation 5.5 and considering only contributions from the A, H, D and
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B atoms, results:
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notice that (zA − zH) is the projection along the z axis of the distance between atom A
and H. Equation 5.7 can be written in a compact form:
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(5.8)

where the acid terms contains only atoms of the acid, the base term contains only atoms
of the base and the inter–molecular term contains one atom from the Lewis acid and
one atom from the Lewis base. The first term, qH , is just the equilibrium charge on the
hydrogen atom. The intra-acid charge transfer term is given by the change in the atomic
charge of the A atom owing to the displacement of the hydrogen atom multiplied by the
AH bond distance. The intermolecular charge transfer term contains the change in the
atomic charges of the D and B atoms relative to the displacement of the H atom multiplied
by their respective distances from it. Finally, the dipolar polarization contribution of the
acid and the base terms contain derivatives of the atomic dipoles of the acid and base
molecules, respectively.

5.1.1 Calculations and hydrogen bond enthalpies

The structures were optimized using the GAUSSIAN09[25] at the second-order
Møller–Plesset Perturbation Theory electron correlation (MP2) level[121]. Augmented
correlation-consistent polarized triple–zeta (aug–cc–pVTZ) basis sets were used as they
are able to provide a precise treatment of long-range interactions[122]. The counterpoise
method was applied for complex optimizations to correct formation enthalpy values for
basis set superposition error (BSSE) [123, 124].

The formation enthalpy of the hydrogen-bond complexes were obtained includ-
ing the thermal energy correction, that is:

∆H◦
f (298K) = H◦

Complex(298K)−H◦
Acid(298K)−H◦

Base(298K)

= Eelectronic
Complex +H◦ corrections

Complex − Eelectronic
Acid −H◦ corrections

Acid − Eelectronic
Base +H◦corrections

Base (5.9)

H◦ corrections includes the translation, vibrational, rotational and zero–point energy correc-
tions.

Table 5.1 contains the formation enthalpy values. the AH stretching intensifi-

cation values, ∆A 1
2 , and the hydrogen atom contributions, ∆A

1
2
H, to the intensification for
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Table 5.1: Hydrogen-bond formation enthalpy, −∆H◦
f (298K) ,(in kJ ·mol−1), differences

in square roots of the complex and monomer intensities of the AH stretching mode, ∆A 1
2 ,

and the corresponding dynamic hydrogen atom differences, ∆A
1
2
H ,(in km

1
2 ·mol−

1
2 ).

Acid Base −∆H◦
f (298K) ∆A 1

2 ∆A
1
2

H

HF HF 17.71 10.58 9.54
HF NH3 51.37 27.87 26.95
HF H2O 33.56 18.50 17.27
HF HCN 30.76 18.84 18.32
HF Acetonitrile 37.18 25.36 23.91
HF Acetaldehyde 37.52 23.15 22.50
HF Formaldehyde 33.19 19.31 18.76
HF Formic Acid 31.94 15.38 16.52
HCl HCl 8.48 8.96 8.75
HCl NH3 35.71 36.30 35.72
HCl H2O 21.92 16.95 16.61
HCl HCN 20.42 17.35 17.07
HCl Acetonitrile 25.35 22.54 22.25
HCl Acetaldehyde 27.21 24.97 24.95
HCl Formaldehyde 23.48 20.29 19.99
HCl Formic Acid 21.90 18.63 18.40

two group of complexes, one with HF and one with HCl being the Lewis acid. The inten-
sifications are obtained by analyzing distortions of all atoms as specified by the normal
coordinate, whereas the hydrogen contributions are determined by considering only the
hydrogen atom displacement in this normal mode. Note that the hydrogen intensification
contributions are about the same as the total intensity values, having an RMSD of only

0.7 km
1
2 ·mol−

1
2 . As such, the analysis of the correlation between −∆Hf and ∆A

1
2
H can be

carried out by simply displacing the hydrogen atom according to the H-bond stretching
normal coordinate rather than having to include the displacements of all the other atoms.
This is shown in Figure 5.2, which contains a plot of the enthalpy of formation against
differences in the square roots of the complex and monomer intensities, owing to only the
movement of the hydrogen atom participating in the H-bond.

The linear correlations, indicated as the black and grey dotted lines, suggest
that the enthalpies of formation of the HF and HCl complexes are correlated. Therefore,
the relative stabilization within each series of complexes seems to only be dependent on the
electronic structure changes of the bases on complex formation. This excellent agreement
has never been reported before, as it was not included in Iogansen’s work, and it points
to the conclusion that the infrared intensity enhancements of the HCl and HF complexes
have a common source.

The square of the dipole moment derivative, as shown in equation 3.10, is
a sum of six terms that contains the square of the charge, charge transfer and dipolar
polarization contributions and their interactions. All these terms for both the HF and HCl
complexes are presented in Table 5.2 along with the total intensities in the last column.
The contributions to the total intensity are defined as:

A(C)2 =
NAπ

3c2

3∑
σ=1

(
∂pσ
∂QAH

)2

(C)

(5.10)
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Figure 5.2: Negatives of hydrogen bond formation enthalpies plotted against the dif-
ferences of the square roots of complex and monomer intensification of the hydrogen
contributions for the AH stretching vibrations.
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The HF complex intensities are 4 to 13 times larger than the monomer in-
tensity of 108.7 km · mol−1. For HCl, the complex intensifications are even larger with
values ranging from 5 to 40 times larger than the monomer value of 47.1 km · mol−1.
These estimates are expected to be reasonably accurate as QCISD/cc-pVTZ quantum
calculations predict an increase from 4 km ·mol−1 for the monomer to 163 km ·mol−1 in
the water dimer[87], whereas the experimental values are 3 and 144 km ·mol−1 (±20%),
respectively[116].

It can be seen from the values in Table 5.2 that charge transfer is the largest
source of H-bond enhancement for the HCl complexes as their A(CT)2 , A(2CCT), and
A(2CTDP) RMSD are much larger than the values of the other contributions. The val-
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ues of the dipole moment derivative contributions, in Table 5.3, confirm this conclusion,
as the charge transfer derivative RMSD of 0.524 e · amu

1
2 between the HCl complexes

and the HCl monomer is five times larger than those for charge and dipolar polarization.
Their dipole moment derivative values are all positive for charge transfer and all negative
for polarization. This behavior is only exhibited by the H2O and acetonitrile complexes
for the less polarizable HF acid complexes. Also, the charge transfer direction in most
of the complexes is opposite to the one in the monomer. Owing to these sign differ-
ences, the A(CT)2 contributions are relatively small, and the RMSD between complexes
and HF monomer is only 51.2 km ·mol−1. The A(CT)2 contributions are largest for all HF
complexes and monomer owing to the large electronegativity difference between fluorine
and hydrogen. However, the A(C)2 RMSD is only 106.8 km ·mol−1, also indicating small
variations between the complexes and HF monomer.

Charge transfer is also the most important source of the large intensity values
for the HF complexes. The largest dipole moment derivative RMSD occurs for the charge
transfer term, 0.493 e ·amu

1
2 , that is three times larger than the difference for polarization

and five times the one for charge. The large variation in the charge transfer derivatives
owing to sign changes is amplified by the large and relatively constant charge derivatives
resulting in the large A(2CCT) RMSD, 556.1 km ·mol−1, in Table 5.2. A similar behavior
produces the 323.4 km · mol−1 RMSD for the A(2CDP) contribution, the second largest
source of intensity enhancement.

Table 5.2: AH stretching CCTDP intensity contributions for the HF and HCl proton
donors and monomers (km ·mol−1).

Acid Base A(C)2 A(CT)2 A(DP)2 A(2CCT) A(2CDP) A(2CTDP) A
HF HF 659.6 18.7 0.2 -220.9 -6.2 1.4 452.8
HF NH3 634.0 50.0 40.0 356.2 318.3 89.4 1487.9
HF H2O 815.8 2.7 5.2 -93.4 129.8 -7.4 852.6
HF HCN 604.6 29.2 0.2 265.6 -21.3 -4.7 873.6
HF Acetonitrile 673.8 218.4 21.8 767.1 -242.5 -138.1 1300.5
HF Acetaldehyde 600.9 153.5 12.7 196.6 170.8 11.3 1145.7
HF Formaldehyde 600.2 96.1 10.4 33.0 157.8 3.2 900.6
HF Formic Acid 342.6 139.7 1.0 206.0 8.8 -17.8 680.7
HF – 519.8 85.8 9.7 -422.3 -141.9 57.6 108.7
RMSD 106.8 51.2 15.9 556.1 323.2 48.2 964.8
HCl HCl 95.3 281.3 114.8 326.7 -209.2 -358.1 250.9
HCl NH3 191.6 1331.4 51.2 1010.1 -198.0 -521.9 1864.3
HCl H2O 157.0 503.6 124.1 562.3 -279.1 -499.9 567.9
HCl HCN 133.5 669.0 174.0 597.7 -304.8 -682.3 587.1
HCl Acetonitrile 144.3 967.6 187.7 747.3 -329.1 -852.4 865.4
HCl Acetaldehyde 145.8 879.9 91.3 657.6 -230.6 -529.4 1014.6
HCl Formaldehyde 138.9 608.3 91.6 548.9 -224.2 -425.1 738.5
HCl Formic Acid 134.3 621.5 118.1 561.2 -251.5 -533.0 650.6
HCl – 83.2 118.7 172.8 198.7 -239.8 -286.5 47.1
RMSD 64.5 683.8 68.0 465.3 46.0 300.4 891.2

Table 5.3 contains the charge, charge transfer, and dipolar polarization values
of the hydrogen contributions to the dipole moment derivatives for the HF and HCl
complexes.

The charge contributions for the HF complexes are about twice those for
the HCl ones. This occurs because fluorine is much more electronegative than chlo-
rine. Charge transfer and dipolar polarizations are larger for the HCl complexes than
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Table 5.3: Charge–charge transfer–dipolar polarization hydrogen contributions to the
dipole moment derivatives (e · amu−1

2 ) for HF and HCl hydrogen bond complexes.

Acid Base
(

∂pσ

∂QAH

)
(C)

(
∂pσ

∂QAH

)
(CT )

(
∂pσ

∂QAH

)
(DP )

HF HF 0.768 -0.125 0.001
HF NH3 0.758 0.284 0.209
HF H2O 0.777 0.060 0.070
HF HCN 0.768 0.209 -0.035
HF Acetonitrile 0.809 0.495 -0.149
HF Acetaldehyde 0.768 0.151 0.103
HF Formaldehyde 0.767 0.034 0.106
HF Formic Acid 0.769 0.140 0.038
HF – 0.753 0.306 -0.103
Average 0.771 0.105 0.027
RMSD 0.025 0.493 0.182
HCl HCl 0.315 0.536 -0.349
HCl NH3 0.414 1.199 -0.225
HCl H2O 0.373 0.734 -0.348
HCl HCN 0.361 0.829 -0.416
HCl Acetonitrile 0.376 1.010 -0.444
HCl Acetaldehyde 0.386 0.902 -0.299
HCl Formaldehyde 0.374 0.758 -0.300
HCl Formic Acid 0.366 0.802 -0.363
HCl – 0.298 0.355 -0.429
Average 0.362 0.792 -0.354
RMSD 0.075 0.524 0.108

for the HF complexes. Higher dipolar polarization contributions are expected for the
HCl complexes as chlorine is much more polarizable than fluorine. The small RMSD and
large average value for the fluorine charges of the HF complexes, in Table 5.3, show that
even though the equilibrium charge contributions are large, they are relatively constant,
having important intensity effects on both the monomer and the complexes but not much
on the hydrogen bond intensifications. In the HCl complexes, the values of the chlorine
charges are also similar to the one in the monomer. As a result, the charge contribution
to intensification is smaller than that owing to charge transfer.

Figure 5.3 shows graphs of the hydrogen bond formation enthalpies against the
variation of the sum of the charge transfer and dipolar polarization derivatives induced
by the displacement of only the hydrogen atom of these complexes. As can be seen
for both the HF and HCl complexes, the changes in the charge transfer and dipolar
polarization sums vary linearly with the formation enthalpies. It is noteworthy that the
dominant charge transfer derivative changes alone do not correlate as strongly as the
charge transfer and dipolar polarization sum. All the HCl complexes are calculated to
have important charge transfer and counterpolarization cancellations of dipole moment
derivatives, whereas the dipolar polarization contributions are small for the HF complexes
and have the same direction as the charge transfer except for the HCN and CH3CN bases
that contain triple bonds as neighbours to the acidic hydrogens.
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Figure 5.3: Theoretical formation enthalpy values graphed against complex–monomer dif-
ferences in the sum of the charge transfer and dipolar polarization hydrogen contributions
to the dipole moment derivatives.

5.2 Charge Transfer and Dipolar Polarization Mech-

anism for Hydrogen Bonding Intensity Enhance-

ment

Equations 5.7 and 5.8 simplify the analysis of the electronic factors contribut-
ing to infrared intensity enhancements which correlate with hydrogen bond stability.
These equations contain terms describing contributions to the change in dipole moment
along the z axis for a displacement of the H atom. The results for the individual terms
in equation 5.7, including the terms for the nearest neighbour atom, B, are presented in
Table 5.4 for both the H-bonded complexes and the HF and HCl monomers. The indi-
vidual hydrogen contributions to the AH stretching normal coordinates can be obtained
multiplying the values in this table by their appropriate L matrix elements.

Dynamic effects occurring in both the monomer and complex contribute to
the intensity enhancements and can be conveniently analysed with the aid of equation
5.8. Taking the HF monomer and dimer as archetypes, we notice that the equilibrium
charge of the hydrogen atom in HF is very positive, resulting in a large positive charge
contribution, 0.753 e (Figure 5.4). Counteracting this effect, a negative intramolecular
electron transfer occurs for this vibration, that is, the hydrogen atom becomes less positive
(gains electronic charge) when the HF bond stretches contributing -0.305 e to the dipole
moment derivative. This causes a partial cancellation between charge and charge transfer
effects in the HF monomer (Figure 5.4a). The dipolar polarization contribution of -0.102
e is smaller and also of opposite sign to the charge, resulting in a total dipole moment
derivative of 0.346 e.

The formation of the (HF)2 complex leads to the donation of electrons from
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the donor to the acceptor moiety. This donation contributes more electron density to
the fluorine atom rather than the hydrogen atom as quantified in Figure 5.4. When the
HF bond stretches, intramolecular electron transfer is smaller in the complex than in
the free acid molecule, -0.195 e. Also, intermolecular electron transfer occurs from the
electron donor molecule to the acid, +0.070 e, owing to the HF bond length increase.
The acid and base dipolar polarizations essentially cancel one another, resulting in a total
dipole moment derivative of 0.645 e. The total effect is that, after complexation, the
charge contribution does not change significantly, but the net charge transfer decreases
by almost a third of the value found for the monomer, producing a total dipole moment
derivative almost twice as large in the complex (Figure 5.4b). The net polarization is
almost zero for the complex reinforcing the intensification.

(a) CCTDP contributions to the dipole mo-
ment derivative of HF. The grey vector
represents the normal coordinate. Dotted
arrows show the flux of electrons.

(b) CCTDP contributions to the dipole mo-
ment derivative of the HF dimer. The black
vectors correspond to the terms of equation
5.8. The grey vector represents the normal
coordinate. Dotted arrows show the flux of
electrons.

Figure 5.4: Charge, charge transfer and dipolar polarization contributions (in units of e)
for the HF monomer and dimer that explain the intensity enhancement of the hydrogen
stretch on complexation. Vectors point to the positive end.

It seems reasonable to assume that the intermolecular charge transfers are
proportional to the capacities of the Lewis bases to donate electrons to the acids and
that they would correlate with chemically relevant quantities such as basicities and heats
of reaction. That is indeed confirmed by the respective order of −∆Hf for HF ·HF ¡
H2O ·HF ¡ NH3 ·HF (17.71, 33.56, and 51.37 kJ · mol−1) and the total electron trans-
fer for the dynamic hydrogen contributions to the dipole moment derivatives (-0.1250,
0.0600, and 0.2844 e). Figure 5.5 illustrates a charge transfer–dipolar polarization mech-
anism for the HF complexes. The equilibrium hydrogen charge contributions are almost
constant. Although the intramolecular charge transfer shows relatively small variations



99

for the three complexes, the intermolecular charge transfer increases with base strength,
from 0.070, 0.202, to 0.424 e. These results are consistent with the simple additive model
summing the constant effective charge of the AH bond and the effective charge for the
HD bond that increases with increasing H-bond intensification[120]. Indeed, Rozenberg
provides evidence of linear correlations between both the H-bonding intensifications and
stabilization energies with the QTAIM electron density at the HD bond critical point.

Table 5.4: Individual charge, charge transfer and dipolar polarization contributions (in e)
to the dipole moment derivative of AH stretching.

Acid Base qH (zA −
zH) ∂qA∂zH

(zD −
zH) ∂qD∂zH

(zB −
zH) ∂qB∂zH

∂mA,z

∂zH

∂mD,z

∂zH

∂mH,z

∂zH

∂mB,z

∂zH

HF HF 0.768 -0.195 0.006 0.065 -0.066 0.055 0.010 0.002
HF NH3 0.758 -0.139 -0.009 0.433 0.112 0.026 0.035 0.036
HF H2O 0.775 -0.142 -0.058 0.261 -0.026 0.049 0.025 0.022
HF HCN 0.768 -0.159 -0.079 0.448 -0.023 -0.009 0.016 -0.019
HF Acetonitrile 0.809 -0.149 -0.037 0.681 -0.084 0.010 0.027 -0.102
HF Acetaldehyde 0.768 -0.143 -0.042 0.335 0.028 0.077 0.027 -0.029
HF Formaldehyde 0.767 -0.152 -0.035 0.220 0.011 0.069 0.022 0.004
HF Formic Acid 0.769 -0.152 -0.048 0.341 -0.016 0.065 0.008 -0.019
HF - 0.753 -0.306 – – -0.058 – -0.043 –
HCl HCl 0.315 0.439 0.043 0.055 -0.508 0.049 0.112 -0.001
HCl NH3 0.414 0.720 0.027 0.452 -0.413 0.010 0.144 0.034
HCl H2O 0.373 0.572 -0.042 0.204 -0.523 0.024 0.136 0.016
HCl HCN 0.361 0.549 -0.056 0.337 -0.516 -0.015 0.129 -0.014
HCl Acetonitrile 0.376 0.587 -0.065 0.487 -0.507 -0.022 0.131 -0.047
HCl Acetaldehyde 0.386 0.634 -0.002 0.271 -0.476 0.057 0.137 -0.018
HCl Formaldehyde 0.374 0.597 -0.003 0.164 -0.490 0.048 0.134 0.008
HCl Formic Acid 0.366 0.563 -0.022 0.262 -0.507 0.036 0.132 -0.024
HCl - 0.298 0.355 – – -0.514 – 0.084 –

The net dipolar polarization contributions in Figure 5.5 also vary significantly
as base strength increases, 0.002, 0.071, and 0.209 e, reinforcing the charge transfer
changes. The dipolar polarization values of the bases are almost constant, 0.058, 0.071,
and 0.062 e, even though they form a very diverse group of molecules. On the other hand,
the HF acid polarization ranges from -0.056 e for the dimer to +0.147 e for the ammonia
complex. The sums of the intermolecular charge transfer and acid dipolar polarizations
for the HF, H2O, and NH3 complexes with HF are 0.014, 0.202, and 0.571 e and are
highly correlated with the formation enthalpy values. The sums of the intermolecular
charge transfer and acid polarizations for the eight HF complexes have a 0.92 correlation
coefficient with the intensifications and 0.95 for the enthalpy values.

The intermolecular charge transfer–acid dipolar polarization mechanism shown
in Figure 5.5 is also valid for the HCl complexes. As chlorine is much more polarizable
than fluorine, the polarization contributions to the dipole moment derivatives are much
larger. The sums of the intermolecular charge transfer and acid polarizations have a 0.94
correlation with the intensifications and 0.97 with the stabilization enthalpies. It should
be mentioned that the charge transfer derivative becomes more negative as the hydrogen
bond stabilization decreases. This behaviour was also found in the literature [117]. In
addition, the inclusion of atomic polarization in the CCTDP model reinforces the electron
transfer trend. Although no blue shift hydrogen bonds are included in this chapter, there
is no reason to suspect that the CCTDP model will not provide a unified explanation of
the decreased intensities as well.
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Figure 5.5: Charge, charge transfer, and dipolar polarization contributions to the dipole
moment derivatives of the HF complexes with HF, H2O, and NH3 bases. Note that the
intermolecular charge transfer and net polarizations increases with the base strengths
in the HF ¡ H2O ¡ NH3 series. The directions of arrows to the right point to positive
poles of the dipole moment. On the left, dotted red arrows for intermolecular and acid
(intramolecular) charge transfer and full for acid (intra-molecular) charge transfer.

5.3 Complex Formation

The electronic charge transferred from the Lewis base to the acid is an impor-
tant source of hydrogen bond stabilization[125]. Because this charge transfer depends on
the capacity of the Lewis base to donate electrons to the acid, the enthalpy of formation
of the resulting complex is expected to be proportional to the base strength. Table 5.5
contains values of the electronic charge transferred from the base to the acid for the HF
and HCl complexes. This is the net charge on the acid. It is clear that stronger bases
transfer more electronic charge to both HF and HCl.

The top graph of Figure 5.6 contains a graph of the negative enthalpy of
formation against the charge transferred from base to acid. With the exception of the HF
and HCl dimers, there appears to be linear relationships between these quantities. In any
case, the results provide a very strong argument that electron donation plays a key role
in complex stabilization.

However, electron transfer, alone, could not account for the linearity between
the formation enthalpy and the hydrogen bond intensification. Only its sum with the
dipolar polarization reproduces this linearity. As such, one might expect that the change
in atomic polarizations on complex formation would also provide important contributions
to the stabilization. The HF and HCl atomic polarizations (z-component sums of atomic
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Figure 5.6: Plots of the hydrogen bond enthalpy of formations versus the charge trans-
ferred (top) and the sum of the hydrogen and halogen atomic dipole moments along the
z axis (bottom).

dipoles) have been included in Table 5.5.
The bottom graph Figure 5.6 shows the hydrogen bond formation enthalpies

as a function of the atomic polarizations of the HF and HCl acids on complex formation.
The atomic polarization values are a sum of the z-components of the atomic dipoles of
the hydrogen and halogen atoms. The linear relationships are indeed impressive with
correlation coefficients of 0.98 and 0.95 for HF and HCl, respectively. One can expect
polarization changes occurring in the AH bond to be very important for energy changes on
H-bond formation. The polarization changes occurring for the base are not as systematic
as those of the acids.

5.4 Concluding Remarks

According with the CCTDP model, the stabilization of the hydrogen bond and
the infrared band intensification of the H–bond result from charge transfer and dipolar
polarization contributions, once again emphasizing the importance of including atomic
dipoles to properly describe the molecular dipole moment and its derivative. Although
the charges have important contributions for both the complexes and the monomer in-
tensities, they make small contributions to intensity enhancements for bases with the
same electron acceptor. It is very important to draw attention to the fact that one of
the simplest reaction mechanisms, an acid–base reaction, cannot be properly represented
without polarization obtained through atomic dipoles.

Electronic structure changes for the acid–base reactions are strongly correlated
with changes occurring for their AH stretching vibrations. This seems reasonable con-
sidering that the change in the AH bond length on H–bond formation is expected to be
comparable to the A–H vibrational amplitudes. This provides a theoretical basis for the
experimental observations of the strong correlations between hydrogen bond enthalpies of
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Table 5.5: Charge transferred from the base to the acid (e) and base-induced polarization
(e · Bohr) in the acid for the HF and HCl complexes. The “−” sign indicates that the
charge is transferred to the acid.

Acid Base Electron transfer Acid polarization
HF HF -0.012 0.111
HF NH3 -0.067 0.334
HF H2O -0.027 0.201
HF HCN -0.030 0.187
HF Acetonitrile -0.035 0.219
HF Acetaldehyde -0.038 0.239
HF Formaldehyde -0.034 0.215
HF Formic Acid -0.030 0.199
HCl HCl -0.015 0.109
HCl NH3 -0.069 0.544
HCl H2O -0.018 0.271
HCl HCN -0.020 0.251
HCl Acetonitrile -0.025 0.312
HCl Acetaldehyde -0.033 0.358
HCl Formaldehyde -0.026 0.300
HCl Formic Acid -0.021 0.277

formation and infrared proton stretching intensification.

∗ ∗ ∗

This chapter contains excerpts from texts previously published by the author. The fol-
lowing material were reprinted with permission:
Duarte, L. J., Silva, A. F., Richter, W. E., Bruns, R. E. Infrared intensification and
hydrogen bond stabilization: Beyond point charges. The Journal of Physical Chemistry
A, 123(30), 6482-6490, 2019, American Chemical Society.
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Chapter 6

Infrared Intensities of Imaginary

Frequencies

The mechanism of gas phase SN2 reactions is well-known and taught in every
introductory organic chemistry course. Proposed for the first time in 1934 by Hughes and
Ingold[126], understanding of this mechanism has been refined by quantum mechanics
since the first computational methods were available. When occurring on sp3 carbons, the
mechanism consists of a nucleophile (Nu) that approaches the electrophile center forming
a stable complex leading to the formation of a pentacarbonyl transition state (TS). One of
the atoms initially bonded to the electrophile, namely the leaving group (LG), is displaced
and the reaction produces another stable complex formed by the reaction product and
the non-bonded LG. The reaction potential energy surface and energy profile of a SN2
reaction can depend on the natures of the nucleophile, leaving group, as well as the central
electrophilic atom, substituents and reaction medium [127, 128]. In Figure 6.1 we present
a typical energy profile for the nine NuCX3LG

– system treated here with Nu, LG = H, F,
Cl and X = H, F systems, although other systems can have different forms. On the far left

Figure 6.1: Reaction path for a generic SN2 reaction. In 1: ion–dipole complex ( ϵR); 2:
transition state (ϵTS); 3: ion–dipole complex (ϵP ).

side of Figure 6.1, the nucleophile and the reactant molecule are at an infinite distance
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from each other and the system’s energy is equal to the sum of reactants individual
energies. Following the reaction, represented by the bold curve, the reactants approach
forming a stable complex[129], also called ion-dipole complex[127] ,with complexation
energy equal to Ecpx,R. From this point, the system must overcome a potential barrier to
reach the TS saddle point. The energy needed for this step is called activation energy,
Eatv,R. The TS corresponds to a local maximum in the direction of the intrinsic reaction
coordinate (IRC)[130, 131] and tends towards a minimum in either direction. On the
right, at the minimum, the complex between the products and the LG appears, stabilized
by an amount of energy equal to Ecpx,P. On the far right, the product and the leaving
group are infinitely separated. For some reactions, however, the complexation energies
are too small and/or highly dependent on solvation effects [132]. The spectator atoms
also change the energy profile of the reactions. For example, one can find an ion-dipole
complex in the reaction path of Cl– +CH3Cl → ClCH3+Cl– , but the substitution of the
spectator H by F atoms will make the complex disappears[128]. Also, substituting the
central carbon atom by another, such as Si, will change the reaction PES completely[128].
In order to simplify the analysis, all calculations presented in this chapter are carried out
in the gas phase and the central atom is always carbon.

A Quantum Chemical Topology/Interacting Quantum Atoms (QCT/IQA) anal-
ysis performed by Alkorta[133] demonstrated that the forces driving the SN2 reactions
arise from intratomic energies of Nu and LG and exchange-correlation energy between
C and Nu and between C and LG. Since the intratomic energy contribution accounts
for both steric effects and charge transfers[134] the ergodography of SN2 is determined
almost entirely by changes in the electron density of Nu, C and LG .

In a series of four papers[135–138] considering a linear collision A + BC →
AB+C, Marcus has suggested that the reacting system can be described by large ampli-
tude vibrations along the reaction path. In the first two papers of that series, Marcus has
developed a quantum and classical formulation to study the above mentioned collision,
which later led to the introduction of the Natural Collision Coordinates. Miller[139]
extended the formulation of the reaction path Hamiltonian to deal with polyatomic
molecules. For a N atom system, there are six zero frequency modes corresponding
to translations and rotations and 3N − 7 non–zero real frequencies, corresponding to nor-
mal modes that are perpendicular to the reaction path. Since the TS is a first–order
saddle point on the Potential Energy Surface (PES) it has a normal mode with imaginary
frequency, corresponding to the steepest descent path leading from TS to the products
(or reactants). The connection between molecular vibrations and chemical reactions has
already been explored by Cremer and Kraka in an insightful review[140].

In this chapter, we propose the investigation of the SN2 mechanism by de-
composing the TS imaginary frequency infrared intensity into its charge, charge–transfer
and dipolar polarization contributions of the CCTDP model. The infrared intensities are
intimately related to the changes in the molecular electron density. By means of CCTDP
analysis the dipole moment derivative is divided into atomic contributions, evidencing
the dynamic electronic behavior along the Intrinsic Reaction Path (IRC), as defined by
Fukui[130, 131].

As IRC calculations are performed from the TS, there is only one single nega-
tive eigenvalue λ whose eigenvector unveils the path to the product or reactant equilibrium
point. In a well detailed work[141], Quapp showed that the determination of the reaction
path is independent of the coordinate system in a way that it can be solved in terms of
3N − 6 normal coordinates Q, corresponding to molecular vibrations. To find the normal
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modes of vibration, and thus the starting point of the IRC, one can simply diagonalise
the mass-weighted Hessian matrix. The negative eigenvalue corresponds to the frequency
of the imaginary normal mode of vibration, coinciding with the IRC.

6.1 The Intrinsic Reaction Coordinate

Following the formulation proposed by Fukui [130], the IRC is a line dependent
on a length parameter l that connects the PES critical points ϵP , ϵTS and ϵR, where ϵP
and ϵR are minimum points corresponding to the products and reactants at equilibrium
geometries and ϵTS is the maximum point corresponding to the geometry of the transition
state. If the potential energy, V (X⃗), is defined in terms of N nuclear positions, X⃗ =
{x1, x2, · · · , x3N} and within the adiabatic approximation, then, at the critical points:

dV (X⃗)

dX⃗

∣∣∣
ϵR

=
dV (X⃗)

dX⃗

∣∣∣
ϵTS

=
dV (X⃗)

dX⃗

∣∣∣
ϵP

= 0 (6.1)

Since the IRC is, by definition, the path of steepest descent, to find x⃗i(l) it is
necessary to solve the gradient problem [141]:

dx⃗i(l)

dl
= −∂V (X⃗)

∂x⃗i
x⃗i(l) (6.2)

Because of the conditions imposed by equation 6.1, the solution of 6.2 needs to be defined
in terms of ϵR, ϵTS and ϵP and be orthogonal to the tangential plane of any equipotential
energy surface of V (X⃗). The derivative on the LHS of equation 6.2 implies that the dis-
placement vector direction is coincident with the direction of force, therefore, determining

the steepest path. At an equilibrium point, the force ∂V (X⃗)
∂x⃗i

is null and at a point very
near to equilibrium, ϵ+∆x⃗:

∂V (X⃗)

∂x⃗i
≈

3N∑
j=1

∂2V (X⃗)

∂x⃗i∂x⃗j

∣∣∣
X⃗=ϵ

∆x⃗j (6.3)

Substituting equation 6.3 into equation 6.2 results in the following:

∑3N
j=1

(
∂2V (X⃗)
∂x⃗1∂x⃗j

∣∣∣
ϵ+∆x⃗j

∆x⃗j

)
∆x⃗1

=

∑3N
j=1

(
∂2V (X⃗)
∂x⃗2∂x⃗j

∣∣∣
ϵ+∆x⃗j

∆x⃗j

)
∆x⃗2

= · · ·

=

∑3N
j=1

(
∂2V (X⃗)
∂x⃗3N∂x⃗j

∣∣∣
ϵ+∆x⃗j

∆x⃗j

)
∆x⃗3N

= constant = λ (6.4)

where the second derivatives inside the summations are the elements, hij, of the Hessian
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matrix, H, which leads to the eigenvalue problem:

det(H− λI) = 0 (6.5)

Solutions of equation 6.5 are also the solutions of the vibrational problem.

6.2 Translational Invariability of the Dipole Moment

Derivative for Charged Systems

The calculated molecular dipole moment for a charged molecule will be depen-
dent on its position in the Cartesian coordinate system. The dipole moment derivative,
however, is under the charge conservation law, as discussed in Chapter 4.

Considering the negatively charged TS, as shown in Figure 6.2 and taking the
carbon atom of Nu–CX3LG as reference, we can write:

Figure 6.2: Structure of the transition states. Nu is the nucleophile and LG is the leaving
group. X represents the spectator H, F or Cl.

∂qC
∂σA

= −∂qNu

∂σA
−
∂qX(1)

∂σA
−
∂qX(2)

∂σA
−
∂qX(3)

∂σA
− ∂qLG

∂σA
(6.6)

The ∂qC
∂σA

is the carbon charge derivative with respect to the displacement of atom A in
the σ coordinate. Substituting it in equation 3.2, results in:

∂pσ
∂σA

=
N∑

B=1

qj
∂σ

∂σA
+

N∑
B=1

(σB − σC)
∂qj
σA

+
N∑

B=1

∂mj,σ

σA
(6.7)

The second term on the RHS becomes dependent only on difference in Carte-
sian coordinates rather than the positioning vector. The other terms are not dependent
of any positioning vector, consequently all these individual contributions are invariant to
translations. Any atom can be chosen as reference for this analysis. Here the carbon
atom was chosen as the differences in Cartesian coordinates correspond to chemical bond
lengths. In this way the dipole moment derivative is a sum of atomic and chemical bond
contributions.



107

6.3 Imaginary Normal Mode

The transistion states of 9 SN2 reactions, as schematized in Figure 6.2, were
obtained and optimized at the QCISD/aug-cc-pVTZ level of theory. The infrared fre-
quencies were analytically calculated by Gaussian [25] making sure only one imaginary
frequency is present. The CCTDP parameters were obtained following the procedure
described in appendix E.

Figure 6.3: Positioning system and normal coordinate displacements (red arrows) utilized
in all transition states. Nu = H, F, Cl , LG = H, F, Cl and X = H or F.

The transition states were positioned in such way that the reaction coordinate
is aligned with the z–Cartesian axis and the carbon atom of the electrophilic part is at
the origin. Since the TS is the same for the direct and reverse reactions, the definition
of Nu and LG is arbitrary. In fact, following the IRC formulation there is no univocal
definition of reagents and products. Here, we adopt the definition that the nucleophile
is to the right of the origin. When adopting this positioning system, all charge transfer
terms, as defined by equation 6.7, will be relative to the carbon atom. The molecular
dipole moment derivative with respect to the normal coordinate, Q, becomes:

∂p

∂Q
=

3∑
σ=1

N∑
A=1

[
qA
∂σA
∂Q

+ (σA − σC)
∂qA
∂Q

+
∂mA,σ

∂Q

]
(6.8)

The CT term for each atom A is weighted by the bond distance between this
atom and carbon and, therefore, can be interpreted as a bond property, in contrast to
the atomic terms C and DP. The positions of the Nu and C are also important. For the
normal coordinate phase (the derivatives were evaluated in the direction of breaking the
Nu–C bond, and as the nucleophile is always on the right side of the origin, its charge
derivative, ∂qA

∂Qk
is positive, if the CT contribution is positive. The opposite occurs for the

LG terms.

Red arrows in Figure 6.3 depict the normal coordinate distortion, i.e. atomic
displacements, of the imaginary frequency. When following it, one will reach a minimum
point on the potential energy surface which corresponds to the products (or reactants) of
the reaction. This is the idea behind the IRC procedure.

Although recent methods, such as the unified reaction valley approach, demon-
strated that changes in the electron density do not occur necessarily at the transition
states, but at curvature peaks along the reaction path, as demonstrated by Kraka and
Nanayakkara[142], abrupt changes in the electron density, such as bond breaking or bond
formation, occur at, or nearly at; the curvature maxima rather then at the TS. We,
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however, focus the analysis presented in this chapter solely at the imaginary frequency of
the TS, as it is the starting point for defining the IRC and will capture the tendency of
change in the electron density at that point.

6.4 CCTDP analysis of CH4, CH3F and CH3Cl

Before proceeding to the investigation of the transition states, it is convenient
to investigate some of the products/reagents. The objective is to understand the predom-
inant electronic changes occurring when the bonds between CH, CF and CCl are broken.
As such, the CCTDP analysis was performed over the a1 normal modes of CH3D, CH3F
and CH3Cl, which correspond to CD, CF and CCl bond stretching. The CCTDP contri-
butions are shown in Table 6.1 and intensity contributions in the z direction are given as
Az.

Table 6.1: CCTDP parameters for CH4(or CH3D), CH3F and CH3Cl.

Mol. Atom AC2 ACT2 ADP2 A2CCT A2CDP A2CTDP Az

CH3D C 0.0 10.6 14.2 0.0 0.1 -24.6 0.2
H 0.0 -2.9 -4.6 0.0 0.0 7.3 -0.2
H 0.0 -2.9 -4.6 0.0 0.0 7.3 -0.2
H 0.0 -2.9 -4.6 0.0 0.0 7.3 -0.2
D 0.0 91.6 149.2 -0.1 0.2 -233.8 7.0

CH3F C 31.0 21.2 49.7 -51.7 79.3 -65.0 64.6
H 0.9 -0.9 -2.7 0.5 -1.5 3.1 -0.6
H 0.9 -0.8 -2.6 0.4 -1.4 2.9 -0.6
H 0.9 -0.7 -2.5 0.4 -1.3 2.8 -0.5
F 25.8 13.9 29.9 -37.9 55.5 -40.8 46.4

CH3Cl C 2.3 15.9 0.9 14.6 -3.1 -7.6 23.1
H 0.6 -2.1 0.0 -0.7 -0.2 0.7 -1.7
H 0.6 -1.9 0.1 -0.5 -0.3 0.5 -1.6
H 0.6 -2.2 -0.1 -0.7 -0.2 0.8 -1.8
Cl 2.0 2.4 0.1 4.5 -1.1 -1.1 6.8

Owing to its tetrahedral geometry, the a1 symmetry normal mode of methane
is inactive. However, the symmetry is broken by substituting one of the hydrogen atoms by
deuterium. CH3D belongs to the same point group as methylfluoride and methylchloride,
therefore, the a1 stretch of CH3D is active as the amplitude of the vibration of the C–D
bond is larger than those for the C–H bonds in this normal mode.

Aligning the stretching bonds with the z axis, the contributions from the x and
y directions are negligible. The total intensity is determined completely by changes in the
electron density that are in proper alignment with the z direction. This is not surprising
considering that the normal coordinate displacements for this vibrational motion are
parallel to the z-axis, with the exception of small x and y components of the angular
bending of CH bonds.

Atomic contribution decomposition reveals that the intensity of this normal
mode is determined almost only by contributions from the central C and terminal D, F
and Cl atoms. The contributions from the remaining atoms are small approaching 15%
of the intensity for CH3Cl, 1.5% for CH3F and 8% for CH3D.

The sign of the CTDP term, which corresponds to the interaction between
CT and DP, is negative for all the three molecules, meaning that CT and DP vectors
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(a) CH3D. (b) CH3F. (c) CH3Cl.

Figure 6.4: Structure of the z component of the atomic polar tensor of D, F and Cl atoms
aligned with the Cartesian z direction.

are of opposite sense. Physically it can be interpreted as a counterpolarization effect.
As the atoms are displaced from their equilibrium positions, electron density starts to
concentrate in the domain of one atom and diminishes in others. In order to better
accommodate these electronic changes, the electronic densities around the nuclei need
to relax. As consequence, DP contributions counterbalance those owing to the charge
transfer.

Charge contributions correspond to the equilibrium geometry atomic charges
weighted by their normal coordinate displacements. The AIM charges in deutered methane
are small and plays no important role in the infrared intensity. However, 56.79 km ·mol−1

of methyl fluoride intensity arises from the F and C atomic charge contributions. The
magnitudes of atomic charges and their interactions with CT and DP accounts to nearly
half of the bond stretching intensity.

The molecular dipole moment derivative can also be evaluated in terms of
equation 6.8. With the carbon atom utilized as reference, the Cartesian components of
CT terms become bond properties. For each system, the CD, CF or CCl bond along the
Cartesian z axis is stretched and the changes in the dipole moment are components of
the zz term of the atomic polar tensor of H, F or Cl.

All dipolar polarization contributions in methane arise from deformations of
the carbon atom electron density. This is expected since hydrogen atoms are small and
their electron densities are not easily deformed. This polarization contribution is counter-
balanced by the charge transfer of the C–H bond. The grey arrows in figure 6.4 represent
the z contribution of the charge transfer vector and of the dipolar polarization. The curved
dotted arrow shows the tendency of electron transfer with small displacements of H. With
this displacement, electrons tends to flow to carbon, triggering its counterpolarization.

The same CT mechanism is observed for CH3F, with the exception that F
contributes, albeit modestly, to the total DP term. However, methyl chloride acts in a
different way. As Cl is displaced, the tendency of the electron density is to concentrate on
the chlorine and polarize in the opposite direction. The major contribution to the total
DP term comes from the changes in the polarizable electron density.

6.5 CCTDP Partitioning of Transition States

CCTDP contributions for the TS imaginary normal mode are presented in
Table 6.2. The data was obtained with equation 6.8. Contributions from all X atoms
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are grouped and displayed as 3X. Even when summed together, contributions from X
are always small when compared to contributions from other atoms. This implies that
their low contribution to the infrared intensities is intrinsic and not a consequence of
cancellation between its individual terms. The electron density changes occurring during
the vibration emerge mostly from terms belonging to Nu and LG. For these atoms,
terms that are dependent on charge transfer are always higher in magnitude. This is
equivalent to stating that the molecular dipole moment derivative is mostly determined
by the transference of electrons between atomic basins, while reorganization of electronic
densities inside each basin, expressed by dipolar polarization terms, are less prominent.

Almost all of the transition states have positive CTDP interaction terms in
Table 6.2. This indicates that the charge transfer-counterpolarization effect, which atten-
uates intensities in the stable molecules, is not operative in transition states, resulting in
much larger intensities than those found for the reactants and products. Only Cl–CF3F
and Cl–CF3H transition states exhibit counterpolarization. However they do have larger
intensities owing to the dominance of the charge and charge transfer terms as well as their
interactions. The large carbon atomic charge contributions for these transition states as
well as for F–CF3H, as can be seen in Table 6.3, is due to the presence of the highly
electronegative fluorine substituents compared with hydrogen in all the other transition
states.

Adopting the referential system of equation 6.8 the CT term is expressed as a
property of C–X, C–Nu and C–LG bonds. The term CT (Nu→ C) and CT (C → LG)
are interpreted as charge transfer between Nu and C and between C and LG respectively.
Since the contributions from X are negligible, its convenient to analyse the contributions
of the principal atoms, i.e. Nu, C and LG, that are aligned with the z axis. The results
are also presented in atomic units in Table 6.3

Charge transfer terms for Nu and LG with carbon always have the same sign,
as the nucleophile is expected to lose electrons while an increase in electronic charge
occurs in the leaving group. To understand those terms, we return to equation 6.8 and
the positive phase of the normal coordinate.

The positioning system adopted in Figure 6.3 ensures that, the quantity (rNu−
rC) is positive while (rLG − rC) is negative, implying that ∂qNu

∂Qk
> 0 and ∂qLG

∂Qk
< 0. This

suggests that, in the positive phase of the Qk normal mode, Nu is losing electrons and LG
is gaining electrons. The transition state is unique for both directions, from reactants to
products and from products to reagents, and the CCTDP contributions are invariant with
the phase. The electron density derivatives are always evaluated when the nucleophile
is displaced in the positive direction of the IRC in Figure 6.1 That is, the derivative
corresponds to the breaking of Nu–C bond. The TS is the same for both direct or
reverse reaction and the same is valid for its infrared intensities. Proper definition of the
phase that derivatives are being evaluated is necessary in order to preserve the physical
interpretation of the system. Derivative values are available in the electronic supporting
information material.

Taking into consideration the phase in the direction of products formation,
one has: ∂qNu

∂Qk
> 0 and ∂qLG

∂Qk
< 0. In other words, the charge transfer terms correspond

nearly exclusively to the electron movement from the nucleophile to the leaving group,
passing through C, which is consistent with the well-known SN2 mechanism, represented
in Figure 6.5.

Considering the average of the dipole moment derivatives for the nine tran-
sition states, the transference of electrons from Nu to LG accounts for 2

3
of the total
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Table 6.2: CCTDP contributions to the intensities (in km·mol−1) of the imaginary normal
mode.

TS Atom AC2 ACT2 ADP2 A2CCT A2CDP A2CTDP

H–CH3H C -3.5 1310.1 271.5 297.5 139.3 1193.0
Nu 169.4 1979.5 365.9 1182.8 511.9 1702.8
3X -12.6 404.6 119.5 43.7 40.8 449.0
LG 169.4 1994.0 361.8 1186.2 509.7 1700.1
Total 322.8 5688.2 1118.7 2710.2 1201.8 5044.8

F–CH3F C 22.5 254.5 78.4 155.3 86.1 282.4
Nu 12.7 29.1 10.6 45.0 26.1 35.2
3X -2.5 14.3 2.0 -1.2 -2.4 11.4
LG 12.7 29.1 10.5 45.0 26.0 35.0
Total 45.5 326.9 101.4 244.0 135.8 364.0

Cl–CH3Cl C 3.9 967.0 19.0 135.4 19.1 270.7
Nu 3.5 65.0 0.7 41.2 5.3 14.2
3X 0.0 1.0 0.1 -0.3 1.5 0.5
LG 3.5 65.0 0.8 41.2 5.3 14.5
Total 10.8 1097.9 20.5 217.5 31.2 299.8

F–CH3H C 23.0 840.0 111.3 345.9 136.4 616.2
Nu -3.2 44.3 5.2 4.9 1.9 29.2
3X 17.9 239.2 37.0 132.9 55.7 193.2
LG 167.5 781.4 42.0 766.7 206.4 381.3
Total 205.2 1904.8 195.5 1250.4 400.4 1220.0

F–CF3H C 443.9 634.0 5.5 1067.2 99.5 117.4
Nu 16.1 43.2 -1.0 53.9 -3.7 -3.2
3X 46.0 91.4 1.0 130.0 12.0 16.7
LG 280.4 626.2 8.1 843.6 98.5 143.9
Total 786.4 1394.8 13.6 2094.6 206.3 274.7

Cl–CH3F C 8.8 536.4 20.3 147.9 28.8 208.4
Nu -0.1 2.7 -0.1 0.0 -0.2 0.0
3X 4.1 47.7 0.3 30.8 4.5 10.7
LG 10.2 54.4 3.4 64.3 13.8 28.2
Total 23.0 641.2 23.8 243.0 46.8 247.2

Cl–CF3F C 509.9 973.3 102.9 1409.3 -459.6 -633.9
Nu 0.3 -2.3 0.1 -1.3 -0.3 0.4
3X 19.5 38.9 1.5 55.2 -11.9 -17.0
LG 54.8 56.2 -3.8 115.5 -13.5 -4.8
Total 584.5 1066.0 100.8 1578.7 -485.2 -655.3

Cl–CH3H C 8.9 1338.3 34.7 403.6 76.2 438.3
Nu -1.7 26.0 0.4 1.3 0.0 6.3
3X 10.4 245.5 4.9 105.5 15.1 69.3
LG 181.7 978.5 6.4 926.2 100.9 178.9
Total 199.3 2588.3 46.4 1436.5 192.3 692.8

Cl–CF3H C 709.0 2352.4 45.2 2595.7 -362.5 -653.3
Nu 24.4 84.8 1.4 91.7 -11.1 -21.0
3X 64.2 207.0 2.0 231.5 -23.8 -43.1
LG 379.2 554.5 6.1 961.5 -109.6 -118.5
Total 1176.9 3198.7 54.7 3880.4 -507.0 -835.8

intensity. Not only are the normal coordinates of the imaginary mode related to the IRC,
but the electronic changes that occur during the reaction seem to be described by the
CCTDP partitioning of infrared intensities. For symmetric transitions states, H–CH3H,
F–CH3F and Cl–CH3Cl the CT contributions are the same for Nu–C and LG–C, which
is consistent with the fact that, for these reactions, the initial and final points are the
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Table 6.3: Atomic contributions and bond contributions (in e.amu1/2) for the imaginary
normal mode of transition states.

TS Atomic Contributions Bond Contribution

Atom
(

∂p
∂Q

)
(C)

(
∂p
∂Q

)
(DP )

Bond
(

∂p
∂Q

)
(CT )

H–CH3H C -0.006 0.056 – –
Nu 0.302 0.418 Nu–C 1.113
LG 0.302 0.416 LG–C 1.130

Sum 0.598 0.891 Sum 2.243
F–CH3F C 0.107 0.182 – –

Nu 0.060 0.065 Nu–C 0.277
LG 0.060 0.065 LG–C 0.277

Sum 0.228 0.312 Sum 0.554
Cl–CH3Cl C 0.038 0.037 – –

Nu 0.034 0.033 Nu–C 0.530
LG 0.034 0.033 LG–C 0.530

Sum 0.105 0.104 Sum 1.060
F–CH3H C 0.051 0.095 – –

Nu 0.054 0.136 Nu–C 0.377
LG 0.374 0.120 LG–C 0.933

Sum 0.480 0.352 Sum 1.310
F–CF3H C 0.507 -0.235 – –

Nu 0.016 0.160 Nu–C 0.122
LG 0.321 0.234 LG–C 0.971

Sum 0.843 0.159 Sum 1.093
Cl–CH3F C 0.059 0.091 – –

Nu 0.029 0.005 Nu–C 0.515
LG 0.068 0.043 LG–C 0.287

Sum 0.156 0.138 Sum 0.802
Cl–CF3F C 0.675 -0.218 – –

Nu 0.025 0.031 Nu–C 0.732
LG 0.073 0.083 LG–C 0.330

Sum 0.773 -0.104 Sum 1.062
Cl–CH3H C 0.020 0.021 – –

Nu 0.031 0.101 Nu–C 0.691
LG 0.412 0.053 LG–C 0.905

Sum 0.464 0.175 Sum 1.597
Cl–CF3H C 0.662 -0.348 – –

Nu 0.014 0.101 Nu–C 0.748
LG 0.354 0.163 LG–C 0.927

Sum 1.030 -0.083 Sum 1.676

same.
Figure 6.6 shows a bar plot of the CCTDP contributions to the dipole moment

derivative. One can see that CT is always the largest contribution, followed by charge,
except for the H–CH3H system where polarization is substantially larger than the charge.
The substitution of X = H by X = F increases the charge term since the introduction
of an electronegative substituent increases the magnitude of the carbon atomic charge.
Dipolar polarization terms are comparable to charge contribution or even smaller. It
follows the opposite trend: whereas the charge on carbon becomes more positive and,
as consequence, its polarization decreases, the DP contribution is attenuated. This is
expected since electronegative atoms concentrate the electron density nearer to the nuclei
which prevents it from deforming.
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Figure 6.5: SN2 mechanism represented by red curved arrows. Grey arrows correspond to
the weighted charge transfer vectors that points to the positive end. (Polarity convention
− → + ).

Earlier work by Matta and co-workers[143] investigating atomic charges and
dipoles along the reaction coordinate for CH4 + ·X → CH3 · + HF, X = F, Cl also
finds greater contribution from CT for all the systems investigated, specially with X =
F, whereas dipolar polarization terms increase when the more polarizable Cl atom is
introduced.

When compared to the isolated reagent, transition states express greater in-
tensity and greater CCTDP contributions, as clearly illustrated in Figure 6.6. While the
CT term is enhanced by the charge transference from Nu– to LG, the charge contri-
butions are enhanced by the distribution of the nucleophile’s negative charge. Dipolar
polarization for TS and reagents are of comparable magnitude, except for H–CH3H, for
which the introduction of an extra electron causes a significant increase in the system’s
polarizability and, in combination with the larger displacements of hydrogen owing to its
lower mass, magnifies the DP contribution.

Contributions from the substituent X atoms and normal coordinate displace-
ments of Nu, C and LG along the x and y axes can be neglected. The second column
contains intensity values corresponding to dipole moment changes occurring only along
the z-axis. The z direction was chosen since it is aligned with the reaction coordinate rep-
resented in Figure 6.3. These values are very close to the total intensities. Contributions
from only the z direction, as show in column 2, sum to almost all the total intensities
meaning that the change in the molecular dipole moment has the same direction as the
reaction path, i.e. the changes in the electron density occur along the normal coordinates
that define the IRC.

Figure 6.7 summarizes the data of Table 6.4. The ordinate contains the inten-
sities calculated analytically by GAUSSIAN with the abscissa representing the intensities
calculated numerically, including only contributions in the z direction. The slope, ob-
tained by a linear regression, of the black dots (all atoms) for the nine TS is equal to 1.03
with a correlation coefficient of 0.9994. For the white dots, corresponding to the Nu, C
and LG atoms, the slope is 1.07 and the correlation coefficient is 0.9975. The data also
show that the contributions of the X atoms are small and can be neglected. Contributions
that are not aligned with the reaction coordinate are also negligible. The data show that
changes in electronic densities occur in the same direction of the reaction coordinate and
atoms that are not directly involved in the reaction mechanism are mere spectators and
influence the reaction by secondary effects, such as increasing or decreasing the carbon
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Figure 6.6: Charge, charge transfer and dipolar polarization contributions for the molec-
ular dipole moment derivative [e · amu−1/2].

Table 6.4: IR intensities (in km ·mol−1) of the imaginary normal modes.

TS Ai Az
ii ANu,C,LG

iii ANu,C,LG;z
iv

H–CH3H 16086.6 15653.6 15041.6 15069.1
F–CH3F 1217.7 1199.4 1196.1 1239.1
Cl–CH3Cl 1676.2 1672.0 1675.1 1572.0
F–CH3H 5176.3 5015.5 4911.3 4904.9
F–CF3H 4770.4 4380.4 4455.1 4384.2
Cl–CH3F 1225.1 1212.3 1217.5 1179.5
Cl–CF3F 2189.5 2219.5 2198.0 2922.1
Cl–CH3H 5155.6 5090.1 6448.9 4996.8
Cl–CF3H 6967.8 6430.3 5066.7 7017.7

i Total intensity. ii Only z–axis contributions. iii Only contributions from Nu, C and LG. iv Only z–axis
contributions from Nu, C and LG.

charge.

6.6 Charges Along the Reaction Coordinate

Figure 6.8 displays the changes in atomic charge along the reaction coordinate
for the nine NuCX3LG

– . Since the aim of this work is not to analyse the thermodynam-
ics of the reactions, but changes in the electronic densities of the reacting systems, the
reaction paths were restricted to a region near the TS. Because there is no analytical
second derivative method at the QCISD level1, the IRCs were determined at the MP2
level. However, for each point, the electronic properties and energies were calculated at
the QCISD/aug-cc-pVTZ level.

For each point along the reaction coordinate, QTAIM atomic charges and

1See GAUSSIAN09 user’s reference manual
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Figure 6.7: Comparison between the intensities calculated with all atomic terms in all
three Cartesian directions and the intensities calculated using only atomic contributions
in z direction (light grey dots), using only contributions from the Nu, C and LG in z
directions(dark grey dots) and using only contributions from the Nu, C and LG in all
directions (white dots).

dipoles were obtained. In the first three cases, i.e. H–CH3H, F
–CH3F and Cl–CH3Cl,

due to the system’s symmetry, the Nu and LG charges are mirrored. Every fraction of
electron density lost by the Nu is captured by the leaving group. Throughout the entire
process, the carbon charge remains nearly constant. If the IRC symmetry is broken, the
charge of the spectator atoms remains relatively constant, but the carbon charge will
change. The difference between black and red curves is related to the carbon charge
variation, i.e. the solid grey curve. This means that some of the nucleophile charge will
end up on the electrophilic center.

Although the charges of the spectator atoms do not change along the energy
profile for the systems studied here, Santos Jr. et al.[128] found that QTAIM descriptors,
such the Laplacian at the bond critical point, of the CX bond changes with the nature of
X.

Comparing the tendency displayed in the plots of Figure 6.8 with the data in
Table 6.3 one can notice that the charge transfer terms are also influenced by the symmetry
of the path. In fact, it is expected, regarding mechanical effects, that the difference
between the charge transfer term of equation 6.8, CT (Nu → C) and CT (C → LG), is
related to the change in carbon’s atomic charge.

Considering that these charge transfers reflect the tendency of the variation
of the C atomic charge throughout the entire reaction, we define the quantity ∆qC =
q+∞
C − q−∞

C that corresponds to the difference between the carbon charge in the product
and in the reactant. From figure 6.9 one can see that ∆qC correlates linearly with the
CT (C → LG)−CT (Nu→ C) difference, with a correlation coefficient of R2 = 0.953 and
slope equal to 1.13± 0.09.
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The last contribution to be analyzed is the dipolar polarization. In the TS
presented in this work, DP contributions arise mostly from the displacement of the neg-
ative charge from the positive side of z axis to the negative side. Atoms other than Nu
and LG remains almost non-polarized. Other polarization effects emerge when carbon
becomes polarized by the substitution of hydrogen by a halogen atom.

Figure 6.9: Variation of carbon charge after q+∞
C and before q−∞

C the reaction against the
difference between charge transfer of the nucleophile and leaving group. The regression
line is represented by the dotted line in the graph.

6.7 Concluding Remarks

The infrared intensities of the imaginary bands result only from contributions
of atoms that participate actively in the reaction, that is Nu, LG, and C. For the systems
presented in this chapter, the principal contributions are the charge transfers between the
nucleophile and the leaving group through the carbon atom. As the atoms vibrate inside
the normal coordinate of imaginary frequency, the changes in the molecular electronic
density are consistent with the mechanism of the reaction itself and the direction of the
CT vectors corresponds to the movement of electrons as described by the curved arrow
representation of the reaction mechanism.

The difference between the charge transfer of the nucleophile and the charge
transfer of the leaving group indicates the tendency of carbon to receive charge along the
reaction coordinate. Dipolar polarization contributions result from the inversion of the
molecular geometry and from the substitution of LG by Nu with different electronega-
tivities. Changes in the molecular geometry following the IRC path are similar to those
described by the normal coordinates. Since this is a consequence of the IRC definition,
not only is this true for SN2 reactions but also it can be generalized to any system.

∗ ∗ ∗
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This chapter contains excerpts from texts previously published by the author. The fol-
lowing material was reprinted with permission:
Duarte, L. J., Silva, A. F., Richter, W. E., Bruns, R. E. Infrared intensification and
hydrogen bond stabilization: Beyond point charges. The Journal of Physical Chemistry
A, 123(30), 6482-6490, 2019, American Chemical Society.
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Chapter 7

Energetic Origins of Force Constants

The infrared spectrum contains a wealth of information about the molecular
structure. Through detailed manipulations, the frequencies can be reduced to bond and
angle force constants, whereas the intensities can be used to investigate the molecular
dipole moment derivatives. Insights about other molecular properties, such as symmetry
and intermolecular interactions can also be obtained.

Until this point, the use of the QTAIM atomic charges and dipoles allowed the
decomposition of the infrared intensity through the Charge – Charge Transfer – Dipolar
Polarization model, enabling the investigation of the electron density dynamics during a
molecular vibration using atomic parameters.

However, not only electronic properties can be determined by QTAIM, but the
molecular energy can also be partitioned into atomic contributions following the Interact-
ing Quantum Atoms (IQA) energy decomposition scheme[6]. In this method, the system
energy is divided into intra- and interatomic contributions. The intra-atomic contribu-
tion, EA

intra, is related to the kinetic and potential energies of electrons inside an atomic
basin, while the interatomic contributions V AB

cl and V AB
xc are, respectively the Coulomb

and exchange-correlation potential between atomic basins A and B. These contributions
reflect the ionic and covalent properties of chemical bonds and inter-molecular interac-
tions. Within this partitioning scheme, the total system energy is:

Etotal =
N∑

A=1

EA
intra +

N−1∑
A=1

N∑
B>A

V AB
cl +

N−1∑
A=1

N∑
B>A

V AB
xc (7.1)

Since force constants are second derivatives of the energy and the derivative of
a sum equals the sum of derivatives, they can also be divided into IQA contributions. This
is done by partitioning the Hessian matrix into IQA derivative matrices and performing
the usual calculations to determine the vibrational modes.

In this chapter, a new dimension is added to the Hessian matrix in order to
account for the different IQA terms. Wilson’s FG method[144] is modified to be applied
to the new 3–dimensional Hessian matrix in order to extract chemical bond information
inherent in force constants.
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7.1 The 3D Hessian Matrix

The following equations are a generalization of the FG method and the con-
version from Cartesian to internal coordinates is described in detail in the works of McIn-
tosh[145–149]. Herein, the main equations are presented with the proper modifications
that are needed to deal with the new dimension of the Hessian matrix.

Consider the Hessian matrix, with dimensions 3N×3N , whereN is the number
of atoms in the molecule. Each element hij is the second derivative of the total energy of
the system with respect to Cartesian coordinates σ = x, y, z of atoms i and j evaluated
at their equilibrium positions, that is:

hij = hji =
∂2Etotal

∂σi∂σj
(7.2)

The normal modes of vibration and frequencies can be obtained by transform-
ing the Hessian matrix from the σ coordinates into their mass-weighted version, where
each coordinate is weighted by its atomic mass. Let M be the diagonal matrix containing
triples of reciprocals of the square root of the atomic masses:

M =



1√
m1

0 0 . . . 0 0 0

0 1√
m1

0 . . . 0 0 0

0 0 1√
m1

. . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 1√
mN

0 0

0 0 0 . . . 0 1√
mN

0

0 0 0 . . . 0 0 1√
mN


(7.3)

and the mass-weighted Hessian is then obtained by:

Hmw = M†HM (7.4)

To find the frequencies of vibrations, one needs to solve the eigenvalue problem:

A†HmwA = Λ (7.5)

where Λ is the diagonal matrix of eigenvalues λi and A is the matrix that diagonalizes
the mass-weighted Hessian and is formed by the juxtaposition of eigenvectors of Hmw.
From the 3N eigenvalues, only 3N − 6 (or 3N − 5 if the molecule is linear) correspond to
the vibrational motion, whereas the others correspond to translations and/or rotations.
The frequencies of vibration, in cm−1, are given by:

νi =

(
λi

4π2c2

) 1
2

(7.6)

However, since the energy of the system can be decomposed to IQA contri-



121

bution terms, the same is true for its derivatives. Following the IQA partitioning, one
has:

∂2Etotal

∂σi∂σj
=

N∑
A=1

∂2EA
intra

∂σi∂σj
+

N−1∑
A=1

N∑
B>A

∂2V AB
cl

∂σi∂σj
+

N−1∑
A=1

N∑
B>A

∂2V AB
xc

∂σi∂σj
=

N2∑
k=1

∂2Ek

∂σi∂σj
(7.7)

where each Ek corresponds to one of the intra or interatomic IQA contributions. The
total number of IQA contributions is N2, corresponding to the sum of N intra–atomic
contributions, N(N−1)

2
Coulomb contributions and N(N−1)

2
exchange–correlation contribu-

tions. Hmw is, therefore, a sum of matrices of IQA term derivatives, i.e.
∑

HIQA,mw
k .

Equation 7.5 is rewritten as:

A†

(
N2∑
k=1

HIQA,mw
k

)
A =

N2∑
k=1

ΛIQA
k (7.8)

with
∑N2

k=1Λ
IQA
k = Λ. Since Λ is diagonal, one has:

N2∑
k=1

λIQA
ijk =

{
λij if i = j

0 if i ̸= j
(7.9)

Equation 7.9 implies that a diagonal element of ΛIQA
k , λIQA

i,j=i,k is the contribu-
tion of the IQA component k to the frequency of normal mode νi. The idea is visualized in
Figure 7.1. This procedure will identify which IQA contributes the most to the frequency
value of the normal modes.

With the exception of the most simple cases, the frequency of vibration is not
dependent on only one force constant, but on a combination of force constants and their
interactions. For this reason, interpreting the IQA decomposition of frequencies can be
difficult. However, if one applies the decomposition method to the force constants itself,
then chemical information can be easily accessed. This can be done by the use of internal
coordinates, which is described in the following section.

7.2 Force Constants in Internal Coordinates

In order to calculate, and decompose the force constants into its IQA compo-
nents, one needs first to convert the Cartesian Hessian into the the Wilson’s F matrix,
that contains the force constants, and their interactions, expressed in internal coordinates.
To do this, it is necessary to define the B matrix, that converts the 3N × 1 Cartesian
coordinate matrix, X, into internal coordinates matrix, R :

BX = R (7.10)

The process of setting-up the B matrix is tedious and can be found elsewhere
in the literature[145] . Different authors have distinct, although equivalent, definitions
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Figure 7.1: Structure of ΛIQA
k matrices. Moving along the k-axis, each λijk corresponds

to the contribution of energy component k to the eigenvalue of normal mode j. Since
their sum equals zero, off-diagonal elements are not represented in the figure. The sum
over k results in the eigenvalues matrix Λ.

for the internal coordinates. To avoid any ambiguity the derivation of the B matrix
for ethylene is presented in the appendix as an example. We start by calculating the
pseudo-inverse of B by:

B−1 = M2B†G−1 (7.11)

G contains the inverse of the kinetic energy terms and its inverse, G−1, is given by:

G−1 = DΦ−1D† (7.12)

where D and Φ are, respectively, the eigenvectors and the diagonal eigenvalue matrices of
G. Eventual problems with redundant internal coordinates can be solved by the method
described by Gussoni and Zerbi[150]. The force constants in internal coordinates are then
obtained as follows:

F = B†−1
HB−1 (7.13)

A detailed derivation can be found elsewhere[149]. The decomposition of the force con-
stants into the IQA contributions is done using equation 7.7:

N2∑
k=1

FIQA
k = B†−1

(
N2∑
k=1

HIQA
k

)
B−1 (7.14)

Each F IQA
k is a matrix containing the contribution of the kth IQA term of F.

7.3 Calculating the IQA Hessian

Since there is no analytical method to obtain the second derivative of each IQA
term, the construction of each HIQA,mw

k has to be done numerically. From the equilibrium
structure, new geometries are generated by displacing the atoms in the positive and
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negative direction of each Cartesian axis. For each new geometry, the wavefunction is
calculated by GAUSSIAN16[151], from which the IQA terms are obtained using AIMAll.
The derivatives are calculated by the Theovib python library as described in appendix E.

All molecules had their geometries optimized by GAUSSIAN 16[151] at the
B3LYP/aug-cc-pVTZ level of theory. The use of DFT is justified by the number of single
point calculations that are needed to obtain the 3D–Hessian matrix. AIM properties
such as IQA energies, atomic charges and dipoles were obtained by AIMAll[102] using the
default integration grids. The non-equilibrium geometries utilized to obtain the numerical
derivatives were generated with Theovib. Theovib also performed the infrared analysis,
including the calculations of the B matrix, infrared intensities and IQA force constants.

7.4 QTAIM IR Spectra

Figure 7.2 contains an illustrative example for water, the red lines are obtained
using only AIM parameters, the dotted lines are the spectrum obtained by Gaussian and
the gray shadow peaks are the experimental data from the NIST/PNNL library. One
will notice that the calculated curves are shifted to the right, as consequence of the level
of theory, which produces only an approximate electronic structure, and of the potential
energy surface anharmonicity. No scaling factors were applied, since it will equally affect
all IQA contributions, thus having no impact on the interpretation of our results.

Figure 7.2: Infrared spectra of H2O obtained by three different methods: Analytically
calculated by Gaussian16 (dotted black line), numerically calculated with AIM parameters
(red line) and, experimentally obtained from PNNL database. Calculated bands were
simulated using a Lorentz distribution.

The differences between the Gaussian and the QTAIM spectra are caused
by numerical errors from two distinct sources. First, the recovery error for the IQA
parameters, that is measured by the difference between the wavefunction energy and the
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sum of all IQA terms1. Second the numerical error of the IQA/AIM charges and dipole
derivatives.

The force constants in internal coordinates, calculated only using IQA deriva-
tives, are also in good agreement with the ones calculated by Gaussian and ’with the
experimental data. Figure 7.3 compares the results obtained with IQA terms and the
3D-Hessian matrix. Our results are in good agreement with the experimental (MAE =

0.60 mdyne · Å−1
) data.

Figure 7.3: Comparison of force constants calculated with the IQA components with
experimental results. Experimental results contains only bond stretching force constants

in units of mdyne · Å−1
.

7.5 Force Constants and Bond Dissociation Energies

The term “bond strength”, although not present in IUPAC’s gold[152] or
green[153] book, is frequently used as a measure of the bond dissociation energy De

(or Do), which is often mistaken as a measure of the bond force constant. Relating De

to the force constant, however, is only valid when the energy curve can be approximated
by a Morse potential [154]. Considering a diatomic molecule whose bond length is equal
to Re, the Morse potential, E(R) = De[1 − exp−α(R−Re)]2,with the force constant being

equal to ke =
∂2E(R)
∂R2

∣∣∣
R=Req

= 2De ·α2, then the linear relation between De and ke appears

as:

De =
ke
2α2

(7.15)

1The recovery error is given by Etotal

∑N2

k=1 E
IQA
k
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Looking at the experimental data (Figure 7.4), taken from the CRC Handbook
of Chemistry and Physics[155], one can find that Equation 7.15 generates diagonal lines for
different values of α. Points for similar bonds will lay along the same line, e.g. correlation
between De and force constant values can be found as indicated by the red dotted line for

the CH and CC bonds that corresponds to an α value of 6.5 kJ
1
2 · Å

1
2 ·mdyne− 1

2 ·mol− 1
2 .

Figure 7.4: Bond dissociation energy Do, in kJ ·mol−1 versus bond stretching force con-

stant, in mdyne·Å−1
. Data was taken from the CRC Handbook of Chemistry and Physics.

Each red line corresponds to a different value of α.

However, takingDe directly as a measure of the bond force constant can lead to
inconsistencies, e.g. the bond dissociation energy for Cl2 is greater than for F2, although,

the force constant of the latter is 4.7 mdyne · Å−1
compared to 3.2 mdyne · Å−1

for Cl2.
In fact, bond dissociation energy is a measure of the potential energy well depth, while
the force constant is a measure of its curvature and accounts for bond stiffness[156]. The
difference between the bond stability and stiffness can be investigated by examining their
IQA energetic origins.

On calculating the bond dissociation energy for diatomic molecules, AB, by
subtracting the atomic energy of A and B from the sum of the IQA terms of the molecule,
i.e. De = E

A(molecule)
intra + E

B(molecule)
intra + V A,B

cl + V A,B
xc − E

A(isolated)
intra − E

B(isolated)
Intra = ∆EA

Intra +
∆EB

Intra + V A,B
cl + V A,B

xc , one obtains the plot shown in Figure 7.5a. In Figure 7.5b, the
IQA contributions to the force constants are shown. The IQA contributions are listed
using their original symbols. However, the reader should keep in mind that the IQA
contributions to the force constant were obtained via Equation 7.14 and, therefore, are
second derivatives of the IQA terms with respect to the internal coordinates.

Force constants measure the curvature of the potential well and, therefore,
they are a descriptor of bond stiffness. A negative value of the IQA contributions to
the force constant implies that the contributions makes the bond more “elastic”. At this
point, it is important to stress that the IQA contributions that increase the force constant
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(a) IQA components of the dissociation energy, in Hartrees.

(b) IQA components of force constants in diatomic molecules, in mdyne · Å−1
.

Figure 7.5: IQA partitioning of dissociation energy and force constants in diatomic
molecules. The legends display the original IQA term symbols, however, for force con-
stants the plot shows second derivatives of each term.

may not be the same as contributions that increase the bond stability. The exchange-
correlation contribution stabilizes all the bonds of these diatomic molecules but tends to
increase their elasticities as can be seen in these figures. Having a larger force constant
means that the bond is more difficult to distort, but this does not necessarily imply it is
more difficult to break. Bond stability and stiffness can have strikingly different energetic
origins.

For all the homonuclear diatomic molecules, the exchange-correlation contri-
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bution is the only stabilizing contribution to the bond energy but also the only one
making the bonds more elastic. In these molecules the classical Coulomb contributions
are positive, tending to increase bond stiffness while also making the bonds a little less
stable.

The force constant value of the H–H bond, although its stability results from
Vxc, is mostly determined by the Coulomb interaction between the hydrogen atoms, re-
ceiving only a small and negative contribution from the exchange-correlation potential.
Intra-atomic contributions are also important, corresponding to about one third of the
total force constant. In the F2, Cl2 and Br2 molecules, a different trend can be observed:
their exchange-correlation force constant contributions are always negative, essentially
canceling the Coulomb terms. As a result, their force constants are determined almost
completely by the intra-atomic terms, Eintra. Since there is no charge transfer occurring
during the formation of these bonds, changes in intra-atomic energies arise only from
deformations of the electronic densities. The greater stiffness of F–F bond when com-
pared with Cl2 and Br2 results from a higher intra-atomic contribution and to a residual
Coulomb contribution that is not completely balanced by the exchange-correlation contri-
bution. Coulombic contributions to the dissociation energy, on the other hand, are very
small and almost constant, having a negligible bond stabilization effect.

Considering the distance between the nuclei, one can see that the Coulomb
contributions to the force constant decrease with increasing bond length, while an increase
is observed for the exchange-correlation contribution. Since the Coulomb law states that
the electric potential is proportional to the inverse of the distance between charges, taking
its second derivative results in a force constant that is proportional to the inverse of the
third power of bond distances. The shortening of the bond length as the bond order
increases results in a higher contribution from the IQA classical term.

These effects are especially pronounced for diatomic molecules with different
bond orders. Increasing the bond order results in an increase of the exchange-correlation
stabilization, −V N,N

xc > −V O,O
xc > −V F,F

xc , while slightly increasing the repulsive classical
potential, V N,N

cl > V O,O
cl > V F,F

cl . Although V AB
xc is dominant for bond stability, V AB

cl

accounts for bond stiffness. Considering F–F, O––O and N–––N, the increase in bond
order is accompanied by an increase in the force constant, which is caused mostly by the
classical IQA Vcl term.

For the HF and CO heteronuclear molecules, where there are large electronega-
tivity differences between the bonding atoms, the classical Coulomb contribution becomes
negative, stabilizing the bonds. The stabilities of H–F and CO bonds are resultants of
both the Vcl and Vxc contributions. The stabilities of HCl and HBr, in turn, result only
from exchange-correlation, as expected for small atomic charges.

HF, HCl and HBr, differing from the single-bonded homonuclear diatomic
halogens, have force constants exhibiting a greater dependence on Coulomb and intra-
atomic force constant contributions, while the exchange-correlation contributions remain
almost constant going from HF to HBr. The Coulomb contribution decreases from HF
to HBr, becoming negative for HBr. The intra-atomic contributions, on the other hand,
increase. In fact the force constant fHBr is only positive due to the intra-atomic energy
second derivatives. Intra-atomic contributions result from a sum of the electron kinetic
energy plus their electron-electron repulsion and electron-nucleus attraction[134], calcu-
lated inside a single atomic basin. The increase in the kinetic energy for the hydrogen
atom can be associated with the increase in its electron density, which is consistent with
the electronegativity of the halogen atom. The reduction of fHX in the series is, mostly,
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(a) C–X bond stretch. (b) Y–C bond stretch. (c) Y–C–X angular bent.

Figure 7.6: Internal coordinates for linear YCX, X, Y = O, S. Red vectors indicate the
B matrix element.

a consequence of lowering atomic charges while increasing the bond distance.

7.6 Force Constants of CO, CO2, SCO and CS2

Figure 7.6 shows the internal coordinates for the stretching of C–X and Y–C
bonds and the Y–C–X angular bending.

From the data presented in Table 7.1, one can see that, for the bond stretching
force constant, contributions from atoms that are not part of the internal coordinate are
small when compared with contributions from the other atoms. Significant force constant
contribution profiles are shown in Figure 7.7. The Coulomb term for C–X is always
positive when X = O, but negative when X = S, differentiating the C––O from the C––S
bond. A similar trend is found for the intra-atomic terms that are positive, i.e. increase
the bond stiffness, for C––S, but negative, or very small, for C––O. Exchange-correlation
contributions are negligible for CS and slightly negative for CO. The IQA profile for CO
is closer to the profile of the CO bond in SCO than in CO2. The inclusion of an extra
oxygen atom enhances the Coulomb contribution, but also decreases the intra-atomic
contribution from carbon. These two effects counterbalance each other and the force
constant values remain almost unaffected, as can be seen in the last column of Table 7.1.

For angular bending force constants of CO2 and CS2 the Coulomb contribu-
tions are about the same for both terminal atoms, presenting relatively high and positive
magnitudes. The intra-atomic contributions are negative. The exchange contributions are
negligible for CO2, but become positive and small, for CS2. Even though the intra-atomic
and Coulomb force constant contributions are all significantly smaller for the OCS angle
than for those in CO2 and CS2, all three angular force constants have very similar values.

7.6.1 The C––O Bond in X2CO Molecules

The magnitude of a bond constant is usually given by an average of that bond
in related molecules. However, although this methodology is well established, the decom-
position of the force constants into IQA components reveals that the IQA profile of the
same bond may vary significantly between molecules, even if their sum doesn’t. In Figure
7.8 the IQA profiles of fCO in F2CO, Cl2CO, Br2CO and H2CO are shown. The profile
of C––O bond in F2CO resembles the one in CO2, while profiles of the bond in the others
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Table 7.1: Second derivatives of IQA contributions to the forces constants of CO2, SCO,

CS2 and CO in [mdyne · Å−1
].

Bond Stretch

Molecule Internal coordinate EC
intra EY

intra EX
intra V C,Y

cl V C,X
cl V Y,X

cl V C,Y
xc V C,X

xc V Y,X
xc fCX

or
fCY

CO2 O-C (Y-C) -
27.43

-
1.29

-
2.15

51.05 13.85 -
10.09

-
7.85

0.30 0.05 16.44

C-O (C-X) -
27.43

-
2.15

-
1.29

13.85 51.05 -
10.13

0.30 -
7.85

0.05 16.39

SCO S-C (Y-C) 13.71 19.29 -
0.84

-
26.28

6.46 -
5.13

-
0.10

0.11 0.03 7.24

C-O (C-X) -
0.12

-
1.83

3.17 -
4.62

18.62 6.57 0.78 -
6.06

0.22 16.73

CS2 S-C (Y-C) 19.65 17.26 -
0.98

-
29.36

0.78 0.20 0.07 0.28 0.02 7.92

C-S (C-X) 19.65 -
0.98

17.26 0.78 -
29.37

0.22 0.28 0.07 0.02 7.94

CO C-O (C-X) -
3.37

— 7.91 — 22.14 — — -
6.57

— 20.11

Angle Bend

Molecule Internal coordinate EC
intra EY

intra EX
intra V C,Y

cl V C,X
cl V Y,X

cl V C,Y
xc V C,X

xc V Y,X
xc fY CX

CO2 O-C-O (Y-C-X) -
8.07

-
2.15

-
2.15

7.96 7.96 -
2.20

-
0.22

-
0.22

-
0.13

0.79

SCO S-C-O (Y-C-X) -
3.37

-
1.07

-
3.05

0.94 5.43 1.36 0.49 0.04 -
0.09

0.68

CS2 S-C-S (Y-C-X) -
6.44

-
2.82

-
2.82

6.53 6.53 -
1.78

0.72 0.73 -
0.05

0.60

X2CO molecules are similar with those in SCO and CO. One can notice that the second
derivatives of V CO

cl increase with the electronegativity of X. However, the Coulomb contri-
bution in F2CO is partially counterbalanced by the intra-atomic contribution. This effect
is not as significant, but positive, for the other three molecules in this series. Exchange-
correlation contributions are always negative and about the same for all these carbonyls.
As such, the total force constant from the DFT calculations vary slightly, from 13.6 to

15.5 mdyne · Å−1
.

7.7 Bond order: the C–C Bond in Ethane, Ethylene

and Benzene and the O–O, Bond in O2, O3 and

H2O2

It is known that an increase in bond order also increases the force constant.
As the data presented in Table 7.2 suggests, this happens due to the increase in the
contributions from Coulomb terms for the oxygen bonds and both the Coulomb and
intra-atomic terms for the carbon bonds. In molecules with resonance (O3 and benzene),
intra-atomic contributions do not increase force constant, but Coulomb interactions do.
Contributions from atoms that do not participate in the bond are small, i.e. about
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(a) IQA contributions to C–X bond stretch force constant.

(b) IQA contributions to the Y–C–X angle bent force constant.

Figure 7.7: Contributions from second derivatives of IQA terms to the bond stretch, fCX ,
and angular bend, fY CX , force constants, where X, Y ∈ {O, S}.

1 mdyne · Å−1
or less, except for molecules that presents resonance: ozone and benzene.

Intra-atomic contributions from both atoms in the bond are equivalent, except for O3,
where the symmetry is broken. For the C–C bond series, differences between EC1

intra and
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Figure 7.8: Trend in IQA force constant contributions for F2CO, Cl2CO, Br2CO and
H2CO. Only contributions from C and O are presented since others contributions are
negligible

Table 7.2: Bond force constant for the series: ethane, ethylene, benzene and O2, O3,

H2O2. Values in mdyne · Å−1
.

Mol. EO1
intra EO2

intra V O1,O2
cl V O1,O2

xc

∑O1,O2 ∑others
fOO

H2O2 2.3 2.2 2.8 -3.4 3.9 1.1 4.9
O3

i 2.4 1.4 11.2 -5.9 9.1 -1.8 7.4
O2 2.7 2.7 12.7 -5.4 12.8 0.0 12.8

Mol. EC1
intra EC2

intra V C1,C2
cl V C1,C2

xc

∑C1,C2 ∑others
fCC

Ethane 1.5 1.3 2.5 -1.8 3.5 0.8 4.2
Benzene 1.3 1.3 3.0 -1.8 3.7 1.2 5.0
Ethylene 3.0 3.0 5.1 -2.2 8.9 0.7 9.6

i O1 and O2 are neighbouring atoms.

EC2
intra results from the greater numerical error.

7.8 Concluding Remarks

The force constants arise from the potential energy second derivatives. Since
the energy of a molecular system results from a sum of atomic terms, the force constant
can also be divided into atomic contributions. In order to calculate these contributions, a
modification of the Wilson’s FG method was made, in which a new dimension is added to
the Hessian matrix. The new dimension contains second derivatives of IQA contributions
to the total energy of the system. The method is able of reproducing experimental and
theoretical data obtained with analytical methods. A python library was written in order
to facilitate the implementation of the procedure presented in this chapter. The software
is open-source and distributed under the MIT license at github.com/ljduarte/theovib.

Origins of bond stabilization energies and force constants are found to be
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very different for ten diatomic molecules. Exchange-correlation contributions result in
more stable and elastic bonds, whereas Coulomb interactions are most important for
increasing force constants. Increases in bond order in homonuclear diatomic molecules
are accompanied by increases in the Coulomb contributions to the force constants, while
exchange-correlation and intra-atomic terms remain almost unchanged.

Although the magnitude of a bond force constant is almost constant for the
same functional group in different molecules, their contribution profiles can differ. For the
case of the X2CO molecules, the Coulomb contributions correlate with the electronegativ-
ity of X. Force constant contributions to the stretching constants in CO are very similar
to those for the CO bond in OCS, but quite different from the ones in CO2. The origins of
resonance effects for the O–O and C–C stretching force constants of ozone and benzene
are identified.

The results herein are incipient. The refinement of the methodology can lead
to a better understanding of the potential energy surface and can act as an auxiliary
tool in designing force fields for molecular mechanics. Currently, the authors are working
on the application of this method for hydrogen–bonding systems in order to identify the
energetic origins of the hydrogen stretching frequency red–shift.

∗ ∗ ∗

This chapter contains excerpts from texts previously published by the author. The fol-
lowing material was reprinted with permission:
Duarte, L. J., Bruns, R. E. Energetic Origins of Force Constants: Adding a New Di-
mension to the Hessian Matrix via Interacting Quantum Atoms The Journal of Physical
Chemistry A, published online, American Chemical Society.
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Appendix A

Dimensions and Units of Infrared

Intensities

The acquisition and analysis of IR spectra has been a routine practice in lab-
oratories since the first dispersive spectroscopes become available. Later introduced tech-
niques, such as Nuclear Magnetic Resonance, were much more expensive and insights
about molecular structure could be assessed from the vibrational spectra at a lower cost.
Those factors, allied with the simpler construction of the apparatus, made spectroscopy
present in every chemistry laboratory. The popularization of the technique, however,
came at a cost: with the introduction of different equipment, software and methods of
analysis, it is not rare to find spectra measured in different units and conversion errors
are quite common.

Since experimentalists are frequently more interested in analysing only band
frequencies, the dimensional problem of intensities has been neglect and the absorption
lines are frequently presented in dimensionless units that lack physical meaning. However,
from the theoretical point of view, a solid definition of the dimensions and units 1 of in-
tensities is needed, specially when comparing intensities of different molecules and bands.
In order to address this issue, the dimensions and units are defined from first principles
for both experimental and theoretical intensities.

A.1 The Beer–Lambert–Bouguer law

The Beer–Lambert–Bouguer law was initially derived from experimental ob-
servation. Although the light absorption phenomena was first observed by Bouguer in
1729, its theoretical derivation was presented only in 1952 by Frederick C. Strong [157,
158]. A simplified version of his derivation follows:

Consider a monochromatic beam of light with the initial power Po, passing
through a homogeneous medium of length l, as represented in Figure A.1. If its incidence

1The terms “dimension” and “unit” should not be confused. The first refers to the physical world
quantities that are being measured e.g. “length”, while he second refers to the scale of the measurement
e.g. “centimeter”, “yard”, etc. Here, for the sake of simplicity, the unit of centimeter [cm] is used for the
dimension on “length”, seconds, [s], represents the dimension of “time” and [g] is the unit of “mass”.
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Figure A.1: Consider a beam of light passing through a medium that is uniform in
composition. The particles dispersed in the media will absorb part of the radiation,
reducing its power.

is perpendicular to the medium and all reflections are neglected, the probability of a
photon being absorbed by particles, either atoms or molecules, is proportional to the
ratio between the infinitesimal area occupied by the particles, dSp, and the beam cross
section area S.

Absorption probability ∝ dSp

S
(A.1)

As the beam’s power is related to the number of photons, their absorption by the particles
in the medium attenuate the beam by a proportional amount, defined as:

−dP

P
=

dSp

S
(A.2)

The infinitesimal area occupied by the particles is proportional to its number, n, that is:

dSp = ϵ(ν̃)dn (A.3)

where n is the number of particles and ϵ(ν̃) is a proportion constant that is related
with the area occupied by each particle [159]. The number of particles is related to the
concentration, γ in the medium. The concentration is given in units2 of [mol][cm]−3. The
number of particles in the infinitesimal length, dl, is given as:

dn = γ · S · dl (A.4)

substituting in equation A.2:

dP

P
= −γ · ϵ(ν̃)Sdl

S
= ϵ(ν̃) · γ · dl (A.5)

2All units are displayed inside square brackets, e.g. [cm] refers to “centimeters”.
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Integrating both sides of equation A.5, results:

∫ Pf

Po

dP

P
= −

∫ l

0

ϵ(ν̃) · γ · dl (A.6)

ln

(
Pf

Po

)
= −ϵ(ν̃) · γ · l (A.7)

which takes the form of the Beer–Lambert–Bouguer law by solving the logarithm.

Pf

Po

= e−ϵ(ν̃)·γ·l (A.8)

The dimensionless quantity on the left hand side of equation A.8 is called “transmit-
tance”3, T . In order to satisfy the principle of dimensional homogeneity, the right hand
side must also be dimensionless. This can be verified as follows: the quantity ϵ(ν̃) is defined
as the area occupied by a certain number of particles, so it has units of [cm]2[mol]−1; Con-
centration is given in terms of molecules per unit of volume, so it has units of [mol][cm]−3

and, l is the length traveled by the beam of light, given also in units of [cm]. Putting
those definitions together, one has:

[cm]2

[mol]

[mol]

[cm]3
[cm] (A.9)

which is dimensionless. ϵγ is called the “molar absorptivity coefficient” and is dependent
on the radiation wavenumber ν̃.

A.2 Experimental intensities

When a infrared spectrum is acquired, it is represented as a plot of transmit-
tance (or absorbance) versus wavenumber, ν̃. Wavenumber corresponds to the spatial
frequency of radiation that is being absorbed by the sample and is always given in units
of [cm]−1. The ordinate axis can be either expressed in terms of transmittance, as defined
in the previous section, or in terms of decadic or Napierian absorbance. An example is
given if figure A.2. The decadic absorbance, Abs10, is defined as:

Abs10 = − log10 T = log10

(
Po

Pf

)
(A.10)

and the Neperian absorbance, Abse is:

Abse = − lnT = ln

(
Po

Pf

)
= 2.303 · Abs10 (A.11)

3It is common to find transmittance expressed as percentage (%). This is done by multiplying
Pf

Po
by

100. Note that this form is still dimensionless.
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The band intensity, A, is the integrated absorption coefficient [160], which, by definition,

(a) Decadic absorbance. (b) Napierian absorbance. (c) Transmittance.

Figure A.2: Infrared spectra of Cl2CO at 296K. The equivalent concentration × path
length is 4.12 · 10−9[mol][cm]−2. Data obtained from the PNNL library [21].

is:

A =

∫
ϵ(ν̃)dν̃ (A.12)

combining the definition of equation A.12 with the Beer Law (equation A.8), gives:

A =
1

γl

∫
ln

(
Po

Pf (ν̃)

)
dν̃ =

1

γl

∫
Abse dν̃ (A.13)

and the units of intensity are:

[A] =
1

[mol][cm]−3[cm]
[cm]−1 = [cm][mol]−1 (A.14)

Table A.1 contains some conversion constants from [cm][mol]−1 to other units frequently
used in the literature.

Table A.1: Conversion constants for infrared intensity units. Adapted from [160].

Units Conversion constant to [cm][mol]−1

[mm][mol]−1 1.00 · 101
[m][mol]−1 1.00 · 10−2

[km][mol]−1 1.00 · 105
[cm][mmol]−1 or [dark] 1.00 · 102

[cm]−2[L][mol]−1 1.00 · 102
[cm][molecule]−1 6.02 · 1023

[cm]−2[atm]−1 at 300 K 2.46 · 104
[cm]−2[atm]−1 at STPi 2.24 · 104

[cm]−1[km]−1[atm]−1 at STP 2.24 · 102
[cm]−1[km]−1[atm]−1 at STP 2.24 · 10−1

i Standard temperature and pressure

Yet, some authors, e.g. [99, 161], utilize an alternative definition for equation
A.13:

A′ =
1

γl

∫
ln

(
Po

Pf (ν̃)

)
d ln ν̃ (A.15)
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intensities obtained with equation A.15 will have different dimensions from those obtained
with A.13. The reason for that is the use of the dimensionless quantity ln ν̃. An exact
conversion between A and A′ is, therefore, not possible. A good approximation however
is A ≈ ν̃c · A′, with ν̃c being the band center wavenumber.

A.3 Calculated Intensities

Recalling the infrared intensity definition of equation 3.5, the dimensional
analysis follows:

A =
NAπ

3c2

(
∂p⃗

∂Q

)2

⇒ [mol−1]

[cm]2[s]−2

(
∂p⃗

∂Q

)2

(A.16)

To determine the dimensions of the dipole moment derivative, first one needs to derive the
dimensions of the normal coordinate Q and the electric dipole moment, p⃗. The dimension
of Q is [cm][g]

1
2 , which is proved by comparing the kinetic energy equation:

T =
∑
i,j

1

2
mijẋiẋj (A.17)

with the definition of the normal coordinate.

T =
∑
i

1

2
Q̇2

i (A.18)

The unit of dipole moment in the CGS unit system 4 is Debye [D], which is equivalent to

1.0 · 10−18[cm]
5
2 [g]

1
2 [s]−1. Therefore, neglecting numerical constants:

∂p⃗

∂Qi

⇒ [cm]
5
2 [g]

1
2 [s]−1

[cm][g]
1
2

= [cm]3/2[s]−1 (A.19)

substituting in equation A.16:

[A] = [mol]−1[cm]−2[s]2
(
[cm]3/2[s]−1

)2
= [cm][mol]−1 (A.20)

which are the dimensions of infrared intensities.
The same units can be obtained utilizing the International System of units.

Starting for the definition of force, one have

[N ] = [g][cm][s]−2 =
[C]2

[cm]−2
(A.21)

which results as follows.
[C]2 = [g][cm]3[s]−2 (A.22)

4Centimeters – Gram – Second
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The electric dipole moment units are [C][cm], equivalent to [g]−1/2[cm]5/2[s]−1. Therefore,
the intensity dimension and unities are:

A =
NAπ

3c2

(
∂p⃗

∂Qi

)2

⇒ [mol]−1[cm]−2[s]2
[g][cm]5[s]−2

[cm]2[g]

⇒ [cm][mol]−1 (A.23)
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Appendix B

Absorption of Radiation and

Infrared Intensity

Following is the derivation of equation 3.5 from first principles. The treatment
presented here is similar to the one presented in the classical book by Pauling and Wilson
“Introduction to Quantum Mechanics With Applications to Chemistry”[162]. The nota-
tion used in the equations was updated in order to clarify the derivation while maintaining
the coherence with symbols used in this thesis.

B.1 Time–Dependent Schrödinger Equation

In order to connect the infrared intensity with the dipole moment derivative,
we need to start with the time–dependent Schrödinger equation for an unperturbed system

ĤoΨo = − h

2πi

∂Ψo

∂t
(B.1)

with h being the Planck constant and Ĥo the time–independent Hamiltonian. The solution
for the above equation is:

Ψo =
∞∑
l=1

alΨ
o
l (B.2)

The coefficients al are constants and since the solution in equation B.2 is normalized,
we have

∑∞
l=1 a

∗
l al = 1 and Ψo

l is the wave function for the unperturbed system at the
stationary state of energy Eo

l .
If during a certain period of time, the system is perturbed by a time–dependent

term Ĥ ′, equation B.1 becomes

(Ĥo + Ĥ ′)Ψ = − h

2πi

∂Ψ

∂t
(B.3)
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which is solved by:

Ψ(x⃗, t) =
∞∑
l=1

al(t)Ψ
o
l (x⃗, t) (B.4)

with both al(t) and Ψo
l (x⃗, t) being time–dependent. Substituting equation B.4 in equation

B.3 and applying the Leibniz product rule 1 we obtain

∞∑
l=1

al(t)Ĥ
oΨo

l +
∞∑
l=1

al(t)Ĥ
′Ψo

l = − h

2πi

∞∑
l=1

dal(t)

dt
Ψo

l −
h

2πi

∞∑
l=1

al(t)
∂Ψo

l

∂t
(B.5)

leading to:

− h

2πi

∞∑
l=1

dal(t)

dt
Ψo

l =
∞∑
l=1

al(t)Ĥ
′Ψo

l (B.6)

The coefficient of the state n can be determined multiplying equation B.6 by the complex–
conjugate Ψo∗

n and integrating over the entire space, which results in:

dan(t)

dt
= −2πi

h

∞∑
l=1

al(t)⟨Ψo
n|Ĥ ′|Ψo

l ⟩ (B.7)

B.2 Einstein Coefficients and Absorption of Radia-

tion

A general discussion of Einstein emission and absorption is given in this section.
At the end, the connection between the infrared intensity and the absorption coefficient
is presented.

It is known that a system composed by moving electric charged particles will
emit and absorb light. Imagine a system that has the stationary states n and m, being
state m of lower energy. The frequency of radiation that will be absorbed by the system
is:

νm→n =
Em − En

h
(B.8)

When interacting with a photon, the system can absorb its energy and transition to the
high energy state n, as represented in Figure B.1.

If there are Nm systems at state m immerse in a radiant energy bath of density
ω(νm→n), the number of systems transitioning from m to n is :

NmBm→nω(νm→n) (B.9)

with Bm→n being the Einstein absorption coefficient and the transition probability is given
by the term Bm→nω(νm→n). Systems in the upper state n can undergo a transition to the
lower energy state m. If Nn is the number of systems initially at state n, then the number

1Considering functions f(x) and g(x) we have: d(f(x)·g(x))
dx = g(x) · df(x)

dx + f(x) · dg(x)
dx
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Figure B.1: A system at the stationary state m is promoted to the higher energy state n
by absorbing a quantum of frequency νm→n .

of systems transitioning is:

Nn (An→m +Bn→mω(νm→n)) (B.10)

where An→m is the spontaneous emission coefficient and Bn→m is the induced emission
coefficient. At equilibrium we can write:

NmBm→nω(νm→n) = Nn (An→m +Bn→mω(νm→n)) (B.11)

which results in:
Nm

Nn

=
An→m +Bn→mω(νm→n

Bm→nω(νm→n)
(B.12)

The left–hand side of equation B.12 can be calculated using the Boltzmann distribution,
that is

e
hνm→n
kBT =

An→m +Bn→mω(νm→n)

Bm→nω(νm→n)
(B.13)

where kB is the Boltzmann’s constant and T is the temperature. The radiant energy
density is, therefore:

ω(νm→n) =
An→m

Bm→ne
hνm→n
kBT −Bn→m

(B.14)

Comparing equation B.14 with the Planck’s radiation law, i.e.

ω(νm→n) =
8πhν3m→n

c3

(
e

hνm→n
kBT − 1

)−1

(B.15)

we found that the absorption coefficient and the induced emission coefficient are equal,

Bm→n = Bn→m, and that An→m = 8πhν3m→n

c3
Bm→n.



142

Figure B.2: Amplitude, εox(ν), of a radiation εx(ν) = εox(ν) (e
2πiνt + e−2πiνt).

B.2.1 The Absorption Coefficient from Classical Electromag-

netic Theory

We now go back to equation B.7. Suppose that at the initial time, t = 0 we
know that the system is at state m, thus the coefficient of Ψo

m is equal to one, while
the coefficient of all other states equals zero. In this case, the summation vanishes and
equation B.7 becomes:

dan(t)

dt
= −2πi

h
⟨Ψo

n|Ĥ ′|Ψo
m⟩ (B.16)

The wavefunction for any state l is dependent of time and of the set of coordinates x⃗, i.e:

Ψo
l = Ψo

l (x⃗, t) = ψo
l (x⃗)e

− 2πi
h

Elt (B.17)

substituting equation B.17 in equation B.16, gives:

dan(t)

dt
= −2πi

h
e

2πit
h

(Eo
n−Eo

m)⟨ψo
n|Ĥ ′|ψo

m⟩ (B.18)

Considering a radiation wave of frequency ν propagating in space, the radiation energy
density is proportional to the average square of its electric field:

ρ(ν) =
1

4π
ε2(ν) (B.19)

looking only at the x component of the electric field and the distribution of radiation
being isotopic, we have:

ρ(ν) =
6

4π
εo2x (ν) (B.20)

with εo2x (ν) being the amplitude of the electric field (see Figure B.2). The perturbation
energy for a system in a electric field, εx, parallel to the x axis is

Ĥ ′ = εxp̂x = εox(ν)
(
e2πiνt + e−2πiνt

)
p̂x (B.21)



143

with p̂x being the system’s x–axis dipole moment operator. Substituting Ĥ ′ in equation
B.16:

dan(t)

dt
= −2πi

h
εox

(
e

2πi
h

(Eo
n−Eo

m+hνt) + e
2πi
h

(Eo
n−Eo

m−hνt)
)
⟨ψo

n|p̂x|ψo
m⟩ (B.22)

The integral ⟨ψo
n|p̂x|ψo

m⟩ is the transition dipole moment p⃗x,m→n. Solving equa-
tion B.22 trough integration, we find:

an(t) = p⃗x,m→nε
o
x

[
1− e

2πi
h (Eo

n−E0
m+hν)t

Eo
n − Eo

m + hν
+

1− e
2πi
h (Eo

n−E0
m−hν)t

Eo
n − Eo

m − hν

]
(B.23)

It is clear that the terms inside the square brackets are small except when the
frequency ν is closer to νm→n, in this case the second term becomes relevant increasing
the absorption probability. The first term, on the other hand, can be neglected. The
probability of absorption is:

a∗n(t)an(t) = 4p⃗2x,m→nε
o2
x

sin2
[
π
h
(Eo

n − E0
m − hν) t

]
(Eo

n − E0
m − hν)2

(B.24)

Since the effects of radiations of other frequencies that are not νm→n are additive, we can
account for these other frequencies by integrating equation B.24.

a∗n(t)an(t) = 4p⃗2x,m→nε
o2
x

∫ ∞

−∞

sin2
[
π
h
(Eo

n − E0
m − hν) t

]
(Eo

n − E0
m − hν)2

dν =

4π2

h2
p⃗2x,m→nε

o2
x t (B.25)

If a∗n(t)an(t) is the probability of transition and using the definition of radiation density
in equation B.21, then the Einstein absorption coefficient becomes:

Bm→n =
8π3

3h2
ω(νm→n)p⃗

2
x,m→n (B.26)

B.3 Infrared Intensity of a Normal Mode of Vibra-

tion[15]

Since the Einstein coefficient of absorbtion and induced emission are equal,
the net number of systems transitioning from the state m to n is:

8π3

3h2
ω(νm→n)p⃗

2
x,m→n(Nm −Nn) (B.27)
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The change in the power of a beam passing trough a absorpting medium2 of length dl is:

dP = νm→n
8π3

3h2
ω(νm→n)p⃗

2
x,m→n(Nm −Nn)dl (B.28)

using P = cω:

−dP

P
= νm→n

8π3

3ch
p⃗2x,m→n(Nm −Nn)dl (B.29)

After integration, we have:

ln

(
Po

Pf

)
= νm→n

8π3l

3ch
p⃗2x,m→n(Nm −Nn) (B.30)

The term (Nm −Nn) can be solved using the Boltzmann distribution, that is:

Nm −Nn = γNA
e

−Eo
m

hbT − e
−Eo

n
hbT

e
−Eo

m
hbT + e

−Eo
n

hbT

≈ γNA (B.31)

where γ is the concentration. Substituting in equation B.32 gives:

ln

(
Po

Pf

)
1

l

1

γ
= νm→n

8NAπ
3

3ch
p⃗2x,m→n (B.32)

According to equation A.13, the integration of the left-hand side gives the intensity:

A =

∫
band

ln

(
Po

Pf

)
1

l

1

γ
dν = νm→n

8NAπ
3

3ch
p⃗2x,m→n (B.33)

In order to solve the transition dipole moment integral, p⃗x,m→n, we rewrite the integral in
terms of the normal coordinate Q:

p⃗x,m→n = ⟨ψo
n|p̂x|ψo

m⟩ =
∫
ψo∗
m (Q)p̂xψ

o
n(Q)dQ (B.34)

the operator p̂x can be expanded in a Taylor series:

p̂x = pox +Q
∂px
∂Q

+ . . . (B.35)

where pox is the x component of the equilibrium dipole moment of the system. Considering
only the linear and constant terms:

p⃗x,m→n = pox

∫
ψo∗
m (Q)ψo

n(Q)dQ+
∂px
∂Q

∫
ψo∗
m (Q)Qψo

n(Q)dQ (B.36)

2See equations A.1 – A.6
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Due to the orthogonality of the wavefunctions the first term is zero, then:

p⃗x,m→n =
∂px
∂Q

∫
ψo∗
m (Q)Qψo

n(Q)dQ =

(
h

8π2cνm→n

) 1
2 ∂px
∂Q

(B.37)

Generalizing the treatment to the y and z directions and substituting in equation B.33
we have:

A =
NAπ

3c2

(
∂p⃗

∂Q

)2

(B.38)
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Appendix C

Matrix Treatment for the CCTDP

Model

Let (PX)
(A) be the Cartesian APT of atom A for a N atoms molecule. As

stated by equation 3.3, each element of (PX)
(A) is the derivative of a Cartesian component

of the molecular electric dipole moment with respect to displacements of atom A in one
Cartesian direction. The (PX)

(A) is, therefore, a 3× 3 matrix represented by:

 (PX)
(A)


3×3

(C.1)

if (L)(A) is the matrix that converts the Cartesian coordinates of atom A into normal
coordinates, then:

(PQ)
(A) =

 (PX)
(A)


3×3

(L)(A)


3×1

=

(PQ)
(A)


3×1

(C.2)

Now, consider a block–diagonalized matrix, PX, of dimension 3N × 3N where
each diagonal block is an APT and each non–diagonal block is a null matrix , that is:

PX =

 P
(1)
X 03×3 03×3

03×3
. . . 03×3

03×3 03×3 P
(N)
X


3N×3N

(C.3)

The Patomic
Q is a 3N × 1 matrix obtained trough the matrix multiplication of PX by L,
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which is matrix formed by juxtaposing vertically the (L)(A) matrices:

Patomic
Q =

 P
(1)
X 03×3 03×3

03×3
. . . 03×3

03×3 03×3 P
(N)
X


3N×3N

 L(1)

...

L(N)


3N×1

=

 P
(1)
Q
...

P
(N)
Q


3N×1

(C.4)

Each 3× 1 block of Patomic
Q corresponds to a atomic contribution to the 3× 1 PQ matrix,

in other words:

PQ =
N∑

A=1

P
(A)
Q (C.5)

The IR intensity of the normal mode Q can be obtained by doing:

A =
NAπ

3c2
PQ

TPQ (C.6)

C.1 Obtaining the CCTDP Contributions

Since the dipole moments derivatives can be decomposed the contributions of
the CCTDP model, the same is true for the APT, that is:

P
(A)
X = P

(A)
X(C) +P

(A)
X(CT) +P

(A)
X(DP) (C.7)

It is possible to show that PQ can also be divided into PQ(C), PQ(CT) and PQ(DP). The
(C)2, (CT )2, (DP )2, 2(CCT ), 2(CDP ), 2(CTDP ) contributions for the IR intensity are:

A(C)2 =
NAπ

3c2
PT

Q(C)PQ(C) (C.8)

A(CT )2 =
NAπ

3c2
PT

Q(CT)PQ(CT) (C.9)

A(DP )2 =
NAπ

3c2
PT

Q(DP)PQ(DP) (C.10)

A2(CCT ) =
NAπ

3c2
(
PT

Q(C)PQ(CT) +PT
Q(CT)PQ(C)

)
(C.11)

A2(CDP ) =
NAπ

3c2
(
PT

Q(C)PQ(DP) +PT
Q(DP)PQ(C)

)
(C.12)

and

A2(CTDP ) =
NAπ

3c2
(
PT

Q(CT)PQ(DP) +PT
Q(DP)PQ(CT)

)
(C.13)
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Appendix D

Definition of Internal Coordinates

In this section, we will use the example of ethylene to show the definition of
the internal coordinates used in this work. At the end, the B matrix elements for this
molecule are presented. The equilibrium geometry, in Cartesian coordinates, is given in
Table D.1.

Table D.1: Cartesian coordinates (Å) of ethylene equilibrium structure at the B3LYP/aug-
cc-pVTZ level. Atomic symbols are represented along with a numerical label.

Atom x y z
C1 -0.662 0.000 0.000
C2 0.662 0.000 0.000
H3 -1.232 -0.921 0.000
H4 1.232 -0.921 0.000
H5 1.232 0.921 0.000
H6 -1.232 0.921 0.000

Figure D.1: Cartesian coordinates for ethylene. Atomic symbols are displayed along with
a numerical label.
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Figure D.2: Bond internal coordinate of the C––C bond in ethylene.

D.1 Bond stretching

The internal bond stretching coordinate is defined in terms of unitary vectors
along the bond direction. Taking the C1–C2 bond as an example, the normal vector is
obtained by:

e⃗12 =
(xC1 − xC2)⃗i+ (yC1 − yC2)⃗j + (zC1 − zC2)k⃗√
(xC1 − xC2)2 + (yC1 − yC2)2 + (zC1 − zC2)2

i⃗, j⃗ and k⃗ are unitary vectors pointing towards the x, y and z Cartesian directions.
A representation of this internal coordinate is depicted in Figure below. Notice

that the red arrows represent the internal coordinate. The first five rows in Table D.2
contains the bond internal coordinate for ethylene.

D.2 Angular bending

The angular bending vectors are always coplanar with the bonds forming the
angle and perpendicular to the bond. Considering the vector b⃗ that has the same direction
of e⃗12,

b⃗ = ∥⃗b∥e⃗12 (D.1)

and the vector c⃗ having the same direction of e⃗13, that is:

c⃗ = ∥c⃗∥e⃗13 (D.2)

The angle vector for atom 3 is given by:

e⃗1α = b⃗+ c⃗ (D.3)

Since e⃗1α is unitary, the, we can write:

cos (α− π) =
∥e⃗3α∥
∥⃗b∥

(D.4)
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Figure D.3: Angle internal coordinate of the H–C––C bond in ethylene.

which implies:

∥⃗b∥ =
1

sinα
e⃗12 (D.5)

The vector c⃗ is derived following:

tan(α− π) =
∥c⃗∥
∥e⃗3α∥

(D.6)

c⃗ =
1

tanα
e⃗13 (D.7)

Finally, the angular bending vector for atom 3 is:

e⃗3α = b⃗+ c⃗ =
1

sinα
(cosαe⃗13 + e⃗12) (D.8)

The same derivation applies for the vector e⃗2α. The vector e⃗1α is:

e⃗1α = −e⃗2α − e⃗3α (D.9)

In order to obtain the force constants is units of mdynesÅ
−1

the vectors are divided by
their respective bond lengths.

The derivation of angular bending vector can be easily implemented compu-
tational algorithm by the use of cross products. The vectors that describe the angular
bending internal coordinate lies in the plane formed by the bonds and are perpendicular
to the bond unitary vectors. The normal vector, n⃗, to the plane formed by the bonds is
given by:

n⃗ = e⃗13 × e⃗12 (D.10)

Using the normal vector, the angle bending vectors are obtained as:

e⃗2α =
e⃗12 × n⃗

r12
and e⃗3α =

e⃗13 × n⃗

r13
(D.11)

where r12 and r13 are the bond lengths. The B matrix row 6 to row 11 correspond to the
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Figure D.4: Torsion internal coordinate in ethylene.

angular bending internal coordinates.

D.3 Dihedral torsion

The vectors of this internal coordinate are represented by into–the–plane,
⊙

,
and out–of–plane vectors,

⊗
[163]. Considering the plane formed by bonds H3−C1 and

C1− C2, the normal vector to the plane is:

n⃗ = e⃗13 × e⃗12 (D.12)

The torsion vector for atom H3 has the same direction as n⃗. The vector must
be divided by the number of atoms bonded to C1, and by the bond length.

e⃗3,torsion =
n⃗

2r13
(D.13)

and the torsion vector of H6 is:

e⃗6,torsion =
e⃗26 × e⃗12
2r26

(D.14)

The same applies for atoms 4 and 5. Finally, the vectors e⃗1,torsion and e⃗2,torsion are:

e⃗1,torsion =
∑
i=3,6

(r12 − r1i) (e⃗i1 · e⃗12)
e⃗i,torsion
r12

−
∑
j=4,5

(e⃗12 · e⃗j2) r2j
e⃗j,torsion
r12

(D.15)

e⃗2,torsion =
∑
i=4,5

(r12 − r2i) (e⃗i2 · e⃗21)
e⃗i,torsion
r12

−
∑
j=3,6

(e⃗12 · e⃗j1) r1j
e⃗j,torsion
r12

(D.16)

This internal coordinate is represented in row 14 of the B matrix in Table D.2.
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Figure D.5: Ethylene out–of–plane internal coordinate.

D.4 Out–of–plane bending

Consider four atoms in the same plane, i.e. H5, H3, C1 and C2. The normal
to the plane is:

n⃗ =
e⃗15 × e⃗12

∥e⃗15 × e⃗12∥
(D.17)

The vectors that represent this internal coordinate are:

e⃗2,oop =
n⃗

r12
(D.18)

e⃗3,oop =
n⃗

r13

∥e⃗12 × e⃗15∥
∥e⃗15 × e⃗13∥

(D.19)

e⃗3,oop =
n⃗

r15

∥e⃗12 × e⃗13∥
∥e⃗15 × e⃗13∥

(D.20)

e⃗1,oop = −e⃗2,oop − e⃗3,oop − e⃗5,oop (D.21)
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Table D.2: B matrix of ethylene.

-1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.53 -0.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.53
0.53 0.85 0.00 0.00 0.00 0.00 -0.53 -0.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 -0.53 -0.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.53 0.85 0.00 0.00
0.00 0.00 0.00 -0.53 0.85 0.00 0.00 0.00 0.00 0.53 -0.85 0.00 0.00 0.00 0.00 0.00
-1.57 0.00 0.00 0.00 0.00 0.00 0.79 -0.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.79
0.00 0.00 0.00 1.57 0.00 0.00 0.00 0.00 0.00 -0.79 -0.49 0.00 -0.79 0.49 0.00 0.00
0.79 1.24 0.00 0.00 -0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.79
0.79 -1.24 0.00 0.00 0.75 0.00 -0.79 0.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.75 0.00 -0.79 -1.24 0.00 0.00 0.00 0.00 0.79 0.49 0.00 0.00 0.00 0.00 0.00
0.00 -0.75 0.00 -0.79 1.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.79 -0.49 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.54 0.00 0.00 -0.54 0.00 0.00 0.54 0.00
0.00 0.00 2.51 0.00 0.00 -0.75 0.00 0.00 -0.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.75 0.00 0.00 -2.51 0.00 0.00 0.00 0.00 0.00 0.88 0.00 0.00 0.88 0.00
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Appendix E

The Theovib library

The Theovib library (Theory of Vibrations) is a python package released un-
der the MIT license. The earlier version contains functions to solve the vibrational
problem starting from the Hessian matrix or from a 3D–Hessian construct from In-
teracting Quantum Atoms energy decomposition scheme. Infrared intensities are ob-
tained from atomic charges and dipoles obtained by AIMAll. Source-code available at:
github.com/ljduarte/theovib.

E.1 Installation

The library can be installed via command line:

1 $ pip install theovib

Figure E.1: Theovib python library.
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E.2 Usage

Following is a guide on how to perform the CCTDP and the IQA force constant
analysis with the theovib library. Gaussian and AIMAll are used to perform the single
point calculations and to obtain the QTAIM/IQA parameters. Start by importing the
theovib modules:

1 from theovib import *

In this guide, the water molecule is used as and example, the optimized geometry is given
in Table E.1. The equilibrium geometry is used to create a instance of the “Molecule”

Table E.1: Cartesian coordinates of water equilibrium structure (Å) at the B3LYP/aug-
cc-pVTZ level. Atomic symbols are represented along with a numerical label.

Atom x y z
O(1) 0.000000 0.000000 0.004316
H(2) 0.000000 -0.763369 -0.580667
H(3) 0.000000 0.763369 -0.580667

class, that is:

1 water = Molecule(

2 atoms =[’O’, ’H’, ’H’],

3 positions =[np.array ([0.000000 , 0.000000 , 0.004316]) ,

4 np.array ([0.000000 , -0.763369 , -0.580667]) ,

5 np.array ([0.000000 , 0.763369 , -0.580667])],

6 charge_mult=’0 1’)

notice that the molecular charge and multiplicity is passed as a string to the charge mult
attribute.

From the equilibrium structure, new geometries are generated by displacing
the atoms in the positive and negative directions of each Cartesian axis. For each new
geometry, the wavefunction is calculated by GAUSSIAN, from which the IQA terms are
obtained using AIMAll.

The non–equilibrium geometry needed to compute the numerical Hessian ma-
trix are generated with the class method Molecule.gen geometries. The first argument
is the directory where the geometries are stored and the second argument is the level of
theory:

1 water.gen_geometries(’inputs_folder ’, ’b3lyp aug -cc-pvtz’)

This command generates 18N2 Gaussian inputs for a N atoms molecule.
18N2 − 2N are utilized to compute the Hessian non–diagonal elements, and 2N are
utilized to compute the diagonal elements. The derivatives are calculated following:

∂2Ek

∂σi∂σj
≈

{
E+,0

k −2E0,0
k +E−,0

k

∆σ2 if σi = σj
E+,+

k −E+,−
k −E−,+

k +E−,−
k

4∆σ2 if σi ̸= σj
(E.1)

where the superscripts +,− and 0 indicate the displacement in the positive and negative
directions or no displacement for coordinates σi and σj. The geometries are generated
according to the scheme in Figure E.2.
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Figure E.2: Displacements needed to compute the numerical second derivatives of IQA
energies. Grey circles represent the displacements needed to compute the derivatives
where σi = σj. The central point is the equilibrium geometry.

At this point, it is important to emphasize that the size of the displacement ∆σ
must be set considering two conflicting effects: using lower values results in an increase in
the numerical error, but bigger displacements will increase the error due to anharmonicity.
The dependency of the errors on both, frequency and intensity was examined for a small
set of molecules and the results are presented in Figure E.3. Considering the compromise
between these two factors, the value of ∆σ = 0.05Å is used as default used.

Figure E.3: Dependency of model’s accuracy on the parameter ∆σ. Top: RMSE for
infrared frequencies. Bottom: RMSE for infrared frequency. Small values of ∆σ increase
the numerical error, while bigger values increase the error due to the anharmonicity.

The inputs generated by theovib are named X Y Z.com, where X and Y are
numbers from 0 to 3N − 1 corresponding to the displaced coordinate, that is: 0 is the
x coordinate of atom 1 and 3N − 1 is the z coordinate of atom N . Z is a label that
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indicates the displacement direction. If X = Y, then Z = A corresponds to the point
[+, 0] in Figure E.2 and Z = B corresponds to the point [−, 0]. If X ̸= Y, then Z = A
corresponds to the point [+,+], Z = B to the point [+,−], Z = C to the point [−,+] and,
Z = D to the point [−,−].

An example of a theovib generated Gaussian input is given bellow. Notice that
this input will generate an wavefunction file that will be integrated by AIMAll, obtaining
the atomic charges, dipoles and IQA components.

1 %mem = 8GB

2 %nproc = 8

3 #b3lyp aug -cc-pvtz density=current nosym output=wfn

4

5 0_0

6

7 0 1

8 O 0.050000 0.000000 0.004316

9 H 0.000000 -0.763369 -0.580667

10 H 0.000000 0.763369 -0.580667

11

12 00_A.wfn

Once the AIMAll jobs are completed, the directory structure will be similar
to the one depicted in Figure E.4.Intratomic IQA components and atomic charges and
dipoles are found in the *.int files inside the * atomicfiles directory.

The B matrix can be defined using the theovib module internal. In the water
molecule example, we need to define three internal coordinates:

1. Bond between atoms 1 and 2;

2. Bond between atoms 1 and 3;

3. Angle defined by atoms 2–1–3.

Using the Molecule class, the b matrix can be stored inside the attribute b matrix. The
internal coordinates are generated using:

1 water.b_matrix =[ internal.bond(water.positions , 1, 2),

2 internal.bond(water.positions , 1, 3),

3 internal.angle(water.positions , 2, 1, 3)]

The Hessian matrix are also stored in the object water, using:

1 water.hessian , water.iqa_hessian , errors= hessian_from_iqa(

2 water.atoms , ’inputs_folder/’, 0.05)

notice that the function hessian from iqa() receives three arguments that are: the list of
atoms in the molecule, the value of ∆σ (0.05 by default), and the path to the directory
containing the Gaussian and AIMAll outputs. This function outputs the Hessian matrix,
the 3D Hessian matrix and a list of recovery errors, defined by the difference between the
elements of the Hessian and the corresponding sum of elements in the 3D–Hessian.
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Figure E.4: Directory structure of theovib generated files.
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With the Hessian and the B matrix, the force constants, and their IQA com-
ponents, in internal coordinates can be obtained with the convert to internal() function:

1 water.internal_hessian , water.iqa_forces = convert_to_internal(

2 water.atoms , water.b_matrix ,

3 water.iqa_hessian)

This function returns the Hessian matrix in internal coordinates, stored in water.internal hessian
attribute and the IQA partitioning of force constants, stored in water.iqa forces.

Finally, the infrared intensities are obtained with the normal modes() function.
This function receives the list of atoms and the IQA Hessian returning the normal coordi-
nates, the frequencies, the IQA partitioning of vibrational frequencies and the individual
IQA terms, that is:

1 water.normal_coordinates , water.freq , water.iqa_freq , water.iqa_terms =

normal_modes(water.atoms ,

2 water.iqa_hessian)

The IR intensities are obtained through the CCTDP analysis using the intensities() func-
tion that receives as arguments the list of atoms, the equilibrium geometry, the normal
coordinates, the path to the inputs folder and the value of ∆σ. The function returns a
list of IR intensities and the charge, charge transfer and dipolar polarization tensors. The
calculations are performed as described in appendix C.

1 water.int , water.c_tensors , water.ct_tensors , water.dp_tensors =

intensities(

2 water.atoms , water.positions , water.normal_coordinates , ’inputs_folder/’

, 0.05)

The tensor are obtained numerically. For example, the charge derivative of
atom A with respect to the displacement in the σ coordinate is:

∂qA
∂σ

=
q
[+,0]
A − q

[−,0]
A

2∆σ
. (E.2)

where q
[+,0]
A and q

[−,0]
A are the charge of atom A in the non-equilibrium geometries, as

depicted in Figure E.2. The same applies for the atomic dipole moment tensors.
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(45) Roehl, C.; Boglu, D.; Brühl, C.; Moortgat, G. Geophysical research letters 1995,

22, 815–818.

(46) Schurin, B. The Journal of Chemical Physics 1959, 30, 1–5.



163

(47) Golden, W.; Marcott, C.; Overend, J. The Journal of Chemical Physics 1978, 68,

2081–2084.

(48) Kim, K. Journal of Quantitative Spectroscopy and Radiative Transfer 1987, 37,

107–110.

(49) Schatz, P.; Hornig, D. The Journal of Chemical Physics 1953, 21, 1516–1530.

(50) Levin, I. W.; Lewis, T. P. The Journal of Chemical Physics 1970, 52, 1608–1609.

(51) Saeki, S.; Mizuno, M.; Kondo, S. Spectrochimica Acta Part A: Molecular Spec-

troscopy 1976, 32, 403–413.

(52) Russell, J. W.; Needham, C.; Overend, J. The Journal of Chemical Physics 1966,

45, 3383–3398.

(53) Barrow, G.; McKean, D. Proceedings of the Royal Society of London. Series A.

Mathematical and Physical Sciences 1952, 213, 27–41.

(54) Kondo, S.; Koga, Y.; Nakanaga, T.; Saëki, S. Bulletin of the Chemical Society of
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(65) Nakanaga, T.; Kondo, S.; Saëki, S. The Journal of Chemical Physics 1979, 70,

2471–2478.

(66) Bode, J.; Smit, W.; Visser, T.; Verkruijsse, H. The Journal of Chemical Physics

1980, 72, 6560–6570.

(67) Kondo, S.; Koga, Y. The Journal of Chemical Physics 1978, 69, 4022–4031.

(68) Nyquist, I. M.; Mills, I.; Person, W.; Crawford Jr, B. The Journal of Chemical

Physics 1957, 26, 552–558.

(69) Koga, Y.; Kondo, S.; Nakanaga, T.; Saëki, S. The Journal of Chemical Physics
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