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Abstract

The task of finding optimal protocols that minimize the energetic cost of thermodynamic
processes of long yet finite duration τ is a pressing one. We approach this problem here in a
rigorous and systematic fashion by means of the adiabatic perturbation theory of closed
Hamiltonian quantum systems. Our main finding is a 1/τ 2 scaling of the excess work for large τ in
gapped systems. This result is at odds with the asymptotic 1/τ prediction of the geometric
approach to optimization, which is predicated on the slow evolution of open systems close to
canonical equilibrium. In contrast, our approach does not lead to an obvious geometric
interpretation. Furthermore, as the thermodynamic work does not depend on how an isolated
quantum system is split into a system of interest and its environment, our results imply the failure
of the geometric approach prediction even for open systems. Additionally, we provide alternative
optimization procedures, both for slowly-varying processes described by adiabatic perturbation
theory and for weakly-varying processes described by linear response theory. Our findings are
benchmarked and confirmed through the application to the driven transverse-field Ising chain.

1. Introduction

In the last decades, we have witnessed the development of several experimental techniques that enable the

control and manipulation of few atoms, molecules or particles at the nanoscale. Using optical tweezers

[1–3], ion traps [4], nuclear magnetic resonance [5], optical lattices [6] and other techniques [7, 8],

different experimental setups have been implemented to study several kinds of control and applications

with potential development of new technologies.

The need to refine the manipulation of such small systems, increasing the level of control and decreasing

the corresponding costs, has motivated intense theoretical activity on the topic. Among the prominent

theoretical proposals are those of shortcuts to adiabaticity [9–19], which encompass many related methods.

They all have the same goal, namely, the implementation of finite-time controls such that the final state of

the system of interest is exactly identical to that produced by an equivalent quasistatic manipulation.

The remarkably good results of this theoretical framework do not hide, however, a few limitations. The

implementations often require additional control mechanisms [9–11] or specific characteristics of the

control fields [17, 20], restricting the possible setups in the laboratory. Extensions to many-body systems

may also face some difficulties, although it has been proved possible in some cases [20–24]. The different

shortcuts to adiabaticity have been mostly restricted to isolated systems, i.e., systems whose dynamics is

Hamiltonian. However, some extensions to open quantum systems have surfaced [25–27]. In addition, only

recently the issue of quantifying the cost to implement these control techniques has been addressed in the

literature [28, 29].

In parallel to this, the research on optimal finite-time thermodynamic processes has been seeking similar

goals, although using a different perspective [30–34]. In this field, the minimization of the energetic cost

during the finite-time control is the main target. In light of what was just presented, we might ask ourselves
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whether optimal finite-time control is also a kind of approximate shortcut to adiabaticity, and hence

whether the two approaches can complement each other [35]. In the classical regime, the geometric

approach to optimal slowly-varying processes [36, 37] has been successfully applied to several interesting

situations [38–48]. It has been also generalized to the quantum regime when the system of interest is weakly

interacting with a heat bath [49–53]. In this approach, the energetic cost is expressed as an integral of a

Lagrangian that is understood as a metric. The protocols minimizing such functional are then the

corresponding geodesics.

In the present work, we show that the geometric approach cannot be applied to isolated quantum

systems with a gap. We prove this rigorously through adiabatic perturbation theory (APT) [54]: for a

slowly-varying process of duration τ , APT provides a systematic perturbative expansion in powers of τ−1.

The energetic cost is shown to decay as τ−2, in clear contrast to the asymptotic τ−1 prediction of the

geometric approach [36, 37, 49, 50, 52]. Additionally, we show that the latter cannot be applied to open

quantum systems either, when the underlying microscopic dynamics of system plus environment is

Hamiltonian, provided the full system is gapped. Our approach also allows for the optimization of slow

processes. Taking the quantum Ising chain at zero temperature as a benchmark test, we compare our

theoretical predictions with numerical simulations of the exact time-dependent dynamics, with excellent

agreement. We also provide optimal finite-time protocols, following reference [55], in the complementary

regime of fast but weak processes, where the variation of the external parameter is small compared to its

initial value.

We will describe in detail the conditions in which our results apply. Foremost among them is the

presence of a spectral gap. At this point, we just point out that gapped many-body systems are very

common. Of course, in the important case of small systems, there are always finite-size gaps. However, even

in the thermodynamic limit, gapped systems abound: (a) conventional s-wave BCS superconductors [56],

(b) quantum Hall systems (both integer and fractional) [57], (c) integer-spin (Haldane) chains [58], and

(d) quantum disordered paramagnets [59], to name a few. The quantum Ising model, whose

one-dimensional version we study here, is just one example of a wide class of magnetic systems that are

gapped except at a point in the phase diagram, namely, its critical point (see reference [59] for numerous

examples). In fact, gapless behavior often relies on additional conditions, as (a) the presence of exact

symmetries, which give rise to Goldstone modes in phases with a spontaneously broken continuous

symmetry or (b) some topological effect, as in half-integer spin chains [58] or gapless quantum spin liquids

[60]. Departures from exact symmetries, as provided, e.g., by spin anisotropies induced by spin–orbit

interaction, frequently end up generating a finite gap in these systems.

The performance of the two perturbative approaches applied here is tested far from equilibrium, and a

clear qualitative difference is observed in the optimal protocols when the transition from one regime to the

other is made. This highlights that different optimization strategies are required in different regions far

from equilibrium. Only two parameters are necessary to delimit such regions, namely, the relative change of

the control parameter λ (which is the transverse field in the case of the Ising chain) and the ratio between a

characteristic time scale of the system and the duration τ of the process.

We show that the leading-order expressions for the energetic cost are quadratic forms in the speed λ̇ in

both perturbative approaches [55, 61]. However, the notion of a metric, as it exists in the geometric

approach, seems to be absent. In the regime of fast but weak processes, the reason for that is related to the

memory kept along the process by the generalized force conjugate to λ. In other words, the average force at

a given time t0 depends not only on λ(t0), but on the whole history of the protocol λ(t) up to t0. In the

regime of slowly-varying processes, APT provides a very simple quadratic form that depends only on the

initial and final values of λ̇. It is interesting to note that the metric of the geometric approach and the two

quadratic forms we obtain here are derived from the same object, namely, an autocorrelation function of

the generalized force.

The presentation is organized as follows. We briefly review the basics of the geometric approach to

finite-time thermodynamics in section 2. The thermodynamic work in isolated systems is presented in

section 3, and in section 4 we describe in detail the behavior that APT predicts for the excess work in slow

processes, highlighting the differences to the geometric approach and showing possible avenues of

optimization. The complementary regime of weak processes is then discussed in section 5, together with the

recently proposed method of optimization based on linear response theory (LRT). We briefly discuss the

application of the presented methods to nonintegrable systems in section 6 and the failure of the τ−1 scale

even for open systems in section 7. A discussion of the results and the assumptions we made to obtain them

is given in section 8 and the paper is concluded in section 9.
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2. Geometric approach

Consider a system with a collection of external parameters λ to be varied between times ti and tf , where

τ = tf − ti is the process duration. A specific choice of the time dependence of λ(t) is called a protocol, and

here we only consider protocols that can be written as a function of t/τ . In any process, the average work W

delivered to the system can be separated in two parts,

W(τ) = Wqs + Wex(τ) (1)

where Wqs is the τ -independent (and protocol independent) quasistatic contribution, while Wex is the

excess contribution, which embodies the extra energy we must give to the system in order to the carry out

the process in finite time. The first part, Wqs, only depends on the end points of the process and represents,

therefore, an inescapable energetic cost; the second part, Wex, is protocol-dependent and can be minimized

with a clever choice of how we drive the system. No matter how it is done, however, Wex → 0 as τ →∞, the

adiabatic (quasistatic) limit.

The original formulation of the geometric approach to optimal driving [36, 37] employs LRT to

describe the system’s dissipation for long but finite process duration. It equates the excess work to

Wex(τ) =

∫ tf

ti

λ̇T (t) · ζ(λ(t)) · λ̇(t)dt, (2)

where overdots denote time derivatives and the superscript T denotes the transpose of a matrix. The

function ζ(λ) is the aptly named friction tensor, which is large for values of λ where the system dissipates

more energy. Although equation (2) was initially obtained for classical systems, it should also be valid for

quantum systems, as long as ζ is suitably defined from LRT’s quantum formulation of the response

function. Nevertheless, it is also possible to derive an equation with the same quadratic-in-λ̇ form of

equation (2) starting from a strictly quantum Lindblad master equation [49, 50] and arriving at a different

definition of ζ.

The friction has a clear geometric interpretation: it induces a Riemannian metric in parameter space,

and the geodesics of such space (calculated with straight application of Euler–Lagrange equations) are paths

of least resistance, i.e., protocols that minimize dissipation [36]. Additionally, equation (2) predicts that the

excess work behaves asymptotically as τ−1, as can be readily seen with a change of integration variable to

s = (t − ti)/τ . Of course, this is consistent with the vanishing of the excess work in the adiabatic limit.

Nevertheless, it predicts a regime in which the decay of Wex is universally given by τ−1 regardless of the

shape of λ(t).

Both the LRT and the Lindblad derivation of equation (2) assume that the system of interest is in

contact with a heat bath. They further assume that the slow evolution never takes the system too far away

from canonical equilibrium. In what follows, we show that, for thermally insulated quantum systems with

equilibrium initial states, the description of the excess work for slow processes is remarkably different. More

precisely, we prove that, within the region of validity of our approach, the τ−1 behavior of the excess work

for large τ does not exist in this context.

3. Excess work for isolated systems

Consider an isolated quantum system described by Hamiltonian H(λ) and evolving in time under unitary

dynamics. Define the instantaneous eigen-equation H(λ)|n(λ)〉 = En(λ)|n(λ)〉. For simplicity, we focus on

systems with discrete non-degenerate spectra (this assumption can be relaxed) and restrict ourselves to the

case of a single external parameter λ, to be varied from λi to λf . Assuming that the system’s initial density

matrix is an equilibrium distribution, ρ(ti) =
∑

npn|n(λi)〉〈n(λi)|, the density matrix at time t is

ρ(t) = U(t, ti)ρ(ti)U†(t, ti) =
∑

n

pn|ψn(t)〉〈ψn(t)|, (3)

where U is the unitary time evolution operator and |ψn(t)〉 = U(t, ti)|n(λi)〉 is the solution to Schrödinger’s

equation with initial condition |ψn(ti)〉 = |n(λi)〉. To have an initially canonical distribution, one would

choose pn = Z−1
i e−βiEn(λi), where βi is the initial inverse temperature and Zi is the associated partition

function.
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Defining the average work as the difference between average energies at the end and at the beginning of

the process, W(τ) = Tr
{

ρ(tf)H(λf) − ρ(ti)H(λi)
}

, we can use equation (3) to show that

W(τ) =
∑

m,n

pnpm|n(τ)
(

Em(λf) − En(λi)
)

, (4)

where

pm|n(τ) =
∣

∣〈m(λf)|ψn(tf)〉
∣

∣

2
(5)

is a transition probability (or survival probability if m = n), i.e., the probability of finding the system in

state
∣

∣m(λf)
〉

at tf given that it was in state |n(λi)〉 at ti. In turn, Em(λf ) − En(λi) is the energy difference of

the transition. The average work, as written in equation (4), is equal to the average of the two-point

measurement work, which is the quantum definition of work in a single realization of the process that obeys

the quantum versions of Jarzynski’s equality [62] and Crook’s fluctuation theorem [63]. Note, however, that

this is only the case because we assumed an initial equilibrium state. Alternatively, the same definition of

average work used above can be put in an integrated power form,

W(τ) = −

∫ tf

ti

λ̇(t)Tr{ρ(t)F(λ)}dt, (6)

where we used the generalized force conjugate to λ,

F(λ) = −
∂H(λ)

∂λ
. (7)

Equation (6) will be useful in the discussion of weak processes of section 5.

In the adiabatic limit, the solution to Schrödinger’s equation is given by the adiabatic theorem [64]

∣

∣ψ(0)
n (t)

〉

= eiφn(t)|n(λ)〉, (8)

where we omit the time dependence of λ to evince the parametric evolution. In equation (8), the

superscript zero signifies that we are in the adiabatic limit and φn(t) contains the usual geometric and

dynamic phases,

φn(t) =

∫ t

ti

(

i〈n(λ(t′))|
d

dt′
|n(λ(t′))〉 −

En(λ(t′))

�

)

dt′. (9)

In this case, equation (5) gives p(0)
m|n = δmn and equation (4) gives the quasistatic work,

Wqs =
∑

n

pn

(

En(λf) − En(λi)
)

, (10)

which is notably process independent.

The density matrix of equation (3), for a canonical initial distribution and in the adiabatic limit of

equation (8), reads

ρ(0)(λ) =
∑

n

e−βiEn(λi)

Zi

|n(λ)〉〈n(λ)|, (11)

which is not a canonical distribution at time t, since the statistical weights are always evaluated at ti.

Therefore, a generic isolated quantum system in a quasistatic process with an initial canonical distribution

is taken away from canonical equilibrium at later times. This contrasts with the assumption of small

deviations from canonical equilibrium taken in the geometric approach. In specific systems where

En(λ)/En(λi) is independent of n (such as the harmonic oscillator with varying frequency or the ideal gas

with varying volume), the density matrix keeps its canonical form with a time-dependent temperature, but

this is not true in general. This serves as a hint that the geometric approach is unsuited for isolated systems.

We know from equation (1) that the excess work is obtained by subtracting equation (10) from (4).

Using the identity pn|n = 1 −
∑

m �=n pm|n, we arrive at

Wex(τ) =
∑

m,n

′
pnpm|n(τ)Emn(λf), (12)

where Emn(λ) = Em(λ) − En(λ) and the prime indicates that the diagonal term m = n is not included. It is

noteworthy that the energy difference appearing in equation (12) is evaluated solely on λf . This means that

the parametric energy variation of the eigen-states is entirely accounted for in the quasistatic work of

equation (10), which leaves only the energy variations from transitions (and not survivals) to be considered
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in the excess work. Not only does the expression in equation (12) vanish in the adiabatic limit, but the

minimal work principle [65] ensures that it is always non-negative for non-degenerate systems with initial

density matrices obeying pn � pm if En(λi) � Em(λi), such as the canonical distribution or the density

matrix of a pure ground state.

Equation (12) contains the expression for the excess work we will consider in slow processes. Of course,

exact evaluation of this equation requires solving Schrödinger’s equation to determine the transition

probabilities. In the next section, we introduce APT and its approximate expressions for the excess work.

4. Excess work in slow processes

APT [54] provides perturbative corrections to the adiabatic theorem, valid when the process duration τ is

large but finite. In practice, it gives

|ψn(t)〉 =

∞
∑

r=0

∣

∣ψ(r)
n (t)

〉

, (13)

where
∣

∣ψ(r)
n (t)

〉

= eiφn(t)
∑

m

C(r)
mn(t)|m(λ)〉 (14)

is the rth order correction written in the instantaneous basis of H(λ). The expansions of equations (13) and

(14) are purposefully constructed to include the adiabatic limit in its r = 0 term, with C(0)
mn(t) = δmn. As

such, equation (14) with r = 0 is identical to equation (8), the adiabatic approximation. For r > 0, the

expressions of C(r)
mn(t) can be systematically calculated [54]. For example, the expression for r = 1 and

m �= n is

C(1)
mn(t) = i�

(

Mmn(t)

Emn(λ)
− eiφmn(t) Mmn(ti)

Emn(λi)

)

, (15)

where φmn(t) = φm(t) − φn(t),

Mmn(t) = 〈m(λ)|
d

dt
|n(λ)〉 = λ̇(t)

Fmn(λ)

Emn(λ)
(16)

and Fmn(λ) = 〈m(λ)|F(λ)|n(λ)〉 are the instantaneous matrix elements of the force, defined in

equation (7).

Since λ is a function of t/τ , it gives λ̇ ∝ τ−1, which sets the order of C(1)
mn(t) in equation (15). Similarly,

C(2)
mn(t) contains λ̈ and λ̇2, both of which are proportional to τ−2, and this continues on for higher orders

[54]. Thus, a superscript (r) means that the given quantity is proportional to τ−r. However, τ−1, by itself, is

not the proper quantity to determine the validity of the theory. To assess how accurate first-order APT is, it

is more appropriate to consider the inequality

∣

∣C(1)
mn(t)

∣

∣ ≪ 1, (17)

which, looking at equation (15), is always true as long as

�

∣

∣

∣

∣

Mmn(t)

Emn(λ)

∣

∣

∣

∣

≪ 1, (18)

an inequality known as quantitative adiabatic condition [66, 67], a validity condition for the adiabatic

theorem itself.

At this point, we describe in more detail the conditions under which we expect our approach to be valid.

From equation (18), it is clear that APT breaks down if some relevant Emn vanishes. However, there are

some important cases in which this will not happen. First, in finite systems, the energy differences Emn are

bounded from below by finite-size gaps. Second, systems that are gapped in the thermodynamic limit

(see several examples in section 1) will not violate equation (18) if they are driven at T = 0 or at

temperatures much smaller than the gap. This can be seen from equation (12), where it is clear that

transitions other than from the ground state are absent or strongly suppressed by the Boltzmann weight.

This will be the case of all our numerical simulations later on.

In possession of equation (13), one can easily write down the transition probabilities appearing in

equation (12). We have

pm|n(τ) =

∣

∣

∣

∣

∣

∞
∑

r=0

C(r)
mn(tf)

∣

∣

∣

∣

∣

2

(19)

5



New J. Phys. 24 (2022) 113037 A Soriani et al

and, in practice, one calculates equation (19) to the desired order. We are now able to determine the

corrections to the excess work coming from the corrections to the time-dependent state. It must be pointed

out that, since the sum in equation (19) is squared, a specific correction C(r)
mn may emerge in many orders of

correction to Wex, not only in order r.

We already know that the r = 0 term of the theory reproduces the quasistatic work, and thus does not

contribute to the excess work. Following our superscript convention, truncating equation (19) at r = 1 leads

to

W (1)(τ) = 0. (20)

This is the central result of this paper. According to it, in a slow but finite time process of an isolated gapped

system, there is no first order correction to the average work in the inverse process duration τ−1. This result,

which relies on the condition of initially diagonal density matrices, contrasts with the geometric approach

prediction of Wex ∼ τ−1 for slow processes. We stress that an initial diagonal state describes an initial

thermodynamic equilibrium between the internal parts of the isolated system. Furthermore, equation (20)

relies neither on a specific number of degrees of freedom nor on a certain partition of the isolated system.

Thus, it also applies to open quantum systems whose underlying microscopic dynamics with its

environment is Hamiltonian and gapped, as further explained in section 7.

Continuing on for higher orders, we see that the r = 1 term of equation (19) is enough to describe the

second order correction to the work,

W (2)(τ) =
∑

m,n

′
pn

∣

∣C(1)
mn(tf)

∣

∣

2
Emn(λf), (21)

which is the first non-zero correction. Such correction has already been considered in the context of

trade-offs between power and efficiency of quantum heat engines [68, 69]. Equation (21) is the starting

point for the optimization of the energetic cost of slow processes in isolated quantum systems.

4.1. Optimizing the excess work

In contrast to equation (2), APT results for the excess work have no functional dependence: equation (21)

only depends on λ and λ̇ at ti and tf , not on the entire history of the protocol λ(t). In fact, if

λ̇(ti) = 0 = λ̇(tf), equation (21) also vanishes (see equations (15) and (16)) and the first non-zero

correction would be

W (4)(τ) =
∑

m,n

′
pn

∣

∣C(2)
mn(tf)

∣

∣

2
Emn(λf), (22)

where C(2)
mn(t) is similar to C(1)

mn(t) of equation (15), differing by the substitution Mmn(t) → i� d
dt

Mmn(t)
Emn(λ)

. This

continues on for higher orders: zeroing out the first r derivatives of λ at the beginning and at the end of the

process makes the first non-zero correction to the work be W (2r+2). This approach to reducing the order of

the excess work is known as boundary cancellation method (BCM) [70–74]. There is a simple formula for

generating a BCM protocol of order r, namely [74]

λBCr(t) = λi + [λf − λi]

∫ t

ti
(tf − t′)r(t′ − ti)

rdt′
∫ tf

ti
(tf − t′)r(t′ − ti)rdt′

, (23)

which is a polynomial for any integer r > 0 with all time derivatives up to order r vanishing at ti and tf .

However, there is a caveat: BCM presupposes the validity of APT. First, adiabaticity must be secured, and

forcing time derivatives of the protocol to be zero at the end points might even be detrimental to reaching

that goal. This is because the protocol will have to ‘speed up’ during the process, which might spoil

inequalities (17) and (18).

Conversely, we can abuse inequalities (17) and (18) to find protocols that adhere to APT as soon as

possible. The fast quasi-adiabatic (FQA) strategy [75–79] amounts to setting the lhs of inequality (18) equal

to an initially undetermined constant,

�

∣

∣

∣

∣

Mmn(t)

Emn(λ)

∣

∣

∣

∣

= c, (24)

and solving this first-order differential equation for λ with boundary conditions λ(ti) = λi and λ(tf ) = λf .

Since there is only one constant of integration, c must also be used to impose the boundary conditions,

which ultimately leads to c ∝ τ−1. Comparison of equation (24) to equation (15) leads to the conclusion

that the FQA protocol distributes first-order transition probabilities uniformly throughout the entire

duration of the process.

As it is, equation (24) only works when considering a single pair of energy levels m and n, but we can

use the expressions for the work in equations (10) and (21) to take every level pair into account. To this

6
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Figure 1. Driving protocols and associated excess work per spin wex = Wex/N of equation (A5) for the TI chain with N = 100
spins. The symbols in (b), (c), (e) and (f) depict numerical results obtained from the integration of the exact time-dependent
dynamics, while the lines in (b) and (e) represent the lowest-order predictions from APT. The top plots correspond to a
paramagnetic process with Bi = 10J, while the bottom plots correspond to a ferromagnetic process with Bi = 0.1J. LIN
corresponds to the linear protocol; BC1 and BC2 correspond to equation (23) with r = 1 and 2, respectively; FQA corresponds to
the solution of equation (25). (a) Protocols for ∆ = 10J; (b) excess work vs τ for ∆ = 10J; (c) excess work vs ∆ for Jτ = 1;
(d) protocols for ∆ = 0.8J; (e) excess work vs τ for ∆ = 0.8J; (f) excess work vs ∆ for Jτ = 10.

end, and inspired by equation (24), we set the ratio |W (2)/W (0)| equal to a to-be-determined constant c and

disregard the terms that are not fully t-dependent, which leads to

�
2

∣

∣

∣

∣

∣

∑

m,n

′
pn

|Mmn(t)|2

Emn(λ)

∣

∣

∣

∣

∣

= c

∣

∣

∣

∣

∣

∑

n

pnEn(λ)

∣

∣

∣

∣

∣

. (25)

Equation (25) should then be solved with λ(ti) = λi and λ(tf ) = λf , a strategy which we also refer to as

FQA for consistency. In contrast to BCM, FQA does not cancel equation (21), but it may guarantee the

validity of such equation for the smallest τ possible.

In essence, BCM is an answer to the problem ‘given APT validity, find protocols that minimize the cost

order by order’. Conversely, FQA is an answer to the problem ‘find protocols that ensure APT validity and

are as fast possible’, ‘fast’ meaning small process duration. Both strategies have their advantages, as we shall

see next. In the following analysis, it will be useful to write the external parameter as

λ(t) = λi +∆ g(t), (26)

where ∆ ≡ λf − λi is the total variation of λ in the process and g(t) is a function obeying g(ti) = 0 and

g(tf ) = 1.

The discussion has been general so far, and any discrete and non-degenerate quantum system can be

subjected to any of these strategies. However, to compare their efficiency, we apply them to a specific

model: the transverse field Ising model (TI) [80], a one-dimensional chain of N spins, initially prepared in

its ground state. The specifics of the system are detailed in appendix A. The external parameter is the

magnetic field λ = B, to be compared with the fixed coupling J between neighboring spins. Here, for the

sake of illustrating our results using this model as an exactly diagonalized testbed with a well defined

thermodynamic limit, we consider only processes that do not cross the system’s quantum critical point

(at B = J), because it brings unwanted difficulties (that we have considered elsewhere [24, 61, 81]). The

results for processes entirely contained in the paramagnetic phase (B > J) or in the ferromagnetic phase

(B < J) can be seen in figure 1.

Figure 1(a) shows four driving protocols for a paramagnetic process with Bi = 10J. LIN is the naive

linear protocol, which we will always use as a basic protocol we want to outperform. BC1 and BC2 are the

two lowest order BCM polynomials, given in equation (23) with r = 1 and r = 2, respectively (r = 0

reproduces LIN). Lastly, FQA is the solution to equation (25) and, unlike the other three protocols, it

depends on ∆—figure 1(a) was generated with ∆ = 10J. Figures 1(b) and (c) show the comparison

7
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between numerically obtained exact results (symbols) and APT (lines) predictions for the excess work per

spin.

Figure 1(b) shows the excess work per spin vs τ and was constructed using the protocols of the previous

plot with ∆ = 10J. From this figure, it is apparent that the second-order APT result of equation (21) for the

FQA protocol approximates the dynamics ‘early’: already at Jτ = 10−2 we see good agreement with the

exact result, which is a consequence of FQA’s design. It, however, has the standard τ−2 decay for large τ ,

since it does not necessarily slow down near t = ti and tf . The LIN protocol has the same decay and, in this

case, its excess work is always greater than FQA’s excess work. Conversely, among the considered protocols,

BC1 and BC2 take the longest to be well approximated by APT, but, once they enter APT regime, they

behave as τ−4 and τ−6, respectively.

Figure 1(c) complements the previous plot by showing the excess work per spin vs ∆ for an

intermediate process duration of Jτ = 1. To be clear, while equation (25) has a different solution for each

∆, the FQA protocol used to generate figure 1(c) is exactly the one shown in figure 1(a), the same for every

value of ∆ plotted—this was done for ease of representation. This plot shows how the FQA protocol is

sensitive to the energy spectrum: it gives higher excess work than LIN when the field variation is small. On

the other hand, BC2 already outperforms every other protocol shown for this not so large value of τ .

Figures 1(d)–(f) mirror the analysis of the previous plots, but for a ferromagnetic process with

Bi = 0.1J. Many of the features of the paramagnetic process are repeated in the ferromagnetic process.

Worthy of note is the larger time decades considered in figure 1(e) (when compared to figure 1(b)) and an

apparent coalescence in the excess work of figure 1(f) for every protocol considered, both of which are

consequences of the proximity to the critical point. Indeed, on the far right of figure 1(f), the last points in

the plot represent processes in which the critical point is crossed, but this is of no consequence to our

analysis since this region of the plot is far from the region of validity of the perturbation theory used.

Overall, we can see that the τ−1 behavior of the excess work is never observed as the leading order

behavior for slow processes in figure 1.

5. Excess work in weak processes

To complement the analysis of slowly-varying processes, in this section we study weak processes. To be

specific, ‘weak’ means that the total variation ∆ of equation (26) is small when compared to initial value of

the external parameter, λi. Such processes are well described by LRT [82], in which the Hamiltonian of the

system is expanded to first order in ∆,

H(λ) ≈ Hi −∆ Fig(t), (27)

where Hi = H(λi) is the initial Hamiltonian and F i = F(λi) is the initial force of equation (7).

Equation (27) is plainly written in standard time-dependent perturbation theory form, whose first order

result for the density matrix of equation (3) is [64]

ρ(t) ≈ ρ(ti) −
∆

i�

∑

m,n

′
[pn − pm]Fi

mn|mi〉〈ni|

∫ t

ti

g(t′)eEi
mn[t−t′]/i� dt′, (28)

where |ni〉 and Ei
n are initial eigen-states and eigen-energies. Then, the average force, itself expanded up to

first order as F(λ) ≈ Fi −∆g∂2
λHi, is

Tr{ρ(t)F(λ)} ≈ Tr
{

ρ(ti)Fi
}

−∆g(t)Tr
{

ρ(ti)∂
2
λHi

}

+∆

∫ t

ti

g(t)Φi(t − t′)dt′, (29)

where we defined the response function

Φ(λ; t) =
2

�

∑

m,n

′
pn|Fmn(λ)|2 sin

(

Emn(λ)

�
t

)

(30)

and Φi(t) = Φ(λi; t).

Finally, the average work is obtained by placing equation (29) into the integrated power expression,

equation (6). After an integration by parts of the last term, the boundary term and the previous two terms

combined reproduce the weak limit of the quasistatic work in equation (10). Thus, the leftover term must

be the lowest order contribution to the excess work, which we write as [55, 83]

WLRT
ex (τ) = ∆2

∫ tf

ti

∫ t

ti

ġ(t)ġ(t′)Ψi(t − t′)dt′ dt. (31)

8
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The relaxation function Ψ relates to the response function as Φ(λ; t) = −∂tΨ(λ; t) and, using

equation (30), we can write

Ψ(λ; t) = 2
∑

m,n

′
pn

|Fmn(λ)|2

Emn(λ)
cos

(

Emn(λ)

�
t

)

(32)

and Ψi(t) = Ψ(λi; t). It is noteworthy that equations (30) and (32) display the LRT functions Φ and Ψ in

alternate forms, compared to the usual correlation functions (see section 6). For isolated quantum systems,

both forms are equivalent. Equation (31) is the starting point for the optimization of the energetic cost of

weak processes in isolated quantum systems.

5.1. Optimizing the excess work

An effective strategy to minimize (31) consists of expanding ġ(t) in some basis of functions [55]. To do that,

we first rewrite equation (31) in a more symmetric form,

WLRT
ex (τ) =

∆2

2

∫ tf

ti

∫ tf

ti

ġ(t)ġ(t′)Ψi(t − t′)dt′ dt, (33)

where the property Ψi(−t) = Ψi(t) was used. Note the similarities and differences between equations (33)

and (2) of the geometric approach—both of them present quadratic functional dependence on the first

derivative of the external parameter, but the kernel of equation (33), Ψi(t − t ′), shows explicit time

dependence.

The derivatives ġ(t) and ġ(t′) can now be properly expanded in the interval [ti, tf ]. Due to their

convenient mathematical properties, the Chebyshev polynomials Tl(x) are a good choice of efficient basis of

functions [84]. Following references [55, 84], the truncated and regularized expansion of ġ(t) in a finite

number n of polynomials Tl(x) in the interval [ti, tf ] reads

ġ(t) =

n
∑

l=1

algn,lTl

(

2t − (ti + tf)

τ

)

, (34)

where al are the coefficients to be determined in the optimization and the factors gn,l regularize the

truncated expansion [84] to avoid the Gibbs phenomenon at the extremities of the expansion interval.

Their expression is [84]

gn,l =
n − l + 1

n + 1
cos

(

πl

n + 1

)

+
1

n + 1
sin

(

πl

n + 1

)

cot

(

π

n + 1

)

. (35)

Substituting expression (34) into equation (33), we obtain

WLRT
ex (τ)(∆2Ψi(0)/2)−1 =

n
∑

l,j

Aljalaj, (36)

where the Alj are given by

Alj = gn,lgn,j

∫ tf

ti

∫ tf

ti

Ψ̃i

(

t − t′
)

Tl

(

2t − (ti + tf)

τ

)

Tj

(

2t′ − (ti + tf)

τ

)

dt′ dt, (37)

with Ψ̃i(t) = Ψi(t)/Ψi(0).

The excess work (36) becomes then a finite multidimensional quadratic form in the an whose minimum

we want to find. The boundary conditions g(ti) = 0 and g(tf ) = 1 are additional constraints in our

optimization problem. Using the method of Lagrange multipliers, we can find then the coefficients al that

provide the optimal protocol by solving a set of linear algebraic equations. Naturally, we call this

optimization strategy Chebyshev expansion up to n modes (CEn). We remark that the relaxation function

Ψi(t) is the main physical input in this procedure. The factors Alj crucially depend on the switching time τ

and Ψi(t). Due to its relation with the response function, Ψi(t) can be obtained from experiments when it is

not accessible theoretically.

To test this optimization strategy with the relaxation function of an isolated system, we once again

employ the TI chain. Its relaxation function Ψi(t) is given in equation (A7) of appendix A when the chain is

initially prepared in its ground state. Deep in the paramagnetic phase (Bi ≫ J) and in the thermodynamic

limit N →∞, we can swap sum by integral and approximate the quantities of equation (A7) as

sin2 k

ǫ3
k(Bi)

≈
sin2 k

B3
i

and ǫk(Bi) ≈ Bi − J cos k.

9
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Figure 2. Paramagnetic relaxation function of equation (38) for Bi = 10J, together with its Bessel envelope.

This leads to

Ψi(t) ≈
NJ2

2πB3
i

∫ π

0

cos[2(Bi − J cos k)t]sin2 k dk

=
NJ2

4B3
i

J1(2Jt)

Jt
cos(2Bit), (38)

where Jn is the Bessel function of the first kind (the caligraphic J is used to avoid confusion with the

coupling constant J).

The function of equation (38) has a clear decay factor in J1(2Jt)/Jt, indicating a relaxation time scale of

J−1; and a pure oscillating factor in cos(2Bit), indicating an oscillation time scale of B−1
i (see figure 2). From

equation (A2), it can be seen that the relevant energy gap of the system in the paramagnetic phase is Bi.

Thus, in the TI chain, it is the oscillation time, not the relaxation time, that determines its closeness to

adiabaticity. The results using the relaxation function of equation (38) can be seen in figure 3. The symbols

in the plots for the excess work per spin depict the numerical results obtained from the integration of the

exact time-dependent dynamics, while the lines represent the LRT prediction.

Figure 3(a) shows the linear protocol and three protocols obtained from the Chebyshev expansion for

Jτ = 2. Somewhat surprisingly, these protocols look identical to the BCM protocols we presented in the

context of slow processes. Indeed, a glance at figure 1(b) reveals that for this process duration, all of the

protocols considered in that plot already agree with the APT prediction. This indicates that Jτ = 2 can be

considered slow, and the minimization of the LRT functional exploits this fact to generate protocols that

follow the BCM guideline. However, note that for realistic values of ∆, i.e., 10−1 � ∆/Bi � 101, increasing

the number of modes worsens the performance, as can be seen on figure 3(b). The work only decreases with

increasing number of modes for much smaller values of ∆ (see figure 3(c)), closer to the point where LRT

starts agreeing with the numerical data. In any case, all three CE protocols outperform the linear one for the

entire ∆ range of figure 3(c).

The situation is considerably different for Jτ = 1. Figure 3(d) compares the linear protocol once again

with three Chebyshev expansions, with the same number of modes considered in the previous case. In this

case, we start seeing deviations from BCM protocols, but only when using 15 modes or more. Essentially,

the LRT functional cannot output better protocols than BCM ones when given a small number of degrees of

freedom to optimize. When it has enough degrees to work with, it generates oscillating protocols that

outperform BCM-like protocols while escaping APT description. Performance-wise, figure 3(e) shows that

increasing the number of modes does seem to decrease the excess work around ∆/Bi = 10−1, but not

beyond this point. In fact, the oscillating protocol CE17 is outclassed even by the linear protocol for ∆/Bi

values as low as 100, demonstrating that such oscillating protocols are only reliable in the LRT regime

∆/Bi ≪ 1.

For Jτ = 1, increasing the number of modes past 17 starts giving non-realistic oscillatory protocols, with

amplitudes several orders of magnitude higher than the endpoint. The maximum number of modes that

still gives realistic protocols in fact decreases with decreasing τ . Figure 3(g) shows LIN and three CE

protocols, the highest number of modes used being 11, for Jτ = 0.5. CE11 already shows considerable

oscillations—the protocols for higher number of modes are impractical. Once again, the performance of

these oscillatory protocols is only good for small values of ∆: figure 3(h) reveals that, when compared to

CE9, CE11 has a marginal advantage at best and a large disadvantage at worst.

10
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Figure 3. Driving protocols and associated excess work per spin wex = Wex/N of equation (A5) in the TI chain with N = 100
spins, for a paramagnetic process with Bi = 10J. The symbols in (b), (c), (e), (f), (h) and (i) depict numerical results obtained
from the integration of the exact time-dependent dynamics. In (c), (f) and (i), the lines represent the LRT prediction. The top
plots (a)–(c) correspond to Jτ = 2, the middle plots (d)–(f) correspond to Jτ = 1 and bottom plots (g)–(i) correspond to
Jτ = 0.5. LIN corresponds to the linear protocol, while CEn corresponds to the Chebyshev expansion up to order n.

The trend of the Jτ = 0.5 (figure 3(g)) and Jτ = 1 (figure 3(d)) cases studied seems to indicate that,

using a high enough number of modes, oscillating protocols can be generated from the LRT functional for

any value of τ . However, we have not found oscillating protocols for Jτ = 2 (figure 3(a)) for a number of

modes of up to 23, where numerical errors started becoming a factor.

Figure 4 shows the excess work per spin (obtained numerically) vs τ for the protocols shown in

figure 3(d) and CE11 shown in figure 5(a). These plots demonstrate how specific are the protocols obtained

from the LRT functional for the values of τ used to generate them. Figure 4(a) was made with ∆/Bi = 0.1,

and it shows that all four CE protocols have sharp valleys centered at Jτ = 1, which is exactly the value of

the process duration they were designed to optimize. For values of τ outside this valley, the CE15 and CE17

protocols are outperformed by LIN. CE11 and CE13, on the other hand, maintain better performance than

LIN for higher values of τ , a consequence of their BCM-like appearance. As ∆ is increased, the valleys

become dispersed and less profound, as can be seen in figure 4(b) for ∆/Bi = 1. When the system is far

from LRT description, as for ∆/Bi = 10 in figure 4(c), the valleys still exist, but the protocols CE15 and

CE17 lose any advantage they had—another sign that the oscillatory CE protocols only guarantee a decrease

in the excess work when one stays in the weak regime, as mentioned before.

Note that, in accordance to what we discussed in the context of slow processes, for every protocol

considered in figure 4, the excess work decays as τ−2 for large τ . This includes CE11 and CE13, which one

would naively predict to have steeper decays, as expected from BCM protocols. The reason for this is the

fact that CE11, for instance, is not exactly a BCM protocol—after all, unlike equation (23), it has to

accommodate for the specific properties of the system, imported from the relaxation function. Figure 5

compares CE11 with BC3, obtained from equation (23) with r = 3. They are almost indistinguishable from

the point of view of figure 5(a), but figure 5(b) reveals that CE11 has finite first derivatives at the endpoints,

which means APT gives Wex ∼ τ−2. Conversely, BC3 has a considerably steeper decay of τ−8 in the APT

regime, as can be seen in figure 5(c). Nevertheless, such small derivatives are the reason why CE11

consistently beats LIN in figure 4.
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Figure 4. Excess work per spin wex = Wex/N of equation (A5) for the protocols of figures 3(d) and 5(a) in a paramagnetic
process in the TI chain with N = 100 spins and Bi = 10J, obtained from the integration of the exact time-dependent dynamics.
LIN corresponds to the linear protocol, while CEn corresponds to the Chebyshev expansion up to order n. The total variation of
the field used was (a) ∆ = J, (b) ∆ = 10J and (c) ∆ = 100J.

Figure 5. Driving protocols and associated excess work per spin wex = Wex/N of equation (A5) in the TI chain with N = 100
spins, for a paramagnetic process with Bi = 10J. (a) Protocols BC3 (from equation (23) with r = 3) and CE11 (from the LRT
functional with 11 Chebyshev modes). (b) First time derivatives of the same protocols. (c) Excess work vs τ for the same
protocols. It was obtained from the numerical integration of the exact time-dependent dynamics.

The absence of the universal τ−1 decay for large τ is hence corroborated using another perturbation

theory. We emphasize that the analytical results of this section considered the thermodynamic limit of the

Ising chain through expressions such as (38). Hence, the τ−1 scaling does not seem to be related to this

asymptotic limit. The agreement between both perturbation theories used in this paper in the appropriate

weak and slow regime is elucidated in appendix B.

In passing, we remark that the expression for the relaxation function of equation (A7), deep in the

ferromagnetic phase (B ≪ J) and in the thermodynamic limit, is approximated by

Ψi(t) =
N

4J

J1(2Bit)

Bit
cos(2Jt). (39)

Disregarding the constant prefactor, equation (39) is very similar to equation (38), only differing by the

substitution Bi ↔ J. This is related to the Kramers–Wannier duality between the two phases of the system

[85]. Consequently, the LRT results for the ferromagnetic phase are the same as those for the paramagnetic

phase, given suitable values of Bi and τ . For instance, the protocols obtained from the LRT functional for

Bi = 0.1J and Jτ = 10 are identical to the protocols obtained for Bi = 10J and Jτ = 1, given in figure 3(d).

6. Nonintegrable systems

The optimization strategies presented and discussed in this paper are naturally written in terms of the

eigen-quantities of the Hamiltonian. Yet, unlike the transverse-field Ising Hamiltonian of equation (A1), the

vast majority of Hamiltonians cannot be diagonalized exactly, i.e., most systems are nonintegrable. When

the system is numerically integrable, the strategies contained herein are readily available. For the application

of the Chebyshev expansion method, the eigen-equation need only be numerically solved at λi. However,

the eigen-equation must be solved for every λ value traversed in the defined process for the application of

the FQA method, since it requires knowledge of how the spectrum changes with λ.

The optimization strategies contained herein can also be applied in experimental situations where the

linear response of the system can be determined through measurements. To elaborate, the methods can be
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used if the generalized force F—which is λ-independent if the external parameter is linearly coupled to the

system—is known and if the response function can be determined from the correlation function

Φ(λ; t − t′) =
1

i�
Tr
{

ρ(0)(λ)[F(λ; t), F(λ; t′)]
}

, (40)

where

ρ(0)(λ) =
∑

n

pn|n(λ)〉〈n(λ)| (41)

is the (equilibrium) density matrix in the adiabatic limit, [·, ·] denotes the commutator and

F(λ; t) = e−(t−ti)H(λ)/i� F(λ)e(t−ti)H(λ)/i� (42)

is the generalized force in the instantaneous interaction picture of H(λ).

Note that the trace in equation (40) is an equilibrium average, since the state ρ(0) is diagonal. The

success of LRT is largely based on the measurability of this average. For instance, with an initially canonical

distribution, one needs to determine Φi(t) = Φ(λi; t) and calculate Ψi(t) to apply the Chebyshev expansion

method. On the other hand, to determine FQA protocols, one first rewrites equation (25) as

|Υ(λ; 0)|

2
λ̇2(t) = c

∣

∣Tr
{

ρ(0)(λ)H(λ)
}∣

∣, (43)

where Υ(λ; t) is a function described in appendix B, while the right-hand side contains the average energy

in the adiabatic limit. Then one needs to determine the average in equation (40) for every λ in the process,

which might not be an easy task since the state of the system may not maintain canonical form throughout

the evolution, as discussed in section 3. If this can be done, one then calculates Υ from

Φ(λ; t) = −∂3
t Υ(λ; t) and solves the differential equation (43).

7. Open systems

In this section, we briefly consider the implications of our analysis to open quantum systems. We stress that

at no point during our derivation of the excess work in slow processes (section 4) did we assume that the

external parameter λ interacts with the entire isolated system. Thus, in a gapped bipartite system (call it U),

if λ acts only on one of the parts (call it S), the excess work exerted on U still decays asymptotically as

(at least) τ−2 for slowly-varying processes (we also assume the total energy of U is well below its gap).

However, since the force applied on S must also be the total force applied on U (there are no other external

influences), it follows that the work exerted on the open system S is equal to the work exerted on the closed

system U. Consequently, through a Hamiltonian description of a closed and gapped quantum system U that

includes the open quantum system S, we can see that the excess work done on open systems also scales as

τ−2 in slow processes.

The above result can be made precise with the operational definitions of average work used in this paper.

The Hamiltonian of the isolated system U, whose control parameter couples only with the part S, can

always be written as

HU(λ) = HS(λ) + HI + HR, (44)

where HS(λ) is the Hamiltonian of the open system we manipulate (thus dependent on λ), HR is the

Hamiltonian of the rest R (thus independent of λ) and HI is the Hamiltonian of the interaction between S

and R (also independent of λ). Now, using equation (6) to calculate the work exerted on U, we see that

WU =

∫ tf

ti

λ̇(t)TrU

{

ρU (t)
∂HU(λ)

∂λ

}

=

∫ tf

ti

λ̇(t)TrS TrR

{

ρU (t)
∂HS(λ)

∂λ

}

=

∫ tf

ti

λ̇(t)TrS

{

ρS(t)
∂HS(λ)

∂λ

}

= WS, (45)

where we used equation (44) to write ∂λHU(λ) = ∂λHS(λ), the fact that the trace over the entire system can

be decomposed into partial traces (TrU = TrS TrR) and ρS(t) = TrR ρU(t) is the reduced density matrix of S.

In the last line of equation (45), we used equation (6) once again to identify the average work exerted on S.

Therefore, the general conclusions we obtained for the work in closed gapped quantum systems also applies
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Figure 6. Excess work vs process duration for a three-spin Ising chain calculated numerically from the exact dynamics. The
magnetic field applied on one of the spins was varied linearly in time from 2J to 3J, while the magnetic fields in the other two
spins were kept constant at 3J. S + R represents the excess work done on the entire chain (calculated as the difference between
average energies at the end and at the beginning), S represents the excess work done only on the manipulated spin (calculated as
the integral of the force applied on that spin) and APT represents the first-order APT prediction (stripped of its oscillations). The
main plot was constructed using the ground state of the total Hamiltonian (46) at ti as the initial state, thus leading to Wex ∼ τ−2.
Meanwhile, the inset was constructed using a tensor product state: the ground state of the manipulated spin times the ground
state of the other two spins combined, thus leading to Wex ∼ τ−1.

to open quantum systems (assuming system plus environment is also gapped), including the absence of the

asymptotic τ−1 behavior of the excess work in slowly varying processes.

We emphasize that the above arguments are rather general. In particular, we make no assumption about

the size of the system, nor do we assume specific features of the interaction between the open system and its

environment. However, we do assume that the initial state of the isolated system U commutes with the

initial Hamiltonian (44), a choice that exactly describes an initial thermodynamic equilibrium between S

and R.

7.1. Example: small Ising chain

To illustrate our finding, we have included figure 6, which shows Wex vs τ when we manipulate only one

spin of an Ising chain with three spins, with Hamiltonian

H(B3) = −
1

2

⎛

⎝J

3
∑

j=1

σz
j σ

z
j+1 +

2
∑

j=1

Bjσ
x
j

⎞

⎠−
B3

2
σx

3 . (46)

The magnetic fields B1 and B2 are constant, while the magnetic field B3(t) of the manipulated spin is varied

linearly in time. For the main plot, we chose the ground state of equation (46) as the initial state. Hence the

excess work on the entire chain decays as τ−2 for large Jτ . The excess work on the manipulated spin behaves

exactly the same (apart from numerical errors). On the other hand, in the inset, the initial state was chosen

to be the tensor product of the ground state of spin 3 and the ground state of spins 1 and 2 together, which

is still a pure state but noncomutable with the initial Hamiltonian. In this case, the excess work decays as

τ−1 for large Jτ , which agrees with the APT prediction for nondiagonal initial states. The notable

oscillations are natural in such a small chain and they are predicted by APT, but we removed them from the

APT result in this figure for ease of representation (see reference [61]).

7.2. Example: driven quantum Brownian motion

As a second illustrative example, we consider quantum Brownian motion in a harmonic trap whose

minimum location varies in time. The Hamiltonian we use to model this phenomenon is given by

HBM(λ(t)) =
P2

2M
+ κ0

(Q − λ(t))2

2
+ HCL, (47)

where P, Q and M denote, respectively, the momentum and position operators of the Brownian particle and

its mass whereas κ0 denotes the stiffness of the trap. By λ(t), we denote the time-varying position of the

minimum and HCL stands for the Caldeira–Leggett model [86],

HCL =

N
∑

k=1

[

p2
k

2mk

+
mkω

2
k

2
(qk − Q)2

]

, (48)
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which describes a collection of N harmonic oscillators with mass mk, frequency ωk and position and

momentum operators qk and pk interacting with the Brownian particle.

According to equation (45), the work performed reads

WBM =

∫ tf

ti

dtλ̇(t) Tr

{

ρ(t)
∂HBM

∂λ

}

= −κ0

∫ tf

ti

dtλ̇(t)
(

〈Q(t)〉 − λ(t)
)

, (49)

where the non-equilibrium average 〈Q(t)〉,

〈Q(t)〉 =
κ0

M

∫ t

ti

dt′ΦBM(t − t′)λ(t′), (50)

(see appendix C) was obtained using the equilibrium initial state

ρ(ti) = Z−1
i exp(−βHBM(λ(ti))), (51)

where Zi = Tr[exp(−βHBM(λ(ti)))] and β is the inverse temperature.

Inserting expression (50) in equation (49) and performing an integration by parts, it is straightforward

to show that

WBM
ex =

κ2
0

M

∫ tf

ti

∫ t

ti

λ̇(t)λ̇(t′)ΨBM(t − t′)dt dt′, (52)

where ΦBM(t) = −dΨBM dt. Hence, the excess work is exactly given by the LRT functional (31) derived in

section 5.

To investigate the large τ behavior of equation (52), one can first take the limit N →∞. In this case, an

explicit expression for the so-called spectral density J(ω) has to be chosen in the continuum limit. Using the

standard gapless Ohmic spectral density,

J(ω) = ηω, (53)

with a high-frequency cutoff, one obtains an exponentially decaying ΨBM(t) (see appendix C for the

details),

ΨBM(t) =
e−γt

ω2
0

[

cos(Ωt) + (γ/Ω) sin(Ωt)
]

, (54)

where ω2
0 = κ0/M, Ω2 = ω2

0 − γ2 and γ = η/M.

Plugging equation (54) in equation (52), the excess work WBM
ex for the linear protocol,

λ(t) = λ0 + δλ(t/τ), reads,

WBM
ex = κ0(δλ)2

(

Ω

ω0

)2{

2

(

γ

ω0

)

[(γ/Ω) + 1]

ω0τ
+

[1 − 3(γ/Ω)2]

(ω0τ)2
+ O(e−γτ )

}

, (55)

where the leading order is τ−1.

On the other hand, if N is large but kept finite, ΨBM(t) will be a quasi-periodic function as expressed in

equation (32). In this case, the excess work (52) for the same linear protocol will be given by a sum of terms

proportional to
1

τ 2

∫ tf

ti

∫ t

ti

cos[ωmn(t − t′)]dt dt′ =
[1 − cos(ωmnτ)]

(ωmnτ)2
, (56)

where ωmn = Emn/� are the frequencies related to the spectral gaps of the isolated system, as defined before

in section 3. The previous expression shows that the τ−1 term is absent and suggests that the limits of large

τ and large N might not commute. This is particularly relevant for numerical simulations where N is always

finite.

8. Discussion

In this section, we summarize the assumptions we made and the assumptions we did not make to arrive at

the asymptotic behavior of the excess work for large process duration, namely, Wex ∼ τ−2 for a generic

protocol.

It is clear from section 4 that the important ingredients are Hamiltonian dynamics and isolated gapped

systems at temperatures well below their gap or open systems treated as part of a larger closed gapped

system (where APT can be applied). Furthermore, we also assume initially diagonal density matrices. This
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second condition reflects initial thermodynamic equilibrium ρ̇(ti) = 0, as per von Neumann’s equation.

Note that tensor products of diagonal states of open system and environment do not lead to diagonal states

of the total composite system, given the presence of interactions between the parts. Although such product

states are often cited as equilibrium states when the open system is weakly coupled to the environment

(as in the context of the geometric approach [36, 37, 49, 50]), the mild effects of the interaction can

accumulate over long process durations and thus should not be ignored. Whenever the initial state is not

diagonal, the excess work does scale asymptotically as τ−1, as seen in the inset of figure 6.

As mentioned previously, our arguments are independent of the size of the system. Moreover, we

assumed no relaxation mechanism to be present, such as observed in systems obeying the eigenstate

thermalization hypothesis or in the chaotic regime [87, 88]. This means our approach describes the

asymptotic behavior of the excess work in any gapped system initially in thermodynamic equilibrium. Of

course, that does not rule out the possibility of other excess work scalings happening before the asymptotic

behavior takes place—indeed, two of us verified this in reference [61]. In any case, with or without

relaxation, the excess work eventually behaves as τ−2 for τ large enough in gapped systems.

A connection between our analysis and relaxation mechanisms can be made through equation (33)

written in the following form

WLRT
ex =

∆2

2

∫ 1

0

∫ 1

0

ġ(s)ġ(s′)Ψi

(

τ(s − s′)
)

ds ds′, (57)

where the integration variables were changed to s = t/τ and s′ = t ′/τ , and the derivatives are now

ġ(s) = dg/ds and ġ(s′) = dg/ds′. It is important to stress that Ψi(t) can either describe few-body or

many-body correlations depending on the observable that couples to the control parameter. Equation (57)

suggests that the excess work scaling for weak and slowly-varying processes (the large τ limit) is ruled by the

long time tail of Ψi(t) (or, equivalently, by the small frequency behavior of its spectrum), which in turn is

related to the long time tail of the response function (see section 5). It was verified in section 7.2 that, using

equation (57) for linear protocol, a simple exponential decay leads to an asymptotic τ−1 scaling. This type

of response decay can be obtained in general from Lindblad master equations. However, we should keep in

mind that large times predictions of this effective description eventually fail (see reference [89] for a recent

discussion).

Although the TI chain, the system we used to corroborate our findings, is integrable and consequently

nonrelaxing, the metric of the geometric approach can still be suitably defined for it. For example, following

the original LRT derivation of the geometric approach, the metric in the paramagnetic phase of the chain

can be written as [36, 37]

ζ(B) = Ψ(B; 0)τR(B), (58)

where Ψ(B; t) is the relaxation function of equation (38) with Bi → B, Ψ(B, 0) = NJ2/4B3 and the so called

relaxation time is

τR(B) =

∫ ∞

0

Ψ(B; t)

Ψ(B; 0)
dt. (59)

This integral vanishes when the full paramagnetic relaxation function (38) is used, owning to the presence

of the oscillatory cosine factor. Heuristically, we might argue that these oscillations should not contribute to

a measure of relaxation of the system, and hence we can drop the cosine factor in this calculation.

Considering just the Bessel envelope of figure 2, we arrive at τR = J−1, which is the natural decay time scale

of the Bessel factor. Nevertheless, simply putting equation (58) into equation (2) does not reproduce the

correct excess work in any of the numerical simulations shown in this paper.

9. Conclusion

Despite increased recent interest in the development of a unifying theoretical framework to investigate the

minimization of energetic costs in finite-time thermodynamic processes of quantum systems [52], it seems

that such unification still evades us. Here, we have provided extensive evidence to support the claim that the

celebrated geometric approach to optimal driving, in its current formulation, does not apply to quantum

gapped systems evolving under unitary dynamics. As far as APT and LRT reach, there is no sign of a

thermodynamic metric from which geodesics can be obtained, neither is there the predicted τ−1 asymptotic

behavior of the excess work. However, our analysis does not exclude the possibility of studying the so-called

thermodynamic length along the lines of references [90, 91]. Attempts at a geometric approach for isolated

quantum systems can be found in references [92, 93].

Although some elements of our numerical analysis of the transverse-field Ising chain may be

system-specific, we expect most prominent features highlighted in this paper to be universal. In the context
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of slowly-varying processes, we have discussed and exemplified the minimum exponent decay τ−2 of the

excess work, as guaranteed by APT. We then tested two well-known optimization strategies, enabling us to

indefinitely increase the exponent or ensure the minimum exponent decay for reasonably small process

duration τ . In the complementary regime of fast but weak processes, we applied a Chebyshev expansion

approach to optimization, which is based only on the knowledge of equilibrium correlation functions of the

system, in typical LRT fashion. The protocols obtained are surprisingly sensitive to the time scales present in

the relaxation function, and they reproduce the BCM in the slow limit.

In both regimes studied, the perturbation theories do not give lower bounds for the excess work of the

protocols generated: higher order BCM protocols can always be used to guarantee steeper decay in the APT

regime, just as higher order Chebyshev expansions seem to guarantee ever-increasing performance in the

LRT regime. Overall, the present results seem to suggest that, in isolated quantum systems, there is no single

way of obtaining optimal protocols for every scenario and, as a matter of fact, it is not clear if the notion of

a unique optimization procedure exists.

Finally, we have briefly analyzed the consequences of our findings to open quantum systems with two

simple but illustrative examples, showing that the asymptotic τ−1 scaling is indeed absent for initially

diagonal states and that the limits of large N and large τ might not commute. More detailed work is

however necessary to understand how the geometric approach predictions can be reconciled with the results

presented here. This further analysis might focus on the role of the initial state of the full isolated system

and on the reliability of the long time predictions of effective descriptions such as Lindblad master

equations. With little effort to go beyond what we have shown here for initially diagonal states, it can be

shown that an initial state that does not commute with the full initial Hamiltonian leads to a non-zero

first-order APT correction to the excess work (as demonstrated in the inset of figure 6). Concerning

Lindblad master equations, they often imply exponential decays of correlation functions which, according

to our LRT approach, would lead to an asymptotic τ−1 scaling in the large τ limit.

Our analyses certainly leave several important open questions concerning the conditions required for the

τ−1 scaling of the excess work. In this sense, this paper consists of a critical assessment of the claims that

have been made so far within the geometric approach in quantum systems. In particular, predictions

coming from effective descriptions of open quantum systems often employ phenomenological assumptions

that should be very critically analyzed, especially those that can impact the scaling discussed here. It remains

to be proven then under which conditions truly Hamiltonian quantum dynamics might lead to the τ−1

scaling.
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Appendix A. Transverse-field Ising chain

The transverse field Ising model (TI) [80] is a one-dimensional chain with N spins and first-neighbor

interactions. Its Hamiltonian is

HTI(B) = −
1

2

⎛

⎝J

N
∑

j=1

σz
j σ

z
j+1 + B

N
∑

j=1

σx
j

⎞

⎠, (A1)

where σx,z
j are standard Pauli matrices for each spin j (with σx,z

N+1 = σx,z
1 ), J is the coupling constant and B is

the external magnetic field (the 1/2 global factor was added for later convenience). We work in units such

that � = 1. For simplicity, we assume N to be even and that the system is initially in its ground state. After a

17



New J. Phys. 24 (2022) 113037 A Soriani et al

Jordan–Wigner transform, a Fourier transform and Bogoliubov transform [80], equation (A1) is brought to

diagonal form, represented by non-interacting fermions with dispersion

ǫk(B) =

√

(B − J cos k)2 + J2 sin2 k, (A2)

for N allowed values of momentum k = (2n + 1)π/N, given integer n between −N/2 and N/2 − 1. In the

thermodynamic limit, k is a continuous variable ranging from −π to π, and sums over k are replaced by

integrals.

The dynamics of the system, when initially prepared in the ground state, can be simplified into the

dynamics of N/2 two-level systems (known as Landau–Zener systems), one for each positive value of k

[94]. The evolved ground state can be written as

|ψ(t)〉 =
⊗

k>0

(

uk(t)|↓k〉 − vk(t)|↑k〉
)

, (A3)

where |↑k〉 and |↓k〉 form a basis of the two-level system labeled by k. Placing equation (A3) into

Schrödinger’s equation leads to (omitting time-dependencies)

iu̇k = −(B − J cos k)uk − J sin k vk,

iv̇k = −J sin k uk + (B − J cos k)vk.
(A4)

The numerical results presented in this manuscript were obtained from the standard fourth-order

Runge–Kutta method applied to equation (A4).

The excess work per spin is obtained from equation (12),

wex(τ) =
1

N

∑

k>0

2ǫk

∣

∣

∣

∣

uk sin
θk

2
− vk cos

θk

2

∣

∣

∣

∣

2

, (A5)

where all quantities should be evaluated at tf , including

θk(B) = arctan

(

J sin k

B − J cos k

)

. (A6)

The system’s relaxation function is obtained straight from equation (32),

Ψ(B; t) = J2
∑

k>0

sin2 k

ǫ3
k(B)

cos(2ǫk(B)t). (A7)

Appendix B. Agreement between LRT and APT

Our goal in this appendix is to show that, for processes that are both weak and slow, the expressions for the

excess work from LRT and from APT are identical.

To begin, consider first equation (33) for the excess work calculated by means of LRT—it already

expresses the leading order of the excess work in ∆ when ∆→ 0. We want to find its adiabatic limit, that is,

the leading order in τ−1 for τ →∞. To this end, we can perform an integration by parts in the inner

integral of equation (33),

∫ tf

ti

ġ(t′)Ψi(t − t′)dt′ = ġ(tf)

∫ tf

t

Ψi(t − t′′)dt′′ − ġ(ti)

∫ ti

t

Ψ(t − t′′)dt′′ −

∫ tf

ti

g̈(t′)

∫ t′

t

Ψi(t − t′′)dt′′ dt′

and note that the last term on the right-hand side is of a higher order in τ−1 than the first two, since

ġ(t) ∝ τ−1 and g̈(t) ∝ τ−2. Hence, as long as the relaxation function Ψi is composed of sums of oscillatory

functions (as in equations (32), (38) and (A7)), we can drop the last term, and the same applies to the outer

integral in equation (33). If this is done consistently, the LRT excess work reduces to

WLRT
ex (τ) ≈

∆2

2

((

ġ2(tf) + ġ2(ti)
)

Υi(0) − 2ġ(tf)ġ(ti)Υi(τ)
)

, (B1)

where we introduced the function Υ, whose relation to Ψ is given by Ψ(λ; t) = −∂2
t Υ(λ; t). From

equation (32) we get

Υ(λ; t) = 2�2
∑

m,n

′
pn

|Fmn(λ)|2

E3
mn(λ)

cos

(

Emn(λ)

�
t

)

(B2)
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and Υi(t) = Υ(λi; t).

On the other hand, consider equation (21) for the excess work calculated by means of APT—it gives the

leading order of the excess work in τ−1 when τ →∞. Similar to above, we want to find the weak limit of

this equation, that is, its leading order in ∆ for ∆→ 0. In order to do so, we first place equations (15) and

(16) into equation (21),

WAPT(τ) = �
2
∑

m,n

′
pnEmn(λf )

∣

∣

∣

∣

Fmn(λf)

E2
mn(λf)

λ̇(tf) − eiφmn(tf )
Fmn(λi)

E2
mn(λi)

λ̇(ti)

∣

∣

∣

∣

2

.

Now, since ∆ is small, λf ≈ λi and we can replace every instance of the former with the latter (including in

the energy gap appearing in the adiabatic phases, inside the integral of equation (9)). Doing this carefully

leads to (with λ̇ = ∆ġ)

WAPT
ex (τ) ≈ �

2∆2
∑

m,n

′
pn

|Fmn(λi)|
2

E3
mn(λi)

∣

∣

∣ġ(tf) − eEmn(λi)τ/i�ġ(ti)
∣

∣

∣

2

. (B3)

Lastly, expanding the squared absolute value in equation (B3) reveals that this expression is indeed equal to

equation (B1).

Both LRT and APT predict an excess work that is quadratic in their small perturbative parameter

(∆ and τ−1, respectively). Their agreement in the simultaneously weak and slow regime—which can be

shown to hold for the microscopic state of the system, instead of the excess work—is a consequence of the

fact that both are well defined perturbation theories for the same equation, namely, Schrödinger’s equation.

Appendix C. Driven quantum Brownian motion

In this appendix we sketch the main steps to obtain equations (50) and (54). We start from equations (47)

and (48) and the corresponding Heisenberg equations to obtain

q̈k + ω2
k qk = ω2

k Q, (C1)

and

Q̈ + ω2
0Q = ω2

0λ(t) −
1

M

(

N
∑

k=1

mkω
2
k

)

Q +
1

M

N
∑

k=1

mkω
2
k qk, (C2)

where ω2
0 = κ0/M.

Plugging the solution of equation (C1),

qk(t) = qk(0) cos(ωkt) +
pk

mkωk

sin(ωkt) + ωk

∫ t

0

dt′ sin[ωk(t − t′)]Q(t′), (C3)

into equation (C2), the equation of motion for Q reads

Q̈ + ω2
0Q +

1

M

∫ t

0

dt′ χ(t − t′)Q̇(t′) = ω2
0λ(t) +

f1(t)

M
(C4)

where we have defined

χ(t) =

N
∑

k=1

mkω
2
k cos(ωkt), (C5)

and

f1(t) =

N
∑

k=1

[

mkω
2
k

(

qk(0) − Q(0)
)

cos(ωkt) + ωkpk sin(ωkt)
]

. (C6)

The solution of equation (C4) can be expressed then as

Q(t) =

(

dΦBM(t)

dt
+ΦBM(0)

)

Q(0) +ΦBM(t)
P(0)

M
+

1

M

∫ t

0

dt′ΦBM(t − t′)f2(t′)

+ ω2
0

∫ t

0

dt′ΦBM(t − t′)λ(t′), (C7)

where

f2(t) = f1(t) + Q(0)χ(t) (C8)

19



New J. Phys. 24 (2022) 113037 A Soriani et al

and

ΦBM(t) = L−1
{

[

s2 + s(χ̃(s)/M) + ω2
0

]−1
}

, (C9)

with L−1{F(s)} denoting the inverse Laplace transform of F(s). By χ̃(s), we denote the Laplace transform of

χ(t) given by equation (C5).

Taking the trace of equation (C7) over the initial equilibrium state,

ρ(0) = Z−1 exp(−βHBM(0)), (C10)

with Z = Tr exp(−βHBM(0)), β = (kBT)−1 the inverse temperature and HBM(0) given by equation (47) with

λ(0) = 0, we finally obtain the non-equilibrium average value,

〈Q(t)〉 = ω2
0

∫ t

0

dt′ΦBM(t − t′)λ(t′). (C11)

If the limit N →∞ is taken, it is convenient to introduce a continuous expression for the so-called

spectral density J(ω) [86],

J(ω) =
π

2

N
∑

k=1

mkω
3
kδ(ω − ωk), (C12)

where δ(.) denotes Dirac’s delta function. In the standard case of an Ohmic spectral density, J(ω) reads [86]

J(ω) = ηω, if ω � ωD, (C13)

where ωD is a high-frequency cutoff. In terms of J(ω), the function χ(t) is given by

χ(t) =
2

π

∫ ∞

0

dω
J(ω)

ω
cos(ωt) = 2ηδ(t), (C14)

where the last equality was obtained using equation (C13) and taking the limit ωD →∞.

The previous expression for χ(t) implies χ̃(s) = 2η. Inserting this expression in equation (C9) and

defining γ = η/M, we obtain

ΦBM(t) =
e−γt sin(Ωt)

Ω
, (C15)

where Ω2 = ω2
0 − γ2. From this expression for ΦBM(t), we obtain ΨBM(t) in (54) knowing that

ΦBM(t) = −dΨBM(t)/dt.
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