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Resumo
A busca contínua por melhorias de desempenho em sistemas de comunicações, expressadas
como maiores taxas de transmissão, robustez contra o ruído, e eficiência espectral, entre
outras, conduziu a academia para a exploração de novos esquemas e algoritmos de proces-
samento de sinais nos extremos do transmissor e receptor. Entre eles, o uso da álgebra de
quatérnios na representação e processamento dos sinais tem se mostrado como uma opção
que permite não apenas simplicidade matemática, como também melhorias de desempenho
em comparação à álgebra complexa tradicionalmente utilizada. Na presente tese, algoritmos
clássicos de sincronismo em Multiplexão Ortogonal por Divisão de Frequência (OFDM) são
reformulados usando quatérnios para ser aplicados em sinais OFDM de dupla polarização
(DP), nas quais, as componentes horizontal e vertical são processadas como uma unidade,
obtendo-se assim ganhos de desempenho demonstrados tanto de forma analítica como por
simulações numéricas. Outra aplicação onde os quatérnios têm sido utilizados com sucesso
é no projeto de códigos ortogonais e quase-ortogonais para sistemas de múltiplas entradas
e múltiplas saídas (MIMO). Nessa área, a presente tese discute a aplicação flexível dos
projetos ortogonais quaterniônicos (QOD) na exploração simultânea de diversidades de
tempo, espaço e polarização em sistemas MIMO de dupla polarização.

Em resumo, o objetivo do presente trabalho é demostrar a aplicação da álgebra dos
quatérnios nos sistemas de comunicação sem fio, ressaltando suas vantagens com relação
aos esquemas clássicos baseados em álgebra complexa, com especial ênfase nos sistemas
OFDM de dupla polarização tanto de entrada e saída única (SISO) como de múltiplas
entradas e saídas (MIMO).

Palavras-chaves: Álgebra de quatérnios; códigos de bloco espaço-temporais; sincronismo
em OFDM.



Abstract
The continuous search for enhanced performance of communications systems, in terms of
increased data rate, higher noise immunity, and spectral efficiency, has led the academy to
explore new schemes and algorithms for signal processing on both sides of the transmitter
and receiver. Among them, the use of quaternion algebra for signal representation and
processing turned up as an option that allows not only a mathematical simplification
but also performance improvements when compared to the complex algebra traditionally
used. In this thesis, we reformulate classical algorithms for OFDM synchronization, using
quaternions, to be applied to dual-polarized (DP) OFDM signals by considering both
polarization signals together as a single quaternion signal, thus obtaining performance
gains that are proven by mathematical analysis as well as computer simulations. Another
application, where quaternions have been successfully used, is in the design of orthogonal
and semi-orthogonal codes for multiple-input multiple-output (MIMO) systems. In this
area, the present thesis has shown the flexible application of quaternion orthogonal designs
(QOD) to exploit simultaneously time, space, and polarization diversities in dual-polarized
MIMO systems.

In summary, this research aims to demonstrate the application of quaternions algebra
to wireless communications systems, highlighting its advantages compared to classical
schemes based o complex algebra. Special attention was paid to dual-polarized OFDM,
both single-input single-output (SISO) and MIMO.

Keywords: Quaternion algebra; space-time block codes; OFDM synchronization.
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1 Introduction

Over the past decades, mobile communications have been characterized by
their ever-increasing need for higher speed, reliability, and capacity as well as for reduced
end-to-end latency and lower energy consumption, among others. One of the enabling
technologies for 5G communications and beyond, intended to increase the capacity and
reliability of communication links is massive Multiple-input multiple-output (MIMO)
systems; they consist of the use of a high number of antennas both in the receiver and
the transmitter sides; within these schemes, dual-polarized antennas provide additional
diversity possibilities when used along with space and time diversity.

On the other hand, quaternion algebra, traditionally applied to approach 3-D
navigation problems, has gained attention from the academy for its capacity to represent
in a rich form signals from digital colored images, as well as communications signals using
dual-polarized antennas. Therefore, it becomes important to study the application of
quaternions to dual-polarized MIMO systems.

Besides, Orthogonal frequency division multiplex (OFDM) is a key technology
adopted by a number of standards of wireless communications, due to its capacity of
mitigating Inter-symbol interference (ISI) produced by the dispersive characteristics of
wireless channels. Although the traditional application of OFDM to dual-polarized antennas
performs the processing of both polarization signals in separate OFDM engines, the use
of the Quaternion Fourier transform (QFT) allows the processing of those signals in a
holistic form, which is called in literature as Quaternion OFDM (QOFDM) [1].

Nonetheless, despite all its benefits, OFDM is known to suffer from high
sensitivity to time and frequency synchronization. A known result by Moose [2] establishes
that a carrier frequency offset smaller than 4% of the carrier spacing is needed to guarantee
a Signal to interference ratio (SIR) higher than 20dB. This drawback, which has been
extensively studied by the academy, is inherited by QOFDM. Thus, the study of either new
or adapted synchronization techniques for quaternion dual-polarized signals in QOFDM
systems becomes relevant too.

Thereby, the research work presented in this thesis exploits the use of quaternion
algebra in these two main problems, namely, MIMO dual-polarized systems and QOFDM
synchronization. In that sense, this thesis show through mathematical development that
classical algorithms intended to solve the related problems of these areas can be readily
reformulated to be used in dual-polarized systems using quaternions. Besides, the benefits
of this reformulated algorithm are shown analytically and by means of simulations.
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1.1 Literature review
Quaternions were invented by Sir William Rowan Hamilton in 1843 [3] in what

became one of the best-documented days in the history of mathematics. It was during a
walk accompanied by his wife, along the Royal Canal in Dublin, when Hamilton got the
vision of the fundamental equation

i2 = j2 = k2 = ijk = −1, (1.1)

relating the three hypercomplex roots of -1 that form a basis for quaternions. In honor of
his discovery, a stone plaque has been placed in Broom Bridge, Ireland, near where it took
place, which is shown in Figure 1.1.

Figure 1.1 – Hamilton’s discovery of quaternions grabbed in a stone plaque on Broom
Bridge - Dublin.

However, contrary to what can be thought, Hamilton’s flash of insight was not
just a moment of geniality, but the result of a period of more than ten years of trying to
extend the properties of complex numbers to three-dimensional number systems. Soon
after its discovery, Hamilton applied quaternions to space rotations in a way very similar
to the one presented by Olinde Rodrigues [4], who expressed these rotations as matrix
multiplications, with matrix elements dependent on a four-number set for all purposes
equivalent to quaternions. For this fact, a controversy about quaternions discovery persists
even until recent years [5]. Nevertheless, most authors consider Hamilton the discoverer
because of his rigorous algebraic approach and Rodrigues’ work on spatial rotation, the
precursor to quaternion discovery.

A few decades after its introduction and despite Hamilton’s expectations, quater-
nion algebra fell out of favor, being replaced by vectors [6] promoted by the mathematicians
Gibbs and Heaviside. Later, however, but still in the 19th century, quaternions were the
choice of Maxwell to synthesize its classical electromagnetism equations in 1873 [7] in
disregard of Gibbs’ vector system. Thereafter, in the past century, quaternion type-rotation
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groups found application in topics of theoretical physics, such as quantum mechanics [8],
special relativity [9], and string theory, among others [10].

In the field of mathematics, quaternions form a non-commutative division
ring, i.e., multiplication is non-commutative and a multiplicative inverse exists for every
non-zero element of the set. Its discovery preceded, and also inspired, the notion of vectors,
used by Gibbs and later by Heaviside to reformulate Maxwell’s electromagnetic equations.
Both quaternions and vectors converge into what is known actually as Clifford algebras.

In communications systems, the application of quaternions is more recent. In
1992, Ell [11] defined hypercomplex extensions of Fourier and Laplace transforms using
quaternions as well as other hypercomplex commutative algebras (HCAs), he also applied
them successfully to the analysis of two-dimensional linear time-invariant (LTI) systems.
Later, Ell and Sangwine [12] used the quaternion Fourier transform (QFT) to analyze
color images in the frequency domain, by considering the color components as parts of a
quaternion number.

Later, Said et al. [13] used complex quaternions, denoted by Hamilton as
‘biquaternions’, to split the Fourier transform of a quaternion signal into four complex
Fourier transforms. They also proved that the QFT applied over real quaternions exhibits
symmetries similar to those present in the Fourier transform of real signals.

In 2006, Wysock et al. [14] proposed a simplified channel model for dual-
polarized signals using a single quaternion variable, instead of the 2x2 complex matrix
used in MIMO; they also used this model to simulate maximum likelihood (ML) detection
over Rayleigh fading environments. Afterward, Seberry et al. [15] presented a detailed
theory of quaternion orthogonal designs (QODs), intended to be used as orthogonal
space-time-polarization block codes (STPBC) for dual-polarized MIMO systems.

The concept of analytic signal, first proposed by Gabor [16] and further studied
by Ville [17], allows representing a real modulated signal by a complex signal with
single side-band spectrum [18]. In [19], this concept was extended to include complex
signals represented by quaternion hyperanalytic signals with single orthant spectrum. The
hyperanalytic signal permits the characterization of a complex signal, probably composed
of two independent real modulated signals, by its complex instantaneous amplitude (or
envelope) and phase.

Analogously to how information can be carried in the instantaneous amplitude
or phase in continuous wave modulation, a quaternion hyperanalytic signal allows carrying
twice the amount of information in its complex envelope or phase. Nonetheless, the envelope
recovery of the so-called Orthocomplex amplitude modulation (OAM) signal, exhibits an
ambiguity problem that has been addressed by the author of this thesis in [20].

In 2012, Meloni [1] used quaternions and HCAs to model an OFDM system;
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in that work, he showed through simulations that the choice of the hypercomplex axis
for QFT has no impact on the overall performance of the system. Afterward, in [21], the
authors extended the dual-polarized QOFDM scheme to MIMO systems, by implementing
different combinations of space, time, and polarization diversities using the QODs proposed
in the literature. More recently, in [22], Qureshi et al. demonstrated that every QOD
obtained from iterative construction techniques allows linear decoupled decoding which
reduces significantly the computational load in the receiver.

In adaptive signal processing, important for equalization in wireless commu-
nications characterized by time-varying channel fading, as well as in modern machine
learning systems, quaternions have been successfully included. Quaternion least mean
square (QLMS) has been introduced in [23], the calculation of quaternion gradient has
considered both covariance and pseudocovariance in the same way as in the complex case.
A further rigorous study of the derivatives of real-valued functions of quaternion vectors,
named HR calculus after classic CR calculus, can be found in [24].

Other areas where quaternions have been successfully applied are vector-sensor
signal processing [25], array processing [26], and adaptive filtering applied to dual-polarized
channel equalization [27], among others.

1.2 Motivation and objectives
The continuous search for improved algorithms for wireless communications has

motivated the exploration of this promising area. Even though this motivation led some
researchers to produce the interesting results mentioned in the previous section, and to
the best of author’s knowledge, there were no studies on the application of quaternions to
dual-polarized systems using OFDM, which is a widely adopted technique in fundamental
technologies as mobile communications, WLAN, among others.

In that sense, a research group in the Real-Time Digital Signal Processing Lab-
oratory (RT-DSP Lab) was formed to research on the use of quaternions in communication
systems, by developing simulation tests aiming to assess its benefits. One of the early
results of this work, previous to my group’s incorporation, was the paper presented in the
2012 International Symposium on Communications and Information Technologies (ISCIT)
[1] introducing QOFDM in the literature.

1.3 Main contributions
Throughout the research, two main topics were focused on, namely, quaternion

coding for MIMO-OFDM and synchronization in dual-polarized QOFDM systems. The
main contributions achieved in such topics are:
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• To provide an overview of the technical literature about the applications of quater-
nions algebra to the communications field.

• Application of Quaternion orthogonal designs (QODs) to MIMO OFDM in order to
exploit flexible combinations of space, time and polarization diversities simultaneously.
In addition to providing an elegant approach, quaternions codes allow the use of
Maximum likelihood (ML) decoding.

• Reformulation of OFDM synchronization methods using quaternion algebra and its
application to dual-polarized quaternion OFDM. The proposed techniques exhibited
improved performance when compared to their complex counterpart. Particularly,
the variance of the Symbol time offset (STO) estimate for the proposed method
exhibited a double slope in relation to the classical method. Thorough mathematical
development, to find the theoretical limits of the proposed techniques, expressed as
the well-known Cramer-Rao lower bound (CRLB), is presented and validated by
means of simulations.

Besides, throughout the research work, the following papers were published or
presented in symposium:

• Luís G.P. Meloni, José Luis Hinostroza Ninahuanca, Osmar Tormena Jr., “Con-
struction and Analysis of Quaternion MIMO-OFDM Communications Systems”,
in Journal of Communication and Information Systems, vol. 32, No. 1, 2017. DOI:
10.14209/jcis.2017.9

• José Luis Hinostroza Ninahuanca, Osmar Tormena Jr., Silvio Oliveira S., Luís G.P.
Meloni, “Improved CFO Synchronization of Dual-Polarized OFDM Systems using
Training Symbols”, presented in XXXVIII Simpósio Brasileiro de Telecomunicações
e Processamento de Sinais - SBrT 2020.

• José Luis Hinostroza Ninahuanca, Osmar Tormena Jr., Luís G.P. Meloni, “Improved
Time and Frequency Synchronization for Dual Polarization OFDM Systems”, in
Wiley ETRI Journal, vol. 43 No. 6, 2021. DOI: 10.4218/etrij.2021-0014

1.4 General outline
This thesis is structured in five chapters. Chapter 1 presents an introduction

as well as a brief literature review concerning the application of quaternion algebra in
communications systems and related areas. Chapter 2, composed of three sections, provides
the theoretical background about quaternion algebra, dual-polarized quaternion OFDM,
and Multiple-input multiple-output (MIMO) coding using quaternions, which serve as a
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basis for the subsequent development. Chapters 3 and 4 consist of the main contributions
of the research. Each of these chapters is associated with the publications cited in the
previous section.

Finally, Chapter 5 summarizes the main conclusions of the research and present
a discussion about related future works.
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2 Theoretical Reference

This chapter presents a general background about the topics treated throughout
this research. Section 2.1 introduces some fundamental definitions and properties of
quaternion algebra, with special attention to quaternion Fourier transform. In Section 2.2,
the main characteristics of dual-polarized QOFDM are revisited. Section 2.3 presents a
basic background about quaternion orthogonal designs intended to be used in MIMO
systems. Finally, Section 2.4 briefly states the conclusions of the chapter.

2.1 Quaternion algebra
This section presents a brief review of quaternion algebra with special attention

to quaternion Fourier transform, which is fundamental for later developments.

2.1.1 Definitions and main properties

Some fundamental definitions and properties used alongside the present thesis
are presented.

Definition 2.1.1. The field of quaternions, denoted by H in honor of W. R. Hamilton,
can be defined by the four-elements number q ∈ H, composed of a real and three imaginary
components, i.e.,

q = a + bi + cj + dk, (2.1)

where a, b, c, d ∈ R and {i, j, k} form a hypercomplex orthogonal basis numbers that obey
the multiplication rules

i2 = j2 = k2 = ijk = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j, (2.2)

from which the non-commutative nature of multiplication inH results evident. However, it is
still associative, i.e., given any three quaternions q1, q2, q3 ∈ H we have (q1 q2) q3 = q1 (q2 q3).

The real components of q are denoted as ℜ{q} = a, ℑi{q} = b, ℑj{q} = c and
ℑk{q} = d.

Definition 2.1.2 (Scalar and pure quaternions). A widely used decomposition splits a
quaternion into its scalar and vector components, namely q = S(q)+V (q), where S(q) = a,
and V (q) = bi + cj + dk are the scalar and vector parts of q, respectively. Particularly,
if V (q) = 0, q is named scalar quaternion, and if S(q) = 0, q is named vector or pure
imaginary quaternion. V(H) denotes the set of pure imaginary quaternions.
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Henceforth, qs, q⃗v represent the scalar and vector parts of quaternion q, re-
spectively. Furthermore, the arrow symbol {⃗.} will be used to denote pure or vector
quaternions.

A well-known property regarding the multiplication of pure quaternions follows.

Property 2.1.1 (Multiplication of pure imaginary quaternions). Given p⃗, q⃗ ∈ V(H), it
holds that

p⃗ q⃗ = −p⃗ · q⃗ + p⃗ × q⃗, (2.3)

where (·) and (×) stand for the usual scalar and vector multiplication of three-dimensional
vectors, respectively.

This property can be readily proved through the use of scalar and vector
multiplication formulas. By using this property, a condition for commutativity in quaternion
multiplication can be found.

Property 2.1.2 (Commutativity in quaternions multiplication). Let p, q ̸= 0, ∈ H, they
are called commutable quaternion, i.e. pq = qp, if and only if, one of the following
conditions are verified

i) At least one of them is scalar, or

ii) ∃λ ∈ R / p⃗v = λq⃗v.

Proof. The first case, of multiplication by a scalar or between scalars, is straightforward.
For the second part, considering the scalar-vector decompositions of p and q, it follows

pq = (psqs + psq⃗v + qsp⃗v + p⃗vq⃗v) (2.4)
qp = (qsps + qsp⃗v + psq⃗v + q⃗vp⃗v). (2.5)

From these equations, pq = qp implies p⃗v q⃗v = q⃗vp⃗v. Then, using Property 2.1.1, the latter
condition requires p⃗v × q⃗v = 0, that is, p⃗v and q⃗v must be parallels in the sense of 3-D
vectors.

Definition 2.1.3 (Inner product and orthogonality). The inner product of two quaternions
q1 = a1 + b1i + c1j + d1k, q2 = a2 + b2i + c2j + d2k, denoted as < q1, q2 > is their usual
dot-product, i.e.

< q1, q2 >= a1a2 + b1b2 + c1c2 + d1d2. (2.6)

If < q1, q2 >= 0, we say that q1 and q2 are orthogonal quaternions.

Obviously, any scalar is orthogonal to any pure imaginary quaternion. Besides,
quaternions of the form q1 = a1 + b1i, and q2 = c2j + d2k are always orthogonal, and as
each one of these degenerate quaternions has two degrees of freedom, they are said to lie in
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orthogonal planes. Furthermore, H can be generated by the direct sum of these orthogonal
planes. The procedure of duplicating the order of an algebra using orthogonal elements
is known as Cayley-Dickson construction, after the mathematicians Arthur Cayley and
Leonard Dickson.

Definition 2.1.4 (Cayley-Dickson decomposition). Cayley Dickson(CD) decomposition
splits a quaternion into two complex numbers lying on orthogonal planes. Analogously to
the way infinite pairs of orthogonal axes can generate the complex plane, there are infinite
pairs of ‘complex’ orthogonal planes capable to produce the quaternion four-dimensional
space. Among these, the one used throughout this thesis considers planes Ci and Cjk,
spanned by the basis {1, i} and {j, k}, respectively, i.e.,

q = z1 + z2j, (2.7)

where z1 = a + bi is called simplex part of q, and denoted S(q), and z2 = c + di is called
perplex part of q, and denoted P(q). An important insight is obtained from (2.7), where
right-side multiplication of plane Ci by j generates the orthogonal plane Cjk, and both
together span H, in the same way as the real and imaginary axes of 2-D Argand plane
span C.

Definition 2.1.5 (Conjugation). The conjugate of a quaternion is obtained by opposing
the three imaginary parts, namely q∗ = a − bi − cj − dk = S(q) − V (q), or, in terms of its
CD components, q∗ = z∗

1 − z2j, where complex conjugation was used in right side.

Different from its complex counterpart, quaternion conjugation is not an
involution, but an anti-involution operation, i.e., it distributes over a product by reversing
the order of factors, that is (q1q2)∗ = q∗

2q∗
1, this property readily extends to any number of

factors.

An interesting lemma, derived in [28], allows us to reduce the computational
complexity of left-right side quaternion multiplication of a complex number when we are
interested only in the real part of the result.

Lemma 1. For a, b ∈ H and z ∈ Ci, the following relation is valid

R{azb} = R{S{a∗b∗}z∗}. (2.8)

Proof. With this aim, consider the expressions of the simplex and perplex components
of a quaternion product as a function of the components of each factor, let the CD
decomposition a = S{a} + P{a}j, b = S{b} + P{b}j, where S{a}, P{a} ∈ Ci are the
simplex and perplex parts of a, and S{b}, P{b} are those corresponding to b, respectively.
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Also, let ab = S{ab} + P{ab}j and a∗b∗ = S{a∗b∗} + P{a∗b∗}, it is easy to verify that

S{ab} = S{a}S{b} − P{a}P{b}∗, (2.9)
P{ab} = S{a}P{b} + P{a}S{b}∗, (2.10)

S{a∗b∗} = S{a}∗S{b}∗ − P{a}P{b}∗, (2.11)
P{a∗b∗} = −S{a}∗P{b} + P{a}S{b}. (2.12)

Besides, it is evident that taking the real part of a quaternion is equivalent to taking the
real part just from its simplex part. Therefore, R{azb} = R{S{azb}}, now using (2.9),
considering zb as the second quaternion in the product

R{azb} = R{S{a}S{zb} − P{a}P{zb}∗} (2.13)
= R{S{a}zS{b} − P{a}z∗P{b}∗} (2.14)
= R{S{a}∗z∗S{b}∗ − P{a}z∗P{b}∗} (2.15)
= R{[S{a}∗S{b}∗ − P{a}P{b}∗]z∗}, (2.16)

where the third equality comes from R{z} = R{z∗}. Finally, from (2.11), it comes the
lemma identity

R{azb} = R{S{a∗b∗}z∗}. (2.17)

Notice that, while the left side of (2.8) implies one complex quaternion and
one quaternion multiplication, the right side requires only one quaternion multiplication
and one complex multiplication. Thus, there is a computational gain that justifies the use
of (2.8).

Definition 2.1.6 (Norm and module). Analogously to complex numbers, the norm of q is
defined by ∥q∥ = qq∗ = q∗q = a2 + b2 + c2 + d2, and its module |q| =

√
∥q∥. Also, as in

complex case, both operations are distributive over multiplication, i.e. ∥q1 q2∥ = ∥q1∥∥q2∥.

If |q| = 1, q is called unit quaternion. It is easy to prove that the solutions
of q2 = −1 are the set of pure unit quaternion, which are denoted by using bold type
throughout this thesis. In other words, the hypercomplex roots of -1 are the set of points
in the surface of the unitary sphere centered at the origin of the 3D space of axes i, j, and
k.

Throughout this thesis, we adopt as a convention that µ stands for any pure
unit quaternion, that is, µ ∈ V(H) and |µ| = 1. Also, µ⊥ stands for a pure unit quaternion
orthogonal to µ. Finally, q̃ denotes the versor associated to q, that is, q̃ = q

|q|
.
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Definition 2.1.7 (Equivalence and involutions). Two quaternions q1 and q2 are called
similar or equivalent, denoted by q1 ∼ q2 ⇐⇒ ∃ν ∈ H, ν ̸= 0, such that [24]

q1 = νq2ν
−1. (2.18)

From (2.18), it is straightforward that S(q1) = S(q2) and ∥q1∥ = ∥q2∥. Furthermore, it
implies that V (q1) can be obtained from V (q2) through a rotation around an axis parallel
to ν. From this definition, it follows that i ∼ j ∼ k, and also q ∼ q∗.

In the particular case where ν is a pure unit quaternion, the right side of (2.18)
represents an involution operation, i.e., an operation that when applied twice produces
the original value. Using µ as usual for pure unit quaternion,

qµ = −µ q µ (2.19)

denotes the general involution operation with respect to the µ axis. It can be verified that
q1q2

µ = q2
µq1

µ, thus {.}µ is, sometimes, referred as quaternion anti-involution.

If µ is chosen among the standard basis elements of H, i.e.,{i, j, k}, three
canonical involutions are obtained,

qi = −i q i = a + bi − cj − dk

qj = −j q j = a − bi + cj − dk

qk = −k q k = a − bi − cj + dk. (2.20)

Clearly, the four real components of a quaternion can be recovered through linear combi-
nations of itself and its involutions, i.e.,

ℜ{q} = 1
4(q + qi + qj + qk) (2.21)

ℑi{q} = 1
4i

(q + qi − qj − qk) (2.22)

ℑj{q} = 1
4j

(q − qi + qj − qk) (2.23)

ℑk{q} = 1
4k

(q − qi − qj + qk) (2.24)

Definition 2.1.8 (Exponential of quaternion). The exponential of a quaternion is defined
through its Maclaurin series expansion, i.e.

eq = 1 + q1

1! + q2

2! + q3

3! + ... =
+∞∑
n=0

qn

n! . (2.25)

Property 2.1.3. The known property of the exponential of real and complex numbers

eq1+q2 = eq1eq2 = eq2eq1 (2.26)

verifies in H only ⇐⇒ q1 and q2 are commutable quaternions.
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As a consequence of properties 2.1.3 and 2.1.2, for any quaternion q = qr + q⃗v,
eq = eqreq⃗v .

Definition 2.1.9 (Euler formula). Let q⃗ ∈ V(H), be a pure quaternion. From definition
2.1.8 and by use of property 2.1.1, it can be shown that

eq⃗ = cos(|q⃗|) + q⃗

|q⃗|
sin(|q⃗|), (2.27)

or, given ρq⃗ = |q⃗|, and µq⃗ = q⃗

|q⃗|
,

eq⃗ = eρq⃗µq⃗ = cos(ρq⃗) + µq⃗ sin(ρq⃗), (2.28)

which is the quaternion form of Euler’s formula.

In (2.28), it should be noted that the exponential of a vector quaternion exhibits
a periodicity of fundamental period 2πµq, similar to the 2πi periodicity of the complex
exponential ez. Furthermore, it is readily observable that the right side of (2.28) represents
a unit quaternion with their three corresponding degrees of freedom; that is to say, any
unit quaternion can be expressed as the exponential of a pure quaternion taken from a
set of collinear vector quaternions. In fact, as the pair (2π − ρq⃗, −µq⃗) produces, on the
right side of (2.28), the same unit quaternion than the pair (ρq⃗, µq⃗), there exist two sets
of collinear vector quaternions able to represent the same unit quaternion.

For non-pure quaternions q = qr + q⃗v, from definition 2.1.9 and property 2.1.3,
it is straightforward that

eq = eqr [cos(|q⃗v|) + µq⃗v sin(|q⃗v|)], (2.29)

where µq⃗v = q⃗v

|q⃗v|
.

Definition 2.1.10 (Logarithm). Given q = qr + q⃗v, the logarithm of q is defined as

ln(q) = ln(|q|) + q⃗v

|q⃗v|
arccos( qr

|q|
), (2.30)

where the use of the arccos function prevents the logarithm from being multivalued,
which could result from the previous discussion about unit quaternion expressed as the
exponential of pure quaternions.

Definition 2.1.11 (Inverse and division). The fact that quaternions are a normed
algebra implies the existence of a multiplicative inverse for every nonzero element, namely,
q−1 = q∗

∥q∥
, for q ̸= 0. Then, quaternion division is defined as q1

q2
= q1 q−1

2 , where, again,
the order of multiplication is important.
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By use of Euler’s formula, a quaternion can also be decomposed in polar form,
analogously to the complex case.

Definition 2.1.12 (Polar form of quaternions). From (2.28), the exponential of a pure
quaternion results in a unit quaternion; equivalently, any unit quaternion can be expressed
as the exponential of a pure or vector quaternion. Following this reasoning, it can be
shown that any quaternion q = qr + q⃗v can be written in the form

q = ρeµθ with



ρ = |q|

µ = q⃗

|q⃗|
θ = arctan ( |q⃗|

qr

)

(2.31)

Two remarks must be made regarding (2.31). First, it establishes that any
quaternion can be represented by the set (ρ, µ, θ) formed by two real numbers and a pure
unit quaternion. As already mentioned, µ can be seen as a point on the surface of the
three-dimensional unit sphere, thus it can be characterized by two angles such as azimuth
and elevation. Therefore, it turns out that the original quaternion can be expressed, again,
by four real quantities, in this case, a positive real number and three angles.

The second remark in (2.31) is that because of the π period of the tangent
function, the angle θ belongs to the interval [0, π], in contrast to the complex case where it
can be any angle in [0, 2π]. A direct consequence of this is that the triplet (ρ, −µ, 2π − θ)
also produces the same quaternion when substituted into (2.31).

Definition 2.1.13 (Polar Cayley Dickson form). It is possible to obtain a polar repre-
sentation of a not-null quaternion based on Cayley-Dickson decomposition [29]. Given
q = z1 + z2j, it can be expressed as

q = AeBj , (2.32)

where A ∈ Ci is the complex modulus, and B ∈ Ci is the complex phase of q.

A = z1

|z1|
|q| (2.33)

B = −(ln[A−1q])j. (2.34)

There is a sign ambiguity in the calculation of A, from (2.32). Thus, (2.33) represents the
positive solution. A detailed derivation of the complex amplitude and phase as well as a
discussion about this ambiguity can be found in [29].

A more comprehensive treatment of quaternion algebra is beyond the scope of
this thesis; interested readers are referred to [3, 30, 31].
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2.1.2 Hypercomplex commutative algebras

The non-commutativity of quaternion multiplication led researchers to devise
the so-called Hypercomplex commutative algebras (HCAs) that overcome this problem at
the cost of not being division algebras, i.e., they lack a multiplicative inverse. These HCA
differ in the choice of the hypercomplex root of 1, they are

• HCA-i: First introduced by Ell [11], it uses i2 = 1. (i /∈ R).

• HCA-j: Presented by Pei [32], it uses j2 = 1.

• HCA-k: Proposed by Delsuc [33], it uses k2 = 1.

An interesting approach to the HCA-k, from the perspective of signal processing, is found
in [34], where the authors refer to this system as commutative (2,2)-model of quaternions.

2.1.3 Quaternion discrete Fourier transform (QDFT)

Early extensions of Fourier transform (FT) to hypercomplex numbers are found
in [33], [11], and [32]. These works introduced the hypercomplex Fourier transform (hFT)
of a bivariate function of time f(t, τ). This hFT is a bivariate function of two independent
frequency variables F (ω, ν) valued in any of the HCAs described in 2.1.2. These algebras
solve the non-commutativity issue of quaternion multiplications, with the limitation of
not being division rings, i.e., the existence of a unique multiplicative inverse for any not
null element is not granted for these HCAs.

The left-sided quaternion Fourier transform (QFT) of a quaternion-valued
function f : R → H w.r.t. the hypercomplex axis µ, defined in [35], as

Fµ(ω) =
∫ ∞

−∞
e−µωtf(t)dt, (2.35)

where, as already mentioned, µ stands for any pure unit quaternion. Throughout this
thesis, we use µ = i as the hypercomplex axis for QFT calculation, i.e.,

F (ω) =
∫ ∞

−∞
e−iωtf(t)dt. (2.36)

If we consider the CD decomposition f(t) = z1(t) + z2(t)j, where z1(t), z2(t) ∈ Ci, the
simplex and perplex parts of F (ω) can be obtained through the calculation of complex FT
of z1(t) and z2(t), respectively. Therefore, most of the properties of classical FT remain
valid for QFT, since we use the same hypercomplex axis, and we respect the order of
multiplications. Evidently, if the perplex part of f(t) vanishes, i.e., z2(t) = 0, then (2.36)
reduces to the classical FT formula.
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Since the focus of this work is on digital communications, we use the discrete
version of (2.36). Thus, the pair of QDFT f [n] ⇌ F [u] is calculated as

F [u] =
N−1∑
n=0

exp (−i2π
nu

N
)f [n], (2.37)

f [n] = 1
N

N−1∑
u=0

exp (i2π
nu

N
)F [u], (2.38)

for n, u = 0, 1, ..., N − 1.

2.1.4 Quaternion multivariate Gaussian distribution

Let X = [X1 X2 ... Xp]T , a p × 1 vector of quaternion random variables (r.v.’s),
X is said to have Gaussian or normal distribution if its joint p.d.f. is given by [36]

fX(x) =
(

π

2

)−2p

|KX |−2 exp{−2(x − mX)HK−1
X (x − mX)}, (2.39)

where mX = E[X] and KX = E[(X − mX)(X − mX)H ] are the expected value and
covariance matrix of X, respectively. Analogously to real and complex random vectors,
the notation X ∼ QN(mX , KX) is used.

For a single quaternion random variable X ∼ QN(mx, σ2), the p.d.f. is obtained
by setting p = 1 in (2.39), i.e.,

fX(x) = 4
π2σ4 exp{−2|x − mx|2

σ2 } (2.40)

For a vector X of zero-mean and i.i.d. quaternion random variables, i.e.,
E[Xi] = 0 and E[XiX

∗
j ]) = σ2

xδij, obviously KX = σ2
xIp. Therefore, from (2.39)

fX(x) =
(

2
πσ2

x

)2p

exp{−2|x|2

σ2
x

} (2.41)

It must be clarified that (2.40) is valid only when X is a proper quaternion
random vector. The concept of properness, originally proposed for complex random
processes [37] implies a vanishing pseudo-covariance. Furthermore, circular symmetry for
complex random variables is equivalent to properness. For quaternions, the extension of
this concept is not trivial [36]. Nonetheless, for the scenarios studied alongside the present
thesis, unless otherwise stated, we model additive white Gaussian noise (AWGN), in dual-
polarized channels, as being formed by four i.i.d. real random processes, thus, properness
is granted and the p.d.f. formula of (2.41) for quaternion vector random variables can be
applied to any subset of the process.
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2.1.5 Quaternion algorithms for adaptive systems

Many algorithms for adaptive systems have been recently extended to quater-
nions algebra. In this section, the most important ones which can be used for synchro-
nization and channel equalization are mentioned. Figure 2.1 shows a block diagram of the
adaptive filter problem considered in this section, where d(n) stands for the desired or
reference signal, whereas x(n) is an input signal that we intend to process through a filter
in order to obtain the closest approximation to d(n), or, equivalently, to minimize the
error signal e(n).

x(n)
Filter

Adaptive
Algorithm

∑
+

-

e(n)y(n)

d(n)

Figure 2.1 – Block diagram of a typical adaptive filtering setup.

2.1.5.1 Quaternion LMS

Quaternion least-mean-square (QLMS) is derived using the method of stochastic
gradient [23], [24], [38]. The cost function is calculated analogously to real and complex
cases, i.e., J (n) = e(n)e∗(n), where the error vector is e(n) = d(n) − wT (n)x(n).

Minimization of the stochastic gradient of J (n), taking into consideration the
non-commutative nature of quaternions [24], leads to the coefficient update formula, i.e.,

w(n + 1) = w(n) + µ(2e(n)x∗(n) − x∗(n)e(n)). (2.42)

2.1.5.2 Quaternion widely linear least-mean-square (WL-LMS)

The widely linear model allowed significant improvements in estimation prob-
lems with complex input data [39] for which the circular condition is not fulfilled. This
extended model considers not only the complex input signal but also its complex conjugate,
as shown in Figure (2.2). The output of the widely linear estimator is

y = hT x + gT x∗, (2.43)

where both h and g are the filter coefficients found through optimization of the real cost
function. Equation (2.43) can be expressed as y = [wa]T xa, where wa = [hT gT ]T , and
xa = [xT xH ]T , are called augmented variables. The impossibility of getting derivatives



CHAPTER 2. THEORETICAL REFERENCE 32

x(k) Coefficient vector
h

(.)∗
Coefficient vector

g

∑

y(k) = x̂WL(k)

y(n)

Figure 2.2 – Widely linear filtering model.

of real functions of complex variables in classic complex analysis led to the definition of
complex gradient [40], and the further development of the so-called CR calculus [41].

The extension of these developments to quaternions, named HR calculus, was
proposed by Mandic [24] et al. In that work, a quaternion-valued function f : H → H is
considered as a quadrivariate function of the quaternion argument itself together with its
three quaternion involutions, as seen in Section 2.1; namely, f(q) = f(q, qi, qj , qk). The
resulting quaternion widely linear model is

y = uT x + vT xi + gT xj + hT xk. (2.44)

By using the quaternion gradient defined in [24], the update equation of the quaternion
WL-LMS coefficients becomes

wa(n + 1) = wa(n) + µ(2ea(n)xa∗(n) − xa∗(n)ea∗(n)). (2.45)

where

wa = [uT vT gT hT ], (2.46)

xa∗ = [xT xiT xjT xkT ]T , (2.47)
ea(n) = d(n) − waT (n)xa(n). (2.48)

2.2 Dual-polarized quaternion OFDM
In this section, we briefly review the quaternion OFDM dual-polarized system,

as first proposed by Meloni [42]. In that work, the author used both quaternion and
hypercomplex commutative algebras to perform Fourier transforms. As a result, it was
demonstrated that there is no difference in terms of BER performance between both
quaternion and HCA schemes, nor by choosing different hypercomplex units as axes for
the transforms.

OFDM is based on the discrete Fourier transform. For the quaternion OFDM
scheme, [42] proved that the quaternion Fourier pair shown in (2.37) and (2.38) is suitable
for this modulation technique. The quaternion OFDM transmitter system is illustrated
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in Figure 2.3. In general, a forward error correction code can be applied to the binary
sequence. Other important modules used in OFDM schemes, such as carrier and frame
synchronizers, and time and frequency interleaving, can be included as needed. Particularly,
time and frequency synchronization for QOFM was a principal research topic of this thesis
and will be approached in Chapter 3.

At the transmitter input of Figure 2.3, a serial-to-parallel conversion block
stores N samples for computing the inverse Fourier transform.

Quaternion

IFFT

Linear

PA

Cyclic 

extension

bits

Pulse

shaper

and DAC

Cayley-
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decomposition
Cross-
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antennas

Modulation
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Figure 2.3 – Quaternion OFDM transmitter and receiver.

The quaternion symbol Qm results from the CD form, with µ = j axis, i.e.,

Qm = Qm,1 + Qm,2j, (2.49)

where Qm,1 and Qm,2 are complex symbols belonging to Ci. Incoming bit-streams are
separated into two groups b0,i and b1,i, for 0 ≤ i ≤ Nb − 1; each of these groups defines
an independent constellation, such that the compound constellation has 22Nb entries [42].
In the same way as complex OFDM, it is possible to use different digital modulation
schemes (such as QPSK, 16QAM, and others) for different subcarriers and for each complex
component, according to specific reliability needs or channel conditions.

The quaternion IFFT block performs the inverse quaternion discrete Fourier
transform. The left-sided version with axis µ = j of (2.37) and (2.38) are used, which can
be implemented efficiently using two classical fast Fourier transform on both simplex and
perplex parts independently. Thus, the complexity of these algorithms, without regard to
the Cayley-Dickson decomposition, is twice that of the classical Fourier transform.

The next block appends the cyclic prefix, which, as in the complex case, provides
a guard interval that avoids inter-symbol interference (ISI) and it is also used for frame
synchronization, as it will be shown in Chapter 3. By using the time-shifting property of
the quaternion Fourier transform, any consecutive N samples of the OFDM symbol m

could be used; however, the last symbols are better for combating ISI.
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After cyclic extension, quaternion symbols are serialized and passed through
CD decomposition block, which splits the quaternion symbols into a pair of complex
symbols to be transmitted by each element of the cross-polarized antenna. The last blocks
of the transmitter side are typical in wireless communications systems; these blocks consist
of a pulse shaper, a digital-to-analog converter followed by a mixer, and a power amplifier.

At the receiver, a low noise amplifier (LNA) prepares the signal for down-con-
version and analog-to-digital, and the first step is to compose the symplectic form using
(2.49); next, data is buffered for performing the Fourier transform. First, cyclic extension
is removed before applying the direct quaternion Fourier transform. The data equalization
may be conducted in the Fourier domain, as illustrated in Figure 2.3, but it might be
applied in the time domain as well. The symplectic decomposition is performed inside the
hypercomplex demodulation block; thereafter, a classical demodulator can be used.

Even though the QOFDM scheme presented in Figure 2.3 exhibit similar
computational when compared to classical dual-polarized OFDM, the new scheme allows
processing both polarization signals as a unit, which, in turn, enable the use of compact
notations and the development of new signal processing techniques for synchronization,
equalization, among others.

2.2.1 Channel model

In [43], the authors demonstrated that dual-polarized signals can be represented
using quaternions. Later, [14] presented a model for dual-polarized channels using a single
quaternion gain, instead of a matrix of four complex elements. Even though this result
allows us to describe the transmission in dual-polarized systems in a compact form, this
model is restricted by a relationship between cross-polar gains that is not necessarily
fulfilled in practice. Therefore, throughout the present thesis, we use the classical 2 × 2
channel model, namely,

H×
m =

h11
m h12

m

h21
m h22

m

 , (2.50)

where each element is a complex channel gain, h11
m and h22

m for signals received with the
same polarization, and h12

m and h21
m for cross-polar scatter. More detailed descriptions for

link model can be found in [42], [21]. Although (2.50) refers to a flat fading model for
each cross and copolar channel, the same equation can be extended to frequency selective
fading channel by considering each hij

m term as a vector channel impulse response and
performing the corresponding convolution operations.

In an ideal scenario, the cross-polar scatter terms h12
m and h21

m vanish, this
condition is represented by the uncoupled matrix,

H⊥
m =

hh
m 0
0 hv

m.

 (2.51)
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Nevertheless, in practice, there are two main mechanisms of depolarization that contribute
to the appearance of the cross-polar interference terms. Namely, the imperfect cross-
polar-isolation (XPI) that characterizes real antennas and the wave scattering along the
propagation channel, represented as cross-polar ratio (XPR) [44]. The latter phenomenon
can be effectively combated by using adaptive filtering algorithms in cross-polarization
interference cancelation (XPIC) techniques. Therefore, in the search for simplicity, we only
consider, for simulation, the imperfect cross-polar isolation of antennas at transmitting
and receiving sides, modeled by matrices Mt and Mr, respectively, so that

H×
m = MrH

⊥
mMt, (2.52)

and,

Mt = γt

 1 √
χt

√
χt 1

 , Mr = γr

 1 √
χr

√
χr 1

 , (2.53)

where XPI, ordinarily expressed in dB, is defined as χ−1
t and χ−1

r at transmitting and
receivinging sides, respectively, and γt and γr are power normalization factors, computed
as

γt =
√

2
1 + √

χt

and γr =
√

2
1 + √

χr

. (2.54)

Using the following notation, which makes use of the Cayley-Dickson decom-
position, the transmitted quaternion symbol Qm = Qm,1 + Qm,2µ can be represented as
[Qm,1, Qm,2], which are the simplex and perplex parts of Qm. After symbol transmission
over the cross-polarized link, defined by (2.52), the received quaternion symbol plus noise
is Ym = QmH×

m + Z, or, explicitly,

Ym = [Ym,1, Ym,2]
= [Qm,1, Qm,2]H×

m + [Z1, Z2]
= [(Qm,1H

hh
m + Qm,2H

vh
m), (Qm,1 Hhv

m + Qm,2H
vv
m)]

+ [Z1, Z2], (2.55)

where Z1 and Z2 are complex additive noise sources with identical variance.

As is well known, although the multiple benefits of OFDM inherited by QOFDM,
these schemes share also a high sensitivity to time and frequency errors, which can destroy
orthogonality between carriers, a fundamental condition for detection. Hence, the next
section shows the effects of time and frequency impairments on the QOFDM signal.
Afterward, Chapter 3 will present the proposed synchronization techniques to deal with
these impairments.

2.2.2 Effects of time and frequency impairments in QOFDM

In classical OFDM, the existence of a frequency mismatch between receiver and
transmitter oscillators, modeled by the CFO ϵ, destroys orthogonality between subcarriers
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and produces intercarrier interference (ICI). The qualitative effects of this frequency
impairment on the interference level and over the overall performance are studied in [2]
and [45], respectively. On the other hand, with regard to time synchronization, the receiver
should guarantee the availability of N time samples to recover the frequency domain
symbol by use of Fourier transform. Therefore, the operation window in which a time offset
is allowed is equivalent to the difference between the cyclic prefix time and the duration of
the channel response.

A similar analysis to the one presented in [2] can be easily performed using
Eqs. (2.37) and (2.38), with the result that both time and frequency impairment sensitivity
are also presented in the new QOFDM scheme.

2.3 Quaternion coding for MIMO
This section shows the main techniques available in the literature to con-

struct quaternion orthogonal space-time block codes (QOSTBC), also called quaternion
orthogonal designs (QOD).

2.3.1 Introduction

Space-time block codes (STBC) are derivations of Alamouti’s code [46] first
introduced by Tarok et al. [47] used to exploit combinations of space, time, and frequency
diversity in MIMO systems over fading channels. The fundamental idea behind STBC
is to send copies of a constellation symbol through a number of transmit antennas over
different time-slots or carriers, providing transmission with a diversity gain comparable to
legacy schemes of maximal-ration receive combining (MRRC), where multiple copies of
the same signal are received and combined in a set of antennas in the receiving side to
perform joint detection. The design of STBCs was largely studied in the literature for real
and complex constellations. Nevertheless, the quaternion case has only been focused more
recently in [15]. The following sections present the definition of orthogonal designs over
real, complex, and quaternion constellations, as well as briefly review some techniques to
find them out both from scratch and using known designs as building blocks.

2.3.2 Orthogonal designs

A real orthogonal design (ROD) of order n and type {s1, s2, ..., sp}, denoted
OD(n, s1, s2, .., sp), on real variables x1, x2, ...xp, is an order n square matrix which entries
are in the set {0, ±x1, ±x2, ..., ±xp} that verifies

AAT =
( p∑

h=1
shx2

h

)
In. (2.56)
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Some examples of ROD are

D1 =
 x1 x2

−x2 x1

 , D2 =


x1 x2 x3 x4

−x2 x1 −x4 x3

−x3 x4 x1 −x2

−x4 −x3 x2 x1.

 . (2.57)

which are OD(2, 1, 1) and OD(4, 1, 1, 1, 1), respectively. From the communication perspec-
tive, each row of these matrices represents a symbol time slot (STS), and each column
represent the symbols sequentially transmitted by each antenna. Also, p is the number
of transmitted symbols during the transmission of one block. The code rate of an OD is
defined as the number of transmitted symbols by time slot unit, i.e.,

R = p

n
. (2.58)

A complex orthogonal design (COD) of order n and type {s1, s2, ..., sp} on
complex variables z1, z2, ...zp, denoted COD(n, s1, ..., sp), is a square matrix with entries
in the set {0, ±z1, ±z∗

1 , ±z2, ±z∗
2 ..., ±zp, ±z∗

p} that verifies

AAH =
( p∑

h=1
sh|z2

h|
)

In. (2.59)

Also, a COD on real variables x1, x2, ...xp and type {s1, s2, ..., sp} is a square matrix with
entries in the set {0, ±x1, ±ix1, ±x2, ±ix2..., ±xp, ±ixp} satisfying

AAH =
( p∑

h=1
shx2

h

)
In. (2.60)

The matrices

D3 =
 z1 z2

−z∗
2 z∗

1

 , D4 =
 x1 x2i

x2i x1

 (2.61)

are examples of COD(2, 1, 1) on complex and on real variables, respectively. Particularly,
D3 is the well-known Alamouti’s code [46].

A quaternion orthogonal design (QOD) on quaternion variables q1, q2, ...qu is
an orthogonal matrix with elements in the set {0, ±q1, ±q∗

1, ±q2, ±q∗
2..., ±qu, ±q∗

u} that
satisfies

AQA =
( u∑

h=1
sh|qh|2

)
In, (2.62)

where (.)Q stands for transpose quaternion conjugate operation. It is also allowed right or
left multiplication of the entries of A by quaternion numbers.

The fact that AQA is diagonal ensures the transmitted signals are uncorrelated
at the receiver. An orthogonal design that has entries that are linear combinations of
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the permitted variables of the respective sets is said to be a design that performs linear
processing. Calderbank et al. proposed a quaternion-based QOD [48], but it was not with
linear processing.

A classical result by Radon [49] establishes the existence of orthogonal designs
only for square matrices with dimensions 2, 4, and 8. Although this result was derived for
real matrices, Tarokh [47] extended it to complex as well as non-square matrices. Therefore,
for an r × n matrix, the maximum diversity gain, i.e., the transmission power reduction
allowed by the diversity scheme to achieve the same level of reliability compared to a
single non-diversity transmission [50], is rn, which is achieved when the matrix is full-rank.
In general, for an m-rank matrix of order r × n, the diversity gain is mn [47]. Also, for
r × n matrices, the code rate is R = p

r
.

Analogously to the complex case, it is possible to define QODs on real or on
complex variables. Therefore, many methods of construction of CODs from RODs can be
applied to produce QODs starting from RODs or CODs.

2.3.3 Construction techniques based in real or complex orthogonal designs

A number of techniques are inspired or make use of ROD as well as COD, some
of them are explained in this section.

2.3.3.1 Quaternion permutation matrices

A quaternion permutation matrix M is an n-order square matrix with exactly
one non-zero element per row and per column, which verifies MQM = MMQ = In. By
using quaternion permutation matrices and OD or CODs, it is possible to produce QOD’s
through the following theorem [15].

Theorem 1. Let D be an r × n ROD or COD of type (s1, s2, ..., su) and let M and N

quaternion permutation matrices of order r × r and n × n, respectively. Then MDN is an
r × n QOD of type (s1, s2, ..., su).

Example 2.3.1. Let the Alamouti’s code, D3 =
 z1 z2

−z∗
2 z∗

1

 , and the quaternion permuta-

tion matrices M =
0 k

i 0

, and N = I2. By using Theorem 1, the matrix Q1 = MD3N =−kz∗
2 kz∗

1

iz1 iz2

, with z1, z2 ∈ Ci, is a QOD.

The above technique for developing QODs is very powerful, due to its simplicity
and the broad availability of real and complex ODs.
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2.3.3.2 Symmetric-paired designs

Two CODs are said to be symmetric-paired if ABH is symmetric and/or if
AHB is symmetric. The following theorem provides a method to produce a QOD from
two symmetric-paired CODs.

Theorem 2. Let A and B, COD of type (n, n, s1, s2, ..., su) and (n, n, t1, t2, ..., tu), respec-
tively, on complex variables z1, z2, ..., zu. If AHB is symmetric, then A + Bj is a QOD of
type (n, n, s1 + t1, s2 + t2, ..., su + tu) on complex variables z1, z2, ..., zu.

Example 2.3.2. A simple way to produce symmetric-paired CODs is by permutation

of columns of a COD [51]. For example, it is straightforward that D3 =
 z1 z2

−z∗
2 z∗

1

 , and

D5 =
z2 z1

z∗
1 −z∗

2

 are symmetric paired. Thus, Q2 = D3 + D5j =
 z1 + z2j z2 + z1j

−z∗
2 + z∗

1j z∗
1 − z∗

2j


is a QOD. If we consider q = z1 + z2j, then Q2 can be rewritten as

 q −iqk

−kqi −kqk


As seen in Examples 2.3.1 and 2.3.2, real and complex OD allow us to easily

produce QOD. Nonetheless, in both cases, we move from a full rate complex code to half
rate quaternion codes. Thus, techniques based in real or complex OD result in QOD with
limited performance when compared with the original designs.

2.3.4 Construction techniques of quaternion codes.

2.3.4.1 Quaternion commuting variables

Two quaternion variables a and b are said to quaternion-commute if ab∗ = ba∗.
The use of a quaternion-commuting pair allows us to produce QOD by replacing complex

variables with quaternions and making some adjustments. Some examples are
a b

b −a

 ora jb

ib −ka

. These QODs have their code rate limited by the restriction of a and b to be

quaternion-commuting.

2.3.4.2 Amicable designs

Real OD, A and B are said to be amicable if ABT = BAT [52]. The existence
of amicable designs was studied in [53], and they were used to build COD in [54]. Also,
A and B are said to be complex amicable designs if ABH = BAH ; and are said to be
quaternion amicable designs if ABQ = BAQ. Although, [15] shows an example of a pair of
quaternion amicable designs, the question of its existence and constructions remains open.
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As seen in the previous sections, the use of ODs and CODs to develop QODs
exhibits simplicity at the cost of limited performance. On the other hand, a full quaternion
approach demands the existence of some mathematical relationships between the quaternion
variable, which also compromises the code rate. Thus, the search for efficient QOD
construction methods is an ongoing study.

Another research topic is the construction of QOD for a high number of
antennas, i.e., with high dimensions. A classic approach uses small designs as building
blocks for higher-dimension matrices. Among them, the quaternion coordinate interleaved
orthogonal design is explained below.

2.3.5 Quaternion coordinate interleaved orthogonal designs

The so-called coordinate interleaved orthogonal design (CIOD) was generalized
to quaternions in [55]. Through this technique, a 4n × 4m QOD can be built based on any
known n × m QOD, by using the structure

Q =


Θ1(q̃0, ..., q̃K/4−1) 0 0 0

0 Θ2(q̃K/4, ..., q̃2K/4−1) 0 0
0 0 Θ3(q̃K/2, ..., q̃3K/4−1) 0
0 0 0 Θ4(q̃3K/4, ..., q̃K−1)

 ,

(2.63)
where the original quaternion variables are qi = αi + βii + γij + δik, i = 0, ..., K − 1,
with mod(K, 4) = 0, and the interleaved variables qi are obtained through an appropriate
combination of components of 4 equally-spaced qi’s. Namely, q̃i = αi + βmod(i+K/4,K)i +
γmod(i+K/2,K)j + δmod(i+3K/4,K)k; and the corresponding ΘJ , J = 1, ..., 4 are n × m QODs,
which can even be the same.

As an example, consider the matrix Q =
 p q

q∗ −p∗

, which is the Alamouti

QOD over commuting variables p and q. Then, the matrix

q̃0 q̃1 0 0 0 0 0 0
q̃∗

1 −q̃∗
0 0 0 0 0 0 0

0 0 q̃2 q̃3 0 0 0 0
0 0 q̃∗

3 −q̃∗
2 0 0 0 0

0 0 0 0 q̃4 q̃5 0 0
0 0 0 0 q̃∗

5 −q̃∗
4 0 0

0 0 0 0 0 0 q̃6 q̃7

0 0 0 0 0 0 q̃∗
7 −q̃∗

6,



(2.64)
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where

q̃0 = α0 + β2i + γ4j + δ6k (2.65)
q̃1 = α1 + β3i + γ5j + δ7k (2.66)
q̃2 = α2 + β4i + γ6j + δ0k (2.67)
q̃3 = α3 + β5i + γ7j + δ1k (2.68)
q̃4 = α4 + β6i + γ0j + δ2k (2.69)
q̃5 = α5 + β7i + γ1j + δ3k (2.70)
q̃6 = α6 + β0i + γ2j + δ4k (2.71)
q̃7 = α7 + β1i + γ3j + δ5k (2.72)

is the quaternion CIOD in variables, qi = αi + βii + γij + δik, i = 0, ..., 7.

2.4 Conclusions
This chapter presented a concise theoretical review of quaternion algebra,

necessary to understand the ongoing developments and simulations. For an introduction
to hypercomplex number systems, the readers can refer to [56], and for a comprehensive
treatment of quaternions and their properties, we recommend Ward’s book [57]. Also, [30]
exhibits the theory of Fourier transform from a practical perspective, with special focus
on image processing.

In this chapter, it was also presented a brief review of QOFDM, as proposed in
[1]; special attention was put on its high sensitivity to time and frequency impairments, a
well-known issue of OFDM that remains valid in its quaternion extension.

Besides, some techniques to design quaternion codes at the literature for
implementation of space-time-polarization diversities in MIMO systems were presented.
There, we included techniques based on existing real and complex designs, and also methods
to produce high-order quaternion designs by using smaller ones as building blocks.

The latter two areas, QOFDM synchronization, and quaternion MIMO systems,
were the main areas where the present research work made its contributions.

The next chapter focuses on demonstrating new algorithms for QOFDM syn-
chronization based on existing techniques found in the literature.
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3 Synchronization techniques for QOFDM

Over the past decades, OFDM was successfully applied in several wireless
technologies such as Wi-Fi, and 5G mobile communications, among others. The main
advantages of OFDM are its efficient use of radio-frequency spectrum, and its robustness
against frequency selective fading and inter-symbol interference (ISI), among others.
Nevertheless, OFDM relies on mutual orthogonality between subcarriers and this attribute
makes it highly sensitive to synchronization impairments both in time and in carrier
frequency, which demands the use of precise synchronization techniques. This drawback
is inherited by dual-polarized QOFDM due to homomorphism between QFT and FT.
However, as shown in this chapter, classic techniques for OFDM synchronization can be
successfully reformulated to the hypercomplex scenario.

In this chapter, we present a brief review of the synchronization problem in
QOFDM inherited from complex OFDM. Then, we introduce the quaternion reformulation
of classical techniques for OFDM synchronization to the quaternion case, for both data-
aided and non-data-aided cases. A new and elegant expression for STO CRLB is derived.
Finally, the performance of these methods is evaluated through Monte Carlo simulations
and some considerations are highlighted.

3.1 Synchronization techniques based on cyclic prefix

3.1.1 Reformulation of Van de Beek algorithm

The synchronization technique based on cyclic prefix for complex OFDM was
proposed by [58, 59], which uses the periodicity of the cyclic prefix to jointly estimate the
STO as well as CFO. This section extends this technique to quaternion OFDM resulting in
an improved synchronization algorithm for DP-OFDM. The simplex and perplex parts of
the n-th quaternionic sample to transmit sn, respectively sn,1 and sn,2, may be considered
i.i.d. random variables. These components come from an inverse quaternion Fourier
transform, which can be decomposed into two sums of N complex symbols weighted
by orthogonal basis functions. Therefore, for N large enough according to the central
limit theorem, each of these components has a normal distribution. Moreover, the CD
composition of independent complex random variables with normal distribution has also
normal distribution.

For easing the mathematical development, a non-dispersive AWGN channel
and ideal discrimination polarization paths with unitary gain are considered. Therefore,
the effect of time and frequency impairments between transmitter and receiver sides allows
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modeling the received signal as

yn = ei2πϵn/N sn−δ + zn, (3.1)

where δ is the integer symbol time offset (STO) and ϵ the carrier frequency offset (CFO)
in the receiver and zn is additive proper white Gaussian noise. As it is considered that the
complex components of the quaternion s1 and s2 ∈ Ci, the exponential factor on the right
side of (3.1) should be applied by the left of the quaternion delayed symbol sn−δ so that it
introduces the same carrier frequency offset over both components.

At the receiver side, L = 2N + Nc consecutive quaternion samples are observed
forming a vector y = [y0, y1, ..., yL−1]T . Non-italic is used for vector containing all samples
in the observation interval. Inside this sequence, there is exactly one quaternion OFDM
symbol that begins at unknown index δ, as illustrated in Figure 3.1.

Observation interval
Symbol i − 1 Symbol i Symbol i + 1

Ic Id Ie

0 δ L − 1

Figure 3.1 – Observation interval for synchronization based on cyclic prefix.

From Figure 3.1, sample sets containing cyclic prefix and the ending Nc samples
of OFDM symbol are defined as

Ic ≜ {δ, ..., δ + Nc − 1}, and
Ie ≜ {δ + N, ..., δ + N + Nc − 1},

whereas Id stands for data samples. Notice that for ∀n ∈ Ic,

E[yny∗
n+l] =


σ2

s + σ2
z for l = 0

σ2
se−i2πϵ for l = N

0 otherwise,

(3.2)

where σ2
s = E[|sn|2] and σ2

z = E[|zn|2] are the signal and noise variances, respectively.

The log-likelihood function for δ and ϵ parameters is

Λ(y; δ, ϵ) = log f(y|δ, ϵ),

where f is the p.d.f. of y.

If individual observations yn’s were statistically independent, f would be
expressed as a multiplication of PDFs for individual observations. But according to (3.2),
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some samples are dependent, so by dropping the dependence on δ and ϵ at the PDFs for
light notation, the log-likelihood function is

Λ(y; δ, ϵ) = log
[ ∏

n/∈{Ic∪Ie}
f(yn)

︸ ︷︷ ︸
independent factors

∏
n∈Ic

f(yn, yn+N)︸ ︷︷ ︸
dependent factors

]
.

By taking now in the first product, all samples inside the observation interval, the above
equation is

Λ(y; δ, ϵ) = log
[∏

∀ n

f(yn)
∏

n∈Ic

f(yn, yn+N)
f(yn)f(yn+N)

]
.

The joint PDF in the above equation is represented by a vector formed by a couple of
samples y = [yn, yn+N ]T , where here italic notation is used. We observe that the first
factor in the above equation is independent of δ since the product is taken for any n, (in
other words, for ∀δ the product is always the same), and independent of ϵ (since all four
components of the quaternion are mutually independent), so that Λ(y; δ, ϵ) is

Λ(y; δ, ϵ) = c1 + log
[ δ+Nc−1∏

n=δ

f(y)
f(yn)f(yn+N)

]
, (3.3)

by expressing now explicitly the limits in the second product and for any constant c1. The
PDFs needed in above equation are defined in (2.39) and (2.40).

By defining
ρ ≜

σ2
s

σ2
s + σ2

z

= SNR
SNR + 1 , (3.4)

the maximization of the log-likelihood function is shown at Section 3.1.3.1 to be

Λ(y; δ, ϵ) =
δ+Nc−1∑

n=δ

R{S(yny∗
n+N)ei2πϵ}

−ρ

2(|yn|2 + |yn+N |2)]. (3.5)

Finally, let

γ(l) ≜
l+Nc−1∑

n=l

S{yny∗
n+N}, (3.6)

Φ(l) ≜
1
2

l+Nc−1∑
n=l

(|yn|2 + |yn+N |2), (3.7)

for l = 1, 2, ..., M , then (3.5) becomes

Λ(y; δ, ϵ) = |γ(δ)| cos(2πϵ + ∠γ(δ)) − ρΦ(δ). (3.8)

For obtaining the values of δ and ϵ that maximize (3.8), it should be observed that ϵ only
appears in the argument of the cosine function. Therefore, ϵ̂ is chosen in order to maximize
the cosine function, that is,

ϵ̂ = − 1
2π

∠γ(δ). (3.9)
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The δ̂ STO can be first obtained considering that ϵ̂ will be estimated by using the above
equation at γ(δ̂), therefore from (3.8), it follows

δ̂ = arg max
δ

[|γ(δ)| − ρΦ(δ)]. (3.10)

It should be noted that although the estimation expressions have been derived by using
quaternion algebra, an alternative implementation can be performed by using complex
operations on the simplex and perplex parts of the received signal. In particular, (3.6) and
(3.7) can also be calculated as

γ(l) ≜
l+Nc−1∑

n=l

(yn,1 y∗
n+N,1 + yn,2 y∗

n+N,2), (3.11)

Φ(l) ≜ 1
2

l+Nc−1∑
n=l

(|yn,1|2 + |yn,2|2 + |yn+N,1|2 + |yn+N,2|2), (3.12)

with homomorphic estimators in (3.9) and (3.10). These equations allow estimating the com-
putation complexity of the proposed algorithm by comparing them with their corresponding
counterparts in the classical algorithm. They also ease the practical implementation.

3.1.2 Simulation results

Monte Carlo (MC) simulations were performed to corroborate the theoretical de-
velopment of OFDM timing and frequency offset estimation for single and dual-polarization
antennas. For all conducted simulations, if not otherwise specified, the size of the FFT
is N = 256, cyclic prefix size is Nc = 64, the number of virtual carriers is Nv = 17,
modulation is QPSK, and AWGN channels are used. For fair result comparisons, the
transmit power for SP and DP scenarios are the same, which means that for instance in
the SP case if the transmit power is 1 W, this power is equally distributed per polarization
in the dual case. The DP simulations use the quaternion OFDM scheme as presented
in [42]. Moreover, simulation results are compared to theoretical CRLBs, as derived or
reformulated in Section 3.1.3.

3.1.2.1 Symbol time offset

The simulation focuses on synchronization based on the cyclic prefix for both
scenarios, single and dual polarization. The results are shown in Figure 3.2 for STO
estimates. The number of MC simulation runs is 1 × 105 for SNR from −10 dB up to 20
dB, and from this value up to 30 dB is 1 × 106. The first remarkable observation is that
the threshold effect is much better for the DP case in comparison to SP one, showing a
difference of around 10 dB. On another note, as indicated in the theoretical development,
the CRLB line for the DP case has double the slope of the SP case, which allows observing
at SNR = 20 dB, a gain greater than one order of magnitude in the variance of the
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Figure 3.2 – Simulation results of SP and DP antennas systems: STO estimate variance
versus SNR (dB) based on cyclic prefix approach, CRLBs are represented in
continuous lines.

estimator. For comparison purposes, although somewhat unreal, the figure also includes
the case of two independent-double estimate (IDE) for each of the channel pairs using
complex-valued half-power signals OFDM modulated, where it is considered that both
channels have the same gains, and they are submitted to the same time and frequency
offsets. In this case, the average of two STO estimates is rounded to the near integer. The
observed performance of this combined estimator, as expected, exhibits the same slope as
the estimator of the SP case, as well as a performance gain of around 3 dB.

3.1.2.2 Carrier frequency offset

Results for CFO estimators are shown in Figure 3.3, where the number of MC
runs is the same as in the previous case. The threshold effects for both cases are similar
for CFO. Furthermore, as predicted by the theoretical development, 3 dB gain is noticed
from DP over SP antenna systems. The average combined IDE real values of CFO show
similar behavior to the DP case.

Although the above comparisons are fair in the sense that they use the same
transmission power in both SP and DP cases, dual polarization systems use two low-noise
amplifiers. A more conservative comparison would be considered to double the noise power
in these scenarios, which means to displace the DP curves 3 dB to the right side. For
instance, a vertical line at 10 dB for SP case would be compared to 7 dB-line of DP case.
Even though the dual-slope line for log-variance versus SNR would still be better for STO
estimates, CFO estimates will present similar behaviors.
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Figure 3.3 – Simulation results of SP and DP antenna systems for CFO estimator variances
and CRLBs for cyclic prefix-based methods represented in continuous lines.
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Figure 3.4 – Finite XPD for DP and IDE cases.

3.1.2.3 Finite XPD

The aim of this simulation is to show the performance of the estimators for finite
cross-polarization discrimination (XPD). For this purpose, the channel model in (2.55)
is applied. XPD is an overall parameter of the communication link, [21] which is set for
direct and cross-polar paths to give the desired discrimination in dB without changing
the transmit power. These real-valued parameters give the magnitude of the cross-polar
discrimination parameters in (2.55) expressed in polar coordinates. Their phases are taken
from a uniform random generator in the interval (−π, π). These parameters remain fixed
at each OFDM transmit symbol.

Figure 3.4 shows that systems of DP antennas are quite immune to the cross-
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polarization discrimination factor, even at 3 dB XPD. The reason for this fact is the time
alignment of CP information (see Figure 3.1) at the direct and cross-polar paths. This
fact is even more evident in the IDE case, where no discernible variations are observed.

3.1.3 Cramer-Rao lower bound

The Cramer-Rao lower bound on the error variance of parameter estimation is
extensively used in engineering problems as a practical metric for the performance analysis
of estimators. In order to simplify the STO CRLB derivation, a common practice in OFDM
synchronization is firstly to estimate the STO considering no carrier offset, and afterward
to perform the CFO estimation. This practice is justified by the fact that STO is based on
the partial correlation of the received signals, in which the symbol samples are submitted
to the same carrier offset. Therefore, here ϵ is considered zero. In [60], CRLB is derived by
using pulse-shaped OFDM, which conducts to numerical methods for computing bounds.
Here a different approach is applied based on computing the second derivative of the
log-likelihood function. The CRLB for the STO estimate derived in Section 3.1.3.2 is

Var(δ̂) ≥ 1 − ρ2

ρ2(N−Nv

N
)
, (3.13)

where Nv is the number of virtual sub-carriers (including DC sub-carrier). The variance of
the product of the simplex and the perplex parts of random variables taken from these
zero-mean independent random processes is equal to the product of respective variances.
In the light of this observation, aiming to extend (3.13) for receivers of DP antennas, the
following approximation holds:

CRLB[δ̂]DP ≃
(
CRLB[δ̂]SP

)2
. (3.14)

A formal demonstration of this result is under study by the authors.

The CRLB of CFO estimates from DP antennas is derived in Section 3.1.3.3.
Table 3.1 summarizes the CRLBs derived or reformulated for both STO and CFO estimates,
as well as it includes CRLB for CP in [61].

Table 3.1 – Cramer-Rao lower bounds

CRLB Ref.

CRLB[δ̂]SP ≥ 1 − ρ2

ρ2(N−Nv

N
)

(3.13)

CRLB[δ̂]DP ≃ (CRLB[δ̂]DP)2 (3.14)
CRLB[ϵ̂]SP ≥ 1/(4π2Nc SNR) [61]
CRLB[ϵ̂]DP ≃ CRLB[ϵ̂]SP/2 (3.36)
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3.1.3.1 The log-likelihood function

By use of a property of quaternion conjugation and the interchangeability
between conjugation and expected value operators, that is, E[yn+ly

∗
n] = (E[yny∗

n+l])∗, the
covariance matrix for quaternion-valued samples is calculated as

Ky = (σ2
s + σ2

z)
 1 ρe−i2πϵ

ρei2πϵ 1

 . (3.15)

The joint PDF of the vector formed by a couple of samples y = [yn, yn+N ]T is
obtained by substituting (3.15) into (2.39), which yields

f(yn, yn+N) = 16
π4(σ2

s + σ2
z)4(1 − ρ2)2

exp
{−2

[
|yn|2 + |yn+N |2 − 2ρR{y∗

ne−i2πϵyn+N}
]

(σ2
s + σ2

z)(1 − ρ2)

}
. (3.16)

Besides, from (2.40), the PDF of yn and yn+N are

f(yn) = 4
π2(σ2

s + σ2
z)2 exp

(
− 2|yn|2

σ2
s + σ2

z

)
, (3.17)

and

f(yn+N) = 4
π2(σ2

s + σ2
z)2 exp

(
− 2|yn+N |2

σ2
s + σ2

z

)
. (3.18)

For Ky, PDFs in (2.39) and (2.40) are derived and substituted into (3.3), which
after some algebraic manipulations gives

Λ(y; δ, ϵ) = c1 + c2

δ+Nc−1∑
n=δ

[
R{y∗

ne−i2πϵyn+N} − ρ

2(|yn|2 + |yn+N |2)
]
, (3.19)

where c1 and c2 are constants independent of δ and ϵ. Therefore, maximizing (3.19) is
equivalent to maximizing only the sum of the right side of (3.19), that is,

Λ(y; δ, ϵ) =
δ+Nc−1∑

n=δ

[R{y∗
ne−i2πϵyn+N} − ρ

2(|yn|2 + |yn+N |2)]. (3.20)

In order to simplify the above equation, the identity

R{azb} = R{S{a∗b∗}z∗}, (3.21)

demonstrated in (2.8), is used.
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3.1.3.2 CRLB for STO estimate

The CRLB for STO estimate is developed here using complex-valued samples
and considering ϵ = 0. The log-likelihood function, in this case, is [58]

Λ(y; δ) = c1 + c2

[
Re{γ(δ)} − ρϕ(δ)

]
, (3.22)

where c1 and c2 are constants independent of δ. Considering in (3.3) that the real and
imaginary parts of yn and yn+N are independent, the latter constant explicitly is

c2 = ρ

2(σ2
s + σ2

z)(1 − ρ2) . (3.23)

The CRLB is determined by [62]

Var(δ̂) ≥ 1
−E[∂2Λ(y;δ)

∂δ2 ]
. (3.24)

According to Lemma 2 below, the expected value of the log-likelihood has a triangular
shape around δ̂, so that in the first derivative of Λ(y; δ) the constant c1 vanishes, and
therefore it has a bipolar pulse shape. The second derivative of the expression in brackets
in (3.22) is proportional to the amplitude of this pulse at optimum δ, being equal to
−2[(N − Nv)/N ]σ2

s , where Nv is the number of virtual sub-carriers. A simulation that
illustrates this important result is conducted in Section 3.1.3.4 for easy understanding.
This second derivative and (3.23) in (3.24) conducts to

Var(δ̂) ≥ (1 − ρ2)(σ2
s + σ2

z)
ρ(N−Nv

N
)σ2

s

,

and by using (3.4), the CRLB can be expressed as (3.13).

Lemma 2. The expected value of the log-likelihood function exhibits a triangular shape
around δ at the optimum position for a displacement of α, that is,

E[Λ(y; δ + α)] = −|α|σ2
s . (3.25)

Proof. Let α > 0, therefore

E[Λ(y; δ + α)] = E
[
Re

{Nc−1∑
n=0

yn+δ+αy∗
n+N+δ+α

}
− ρ

2

Nc−1∑
n=0

|yn+δ+α|2 + |yn+N+δ+α|2
]
. (3.26)

By splitting the first sum into two ones, it follows

E[Λ(y; δ + α)] = E
[
Re

{Nc−1−α∑
n=0

yn+δ+αy∗
n+N+δ+α +

Nc−1∑
n=Nc−α

yn+δ+αy∗
n+N+δ+α

}

− ρ

2

Nc−1∑
n=0

|yn+δ+α|2 + |yn+N+δ+α|2
]
. (3.27)
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Observe that, being δ the initial index of Ic interval, all indexes of terms yn+δ+α in the
first sum also ∈ Ic, therefore

E
[
Re

{Nc−1−α∑
n=0

yn+δ+αy∗
n+N+δ+α

}]
= Re

{N−1−α∑
n=0

E
[
(sn+δ+α + zn+δ+α)(s∗

n+N+δ+α + z∗
n+N+δ+α)

]}

= Re

{Nc−1−α∑
n=0

E[|sn+δ+α|2]
}

= (Nc − α)σ2
s , (3.28)

and that at the second sum, samples indexed ∈ Id, therefore yn+δ+α and yn+N+δ+α are
independent. By applying (3.28) and (3.4) in (3.27), it gives

E[Λ(y; δ + α)] = (Nc − α)σ2
s − ρ

2

Nc−1∑
n=0

2σ2
y = −ασ2

s . (3.29)

Similarly, for α < 0, it follows

E[Λ(y; δ + α)] = ασ2
s ,

which conducts to (3.25).

3.1.3.3 CRLB for CFO estimate

In order to derive the CRLB of the CFO estimates for the CP method, it is
considered δ = 0. In other words, the STO has been perfectly estimated and corrected
prior to the CFO estimation, which can be achieved by applying one of the STO estimators.
Thus, the received signal in (3.1) is modeled simply by

yn = ei2πϵn/Nsn + zn, (3.30)

where the quaternion-valued received samples can be limited to one OFDM symbol, i.e.,
y = [y0, y1, ..., yM−1]T . The CRLB for the variance of any unbiased CFO estimator is lower
bounded [62] by

Var(ϵ̂) ≥ 1
−E[∂2Λ(y;ϵ)

∂ϵ2 ]
, (3.31)

where Λ(y; ϵ) ≜ log f(y|ϵ) is the log-likelihood function of y, given the true-value ϵ, whose
calculation was derived in Section 3.1.1 for the joint ML estimation. Here as starting point,
it is found the CRLB from (3.19), since c1 is independent of ϵ, as well as it is the negative
term in the inner summation, therefore

∂2Λ(y; ϵ)
∂ϵ2 = c2

∂2

∂ϵ2

[ ∑
m∈Ic

R{y∗
me−i2πϵym+N}

]
(3.32)
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where c2 = 4ρ/[(σ2
s + σ2

n)(1 − ρ2)], and ρ is defined in (3.4). In this way,

E[−∂2Λ(y; ϵ)
∂ϵ2 ] = c3

∑
m∈Ic

E[R{y∗
me−i2πϵym+N}]

= c3
∑

m∈Ic

E[R{S(ymy∗
m+N)ei2πϵ}]

= c3
∑

m∈Ic

R{S(E[ymy∗
m+N ])ei2πϵ}, (3.33)

where c3 = 4π2c2, and the second line was obtained by using the property (2.8). Also,
from (3.2), E[ymy∗

m+N ] = σ2
se−i2πϵ for m ∈ Ic, by substituting this and the expression of

c3 into (3.33), this gives

E[−∂2Λ(y; ϵ)
∂ϵ2 ] = 16π2ρ2Nc

1 − ρ2 , (3.34)

which lead to the CRLB of the CFO estimate

Var(ϵ̂) ≥ 1 − ρ2

16π2ρ2Nc

. (3.35)

As expected, this result shows 3 dB gain when compared to SP case [61]. Moreover, at
high SNR 1−ρ2

ρ2 ≃ 2
SNR

. Therefore, it gives

Var(ϵ̂) >
1

8π2NcSNR . (3.36)

3.1.3.4 Estimate of log-likelihood function

For illustration purposes, Figure 3.5(a) shows an estimate of the log-likelihood
function Λ(y; δ) by means of time averaging over 10,000 runs for a STO equal to 120
samples at SNR = 20dB for complex-valued signals. The number of virtual sub-carriers
is 33, and all other simulation parameters are the same as the previous ones. One can
observe that the log-likelihood function presents a triangular shape around the STO
value, as shown in Section 3.1.3.2, Lemma 2. In order to verify the log-likelihood for a
small symbol time offset, the simulations were conducted over interpolated signal by an
oversampling factor of 32. This interpolation process uses the zero padding technique in
the FFT domain [63]. The same behavior of the log-likelihood function is also noticed,
exhibiting a triangular shape, as observed in the small panel in the figure. Figure 3.5(b)
shows a time-averaging estimate of the 2nd-order central derivative of Λ(y; δ), where the
minimum value is −2[(N − Nv)/N ]σ2

s = −1.742, for unit signal variance. The small panel
in the figure shows the 2nd-order central derivative of the over-sampled signal.

3.2 Synchronization techniques based on training symbols
Synchronization based on training sequence is used in OFDM systems operating

at bursty packaged data using a frame structure. The method presented in this section
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Figure 3.5 – (a) Time-averaging estimate of Λ(y; δ). (b) Time-averaging estimate of the
second-derivative of Λ(y; δ).

can be applied to find the start of the frame, as well as for carrier frequency offset (CFO)
estimation by the use of training sequences present in one or more consecutive OFDM
symbols.

3.2.1 Reformulation of Schmidl and Cox algorithm

The classic algorithm for complex OFDM using training symbols was proposed
by Schimdl and Cox [64], which uses a periodic training sequence known as preamble,
consisting of one or two OFDM symbols transmitted at the beginning of the frame. These
training symbols are constructed so that, apart from the cyclic extension, they exhibit
in the time domain two equal halves. For this purpose, it is possible to conceive these
sequences by a pseudo-noise (PN) generator applied directly in the time domain, as well
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as in the frequency domain, where the PN sequence is transmitted at even sub-carrier
frequencies, and zeros are placed at odd ones. Therefore, the inverse Fourier transform
exhibits the desired symmetry in time. These training sequences are used to detect the
frame start. It can also be used for refining CFO estimation, allowing fractional CFO,
denoted by ϵ, where ϵ < 1. The carrier frequency integer offset may be determined by
using the second OFDM symbol. These training sequences have also an important role in
fast channel response estimation, as for example in the case of IEEE 802.15.4, [65], where
a long term field (LTF) is used for fast equalization and synchronization.

L L

I II Im II I

Frame i − 1 Frame i

Preambles
Pr. 1 Pr. 2

d d+L d+2L

Figure 3.6 – Preamble sequence at frame beginning for synchronization based on training
preamble, where middle samples Im are identical to those of cyclic prefix I.

The proposed method is based on the estimation of the partial autocorrelation
function of the received sequence yn. For that, let L = N/2, and I is the cyclic prefix range
as illustrated in Figure 3.6. If the conjugate of a sample from the first half is multiplied by
a sample at L samples apart, and considering that the channel response remains the same
during an OFDM symbol, the effect of the channel should cancel, and the result will have
phase πϵ.

By placing the training sequence quaternion samples X0, X1, . . . , XL−1 at even
subcarriers of the quaternion OFDM symbol, the transmit symbols in time domain are

xn = xn,1 + xn,2j = 1
N

L−1∑
l=0

ei2πn(2l)/NXl (3.37)

for n = 0, 1, ..., N − 1.

Consider initially an estimator, which will be justified in the sequence, computed
for instant d sample-by-sample

P (d) =
L−1∑
m=0

S{rd+mr∗
d+m+L},

R(d) =
L−1∑
m=0

|rd+m+L|2,
(3.38)

where R(d) is used for normalization of P (d). These equations may be computed recursively
as

P (d + 1) = P (d) + S{rd+Lr∗
d+2L} − S{rdr∗

d+L},

R(d + 1) = R(d) + |rd+2L|2 − |rd+L|2.
(3.39)



CHAPTER 3. SYNCHRONIZATION TECHNIQUES FOR QOFDM 55

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Normalized timing offset

T
im

in
g

m
e
tr

ic

Figure 3.7 – Example of timing metric for synchronization based on training sequence
(SNR = 10 dB).

Therefore, a time metric is defined as

M(d) = |P (d)|2
[R(d))]2 . (3.40)

This metric exhibits a plateau for values of index d ∈ I, and a rising and falling time equal
to N/2 as shown in Figure 3.7 for Nc/N = 0.125, where x-axis represents the symbol time
offset (STO) normalized to the OFDM symbol duration. These results are similar to the
complex technique [64].

A peak detector may be used for the STO estimation. Therefore, considering
the quaternion OFDM symbol is already synchronized in time, the received signal for each
polarization after removing the cyclic prefix is

rn,1 = yn,1 + zn,1, (3.41)
rn,2 = yn,2 + zn,2, (3.42)

where zn,1 and zn,2 are the AWGN components, so they are independent complex Gaussian
variables with zero mean and variance σ2/2. The signal components of rn,1 and rn,2 are,
respectively,

yn,1 = 1
N

∑L−1
l=0 ei2πn(2l+ϵ)/NXl,1H

11
2l

+ 1
N

∑L−1
l=0 ei2πn(2l+ϵ)/NXl,2H

21
2l

(3.43)

and
yn,2 = 1

N

∑L−1
l=0 ei2πn(2l+ϵ)/NXl,1H

12
2l

+ 1
N

∑L−1
l=0 ei2πn(2l+ϵ)/NXl,2H

22
2l .

(3.44)

The CD compositions of these components give rn = rn,1 + rn,2j, zn = zn,1 + zn,2j, and
yn = yn,1 + yn,2j. Besides, we observe from (3.43) and (3.44) that

yn+L,1 = eiπϵyn,1, (3.45)
yn+L,2 = eiπϵyn,2, (3.46)
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and therefore yn+L = eiπϵ yn, for n = 0, 1, ..., L − 1. As a consequence, it follows

rnr∗
n+L = (yn + zn)(eiπϵyn + zn+L)∗ (3.47)

= |yn|2e−iπϵ + ynz∗
n+L + zny∗

ne−iπϵ + znz∗
n+L. (3.48)

When considering expected values in the above equation, it is evident that only the first
term contains information about ϵ and, additionally, that the perplex component of this
term is null. Furthermore, the last three terms represent noise components for estimation,
and they have both simplex and perplex parts different from zero. Therefore, it is possible
to suppress half of the noise components by taking only the simplex part of the terms in
(3.48), i.e., the modified estimator for quaternion case results

ϵ̂ = − 1
π
∠P (d̂), (3.49)

where P (d) = ∑L−1
n=0 S{rd+nr∗

d+n+L} is evaluated at the optimum index d̂ inside the CP
interval I, as shown in Figure 3.6. As can be observed from the above equation, the CFO
estimator range is the interval (−1, 1) times the frequency resolution, for P (d̂) argument
in (−π, π) range.

The Cramer-Rao lower bound (CRLB) of the above estimator is derived in
Section 3.2.3, which shows a gain of 3 dB of the CFO estimator variance when compared
to the complex counterpart.

As a final remark, one observes that the metrics P (d), R(d), and therefore M(d)
can be expressed in terms of simplex and perplex parts of the observed signal, namely:

P (d) =
L−1∑
m=0

(rd+m,1r
∗
d+m+L,1 + rd+m,2r

∗
d+m+L,2),

R(d) =
L−1∑
m=0

(|rd+m+L,1|2 + |rd+m+L,2|2),
(3.50)

using only complex algebra. Therefore, we can observe that the use of quaternion algebra
has conducted to the derivation of a new improved synchronization algorithm that can be
implemented by the use of only complex-valued variables.

3.2.2 Simulation results

The algorithm presented for carrier frequency offset estimation was simulated
for dual-polarized quaternion OFDM and compared to single-polarized complex OFDM,
considering only an ideal dual-polarization link model of the channel without cross-
polarization interference. For all conducted simulations, N = 256 was used as the size
of the FFT, and cyclic prefix size was Nc = 64; for a total of 105 iterations performed
for each case. For a fair comparison, the power transmission used for each element of the
orthogonally polarized antenna of the quaternion case is half the power transmitted over
the unique antenna of the complex case, setting the same irradiated power of the complex
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Figure 3.8 – CFO estimator variance compared to SP case.

case. A total of 104 frames is transmitted in each case over the same AWGN channel. All
conducted simulations use quaternion OFDM as in [42].

Simulation results are shown in Figure 3.8, where continuous lines correspond
to theoretical CRLBs, according to Table 3.1. In this simulation, we used only one
preamble symbol for estimating the fractional part of the CFO. Results show a 3 dB
gain of estimator variance when quaternions are compared to single-polarized OFDM
[64]. This performance improvement is attributed to diversity gain resulted from using
dual-polarization transmissions.

3.2.3 Cramér-Rao lower bound

In [64], authors showed that a CFO estimator obtained by partial correlation
in time domain, as the one derived in (3.49), is the maximum-likelihood estimator (MLE),
and consequently attains the CRLB at high signal to noise ratio (SNR). Thus, appealing
to the isomorphism between complex and quaternion estimators, one can conclude that
the proposed estimator also attains its corresponding CRLB under the same condition. In
order to obtain the variance of the proposed estimator, the method in [2] is used. It should
be noted that P (d̂) ∈ Ci is a complex number with angle −πϵ̂, so the rotated complex
P (d̂)eiπϵ has arg(P (d̂)eiπϵ) = −πϵ̂ + πϵ = −π(ϵ̂ − ϵ), from which the estimation error is
derived as

ϵ̂ − ϵ = − 1
π

arg[
L−1∑
n=0

S{rd̂+nr∗
d̂+n+L

}eiπϵ]. (3.51)

As we are interested in the variance of CFO estimation, given that time synchronization
was previously carried out, we can consider d̂ = 0, without loss of generality. Besides, as
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complex factor eiπϵ ∈ Ci, it can be placed inside the simplex operator. Therefore,

ϵ̂ − ϵ = − 1
π

arctan
Im[

L−1∑
n=0

S{rnr∗
n+Leiπϵ}]

Re[
L−1∑
n=0

S{rnr∗
n+Leiπϵ}]

 (3.52)

= − 1
π

arctan


L−1∑
n=0

Ii[rnr∗
n+Leiπϵ]

L−1∑
n=0

R[rnr∗
n+Leiπϵ]

, (3.53)

which, for SNR high enough to produce small estimation errors, it reduces to

ϵ̂ − ϵ ≈ − 1
π

L−1∑
n=0

Ii[rnr∗
n+Leiπϵ]

L−1∑
n=0

R[rnr∗
n+Leiπϵ]

. (3.54)

Besides, by repeating (3.48) for convenience,

rnr∗
n+Leiπϵ = |yn|2 + ynz∗

n+Leiπϵ + zny∗
n + znz∗

n+Leiπϵ, (3.55)

leads up to E[rnr∗
n+Leiπϵ] = |yn|2, due to independence between signal and noise, and to

the fact of zn is WGN.

In (3.55), it should be noted that the last term corresponds to a product of
two i.i.d. quaternion Gaussian r.v.’s, namely zn and z∗

n+Leiπϵ. At high SNR, the p.d.f. of
this term becomes more concentrated around the origin of 4D space than its individual
factors, which appear in second and third terms weighted by deterministic signal samples
yn and y∗

n, respectively. In other words, at high SNR, the last term is distributed over a
4D sphere of ratio much lower than for the second and third terms. Thus, for the sake of
simplicity, we can henceforth ignore the last term. Also, notice that the first term on the
right side of (3.55) is deterministic, since expected values are taken with respect to noise
components, so let

αn = ynz∗
n+Leiπϵ + zny∗

n, (3.56)

the random part of rnr∗
n+Leiπϵ in (3.55). Under the assumption that both zn and zn+L

are circularly symmetric and independent, it follows that αn is also circularly symmetric,
i.e. its real and three imaginary parts are zero-mean i.i.d. Gaussian real r.v.’s. Thus,
numerator and denominator at right side of (3.54) are independent, so that expected value
can be distributed, then it follows that E[ϵ̂ − ϵ] ≈ 0, i.e., the estimator is unbiased, and
Var[ϵ̂] = E[(ϵ̂ − ϵ)2] reduces to

Var[ϵ̂] = 1
π2

E

[(
L−1∑
n=0

Ii[αn]
)2
]

E

[(
L−1∑
n=0

(|yn|2 + R[αn])
)2
] . (3.57)
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As aforementioned, real and imaginary parts of αn are zero-mean Gaussian real r.v.’s, each
one with variance equal to a quarter of VAR[αn], i.e.,

Var[R[αn]] = Var[Ii[αn]] = 1
4E

[
|αn|2

]
(3.58)

= 1
4E

[
|yn|2|zn+L|2 + |zn|2|yn|2+

ynz∗
n+Leiπϵynz∗

n + zny∗
ne−iπϵzn+Ly∗

n

] (3.59)

= 1
4 |yn|2

(
E[|zn+L|2] + E[|zn|2]

)
= σ2

2 |yn|2. (3.60)

This result, along with the independence between αn and αm, for n ̸= m, implies that

L−1∑
n=0

Ii[αn] ∼ N(0,
σ2

2

L−1∑
n=0

|yn|2) (3.61)

L−1∑
n=0

(|yn|2 + R[αn]) ∼ N(
L−1∑
n=0

|yn|2, σ2

2

L−1∑
n=0

|yn|2). (3.62)

Therefore, (3.57) reduces to

Var[ϵ̂] = 1
π2

σ2

2

L−1∑
n=0

|yn|2

σ2

2

L−1∑
n=0

|yn|2 +
(

L−1∑
n=0

|yn|2
)2 (3.63)

=
π2

(
1 +

L−1∑
n=0

|yn|2

σ2/2

)−1

. (3.64)

In the above equation, for L high enough, an approximation of the sum of
the numerator is Lσ2

y, where σ2
y is the mean power of the signal. Using this result, (3.64)

expressed in terms of SNR = σ2
y/σ2 gives

Var[ϵ̂] = 1
π2(1 + 2L SNR) , (3.65)

which, for high SNR, gives the bound

CRLB = 1
2π2L SNR . (3.66)

3.3 Conclusions
This chapter presented synchronization techniques for dual-polarized QOFDM

systems, based on classical OFDM synchronization algorithms. These techniques were
divided into that based on training symbols, inspired in the Schmidl & Cox algorithm [64],
and that based on cyclic prefix, taking Van de Beek’s work [58] as reference.
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In general, the use of quaternions allowed compact and elegant representations
for dual-polarized signals. Moreover, quaternion techniques exhibited improved performance
for estimation of CFO and STO, both in cyclic prefix and training symbol scenarios; as
expected due to diversity gain and the efficient use of quaternion algebra. In the STO
estimation, this gain is expressed as a double slope in the logarithmic-scale graph variance
vs. SNR, when compared to single polarization and to the independent-double estimates
case.

For all scenarios, the CRLB was calculated for STO and CFO estimates, and
Monte Carlo simulations were performed in order to validate these results. As expected,
the proposed techniques produce unbiased estimators that successfully achieve their
corresponding CRLB for high SNR values. For low SNR, the generalized Barankin bound
(BB) can be used [66], but for the sake of simplicity, these cases were left out of the scope
of the present thesis.

Although the proposed techniques were fully developed by using quaternion
notation, their practical implementations can be carried out using complex algebra. The
corresponding complex equations were readily deduced and presented at the end of their
respective sections.

Finally, the results obtained in this chapter, by reformulating classic synchro-
nization algorithms, encourage us to consider, in future work, other synchronization
methods, such as the use of pilots.



61

4 MIMO-OFDM using dual-polarized anten-
nas and quaternions

MIMO-OFDM is the main air interface technology used in 4G and 5G mobile
communications. In this chapter, we present the application of QODs discussed in Chapter 2,
for dual-polarized MIMO OFDM systems, in order to implement flexible combinations
of space, time, and polarization diversity schemes. Section 4.1 summarizes the basics of
MIMO systems using OFDM from a classic perspective; the quaternion MIMO OFDM
scheme is presented in Section 4.2. Finally, Section 4.3 exhibits the simulation results for
different scenarios of combined diversities.

4.1 MIMO OFDM review
OFDM is a modulation technique widely used in wireless communications.

Its implementation uses discrete Fourier transforms (DFTs) to transform a frequency-
selective fading channel into several flat fading sub-channels in the frequency domain, thus
leading to efficient use of the radio spectrum and, consequently, providing high data rates
transmission. OFDM is found in a number of modern communications systems such as
wireless mobile communications, broadcasting of digital radio and television signals, and
wireless local area network (LAN). The discrete Fourier transform can also be viewed
as a modulation technique with several transmit subcarriers, which are equally spaced
in frequency; these subcarriers are defined by the base functions of the transform. For
transmission, not all subcarriers are used for data modulation: some are reserved as guard
frequencies to provide robustness against interference from adjacent channels (Ng), and
some are reserved for synchronization of pilot subcarriers (Np). Pilot carriers are also used
for channel equalization. Message bit-streams are grouped for modulating subcarriers of
all other Fourier transform base functions (consisting of Nl payload subcarriers).

In the transmitter, serial-to-parallel data conversion allows mapping of the
message bit-stream according to the constellation in the modulation, so as to form a
discrete Fourier transform vector of size N = Nl + Ng + Np. Generally, N is chosen to be
a power of 2 to take the advantage of fast Fourier transform algorithms. Thus, OFDM can
be viewed as a block or symbol vector transmission system. For each OFDM symbol, N

carriers are prepared for computing the inverse Fourier transform. Therefore, this vector is
time-dependent, changing at mTs for each OFDM symbol period Ts, and containing N

subcarriers, that is,

Xm = [Xm[0] Xm[1] . . . Xm[N − 1]]T , (4.1)
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where T represents the vector transpose. This vector is then submitted to the inverse
Fourier transform. In the time domain, the last Nc block samples are repeated at their
beginning, creating a cyclic extension which is used as a time guard interval. Typically, Nc

is chosen to be 1/4, 1/8, 1/16, or 1/32 of the size N of the FFT. Therefore, in the time
domain, the OFDM symbol has a length of Ns = N + Nc, which is cyclically extended
into a vector

xc
m = [xm[N − Nc] . . . xm[N − 1] xm[0] . . . xm[N − 1]]T . (4.2)

It is important to note that it is possible to use different modulation techniques
for different groups of subcarriers. Note that during the period Ts = NsT , the vector xc

m

is serially transmitted by the sequence x [n], where T is the sampling period.

In typical OFDM modulation, the signal sequence x [n] is transmitted through
a frequency-selective fading channel of duration equivalent to LT , such that the causal
response of the channel link is hm[n] = 0, for n < 0 and for n > L. To avoid inter-symbol
interference, the time guard interval is Nc ≥ L. Typically, we assume that the channel
response is invariant during the OFDM symbol period, in which case, the receive signal is
simply the convolution of hm[n] with the sequence x [n], i.e., y[n] = x [n] ∗ hm[n]; however,
hm[n] varies for each symbol m. At the receiver side, the sequence y[n] is segmented
symbol-to-symbol, resulting in the sequence yc

m[n].

After removing the cyclic samples of the time guard interval, one obtains a
received time vector of size N

ym = [yc
m[Nc] yc

m[Nc + 1] . . . yc
m[Nc + N − 1]]T . (4.3)

Convolution in the time domain corresponds to the product in the DFT domain,
that is, for the cyclic-prefix-removed sequences,

Ym[k] = Xm[k]Hm[k] + Zm[k], k = 0, 1, . . . , N − 1, (4.4)

where Hm[k] is the DFT of hm[n], and Zm[k] is the DFT of the channel noise at OFDM
symbol m. This expression can be expressed in matrix form as

Ym = XmHm + Zm, (4.5)

where Xm is a diagonal matrix whose elements are the DFT sequence Xm[k], Hm and
Zm are, respectively, the frequency response of the channel and the DFT of the channel
noise, both referred to the OFDM symbol m. This equation means that the OFDM with a
cyclic prefix transforms a frequency-selective fading channel into N perfectly flat fading
sub-channels.
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Figure 4.1 – Space-time OFDM transmit diversity system.

4.1.1 Transmit diversity in time domain

MIMO technique has been introduced to classical OFDM. The direct extension
of Alamouti space-time coding to this modulation [67] requires two OFDM symbols, as
shown in Figure 4.1. This code application achieves diversity gains over frequency-selective
fading channels. Note that this scheme will use one OFDM engine for each transmitting
antenna. Therefore, after the serial-to-parallel conversion block, two data blocks are created

Xm = diag{Xm[0], Xm[1], . . . , Xm[N − 1]},

Xm+1 = diag{Xm+1[0], Xm+1[1], . . . , Xm+1[N − 1]}.

At the upper transmitter in the first OFDM symbol time slot, Xm is transmitted, followed
by −X∗

m+1 in the second time slot. At the second transmitter, Xm+1 is transmitted first,
followed by X∗

m.

The equivalent space-time block code transmit matrix is

C =
 Xm Xm+1

−X∗
m+1 X∗

m

 ,

whose elements are the OFDM symbol matrices and their conjugates. The first row of the
matrix C corresponds to time slot m and the second row corresponds to time slot m + 1;
the first column of the matrix C corresponds to the signal transmitted from the 1st antenna
and the second column from the 2nd antenna. Because H(1,1)

m and H(2,1)
m are the respective

DFTs of the channel unit responses h(1,1)
m [n] and h(2,1)

m [n], where h(r,s)
m [n] represents the

channel fading gain of the link from transmit antenna r to receive antenna s, and because
these responses are considered constant during two consecutive OFDM symbol periods,
the correspondent received vectors is given by Y = CH + Z, or, explicitly, Ym

Ym+1

 =
 Xm Xm+1

−X∗
m+1 X∗

m

H(1,1)
m

H(2,1)
m

+
 Zm

Zm+1

 ,

where Zm and Zm+1 are noise components. By rearranging the above equation, one can
write  Ym

Y ∗
m+1

 =
H(1,1)

m H(2,1)
m

H(2,1)∗
m −H(1,1)∗

m

 Xm

Xm+1

+
 Zm

Z∗
m+1

 , (4.6)
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where H(1,1)
m and H(2,1)

m are diagonal matrices, and Xm and Xm+1 are column vectors.
By neglecting noise components in the above equation, estimates X̂m and X̂m+1 of the
transmitted information at receiver are X̂m

X̂m+1

 = Hm

 Ym

Y ∗
m+1

 = δ−1

H(1,1)∗
m H(2,1)

m

H(2,1)∗
m −H(1,1)

m

  Ym

Y ∗
m+1

 , (4.7)

where Hm is the Alamouti linear decoding matrix. This matrix is the inverse of the system
matrix in (4.6), and its opposite determinant δ = (∥H(1,1)

m ∥2
F + ∥H(2,1)

m ∥2
F) is the sum of

the Frobenius norm of the respective channels. Explicitly, these estimates are, by inserting
(4.6) in (4.7), given by

X̂m = δ−1(H(1,1)∗
m Ym + H(2,1)

m Y ∗
m+1) = Xm + Z

′

m

X̂m+1 = δ−1(H(2,1)∗
m Ym − H(1,1)

m Y ∗
m+1) = Xm+1 + Z

′

m+1,

where Z
′
m and Z

′
m+1 are combination of noises filtered by the channel responses. There-

fore, these estimates are the transmitted symbols plus noise components filtered by the
communication links. The above combined signal-plus-noise components are then sent to
the maximum likelihood detector.

4.1.2 Transmitter diversity in the frequency domain

Diversity can also be exploited in the frequency domain [68]. Figure 4.2 presents
a block diagram of a system using orthogonal space-frequency block coding with two
transmit and one receive antennas. This system is a simple extension of space-time coding
to the frequency domain.

As in the case of transmitter diversity in the time domain, one OFDM engine
is used for each transmitter antenna. After the serial-to-parallel conversion block, the data
symbol Xm = [Xm[0] Xm[1] . . . Xm[N − 1]]T is Alamouti coded into two matrices as
follows

X(1)
m = diag{Xm[0], −X∗

m[1], . . . , Xm[N − 2], X∗
m[N − 1]},

X(2)
m = diag{Xm[1], X∗

m[0], . . . , Xm[N − 1], X∗
m[N − 2]}.

Unlike space-time diversity, in the same OFDM block instant m, X(1)
m is transmitted from

the first antenna while X(2)
m is transmitted from the second antenna. For a better description

of this modulation technique, it is useful to decompose the matrix Xm = diag{Xm} into its
even and odd components using the following notation Xe

m, Xo
m. By doing the same for X(1)

m

and X(2)
m , we obtain X(1)e

m , X(1)o
m , X(2)e

m , and X(2)o
m . Thus, the equivalent space-frequency

block coding matrix will be

C =
 Xe

m Xo
m

−Xo∗
m Xe∗

m

 .
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Figure 4.2 – Space-frequency OFDM transmit diversity system.

The received signal vector is Ym = CHm + Zm. In a similar way to that in the previous
section, we use a rearranged channel model

Ym = H(1,1)
m X(1)

m + H(2,1)
m X(2)

m + Zm,

where H(1,1)
m and H(2,1)

m are diagonal matrices whose diagonal elements are the respective
unit responses of h(1,1)

m [n] and h(2,1)
m [n]. Splitting Ym into its even and odd components,

and doing in similar way for matrices H(1,1)
m and H(2,1)

m , we obtain

Y e
m = H(1,1)e

m X(1)e
m + H(2,1)e

m X(2)e
m + Ze

m

Y o
m = H(1,1)o

m X(1)o
m + H(2,1)o

m X(2)o
m + Zo

m,

where Ze
m and Zo

m are noise components. In a similar way to space-time coding, using
linear decoding Alamouti matrix and considering even and odd adjacent propagation
channel responses as approximately equal, this conducts, respectively, to the estimates of
X̂e

m and X̂o
m at the receiver:

X̂e
m = δ−1(H(1,1)e∗

m Y e
m + H(2,1)e

m Y o∗
m ) = Xe

m + Ze′

m

X̂o
m = δ−1(H(2,1)e∗

m Y e
m − H(1,1)e

m Y o∗
m ) = Xo

m + Zo′

m,

where δ = (∥H(1,1)e
m ∥2

F + ∥H(2,1)e
m ∥2

F), and Ze′
m and Zo′

m are combinations of filtered noises
by the channel responses. These terms are the even and odd components of the estimate
X̂m, which are sent to the maximum likelihood detector.

Other SF codes proposed in the literature guarantee full-rate and full-diversity
transmission in MIMO-OFDM systems [69].

4.2 MIMO-QOFDM scheme
The proposed MIMO-OFDM system is shown in Fig 4.3. The system uses Mt

and Mr dual-polarized antennas on the transmitting and receiving sides, respectively. The
diversity encoder splits and encodes the input bit stream according to the QOD and the
adopted strategy of diversity.
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Figure 4.3 – Quaternion MIMO-OFDM system using cross-polarized antennas.

At the transmitter, Mt dual-polarized antennas are used. Mr dual-polarized
antennas are used at the receiver. In general, the frequency-selective fading channel for
each pair Tx-Rx has L independent delay paths, and this channel remains constant over
the QOFDM symbol period. The unit response from the transmit antenna r to the receive
antenna s for each pair of elements of the cross-polarized antennas is

h⋊⋉(r,s)
m [n] =

L∑
l=0

α
⋊⋉(r,s)
l δ(n − n⋊⋉

l ), (4.8)

where α
⋊⋉(r,s)
l is a complex gain of the l-th path between link r and s, n⋊⋉

l is the delay of
the l-th path, and symbol ⋊⋉ is a placeholder for hh, hv, vh, or vv polarization cases. The
element-to-element channel frequency response is expressed by

H⋊⋉(r,s)
m [k] =

L∑
l=0

α
⋊⋉(r,s)
l e−j 2πk

T
n⋊⋉

l , k = 0, 1, ..., N − 1, (4.9)

where the subcarrier separation is 1/T , and j is the complex imaginary unit. In this
way, a quaternion channel response from transmit antenna r to receive antenna s can be
represented by quaternion vector

H×(r,s)
m = [H ×(r,s)

m [0]T H ×(r,s)
m [1]T · · · H ×(r,s)

m [N − 1]T ]T . (4.10)

Elements of H×(r,s)
m can also be separated into vectors for each link of the

cross-polarized antennas

H⋊⋉(r,s)
m = [H⋊⋉(r,s)

m [0]H⋊⋉(r,s)
m [1] · · · H⋊⋉(r,s)

m [N − 1]]T , (4.11)

which are link channel responses in (4.9).

The input bitstreams are pairwise separated into two groups b0,i and b1,i,
for 0 ≤ i ≤ Nb, forming two 2Nb-ary complex symbols, which are mapped onto two
perpendicular Argand planes intercepting at the origin of the 4D space [42]. Using the CD
composition (2.49), quaternion values Qm[k], for k = 0, 1, ..., N − 1 are created. These N

quaternions are grouped into a column vector Qm to be OFDM modulated by using Nl

subcarriers.
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Table 4.1 – Dimension of several quaternion matrices and vectors for the quaternionic
MIMO-OFDM computed based on the number of complex elements

Symbols Dimensions
D MbNMr × 2MbNMtMr

Di MbN × MbN
H MbNMtMr × 2

Y , Z MbNMr × 2

A set of Mb consecutive OFDM blocks, represented by Qm, Qm+1, ..., Qm+Mb−1,
are mapped onto a diversity codeword, which is expressed by the following MbN × Mt

matrix:
C =

[
CT

1 CT
2 . . . CT

Mb

]T
, (4.12)

where each element Cm is defined as

Cm =


C (1)

m [0] C (2)
m [0] . . . C (Mt)

m [0]
C (1)

m [1] C (2)
m [1] . . . C (Mt)

m [1]
... ... . . . ...

C (1)
m [N − 1] C (2)

m [N − 1] . . . C (Mt)
m [N − 1]

 . (4.13)

The above Qm mapping is similar to complex Xm mapping cases in Section 4.1. Each
column l of the matrix (4.12) will be transmitted from antenna l after having been
processed by an OFDM transmit engine, which applies a quaternionic IFFT (inverse fast
Fourier transform) and appends a cyclic prefix. Frequency, time, or both frequency and
time diversities are implemented along the rows of C, whereas space and polarization
diversities are implemented along the columns of C. From the above matrix codeword,
another sparse matrix is defined by

D = IMr ⊗ [Ds
1 Dp

1 Ds
2 Dp

2 . . . Ds
Mt

Dp
Mt

],

where ⊗ represents the Kronecker product, IMr is the identity matrix of order Mr, and
elements Ds

i and Dp
i are diagonal matrices defined by

Ds
i = diag{S{C(i)

m [0]}, S{C(i)
m [1]}, . . . , S{C(i)

m [MbN − 1]}},

Dp
i = diag{P{C(i)

m [0]}, P{C(i)
m [1]}, . . . , P{C(i)

m [MbN − 1]}}, (4.14)

for i = 1, 2, ..., Mt, whose elements are columns of matrix C. Table 4.1 shows the dimension
of the above vectors or matrices based on the number of complex elements.

The received signal in matrix form is

Y =
√

ρ

Mt

DH + Z. (4.15)



CHAPTER 4. MIMO-OFDM USING DUAL-POLARIZED ANTENNAS AND QUATERNIONS 68

The
√

ρ/Mt term is used for adjusting the signal-to-noise ratio at a receive antenna to be
independent of the number of transmit antennas [69]. The channel H is defined as

H = [H(1,1)T · · ·H(Mt,1)T H(1,2)T · · ·H(Mt,2)T · · ·H(1,Mr)T · · ·H(Mt,Mr)T ]T , (4.16)

where H(r,s) is defined by

H(r,s) = [H×(r,s)T
m H

×(r,s)T
m+1 · · ·H×(r,s)T

m+Mb−1]T , (4.17)

where H×(r,s)
m is defined in (4.10), and m indicates the beginning of a block code.

The received signal is

Y = [Y(1)T Y(2)T · · · Y(Mr)T ]T , (4.18)

where each element is

Y(i) =



[S{Y (i)
m [0]}, P{Y (i)

m [0]}]
...

[S{Y (i)
m [N − 1]}, P{Y (i)

m [N − 1]}]
[S{Y

(i)
m+1[0]}, P{Y

(i)
m+1[0]}]

...
[S{Y

(i)
m+M−1[N − 1]}, P{Y

(i)
m+M−1[N − 1]}]


. (4.19)

The structure of the quaternion noise vector Z is similar to that given above for Y . The
simplex and perplex parts of the quaternion noise Z are independent and identically
distributed zero-mean 2D Gaussian random variables with the same variance. For the
presented formulation, since one of the cross-polarized elements is turned off, the equations
are reduced to classical complex schemes [70].

4.2.1 Orthogonal diversity codes

The proposed MIMO-OFDM technique presented in the previous section can
take advantage of the diversity in several dimensions, i.e., space, time, frequency, and
polarization. The first space-time code in OFDM modulation made use of trellis codes [71].
Unlike space-time block codes (STBCs), trellis codes are able to provide both coding gain
and diversity gain, and have better bit error rate performance; however, they are more
complex than STBCs, because they rely on a Viterbi decoder at the receiver, whereas
STBC uses only linear processing. Studies have shown that STBC, which achieves full
diversity in quasi-static flat fading channels, can be used to construct space-frequency
codes that achieve the maximum diversity available in frequency selective MIMO fading
channels [70].

As shown in Chapter 2, a detailed study of the construction of quaternion
orthogonal designs was developed in [15].
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The QOD suggested in [15] takes two CODs(2, 2) (complex orthogonal design)
that are equivalent designs to Alamouti’s code [46]

A =
 z1 z2

−z∗
2 z∗

1

 and B =
z2 z1

z∗
1 −z∗

2

 ,

such that applying the Cayley-Dickson construction over the matrices results in

C = A + Bj =
 z1 + z2j z2 + z1j

−z∗
2 + z∗

1j z∗
1 − z∗

2j

 , (4.20)

which is a QOD(2, 2) with linear processing on complex variables z1 and z2.

In this study, to take advantage of several diversities, it will be of interest
to work with orthogonal designs of higher order. One example of QOD(4,4) with linear
processing on complex variables z1, z2, and z3 that uses Cayley-Dickson construction is

C =


z3 − z1j −2z2j −z1 + z3j −2z2

2z∗
2j z3 − z∗

1j 2z∗
2 −z∗

1 + z3j

z∗
1 + z∗

3j −2z2 z∗
3 + z∗

1j −2z2j

2z∗
2 z1 + z∗

3j 2z∗
2j z∗

3 + z1j

 . (4.21)

Simplex and perplex parts of quaternion vectors Qm,Qm+1, ...,Qm+Mb−1 define
complexes zi in codeword C.

In [15], the QODs obtained over quaternion variables are found to be more
general and better suited to achieving full diversity gain for an orthogonal and full rate code.
In addition to the CD construction, other methods for designing QODs are quaternion-
commuting variables and quaternion amicable designs. However, for the purposes of this
thesis, because of its simplicity, the CD construction technique was applied.

4.2.2 Maximum likelihood decoding

For the most part of the simulations in the next section, maximum likelihood
(ML) detection is used. For a given channel (known at the receiver), the ML detector is
based on the minimum Euclidean distance between the received signal and all possible
transmit symbols. The channel estimation at the receiver is typically implemented by using
channel equalizers from special symbols (long prefixes) that are periodically transmitted or
from the pilot subcarriers. Thus, the ML detector aims to minimize the norm of ∥Y −CH∥.
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This process is equivalent to finding a set of symbols Ĉ that minimizes the squared norm

∥Y − CH∥2 = tr{(Y − CH)H(Y − CH)}
= tr{(Y H − HHCH)(Y − CH)}
= tr{Y HY − Y HCH−

HHCHY + HHCHCH}

= tr{Y HY } − 2Re{tr[Y HCH ]}+
λ tr{HHH},

= −2Re{tr[Y HCH ]}, (4.22)

where, to get to the last equation, it was used that CHC = λI, and also that for a circular
constellation, Y HY is independent of the transmitted codeword.

4.3 Simulation results
Performance analysis of the quaternion MIMO-OFDM systems was carried

out, considering several common channel scenarios: flat channel and selective fading (time
and frequency selectivity). In the strict sense, time and frequency spreading in a mobile
channel are correlated, but it is common practice to independently analyze these effects,
following the wide-sense stationary uncorrelated scattering (WSSUS) assumption [72].

This section presents simulations for complex and quaternion OFDM, where
for all of them Nl = 100 and quadrature phase-shift keying (QPSK) is used per subcarrier
modulation. Experiments were conducted using QOD(2,2) in (4.20) and QOD(4,4) in
(4.21). The power normalization for the transceiver antennas is the same as those used by
Alamouti [46], where there are four radiating elements (two cross-polarized elements) for
the QOD(2,2) and eight elements for QOD(4,4) are considered. The presented results are
based on average bit error rate (BER) curves as a function of the SNR per bit.

In the first simulation scenario, channel coefficients were assumed to be known
at the receiver and are constant in each OFDM block containing Mb symbols. Channel
coefficients are generated as random complex Gaussian i.d.d. variables, with zero mean
and unit variance. The results are shown in Figure 4.4, where the berfit function of
MATLAB was used to plot the continuous curves. Results indicate that for this flat
fading Rayleigh channel with AWGN, using QPSK modulation, quaternion orthogonal
space-time-polarization block coding (QOSTPBC) transmit systems, and for instance
at a BER line of 10−3, substantial diversity gains relative to established techniques are
obtained, such as confronting the classic Alamouti’s STBC scheme. SNR gains are found
to be over 7 dB for QOD(2,2), and over 10 dB for QOD(4,4), these gains are due to the
exploration of polarization diversity. We observe that the results presented for QOD(2,2),
although using MIMO-OFDM, are very similar to those presented in [15].
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Figure 4.4 – Diversity gain for space-time-polarization transmit systems over a flat fading
Rayleigh channel: the first three upper curves consider single elements for Tx
and Rx, while QOSTPBC cases consider dual-polarized antennas

Simulation results in Figure 4.5 consider quaternion orthogonal space-time-
frequency-polarization block coding (QOSTFPBC) using QOD(4,4) for both mobile and
static receivers (i.e., accounting for the Doppler shift or not). Regarding diversity, pairs of
columns of C in (4.21) are grouped for space-frequency-polarization diversity, and pairs of
rows of C are grouped for space-time-polarization diversity. Simulations consider that the
unit responses h⋊⋉(r,s)

m [n] in (4.8) are independent for hh, hv, vh, and vv links. A maximum
Doppler shift of fd = 100 Hz was chosen to represent the relative automobile speeds in an
urban environment in the GSM band. For a total bandwidth of 1 MHz, the following four
Rayleigh channels were simulated [73]: COST 207, typical urban case with a six-ray profile
(TUx6), with and without Doppler shift; and COST 207, typical urban case with twelve-ray
profile (TUx12), with and without mobile unit speed. When Doppler shift was considered,
it was modeled as a classic Jakes’ Doppler spectrum. Channel models in Matlab standard
fading functions are used to compute the frame-to-frame unit response for each OFDM
symbol. This process yields H , which is to be applied to symbol codewords according to
(4.15). Although transmission channels are, in theory, assumed to be static over the entire
codeword C, vector Y will contain the channel evolution over Mb OFDM symbols and
will be degraded by noise components. By contrast, in ML decoding, H is assumed to
be static and equal to Hm, corresponding to the first OFDM symbol m. This situation
simulates the channel equalizer in periods equal to the codeword duration and is updated
only at the next codeword. Results for QOSTFPBC transmit systems show very good
robustness for these different wireless communication scenarios. In Figure 4.5, we observe
that, for a BER line of 10−5, there is a difference between the typical urban case with
a six-ray profile using fD = 0.001 Hz and the twelve-ray profile using fD = 100 Hz that
is 1.1 dB. Very good discrimination among the four propagation scenarios is observed.



CHAPTER 4. MIMO-OFDM USING DUAL-POLARIZED ANTENNAS AND QUATERNIONS 72

0 2 4 6 8 10 12 14 16

10−5

10−4

10−3

10−2

Eb/N0 (dB)

B
E
R

TUx6 fd = 0.001 Hz

TUx6 fd = 100 Hz

TUx12 fd = 0.001 Hz

TUx12 fd = 100 Hz

Figure 4.5 – BER for Q(4,4) QOSTFPBC for different wireless communications scenarios.
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Figure 4.6 – BER for Q(4,4) QOSTFPBC using scattering matrix in different wireless
communications scenarios.

When compared with the same QOD(4,4) scheme of Figure 4.4, moderate diversity gains
(around 3 dB) are observed for Eb/N0 up to 8 dB, even not considering the channel state
information at the transmitter side (CSIT) or more sophisticated schemes, such as those
using beamforming antenna arrays [74].

Simulation results in Figure 4.6 are similar to those of the previous scenario;
however, they use matrix (2.52) for different values of parameter cross-polar isolation
(XPI) at receive and transmit antennas: χt = χr = 0 and χr, and χt = χr = 0.01, without
provision of any mechanism of cross-polar interference cancellation. As long as these cross
paths are unknown in the receiver, a degradation in the performance is observed. For
example, for a BER level of 10−2 dB, the required Eb/N0 goes, approximately, from 2 dB
in Figure 4.5, to 8 dB in Figure 4.6, thus exhibiting a 6 dB performance loss.
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Simulations show that QOSTFPBC can efficiently be used for flexible higher
spectral efficiency designs, as long as the channel state information is known at receivers
(CSIR). As observed in [15], when using well-designed quaternion orthogonal codes, and
here by use of quaternion MIMO-OFDM, quaternion schemes are capable of achieving the
same performance as complex orthogonal space-time-block codes or complex orthogonal
space-frequency-block codes, which would require twice the number of transmitting and
receiving antennas.

The last two simulations show that it is possible to consider the communications
schemes using independent antenna elements with spatial separation, which represents
a doubling in the number of Mt and Mr antennas at transmit and receive sides or using
polarized antennas. Therefore, it is possible to group pairs of antennas on both sides to
apply the proposed formulation with non-polarized antennas. By contrast, dual-polarized
antennas have the advantage of reducing the size of transmitting and receiving antennas.

4.4 Conclusions
This chapter introduced a formulation for MIMO-OFDM using quaternion

algebra. The formulation is general and allows us to take advantage of diversities in several
domains, such as space, time, frequency, and polarization. The use of orthogonal quaternion
code designs of higher order allows us to exploit full diversity in those domains. Several
simulations exploring scenarios in typical and severe urban environments, including the
Doppler shift in the Jakes spectral model, have been presented. As expected, the use of a
higher number of transmit antennas significantly improves the system performance, as
could be observed for scenarios using random coefficients for the link frequency responses.
Using models for real-world simulations (COST207), satisfactory discrimination of the
propagation scenarios can be observed in simulations that are coherent to channel harshness.

It is important to remark that the performance gains of the diversity schemes
presented are associated to the different combinations of diversity exploited, and not to
the use of quaternions per se. The key role of quaternion in those schemes was to allow the
straightforward exploration of until four diversity types, simultaneously, in each scheme.

Finally, the presented formulation applies both to double-polarized antennas and
to independent antenna elements that are spatially separated. The presented modulation
systems have potential applications in modern wireless communications including next-
generation mobile, back-hauling networks, and digital television systems.
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5 Concluding remarks

In general, the present research work showed that the use of quaternions to
model dual-polarized signals in wireless systems can introduce a number of benefits,
including compactness, flexibility, and enhanced performance, among others. On the
road to achieving this, we started with a concise review of quaternions presented in
Chapter 2. Therein, special attention was put on the discrete QFT as well as on the
recently introduced dual-polarized QOFDM scheme. Subsequent chapters presented the
main contributions of our research, focusing on two relevant problems related to MIMO
and OFDM, which are fundamental components for actual and future communications
systems. Namely, synchronization algorithms for dual-polarized systems implementing
QOFDM, and flexible diversity schemes for MIMO OFDM systems with dual-polarized
antennas, using quaternion OSTPBC’s.

From the study of synchronization techniques for QOFDM, some conclusions
can be remarked.

The use of quaternion algebra in synchronization of QOFDM systems allows a simple
derivation of joint estimation algorithms that exhibits improved performance when
compared to the complex OFDM case. Although different approaches could lead to
similar results, it was the quaternion representation of signals and transforms that
guided the word towards the presented synchronization algorithms.

Furthermore, in the case of STO estimation using the redundancy provided by the
cyclic prefix, the performance gain of the estimator, expressed by a double slope in
the log-scale figure variance vs. BER, is far from obvious. A discussion about this
result and the corresponding CRLB calculations that support those results were also
presented.

Even though, in the present thesis, we took classical synchronization algorithms for
OFDM as a reference, similar developments can be carried out for potentially every
synchronization technique.

Moreover, the research on QODs applied to MIMO QOFDM allows us to
conclude that

QODs enable a flexible combination of space, time, frequency, and polarization
diversities in MIMO dual-polarized systems that can be very useful in mobile
environments.
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In a scenario with perfect knowledge of channel state information and cross-polar
interference cancellation, the Doppler effect produces only small degradation in the
overall performance of the proposed diversity schemes. However, when a residual
cross-polar interference is considered, the Doppler effect becomes relevant in the
intermediate range of Eb/N0 analyzed.

Finally, throughout the research work, some potential research areas were identified, among
them:

i) the use of cyclic prefix-based synchronization techniques to estimate time difference
of arrival (TDOA) in mobile scenarios, in order to improve the user equipment
localization required by beamforming systems;

ii) the application of quaternion adaptive filters in channel estimation and equalization;

iii) the introduction of quaternion in massive MIMO systems.
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