
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Julia Ramos Beltrão

The Single Line Planning Problem: Optimization
Approaches to Public Transit Planning

Problema de Planejamento de Linha Única:
Abordagens de Otimização para o Planejamento de

Transporte Público

CAMPINAS
2022

Julia Ramos Beltrão

The Single Line Planning Problem: Optimization Approaches to
Public Transit Planning

Problema de Planejamento de Linha Única: Abordagens de
Otimização para o Planejamento de Transporte Público

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestra em Ciência da
Computação.

Dissertation presented to the Institute of
Computing of the University of Campinas in
partial fulfillment of the requirements for the
degree of Master in Computer Science.

Supervisor/Orientador: Prof. Dr. Fábio Luiz Usberti

Este exemplar corresponde à versão final da
Dissertação defendida por Julia Ramos
Beltrão e orientada pelo Prof. Dr. Fábio
Luiz Usberti.

CAMPINAS
2022

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

 Beltrão, Julia Ramos, 1991-
 B419s BelThe single line planning problem : optimization approaches to public transit

planning / Julia Ramos Beltrão. – Campinas, SP : [s.n.], 2022.

 BelOrientador: Fábio Luiz Usberti.
 BelDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Bel1. Otimização combinatória. 2. Programação linear inteira. 3. Algoritmos

genéticos. 4. Engenharia de transportes. I. Usberti, Fábio Luiz, 1982-. II.
Universidade Estadual de Campinas. Instituto de Computação. III. Título.

Informações Complementares

Título em outro idioma: Problema de planejamento de linha única : abordagens de
otimização para o planejmento de transporte público
Palavras-chave em inglês:
Combinatorial optimization
Integer linear programming
Genetic algorithms
Transportation engineering
Área de concentração: Ciência da Computação
Titulação: Mestra em Ciência da Computação
Banca examinadora:
Fábio Luiz Usberti [Orientador]
Laura Silva de Assis
José Frederico Vizcaino González
Data de defesa: 19-12-2022
Programa de Pós-Graduação: Ciência da Computação

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0002-6486-812X
- Currículo Lattes do autor: http://lattes.cnpq.br/4726158152982763

Powered by TCPDF (www.tcpdf.org)

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Julia Ramos Beltrão

The Single Line Planning Problem: Optimization Approaches to
Public Transit Planning

Problema de Planejamento de Linha Única: Abordagens de
Otimização para o Planejamento de Transporte Público

Banca Examinadora:

• Prof. Dr. Fábio Luiz Usberti
Universidade Estadual de Campinas (UNICAMP)

• Profa. Dra. Laura Silva de Assis
Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ)

• Prof. Dr. José Federico Vizcaino González
Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP)

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Campinas, 19 de dezembro de 2022

Acknowledgments

First, I would like to thank my advisor, Fábio, who always made himself present, was
always patient and understanding, encouraged me to submit articles to and attend con-
ferences, and always believed in me.

I would also like to thank my husband, Pedro, who was by my side supporting me during
the entirety of this Masters program; my parents, Renata and Minoru, who were by my
side since the very beginning of my life, and whose lifetime support and encouragement
made it possible for me to get into and through this program; my dear sister, Adriana,
lifetime friend and companion, and a source of inspiration for her dedication to her career;
and, Martini, my everyday companion, always eager to take a nap under my desk to keep
me company while I worked on this dissertation.

I also thank the professors of the Institute of Computing, in special Professor Christiane,
whom I had the pleasure to work with during my Undergrad Final Project, who helped
me immensely, both academically and personally, and who introduced me to my advisor;
the student government body of the Institute of Computing, CACo, which provided me
with valuable knowledge and long-term friendships; the staff of both the undergrad and
grad administrative offices of the Institute of Computing, always very supportive and
efficient, in special, Daniel, Flávio and Wilson; the staff of IT services of the Institute of
Computing, in special, the very friendly André and William; the Institute of Computing
as a whole; the University’s swimming team, USSR, where I was able to meet people from
different schools and with diverse backgrounds; and the University of Campinas as a whole.

Finally, I would like to thank the Brazilian National Council for Scientific and Techno-
logical Development. This study was financed in part by the Brazilian National Council
for Scientific and Technological Development (CNPq), grant 134626/2018-4.

Resumo

Em um mundo altamente urbanizado, o transporte público parece ter um papel mais im-
portante do que nunca, uma vez que contribui para cidades mais sustentáveis e acessíveis.
Com o objetivo de contribuir com o planejamento de sistemas de transporte mais eficien-
tes, propomos um modelo de programação linear inteira pra projetar linhas de transporte
público com rotas que apresentem atendimento ótimo de demanda de usuários, dado um
limite de orçamento para construir a infraestrutura necessária. Diversas instâncias foram
geradas, e um solver comercial reconhecido e um algoritmo genético, o BRKGA-MP-IPR
(uma adaptação da metaheurística Biased Random-key Genetic Algorithm), foram uti-
lizados para buscar soluções para o problema em estudo. Os resultados para ambas as
abordagens são apresentados, analizados e comparados neste trabalho. Foi possível con-
cluir que, enquanto o modelo exato obteve soluções ótimas para instâncias menores, ele
não se demonstrou competitivo para instâncias maiores. Em contrapartida, o BRKGA
conseguiu obter boas soluções para as instâncias maiores, tornando-o uma alternativa
interessante para tratar cenários reais.

Abstract

In an exceptionally urbanized world, public transport seems to be more important than
ever as it contributes for more sustainable, accessible cities. Aiming to contribute to the
development of efficient transportation systems, we propose an integer linear programming
model to design a demand-optimal route for a line of public transit, regarding a budget
constraint for building necessary infrastructure. We generated several instances, and used
a renowned commercial solver and a genetic algorithm, BRKGA-MP-IPR (a variation of
the Biased Random-key Genetic Algorithm metaheuristic), to search for solutions for the
studied problem. We present the results for both approaches, analyze and compare them.
We observed that, while the exact model obtained optimal solutions for smaller instances,
it was not competitive for larger instances. On the other hand, BRKGA attained good so-
lutions for larger instances, proving to be a promising alternative to address real scenarios.

List of Acronyms

BRKGA: Biased Random-key Genetic Algorithm

BRKGA-MP-IPR: Multi Parent Biased Random-key Genetic Algorithm with Implicit
Path Relinking

ILP: Integer Linear Program/Programming

LB: Lower Bound

OD: Origin-destination

SLPDP: Single Line Planning Decision Problem

SLPP: Single Line Planning Problem

UB: Upper Bound

Contents

1 Introduction 10

2 Definitions and Terminology 14
2.1 Graphs . 14
2.2 Transport-Related Concepts . 19
2.3 Combinatorial Optimization and Linear Programming 20
2.4 NP-completeness . 20
2.5 Metaheuristics . 21

3 Formulation and Complexity 26
3.1 The Single Line Planning Problem . 26
3.2 Complexity Analysis . 28

4 Metaheuristic Approach 30
4.1 Vertex-based Decoders . 30

4.1.1 Decoder Without Local Search (Decoder 1) 30
4.1.2 Decoder With Iterative Local Search (Decoder 2) 31

4.2 Edge-based Decoder (Decoder 3) . 31

5 Computational Experiments 33
5.1 Computational Environment . 33
5.2 Instances . 33

5.2.1 Graphs . 33
5.2.2 OD Matrices . 34
5.2.3 Budget Limit . 35

5.3 Parameters . 35
5.4 Preliminary Experiments . 36

5.4.1 Analyzing Results for the Exact Method 36
5.4.2 Comparing Exact and Heuristic Approaches 37

5.5 Experiments . 42

6 Final Remarks 45

Bibliography 46

10

Chapter 1

Introduction

Transportation has played an important role in human agglomerations throughout his-
tory. From being a determining factor in city locations - cities were usually formed on the
seaside or by navigable rivers, where harbors could be built - to a limiting factor in city
sizes - ineffective intraurban transport made difficult the distribution of food and other
basic supplies.

But it was not until the 17th century that the first organized forms of public transportation
systems emerged. Vehicles which could be hired for intraurban trips, known as coaches -
the predecessors of modern taxis -, first appeared in London in 1600. In 1634, coach own-
ers obtained permission to ply the streets for hire; by 1694 there were around 700 licensed
coaches in London. In 1612 public-hire sedan chairs - a chair mounted on wooden poles
carried by a pair of “chair-men” - first appeared in Paris; in 1634 they were introduced
in London. In 1662, a public coach service started operating on fixed routes in Paris.
Vehicles could carry eight passengers at a time and were horse-drawn. However, those
forms of transport were accessible only to those of the upper classes as they were very
costly.

Transport systems with higher capacity began to emerge at the end of the 18th century:
horse-drawn omnibuses were operating in the outskirts of London as early as 1798. But
it was in France the omnibus became more popular and where they were first used in
the inner-city areas. Shortly after, omnibuses services were created in the United States
and other European cities. Subsequently, horse-drawn tramway - which was basically
an omnibus on rails - services commenced in the US and later on in Europe. The low
rolling resistance of the vehicle allowed for more efficient use of horsepower and a higher
passenger capacity.

The first mechanized transport services appeared in the 19th century as early as 1833.
However, most of those fail to attain commercial success and public approval due to fac-
tors such as unreliability and being slow and uncomfortable. It was with the emergence
of electric tramways that transport services with mechanized vehicles became successful.
A regular electric tramway service initiated its operation in Cleveland in 1884 and several
cities in the US had this service in the middle 1880s. In Europe, electric tramway services

11

developed more slowly.

It was also in the 19th century that occurred the development of high-speed railway transit
modes. Suburban railways, with vehicles based on steam engines, had a first large-scale
development in London; the first line started operating in 1838. Electric interurban rail-
ways - which consist of large, high-speed single car or short trains powered by electricity
and typically connecting a group of cities that are not too far apart - were established
in Northern Ireland in 1883. The rapid-transit or metro occurrence in London: the
Metropolitan Line, operated with steam powered locomotives was inaugurated in 1863;
30 years later the first electric powered vehicles started operating also in London.

The 20th century saw further development of electric tramway technology as well as the
invention of new transport modes: the motorbus (based on an internal combustion en-
gine), which would soon replace the horse omnibus and the trolleybus, an electric powered
vehicle1.

In Brazil, transportation was not a matter of public policy until 1808, when the Por-
tuguese Royal Family moved to Rio de Janeiro, which was then turned into the capital
of the Kingdom of Portugal, Brazil and Algarves. The first documentation concerning
transport regulation was issued in 1812 by Dom João VI. However, it was limited to mil-
itary functions [13].

The first public transport system, however, was not created until 1817. The conception
of such system was also induced by the arrival of the Portuguese Royal Family in Brazil,
when the hand-kissing ceremony was established, which subjects had to travel long dis-
tances to attend. So, in 1817, D. João VI signed a decree granting permission to an
employee of the Royal Court to run a carriage transportation service between the Im-
perial Square, in the center of Rio de Janeiro and one of the Royal Family’s dwellings,
around 50 kilometers apart from each other [18].

While the remaining of the 19th century saw investments in railroads increase, the 1900s
took a sharp turn to road-oriented transportation. During his term as president (1926-
1930), Washington Luís went as far as claim that “to govern is to build roads”. Nationwide
road planning did not commence, however, until 1937, when a National Road Plan was
designed. Later on, in 1945, Law Joppert was passed, setting up the National Fund for
Roads. During the 1950s, roads are further confirmed as the main mode of integration
of Brazil’s territory. Juscelino Kubitschek, president between 1956 and 1960, with his
motto “50 years in 5”, invested heavily in road building and provided huge incentives to
the automobile industry. He also tried to rescue aquatic and rail transportation systems,
but with little success [13].

Nowadays, transportation, in particular public transportation, remains as important as
1The first paragraphs of this text are based on the book Urban Transit Systems and Technology by

Vuchic [23]

12

ever. The number of trips carried out on public transportation had an 18% increase be-
tween the years 2000 and 2015 [22] and public transport is known to be the answer to
several problems large cities face in the present days, such as traffic congestion, air pollu-
tion, and energy consumption [14]. Moreover, transportation systems may affect land use
and real estate prices, as is in the case of São Paulo, one of the largest cities in the world [1].

With the relevance of public transit in mind, we propose to optimize a single line of a
public transportation system by maximizing the number of trips (demand) served. Note
that, although we have so far provided a very practical motivation, in this work we study
the problem of planning transportation systems and networks under quite a few layers of
abstraction. Ultimately, we simplify this as a graph optimization problem. In order to
evade ambiguity with terminology, Section 2.1 presents definitions of graph theory, Sec-
tion 2.2 introduces concepts of transportation planning, and Section 2.3 cites definitions
of combinatorial optimization. Finally, Section 3.1 displays the formalization of the Single
Line Planning Problem (SLPP) as an Integer Linear Programming model.

Several optimization models to address transportation planning problems have been pro-
posed in the literature. Laporte et al. [16] proposed a model based on linear programming
to design networks of rapid-transit modes - which are commonly segregated and indepen-
dent of the street network. The model is rather complex taking into account travel de-
mand, how this demand is distributed between private and public transport, the decision
of constructing both stations and alignments connecting stations - as well as the cost of
constructing these.

Borndörfer et al. [7] proposed a column-generation approach to network design tied to
the problem of finding the frequencies of each line (this combination is known as the line
planning problem) in order to satisfy a given travel demand. They detected two objec-
tives: minimizing operating costs for the company and minimizing traveling times for
passengers. A multi-commodity flow model was introduced and results for the data of the
city of Postdam, Germany, were reported.

Bussieck et al. [8] also investigated the line planning problem. They used both nonlinear
and mixed integer optimization to produce models for the problem and considered two
objectives: minimizing operating costs and passenger convenience, which is modeled as a
minimum for the frequency. Results for practical data of the Dutch Railways were pre-
sented.

Marín and Jaramillo [26] presented a model for urban rapid transit network design, which
comprises the location of stations and the alignments between stations. The model aims
at maximizing travel demand supplied under cost constraints and it also takes into ac-
count that users can choose their transportation modes and trips. As the model cannot
be solved efficiently by Branch and Bound due to a large number of variables and con-
straints, algorithms based on Benders decomposition were proposed. The two methods
were compared using fabricated networks.

13

Zarrinmehr et al. [25] proposed a multi-objective bi-level optimization model for the net-
work design problem. The model takes into consideration (maximizing) transit ridership,
(minimizing) agency operating cost, system performance, and an elastic demand. The
authors conceived a greedy algorithm to solve the model.

After preliminary experiments (Section 5.4), which showed the ILP formulation had low
scalability, we hypothesized that the SLPP was NP-hard and were to draw a proof for
such hypothesis, presented in Section 3.2 - definitions provided in Section 2.4. As a conse-
quence, we decided to test a heuristic approach. The chosen metaheuristic was the Multi
Parent Biased Random-key Genetic Algorithm with Implicit Path Relinking (BRKGA-
MP-IPR) [3] - terminology is presented in Section 2.5.

A fairly new method, BRKGA-MP-IPR has few applications reported in the literature.
Kummer et. al [15] used BRKGA-MP-IPR to address the home health routing and
scheduling problem. Londe et. al [17] studied the Root Sequence Index (RSI) allocation
problem2 using exact and heuristic methods, the BRKGA-MP-IPR being one of them.
Andrade et. al [2] adapted the BRKGA-MP-IPR framework to solve the physical cell
identity assignment problem. In all cases, BRKGA-MP-IPR is used in order to improve
the scalability of optimization problems.

Our contributions encompass the proposition of a generic model which can adapt to sup-
port transport modes other than interurban trains and should be easier to solve when
compared to the existing ones, and the development of a heuristic method to overcome
the low scalability limitation of the ILP formulation.

2RSI is used to allocate uplink channels between user equipment and a base station.

14

Chapter 2

Definitions and Terminology

2.1 Graphs

The definitions and notations presented in this section are based on Diestel’s Graph The-
ory [9] and Bondy’s and Murty’s book, also named Graph Theory [6].

Definition 1: Graph

A graph is an ordered pair G = (V,E) of disjoint sets such that E ⊆ [V]2 - elements of
V are called vertices of the graph and elements of E are called edges - along with an
incidence function ϕG that associates each edge in E to an unordered (not necessarily
distinct) pair of vertices in V .

The vertex set of a graph G = (V,E) is denoted by V (G), and its edge set by E(G).
We may not always make a strict distinction between a graph and its vertex and edge set.
For instance, we may say that a vertex v ∈ G, or that an edge e is in G.

For the following definitions we will assume graphs are non-empty, unless stated otherwise.

Definition 2: Incidence

A vertex v is incident to an edge e if v ∈ e. In this case, we say e is an edge at v
and v is an end vertex or end of e; also, we say an edge joins its ends.

An edge with identical ends is named a loop. Two or more edges with the same pair of
distinct ends are called parallel edges.

Definition 3: Simple Graph

A graph is said to be simple if it has no loops or parallel edges.

15

Definition 4: Adjacency

Two distinct vertices u, v of G are adjacent, or neighbors, if {u, v} is an edge of G.
The set of neighbors of a vertex v in G is denoted by NG(v).

Drawing Graphs
Graphically, graphs are usually represented by drawing a dot for each vertex and a line
for each edge between a pair of dots if there is an edge that joins the vertices that those
dots represent.
The above convention will be used throughout this work.

1

2

3

4

5

Figure 2.1: The graphic representation of the graph G =
({1, 2, 3, 4, 5}, {{1, 4}, {4, 3}, {3, 2}, {2, 4}, {5, 3}}).

Definition 5: Subgraph

Let G = (V,E) and G′ = (V ′, E ′) be graphs. Then, if V ′ ⊆ V and E ′ ⊆ E, G′ is said
to be a subgraph of G (and G a supergraph of G′) or G′ ⊂ G. Less formally, we say
that G contains G′.

If G′ ⊂ G and G′ ̸= G, then G′ is called a proper subgraph of G.

Definition 6: Directed Graph

A directed graph O is a pair (V,A) of disjoint sets of vertices and arcs accompanied
of an incidence function ψO, which associates each arc of A with an ordered pair of
(not necessarily distinct) vertices of V . Let a be an arc in A and ψO(a) = (u, v),
then u and v are the ends of e and e is said to be oriented from u to v.

Drawing Directed Graphs

16

1

2

3

4

5

Figure 2.2: The graphic representation of the directed graph O =
({1, 2, 3, 4, 5}, {(1, 4), (3, 4), (2, 3), (4, 2), (5, 3)}).

Definition 7: Vertex Degree

Graph
Let G = (V,E) be a graph. Then the degree of a vertex v in G, denoted by dG(v), is
equal to the number of edges at v.

Directed Graph
Let D = (V,E) be a directed graph and v a vertex of D. The vertices of D that
dominate v are called its in-neighbors ; the vertices that are dominated by v are its
out-neighbors. A vertex u of D is called an in-neighbor of v if there is an edge joining
u to v; symmetrically, u is called an out-neighbor of v if there is an edge joining v to u.
These sets of vertices are denoted by N−

D (v) and N+
D (v), respectively. We define the

in-degree of a vertex v as d−D(v) = |N
−
D (v)| and the out-degree as d+D(v) = |N

+
D (v)|.

Definition 8: Weighted Graph

A (directed) weighted graph W is a (directed) graph accompanied of a cost function
w(e) : E → R for the (arcs) edges, which associates a cost to each (arc) edge of W .

Drawing Weighted Graphs

1

2

3

4

5

6

6

2

8

2

Figure 2.3: The graphic representation of the weighted graph W =
({1, 2, 3, 4, 5}, {(1, 4), (3, 4), (2, 3), (4, 2), (5, 3)}).

17

Definition 9: Path

A path is a (directed/weighted) graph P = (V,E) of the form

V = {x0, x1, . . . , xk}, E = {x0x1, x1x2, . . . , xk−1xk}

where the xi, i = 0, 1, . . . , k − 1, k are all mutually distinct.
The length of a path is defined as

• the number of (arcs) edges in it, for graphs and directed graphs;

• the sum of the weights of the edges in it, for weighted graphs.

We shall hereafter refer to paths by the natural sequence of their vertices. For instance,
we shall write P = (x0, . . . , xk), and call P a path between x0 and xk.

1

2

3

4

5G

1

2

3

4

P

Figure 2.4: P = (1, 4, 2, 3) is a path of length 3 between vertices 1 and 3 in the graph G.

Definition 10: Shortest Path

A shortest path (or geodesic) between two vertices u and v is a path between u and
v of minimum length.

Note there could be more than one shortest path between a pair of vertices.

Definition 11: Hamiltonian Path

A hamiltonian path of a given graph G is a path that visits all vertices of G.

Definition 12: Distance

Let G be a (directed/weighted) graph and u and v be vertices of G. Then the distance
between u and v is the length of a shortest path between u and v and it is denoted
by dist(u, v).

18

Definition 13: Connectivity

A (directed/weighted) graph G is said to be connected if for any two vertices u and
v of G there is a path between u and v.

Definition 14: Cartesian Product

Let G = (VG, EG), VG = {u1, ..., um}, and H = (VH , EH), VH = {v1, ..., vn}, be simple
graphs.
The cartesian product of G and H is the graph G×H = (V,E), V = VG × VH and
E = {(uivj, ukvl) : (ui, uk) ∈ EG and vj = vl or (vj, vl) ∈ EH and ui = uk}.

An example of a cartesian product is shown in Figure 2.5.

v1

v2

u1 u2

H G
u1v1

u1v2

u2v1

u2v2

G×H

Figure 2.5: Graphs G and H and their cartesian product G×H.

Definition 15: Two-Dimensional Grid Graph

Let Pm and Pn be path graphs with m and n vertices, respectively.
A two-dimensional grid graph is the cartesian product Pm × Pn [24].

We say Pm × Pn is a grid graph of dimension m× n.

The two following definitions will not likely be found in graph theory literature and have
been added here to help describing instances in Section 5.2.

Definition 16: Center and Border Vertices

Let G be a grid graph with dimension m×n, n,m ⩾ 3. Then all vertices v ∈ G such
that dG(v) = 4 are called center vertices, and all vertices v ∈ G such that dG(v) < 4

are called border vertices.

19

Definition 17: Density

Let G = (V,E) be a grid of dimension m×n and G′ = (V ′, E ′) a subgraph of G such
that V ′ = V and E ′ ⊆ E. The density of G′ is defined as the ratio r = |E′|

|E| .

Sometimes, we may refer to the subgraph of a grid with density r as grid with density r.

2.2 Transport-Related Concepts

Origin-Destination Matrix

An origin-destination matrix, or OD matrix, summarizes information about trips a given
population makes on a daily bases. Usually, these matrices represent a given period of
time, for instance, the one hour period between 13:00 and 14:00; weekdays and week-
ends are usually represented separately1. Let D = dij be an n × n origin-destination
matrix for a given period, then d[i][j] is the travel demand - the number of daily trips -
from location i to location j, and d[j][i] is the travel demand from location j to location
i, i, j ∈ Z+, i, j < n. Note that d[i][j] is not necessarily equal to d[j][i]; d[i][j] = 0 for i = j.

Line of a Transportation System

A line of a transportation system is a fixed itinerary between two fixed locations through
which vehicles of the given system drive with a predefined frequency. In this text we shall
refer to a line of a transportation system simply as line.

Street Network

The street network of a given area is the network formed by the streets encompassed in
this area. Also referred as road network.

Street Segment

A street segment is a section of a given street. In this text, we use street segment to
refer to a section of street between any two consecutive intersections of the street. Also
referred as road segment.

1In this work, each matrix is considered a different instance of the problem.

20

2.3 Combinatorial Optimization and Linear Program-
ming

Definition 18: Optimization Problem

Let X be a set and f : X −→ R be a function.
Then, finding x∗ ∈ X such that

f(x∗) ⩽ f(x)∀x ∈ X

is an (minimization) optimization problem.
Generally, X is called the search space, each element of X is called a feasible solution,
and the point x∗ is called an optimal solution.

Optimization problems can be divided into two categories: problems with continuous
variables and problems with discrete variables; the latter are also known as combinatorial
optimization problems.
Linear programming is an optimization problem in which X is a polyhedron formed by
the intersection of semispaces and objective function f is a linear function of the decision
variables. More formally, we may define linear programming as follows.

Definition 19: Linear Programming

Let f and gi, i = 1, ...,m be linear functions.
A linear programming problem is finding x ∈ Rn

+ to

minimize f(x)

subject to
gi(x) ⩾ 0, i = 0, ...,m

Definition 20: Linear Integer Programming

An integer linear programming problem is a linear programming problem with the
additional restriction that all variables must take integer values.

Definition 21: Binary Integer Programming

A binary integer programming problem is a linear programming problem such that
all variables are restricted to take the values 0 or 1.

2.4 NP-completeness

This section was based on Garey and Johnson [10].

21

Definition 22: Decision Problem

A decision problem ρ consists of a set of instances Iρ, a yes-no question Pρ, asked in
terms of a generic instance, and a subset Yρ ⊆ Iρ of yes-instances, that is, instances
which the answer to Pρ is yes.

Definition 23: Class P

The class P is defined as the set of all decision problems ρ for which there is a
deterministic algorithm α with polynomial running time that solves ρ.

Definition 24: Class NP

The class NP is defined as the set of all decision problems ρ for which there is a
non-deterministic algorithm β with polynomial running time that solves ρ.

Note that P ⊆ NP , and whether P = NP remains an open question.

Definition 25: Polynomial Transformation

A polynomial transformation of a decision problem ρ1 to a decision problem ρ2 is an
algorithm T that runs in polynomial time and can transform every instance i ∈ Iρ1
in an instance j ∈ Iρ2 .

Definition 26: Class NP-complete

The class NP-complete is defined as the set of all decision problems ρ ∈ NP such
that problem ρ′ ∈ NP can be reduced in polynomial time to ρ.

Definition 27: NP-hard Problem

An NP-hard problem ρ is such that there exist a polynomial transformation from a
problem ρ′ ∈ NP-complete to ρ.

2.5 Metaheuristics

A metaheuristic is a high-level problem-independent algorithmic framework that provides
a set of guidelines or strategies to develop heuristic optimization algorithm [21]. Generic

22

algorithms, local search and path-relinking are examples of metaheuristics.

Genetic Algorithms
Genetic algorithms apply the concept of survival of the fittest to search for optimal or near-
optimal solutions to combinatorial problems. Each individual of a group, or population
of individual, is mapped to a solution of the optimization problem being studied. Each
individual is represented by a chromosome, which consists of an array of genes. Each
gene has an associated value, called an allele. Each chromosome has a fitness value which
corresponds to the objective function value of the solution it is mapped to.
Given a population of individuals, this metaheuristic performs a set of operations on it
- or evolves it - for a number of iterations, called generations. At each generation a new
population is created by combining individuals of the current population. These individ-
uals are chosen at random but those with higher fittest are preferred. Random mutation
also takes place in order to avoid being trapped in local minima.

Random-key Genetic Algorithm
In Random-key Genetic Algorithms (RKGA), alleles taken on values from the real interval
[0, 1], generated independently at random. The mapping of a chromosome to a solution is
made by a deterministic algorithm, called decoder, which is specific to the problem being
studied.
RKGA starts with an initial population of p randomly generated individuals (chromo-
somes). The metaheuristic then proceeds to repeat some steps for g generations - note
that the size of the population remains the same during the evolution process. In a given
generation ζ, the chromosomes are mapped into solutions, those being used to separate
the population into two different groups: elite and non-elite. The elite group holds the pe,
pe < p−pe, fittest individuals, that is, the chromosomes that map to the pe best solutions
- which are passed on to generation ζ+1. The population of generation ζ+1 is completed
by adding pm mutants (randomly generated individuals) and p− pe − pm individuals are
generated through crossover, which produces a new individual by sampling genes from
two individuals of generation ζ, called parents; those are drawn randomly from the entire
population.

Biased Random-key Genetic Algorithm2

Proposed by Gonçalves and Resende [12], the Biased Random-Key Genetic Algorithm
(BRKGA) differs from RKGA in the way parents ara chosen. In BRKGA, one parent
is drawn randomly from the elite group, and the other from the non-elite group, also at
random. During the crossover, an allele for the resulting chromosome is chosen from the
elite parent with probability φe.
An evolution cycle is shown in Figure 2.6[12]. The terms TOP and BOT may be ignored
for the purpose of this text.
In BRKGA, there is a clear division between problem-dependent and problem-indepent
parts. The problem-dependent part comprises only the decoder, and, therefore, in order to

2The Figures used in this Section appeared originally in Biased random-key genetic algorithms for
combinatorial optimization by Gonçalves and Resende [12].

23

Figure 2.6: Transition from generation ζ to ζ + 1 in BRKGA.

define a BRKGA heuristic, one needs only to specify the chromosome representation and
the decoder. Everything else is problem-independent. Figure 2.7[12] presents a flowchart
for BRKGA and emphasize this separation.

Figure 2.7: Flowchart for BRKGA.

24

BRKGA With Multiple Parents
Proposed by Lucena et al. [19], Multi-Parent Biased Random-Key Genetic Algorithm or
BRKGA-MP is a variation of the BRKGA metaheuristic in which n, n > 2, parents are
used to generate a new individual. The number of parents n is set prior to running the
heuristic and remains fixed, as well as the number of parents to be drawn from the elite
group.

Path-Relinking
The idea behind the Path-Relinking approach is to explore the neighborhood of the path
between two feasible solutions. Two feasible solutions - a base and a guide solution -
are sampled from the pool of known feasible solutions. These solutions need to have a
sufficient amount of different components between them; such amount is fixed beforehand.
A component of the base solution is then selected and replaced with a component from
the guide solution. This process is repeated until all components of the base solution have
been substituted by components from the guide solution. All the intermediate solutions
are evaluated and the best one is returned [11].
The drawback of this approach is that it is strongly dependent of the specific problem at
hand. The use of Path-Relinkig combined with BRKGA was first proposed by Ribeiro et
al. [20].

Implicit Path-Relinking
Andrade et al.[3] proposed a variation to the Path-Relinking strategy, which they named
Implicit Path-Relinking. This variation takes advantage of the already implemented chro-
mosome decoder. Two different versions of Implicit Path-Relinking were proposed, Direct
Implicit Path-Relinking and Permutation-Based Implicit Path-Relinking. For this work,
we are interested in the latter.

Permutation-Based Implicit Path-Relinking
Crafted to address problems where the order of the genes in the chromosome is used by
the decoder to create a solution. This version of Implicit Path-Relinking, instead of ex-
changing keys between the base and guide solutions, uses the permutation from the guide
solution to switch the keys of the base solution in such a way that they induce the same
“sub-permutation” on the base solution [3].

Local Search
Local search is a tool to improve results by searching the neighborhood of the solutions
found by a heuristic. A formal definition follows next.

Definition 28: Local Search

Given an instance (F, c) of an optimization problem, where F is the feasible set and
c is the cost mapping, we choose neighborhood

N : F → 2F

25

which is searched at point t ∈ F for improvements by the subroutine

improve(t) =

{
any s ∈ N(t) with c(s) ⩽ c(t) if such an s exists;

“no” otherwise.

26

Chapter 3

Formulation and Complexity

3.1 The Single Line Planning Problem

The Single Line Planning Problem (SLPP) is defined as follows.

Let G = (V,E) be the weighted graph representing the road network of a given urban
area. Each edge represents a road segment, each vertex represents a road intersection,
and each edge weight cij denotes the cost to realize the system infrastructure on that road
segment. Let D be the OD matrix, a square matrix of dimension |V |2 where dij is the
travel demand from vertex i to vertex j, i, j ∈ V . Note that for i = j dij = 0.

We construct a directed weighted graph O = (V ′, A) such that V ′ = V ∪ {s, t}, where
s and t are artificial source and target locations, respectively, and A = {(u, v), (v, u) :

∀{u, v} ∈ E} ∪ {(s, i), (i, t) : ∀i ∈ V }, with arc eights c′uv = c′vu = cuv,∀{u, v} ∈ E and
c′si = c′it = 0,∀i ∈ V . An example of this construction is presented in Figure 3.1.

u v

G = (V,E)

u v

s

t

O = (V ′, A)

Figure 3.1: Example of graph and the derived directed graph (costs were omitted).

We formulate a binary integer program that receives an directed weighted graph O, OD
matrix D, and budget constraint b as inputs. A solution can be represented by a sub-
graph OL = (VL, AL), OL ⊆ O, which serves demand dij, if yij = 1, or not, if yij = 0. The

27

adjacency matrix of OL is given by X = (xij), xij ∈ {0, 1}, i, j ∈ V .

The decision variables are formally presented next.

xij =

{
1, if (i, j) ∈ OL.

0, otherwise.

yij =

{
1, if demand dij is served.

0, otherwise.

The ILP formulation for the SLPP is formally presented next.

Max
∑
i,j∈V

yijdij

Subject to

∑
i,j∈V

xijcij ⩽ b (budget constraint)

In order to guarantee OL is connected, we must enforce that for every arc that reaches a
given vertex i, i /∈ {s, t}, there is an arc that leaves i, that is, the in-degree of i equals its
out-degree. For s and t the out-degree and the in-degree, respectively, must be equal to
1. Hence, we add the following constraints.

∑
k∈V

xki =
∑
l∈V

xil ∀i ∈ V

∑
i∈V

xsi = 1

∑
i∈V

xit = 1

A demand dij is served (yij = 1) if and only if both i and j are in the path formed by OL,
that is, there is an arc a ∈ OL that leaves vertex i ∈ OL and an arc a′ ∈ OL that reaches
vertex j ∈ OL. Thus, we add the following constraints.

yij ⩽
∑
k∈V

xik ∀i, j ∈ V

28

yij ⩽
∑
k∈V

xkj ∀i, j ∈ V

In order to ensure that the path described by OL does not go through the same vertex
more than once, that is, there are no subcycles in GL, we must add constraints to remove
subcycles.

∑
i,j∈S

xij ⩽ |S| − 1 ∀S ⊆ V

Note that these constraints also guarantee that OL has a single connected component.

3.2 Complexity Analysis

In this section, we prove that the SLPP is an NP-hard problem, that is, it belongs in a
class of problems to which no algorithm that solves them runs in polynomial time, unless
P = NP. We show a polynomial reduction of a known NP-hard problem to the SLPP.
Because polynomial reductions are usually done on decision problems rather than opti-
mization problems, we compose a decision version of the SLPP.

This analysis is relevant because it supplies us with a sound justification for the meta-
heuristic approach also used to address the SLPP as defined in Section 3.1. In the re-
maining of this section, we present formal definitions for the concepts mentioned in the
last paragraph, as well as the proof that the SLPP is NP-hard.

Lemma 1

If there is a polynomial transformation T which transforms a decision problem ρ1 in
a decision problem ρ2, then ρ1 ∈ P implies ρ2 ∈ P [10].

Definition 29: Hamiltonian Path Problem (HPP)

Given a graph G, determine if a hamiltonian path exists in G.

Lemma 2

The HPP is NP-complete [10].

29

Definition 30: Single Line Planning Decision Problem (SLPDP)

Given a graph G, an OD matrix D, a demand value δ and budget value b, determine
if a path in G, with cost c, c ⩽ b, that serves at least demand d exists.

Theorem 1

The SLPDP is NP-hard.

Proof

An instance of the HPP can be reduced to an instance of the SLPDP using a polynomial
running time algorithm with the following steps.

• ConvertG = (V,E) in O = (V ′, A), such that V ′ = V ∪{s, t} and A = {(u, v), (v, u) :
∀{u, v} ∈ E} ∪ {(s, i), (i, t) : ∀i ∈ V }, as described in Section 3.1;

• Set cost 0 to all arcs;

• Set b = 0;

• Build OD matrix D such that dij = 1, i ̸= j, dij = 0, i = j;

• Set
δ =

∑
i,j∈V

dij

.

In order to serve demand d, the solution path has to visit all vertices of O, so that demand
dij is served for all vertex pairs 0 ⩽ i, j < |V |. But a path that visits all vertices of a
graph is a hamiltonian path. Hence, we can use an algorithm that solves the SLPDP to
solve the HPP - if the answer to the SLPDP is yes, then the answer to the corresponding
HPP is also yes.
Furthermore, we may also affirm that if there is an algorithm that solves the SLPDP in
polynomial time, then the HPP can also be solved in polynomial time.

30

Chapter 4

Metaheuristic Approach

As explained in Section 2.5, the BRKGA heuristic requires the user to define a decoder to
map chromosomes into solutions. In the following Sections, we introduce three different
decoders created and used for this work.

Note that these decoders receive as inputs an OD matrix, a budget limit and an undirected
weighted graph.

4.1 Vertex-based Decoders

Let a chromosome be a sequence of genes g1, . . . , gn, with alleles k1, . . . , kn, where n is
the number of nodes in the input graph G. For these decoders, we map each gene gi of
the chromosome to vertex vi of G. We use this mapping to build a feasible solution for
the SLPP. In the following subsections, we describe two different methods to build such
a solution.

4.1.1 Decoder Without Local Search (Decoder 1)

We start by adding to the path the vertex mapped to the gene with the lowest allele.
Let us call this vertex v. We continue building the path by adding to it the node among
neighbors of v mapped to the lowest allele. Let us call this vertex u. We keep on growing
the path by adding the vertex that has been mapped to the lowest allele among those in
the union of neighbors of v and u minus the vertices that have already been added to the
path. Let us call this vertex w. Note that if the path we have so far is (u, v) and w is a
neighbor of v, the path resulting of the addition of w is the path (u, v, w); otherwise, the
resulting path is (w, u, v). If w is neighbor to both v and u, we add w to the beginning of
the path by default - as we did when adding u to the path. There is no particular reason
for this default behavior.

More generally, given a path p = (v1, . . . , vn), we search among the neighbors of v1 and
vn for the one associated to the lowest allele, let us call it z; z is added to p only if the
cost of the resulting path does not surpasses the budget limit B, and we do so according
to the following rules:

31

1. if z is neighbor of v1, we add it at the begging of the path, regardless of whether z
is also a neighbor of vn or not;

2. if z is only neighbor of vn, we add z at the end of the path.

Once we can no longer increase the path due to the budget limit, we use the OD matrix
D to calculate the demand served.

4.1.2 Decoder With Iterative Local Search (Decoder 2)

This decoder operates in a similar fashion as the previous one. The difference is that,
after adding a new vertex z at the beginning or the end of the existing path, the decoder
checks whether more vertices can be added to the result without increasing its cost.

Generally, given a path p = (v1, . . . , vn) to which z was just added (v1 = z or vn = z), we
check, for each pair vi, vi+1, i = 1, . . . , n−1, whether there is a path pvi→vi+1

between vi and
vi+1 which costs at most as much as the edge (vi, vi+1) and p−{vi, vi+1}∩pvi→vi+1

= {∅}.
If such path exists, we replace vertices vi and vi+1 by pvi→vi+1

. Note that this replacement
guarantees there is no raise in cost of the resulting path and no decrease in demand, while
having the potential of increasing the demand served.

4.2 Edge-based Decoder (Decoder 3)

The vertex-based decoders described above introduce a “locality” bias. The solution path
is limited to the vertices that are in the same component as the first vertex added to
the path. In an attempt to avoid this bias, we propose an edge-based decoder that sees
the chromosome as a “text” to be directly translated into another language - a candidate
solution -, rather than using it as a guide to build a viable solution. Such decoder is
described next.

Let a chromosome be a sequence of genes g1, . . . , gm, with alleles k1, . . . , kn, where m is
the number of edges in the input graph G. For this decoder, we map each gene gi of
the chromosome to edge ei of G. We use this mapping to decode a chromosome into a
candidate solution for the SLPP.

The decoding is done according to the following criteria. Each allele ki is interpreted as
an indicative of the presence or absence of edge ei in the candidate solution. As alleles
taken on values in the real range [0, 1], the decoder associates values in the range [0, 0.5)

as the absence of the edge, and values in the range [0.5, 1] as the presence of the edge in
the solution. Once the candidate solution is transcribed, the decoder verifies whether it
is a viable solution. In order to do so, the decoder must guarantee the candidate solution
holds the following.

• Its total cost is smaller than or equal to the given budget limit;

32

• the solution has no cycles;

• the solution edges form a single path.

If the candidate solution proves to be feasible, the OD matrix is used to calculate the
demand served. Otherwise, the solution is discarded.

33

Chapter 5

Computational Experiments

5.1 Computational Environment

All experiments were conducted on a headless machine with two Intel Xeon CPU E5-2630
v4 2.20GHz processors, with 10 cores each, running Ubuntu 18.04.3; the algorithms were
developed in Python 3.7. Gurobi v9.0 - through its Python interface - was used as an
integer linear programming solver, and a Python module named brkga-mp-ipr [3] was
used to implement the BRKGA-MP-IPR based heuristic solution.

5.2 Instances

An instance for the SLPP is comprised of an weighted graph, an OD matrix and a budget
limit. In this section we explain the methods used to generate each of those elements for
the experiments described in this work.

5.2.1 Graphs

In order to emulate reticulated street networks, the graphs used are two-dimensional
grids, with dimensions n × n, n = 4, 6, 8, 10, 20, 40, 60, 80, 100. In an attempt to mimic
real cities, which tend to have blocks of different sizes, we also use subgraphs of those
grids with densities r ≈ 0.2, 0.4, 0.6, 0.8.

Edge Weights

The costs of the edges were generated based on an uniform distribution and were drawn
as follows. Let C1 be a circle of radius 0.2 and center (0, 0) in the Cartesian plane.
Let C2 be a circle with radius 0.2 and center (0.6, 0). We draw a point p1 = (x1, y1)

from C1 and a point p2 = (x2, y2) from C2 by sampling x1, y1 and y2 from the uniform
distribution [−0.2, 0.2) and x2 from the uniform distribution [0.4, 0.8). We then calcu-
late the Euclidean distance dist between p1 and p2, multiply dist by 1000, truncate the

34

result and attribute this value to the cost ce of edge e = (u, v), where v and u are ver-
tices of a given grid. This process is repeated for each edge of the given grid. Note that
if an edge e is in both a grid and the derived subgraph, then its cost ce is the same in both.

Note that these weights presume the cost of a street segment is independent of its position
and the cost of others segments.

5.2.2 OD Matrices

Two types of OD matrix were generated using two different distributions, the uniform
distribution, which assumes individual demands do not depend on each other, and the
clusterized distribution, which presumes the existence of interest points that concentrate
demand between each other. For instance, these points could be a small square in a resi-
dential suburb and a bus station in the center of an area with a concentration of cultural
facilities (museums, theaters, cinemas, etc). Three “flavors” of the clusterized distribution
were designed.

• Interest points are sampled randomly from all the vertices of the grid,

• interest points are sampled randomly from the border vertices of the grid, and

• for each pair of interest points, one point is sampled randomly from the border
vertices and the other from the central vertices of the grid.

The strategies to build these matrices is described below.

Uniform Distribution

Each element mij, i ̸= j was drawn uniformly from the discrete interval [1, 100].

Clusterized Distribution

For each grid graph G = (V,E), we choose nS = 0.1× |V | vertex pairs (u, v), u ̸= v. We
name each of these pairs as seed, and refer to the set of seeds as S. We only calculate
clusterized distributed OD matrices for n > 20, so nS is always a positive integer.

Seeds may be chosen according to three different strategies:

• both u and v are sampled randomly from all vertices of G,

• both u and v are sampled randomly from all border vertices of G,

• u is sampled randomly from border vertices of G and v is sampled randomly from
all center vertices of G.

35

Once all nS seeds have been chosen, we determine values dij of OD matrix D as follows.
Let Dmin, Dmax and α be numbers such that Dmin, Dmax ∈ N, Dmin < Dmax, α ∈ R,
α ∈ (0, 1); uniform_sampling(interval) be a function that returns an integer value
sampled uniformly from interval; dfs(v,G) a function that returns the set of all vertices
in the depth-first1 tree of G from vertex v; dist(v1, v2) is the distance, in number of edges,
between v1 and v2; and, ceil(f) returns the smallest integer greater than f . A pseudocode
of the construction method based on a clusterized distribution is given next.

dij ← 0,∀i, j = 0, . . . , |V | − 1

for all (u, v) ∈ S do

demanduv ← uniform_sampling([Dmin, Dmax])

for all w ∈ dfs(v) do

i← dist(v, w)

duw ← duw + ceil(αi × uniform_sampling([Dmin, demanduv]))

end for

demandvu ← uniform_sampling([Dmin, Dmax])

for all w ∈ dfs(u) do

i← dist(u,w)

dvw ← dvw + ceil(αi × uniform_sampling([Dmin, demandvu]))

end for

end for
We set Dmin = 100, Dmax = 200 and α = 0.8.

5.2.3 Budget Limit

The budget limits are percentages of the total cost of the studied grid or subgraph. The
percentages used were 25%, 50% and 75%.

5.3 Parameters

The time limit used for all experiments described in Sections 5.4 and 5.5 was 10 minutes.
Parameters specific to the heuristic method (BRKGA-MP-IPR) are listed below.

• Population size: 2000;

• number of independent populations: 3;

• mutant percentage in population: 15%;

• elite percentage in population: 30%;
1The choice of depth-first over breadth-first was arbitrary.

36

• number of parents to mate: 3;

• number of elite parents: 2;

• minimum distance between chromosomes to path-relink: 0.15.

5.4 Preliminary Experiments

The results presented in this Section, as well as their analyses, have been published in the
Proceedings of the Brazilian Symposium on Operations Research in 2020 [4] and 2022 [5].
For those experiments, we used grids n×n, for n = 4, 6, 8, 10, their subgraphs with densi-
ties r ≈ 0.2, 0.4, 0.6, 0.8, OD matrices with uniform distribution, and budget limit of 25%,
50% and 75% of the total cost of the grid or subgraph.

For the analysis of these results, we used the concepts of lower bound (LB), upper bound
(UB) and gap, conventionally associated with exact methods for combinatorial optimiza-
tion. However, we also adapted those to be used when comparing the exact and heuristic
approaches. In order to differentiate the conventional use from the adapted concept, we
use ILP and BRKGA2 as subscriptions. Hence, we LBILP , UBILP and GAPILP to refer
to the conventional meaning of lower and upper bounds, and gap respectively. We recall
that

GAPILP =
UBILP − LBILP

LBILP

.

We define LBBRKGA as the objective value of the best solution found by the BRKGA-
MP-IPR heuristic, and GAPBRKGA as

GAPBRKGA =
LBBRKGA − LBILP

LBILP

;

UBBRKGA is not defined.

5.4.1 Analyzing Results for the Exact Method

Tables 5.1-5.3 show the results of the ILP solution for instances with a budget constraint
B of 25%, 50% and 75% with respect to the network total cost. The model obtained op-
timal solutions for most (49 out of 60) instances. Lower and upper bounds were obtained
for all instances, except one, namely the instance with 100 vertices, 100% density and 25%
budget constraint. The results also show that instances composed of sparse graphs were
solved more often than those composed of dense graphs, as all instances with a density of
40% or less were solved to optimality.

Concerning optimality gaps, Figure 5.1 shows the average gap obtained by the methodol-
ogy for every graph size and budget constraint. The figure clearly shows an exponential

2Note that the acronym BRKGA is used here for the sake of simplicity. The metaheuristic used for
all experiments was BRKGA-MP-IPR.

37

Number
of nodes Results Density

20% 40% 60% 80% 100%

16
LBILP

UBILP

GAPILP

605
605
0%

782
782
0%

1,926
1,926
0%

2,190
2,190
0%

3,799
3,799
0%

36
LBILP

UBILP

GAPILP

970
970
0%

3,767
3,767
0%

8,088
8,088
0%

11,588
11,588

0%

18,581
22,326

20.1550%

64
LBILP

UBILP

GAPILP

2,391
2,391
0%

3,002
3,002
0%

23,647
23,647

0%

37,720
60,509

60.4162%

54,944
96,674

75.9501%

100
LBILP

UBILP

GAPILP

1,810
1,810
0%

18,009
18,009

0%

46,400
95,376

105.5517%

86,599
180,947

108.9491%

-
266,298

-

Table 5.1: Test results for a budget constraint of 25% of the total cost of the network.

Number
of nodes Results Density

20% 40% 60% 80% 100%

16
LBILP

UBILP

GAPILP

984
984
0%

2,379
2,379
0%

4,420
4,420
0%

6,911
6,911
0%

10,459
10,459

0%

36
LBILP

UBILP

GAPILP

1,375
1,375
0%

5,956
5,956
0%

20,839
20,839

0%

42,829
42,829

0%

58,575
58,575

0%

64
LBILP

UBILP

GAPILP

3,133
3,133
0%

3,002
3,002
0%

55,835
55,835

0%

127,169
137,879
8.4219%

200,134
205,621
2.7417%

100
LBILP

UBILP

GAPILP

1,810
1,810
0%

18,009
18,009

0%

116,812
242,190

107.3332%

320,725
372,483

16,1378%

125,342
501,178

299.8484%

Table 5.2: Test results for a budget constraint of 50% of the total cost of the network.

growth in the average gap with the increase of the graph size. For the instance in which
no lower bound was attained, the optimality gap was assumed to be infinite. As for the in-
stances budget, Figure 5.1 indicates that loose budget constraints proved to be the easier
to solve, since all but one instance with 75% budget constraint were solved to optimality.

5.4.2 Comparing Exact and Heuristic Approaches

Tables 5.4- 5.6 present results for both methodologies. Taking a closer look at Table 5.4,
one can observe that for smaller grids - with 16 and 36 nodes - the BRKGA-MP-IPR
approach underperforms the exact method; that is, while the solver for the exact method
is able to find the optimal solution, the best solution the metaheuristic obtains is far
apart from the optimal one. For the large grids with low density - 20%, 40%, and 60%,
and 20% and 40% for networks with 64 and 100 nodes, respectively - BRKGA-MP-IPR
also was outperformed by the model. However, for the remaining networks, for which the
exact method is not able to find the optimal solution - only lower and upper bounds -
during the time limit, the BRKGA-MP-IPR method is able to decrease the gap between
those bounds. More precisely, in the case of the 100-node network with 100% density, our

38

Number
of nodes Results Density

20% 40% 60% 80% 100%

16
LBILP

UBILP

GAPILP

984
984
0%

2,379
2,379
0%

4,974
4,974
0%

11,926
11,926

0%

13,342
13,342

0%

36
LBILP

UBILP

GAPILP

1,375
1,375
0%

5,956
5,956
0%

22,659
22,659

0%

62,037
62,037

0%

65,277
65,277

0%

64
LBILP

UBILP

GAPILP

3,133
3,133
0%

3,002
3,002
0%

55,835
55,835

0%

192,993
192,993

0%

206,005
206,005

0%

100
LBILP

UBILP

GAPILP

1,810
1,810
0%

18,009
18,009

0%

125,121
125,121

0%

427,150
444,717
4.1126%

501,178
501,178

0%

Table 5.3: Test results for a budget constraint of 75% of the total cost of the network.

16 36 64 100

0

50

100

Infinity

Budget:

Number of vertices

Av
er

ag
e
G
A
P
I
L
P

(%
)

25% 50% 75% Overall

Figure 5.1: Average GAPILP obtained by the methodology with respect to the instances
sizes and budgets.

39

Number
of nodes Results Density

20% 40% 60% 80% 100%

16
LBILP

UBILP

Decoder 1

605
605
322

782
782
547

1,926
1,926
1,404

2,190
2,190
2,190

3,799
3,799
3,754

36
LBILP

UBILP

Decoder 1

970
970
472

3,767
3,767
2,845

8,088
8,088
7,099

11,588
11,588
11,588

18,581
22,326
18,357

64
LBILP

UBILP

Decoder 1

2,391
2,391
1,827

3,002
3,002
2,351

23,647
23,647
21,351

37,720
60,509
38,033

54,944
96,674
56,207

100
LBILP

UBILP

Decoder 1

1,810
1,810
1,400

18,009
18,009
16,521

46,400
95,376
47,784

86,599
180,947
90,151

-
266,298
135,451

Table 5.4: Test results for a budget constraint of 25% of the total cost of the network.

16 36 64 100
−60

−40

−20

0

Density:

Number of vertices

G
A
P
B
R
K
G
A

(%
)

20% 40% 60% 80% 100%

Figure 5.2: GAPBRKGA for different network sizes and densities subjected to the 25%
budget constraint.

heuristic is responsible for obtaining a lower bound, as the solver was not able to do so
within the time limit imposed in the original work.

In Figure 5.2, we summarize that information by computing the gap between the best
feasible solution found by the BRKGA-MP-IPR heuristic and the lower bound found by
the exact method - if found - for all networks, under the 25% budget constraint. Fig-
ures 5.3 and 5.4 do the same for the other two budget constraints. Bars below the x-axis
indicate that the BRKGA-MP-IPR has done worse than the exact method; bars above it
mean the metaheuristic was able to achieve better results than the solver.

For the 100-node network with 100% density subjected to a budget constraint of 50% of
the total network cost, BRKGA-MP-IPR is also able to decrease the gap, very signifi-
cantly in this case (see Table 5.5 and Figure 5.3).

40

Number
of nodes Results Density

20% 40% 60% 80% 100%

16
LBILP

UBILP

Decoder 1

984
984
716

2,379
2,379
1,861

4,420
4,420
3,459

6,911
6,911
6,911

10,459
10,459
10,459

36
LBILP

UBILP

Decoder 1

1,375
1,375
804

5,956
5,956
4,940

20,839
20,839
18,885

42,829
42,829
36,536

58,575
58,575
55,708

64
LBILP

UBILP

Decoder 1

3,133
3,133
2,497

3,002
3,002
2,351

55,835
55,835
52,257

127,169
137,879
121,844

200,134
205,621
181,094

100
LBILP

UBILP

Decoder 1

1,810
1,810
1,400

18,009
18,009
16,532

116,812
242,190
115,055

320,725
372,483
275,214

125,342
501,178
414,478

Table 5.5: Test results for a budget constraint of 50% of the total cost of the network.

16 36 64 100

−50

0

50

Density:

Number of vertices

G
A
P
B
R
K
G
A

(%
)

20% 40% 60% 80% 100%

Figure 5.3: GAPBRKGA for different network sizes and densities subjected to the 50%
budget constraint.

For the 75% budget constraint, the BRKGA-MP-IPR approach was outperformed in ev-
ery scenario. However, it is likely that, for larger instances than the ones used in these
preliminary experiments, the solver would struggle to find solutions.

This behavior can be explained by the fact the model can easily solve the problem for
small instances and “loose” budget constraints. The solver starts struggling as we decrease
the budget limit and increase the size of the networks - by either nodes or edges. In those
cases, the exact method is not able to find an optimal solution within the time limit, only
accomplishing to find upper and lower bounds - except for the network with 100 nodes
and 100% density subjected to a budget constraint of 25% of the cost of the network, for
which no lower bound was found.

41

Number
of nodes Results Density

20% 40% 60% 80% 100%

16
LBILP

UBILP

Decoder 1

984
984
716

2,379
2,379
1,861

4,974
4,974
3,986

11,926
11,926
11,796

13,342
13,342
13,342

36
LBILP

UBILP

Decoder 1

1,375
1,375
804

5,956
5,956
4,940

22,659
22,659
20,670

62,037
62,037
62,037

65,277
65,277
65,277

64
LBILP

UBILP

Decoder 1

3,133
3,133
2,497

3,002
3,002
2,351

55,835
55,835
52,257

192,993
192,993
175,319

206,005
206,005
199,784

100
LBILP

UBILP

Decoder 1

1,810
1,810
1,400

18,009
18,009
16,532

125,121
125,121
115,055

427,150
444,717
313,025

501,178
501,178
416,069

Table 5.6: Test results for a budget constraint of 75% of the total cost of the network.

16 36 64 100

−40

−30

−20

−10

0

Density:

Number of vertices

G
A
P
B
R
K
G
A

(%
)

20% 40% 60% 80% 100%

Figure 5.4: GAPBRKGA for different network sizes and densities subjected to the 75%
budget constraint.

42

Based on these experiments, we hypothesize that the two methods - namely, the SLPP
ILP model and BRKGA-MP-IPR - complement each other. In order to test this hypothe-
sis, we run more experiments on larger instances. The results are presented in Section 5.5.

5.5 Experiments

For these experiments, we used grids n × n, for n = 20, 40, 60, 80, 100, their subgraphs
with densities r ≈ 0.2, 0.4, 0.6, 0.8, OD matrices with uniform distribution and clusterized
matrices generated from all three types of seeds, and budget limit of 25%, 50%, and 75%,
adding up to 300 instances. Each was solved by the SLPP ILP model and three versions
of the BRKGA-MP-IPR metaheuristic.

The SLPP ILP model was unable to solve any of the mentioned instances to optimality
within the given time limit of 10 minutes, with most gaps being infinite. This result
confirms our hypothesis that the model does not scale well as expected, considering the
SLPP is an NP-hard problem (Section 3.2). In the following tables, we summarize and
highlight some of the results.

For comparison between the two methods, both the “easiest” and the “hardest” instances
have been selected - subgraph with dimension 20 × 20 and r ≈ 0.2 with a 75% budget
limit (Table 5.7), and grid with dimension 100× 100 combined with a 25% budget limit
(Table 5.8), as pointed out by the preliminary experiments reported in Section 5.4. For
these instances, we chose to only compare the ILP model with the first decoder described
in Section 4 as done in the preliminary experiments. Note that, even for the “easiest”
instance, the ILP model is outperformed by BRKGA-MP-IPR.

For the “hardest”, the solver runs out of memory before being able to complete the first
iteration3, while BRKGA-MP-IPR is able to find feasible solutions.

Matrix
Distribution

ILP model BRKGA-MP-IPR
LBILP UBILP GAPILP LBBRKGA GAPBRKGA

Uniform 100 438,160 4,380.6% 4,314 42.1%
Clusterized
(random) 1,396 10,791,079 7,728.9% 125,208 88.6%

Clusterized
(border-center) 1,405 10,852,834 7,723.4% 127,035 89.4%

Clusterized
(border-border) 0 10,782,764 ∞ 129,690 ∞

Table 5.7: Results for the “easiest” instance, namely subgraph with dimension 20 × 20
with r ≈ 0.2 and a 75% budget limit.

3Note that a 100×100 grid has 10,000 nodes, hence, its associated OD matrix has dimension 10, 000×
10, 000.

43

Matrix
Distribution

ILP model BRKGA-MP-IPR
LBILP UBILP GAPILP LBBRKGA GAPBRKGA

Uniform - - - 20,453,890 -
Clusterized
(random) - - - 1,315,470,195 -

Clusterized
(border-center) - - - 1,324,480,950 -

Clusterized
(border-border) - - - 1,933,826,486 -

Table 5.8: Results for the “hardest” instance, namely grid with dimension 100 × 100
combined with a 25% budget limit.

The model was also unable to solve all instances with 80 × 80 grid or subgraph. For
instances with grids of dimensions 40× 40 and 60× 60, in most cases, the model was able
to find a lower bound, but not an upper bound.

In order to illustrate the difference in performance of the three decoders, we chose 36
different instances. These instances are listed next; they all have a 25% budget.

• n = 20, r = 1, combined with all four matrix types;

• n = 40, r = 1, combined with all matrix types;

• n = 60, r = 1, combined with all matrix types;

• n = 80, r = 1, combined with all matrix types;

• n = 100, r ≈ 0.8, combined with all matrix types;

• n = 100, r ≈ 0.6, combined with all matrix types;

• n = 100, r ≈ 0.4, combined with all matrix types;

• n = 100, r ≈ 0.2, combined with all matrix types.

Matrix
Distribution

n Decoder20 40 60 80 100

Uniform
1,953,549
1,996,527

0

8,977,808
9,390,787

0

12,454,531
13,600,347

0

19,109,046
21,172,823

0

16,289,779
18,391,160

0

Decoder 1
Decoder 2
Decoder 3

Clusterized
(random)

49,891,800
51,538,229

0

480,872,350
502,030733

0

604,703,669
660,336,407

0

1,126,491,810
1,1,252,658,890

0

1,315,470,195
1,493,058,670

0

Decoder 1
Decoder 2
Decoder 3

Clusterized
(border-center)

49,780,490
51,672,148

0

374,300,955
396,384,711

0

858,289,224
943,259,857

0

1,129,587,105
1,253,841,690

0

1,324,480,950
1,500,636,920

0

Decoder 1
Decoder 2
Decoder 3

Clusterized
(border-border)

49,521,420
51,106,105

0

361,276,367
385,843,160

0

773,557,533
845,498,384

0

1,135,571,075
1,277,534,600

0

1,370,069,085
1,534,477,385

0

Decoder 1
Decoder 2
Decoder 3

Table 5.9: Results obtained by the three different decoders for instances with r = 1, a
25% budget, and n as indicated on the Table.

44

Matrix
Distribution

r Decoder0.2 0.4 0.6 0.8 1

Uniform
16,683
16,683

0

122,427
122,427

0

527,889
527,889

0

4,729,811
4,971,031

0

16,289,779
18,391,160

0

Decoder 1
Decoder 2
Decoder 3

Clusterized
(random)

1,212,804
1,212,804

0

6,376,443
6,376,443

0

37,017,684
37,017,684

0

340,069,293
347,890,887

0

1,315,470,195
1,493,058,670

0

Decoder 1
Decoder 2
Decoder 3

Clusterized
(border-center)

1,188,918
1,188,918

0

6,331,220
6,331,220

0

40,411,600
40,411,600

0

443,715,624
457,470,808

0

1,324,480,950
1,500,636,920

0

Decoder 1
Decoder 2
Decoder 3

Clusterized
(border-border)

1,198,008
1,198,008

0

8,534,784
8,534,784

0

61,943,242
61,943,242

0

288,078,036
296,144,221

0

1,370,069,085
1,534,477,385

0

Decoder 1
Decoder 2
Decoder 3

Table 5.10: Results obtained by the three different decoders for instances with n = 100,
a 25% budget, and r as indicated on the Table.

The first thing that comes to attention is the fact that decoder 3 is not successful in
finding a feasible solution. The probable cause is that most chromosomes do not translate
to viable solutions. For instance, half of the existing chromosomes translate to a graph
with no edges; from the other half, graphs that have more than one component are not
considered a valid solution. Thus, the decoder struggle to find feasible solutions, causing
it to converge at a much slower rate than the other two. We conclude that, although the
decoder theoretically removes bias, it is not worth the resulting slow convergence rate. A
possible solution would be to increase the probability of an edge being present, that is,
increase the size of the interval that is connected to the presence of edges - consequently
decreasing the interval linked to the absence of edges -, and considering only the largest
component of a graph with multiple components as a candidate solution.

Note that, in Table 5.10, decoders 1 and 2 obtained the same solution for r ≈ 0.2, 0.4, 0.6.
This likely occurred due to the fact that the absence of edges limited the options of paths
between two vertices such that the paths p = (v1, . . . , vn) found by decoder 1 were al-
ready the shortest paths between v1 and vn. This hypothesis is further sustained by the
fact that decoder 2 was able to attain better results than decoder 1 for all grids with r = 1.

45

Chapter 6

Final Remarks

We would like to start these final remarks by reiterating that, although the motivation
for this work is very practical, our model simplifies and abstracts the addressed problem.
We are aware that there are other variables when planning a public transit line that have
not been accounted for by our model. For instance, the length of the line and the time to
travel between its two ends. It does not sound practical to have an intraurban bus line
that is 100 km long and takes five hours to be traversed, for example.

Furthermore, even if our instances do a fair job of mimicking real street networks and
real OD matrices, they will never be as good as data from real cities, particularly where
network size is concerned. It is important to notice, however, that both methodologies
can handle real instance data - although the ILP model will not cope well with large
instances, as we have shown in this work.

Moreover, we finish this dissertation with quite a few ideas for future work. First and
foremost, we would like to experiment with real data. It is worth noting however that
those are not easy to obtain, specially OD matrices. We also wish to experiment with
new decoders and improving the current ones. For instance, the edge-based decoder can
be modified to guarantee that all chromosomes are transcribed to feasible solutions. Ad-
ditionally, we would like to test combining the two techniques, for instance, by providing
the solutions obtained heuristically as a warm start for the solver and observe how it
impacts its performance.

Finally, we conclude by stating that our main hypothesis has been confirmed and the two
approaches are in fact complimentary. However, we would like to highlight that, due to
its low scalability, the ILP model cannot realistically be used for real world data, as shown
in Section 5.5.

46

Bibliography

[1] Roads, transit, and the denseness of são paulo’s urban development. MIT Center for
Real Estate Research Paper, 2021.

[2] Carlos E Andrade, Luciana S Pessoa, and Slawomir Stawiarsk. The physical cell
identity assignment problem: a practical optimization approach. IEEE Transactions
on Evolutionary Computation, 2022.

[3] Carlos E. Andrade, Rodrigo F. Toso, José F. Gonçalves, and Mauricio G.C. Resende.
The multi-parent biased random-key genetic algorithm with implicit path-relinking
and its real-world applications. European Journal of Operational Research, 289(1):17–
30, 2021.

[4] Julia R. Beltrão and Fábio L. Usberti. Using optimization to design public urban
transportation networks. In Proceedings of the Brazilian Symposium on Operations
Research, 2020.

[5] Julia R. Beltrão and Fábio L. Usberti. An evolutionary approach for the optimal
design of public transportation networks. In Proceedings of the Brazilian Symposium
on Operations Research, 2022.

[6] Adrian Bondy and U.S.R. Murty. Graph theory. Graduate texts in mathematics 244.
Springer, 3rd corrected printing. edition, 2008.

[7] Ralf Borndörfer, Martin Grötschel, and Marc E. Pfetsch. A column-generation ap-
proach to line planning in public transport. Transportation Science, 41(1):123–132,
2007.

[8] Michael R. Bussieck, Thomas Lindner, and Marco E. Lübbecke. A fast algorithm
for near cost optimal line plans. Mathematical Methods of Operations Research,
59(2):205–220, June 2004.

[9] Reinhard Diestel. Graph Theory. Graduate Texts in Mathematics 173. Springer-
Verlag Berlin Heidelberg, 5 edition, 2017.

[10] Michael R. Garey and David S. Johnson. Computers and Intractability. W. H.
Freeman, 1979.

[11] Fred Glover, Manuel Laguna, and Rafael Martí. Fundamentals of scatter search and
path relinking. Control and cybernetics, 29(3):653–684, 2000.

47

[12] José Fernando Gonçalves and Mauricio GC Resende. Biased Random-Key Genetic
Algorithms for Combinatorial Optimization. Journal of Heuristics, 17(5):487–525,
10 2011.

[13] Margardida C. Gordinho. Transportes no Brasil. Editora Marca d’Água, 2003.

[14] Konstantinos Kepaptsoglou and Matthew Karlaftis. Transit route network design
problem: Review. Journal of Transportation Engineering, 135:491–505, 08 2009.

[15] Alberto Kummer, Olinto de Araújo, Luciana Buriol, and Mauricio Resende. A biased
random-key genetic algorithm for the home health care problem. arXiv preprint
arXiv:2206.14347, 2022.

[16] Gilbert Laporte, Ángel Marín, Juan A. Mesa, and Francisco A. Ortega. An integrated
methodology for the rapid transit network design problem. In Algorithmic Methods
for Railway Optimization, pages 187–199. Springer Berlin Heidelberg, 2007.

[17] Mariana A Londe, Carlos E Andrade, and Luciana S Pessoa. An evolutionary ap-
proach for the p-next center problem. Expert Systems with Applications, 175:114728,
2021.

[18] Marcus Lopes. Como nasceu o primeiro sistema de transporte coletivo do mundo.
BBC News Brasil. Available: https://www.bbc.com/portuguese/geral-45587611
[Last access: 12 Dec 2022].

[19] Marina L. Lucena, Carlos E. Andrade, Mauricio GC Resende, and Flávio K.
Miyazawa. Some extensions of biased random-key genetic algorithms. In Proceedings
of the 46th Brazilian Symposium of Operational Research, pages 1–12, 2014.

[20] Celso C. Ribeiro, Jose A. Riveaux, and Julliany S. Brandao. Biased random-key
genetic algorithms using path-relinking as a progressive crossover strategy. In 2021
5th International Conference on Intelligent Systems, Metaheuristics amp; Swarm
Intelligence, ISMSI 2021, page 28–36, New York, NY, USA, 2021. Association for
Computing Machinery.

[21] Kenneth Sörensen and Fred W. Glover. Metaheuristics. Springer US, Boston, MA,
2013.

[22] UITP. Urban public transport in the 21st century. uitp.org/. Available: http:
//www.uitp.org/urban-public-transport-21st-century [Last access: 29 Jan
2020]., 2017.

[23] Vukan R. Vuchic. Urban Transit Systems and Technology. Wiley, 2007.

[24] Eric W. Weisstein. Grid graph. From MathWorld–A Wolfram Web Resource. Avail-
able: https://mathworld.wolfram.com/GridGraph.html [Last access: 4 Dec 2022].

[25] Amirali Zarrinmehr, Mahmoud Saffarzadeh, Seyedehsan Seyedabrishami, and
Yu Marco Nie. A path-based greedy algorithm for multi-objective transit routes
design with elastic demand. Public Transport, 8(2):261–293, September 2016.

https://www.bbc.com/portuguese/geral-45587611
http://www.uitp.org/urban-public-transport-21st-century
http://www.uitp.org/urban-public-transport-21st-century
https://mathworld.wolfram.com/GridGraph.html

48

[26] Ángel Marín and Patricia Jaramillo. Urban rapid transit network design: accelerated
Benders decomposition. Annals of Operations Research, 169(1):35–53, July 2009.

	Introduction
	Definitions and Terminology
	Graphs
	Transport-Related Concepts
	Combinatorial Optimization and Linear Programming
	NP-completeness
	Metaheuristics

	Formulation and Complexity
	The Single Line Planning Problem
	Complexity Analysis

	Metaheuristic Approach
	Vertex-based Decoders
	Decoder Without Local Search (Decoder 1)
	Decoder With Iterative Local Search (Decoder 2)

	Edge-based Decoder (Decoder 3)

	Computational Experiments
	Computational Environment
	Instances
	Graphs
	OD Matrices
	Budget Limit

	Parameters
	Preliminary Experiments
	Analyzing Results for the Exact Method
	Comparing Exact and Heuristic Approaches

	Experiments

	Final Remarks
	Bibliography

