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Abstract

Bimetallic nanoparticles (BNPs) attract attention in both fundamental and applied
sciences. Here the BNP properties depend not only on size, shape, and environment
but also on their chemical composition and atomic ordering. One of the most intensely
studied bimetallic systems is the gold-silver alloy NPs. In bulk, the elements are entirely
miscible, but in nanoscale, the arrangement of the atomic species is still unsolved
for small surfactant-free BNPs (Diam. < 10 nm). The complete characterization of
nanometric systems requires detailed knowledge of how the different chemical elements
of the materials are distributed at the interfaces/surfaces (roughness, interdiffusion,
etc.); and, finally, how these factors modify the electronic properties of the system.
Henceforth, we propose the study of chemical composition and elemental distribution
within AuAg BNPs produced by gas-phase aggregation. Here, to investigate the
atomic organization and chemical composition of AuAg BNP as function of size, high-
resolution Energy Dispersive X-ray Spectroscopy and Scanning Transmission Electron
Microscopy (EDS-STEM) are used quantitatively. Thus, we aim to use the EDS-
STEM technique and hyperspectral image (HSI) data treatment using machine learning
to improve the quantitative chemical composition information extraction. EDS-STEM
has gained significant improvement in its acquisition systems, making it possible to
perform chemical analysis of nanometric objects, such as bimetallic nanoparticles (BNPs).
These advances turn possible to extract quantitative information from individual small
BNPs, opening the path for understanding chemical composition vs. size physico-
chemical properties. This is a significant improvement concerning purely qualitative
chemical mapping, as it is widely used in various communities. Proper quantification
requires confidence intervals; therefore, we show a methodology to estimate uncertainty in
chemical composition analysis after machine learning denoising by Principal Components
Analysis (PCA), evaluating its detection and quantification limits in the application for
elemental assessment in small BNPs. Thus, we quantify the chemical composition of
AuAg BNPs and identify, for example, size-dependent composition effects hidden by
Poisson noise. Finally, we propose using machine learning tools, such as PCA and Non-
Negative Matrix Factorization (NMF), to study the unmixing of signals in HSIs. Here
we aim to know the elemental distribution inside the AuAg BNPs. We show that we
can measure a chemical gradient of 0.45 ± 0.02 to 0.62 ± 0.02 (Ag at. fraction) from
the projected center of the BNP to its surface. The Ag enrichment towards the surface
characterizes a core rich in Au and a shell rich in Ag. Consequently, to explain the radial
Ag enrichment, we studied the effect of reactivity towards oxidation by analyzing carbon-
protected and unprotected BNPs. Hence, due to the quantitative aspect of our analysis,
we can know the number of atoms in different regions of the BNP. This allowed us to
identify that carbon-protect and annealed samples show an increased level of alloying and
only a small fraction of Ag enrichment in the surface, in contrast to the oxidized samples
where the Ag atoms strongly tend to the BNP surface. Finally, with quantitative analysis
methodologies employed in this thesis, the chemical composition characterization of small
volumes can be improved to support theory and simulations of modeling in nanoscale
physics and chemistry for both fundamental and applied studies.



Resumo
Nanopartículas bimetálicas (BNPs) atraem atenção das ciências aplicadas e

fundamentais. Suas propriedades dependem não somente de seu tamanho e forma,
mas também de sua composição química e ordenamento atômico. Nesse contexto,
um dos sistemas mais intensivamente estudados são nanoligas metálicas de AuAg.
Macroscopicamente, ambos elementos são completamente miscíveis. Entretanto, para
pequenas BNPs (Diam. < 10 nm), livres de passivantes, seu comportamento ainda não foi
completamente determinado. A completa caracterização de sistemas nanométricos requer
o conhecimento detalhado de como os diferentes elementos dos materiais se distribuem
em interfaces/superfícies (rugosidade, interdifusão etc.); e finalmente, como esses fatores
modificam as propriedades eletrônicas do sistema. Nesse sentido, nós propomos o estudo
da composição química e distribuição elemental em BNPs de AuAg produzidas por
agregação em fase gasosa. Para investigar a organização atômica e composição química
dessas BNPs em função do tamanho, utilizamos microscopia de transmissão em modo
varredura e espectroscopia por dispersão em energia de raio-X (EDS-STEM). Usamos
EDS-STEM e tratamento de dados de imagens hyperspectrais (HSI) com aprendizado de
máquina para aperfeiçoar a extração de informação quantitativa da composição química
de BNPs. EDS-STEM tem ganhado melhorias significantes em sistemas de aquisição
de dados, tornando possível realizar análises químicas de objetos nanométricos. Esses
avanços permitem extrair informação quantitativa de pequenas BNPs individualmente,
abrindo o caminho para o entendimento de suas propriedades físico-químicas dependentes
de sua composição química e tamanho. A obtenção de informação quantitativa da
composição química de BNPs é um avanço significativo em comparação à simples
análises qualitativas em mapeamentos elementais. Análises quantitativas requerem
a determinação de intervalos de confiança; portanto, neste trabalho propomos uma
metodologia para estimativa da incerteza na composição química após o uso de análise
de componentes principais (PCA) como filtro de ruído. Aqui avaliamos seus limites de
detecção e quantificação na aplicação em mapas elementais de pequenas BNPs de AuAg.
Quantificamos a composição química de BNPs de AuAg e identificamos, por exemplo,
efeitos de tamanho escondidos pelo ruído de Poisson que não poderiam ser observados
a priori sem a redução de ruído por PCA. Além disso, nós propomos o uso de PCA e
fatoração não negativa de matrizes (NMF) para estudar a distribuição elemental de BNPs
de AuAg. Nós conseguimos medir um gradiente químico de 0.45 ± 0.02 até 0.62 ± 0.02
(fração de átomos de Ag) dentro das BNPs, partindo do centro até sua superfície no
mapa elemental. O enriquecimento de Ag em direção a superfície das BNPs caracteriza
um núcleo rico em Au e uma casca rica em Ag. Para explicar esse enriquecimento
radial de Ag, investigamos os efeitos de reatividade química na distribuição elemental
das BNPs. Assim, estudamos BNPs protegidas por um filme fino de carbono depositado
sobre as partículas para reduzir os efeitos de oxidação e comparamos os resultados para o
mesmo sistema desprotegido. Devido ao aspecto quantitativo de nossa análise, podemos
saber a quantidade de átomos em diferentes regiões das BNPs. Portanto, identificamos
que nas amostras protegidas por carbono e sob tratamento térmico, a miscibilidade de
Au e Ag é aumentada, apresentando um leve enriquecimento de Ag na superfície em
contraste ao sistema oxidado. Enfim, com as metodologias de análise química quantitativa
desenvolvidas nesta tese, propomos que a caracterização da composição química de
pequenos volumes pode ser aperfeiçoada, permitindo que dados quantitativos forneçam



parâmetros experimentais para análises teóricas em nano-escala, o que contribui para
melhorar compreensão das propriedades físico-químicas de nanomateriais, tanto do ponto
de vista de ciências fundamentais quanto aplicadas.



Résumé
Les nanoparticules bimétalliques (BNP) attirent l’attention dans les sciences

fondamentales et appliquées. Les propriétés des BNP dépendent non seulement de
leur taille, de leur forme et de leur environnement, mais aussi de leur composition
chimique et de leur ordonnancement atomique. Les NP d’alliage or-argent constituent
l’un des systèmes bimétalliques les plus étudiés. Dans le volume, les éléments sont
entièrement miscibles, mais à l’échelle nanométrique, la question de l’arrangement des
espèces atomiques n’est toujours pas résolu pour les petites NPs (Diam. < 10 nm).
La caractérisation complète des systèmes nanométriques nécessite une connaissance
détaillée de la façon dont les différents éléments chimiques des matériaux sont distribués
aux interfaces/surfaces (rugosité, interdiffusion, etc.) ; et, finalement, comment
ces facteurs modifient les propriétés électroniques du système. Ici, nous proposons
l’étude de la composition chimique et de la distribution des éléments a l’interieur des
BNP AuAg produits par agrégation en phase gazeuse. Pour étudier l’organisation
atomique et la composition chimique des BNP d’AuAg en fonction de leur taille,
nous utilisons la spectroscopie aux rayons X à dispersion d’énergie à haute résolution
et la microscopie électronique à transmission à balayage (EDS-STEM) de manière
quantitative. Nous souhaitons donc utiliser la technique EDS-STEM et le traitement des
données d’images hyperspectrales (HSI) par apprentissage automatique pour améliorer
l’extraction d’informations sur la composition chimique quantitative. La technique
EDS-STEM a connu des améliorations significatives dans ses systèmes d’acquisition,
rendant possible l’analyse chimique d’objets nanométriques, tels que les nanoparticules
bimétalliques (BNP). Ces progrès permettent d’extraire des informations quantitatives
de petites BNP individuelles, ouvrant la voie à la compréhension de la composition
chimique par rapport aux propriétés physico-chimiques en fonction de la taille. Il
s’agit d’une amélioration significative par rapport à la cartographie chimique purement
qualitative, qui est largement utilisée dans diverses communautés. Une quantification
correcte nécessite des intervalles de confiance; par conséquent, nous montrons une
méthodologie pour estimer l’incertitude dans l’analyse de la composition chimique après
un débruitage par apprentissage automatique en utilisant l’analyse en composantes
principales (PCA), en évaluant ses limites de détection et de quantification dans
l’application pour l’évaluation élémentaire des petits BNP. Ainsi, nous quantifions la
composition chimique des BNP AuAg et identifions, par exemple, les effets de composition
dépendant de la taille autrement cachés par le bruit de Poisson. Enfin, nous proposons
d’utiliser des outils d’apprentissage automatique, tels que la PCA et la factorisation de
matrices non négatives (NMF), pour étudier le démixage des signaux dans les HSI. Ici,
nous cherchons à connaître la distribution élémentaire à l’intérieur des BNP AuAg. Nous
montrons que nous pouvons mesurer un gradient chimique de 0.45 ± 0.02 à 0.62 ± 0.02
(fraction d’Ag at.) du centre projeté du BNP à sa surface. L’enrichissement en Ag vers
la surface caractérise un cœur riche en Au et une coquille riche en Ag. Par conséquent,
pour expliquer l’enrichissement radial en Ag, nous avons étudié l’effet de la réactivité
à l’oxydation en analysant des BNP protégés et non protégés par du carbone. Ainsi,
grâce à l’aspect quantitatif de notre analyse, nous pouvons connaître le nombre d’atomes
dans les différentes régions du BNP. Cela nous a permis d’identifier que les échantillons
protégés par du carbone et recuits montrent un niveau augmenté d’alliage et seulement
une petite fraction d’enrichissement en Ag dans la surface, contrairement aux échantillons



oxydés où les atomes d’Ag tendent fortement vers la surface du BNP. Enfin, avec les
méthodologies d’analyse quantitative employées dans cette thèse, la caractérisation de la
composition chimique de petits volumes peut être améliorée pour soutenir la théorie et
les simulations de modélisation en physique et chimie à l’échelle nanométrique pour des
études fondamentales et appliquées.

,
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Chapter1
Introduction

Bimetallic nanoparticles (BNPs) are systems formed by two metals, which can display
different types of structures and adopt different morphologies and even chemical order
[1, 2, 3]. By controlling the size and chemical composition, different physical and chemical
properties can be obtained due to quantum, and surface-induced phenomena [4]. Hence,
it is of great interest to establish reliable methods for the characterization of chemical
composition and elemental distribution of a single small BNP (sub-10 nm) [5]. In this
context, developing new tools with specific and well-adapted capabilities for nanosystems
becomes essential. The study of individual nanosystems requires instruments that have a
high spatial resolution. Electron microscopy (EM), as well as scanning probe microscopes
(SPM), are specially adapted as they allow obtaining images of morphology, structural
information, and even nanometer resolution spectroscopic information [6, 7]. Therefore,
in this thesis, we wish to explore the measurement of the chemical composition of AuAg
BNPs using Energy-dispersive X-ray Spectroscopy (EDS) combined with a Scanning
Transmission Electron Microscope (STEM). This way, we expect to contribute in both
EM and nanoalloy communities by the employ of quantitative EDS chemical analysis of
small BNPs (Diam. < 10 nm).

In chapter 2.1 we discuss the physico-chemical properties of the BNPs, especially
the AuAg model. Also, we explain the methodology to synthesize our samples by
the gas aggregation physical route, where the NPs are produced surfactant-free and
deposited in the TEM substrate. In this chapter, we contextualize the need of reliable
quantitative chemical analysis of BNPs as a function of size, where nanoscale effects
play a fundamental role. Therefore, in chapter 3 we will introduce the STEM imaging
and spectroscopies modes focusing in EDS elemental mapping details. Thus, we show
our central methodology for quantifying the chemical composition of individual BNPs
in chapter 4. In this chapter, we show how we select the pixels of interest (BNP’s
region) and process their spectra to result in the final quantification of the BNP’s
chemical composition by the Cliff-Lorimer method [8]. Here, we emphasize that proper
quantitative analysis requires the establishment of confidence intervals (error bars). For
that, we show the standard error propagation procedure for the obtention of these values.
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Hence, we show that the principal difference between straightforward qualitative and
quantitative analysis is that more X-ray counts must be measured. For EDS-STEM, due
to the Poisson distribution nature of counting X-ray photons, we discuss the need to
considerably increase the number of counts to attain better signal-to-noise ratios (SNR).
We bring to the discussion the seminal work of Currie et al. [9, 10, 11]. It is shown that
proper quantitative analysis requires uncertainty intervals and well-established criteria
for detection and quantification limits, which are of utmost importance to increase the
reliability of analytical studies.

Analytical electron microscopy (AEM) nowadays profits from the advances in data
treatment, such as the use of unsupervised machine learning tools for Poisson noise
reduction [12, 7] and feature extraction [13, 14]. Indeed, machine learning tools are
nowadays being used in several different fields of nanoscience, allowing better information
extraction and modeling of nanometric systems [15]. Electron microscopy is no different,
and machine learning tends to become standard procedures in various applications [16]. In
chapter 5 we introduce the basics concepts of unsupervised machine learning methods such
as Principal Component Analysis (PCA) [17, 18] and Non-Negative Matrix Factorization
[19]. In this chapter, we show the recent advances and application of these algorithms in
the state-of-the-art of AEM data treatment, focusing on the applications of EDS-STEM
for Poisson noise reduction (denoising) and blind source separation (BSS) [20, 21]. We
discuss, supported by the literature of the last ∼5 years that these algorithms are very
sensitive to noise, and we show their main drawbacks and pitfalls in the applications
explored in this thesis. At this point, we show two works publicated during this thesis in
chapters 6 and 7, where we explored PCA for denoising in EDS quantitative analysis of
the AuAg BNPs. In the first chapter, we discuss statistical bias and information loss in
the data set reconstruction by PCA, which induces artifacts and systematic error in our
analysis. Then we finish proposing strategies to mitigate the bias in the reconstruction by
the supporting of experiments and simulation interpretation. In the subsequent chapter,
we show the proness of PCA as a denoising tool by the proposal of a new confidence
interval afterward the data set reconstruction. Hence, by the studies in these two chapters,
we expect to show that by the application of PCA denoising, we obtain improved results
from the point of view of accuracy (chapter 6) and precision (chapter 7).

Moreover, motivated by the capabilities of measuring chemical composition
quantitatively, we wish to contribute to the understanding of elemental distributions
inside BNPs. Different chemical configurations (alloyed vs. segregated, partially
segregated, chemically ordered, etc.) can change the optical, magnetic or catalytic
properties considerably [3]. Furthermore, BNPs have been shown to not only permit
the replacement of expensive or rare elements with cheaper and more abundant ones
but that new physico-chemical properties can be achieved. AuAg nanoalloy is one o
of the most studied bimetallic systems. Its BNPs have attracted attention for their
catalytic [22], plasmonic [23] and photocatalytic [24] properties. In bulk, the two metals
are miscible for the entire composition range. On the nanoscale, however, additional
degrees of freedom have to be considered, namely the particle size and morphology, as
well as possible segregation and/or chemical ordering due to thermodynamic and energetic
effects [25] or environmental reactivity towards oxidation [26]. Although there are several
experimental and theoretical works published on AuAg nanoparticles, the controversy
about whether intrinsically one of the two metals preferentially segregates at the surface
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or not is still not resolved. Therefore, in chapter 8, we discuss the elemental distribution of
these systems and propose that quantitative EDS chemical analysis may provide crucial
tools for understanding these questions. Besides, we propose the analysis of carbon-
protected and annealed samples to try to separate effects from oxidation and natural
BNP’s conformation in the ground state.

Finally, in chapter 8, we study how the unsupervised machine learning applied to
EDS-STEM data sets might help in the learning of not only how many atoms we have in
the small AuAg BNPs, but also where they are located. For that, we propose using NMF
for feature extraction in oxidized AuAg BNPs where AuAg@Ag core-shell might occur
due to Ag segregation. Here, we investigate the detailed use of NMF quantitatively and
finish the thesis with the establishment of reliable measurement of chemical gradients
inside the BNPs, comparing both experimental and simulated results. For the last, we
attended in the Appendix a publication prepared for immediate submission. The article
concerns the chemical composition of the BNP’s synthesized by hot atom sources. We
show by the comparison of chemical composition experimentally measured, and Molecular
Dynamics and Monte Carlo simulation that how plasma used as sputtering contributes
to changes in the chemical composition of the BNP’s due to temperature induce Ag loss.
This work done in parallel was possible due to the quantitative EDS chemical analysis
performed in this thesis.
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Chapter2
Metallic Alloy Nanoparticles

Nanoscience and Nanotechnology became popular around the 1970s and 1980s.
However, nanosystems have been used for centuries to produce materials. For example,
people of the Bronze Age (1200 - 1000 BC) in Frattesina di Rovigo in ancient Italy
were already producing red-colored glass. This red color is attributed to the excitation
of surface plasmons from copper nanoparticles located on the surface of the material,
[27]. Today, the understanding of these systems is well established, and the investigation
of their properties provides the fundamental knowledge for nanoscience and potential
technologies, such as medical applications as, for example, hyperthermia [28] and sensor
developments [29, 30].

Metal alloy nanoparticles are composed of miscible or partially miscible metal atoms,
with diameters ranging from few to tens of nanometers. Their properties are defined by
quantum and surface phenomena, possessing different properties depending on their size,
shape, and chemical composition [31]. Nowadays, these systems can be produced in a
variety of ways, with typical options being chemical synthesis in colloidal suspension
[32], and physical synthesis methods in the vapor phase [33] using laser ablation or
magnetron sputtering of a macroscopic metal target as the source of atoms [34]. Metal
alloy nanoparticles attract massive interest in the technological community (ex., catalysis,
magnetism, photonics, etc.)[1]. In this context, developing new tools with specific and
well-adapted capabilities for the study of nanosystems becomes essential. The complete
characterization of nanometric systems requires detailed knowledge: a) of the atomic
arrangement; b) how the different chemical elements of the materials are redistributed at
the interfaces/surfaces (roughness, interdiffusion, etc.); and finally, c) how the first two
factors modify the electronic properties of the system. This chapter discusses bimetallic
nanoparticles in general and important related scientific questions. We then introduce
our model system (AuAg NPs), giving an overall idea of its synthesis and previous
characterizations such as size distribution, ensemble chemical composition, and crystalline
structure.
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2.1 Physico-Chemical Properties

The Physico-chemical properties of nanosystems depend on size due to quantum and
surface phenomena[35, 4]. In nanometric structures, the fraction of surface atoms is higher
than for bulk materials, and this fraction varies with the size of the object, as illustrated
by the figure 2.1. Estimated number for surface and volume atoms for structures ranging
from 1 nm up to 100 nm in radius are presented below to illustrate how the surface
fraction of atoms increases with decreasing system size.

Figure 2.1: Schematic representation of atomic cluster with most of its atoms at the
surface and estimatives of the number of atoms in the volume and surface for different
sizes.

This intrinsic property of surface/volume atom ratio for nanosystems leads to the
occurrence of geometric effects, such as the relationship between melting temperature and
nanoparticle size, as illustrated by the figure 2.2. In this example, the melting temperature
of gold is considerably reduced for nanoparticles smaller than 5 nm with lower melting
temperatures for smalles NPs [36, 37]. This occurs due to the lower coordination number
of surface atoms which are more weakly bound to the material than bulk atoms, causing
the melting temperature to decrease.



18

Figure 2.2: Melting points for Au nanoparticles as a function of diameter. Points represent
experimental data, the dashed line shows the bulk melting point. The solid line is a curve
fitted to the experimental data. Adapted from [36].

Adding different atomic species in these nanosystems adds an extra degrees of freedom,
inducing new geometrical and morphological effects. Therefore, just as is done for
macroscopic metallic alloys, combining the properties of the elements at the nanoscale
makes it possible to explore new possibilities, mixing metallic elements and forming multi-
metallic systems of various structures and morphologies.

Figure 2.3: Schematic of several NP morphologies. Extracted from [1]

Assuming a binary system, for illustration purposes, figure 2.3 presents a schematic
of different possibilities for the morphology of bimetallic nanoparticles: (a) Core-Shell
particle, with one element composing the core and a second element composing the shell
surrounding the core; (b) Janus particles (in reference to the two-headed Roman god),
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where the elements are separated in two distinct phases and maybe completely segregated
or forming a well-defined interface; (c) mixed alloy particles, where the elements are
mixed, forming nanoalloys with or without chemical order; (d) intermediate structures,
for example with alternating layers or a continuous gradient.

The same morphological patterns can be observed in systems with more than two
elements. However, as the number of elements increases, the structure becomes more
complex and difficult to interpret in terms of types of structures. They may even have
different phases in the same object, mixing the different morphological patterns shown in
the figure 2.3. Chen et al. [38] published a work in which multimetal nanoparticles
composed of Ag, Au, Cu, Ni, and Co present at the same time mixed and Janus
morphologies, forming heterostructures, as illustrated in figure 2.4. The nanoparticle at
first presents, in electron microscopy imaging, a chemical contrast between two regions,
revealing a Janus-type nanoparticle. However, using spatially resolved spectroscopy
to generate elemental maps makes it possible to obtain complementary information
indicating the formation of metallic alloys of AuAg, AuCu, and CoNi in three different
domains of the nanoparticle.

Figure 2.4: (A) Representative image of AgAuCuCoNi NP with 19% Au, 24% Ag, 28%
Cu, 14% Co, 15% Ni). (B) Model of the NP measured in (A). The NP segregates in
three different chemical phases of alloys: AgAu, AuCu e CoNi. (C a G) STEM-EDS
elemental mapping of the NO in (A). (C) Elemental distribution of the metals into the
NP. (D) Elemental mapping superposition of elements Au, Ag, e Cu. (E) Elemental
mapping superposition of elements Ag, Cu, e Co. (F) Elemental mapping superposition
of elements Co e Ni (G) Elemental mapping superposition of all elements. Extracted
from [38].

In the same article, Chen [38] show that nanoalloy formation is dependent on chemical
composition, whereas, for the case of AgAuCu nanoparticles, the nanoparticle modifies
the metal alloy formation by enriching the system in Au as shown by figure 2.5.
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Figure 2.5: (A to D) NP schematic models, STEM-HAADF images, and STEM-EDS
elemental maps of 4 representative NPs of AuAgCu, with the fraction of Au increasing
from 10% to 70%. the dashed line in A and B indicates the position of the interface
between the different chemical phases. The scale bar is 20 nm. Adapted from [38].

In figure 2.5, in electron microscopy images, the AgAuCu nanoparticles appear as
a homogeneous system. However, by analyzing their elemental maps, it is possible to
verify that with an atomic percentage of 10% of Au, the system separates int at least two
distinct phases of Ag and AuCu. By gradually increasing the percentage of Au atoms, the
miscibility increases proportionally until the formation of a complete AgAuCu nanoalloy
on 70% Au. Spatially resolved chemical compositions can be obtained, as shown above,
using spectral imaging [7], but even so, the atomic arrangement cannot be easily measured
with this technique in such conditions. In recent developments of quantitative electron
microscopy, atomically resolved imaging modes could be used to quantify, for example,
atomic columns in nanoparticles [39] with the use of a combination of image simulation
and atomic resolved images [40, 41]. Finally, Lyman [5] shows that expected miscibility
gaps can be found when analyzing the quantitative chemical composition of BNPs as a the
function of size, which remarkably illustrates the necessity of doing proper quantitative
analysis to better characterize alloy nanoparticles.

Chemical composition and atomic arrangement play a fundamental role in the
understading of the NP physics and chemistry. The characterization of these factors leads
to the study of how they can modify the electronic properties of metallic nanoparticles,
which is directly related to its physico-chemical properties.

An exciting example for probing the electronic structure of these nanoscale systems
is the Localized Surface Plasmons Resonance (LSPR) [42, 43]. LSPRs are collective
oscillations of free electrons in metallic nanoparticles, which occur due to the coupling
of the electrons with the electric field of an incident electromagnetic radiation. As
illustrated in figure 2.6, the electron charge density in resonance with the electric field
forms an electric dipole in the surface of the NP. The coulomb interaction between positive
nucleai and negative charges induces a restoring force oposit to the eletric field force. The
electrons oscillate and collide with other electrons, ions or defects [42]. For dimensions
less than the wavelength the plasmon is localized, as opposed to propagating surface
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plasmons polaritons [44].

Figure 2.6: Schmeatic illustration of LSPR on metallic NPs. Adapted from [45].

Thus, different atomic species may lead to different absorption spectra. For example
Ag, Au, and Cu nanoparticles with a size of 20 nm and spherical geometry, show
absorption bands approximately 400 nm, 530 nm, and 580 nm, respectively, see figure
2.7. The spectral response of such nanoparticles is determined by the electronic structure
which itself depends on the atomic and chemical structure. The LSPR of metallic
nanoparticles leads to absorption in the UV-Visible spectral range which depends not only
on size and shape of the particle but also in its electronic strcture. Although LSPRs are
intrinsic to the NP properties such as size, composition and shape, they also depend of the
environment [46]. Due to dielectric and quantum effects, the environment influences the
plasmon peak position. Such systems require rigorous characterization and the support
of theory and simulation to fully interpret and understand their physics.

Figure 2.7: LSPR absorpion bands for different elements composing the NPs [47].

The absorption of light at different wavelengths for different elements shows that the
properties of these nanosystems are sensitive to chemical composition. Thus, by mixing
elements in the same nanoparticle, changes in the electronic strcture results in different
physical and chemical propertie, as exemplified in the catalytic activity of metal alloy
nanoparticles of 5 nm of RhAu and RhAg exemplified in figure 2.8.

Here, we discuss an example of catalitic activity in a chemical reaction. Hydrogenation
occurs when a molecule is obtained by adding hydrogen to an unsaturated carbon
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chain with double or triple bonds between carbons. In this scenario, RhAg and
RhAu nanoparticles, depending on their chemical composition and when compared to
nanoparticles composed of Rh alone, exhibit a higher conversion of molecules per active
site per second (Turnover frequency), i.e., a higher catalytic activity in the hydrogenation
reaction. The example strongly illustrates the necessity of precise chemical composition
assessment for understading nanomaterials properties and its applications in the industry.

Figure 2.8: Catalytical activity of NPs in hydrogenation of cyclohexane under 25ºC as a
function of atomic fraction of Rh for RhAg (grey) and RhAu (yellow) in contrast with
pure Rh (dashed blue).Adapted from [48].

In order to experimentaly determine the chemical composition in very small
nanoparticles ( ∼ 6 nm), if possible quantitatively and with high spatial resolution (∼
0.5 nm), spectroscopic techniques based on electron microscopy can be used. Therefore,
in this work, we wish to contribute to developing strategies to better quantify the atomic
content and elemental distribution of bimetallic nanoparticles using spectral imaging.
Thus, a model sample of bimetallic NPs with size and composition control is required.
In this thesis BNPs produced by gas-aggregation were used [34].

2.2 Nanoparticle Synthesis

In order to contribute to the field of quantitative chemical analysis of small BNPs
(Diam. < 10 nm) a model sample with size and chemical composition controlled is
required. In the metal cluster source used in this work, nanoparticles are synthesized by
sputtering and subsequent aggregation of metals. This source of nanoparticles is inspired
by the instruments developed by Haberland [49] and Hillenkamp [50]. Here atoms are
sputtered from a metal target in a magnetron discharge in an inert He/Ar atmosphere.
The metal atoms aggregate into clusters and nanoparticles before being transfered into
vaccuum, forming a molecular beam. The magnetron discharge is of cylindrical symmetry
[51] with twisted metal wires as target. The chemical composition of the atomic cloud,
and thus of the BNPs is determined by the proper choice of wires.

The nanoparticle source, schematically illustrated in figure 2.9, consists of a magnetron
sputtering head, an aggregation chamber, electrostatic lenses for ion beam control, a time
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of flight mass spectrometer (TOF-MS) for size control and a deposition chamber for final
sample preparation.

Figure 2.9: Schematics of the atomic cluster source used for nanoparticle synthesis using
the gas-aggregation method. The inset shows the cyllindrical magnetron head [52] and
the photograph of Au and Ag wires forming the target. The Ar gas is confined around
the metal target by a magnetic field. Through collisions, the Ar ions remove metal atoms
from the target [34].

In the figure above, details of the atom source are emphasized in the inset. The
geometry of the sputtering setup illustrates the axial wires (Au and Ag in this case). The
atomic cloud generated by the source of atoms is carried by a flow of gas (He and/or Ar),
which, through three body collisions, promotes the aggregation of atoms into dimers.
The dimers act as seeds for the nucleation of precursor clusters for the formation of
nanoparticles [34]. The formation of these dimers only occurs due to the introduction of
the inert gas flow. Their formation requires a third collision particle, He or Ar atoms, to
remove the excess energy, allowing the atoms to form a stable dimer.

Starting from the dimers, further nucleation of atoms can occur, producing stable
clusters. With the formation of these clusters can further aggregate in larger structures.
Thus, the NPs grow into meta-stable structures, as illustrated in the figure 2.10, where
the red spheres represent the atoms used for the formation of the atomic clusters and the
green ones the residual carrier gas.
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Figure 2.10: Schematic of NPs growing by gas aggregation. Adapted from [34].

For the condensation of the atoms to occur efficiently, implying aggregation without
impurities, it is necessary to cool down the chamber.

Supersaturation induces condensation into clusters, following the minimization os
Gibbs free energy. Even though the theory of formation of atomic clusters is still not
fully described in theory, classical nucleation theory can provide a simplified analytical
description [34].

Assuming two cases with gas with 𝑁 = 𝑛1 + 𝑛2 atoms, where in the first case, the
atoms are all in the vapor phase (equation (2.1)) and in a second case with 𝑛1 atoms in
the vapor phase and 𝑛2 atoms forming a liquid droplet (equation (2.2)), it is possible to
write the Gibbs free energy of the microcanonical ensemble for the two situations and
evaluate its variation,

𝐺𝑣 = (𝑛1 + 𝑛2)𝜇𝑣(𝑝, 𝑇 ) (2.1)

𝐺𝑔 = 𝑛1𝜇𝑣(𝑝, 𝑇 ) + 𝑛2𝜇𝑙(𝑝, 𝑇 ) + 4𝜋𝑅2𝜎 (2.2)

where 𝜇𝑣(𝑝, 𝑇 ) and 𝜇𝑙(𝑝, 𝑇 ) are the chemical potentials of the vapor phase and liquid
phase, respectively, and 4𝜋𝑅2𝜎 is the surface energy. Thus, evaluating the Gibbs free
energy change from the vapor phase to droplet formation, one can write:

∆𝐺 = 𝐺𝑔 −𝐺𝑣 = 4𝜋𝑅2𝜎 + 𝑛2(𝜇𝑙 − 𝜇𝑣) (2.3)

Given that 𝜇𝑣 − 𝜇𝑙 = 𝑘𝐵𝑇 𝑙𝑛(𝜑𝑘) where 𝜑𝑘 = 𝑃𝑘

𝑃𝑣
with 𝑃𝑘 and 𝑃𝑣 being the

supersaturation pressure and vapor pressure respectively, it follows that

∆𝐺 = 4𝜋𝑅2 − 𝑛2𝑘𝐵𝑇 𝑙𝑛(𝜑𝑘) (2.4)

Since 𝑛2 can be written in terms of the volume of the droplet and the volume of the
atoms 𝑉𝑎 that make up the droplet, it follows that the change in Gibbs free energy is
given by:

∆𝐺 = 4𝜋𝑅2 − 4𝜋𝑅3

3𝑉𝑎
𝑘𝐵𝑇 𝑙𝑛(𝜑𝑘) (2.5)

With the expression (2.5), it is possible to evaluate the variation of the Gibbs free
energy for two different regimes, where 𝜑𝑘 < 1 and 𝜑𝑘 > 1, as follows in figure 2.11.
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Figure 2.11: Variation of Gibbs free energy for the formation of atomic aggregates of
radius R for different supersaturation 𝜑𝑘. Extracted and adapted from [52].

In the regime 𝜑𝑘 < 1, there is an increase in Gibbs free energy for all values of R,
thus, aggregation is not stable in this regime. In the regime where 𝜑𝑘 > 1, the Gibbs
free energy presents a turning point for a critical radius 𝑅*, i.e., after a certain size, the
nanoparticle formation is stable and Gibbs free energy is further minimized.

Once the aggregation process is started, the longer the pulverized material remains
in the aggregation region, the larger the cluster will become due to collisions with atoms
and other clusters. This makes possible the control of the NP size by the length of and
pressure in the aggregation chamber. These parameters, combined with the ion optics,
define the size distribution of the particles produced.

We use twisted metal wires as a target for producing alloy nanoparticles. Hence, the
atomic cloud used as a precursor for the nanoparticle growth consists of the elements from
the wires. The inset in the source schematics 2.9 shows the geometry of the cylindrical
magnetron head and a picture of twisted Au and Ag wires used as a typical target.
Thereby, a model bimetallic sample with controlled chemical composition for our TEM
studies can be designed. For this purpose, we chose AuAg alloys given their low reactivity
with the environment and elevated atomic number, being the second vital characteristic
of the system for most TEM-based techniques [7].

2.3 Model Sample: Bimetallic AuAg Nanoparticles

The optical properties of Au and Ag nanoparticles, being dependent on several
physical and chemical characteristics, make these systems good options for applications
in diverse fields such as sensing, imaging, biomedicine, and nanophotonics [53, 54, 55, 56].
Au is often more suited for biomedical applications because of its high biocompatibility
and chemical stability [57]. On the other hand, Ag is preferred for optoelectronics,
photovoltaics, and sensing [42, 58, 59, 60], because of its high plasmonic response. To use
them for fundamental studies and possible applications, the development of nanotools for
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the precise control of size, shape, crystalline structure, and of the chemical composition
becomes essential. In this thesis, we use AuAg as a model system for quantitative analysis
of the chemical composition using TEM (Transmission Electron Microscopy). Au and
Ag their elevated atomic numbers generate high signals in most TEM-based imaging
techniques [7]. More details will be given in Chapter 3. But first, it is important to
explain in more detail the AuAg sample preparation and characterization.

The NP kinetic energy is controlled to achieve “soft landing” on the TEM grid (for a
∼4 nm in diam. NP, this corresponds to 0.05 eV/atom). The NP size distribution
in the molecular beam can be measured in situ by time-of-flight mass spectrometry
(TOF-MS). TEM images indicate that the NP size distribution follows a log-normal
function (mean diameter ∼4 nm, with 3 nm in width, consistent with the in-situ TOF-
MS characterization; see 2.12).

Au𝑥Ag1−𝑥 NPs samples with three different compositions have been used in the
present study whose Au content in atomic fraction are obtained by EDS-TEM from an
ensemble of NPs using a large open electron beam (several microns in diameter). More
details about the chemical composition quantification will be given in Chapter 4.
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Figure 2.12: a) AuAg BNP size distribution measured in-situ with TOF-MS and b) size
distribution histogram obtained from STEM-ADF images. The two size distributions
are from two diferent samples but with the same mean diameter and prepared at similar
conditions.

It is of utmost importance to keep in mind that the complete characterization of
nanometric systems requires detailed knowledge of the atomic arrangement, of how the
different chemical elements of the materials are redistributed, and finally, of how the size
and chemical composition affects these factors. Motivated by the importance of exploring
quantitative analysis to answer these questions, in collaboration with another doctorate
student from the group, MSc. L. M. Correa, we used Precession Electron Diffraction.
This technique allows us to exploit the full potential of the Pair Distribution Function
for quantitative analysis [61].
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Figure 2.13: a) Precession electron diffraction (PED) pattern; b) Pair Distribution
Function (PDF) calculated from PED pattern; and c) Representative High Resolution
TEM (HRTEM) image of AuAg NPs. Adapted from [61].

With this method, we measure the average crystalline structure of our AuAg NPs.
This approach makes use of the comparison between experiment and simulation of the
PDF (Pair Distribution Function) derived from the electron diffracted patterns to check
the differences between both, see figure 2.13. Using residual analysis in the PDF signal, we
can test several different possible structures for the NPs like icosahedra, FCC, decahedra,
etc. The refined model obtained for the samples produced in our setup indicates a
mixed alloy system composed of 5-fold symmetry polycrystals of ∼ 3-4 nm composed
of crystallites of ∼ 1.8 nm, forming a decahedra-like structure. Individual NP measures
obtained from High-Resolution TEM indicate very polycrystalline NPs indeed. Therefore,
the information derived from the PDF is consistent with the observed NPs in the sample.
However, the information limit in this analysis does not allow us to extract an elemental
distribution in the AuAg BNPs; different approaches such as EDS chemical analysis are
necessary. Nonetheless, this example is interesting to show the quality of quantitative and
statistically reliable analyses to answer a scientific question at the nanoscale. Likewise,
spatially resolved spectroscopy for quantitative chemical analysis will be extensively
studied and applied in individual AuAg NPs smaller than 10 nm, which is our model
system to work in TEM studies.

2.4 Summary

This chapter introduced the multimetallic nanoalloys, most specifically the AuAg
BNP system, which is the project’s study sample.

BNPs systems are contextualized in the panorama of nanoscience and nanotechnology.
Through the use of examples in plasmonics and catalysis, the contribution of the precise
knowledge of size, morphology, structure, and chemical composition of BNP’s electronic
properties was explained.

The benchmark AuAg BNP synthesis and their characterization concerning size,
structure, and composition tunning was described.

Finally, the need for spectroscopies at the nanoscale was proposed for the aim of the
complete characterization of single BNP’s chemical composition.
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Chapter3
Scanning Transmission Electron Microscopy

The study of individual nanosystems requires instruments that have a high spatial
resolution. Scanning Transmission Electron Microscopy (STEM) and related techniques
are specially adapted as they allow obtaining images of morphology, structural, and
even nanometer resolution spectroscopic information [7, 6]. In the last 20 years,
electron microscopy has received surprising improvements in its optical system with
the optimization and commercialization of electronic lenses with spherical or chromatic
aberration correctors and electron energy monochromators. These advances gives us the
opportunity to obtain fine information with precision, accuracy and reproducibility in
materials science. In this way, quantitative and statiscally representative analysis in
electron microscopy becomes feasible and essential.

Concerning the measurement of chemical composition, as alloy nanoparticles (NPs)
get smaller (in the ∼5 nm size regime), it is difficult to get reliable and reproducible
information. In fact, sample stability under the electron beam becomes a critical
issue, and chemical composition can gradually change due to the sputtering of lower
atomic number atoms from the nanoparticle surface [62, 63, 64, 64, 65]. However,
strategies to mitigate the radiation damage can be employed, and quantitative chemical
composition characterization can be performed by Energy Dispersive X-ray Spectroscopy
(EDS). Hence, the chemical composition dispersion can be assessed as a function of size,
measuring individual NPs generating elemental maps by EDS-STEM.

This chapter aims at explaining relevant technical and scientific details related to
STEM imaging and spectroscopy, particularly EDS, given the necessity of extracting
localized elemental information from nanometric systems. In the AuAg nanoparticles
explained in the last chapter, we saw the necessity to probe spatialy resolved chemical
composition. Thus, since STEM is a powerful tool for analytical microscopy, we will
broadly use this technique in this thesis.
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3.1 Imaging in STEM

In STEM mode imaging, a convergent electron beam forming a probe, scans step-by-
step (pixel-by-pixel) the specimen to be analyzed, like is ilustrated in figure 3.1 a).

Figure 3.1: Scheme of a) electron probe scanning an area of the sample with object to be
imaged and b) signals obtained due the electron probe interaction with the specimen.

The electron probe interacts with the specimen, generating several different types
of signals (see 3.1 b)) like elastically scattered electrons (Dark-Field images) and
characteristic X-rays (Elemental mapping). These signals are the two most important
which will be used in the data acquisition of this thesis. Detecting those signals, pixel-
by-pixel ,simultaneously with the probe scanning, makes it possible to create images with
nanometric or even sub-Ångstrom lateral resolution [6].

In STEM, using the inelastically scattered and direct electrons, we generate a Bright-
Field (BF) image, where the specimen’s electronic cloud scatters the electrons. On the
other hand, the Dark-Field (DF) images are generated by detecting the electrons scattered
by the atomic nucleai of the specimen.

In DF image generation, the nucleus-spread beam follows approximately the
Rutherford model. The angle at which the electrons are transmitted, therefore, depends
of the atomic number (I ∝ Z²). The higher the atomic number, the greater the electron
intensity [7, 6]. Hence, using an annular detector, as illustrated in figure 3.2, to detect the
elastically scattered electrons, an annular dark field (ADF) image can be formed. The
background is given by a low-intensity signal (fewer electrons coming to the detector). The
sample region will have a more intense signal than the background, varying the contrast as
a function of atomic number. In the figure 3.2, is shown a schematic of the formed electron
probe being incident onto the specimen. The 𝛽1 and 𝛽2 angles represent the fraction of
the transmitted beam used to detect the high angle elastically scattered electrons. When
𝛽1 > 50 mrad and 𝛽1 < 200 mrad, the imaging method is known as High Angle Annular
Dark-Field (HAADF). In this condition, the image is formed in majority by electron
thermal diffuse scattering (TDS) with the crystal lattice. this implies no contribution of
diffraction effects, the image intensity depends only of the atomic number, the number
of atoms and the mean square positions of the atoms vibrating in the lattice [66]. For
simplicity, the image intensity is only dependent on the elements in the atomic column.
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Due to its relatively simple image interpretation, this is the most popular imaging method
in EM nowadays, the Z-Contrast imaging.

Figure 3.2: Schematic of STEM mode imaging. Condenser lenses form the convergent
electron beam (probe) which is scattered in the sample in direction of an ADF detector.

Looking at the images in figure 3.3 it is possible to see that BF and DF images are
complementary in intensity. In the BF image, there is bright field background and darker
tones where the NPs are located. For DF images, the background is dark, and the NPs
are bright. This is due to the nature of the elastic scattering and due to the angle of
detection [7]. Both image methods can be used as reference for the spectroscopy data
acquisition, but in this work we will always use the DF images for standardization and
because this mode will be used for further high resolution images.

Figure 3.3: STEM images of Au nanoparticles obtained in JEM 2100F from LNNano. a)
Bright-Field image and b) Dark-Field image.

In STEM-ADF/HAADF the imaging is spatially incoherent, more intensity simply
means more atoms and higher atomic numbers. In this way we can express the image
intensity as a convolution of the object wavefunction 𝜓(r) and the probe 𝑃 (r) (point
spread function), see equation (3.1).
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𝐼HAADF(r) = |𝜓(r)|2 ⊗ |𝑃 (r)|2 (3.1)

In this condition, the images are generated with less signal compared with typical ADF
images; however, it is a condition where the image shows chemical contrast (Z-Contrast)
with high spatial resolution since the probe size purely defines the resolution. This means
that the image is not phase-dependent, and the brighter regions in the image are due to
heavier elements [7]. In this way, it is possible to differentiate elements, qualitatively and
directly, without the need of simulations or further complex interpretations, as can be
seen in figure 3.4. In this example, the probe scans a GaAs thin sample, and the annular
detector collects signals from the atomic columns. In the illustration, Ga is yellow and
As red, and the dumbbell model can be verified in the image profile intensity due to the
difference in Z (31 and 33).

Figure 3.4: Schematic of the generation of a STEM-HAADF image of GaAs. The profile
over the image ilustrates the sensibility to the atomic number. Yellow spheres are Ga
and the red ones are As. Image extracted from [7].

In the scenario of AuAg BNP studies, an exciting application of Z-contrast is the
analysis of Lasserus et al. [67], where high-resolution HAADF images are used to
investigate the alloying process of core-shell NPs under the influence of temperature.
They observe that the elemental diffusion in sub-5 nm NPs occurs for lower temperatures
than in bulk materials. Analyzing the HAADF image intensities, they are also capable of
determining the diffusion constant as a function of temperature. Despite the high quality
of this type of analysis, even more in such complexes systems such as sub-5 nm NPs,
quantitative measurements are required for fine and more robust analysis, such as the
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investigation of atomically resolved chemical gradients in chemically disordered mixed
BNPs.

Quantitative analysis nowadays is a reality due to the advances in EM instruments,
and data treatment [40, 41]. Recent works show that proper calibration of the detector
gain [40, 41] and the use of multislice simulations, considering frozen phonons and the
spatial incoherence of the source in the model, permits to overcome the known Stobbs
factor limitation (large constrast mismatch between experimental images and theoretical
simulations) [68]. This enables the extraction of how many atoms are in the atomic
columns with relatively good accuracy and precision through the comparison between
simulated models and experimental images. In the bimetallic NPs and catalysts field, it
is of interest not only to quantify the number of atoms but also the chemical composition
of each column. Efforts are being made in this direction as well, whether on 2D atom
counting [69] or 3D analysis (tomography) [70, 71, 72]. However, it is crucial to mention
that a careful analysis is required having in view the radiation damage during the
execution of these experiments, which can strongly limit the signal-to-noise-ratio (SNR)
to detect atomic species. In this way, efforts are also being made on low dose experiments
by High-Resolution TEM (HRTEM), where by means of focal series reconstruction [7]
and Weak Phase Object Approximation (WPOA) on multislice simulation, the atomic
column can be retrieved analyzing the reconstructed phase. Nonetheless, recent works
show that the detection limit is only in the order of a few atoms [73], limiting the analysis
to 2D materials.

It is essential to mention that all the imaging methods discussed above are not
element-specific, and what elements are being observed can only be known due to previous
knowledge of the sample’s composition and geometry. Other spectroscopic techniques in
microscopy, such as Energy Dispersive X-ray Spectroscopy (EDS) and Electron Energy
Loss Spectroscopy (EELS), are used to assess the chemical signature of the sample
directly, without the the need of previous knowledge and simulations.

To perform chemical analysis at the nanometric scale, maybe the most popular
analytical electron microscopy (AEM) technique used is EDS-STEM because of the direct
interpretation of chemical composition results. Despite the very known lack of statistics
of the method for small systems, recent advances in the development of detectors with
higher solid angles of detection (> 1 sR) [74, 75] makes possible the use of EDS-STEM
to analyze with accuracy and precision the chemical composition of nanosystems faster
(low acquisition times).

Therefore, to start our studies in quantitative analysis of chemical composition in
binary nanoalloys, EDS-STEM is a logical AEM method choice, even more because of its
simplicity. More details about this technique will be given in the next section.

3.2 Analytical Electron Microscopy: Energy
Dispersive X-ray Spectroscopy

Analytical Electron Microscopy (AEM) refers to the spectroscopic techniques in EM
that collect chemical composition information, qualitatively or quantitatively. In TEM,
the two most prevalent techniques are Electron Energy Loss Spectroscopy (EELS) and
Energy Dispersive X-ray Spectroscopy (EDS). EELS is typically suitable for analysis in
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the range of 0 - 1000 eV and light elements (low atomic number Z). In contrast, EDS
is suitable for heavy elements, and the analysis in the energy range higher than 1000
eV. Here in this thesis, we aim to contribute to the improvement of quantitative EDS
chemical analysis of nanoalloys. Thus, AuAg NPs arise as a good choice for the model
system because of their low reactivity with the environment and the high atomic number
of both elements (𝑍𝐴𝑢 = 96 and 𝑍𝐴𝑔 = 47). With EDS, we can access the chemical
signature of elements due to electronic transitions and subsequently characteristic X-ray
emission as a response to radiation incidence [7].

3.2.1 Characteristic X-ray generation and detection

X-rays are electromagnetic waves, photons. They have higher energy than visible light,
and roughly their energy is between 10 eV to 100 keV. X-rays can be generated in different
manners, and most of them typically consist of the bombardment of a metallic target by
electrons. The electron-nucleus interaction generates continuum or Bremsstrahlung X-
rays, and electron-electron interaction generates characteristic X-rays. Henceforth, we
will focus on the characteristic X-rays, where the chemical composition information is
contained. Assuming the Bohr atomic model, the electrons are in energy-bound states,
like orbitals or shells around the nucleus. When an electron with higher energy than the
binding energy removes an electron from an inner shell, an electron from an outer shell
can transit to the level of lower energy. A photon is released to conserve energy, with the
same energy as the difference between the two states. To illustrate this effect, we can see
a schematic in figure 3.5, where photons are emitted as a consequence of the electronic
transitions. For different species of atoms, the energy state differences may change, and
therefore, the value of the X-ray energy carries the elemental signature of the specimen.

Figure 3.5: Illustration of the physical phenomenom of photon emission by electronic
transition after ionization due external excitation. Iage extracted from the site http:
//www.wikiwand.com/en/Energy-dispersive_X-ray_spectroscopy 23/06/2022

Since the bound state energy of an electron is negative, the inner-shell electrons are
more negative or lower in energy than the outer-shell electrons. The lowest shell is named

http://www.wikiwand.com/en/Energy-dispersive_X-ray_spectroscopy
http://www.wikiwand.com/en/Energy-dispersive_X-ray_spectroscopy
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K, the second one is L, and so on. When an electron from the K shell is removed, an
electron from an highest shell can transit to this vacancy emitting an X-ray photon.
When the electronic transition occurs from the L shell to the K shell, we have a emission
line described as 𝐾𝛼, from the M shell to the K shell would be 𝐾𝛽 and so on for the L
and M lines. These emission lines are characteristic for each element, and therefore, their
emitted photons are characteristic, too.

After the atom ionization, only a fraction of them emits photons as a consequence
of the electronic transitions. In C atoms, for example, only 0.26% of the recombination
processes lead to X-ray photon emission [76]. In this case, the vast majority of processes
involves electron emission, known as Auger electrons. The fraction of ionization processes
that produces photons is the fluorescence yield 𝜔. With increasing atomic number Z, the
fluorescence yield increases, and therefore the Auger electron emission reduces, as can
be seen in figure 3.6. In this way, to planEDS-related experiments, high Z elements are
preferable to get more signal. Whence, our choice of AuAg as a model system is justified
due to its high fluorescence yield of each element.

Figure 3.6: Emission profiles due to de-excitation of ionized atoms as a function of
atomic number. Auger electrons in red and characteristic X-rays in blue. Extracted
from https://en.wikipedia.org/wiki/File:Auger_Yield.svg, in 23/06/2022.

Counting (increasing the signal) is crucial for any analytical analysis; here is no
different. The emitted X-rays must be counted/detected, and the detection in AEM is
done using a Si or Ge-based detector, typically Si. In a conventional detector, the incident
photons enter the material with moderate energy (few kV), exciting photoelectrons
which generate electron-hole pairs as they go through the crystal. The electron-hole
pairs are attracted and converted into electric charge using an anode and cathode to
generate an electric field. Hence, the initial photons, in the end are transformed into
an electric signal which is amplified by a FET (Field-Emission Transistor) circuit. The
amplified electric signal is directly proportional to the number of photons detected, and

https://en.wikipedia.org/wiki/File:Auger_Yield.svg
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thus, photon counting becomes possible by proper signal processing. Nowadays, with
the advancement of detection systems, the solid collection angle of photons is severely
increased, being possible to collect >1 sR (compared with 0.1-0.3 sR for typical Si (Li)
detector). This enormous advancement in detection systems is due to different factors
(windowless detectors, for example), but one of the most important is the Silicon Drift
Detector (SDD) technology. In the place of a simple anode-cathode detector generating
a uniform electric field, a series of concentric metal electrodes generate an electric field
steering the charges towards a small collector electrode in the center. This means that
the capacitance in the collector is much lower, and therefore the noise is lower as well.
In this way, the pre-amplifiers parameters can be optimized to get more count rates.
SDD also are produced with more detection area and does not need to be cooled down
by liquid nitrogen to reduce thermal noise. The use of thermoelectric systems cools
down the equipment. The straightforward way of interpreting the detection system while
measuring is that the analogic signal is converted to a digital one read by a computer
which gives us the photon energy. The value read by the computer is incremented in
the memory location (channel) corresponding to that energy. The channel widths are
typically between 5 - 20 eV, and the multichannel detected signal is composed of 1024
- 4096 channels. Then the signal can be expressed as a one-dimensional histogram of
countings for a specific energy position, forming our spectrum, as can be seen in figure
3.7. Where several elements are identified, such as Si from the detector, Cu from the
TEM grid, Au and Ag from the AuAg sample analyzed.

Figure 3.7: Representative EDS spectrum of AuAg NPs deposited on ultrathin carbon
on a Cu grid.

The energy resolution of the EDS spectrum is typically 130 eV, much worse compared
with other analytical techniques (EELS, for example). This resolution is mainly due
to electronic noise related to the capacitance of the gate of FET amplifiers. Roughly
increasing the processing time of the amplifier circuit decreases the width of the peak
(improves the resolution). So it is possible to optimize this parameter to improve the
counting rate to the detriment of energy resolution.

Counting independent events (photon emission) in time has the intrinsic property of
following a Poisson distribution. Ergo, a significant characteristic to consider in EDS
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chemical analysis and other EM-based techniques is the Poisson noise which is the noise
related to the act of counting these events. In Poisson statistics, the variance 𝜈 is equal
to the number of events (counts) 𝐼, thus, the standard deviation of the distribution is
𝜎 =

√
𝐼. In most analytical analyses, whether qualitative or quantitative, Poisson noise

is the most limiting factor in the detection limit [7, 9].

3.2.2 Elemental mapping: Hyperspectral imaging

Recently TEM has made huge progress considering electron optics, detector efficiency,
automation, reproducibility, etc. [7, 77, 78]. Scanning transmission electron microscopes
(STEMs) are capable of recording the so-called hyperspectral image (HSI, [6]), where
an entire analytical spectrum or diffraction pattern can be registered at each image
pixel. The HSI approach is currently used to generate huge 3D or 4D datasets, i.e, in
X-ray energy-dispersive spectroscopy (EDS), electron energy loss spectroscopy (EELS),
and cathodoluminescence (CL) or electron diffraction (ED). EDS-STEM is a technique
with the power to obtain chemical composition information spatially localized in the
nanometric scale. The method allocates an EDS spectrum (1D signal) to each pixel of a
scanned image (2D signal), forming the HSI. Let’s say we have an image with 100x100
pixels and 2048 channels, so we can say we have 100x100x2048 voxels where our X-ray
counts are allocated in. A pictorial view of the dataset structure can be seen in figure
3.8.

Figure 3.8: Schematic ilustration of the dataset architecture, a datacube. Each pixel
contains a 1D signal (spectrum), forming a 3D dataset.

The data acquisition in EDS-STEM experiments can be very long, therefore, previous
BF or DF images are used as reference for electron beam drift correction (relative to the
sample). The drift correction is performed comparing fast acquired electron images using
cross-correlation. This way, the elemental mapping can be generated with low spatial
resolution loss. It is relevant to mention that newer TEMs show incredible stability and
correction systems (drift less than 0.1 nm/min) which allows the chemical composition
spatially resolved of such small systems.
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For our first discussion about elemental mapping, it is essential to discuss the capacity
of selecting the pixels and channels of interest in these HSI to generate images, or like
in the case of EDS chemical analysis, the elemental maps. Considering, for example,
the AuAg NPs sample, we can perform elemental mapping by selecting the channels
corresponding to the peak of Ag L𝛼 at 2.98 keV and Au M𝛼 at 2.12 keV. The generated
image filtered with these intensities will display spatially where are Ag and Au in the
sample. This type of strategy immediately allows us to know the elemental distribution
qualitatively in our BNPs (see figure 3.9). This way, we can learn that our particles
seem alloyed and mixed with Ag and Au content distributed over every pixel, at least
in a first view. We can also select all the intensities in the spectral range to generate
our images, see figure 3.9. In this case, the image is noisier because all the background
intensities contribute to each pixel’s noise (Poisson noise =

√
𝐼). The object to be

analyzed must be well resolved and easily observable in a high-quality HSI, even with all
the image spectra intensities integrated in each pixel, see figure 3.9 d). Typically standard
acquisition and analysis software only show the beautiful filtered maps (with the elements
of interest), which can be misleading for the operator or reader in judging the quality
of the measurement. In our elemental mapping exposed above, although we can observe
Au and Ag signals everywhere in the nanoparticles, we cannot know the amount of each
element. Quantitative analysis is required to know wheter the atomic fraction in the
whole BNP as like to know how the elements are distributed inside the BNP due to its
possibility of having chemical gradients or radial enrichment of Ag towards the surface
[25, 79, 80].

Figure 3.9: EDS-STEM elemental mapping results ofr AuAg NPS. a) Au, b) Ag and c)
Au and Ag overlaied and d) all the intensisties of the HSI.
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3.3 Summary

In this chapter, the basics of the HAADF-STEM and EDS-STEM were explained,
which are the two experimental methods most used in this thesis. Here, the focus
was mainly EDS-STEM elemental mapping because how the data sets are acquired and
organized in hyperspectral images plays a fundamental role in the subsequent chapters.
With EDS-STEM it was shown that localized chemical information can be obtained from
small volumes such as bimetallic nanoparticles. However, the discussion was kept on a
qualitative level but the advances of characterization nanomaterials on a quantitative
approach requires the discussion of difficulties and possibilities.
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Chapter4
Quantitative EDS Chemical Analysis

Transmission Electron Microscopy results are very often qualitative and hardly
accomplish the requirement of being statisticaly representative. In EDS-STEM, we can
learn from our samples where a particular element is located in a specific position and
also its amount. Proper chemical composition quantification requires, however, high SNR
(signal-to-noise ratio) levels [9]. For example, in our experimental case, we have BNPs
smaller than 10 nm, with only a few thousand atoms. Since the signal is proportional
to the number of atoms, these systems are very challenging to measure quantitatively
because of the fact that electron-induced ionization cross-section of an atom is very
low ( ∼102 Barns). Additionaly, other factors such as fluorescence yield and electronic
transition probability, influence the counting rate of X-ray photons. Together, these
factors make the emission of photons difficult to detect for the low number of atoms.

Realizing that, we need to rationalize in terms of uncertainty intervals in order to
be able to do a proper quantitative analysis. The difficult to count signal must be
overcome to obtain significant confidence intervals,in order to measure the chemical
composition distribution in the BNPs or the distribution inside them (chemical gradients).
Due to Poisson noise, the one-sigma fractional counting uncertainty is estimated as√
𝐼/𝐼 = 1/

√
𝐼, meaning that in order to reduce our uncertainty "...counts, counts, and

more counts..." [7] are necessary. Therefore, small BNPs (Diam. ∼5 nm) are challenging
for quantitative chemical analysis with high precision and accuracy, which is this thesis’
main topic and contribution. Illustrating the problem, we can roughly assume 4000 atoms
for a 5 nm NP. If we have a 5% atomic fraction of dispersion in the chemical composition
of the whole population, this would mean that the difference between each NPs for 1𝜎
is 200 atoms. Very good statistics is necessary to see this difference due to the Poisson
nature of the counting problem. The seminal work of Currie [9, 10, 11, 7] shows that
a quantitative analysis requires a significant increase of the signal level (approximately
15 times higher than the uncertainty interval) to attain the measurement of a quantity.
In order to estimate the order of magnetude in our example above, thinking only in 1𝜎
relative error criterium, we can roughly estimate the number of counts required to see
this dispersion of 5% as 1/

√
𝐼 = 0.05, which implies 𝐼 = 400 counts per particle, which
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for small systems is not readily achievable.

4.1 Cliff-Lorimer method

In the sequence, we will discuss more the quantitative elemental assessment of EDS-
STEM measurements, explaining the path to extract chemical composition ratios from
X-ray intensity ratios by the Cliff-Lorimer method [8]. It is important to remember that
X-ray production is a two-step process. First the atom is ionized and then the excitation
decays by photoemission The ionization probability of an atom is characterized by the
ionization cross-section Q and the decay by the fluorescence yield 𝜔. Also, in the X-ray
intensity calculation, we must consider the probability of the transition occurring 𝑎 of a
specific emission line and the detector efficiency 𝜖. Thus, for a certain element 𝐴, we can
approximate the X-ray intensity detected as:

𝐼𝐴 =
𝐶𝐴𝑄𝐴𝜔𝐴𝑎𝐴𝜖𝐴𝑡

𝑀𝐴

(4.1)

where 𝑀𝐴 is the atomic mass of the element A, 𝐶𝐴 its atomic fraction and 𝑡 is the
thickness of the material analyzed.

Now, considering the intensity ratio 𝐼𝐴
𝐼𝐵

between two different 𝐴 and 𝐵 elements, we
have:

𝐼𝐴
𝐼𝐵

=
𝐶𝐴𝑄𝐴𝜔𝐴𝑎𝐴𝜖𝐴𝑀𝐵

𝐶𝐵𝑄𝐵𝜔𝐵𝑎𝐵𝜖𝐵𝑀𝐴

(4.2)

𝐶𝐴

𝐶𝐵

=
(𝑄𝜔𝑎𝜖)𝐵𝑀𝐴

𝑄𝜔𝑎𝜖)𝐴𝑀𝐵

𝐼𝐴
𝐼𝐵

(4.3)

𝐶𝐴

𝐶𝐵

= 𝐾𝐴𝐵
𝐼𝐴
𝐼𝐵

(4.4)

where

𝐾𝐴𝐵 =
(𝑄𝜔𝑎𝜖)𝐵𝑀𝐴

(𝑄𝜔𝑎𝜖)𝐴𝑀𝐵

(4.5)

is the so-called Cliff-Lorimer constant, calibrated from a reference sample of the same
elements to be analyzed but with a known chemical composition.

Now that we know how to convert X-ray intensities into a proportional chemical
composition ratio, we must think about uncertainty intervals if we want to be
appropriately quantitative. Using the propagation error formula, the uncertainty for
the chemical composition ratio (𝑅) can be expressed as a function of 𝐾𝐴𝐵, 𝐼𝐴, and 𝐼𝐵
uncertainties: (︂

𝜎R
𝐶A/𝐶B

)︂2

=

(︂
𝜎𝑘AB

𝑘AB

)︂2

+

(︂
𝜎𝐼A
𝐼A

)︂2

+

(︂
𝜎𝐼B
𝐼B

)︂2

(4.6)

Taking the peak background subtraction into account in the error calculation, we can
rewrite the equation above as:
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(︂
𝜎R

𝐶A/𝐶B

)︂2

=

(︂
𝜎𝑘AB

𝑘AB

)︂2

+

(︂
𝜎𝐼Ab

𝐼Ab

)︂2

+

(︂
𝜎𝐼Bb

𝐼Bb

)︂2

(4.7)

where 𝜎𝐼Ab
and 𝜎𝐼Bb

are the uncertainities considering the background subtraction

which can be calculated by error propagation as well, resulting in 𝜎𝐼Ab
=

√︁
𝜎2
𝐼A

+ 𝜎2
𝐼b

being 𝐼𝑏 the background intensity.
Considering that sometimes it is preferable to express the chemical composition as an

atomic fraction and not a ratio, we can use 𝐶𝐴 + 𝐶𝐵 = 1 and derive an expression for
𝐶𝐴 in the function of the ratio. Consequently, an error propagation formula can be used,
and both atomic fraction and uncertainty interval equations are:

𝐶𝐵 =
1

1 + 𝐶𝐴/𝐶𝐵

(4.8)

𝜎𝐶𝐵
=

𝜎𝑅
(1 + 𝐶𝐴/𝐶𝐵)2

(4.9)

This method can be used to quantify the chemical composition of various
nanomaterials, not only nanoparticles, as we have been discussing in this thesis.
Originally the method was proposed for thin films and can also be used in more complex
systems made of three elements or more, such as semiconductor nanowires (NW) of InAsP
[81]. In this work, the author verifies the content of III-V semiconductors in the NW and
their diffusion into the Au NP growth catalyst for different synthesis parameters. In figure
4.1 we show a schematic of the heterostructure NW (Au, InP, InAs) and below a graph
with the atomic fractions of In, As, P, and Au, determined with its respective error bars
calculated by error propagation of the Cliff-Lorimer equation. In their analysis, doing a
line scan in the NW, the authors verified that the NW is rich in In and As in its basis.
Likewise, the other extreme of the scan shows more In and P and then a peak of As
again in the NW and Au catalyst interface. The performance of EDS-STEM to analyze
interfaces of complex systems like in this example quantitatively shows the proness of the
Cliff-Lorimer method, despite its simplicity, to chemically characterize nanosystems.
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Figure 4.1: EDS line scans along the NW growth direction; a schematic diagram showing
the NW analyzed region is shown in the upper region. EDS line scans along the arrow
AB on a NW of the sample grown. Adapted from [81].

It is essential to mention that for this approach of chemical composition quantification,
if thick objects are analyzed, the X-ray absorption must be considered [7]. However,
everything we will analyze in this work is thin enough not to be concerned with absorption
correction (less than 5% of X-rays are absorbed) in the Cliff-Lorimer formula. It is
interesting to mention that most of the time, Cliff-Lorimer users work using the theoretical
values of the K constant obtained in the data acquisition software. This is very dangerous
for proper quantitative analysis. Since depending on the emission line, the error of the
constant determination can be huge (> than 20% for M family lines) [7]. The error in the
chemical composition determination is much lower than being determined experimentally
using a reference sample of known composition. Additionally, the software is typically
not transparent regarding the methodology applied to calculate the constant, which can
imply more errors in analytical studies.

Another well-known method for EDS chemical composition quantification is the ETA
factor method, or Watanabe method [82]. Despite the simplicity of the Cliff-Lorimer
method, finding a well-known standard reference sample is not always an easy task. In
this context, pure elements can be explored to quantify the chemical composition of
materials. The mass-thickness 𝜌𝑡 of elements A and B can be written as a function of
X-ray intensity 𝐼𝑖, atomic fraction 𝐶𝑖, electron dose 𝐷𝑒 and the ETA-factor, were 𝑖 = 𝐴
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or 𝐵:

𝜌𝑡 = 𝜁A
𝐼A

𝐶A𝐷e

and 𝜌𝑡 = 𝜁A
𝐼B

𝐶B𝐷e

(4.10)

Calibrating the ETA-factor with a certain element (A or B) in a reference sample of
known thickness and density reference, it is possible to quantify the chemical composition
ratio of a sample of elements A and B. It is essential to mention that the quantitative
EDS analysis methodologies are in constant development and progression, aiming to
improve precision, accuracy, and simplicity to increase the method’s feasibility. A recent
example is a quantification of ternary semiconductor heterostructures by a Watanabe-
based method, where the feasibility of the methodology is increased by employing the
use of internal references [83]. In this situation, using an iterative method to determine
the ETA-factors from the internal reference, they show that the thickness and absorption
effects are already included, simplifying the analysis. The most important drawback of
the Watanabe-based methods is the need for a precisely determined electron dose during
the measurement. Therefore, a Faraday cup or something similar is required to measure
the probe current in-situ, adding a step in the process. Due to this reason and because
we work with small NPs (very thin samples), we chose to use the standard Cliff-Lorimer
method for our EDS chemical composition quantification of each BNP.

4.2 Chemical composition quantification of individual
alloy nanoparticles

In order to increase the statistical reliability of our analysis, we developed a python-
based software, and we used an open library for EM data treatment called Hyperspy
[84]. Our routine aims to automate the chemical composition quantification of each alloy
nanoparticle with all the necessary steps for the quantification: image calibration in
energy and spatial dimensions, NP identification and counting, diameter measurement,
spectra fitting, and background subtraction, integration, etc.

First, we perform a binning in the energy dimension. In this way, we increase the
number of counts in each channel. With this approach, we increase the fitting quality
of the EDS peaks, which reduces the sparsity (channels with low number of counts) of
the dataset. Then, using the sci-kit image python library [85], we use segmentation and
rotulation algorithms to identify and measure object properties in images generated by
Au and Ag intensities. In sequence, using the rotulated image and addressing intensities
from 0 to n number of particles (different colors), we can fit the NP size, as seen in figure
4.2. Thereby, we can select the pixel coordinates of interest in the raw dataset and sum
all the spectra from these pixels, obtaining a representative spectrum for the entire NP.
Performing a numerical fitting, background subtraction (included in error propagation),
and peak integration of the Au and Ag peaks in the spectral region of interest, we
extract the respective Au and Ag counts for their chemical composition quantification
by the Cliff-Lorimer method. If the data acquisition parameters do not change very
much, the procedure becomes automatic with a series of HSI as input. However, if any
parameters change (ex: pixel size, beam current, dwell time, etc.), the masking threshold
and segmentation criteria must be manually changed.
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Figure 4.2: Segmented BNPs image and a representative EDS spectrum of a single NP.
Blue circle is 1 pixel exaggerated to garantee all the signal extracted from the NP.
Spectrum on the left results from the integrated spectra of all pixels inside the blue
circle.

Here, we will always apply this methodology to extract the average chemical
composition of each BNP to express the quantitative chemical information as a function
of NP diameters. Through residual analysis, we can estimate the uncertainty for the
diameter of each NP. By changing the model’s size-adjusted radius and looking at the
residues, we can estimate roughly our upper limit for size uncertainty as a single pixel.
Additionally, using simulated datasets, we estimate an error in determining the diameter
below 5%. Hence, choosing the upper limit of the uncertainty analysis explained above,
we use one pixel as uncertainty for the diameter determination of NPs by our automatic
algorithm. Considering this uncertainty, we always choose more pixels to integrate our
region of interest to generate the spectrum. This way, we guarantee to measure all the
chemical composition information from the BNP.

Besides, we can use the same data treatment strategy for spectra obtained through
an open beam EDS-TEM measurement. In spite of the lack of spatial resolution of this
operation mode, an ensemble average chemical composition of the sample can be obtained
and used to verify if the chemical composition dispersions of single BNPs represent
full disclosure of the sample’s characterization. Furthermore, the chemical composition
quantification may be improved even more through the application of advanced statistical
and machine learning tools, such as Principal Component Analysis (PCA), Independent
Component Analysis (ICA), Non-negative Matrix Factorization (NMF), etc. In the next
chapter we will discuss machine learning methodologies applied to electron microscopy
HSI datasets.

4.3 Summary

This chapter addressed the importance of performing quantitative EDS chemical
analysis.

The correct quantitative analysis requires confidence intervals. Therefore, we
emphasized how the error bars in standard EDS analysis can be calculated.

Most STEM-EDS are limited to qualitative analysis due to the considerable increase
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of work necessary for a quantitative interpretation. One example however, was given,
showing the importance of quantitative analysis in the definition of interfaces in
nanowires.

Here, it was also explained that the samples in this thesis are analyzed by the
traditional Cliff-Lorimer method. But it was also highlighted the existence of other
methods for quantification, such as the ETA-method.

The chapter finishes with the methodology used to identify the BNPs and quantify
the chemical composition of each BNP from the data set.
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Chapter5
Machine Learning and Big data in Electron

Microscopy: Advancing in chemical
composition assesment

Electron microscopy is passing through a changeover in the way of data collection,
treatment, and interpretation [16]. Recent advances in instrumentation and software
technologies enable the acquisition of an enormous amount of spatially, energetic, and
temporally resolved data. Likewise, advances in machine learning tools offer pathways
to better visualize or represent EM information. Besides, machine learning tools are
nowadays being used in several different fields of nanoscience, allowing better information
extraction and interpretation, modeling of nanometric systems [15].

Probe forming the electron beam leads to the opportunity of localized data acquisition,
registering 1D or 2D signals in each pixel of the scanned area, forming a hyperspectral
(HSI) dataset, as explained before. A typical HSI contains 107 voxels considering 100x100
pixels and 1000 channels. The information contained in such datasets can be leveraged to
better signal-to-noise ratios (SNR) and feature extraction [7, 12, 86]. Popular methods of
machine learning tools applied to HSIs datasets are the decomposition algorithms (PCA,
ICA, NMF, etc). The methodology, although simple, is compelling, but we must use
it carefully. Introducing the idea of HSI decomposition, we can mathematically express
the process by multiplication of matrices, where a matrix 𝑉 is decomposed in two other
matrices 𝐻 and 𝑊 :

𝑉 = 𝐻.𝑊 (5.1)

Considering image spectra datasets, the matrix V is defined by m pixels (lines) and
n channels (columns). Thus, 𝐻 and 𝑊 are 𝑚× 𝑘 and 𝑘×𝑛 respectively, where typically
𝐾 << 𝑚 is the number of components to decompose the dataset. Hence, the dataset
can be expressed differently in terms of a new basis. Thereby, the aim is to calculate
matrices 𝐻 and 𝑊 that composes 𝑉 . Different methods can be used for this task, PCA
or SVD (Singular Value Decomposition) being the most popular ones [17, 18]. In figure
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5.1 we can see that the original datacube structure is decomposed into 1D signals (spectral
components) and 2D signals (spatial components).

The spectral components are weighted by the pixel values of the spatial component
so that the original dataset can be reconstructed. Each pixel weights the spectral
components in a linear combination. We represent this concept with equation (5.1), where
we have a matrix 𝑉 which is the datacube written in terms of two other matrices 𝐻 and
𝑊 , for the spatial and spectral components. In figure 5.1, we illustrate the decomposition
of the HSI data set into spectral components that can be used to reconstruct the data
set again in a new basis.

Figure 5.1: Schematic figure of a generic HSI decomposition procedure, where the
original datacube is separated in eigenvector components that serves as a new basis
for the reconstruction of the dataset. The spectral components (factors) are weighted by
the intensities 𝐻𝑖(𝑥, 𝑦) of the spatial components (scores) resulting in a representative
spectrum for the given pixel coordinates x and y.

The spectral components are weighted by the pixel values of the spatial component
so that the original dataset can be reconstructed. Each pixel weights the spectral
components in a linear combination. We represent this concept with equation (5.1),
where we have a matrix 𝑉 which is the datacube written in terms of two other matrices
𝐻 and 𝑊 , for the spatial and spectral components.

The intrinsic property of dimensional reduction of decomposition algorithms allows the
reconstruction of the dataset with noise reduction [12, 87] or "denoising" as widely used
in the EM community. This type of analysis is known as unsupervised machine learning
since the model is built only with the data of interest itself, without a training dataset
(supervised). The idea behind the method is that the voxels in the HSI can "learn"
with each other expressing more representative information. As illustrated in figure 5.1,
the HSI is decomposed into components, so-called loadings or factors, which are column
vectors of the matrix 𝑊 . The weights on the reconstruction are called scores, and the
score matrix 𝐻 contains weights multiplied by the factors to be summed in the linear
combination in each element. In the subsequent section we will focus in the explanation of
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Principal Component Analysis (PCA) which is the most popular decomposition algorithm
and the one that we will constantly apply in this thesis.

5.1 Principal Component Analysis

Principal Component Analysis or PCA is a statistical method based on the
reconstruction of a given data set on an orthogonal basis composed of principal
components, which are the components that best represent the data set [17, 18]. This
way, it is possible to reduce its dimensionality, preserving useful information and reducing
noise. The method was first proposed by Pearson [88], and Hotelling[89] more than 100
years ago and is nowadays used to analyze and treat huge data sets, or as they are usually
called, big data due to its intrinsic dimensional reduction property. PCA has been widely
applied in many different fields of study, such as image processing [90], neuroscience [91]
and precision agriculture [92], aiming whether better visualize or classify the information
contained in data. The present study will use the method as a dimensionality reducer
aiming at noise reduction of EDS-STEM hyperspectral data [7, 12, 87].

The PCA method searches for a new basis where the dataset can be reconstructed;
that is, it seeks to rewrite the original dataset into a linear combination of vectors that
best represents the information of interest contained in the data. The criteria established
for the search for this new basis are: The maximization of variance, minimization of
redundancy, and orthogonality of the generated basis, i.e., the method seeks that a first
director vector is calculated from the direction of the most significant variance of the
data set, then a second director vector is calculated, from the second direction of greatest
variance, such that this is orthogonal to the first and so on consecutively. Thus, let X
and Y be matrices 𝑚 × 𝑛 related by a linear transformation P where X represents the
original data set and Y this same data set on a new basis.

PX = Y (5.2)

PCA aims to eliminate or reduce redundant information in Y. So, what is sought is
that one variable covaries little with another variable. Thus the covariance matrix of Y,
Sy, must be optimized so that it has minimized covariances and maximized variances;
that is, an optimized covariance matrix is a diagonal matrix since the non-diagonal terms
are covariances and the diagonal terms are variances. The covariance matrix of Y is given
by:

Sy =
1

𝑛− 1
YY𝑇 (5.3)

thus,

1

𝑛− 1
YY𝑇 =

1

𝑛− 1
(PX)(PX)𝑇 =

1

𝑛− 1
PX𝑋𝑇P𝑇 (5.4)

Sy =
1

𝑛− 1
PAP𝑇 (5.5)

Where A = XX𝑇
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Knowing that a symmetric A matrix is diagonalizable by a matrix of its orthonormal
eigenvectors, one has that there exists U such that A = UDU𝑇 where D is a diagonal
matrix and U is a matrix where the columns are eigenvectors of A. Selecting P such
that the row vectors p𝑖, of the i-th rows of P, are eigenvectors of A, one has that P =
U𝑇 .

1

𝑛− 1
PAP𝑇 =

1

𝑛− 1
PP𝑇DPP𝑇 (5.6)

Since the inverse matrix of an orthogonal matrix is its transpose matrix, it follows
that P−1 = P𝑇 . Then,

Sy =
1

𝑛− 1
PP−1DPP−1 (5.7)

Sy =
1

𝑛− 1
D (5.8)

Therefore, PCA explores the choice of a base of orthogonal eigenvectors based on
variance maximization and redundancy minimization so that principal components of
X are eigenvectors of XX𝑇 , being these, the lines of P and the variances associated
to these principal components, are the eigenvalues of the principal components. Thus,
each component is associated with variance, and the higher the variance, the more
representative the component’s data set. This description can be found in more detail in
[93].

The goal of using PCA on hyperspectral (HSI) EDS-STEM data is to decompose the
original data into principal components that best represent it. These components can
then reconstruct the original data set so that the relevant information is obtained and
the spectral image noise is reduced. The reconstruction of data with less noise is done
according to the number of principal components, and these are chosen according to
the variance associated with these components. So, the variance proportion is analyzed
to choose the number of components. This proportion is the measure of each variance
contribution in data representation as, exposes the equation (5.9), where 𝜆𝑖 is the i-th
variance and 𝜆𝑗 the sum variable which comprehends all 𝑝 variances which represent the
data set.

𝜆𝑖∑︀𝑝
𝑗 =1𝜆𝑗

(5.9)

Pre-processing data is a standard tread in machine learning and data mining
procedures, which involves typically scaling the data or normalizing it. The HSI data
generated in electron microscopy experiments such as EDS, EELS, or other methods that
rely on "counting" are mainly dominated by Poisson noise, as discussed in chapter 4.
Therefore, it is unsurprising that the noise cannot be evaluated equally in each pixel or
channel. Since the Poisson noise scales with intensity, pixels with more counts contribute
more to the noise. Thus, weighted data (or normalized) shows more interpretable results
[94] and enhances the application of PCA for denoising due to the variance stabilization
prior to the data decomposition. The scaled dataset matrix 𝑋𝑠 has been calculated from
𝑋𝑠 = 𝐺𝑋𝐻, where 𝐺 and 𝐻 are the spatial and spectral scaling factors applied to the
𝑋 data matrix. In figure 5.2, we can see the effects of variance stabilization on the PCA
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scree plots of the AuAg NPs dataset, showing that the Poisson normalization improves
the "elbow" visualization on the graph, which allows us to select the principal components
for the reconstruction.

Figure 5.2: PCA scree plot of a) without and b) with Poisson normalization. The
red triangles indicate the determined principal components by the "elbow" rule +1
component while the blue are the ones associated with noise and excluded from the
reconstruction.

In this thesis, the machine learning algorithms used are from the python packet
HyperSpy [84] which are implemented using the Scikit learn library [95]. In HyperSpy, the
PCA is applied using SVD, a factorization methodology, to find the principal components,
where the eigenvalues of the diagonalized covariance matrix are the squared singular
values.

The determination of the number of principal components is crucial. Thus, Poisson
normalization is of utmost importance to enhance the decomposition and establish a
criterium to quantify the number of relevant components. In this way we are able to
choose a non-arbitrary number of components associated with information and remove
the rest of the reconstruction, optimizing de denoising process. Besides, we can evaluate
the quality of our choice by the "elbow" method, reconstructing more or fewer components
and analyzing the difference between the reconstructed data and the original data.
Aiming a complementary method for the determination of PCs, Potapov [96] proposes
that the information contained in the scores (weights on the 2D spatial components)
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can be used to infer the number of components to be used in the data reconstruction.
The author’s idea is that the data cloud of the scores is anisotropic when information is
contained in the components. Consequently, we can look to the score analysis (see figure
5.3) of our dataset and verify that the majority of the information can be found in the
first 4-5 components. Combining the three methodologies, scree plots, inspection, and
score plots, the chance of error due to truncation of the principal components is severely
diminished in PCA reconstruction.

Figure 5.3: Cluster plot of scores for successive principal components obtained PCA
processing a high SNR simulated EDS HSI of bimetallic NPs. Note that information-
carrying component shows a structured anisotropic cloud (top), while noise components
generate isotropic round clouds.
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5.1.1 Component Analysis in Hyperspectral EDS-STEM images:
Denoising and feature extraction

PCA is the most popular method for denoising EM data. The decomposed
components are associated with different aspects of the dataset, some components carry
more information than others, and some carry only noise. Selecting the components
with information from the noisy ones, we can reconstruct the original dataset with the k
principal components obtaining the Poisson noise reduction. The optimization maximizes
variances in the diagonalization of the covariance matrix. Each maximized variance
represents the amount of information associated with a component. Looking at the scree
plot in figure 5.4, obtained for an experimental EDS-STEM data set of AuAg BNPs (see
chapter 3), we identify as red the most relevant components of the decomposition; the
principal components.

Figure 5.4: PCA scree plot of variances for each component. The red triangles indicate
the principal components to be used for the reconstruction. The blue ondes are the
components associated with noise excluded of the reconstruction. The dashed indicates
the noise components level

Basically, with PCA what we seek is to determine components that best represent
the original dataset. The principal components are used as an orthogonal basis for the
reconstruction of the dataset, and the criterion that determines the relevant components
are the variances associated with them. Thus, the variances in the figure 5.4 are values
associated with the components that carry information representing the system. In this
case, the first 3-5 variances that stand out are the variances that best represent the
system, and the rest is redundancy associated with Poisson noise. In figure 5.5, we show
a clear example of the proness of PCA method for denoising EDS-STEM image spectra.
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Figure 5.5: Single Pixel spectrum of raw (blue) and PCA denoised (red) EDS-STEM
dataset.

The principal components can be used to reconstruct the original data set by reducing
its noise. However, it is difficult to associate individual principal components with
any physical meaning since the optimization allows negative counts, and the numerical
algorithm has no constraints for physical reliability [97]. To overcome this difficulty, other
similar methods for decomposition analysis exist. Non-Negative Matrix Factorization that
forces matrix 𝐻 > 0 and 𝑊 > 0 is one of them. Another example is ICA that explores
a linear independent but non-orthogonal basis for more physically reliable information
extraction. In this case, the machine learning tool method is applied after PCA as
blind source separation [20, 21]. With this methodology, Rossouw et al. [13] show that
using ICA that information from different NP chemical phases is associated with each
component and, therefore, can be unmixed, as can be seen in figure 5.6. Core-Shell
NPs are analyzed in this work, and the background, core, and shell information are split
into different components with high precision in the chemical composition assessment,
showing that by unmixing signals, quantitative 3D information can be evaluated from 2D
projected images without the use of complex tomography experiments.



55

Figure 5.6: Phase identification results by PCA and ICA in spectral imaging of core-
shell Co@Fe3O4 nanoparticles. (a) Proportion of variances of 50 components determined
by PCA, (b) independent components calculated from the PCA principal components,
containing the X-ray lines for the elements present. Maps of the independent components
(c-e) revealing that (c) IC#0 corresponding to the cores, (d) IC#1 to the shells, and (e)
IC#2 to the carbon background of the microscopy grid. 50 nm scale and normalized
color bar. Adapted from [13].

In this case, the first three variances that stand out are the variances that best
represent the system. Next, ICA uses the result of the PCA optimization to assign
physical meaning to the generated components. Then, it select the relevant signals from
the spectral image, that are shown in Figure 5.6 (b) as spectra with characteristic lines of
the elements belonging to the sample IC#0, IC#1 and IC#2. The scores associated with
each spectra of the independent components, are the signals of the three distinct phases,
revealing with spatial resolution, the maps in figure 5.6 (c-e). Therefore, the method
allows the automatic selection of the intensities corresponding to the different phases,
without any bias, because it does not require any information a priori of the elements
belonging to the system, using as the only input parameter the number of principal
components obtained by PCA.

By establishing this method, in Rossouw’s [13] work, the signals extracted by ICA
corresponding to the different phases of the sample, could be used to separate signals and
quantify the chemical composition of a Core-Shell FePt@Fe3O4 nanoparticle sample. The
chemical composition of the FePt core was quantified from the IC#0 component, which
corresponds to the core signal, independent of the Fe3O4 shell signal present in the IC#1
component. To verify the quality of the quantification using the independent components,
the chemical composition of FePt measured through the IC#0 component, is compared
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with the quantification of the chemical composition of the cores before adding the shell,
as follows in figure 5.7. The dots are the measurements made for the FePt nanoparticles
before adding the Fe3O4 shells. The dashed lines represent the values obtained by using
ICA for signal separation.

Figure 5.7: Comparison of the quantification of the FePt nanoparticle composition prior
to the addition of the 𝐹𝑒3𝑂4 shell, with the quantification by the IC#0 component after
the addition of the shell. Adapted from [13]

Given the examples for SNR improvement or hidden information extraction of the
datasets we discussed above, it is possible to see that machine learning tools are already
very well suitable for HSI data processing. Henceforth, the methodologies may be, in the
future, standard procedures to analyze image spectra such as EDS and EELS and also in
4DSTEM for imaging or electron diffraction, opening new paths for the development of
quantitative analysis of nanomaterials and materials science.

In this context, we may wonder what we can learn by applying these procedures to
the chemical analysis of our alloy BNPs: Can we perform denoising by machine learning
tools to improve precision in our chemical composition quantification? Can we extract
hidden information from our datasets that cannot immediately be seen? What is the limit
of detection after the data processing? Is it possible to establish confidence intervals for
the analysis? Henceforward, in this thesis, we will try to propose answers and solutions
for these questions, analyzing the EDS-STEM dataset of AuAg nanoparticles. We will
use PCA and NMF for whether noise reduction or blind source separation. Hence, in the
next section, we will describe both methods in more detail.

5.1.2 Statistical Bias and Information Loss

The statistical bias of an estimator is the difference between the expected value and
the true value of a parameter or variable being estimated. Supposing a statistical model
parameterized by 𝜃 with joint probability distribution 𝑃𝜃(𝑥) for 𝑥 being an observable
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data. We can build an estimator 𝜃 of 𝜃* true value (hereafter * indicates true values).
Thus, the bias 𝑏̂ is defined as follows:

𝑏̂𝜃 = 𝐸𝑥(𝜃)− 𝜃* (5.10)

This way, an unbiased estimator is given when the equation (5.10) is zero or close to
zero.

In PCA reconstruction, there are two main sources of errors. The truncation
of principal components, which is a wrong choice of the number of components,
underestimates the real number and lets relevant information out of the reconstruction.
The second and more dangerous is the error in the decomposition of the factors (principal
components) in the presence of noise [98, 99, 100, 101]. The user-friendly profile of
PCA may erroneously indicate a fault-free procedure. Nonetheless, severely biased
reconstructions (i.e., derived values different from true noiseless ones) may arise from
low SNR datasets. Hence, the PCA denoising must be carefully applied to analysis
where precision and accuracy are crucial. Despite the widespread use of PCA processing
[102, 87, 13], the achievement of successful unbiased denoising is strongly dependent
on appropriately designed and executed EDS HSI experiments with enough signal to
minimize the factor decomposition error, which may induce artifacts due to biased results
[86, 103, 104, 105].

Cueva et al. [86] show one of the first observations of strongly biased results after
PCA denoising on electron microscopy HSI data, whereby some EELS peaks are strongly
shifted, and even unrealistic signals of interfaces rise after the denoising procedure. In
sequence, Lichtert and Verbeeck [104] investigate the statistical consequences of applying
PCA as denoising in simulated hexagonal boron nitride atomic resolution EELS data. The
authors simulated data consists of stacking four hexaboride nitride monoatomic layers,
and in positions 1 and 2, in figure 5.8 extra N and B atoms are added, respectively.
Looking at the decomposed components in the low and high noise situation, it is possible
to see that the third component is associated with the difference in the atomic content
between the atomic columns 1 and 2. This information easily appears in the low noise
simulation, however, it vanishes in the high noise situation. The noise overcomes the
information, and therefore the reconstructed data is severely biased due to the absence
of the third composition in the PCA reconstruction. The authors propose that the
information contained in the component appears only if the variance associated with
this component is higher than a particular value.
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Figure 5.8: a) Model utilized to build the HSI simulation. b) Score and c) factors for the
first four components in the low an d high noise situation. In the low noise information
can be retrieved in the third component while the information disappears in the high
noise situation.

Furthermore, in estimation theory, the Crámer-Rao inequality is a lower bound for
the variance of an unbiased estimator of a parameter. The variance of such an estimator
must be as high as the inverse of Fisher information, which measures the amount of
information associated with a parameter. Hence, similarly to the "elbow" method in the
scree plot, the authors propose that a principal component contains relevant information
when the inequality 𝑣𝑎𝑟(𝐴𝑖

𝑗) ≥ 𝐹−1
𝑗𝑗 is satisfied, where F is the Fisher information matrix

and the 𝐴𝑖
𝑗 terms are from the model parameter 𝜃 = (𝐴𝑖

1, ..., 𝐴
𝑖
𝑗), see [104] for more

details. Therefore, it can be said that reconstructing a dataset with noise overcoming
the component’s information raises errors in the process, similarly to neglecting the
component (truncation error) in the reconstruction. The truncation reduces the noise
drastically, but as a consequence, it may induce artifacts due to the biased singular values
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(or variances). Lichter and Verbeeck wrote the bias based on the results of Faber et al.
[100, 101] as a function of the number of pixels 𝑚, number of channels 𝑛, a homoscedastic
noise (the same across all values) 𝜎2 and 𝜃*𝑖 the true singular value in the decomposition.

𝑏̂𝜃𝑖 =
𝑚+ 𝑛

2

𝜎2

𝜃*𝑖
(5.11)

The equation (5.11) clearly expresses the intuitive idea that the bias is proportional
to the noise. However, the idea of increasing bias by increasing the dataset does
not correspond to reality. Spiegelbeg and Rusz [103] propose that the bias should be
𝑏̃𝜃𝑖 = 𝑏̂𝜃𝑖/𝑛𝑚 and shows through simulated HSI data the effect of increasing 𝑚 and 𝑛 in
the reconstruction, as can be seen in figure 5.9.
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Figure 5.9: Reconstructed data with the first three principal components (top to bottom)
of simulated hyperspectral data. In black with fewer pixels and no noise, in blue with
fewer pixels and noise, and in yellow with more pixels and noise [103].

Similarly to figure 5.8 the information in a noisy component becomes closer to the
true one, but now the noise level is constant, and what changes (drastically) is the
sampling (number of pixels) in the analysis. Here the authors published results where
two sets of hyperspectral data were used, the first with a reduced number of pixels
and the second with a 211 times larger number of pixels, but keeping the same number
of channels in energy. In these simulated data, the same level of Gaussian noise was
added, and the PCA method was employed to evaluate the decomposition of the data set
into principal components. It can be seen that for the first two components, the three
simulated conditions match, although the second component shows a noisier component
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for the condition with fewer pixels (in blue). On the other hand for the third component,
for the condition with fewer pixels, the signal vanishes when compared to the curve of the
data set (in black), which generates an error in the reconstruction of the data and a bias.
For the data set with noise but with many more pixels (in yellow), a better approximation
of the two conditions (true and noisy) in the third component is verified.

In sequence, Potapov [105] discuss that alternatively to the statistical model of Faber
for the description of the variances after PCA decomposition, a spiked covariance model
of homoscedastic data proposed by Nadler [98, 99] can be used. Through simulations,
Potapov shows that Nadler’s model converges to Faber’s one only for high 𝑚/𝑛 and
describes much better the system for smaller and realistic 𝑚/𝑛. The eigenvalues 𝜆𝑖 of
the principal component can be calculated according to Nadler’s theory as:

𝜆 =
(︀
1 +

√︀
𝑛
𝑚

)︀2
𝜎2, if 𝑚

𝑛
<

(︁
𝜎2

𝜆*

)︁2

𝜆 =
(︁
1 + 𝑛

𝑚
𝜎2

𝜆*

)︁
(𝜆* + 𝜎2) , if 𝑚

𝑛
≥

(︁
𝜎2

𝜆*

)︁2 (5.12)

The interesting aspect of the Nadler’s theory is that an information loss threshold is
defined. Where the eigenvalue carries information only if (5.13) is satisfied.

𝑚

𝑛
≥

(︂
𝜎2

𝜆*

)︂2

(5.13)

A phase transition in the information loss as a function of variance noise allows the
proposition of a bias estimator. Thus, we can write information loss estimator rearranging
(5.13):

𝐸 =

(︂
𝜎2

𝜆*

)︂2
𝑚

𝑛
(5.14)

Furthermore, in a subsequent publication, Potapov and Lubk [96] show the analysis of
experimental EDS-STEM data of a microelectronic device and respective simulations, as
can be seen in figure 5.10. In this case, the authors aim for the proper application of PCA
denoising evaluating the information retrieval for an unbiased reconstruction. The layer’s
chemical content shows the variety that makes such a device a suitable model object for
the PCA studies proposed. Here the authors aim to get an optimal number of components
in the reconstruction and claim that in a system with multiple chemical phases, multiple
principal components associated with these variations are expected. However, the number
of components can typically be lower due to noise corruption, which may lead to biased
results.
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Figure 5.10: HSI dataset of CMOS microeletronic device. a) EDS-STEM acquired data,
b) model proposed for the simulation, c) HSI simulated without noise and d) corrupted
by Poisson noise.

They propose that, in contrast to EELS, where the enormous background may lead
to artifacts after the reconstruction, the lack of signal in each channel of EDS, henceforth
defined as sparsity, leads to not optimal performance of PCA as well. The authors propose
that by applying previous data treatment to the data, such as weighting and filtering, the
PCA reconstruction is enhanced, and the qualitative results may be less biased. In figure
5.11 the results of experimental data analyzed are shown, and it is possible to observe in
the last case (filtered and weighted) that the information retrieval is enhanced and the
intensity maps of different chemical phases are recovered with precision.
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Figure 5.11: Results for the simulated HSI data. Elemental maps of a) raw, b filtered,
c) PCA unweighted, d) PCA weighted and e) PCA filtered and weighted, Si, Ti, Al, Ta
and Hf intensities. The last case e) where filtering and wieghted PCA are applied is the
one that fully recovers all the denoised and unbiased information.

This analysis evaluates the principal components by the information loss threshold
discussed above, arguing that the information in a certain component cannot be
retrievable, even theoretically, if 𝜆* is lower than

√︀
𝑛
𝑚
𝜎2. Their results for each component

show that information retrievability occurs only in 7 components. This number is later
confirmed by the score cloud analysis explained in the last section. PCA denoising
works well when applied to a dataset of experiments properly designed for achieving
information retrieval. In an ideal situation, the components would also be used to
extract information, as seen in the scores of figure 5.11. However, as already discussed
before, the interpretability of the PCA components is not always an easy task, principally
in the factors where the x-ray peaks can be highly unrealistic. Although PCA is a
robust decomposition method, another method can be exploited for the task of unmixing
signals. To unmix signals is a goal that can be achieved by making the components in
the compositions more realistic and physically interpretable. Therefore, NMF rises as a
possible tool for this task.
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5.2 Non-Negative Matrix Factorization

Similar to PCA, NMF is a decomposition method for unsupervised machine learning.
Nevertheless, the non-negativity of its scores and factors (𝐻 > 0 and𝑊 > 0 for 𝑉 = 𝐻.𝑊
where 𝑉 is the data matrix), plays a significant role in finding hidden information in the
dataset by blind source separation [106] in spectral imaging [19]. The method herein
retrieves more physically interpretable results on the scores and factors, which is relevant
for our studies where x-rays are always positive counts. It is important to properly unmix
signals and interpret them in favor of chemical composition quantitative analysis.

One of the first works to be famous for using and interpreting NMF was in face
recognition [107]. The authors discuss in the article the image properties and how humans
and machines can perceive it, showing that while other decomposition methods split the
information in a holistic and not intuitive way, NMF separates parts of the object being
decomposed (in this case a face, see figure 5.12). In the figure a), the eigenfaces, i.e., the
eigenvectors, are an average description of the face in the first component, and the other
describes the differences, while in the NMF case represented by figure b), all attributes
of the face are separated into defined objects which compose the face. It is reasonable,
thereby, rationalize in terms of EDS HSI datasets where the features extracted by NMF
are not a simple numerical optimization but are more realistic in the sense that physical
or chemical significance can be attributed to the decomposed results more easily than in
PCA [97]. It is relevant to address also that by reconstructing the dataset on the basis of
the NMF components, the tool can work as a denoising procedure such as PCA [108] but
probably less prone to noise reduction since no components are excluded, but optimized.



65

Figure 5.12: NMF learns resembling part objects of faces, whereas principal components
analysis (PCA) learn holistic representations. Positive values are illustrated with black
pixels and negative values with red pixels. The coefficients of the linear superposition
(scores) are shown next to each montage

In the last years, NMF has been widely used for unmixing signals in electron
microscopy HSIs in many research fields [109, 110, 111]. Applying to EDS quantitative
chemical composition analysis, Jany et al. [14] is an exciting example of the method’s
utility in quantifying the chemical composition of unmixed signals. In their work, the
authors analyze Scanning Electron Microscopy EDS data, in which the challenge is to
quantify nanoobjects on a substrate since the beam depth is very long and signal from the
object of interest and substrate are entirely mixed. Here, AuIn2 nanowires are onto an
InSb substrate. PCA is first applied to help infer the number of components to decompose
the dataset in the NMF analysis. Thus, by the scree plot inspection, the dataset is
decomposed into 3 NMF components: substrate signal, background signal, and nanowires,
as shown in figure 5.13. Consequently, the chemical composition of the nanowires and
the substrate are quantified from the second and third NMF components. Even though
the authors do not discuss implementing error bars for this type of analysis, the values
obtained are confirmed by Monte Carlos simulations and complementary cross-sectional
measurements, where the mixing does not happen. Hence, even with the substrate and
the nanowires sharing In, the signal is properly unmixed for further analysis showing that
the method can work for EDS quantitative information extraction. ICA and NMF are also
compared since both methods are the favorites for blind source separation applications.
What their analysis reveals, in this case, is that NMF allows better information retrieval
than ICA for that specific application.
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Figure 5.13: Results of the BSS by NMF and PCA of EDX spectrum image of AuIn2
nanowires on InSb. (a) PCA scree plot of first 25 principal components; 3 components
exhibit significantly higher variance. Non-negative matrix factorization component maps
(bd) and corresponding component spectra containing X-ray lines of the elements (f).
Backscattered electrons image of the nowires (e). The BSS by NMF separates very
good the signal from AuIn2 nanowires (NMF 3) from InSb substrate (NMF 1) and from
background (NMF 2). Figure extracted from [14].

A vital discussion to address in unmixing signal procedures by the factorization
methods is if the algorithm is convex, i.e., if the solutions converge [106]. Uesugi et
al.[112] are one of the first in the electron microscopy community to properly discuss
the convergence of NMF in 4DSTEM (2D electron diffraction in each pixel) applications.
First, the authors compared the performance of PCA and NMF, showing that the PCA
allows negative counts, the optimization generates unrealistic electron diffraction patterns
in the principal components, and this issue is solved by employing NMF analysis. Thus,
all the components generated carry direct crystallographic information. Nonetheless, this
work’s natural and important contribution is that it shows, as can be seen in figure 5.14,
a statistical analysis of the number of components selected in the decomposition by NMF.
Several reconstructions of the dataset are performed for a given number of components
k. Increasing k and doing a mean squared error analysis between original data and
reconstructed data, Uesugi et al. show that although the algorithm for NMF is not
convex, the convergence is relatively good for a low number of components. Therefore,
the quality of the convergence relies on the number of components selected to solve the



problem.
Guiding by the PCA scree plot is a convenient way of choosing the number of

components to perform NMF. However, if the system is too complex, many components
are expected, and therefore, the results may not converge, showing that applying a
powerful statistical method requires careful analysis.

Figure 5.14: Mean square error as a function of number of components. Gray squares
denote the frequency of the convergences, as shown by the inset brightness bar. The blue
solid line and red broken line respectively indicate the minimum and averaged MSEs for
each number of components.

5.3 Partial conclusion

We learned so far that EDS-STEM can be used for quantitative EDS chemical analysis
and that we can use this tool to investigate elemental distributions on BNPs. In this
chapter, we describe machine learning tools exploring the HSI data structure for noise
reduction and feature extraction to optimize the EDS analysis of our data sets. We show
we can use PCA for extreme noise reduction; however, the methodology is not fault-free,
and we have to investigate if biased reconstructed data are generating artifacts in the final
results. Despite the incredible advantages of exploiting of unsupervised machine learning
tools such as PCA and NMF, we must consider its effects in quantitative analysis. The
next chapter discusses in detail these aspects of our AuAg NP model system.
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Chapter6
Exploiting Principal Component Analysis for

denoising EM image spectra: Effects on
quantitative EDS analysis

This chapter contains the publication:
Murilo Moreira, Matthias Hillenkamp, Giorgio Divitini, Luiz H. G. Tizei, Caterina Ducati, Monica A.
Cotta, Varlei Rodrigues and Daniel Ugarte
Improving Quantitative EDS Chemical Analysis of Alloy Nanoparticles by PCA Denoising: Part I,
Reducing Reconstruction Bias
Microscopy and Microanalysis, 2022, 28(2), 338-349. doi:10.1017/S1431927621013933

In this chapter, we show our main results, published as an article in the Microscopy
and Microanalysis journal. Despite the wide use of PCA denoising of EDS-STEM data
sets in the electron microscopy community, the procedure is not fault-free. Care must be
taken with its application to noisy data sets, where the lack of information beyond noise
may induce statistical bias in the generation of the principal components. These noise
corrupted components are used to reconstruct the data set for Poisson noise reduction
purposes. Thus, systematic effects can be observed in the quantitative analysis of AuAg
BNP chemical compositions. Therefore, we propose a strategic use of experiments and
simulations to derive the information loss estimators from them that can evaluate the
quality of the reconstructions. Additionally, we expect to show ways to solve the bias
issue for improving EDS chemical analysis in small nanoalloys.
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Abstract

Scanning transmission electron microscopy is a crucial tool for nanoscience, achieving sub-nanometric spatial resolution in both image and
spectroscopic studies. This generates large datasets that cannot be analyzed without computational assistance. The so-called machine learn-
ing procedures can exploit redundancies and find hidden correlations. Principal component analysis (PCA) is the most popular approach to
denoise data by reducing data dimensionality and extracting meaningful information; however, there are many open questions on the accu-
racy of reconstructions. We have used experiments and simulations to analyze the effect of PCA on quantitative chemical analysis of binary
alloy (AuAg) nanoparticles using energy-dispersive X-ray spectroscopy. Our results demonstrate that it is possible to obtain very good fidel-
ity of chemical composition distribution when the signal-to-noise ratio exceeds a certain minimal level. Accurate denoising derives from a
complex interplay between redundancy (data matrix size), counting noise, and noiseless data intensity variance (associated with sample
chemical composition dispersion). We have suggested several quantitative bias estimators and noise evaluation procedures to help in the
analysis and design of experiments. This work demonstrates the high potential of PCA denoising, but it also highlights the limitations
and pitfalls that need to be avoided to minimize artifacts and perform reliable quantification.

Key words: denoising, energy-dispersive X-ray spectroscopy (EDS), nanoparticles, principal components analysis (PCA), quantitative
chemical analysis
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Introduction

Nanotechnology exploits the unique properties of nanoparticles
(NPs) in many different fields such as catalysis, magnetism, and
plasmonics (Heiz & Landman, 2007; Odom & Schatz, 2011;
Binns, 2014). The electronic properties of bimetallic NPs show
a complex behavior in relation to size and elemental composition;
for example, several suggested applications exploit the optimiza-
tion of either physical properties, such as surface plasmons in
some optical devices, or chemical reactivity/selectivity in catalysis.
The morphological and structural characterization of an NP sam-
ple requires the measurement of crystalline structure, shape (rod,
sphere, wire, etc.), crystal habit (possible faceting), and size distri-
bution (mean diameter and size dispersion). In the case of multi-
elemental nanosystems [i.e., nanoalloys (Alloyeau et al., 2012;
Ferrando, 2016)], we must determine the chemical composition

(mean one and distribution as a function of size) and possibly
the occurrence of chemical inhomogeneity within the particles
[core–shell segregation, Janus distribution, compositional gradi-
ents, etc. (Lyman et al., 1995; Mukherjee et al., 2012, 2014)].

Transmission electron microscopy (TEM) has made huge pro-
gress in the last decades, considering electron optics, detector effi-
ciency, reproducibility, automation, etc. (Williams & Carter, 2009,
2016; Hawkes & Spence, 2019). Scanning transmission electron
microscopes (STEMs) are capable of recording the so-called
hyperspectral image (HSI; Pennycook & Nellist, 2011), where
an entire analytical spectrum or diffraction pattern can be regis-
tered at each image pixel. The HSI approach is currently used
to generate huge 3D or 4D datasets [X-ray energy-dispersive spec-
troscopy (EDS), electron energy loss spectroscopy (EELS), catho-
doluminescence (CL), electron diffraction (ED), scattering
distribution, etc.] (Thomas et al., 2015).

A typical HSI datacube may routinely contain 107 voxels
(100 × 100 pixels, each containing a spectrum of 1,000 channels).
The information contained in such massive arrays can be lever-
aged to a better signal-to-noise ratio (SNR) by applying blind
source separation algorithms (Cueva et al., 2012; Williams &

*Corresponding author: Daniel Ugarte, E-mail: dmugarte@ifi.unicamp.br
Cite this article: Moreira M, Hillenkamp M, Divitini G, Tizei LHG, Ducati C,

Cotta MA, Rodrigues V, Ugarte D (2022) Improving Quantitative EDS Chemical
Analysis of Alloy Nanoparticles by PCA Denoising: Part I, Reducing Reconstruction
Bias. Microsc Microanal. doi:10.1017/S1431927621013933

© The Author(s), 2022. Published by Cambridge University Press on behalf of the Microscopy Society of America

Microscopy and Microanalysis (2022), 1–12

doi:10.1017/S1431927621013933

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1431927621013933
Downloaded from https://www.cambridge.org/core. UNICAMP, on 17 Jan 2022 at 13:15:19, subject to the Cambridge Core terms of use, available at

69



Carter, 2016; Brown et al., 2020). By exploiting redundancies,
machine learning (ML) methods are also able to efficiently clas-
sify data by finding hidden correlations. The most popular algo-
rithm is principal component analysis (PCA; Jolliffe, 2002;
Jolliffe & Cadima, 2016) that provides a number of orthogonal
eigenvectors (referred to as “loadings” or “components”) encod-
ing the information contained in data variance. The reconstruc-
tion data with a few PCA components allows the extraction of
meaningful information and reduction of noise (usually called
“denoising”) (Titchmarsh & Dumbill, 1996; Titchmarsh, 1999;
Keenan & Kotula, 2004; Kotula & Keenan, 2006; Lichtert &
Verbeeck, 2013; Kotula & Van Benthem, 2015; Potapov &
Lubk, 2019). EDS data is particularly well suited for PCA process-
ing, because signal is constituted by well-defined peaks on a low
varying background (Lichtert & Verbeeck, 2013). In contrast,
EELS display absorption edges and background which may
show changing complex shapes as a function of chemistry and
sample thickness, so PCA application may be rather complex
(Cueva et al., 2012; Lichtert & Verbeeck, 2013).

EDS chemical mapping has become one of the most popular
TEM-related experiments because the high counting capabilities
of silicon drift detector (SDD) has strongly reduced total acqui-
sition time (Schlossmacher et al., 2010; Watanabe et al., 2010).
PCA has become a popular easy-to-use tool to denoise and
improve qualitatively EDS elemental maps. In contrast, it has
scarcely been used for quantitative chemical EDS-STEM analysis
(Burke et al., 2006), where it is essential to confirm the PCA
reconstruction fidelity (accuracy) and calculate reliable confi-
dence intervals. The user-friendly profile of PCA may errone-
ously indicate a fault-free procedure; indeed, seriously biased
reconstructions (i.e., derived values differ from true noiseless
ones) may arise from low SNR datasets. The achievement of suc-
cessful unbiased denoising is strongly dependent on appropri-
ately designed and executed EDS HSI experiments. Despite the
widespread use of PCA processing (Burke et al., 2006; Parish
& Brewer, 2010; Rossouw et al., 2015), there are still many
open questions on noise-related effects and on how to infer if
reconstructions are biased.

Alloy NP samples are expected to display a size dispersion and
elemental composition variation, making their detailed character-
ization an extremely challenging task. In this work, we have
explored the application of PCA denoising in quantitative analysis
of binary alloy NP using EDS HSI; this issue represents a rich,
complex ensemble of yet open questions. This investigation
requires the scrutiny of the two different aspects associated with
any measurement: accuracy and precision. The first one requires
the minimization of PCA reconstruction bias; the second topic
deals with the potential improvement of uncertainty interval
due to PCA capacity of using the redundancy of the whole dataset.
We will tackle these two different points using both experiments
and simulations, and the results will be described in a series of
two papers (Part I and Part II, respectively). For EDS studies,
the main contribution arises from counting noise (leading to
PCA random noise bias), and the present manuscript reports a
thorough analysis of the minimal level that the SNR must exceed
to guarantee that PCA reconstruction carries the information of
true NP composition variation in the sample. We have analyzed
the applicability of several suggested PCA bias estimators (Faber
et al., 1995a, 1995b; Malinowski, 2002; Nadler, 2008, 2009) and
suggested some criteria to predict the reliability of derived chem-
ical composition distributions.

Materials and Methods

Nanoparticle Synthesis

Bimetallic (AuxAg1−x) NPs have been produced using a home-
made gas aggregation cluster source where a cylindrical magne-
tron is used to sputter atoms from a central target made of
twisted Au and Ag wires (de Sá et al., 2014). A series of electro-
static lenses are used to reduce NP kinetic energy to achieve a
“soft landing” on the TEM grid (for a ∼4 nm in diam. NP,
this corresponds to ∼0.05 eV/atom). The NP size distribution
contained in the molecular beam can be followed in situ by
the time-of-flight mass spectrometer (TOF-MS). TEM images
indicate that the NP size distribution follows a log-normal func-
tion (mean diameter ∼4 nm, width ∼3 nm in width; see
Supplementary Fig. S1). Three different bimetallic nanoparticle
samples (A, B, C) have been used in the present study whose
Au content in atomic fraction is (0.73 ± 0.01), (0.55 ± 0.02),
and (0.48 ± 0.01), respectively. The chemical composition
has been measured on an ensemble of NPs using an open
parallel TEM beam with a long counting time to increase
X-ray total intensity while minimizing radiation damage (dose
∼10 e−/Å2).

Electron Microscopy: Data Acquisition and Processing

We have used several STEM microscopes to compare and opti-
mize experimental configurations and beam energy values:
JEM-2100F (SDD 30 mm2, LNNANO-Campinas-Brazil),
JEM-F200 (two SDD, 0.8 sR, JEOL), FEI-Tecnai G20F (Si(Li)
30 mm2, LCE-UFSCAR-Brazil), TitanThemis (Super X Quad
SDD, 0.8 sR, LNNANO-Campinas-Brazil). Microscopes were set
up for ∼0.5 nm pixel size, probe diameter ∼0.7–1.0 nm, and a
dwell time of ∼200 ms per pixel for the sake of comparison
between instruments. We have used different TEM instruments
and, for all experiments, specimens were mounted in a low back-
ground Be holder. On average, each HSI image contains about
5–8 particles, then several HSIs are necessary to gather statistical
meaningful description of the NP sample.

Measured EDS spectra have been binned to get a total of 512
energy channels, in order to increase SNR for PCA processing.
Automatic recognition of NPs on the chemical maps (binarization
and segmentation) has been performed using Scikit-image Python
library (van der Walt et al., 2014). We have calculated the total
X-ray characteristic signal (Au-Mα and Ag-Lα peaks) from indi-
vidual particles by adding signal from the pixels located inside
each NP region, because it is well known that addition maintains
the Poisson nature of the sum.

The quantitative analysis of the NP chemical composition fol-
lowed the Cliff-Lorimer approach [Equation (1), Cx and Ix are the
atomic fraction and the X-ray intensity of element x, respectively
(Cliff & Lorimer, 1975)]. The Cliff-Lorimer factors (kAB) were
derived experimentally using a thin film of known composition
(kAuAg = 0.93 ± 0.01 for data from Experiment I and KAuAg =
0.85 ± 0.01 for Experiment 3, simulations used kAgAu = 1). The
film was generated using a multilayer thin film calibrated using
a quartz balance to control the atomic ratio through the relative
film thickness.

CAu

CAg
= kAuAg

IAu
IAg

. (1)
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The calculation of chemical composition error bars has taken
into account all EDS quantitative analysis steps applied on a fitted
curved on the experimental EDS spectra (background removal,
X-ray peak integration, and composition determination). All
EDS and HSI PCA processing steps have been performed using
the open-source Hyperspy Python library (de la Peña et al., 2017).

We have performed experiments at 80 kV to increase electron
ionization cross-section considering relativistic estimations
(Zaluzec, 2019). It is important to consider that recent micro-
scopes (as the AC microscope used here) show very good perfor-
mance at low voltages. However, in practice, the reduction from
the nominal microscope voltage (300/200 keV) to lower values
(100–80 keV) may reduce electron gun efficiency and increase
the effect of TEM optical aberrations. Consequently, the probe
current may decrease significantly, producing an unwanted conse-
quence of, effectively, reducing EDS counts. It is important to ver-
ify properly the microscope performance at a lower voltage,
because the optimal setup is strongly dependent on the particular
TEM instrument. In addition, lower voltages (80–100 keV) should
be preferred for lower atomic number samples in order to reduce
knock-on damage (preferential damage mechanism for lower
atomic number samples (Braidy et al., 2008; Egerton et al.,
2010; Egerton, 2012, 2019). We would like to note that all exper-
iments discussed in this study have been acquired using the same
dwell time (200 ms) for the sake of comparison between different
experimental conditions.

Our experiments accumulated several frames for the final HSI
(Jones et al., 2018), what minimizes the dose rate and extends the
sample useful life. Instead of taking a single image with dwell time
200 ms, we have taken a series of images of the same region (e.g.,
10 scans at 20 ms dwell time), and subsequently, added the indi-
vidual frames. An important issue related to alloy NPs analysis is
guarantying that composition is not modified along measurement
time by radiation damage. As Ag atoms should be sputtered more
easily than the Au ones, we would expect a gold enrichment with
time (Egerton, 2019). To analyze this issue, we have taken a long
series of 20 ms dwell time scans and followed the chemical com-
position evolution. This allowed us to verify that no detectable
composition changes occur for the chosen dwell time in this
work (200 ms).

At present, high spatial resolution chemical mapping is rou-
tinely performed with good reliability and reasonably short acqui-
sition times, but spectra from individual pixels typically have
insufficient counts for proper statistical quantification.
According to the basic procedures of EDS microanalysis, a char-
acteristic peak occurrence can be identified if the signal is three
times (3×) the background noise (σBGD). This criterion, however,
only applies to detection and is inadequate for quantitative EDS
chemical analysis. The seminal work of Currie (Currie, 1968,
1999; Belter et al., 2014; Williams & Carter, 2016) shows that a
quantitative analysis requires a significant increase of the signal
level (approximately 15 times higher than the uncertainty inter-
val) to attain the measurement of a quantity with a 10% relative
error. This increases enormously the signal required, in particular
when the detection suffers from shot noise, given that in Poisson
statistics intensity uncertainty is the square root of the intensity
itself, sI =

��
I

√
.

PCA Processing

PCA takes as basic input a 2D matrix D of dimension m x n; m
represents the number of pixels that have been acquired and n

represents the number of channels in the spectra (Jolliffe, 2002).
This matrix description shows that PCA does not consider any
specific information about spatial location of the pixels in the
experimental image. When a spectral correlation exists between
pixels it will show up as a significant weight (score) for a partic-
ular PCA component (loading).

PCA processing provides a number of orthogonal eigenvectors
encoding the information contained in data variance. The eigen-
values (or singular values) associated with each component
express their information content and are usually displayed in
the so-called scree-plot (Titchmarsh & Dumbill, 1996;
Titchmarsh, 1999; Jolliffe, 2002; Jolliffe & Cadima, 2016). In
our experiments, the scree-plots show a clear and regular profile
with a well-defined kink, where the number of components show-
ing data variance visibly higher than noise can be easily identified
(see example in Fig. 1).

The principal source of noise in an EDS HSI is counting noise
of Poisson nature; then before PCA processing, we have per-
formed the variance stabilization using a data scaling procedure
(Keenan & Kotula, 2004; Kotula & Keenan, 2006; Kotula &
Van Benthem, 2015). The scaled dataset matrix Ds has been cal-
culated from Ds = GDH, where G is the spatial scaling factor, D is
the raw data, and H is the spectral scaling factor [as implemented
in Hyperspy (de la Peña et al., 2017)]. Recently, it has been

Fig. 1. Comparison of scree-plots derived from EDS measurements on AuAg alloy
nanoparticles experiments acquired using a noncorrected FEG TEM/STEM (a) and a
modern aberration-corrected microscope equipped with multiple EDS detectors
(b). Reconstruction derived from experiments associated with (a) showed a strong
random noise bias, while HSI described by (b) showed a good PCA reconstruction
(see text for explanations). Note that the variance of the third principal component
is slightly above noise component in (b). Triangular points represent the components
used for data reconstruction in this work.
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suggested that for a very sparse data matrix obtained from NP
samples (Kotula & Van Benthem, 2015), better multivariate
decomposition results are obtained if the scaling only considers
the spectral scaling factor (Ds =DH). These authors analyzed a
rather high sparse measurement (99.8%). Our experiments have
been acquired with a pixel area of 0.5 × 0.5 nm2 = 0.25 nm2, con-
sidering a particle of 6 nm in diameter, its area is about 28 nm2,
which should be covered by approximatively 110 pixels. This sim-
ple calculation shows that the sparsity level of in about 85–90%
(scans of 64 × 64 pixels containing about 5–8 NPs, about 80–
90% [1−(660/4,096)]∼0.84 or 84%)). As the sparsity of our data
is not so extremely low, we have used the conventional complete
spatial and spectral scaling in this work; the possible influence of
changing the scaling procedure will be analyzed in future work.

In this report, the analyzed samples are very close to ideal
ones: binary alloy particles (with a certain composition variation)
distributed on a uniform thin substrate (a–C). As a consequence,
the information content of each PCA principal component can be
understood reasonably well; simulations of high SNR HSI indicate
three dominant loadings without significant information mixing
(see Fig. 2): (a) first component associated with TEM support
grid and another EDS spurious X-ray sources (Fe from magnetic
lenses, Cu from grid, etc.), what is due to the fact that, in our
experiments and simulations, most of pixels (∼85%) do not con-
tain any NP EDS signal; (b) second component containing infor-
mation on the mean NP EDS spectrum and mean chemical
composition defined by the Au and Ag counts ratio of this com-
ponent (IAu,PC#2/IAg,PC#2); and, finally, (c) third component
accounting for variation of composition among different particles
(Potapov & Lubk, 2019). We must note that the third component
represents an unphysical spectrum (Potapov, 2016), because the
EDS peaks (Au-M and Ag-L edges) show up with opposite
signs for the two elements (positive/negative, see Fig. 2c), as
mathematically required to induce composition variation (or dif-
ferent IAu/IAg ratio values).

As a rule of thumb, some components beyond the scree-plot
elbow (two to three additional components) are included in the
reconstruction in order to include some remaining information
carried by the first components associated with noise. All recon-
structions in this work have included five components to render
easy comparison between different experiments and simulations
of binary alloy NPs (see Fig. 1).

Simulated Datasets

Simulations offer irrefutable advantage against an experiment
because the number, nature, and strength of latent factors can
be fully controlled and the related effects followed in detail.
Also, as the “true” object is precisely known, it is possible to com-
pare the same object under situations of different noise levels.

It is critical that model spectra reproduce key features associ-
ated with measurements (background, energy calibration, and
magnitude of the typical signals) which strongly influence PCA
output. We must be aware that most of simulations do not include
complex factors such as plural scattering (critical issue for EELS)
or EDS sum/escape peaks, etc. In fact, several of these issues are
consciously neglected because they might severely complicate
interpretation between information content of the dataset and
the PCA output).

Our simulations consider binary alloy NPs on a TEM grid and
they include all other elemental EDS peaks related to the Cu grid
and sample environment (Fe, Ni, etc.); the intensities of these

peaks were scaled in relation to Au and Ag ones in agreement
with our experimental data. After a noise-less spectra is calcu-
lated, random Poisson noise was added to data in order to yield
a realistic model of experiments.

Once the total counts per NP to be considered in the simula-
tion is defined, these counts are distributed inside pixels forming
a circle (NP projection) in the simulated HIS. It is important to
emphasize that counts distribution inside the NP associated pixels

Fig. 2. Principal component profiles derived from a high SNR simulated HIS of bime-
tallic AuAg nanoparticles; for this ideal case, it is possible to make a clear identifica-
tion of carried information. The loading in (b) includes Au and Ag peaks with the
same signal (both negative, allowing the calculation of the NP average NP chemical
composition); in contrast, the component in (c) shows Au and Ag peaks with opposite
signal (negative–positive), then it is possible to induce concentration variations in the
PCA reconstruction.
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considers the spherical shape of the NPs, such that counts and
SNR diminish gradually from pixels located from center to surface
(thickness variation along electron path). As a final step, we add
the random Poisson noise to the voxels X-ray intensity. This
issue is essential for a faithful description of experiments, as it
induces variation in the overall EDS SNR for each NP pixel,
which will strongly influence the PCA output.

Results

Figure 3 shows an example of a typical EDS HSI data from AuAg
nanoparticles taken in an uncorrected 200 kV FEG TEM/STEM
(described in the text as Experiment I); the spectrum in
Figure 2a represents a good illustration of counting level that
can be achieved. On average, we observe IAu∼ 380 total counts
for a ∼6 nm NP, resulting in an intensity relative error of approx-
imately ΔI/I = 5% considering Poisson noise (sI =

��
I

√
∼19 cts).

For these experiments, we have decided to apply the PCA pro-
cessing to each HSI individually, because, in many cases, the HSIs
were acquired several weeks apart. Grouping several HSIs may be
useful to exploit additional redundancy, but noise components
may vary between images. For example, a thicker substrate or the
change of grid contribution due to a scan located closer to a grid
bar may induce the appearance of additional meaningless principal
components. These issues were not significant in our experiments
(usually a square scan, ∼30 nm side), but a careful analysis of EDS
intensity showed that the beam current of the used microscope
(more than 10 years old) was varying significantly. Then, each
scan showed a slightly different SNR, which hindered their group-
ing into a big dataset and, analyzed by a single PCA processing
step. For data acquired with a modern AC, TEM/STEM stability
and reproducibility were not an issue and the dataset could be
built by the stacking of several (64 × 64 pixels) HSI.

After PCA reconstruction, the automatic numerical recogni-
tion of smaller NPs on the chemical maps has been more efficient;
this is even more pronounced for very small particles, 2–3 nm in
diameter (Figs. 3e, 3f). PCA treatment generates a scree-plot
where two components display much higher variance than
noise (see Fig. 1); as expected, these two loadings carry informa-
tion about the sample support and the average NP spectrum,
respectively. In Figure 4a, raw and PCA-derived composition esti-
mations (CAu) of single NPs are distributed around the expected
mean composition value. The analysis of composition distribu-
tions histograms at the right side of Figure 4a yields a standard
deviation (STD) of SCAu,den � 0.022 versus SCAu,raw � 0.05 (hereaf-
ter, symbol Σ will be used to describe the calculated STD of a dis-
tribution S

2
STD = ∑

(x − �x)2/(n− 1)). The width of the
calculated concentration distribution obtained after PCA denois-
ing is much narrower than derived from raw data. This compar-
ison indicates a strongly biased PCA reconstruction: due to the
rather low SNR, PCA processing has been unable to rank properly
the information on intensity variations between NPs (expected to
be contained in the third principal component, Fig. 2c; Potapov &
Lubk, 2019). Then, the ratio (IAu/IAg) and the chemical composi-
tion derived from it is almost completely fixed and determined by
the second principal component (representing the average NP
spectrum). This generates a strong correlation between IAu and
IAg intensities significantly narrows the chemical composition dis-
tribution calculated for the ensemble of NPs. It is important to
note that PCA-treated points are displayed without error bars,
because there is no accepted and well-defined procedure for cal-
culating confidence intervals after denoising [this issue will be

addressed in a forthcoming paper associated with Part II of this
work (Moreira, 2021)].

To test the above interpretation, we have built a dataset con-
taining a bimodal distribution of chemical compositions by stack-
ing a series of 4 HSI measured with the same microscope on two
different NP samples (A-2x, B-2x, CAu∼0.50, and ∼0.75 Au,
respectively, hereafter noted Experiment II). Using raw data,
chemical analysis can distinguish the separate composition distri-
butions (see Fig. 4b, the calculated composition uncertainty bar
was estimated to be sCAu � 0.04 or 4 at%). After PCA treatment,

Fig. 3. Typical EDS HSI data from AuAg alloy nanoparticles (uncorrected FEG-STEM,
200 KV, 64 × 64 pixels scan). Comparison of raw and denoised EDS spectrum from a
∼6 nm NP for a single pixel (a) and the entire NP (b) where the orange curve repre-
sents the final fit of EDS processing derived from hyperspy software used to integrate
the peak intensity. (c,d) Raw and denoised Au chemical maps, respectively; the cor-
responding NP identification is displayed in (e) and (f), respectively (NP pixels are
presented in different colors render easy the nanoparticles recognition). Note the
increase in compactness of detected particles after PCA processing.
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the chemical composition distribution from Exp. II appears sig-
nificantly different from raw data: it is quite narrow and centered
around the average composition of the two NP populations. The
results derived from Exp. I and Exp. II indicate that this SNR level
merely allows the reliable determination of average ensemble
chemical composition, and information on individual NP inten-
sity remains indistinguishable from noise (variations of IAu/IAg
should carried by the third principal component for a high
SNR dataset, see Fig. 4). This represents a clear example of ran-
dom noise PCA bias, showing that insufficient counting may
yield unrealistic results. If this PCA reconstructed dataset is ana-
lyzed with hubris, serious misinterpretations may follow about the
chemical homogeneity of the analyzed sample.

The logical solution to make further progress is to increase the
SNR by collecting more X-ray counts. Reducing the incident
beam energy from 200 to 80 keV increases the ionization cross-
section (and consequently the EDS signal) by a factor of 1.6× con-
sidering relativistic estimations (Zaluzec, 2019). We have per-
formed experiments at 80 keV using an aberration-corrected
(AC) STEM microscope equipped with four EDS detectors
(named Experiment III). A significant counting improvement
has been attained, leading to a total integrated count of IAu = 1,
950 counts for a 6 nm NP (see Fig. 5). Considering noise, the
obtained ∼5-fold gain in counts, just leads to a twofold decrease
of intensity relative error ΔI/I ∼ 2%; which clearly exemplifies
how difficult and complex is to increase SNR in data subjected
to Poisson statistics. For this experiment, the raw dataset was

built by grouping 4× acquisitions of 64 × 64 HIS. PCA treatment
of Experiment III shows a substantial improvement of the recon-
struction; Figure 5c shows reasonably good agreement between
chemical composition derived from raw and denoised data, indi-
cating a strong reduction of random noise bias. The majority of
measured NPs show similar composition within experimental
confidence level (the measured composition distribution show
similar widths as evidenced by the calculated standard deviations
SCAu,raw = 0.043 and SCAu,den = 0.031). This amelioration is mainly
associated with the better retrievability of a third PCA component
carrying information on individual NP intensity variations due to
chemical composition variability (note the slight improvement of
the third component ranking in Fig. 1b). Only few NPs display
significant differences with raw data, suggesting the occurrence
of some biasing; in fact, these points correspond to the smallest
detected NPs (i.e., with smaller count value per NP, ex. IAu∼
400 cts, diameter ∼3 nm).

Fig. 4. Quantitative chemical composition analysis of alloy NPs. (a) Au atomic con-
centration derived from Exp. I using either raw or PCA denoised HIS (dashed line indi-
cates average composition). (b) Au atomic concentration from Exp. II, including a
bimodal chemical composition distribution (atomic concentration CAu∼0.5 and
∼0.75). Resulting chemical composition distributions are plotted at the right. The
two populations are easily identified from raw data, while denoising generates a
strongly biased result and NP composition is close to the average of the ensemble
of NPs.

Fig. 5. Typical EDS HSI data from AuAg alloy nanoparticles obtained for experiment
III (AC STEM, 4 SDD detectors, 80 kV, 64 × 64 pixels scan). Comparison of raw and
denoised EDS spectrum from a ∼6 nm NP for a single pixel (a) and the entire NP
(b) where the orange curve represents the final fit of EDS processing derived from
hyperSpy software used to integrate the peak intensity. (c) Comparison of chemical
composition calculations derived using raw and denoised data; resulting chemical
composition distribution is plotted at the right.
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Discussion

Experiment III provides evidence that it is essential to obtain
measurements with counting level (or SNR) exceeding a certain
minimal value to allow the minimization of random noise bias
when analyzing alloy NP samples displaying a chemical composi-
tion variation. This allows the reliable ranking of physically signif-
icant PCA components and produces good fidelity denoised PCA
reconstruction (Fig. 5c).

The comparison of Experiments I and III shows that PCA may
allow reliable denoising, but it cannot recover information that is
not actually carried by the combination of data SNR and redun-
dancy (dataset size); this property has been named “EDS retriev-
ability limit” (Potapov & Lubk, 2019). The observed bias is
associated with inefficient retrieval of the “true” NP intensity var-
iations, an information carried by the third principal component
(see Figs. 1, 2).

To advance further, it is important to develop criteria/expres-
sions to gather predictions of potential PCA random noise biasing
effects directly from the measured data (counts value, data matrix
size, etc.). Looking carefully at our results, we may note that the
comparison of composition histograms of raw and denoised
data reveals the different quality of data reconstructions from
Exp. I and Exp. III (Figs. 4a, 5c). Then, it is interesting to suggest
that the ratio of calculated composition distribution STDs or
widths (Rw = SCAu,den/SCAu,raw ) represents a good assessment of
reconstruction fidelity and a potential indicator of the occurrence
of random noise biasing.

Many studies have addressed the effect of random measure-
ment noise on PCA bias (Faber et al., 1995a, 1995b;
Malinowski, 2002; Nadler, 2008, 2009) when noise is assumed
to be uncorrelated and homoscedastic (all its random variables
have the same finite variance, s2

H). In contrast, our experiments
involve Poisson noise, where the variance is dependent on the
value of the particular voxel intensity (σ2 = I). Then, the straight-
forward application of several bias indicators must be performed
with extreme care to predict potential biasing (i.e., displacement
from “true solutions”). Additional complications to estimate ran-
dom noise variance arise from the high sparsity of EDS HSI of
NPs (Keenan & Kotula, 2004) (many spectral energy channels
include zero or just a few counts). For example, only 10–15% of
pixels in our 64 × 64 scans carry X-ray counts from the particles.
This leads to an average counting value per voxel (Iave,voxel) that
may be <<1 by several orders of magnitude. Then, an estimation
of data Poisson noise from mean voxel intensity (s = ��������

Iave,voxel
√

)
is nonfunctional, because noise becomes always larger than the
measurement itself. From another angle, the variance stabilization
through data scaling of EDS spectra before PCA processing
(Keenan & Kotula, 2004; Kotula & Keenan, 2006; Kotula &
Van Benthem, 2015) may induce additional significant error if
sparsity is present.

Several studies (Verbeeck & Van Aert, 2004; Cueva et al., 2012;
Lichtert & Verbeeck, 2013; Potapov, 2017; Spiegelberg & Rusz,
2017) have analyzed PCA eigenvalues bias using derivations of
Faber et al. (1995a, 1995b), where the eigenvalue shift contains
two terms. The first one represents an additive contribution
directly related to random noise variance, and the second term
depends on the number of pixels m and spectral channels n.
Furthermore, combining Fisher’s information concept and the
Cramérs-Rao inequality, Verbeeck et al. (2004) and Lichtert &
Verbeeck (2013) have been able to estimate a lower bound for sys-
tematical errors occurring in PCA reconstructed EELS data. This

estimation requires the evaluation of a homoscedastic-like vari-
ance from the average count of the HSI voxels; as mentioned
above, the sparsity of EDS HSIs strongly limits the applicability
of these approaches.

In this work, we have explored the bias estimator derived from
the so-called spiked covariance model (Nadler, 2008, 2009). This
author has revealed the existence of an abrupt information-loss
phase transition as a function of noise variance, leading to a well-
defined bias estimator [EIL, equation (2)]; a bias-free PCA recon-
struction is always achieved when the estimator is less that a
threshold value (TIL). This bias estimator displays a simple math-
ematical expression describing the interaction between dataset
size (n,m) and the ratio of experimental noise (variance σ2) and
noise-free data variance (ν*2, hereafter * will indicate that the var-
iable is the true noise-free data value). It is important to empha-
size that “true” parameters are seldom accessible to the
experimentalist, so the elaboration of predictions is somewhat
challenging. In the limit n,m tending to infinity, the threshold
becomes TIL = 1 and the criterion becomes EIL < 1. The behavior
of estimator has already been explored both in EELS and EDS HSI
processing (Lichtert & Verbeeck, 2013; Potapov, 2016; Potapov &
Lubk, 2019).

EIL = n
m

s2

n∗2

( )2

. (2)

For our EDS experiments, the calculation of the EIL using the
average count per voxel yields very high values (107–1010). It is
essential to keep in mind that the interpretation of bias estimators
must be analyzed in the context of the particular experimental
constrains and targeted scientific problem. The EDS determina-
tion of NP elemental compositions requires the total number of
counts per particle (INP), instead of the value of the individual
spectral channels (or voxels) themselves. It is, therefore, crucial
to identify a procedure to correctly evaluate the ratio of counting
noise and true data variances (σ2/ν*2) considering how it affects
the information we are looking for (the assessment of composi-
tion variation between NPs), overcoming issues introduced by
the intrinsic sparsity of the data.

For example, let’s consider a NP generating a Au-M line total
counts of IAu,NP; we will assume that these counts are homoge-
neously distributed over the number of pixels (mNP) inside the
particle region (for a scanning step 0.5 nm, this correspond to
∼110 pixels for a 6 nm NP). Then, we distribute the estimated
pixel counts (INP/mNP) homogeneously on the spectral channels
(nPeak) under the EDS characteristic peak (for EDS peak
∼200 eV wide and a spectrum channel width of 20 eV, we obtain
nPeak = 10). The Poisson noise variance for voxels under the EDS
peak is s2

IAu,vox = IAu,NP/(mNPnPeak). In fact, even taking this sim-
ple estimation of voxel intensity, it yields a value <1 for Exp. I,
indicating strong sparsity. Only for the count values in Exp. III,
the average total cts/voxel results slightly >1 and the counting
error Poisson statistic (square root) can now be applied, always
resulting in noise < measurement.

An essential parameter to evaluate the EIL bias estimator is the
noiseless data variance, so we must estimate how chemical com-
position dispersion influences the noise-free voxel X-ray count
values. Let’s start with a rather simple model case, where the
NP ensemble displays a Gaussian distribution of chemical compo-
sition (mean CAu,0, variance S

2
CAu

). To go further, we must deduce
how to convert the Au composition standard deviation SCAu into
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a characteristic EDS intensity variation or the number of Au
counts (ΔIAu,NP).

Chemical compositions are derived from EDS intensity using
the Cliff-Lorimer expression in [equation (1)] (Cliff & Lorimer,
1975). Considering the normalization of a binary AuAg alloy
compositions (CAu + CAg = 1), we can relate CAu to the EDS signal
from Au atom:

CAu 1+ IAg
kAuAgIAu

( )
= 1. (3)

As our experimental values for the Cliff-Lorimer factor have
been determined to be very close to 1, we will assume that
kAuAg = 1, or in other terms that Au and Ag generate the same
quantity of characteristic photons per atom. This approximation
renders the calculation simpler for a binary alloy; if we consider
that all particles have the same number of atoms, a change in
the number of atoms of one element, reduces (or increases) its
characteristic EDS peak by the same amount of count that
increase (or reduces) the other element peak. In other words,
the total number of characteristic X-ray counts generated by the
NP is constant [ITot,NP = (IAu + IAg) = cnst]. For kAuAg = 1, equa-
tion (3) may be rewritten as CAu(IAu + IAg) = IAu or CAg(IAu +
IAg) = IAg. Then, we can deduce that

IAu = CAu(ITot,NP) and IAg = CAg(ITot,NP). (4)

Let’s assume an NP population of average chemical composi-
tion CAu,0 (showing total counts IAu,0 and ratio (IAu,0/IAg,0) at this
concentration) and an STD SCAu . We can derive how many
counts (ΔIAu,σ) must be added to IAu,0 in order to get an NP
with a new concentration CAu,s = CAu,0 + SCAu . Due to the direct
proportionality relation of equation (4), a composition change of
SCAu is induced from an intensity change of DIAu = ITot,NPSCAu .

Next, we will use these approximations using experimental val-
ues; for example, let’s take CAu,0 = 0.5 (50% Au atoms content),
then CAu,0/CAg,0 = 1 (or IAu,0/IAg,0 = 1). A 6-nm diameter NP
from Experiment I, should show a total EDS signal (IAu + IAg) =
ITot,NP = 2 IAu,0 = 760 cts. In our STEM HSI, a particle of 6 nm
in diameter contains ∼110 pixels. Then, each image pixel in the
NP image must contain on average IAu,pixel ∼380/110∼3 cts/
pixel. These counts are distributed in the EDS peak, which we
can consider with ∼200 eV at the base (or 10 energy channels,
if ΔE = 20 eV); then, we finally arrive at IAu,voxel∼ 380/(110 ×
10)∼0.34 cts per voxel in average, considering all pixels and
energy channels in the HSI region containing the NP. Finally,
the Poisson noise of each voxel is obtained by taking the square
root svoxel,Poisson = �����

Ivoxel
√ � 0.6.

Assuming a “true” chemical composition distribution with
standard deviation S

∗
CAu

=0.04, then DIAu,NP = ITot,NPsCAu=
760 × 0.04 = 30 cts for a single nanoparticle. This value will be

considered the “true” sample composition dispersion expressed
in “true” counts variation per NP, n∗IAu,NP . Subsequently, we distrib-
ute these counts between the NP pixels and energy channels
under EDS peak to get “true” noise-free intensity variations in
the sample n†IAu,vox = DIAu,NP/(mNPnPeak) (as made above for NP
intensity). This yields the “true” voxel intensity STD associated
with the composition dispersion in the NP ensemble
[n†Au,vox � 30/(110× 10) � 0.029 cts].

These noise and true noise-free variances estimations (s2
IAu,vox

and n†2IAu,vox ) yield a robust assessment of the effect of counting
noise and how chemical composition dispersion influences the
true noiseless data variance of EDS intensity, and they can be
used to evaluate the information loss criterion and analyze PCA
bias in our experimental studies. Hereafter, we will use these
noise values in all evaluations of information-loss bias estimators
and redundancy parameters (m, n) will be derived from the HSI
matrix size. Taking as basis our best experimental results, we will
consider the dispersion measured from Exp. III (our best mea-
surement) as the “true” distribution concentration variance
(n∗CAu

=SCAu,Exp.III = 0.043, Fig. 5c).
Table 1 shows main parameters associated with the evaluation

of counting levels (per NP and per voxel), the ratio of raw and
denoised compositions distribution widths (Rw), and EIL bias esti-
mator for our experiments. Although Experiment III shows a
counting noise (sIAu,vox � 1.3) which is about 10 times the
“true” standard deviation (n†IAu,vox ) due to composition dispersion,
PCA exploits redundancy and it is able to obtain a PCA recon-
struction conserving reasonably well the raw composition distri-
bution (see Fidelity column, Rw).

It is very encouraging to see that denoising has preserved the
small EDS signal variations necessary to describe concentration
dispersion after PCA processing of Experiment III. Nonetheless,
this contradicts the value of the information loss criterion value
(EIL = 180), which is much higher than the expected information
loss threshold value TIL = 1 (Nadler, 2008). In order to deepen our
understanding of bias, we will analyze PCA reconstructions from
a series of simulated HSI, where it is possible to consider a series
of conditions in such a way that different SNR situations can be
distinguished by comparing different NP “true” composition dis-
persions (variances n∗2CAu

) versus total X-ray counting.
Firstly, we will consider a bimetallic NP system with a

Gaussian chemical composition distribution (noiseless composi-
tion standard deviation of n∗CAu

= 0.02). Figure 6 compares the dis-
tribution of chemical compositions (CAu) for simulated HSI using
raw and PCA reconstructed data. These simulations show two dis-
tinct behaviors; a strong bias occurs in the first case (low fidelity
reconstruction, IAu,NP = 1,780 cts, ∼Experiment III counts) where
the calculated composition distributions is much narrower after
denoising (SCAu,den � 0.0002, see histogram at Fig. 6a, right
plot). The second case (IAu,NP = 7,100 cts) seems to yield a
much better output, although some narrowing of the chemical
composition distribution of the NP ensemble is still observable

Table 1. Experimental Counts and Bias Estimators Evaluated for the Experiments I–III, Considering 6-nm NP, and a “True” Composition Dispersion n∗CAu=0.043.

IAu,NP (cts) IAu,vox (cts) Bias (Qualitative) sIAu,vox (cts) n†IAu,vox (cts) Fidelity (Rw) Information Loss (EIL)

Experiment I 380 0.35 Strong 0.59 0.029 0.44 19,100

Experiment II 293 0.37 Strong 0.61 0.079 0.20 1,460

Experiment III 1,950 1.77 Moderate/Low 1.33 0.15 0.73 180
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(SCAu,den = 0.014, Fig. 6b), indicating that this counting level is
still insufficient to fully retrieve composition dispersion informa-
tion. A very good recovery of the true composition distribution
width [ΣAu,den = 0.019, Fig. 6c requires a further increase of Au
counts per NP (10,660 cts, ∼5-fold increase on Exp. III counts)].
It is interesting to note the scree-plots from simulations in Figures
6a and 6c (high- and low-biased reconstructions) do not appar-
ently show significant differences (Figs. 7a, 7b). For the strongly
biased simulation displayed in Figure 6a (IAu,NP∼ 1,780 cts), the

third principal component is mostly flat in the region of Au
and Ag EDS signal (Fig. 7c), generating no information of inten-
sity variation associated with composition dispersion. In contrast,
the low bias PCA reconstruction (Fig. 6c) shows that the high
SNR (IAu,NP∼ 11,160 cts) generates a third component (display-
ing well-defined Au and Ag EDS peaks of opposite sign). It is sur-
prising that this very good retrieval of the third component is

Fig. 6. Effect of denoising on the assessment of chemical composition distribution
deduced from simulated datasets including different “true” composition dispersion
and counting levels. (a–c) NP sample of average composition CAu = 0.75 and distribu-
tion width n∗CAu ,STD = 0.02. (d,e) NP sample of average composition CAu,1 = 0.75 and a
wider distribution n∗CAu ,STD = 0.036 (see text for explanations). The NPs are displayed
following the increasing Au concentration along the horizontal axis, allowing an easy
visualization of the composition distribution (histograms are displayed along the ver-
tical direction on the right).

Fig. 7. Scree-plot and third principal component profile derived from the simulated
HIS shown in Figures 6a and 6c. Note that for low counting level (1,780 cts, (a)) the
profile of principal component #3 (arrowed) does not carry any information of chem-
ical composition variation (characteristic peaks from Au and Ag are not present (c)).
In contrast, the low bias (or higher cts) reconstruction of simulation from Figure 6c is
associated with a third principal component with well-formed Au and Ag peaks of
opposite sign (d) in order to induce changes of the IAu/IAg ratio that determines
NP chemical composition.
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associated with a singular value in the scree-plot which is very
close to the noise-related components (see scree-plot in Fig. 7b)

By increasing the noiseless composition distribution width to
n∗CAu

= 0.036 (Figs. 6d, 6e), we can analyze bias occurrence as a
function of SNR and true composition dispersion. As expected,
it is possible to get a high-quality reconstruction with much less
counts, due to the larger “true” variance of intensity associated
to the much wider composition variability. In analogy to the pre-
cedent case, a counting level of IAu,NP = 1,730 cts produces signif-
icantly low fidelity and biased reconstruction (SCAu,den = 0.005),
but just a twofold increase of counts (IAu,NP = 3,540 cts) allows
an excellent recovery of underlying “true” variability (i.e., accu-
racy) of NP composition distribution (SCAu,den = 0.035). This
total counts value is experimentally achievable, as it just repre-
sents less than a twofold increase of Exp. III counts.

Finally, we have also used simulations considering a bimodal
true chemical composition distribution. We have considered
two particle populations with composition averages around
CAu,1 = 0.75 and CAu,2 = 0.65, each with n∗CAu,STD = 0.02 (Fig. 8).
A strong bias is observed for rather low counting (IAu,NP =
650 cts, Fig. 8a) and the existence of two populations remains
undetected, the composition distribution is narrowly packed
around the average elemental composition (equivalent to
Experiment II). After increasing counting (IAu,NP = 1,650 cts),
PCA reconstruction reveals the existence of two populations
with a clear indication of certain concentration distribution for
each one. A further fourfold increase in counts (IAu,NP =
6,600 cts) yields a reliable chemical composition assessment
after denoising (see Fig. 8c). These very good results are obtained
at lower counting levels than before (Fig. 6), because the sample
exhibits a quite wide “effective true” dispersion for the sample
considered as a whole (n∗CAu,STD = 0.053, wrapping the bimodal
distribution). Briefly, simulations indicate that PCA reconstruc-
tions may attain an excellent accuracy for chemical composition
distribution estimation (shown in Figs. 6c, 6e, 8c), when the
SNR exceeds a certain threshold value.

At this point, we must carefully look at the PCA calculations
(ex. scree-plot) to see if it can gather additional information of
bias occurrence that can guide the analysis of experimental stud-
ies. Our simulations suggest that even for a very light increase in
the ranking of the third principal component in relation to noise
component seems to increase significantly the accuracy of recon-
structions (see scree-plots in Figs. 1b, 7d). As all PCA reconstruc-
tions have included five components, we will assume that the fifth
principal component represents just noise (see scree-plot in Figs.
1, 7). Then, the ratio of singular values of third and fifth compo-
nents (Rl = l3/l5) may represent an interesting quantitative
guideline to identify if PCA processing has been able to rank cor-
rectly the third component and detect chemical composition
variability.

Table 2 displays the different bias estimators, discussed in this
article, (Rw, Rl, and EIL) calculated for our simulations in
Figure 6. The cases displaying the low bias reconstructions
(Figs. 6c, 6e) are correctly identified by Rw and Rl showing values
around 0.9 and 1.14, respectively. Also, the information-loss esti-
mator EIL shows the lowest values for the best PCA reconstruc-
tion, however the numerical values (∼400) is much higher than
that of the theoretical threshold value = 1 for an abrupt informa-
tion loss event. Then, it is yet unclear if it can be used to predict
the fidelity of NP composition assessment, even more considering
that its evaluation requires the knowledge of noiseless data vari-
ance. For example, our estimation of EIL from Exp. III yield a

smaller value (EIL∼ 180) than for very high signal SNR simula-
tions (EIL∼ 400); this is unexpected and it is probably due to
our too optimistic guess of the “true” concentration variance
(extracted from Fig. 5c). Both Rw and Rl are readily accessible
from measurements and data treatment without previous knowl-
edge of “true” composition distribution, then their very good cor-
relation with bias minimization suggest that they may be very
useful for practical applications.

Figure 9 shows a plot of Rl versus Rw for datasets (experiment
and simulations) considered in this work. All cases displaying low
bias are at the right top corner of the graph, allowing a direct
assessment of PCA denoising performance. Then, for sample of
binary alloy NPs with approximatively a Gaussian composition
distribution, we suggest a criterion for obtaining a low bias
PCA reconstructions: Rl ≥ 1.15 and Rw≥ 0.9; it is important to
mention that both Rl and Rw must exceed the minimal values.

Fig. 8. Effect of denoising on the assessment of chemical composition distribution
deduced from simulated datasets including bimodal “true” distributions of chemical
composition (population 1: CAu,1 = 0.75, population 2: CAu,2 = 0.65, for both the distri-
bution width is n∗CAu ,STD = 0.02). The calculated chemical composition distribution is
plotted at the right (see text for explanations).
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If the sample composition distribution is more complex and
measurements are rather noisy (ex. bimodal distribution as in
Exp. II and simulations of Fig. 7), the meaningful information
may be distributed among more principal components. A strong
random noise bias is immediately revealed by a low Rw; however, a
proper understanding of information content carried by compo-
nents may require additional simulations and a careful analysis
of scree-plots and loading profiles before to define a different
Rl criterion.

Finally, we would like to provide a tool to roughly estimate
EDS counts generated by NPs of different sizes and incident
energy and detector geometries (remember that we have always
used 200 ms dwell time, beam current ∼400–500 pA). We have
compiled the values of EDS counts per NP as a function of par-
ticle diameter for different instruments (uncorrected 200 kV and
AC corrected 80 kV experiments) versus NP diameter; the exper-
imental points were fitted with a third-order polynomial (see
Supplementary Fig. S2). We expect that this plot may be exploited
to allow a rough estimation of expected SNR for metal nanopar-
ticle EDS experiments.

In this work, we have mainly addressed random noise bias, and
not discussed underfactoring bias (reconstruction using an insuf-
ficient number of principal components) (Faber et al., 1995a,
1995b; Malinowski, 2002; Nadler, 2008, 2009), because the infor-
mation content of each PCA principal component can be under-
stood reasonably well for our sample. We would like to emphasize
that Potapov & Lubk have reported an interesting tool to identify
if the PCA component contains information or just carry noise
(Potapov & Lubk, 2019) by plotting the scores for successive prin-
cipal components: noisy ones generate isotropic round clouds, but
information-carrying ones show a structured anisotropic cloud
(see example in Supplementary Fig. S3).

Conclusion

Given the outstanding progress of TEMs instruments and associ-
ated detectors, it is essential to exploit their capabilities to target
“quantitative” interpretation for image, diffraction, or spectro-
scopic data. PCA data processing is a very powerful tool to
improve the SNR of hyperspectral images and extract all underly-
ing information contained in the data. Our high spatial EDS
experiments and simulations show that if the SNR exceeds a min-
imal threshold value, it is possible to avoid random noise biasing
in PCA reconstructions and, then get chemical composition dis-
tribution with very good fidelity of true values (i.e., accuracy).
In fact, the experimental requirements represent a compromise
between dataset size (redundancy), counting level, and sample
true composition variance.

We have suggested a few quantitative estimators that may pro-
vide information about random noise bias occurrence, and they
can be derived for PCA processing output without knowledge
of “true” noiseless sample properties. However, numerical simula-
tions may be necessary to analyze the particular nanostructured
system, in order to design properly data acquisition parameters
and support the criteria used for the interpretation. It is impor-
tant to emphasize that the physical behavior may vary dramati-
cally between NP systems, so it is essential that simulations
reproduce experiments as close as possible.

A natural question arises: how should one analyze measure-
ments of bimodal distributions or three-element metal alloys?
Which of the components will carry information on local differ-
ences? It is not easy to answer this question with a general appli-
cable recipe for all kinds of samples. It is important to mention
factors such as vibrations, scan noise or filament current oscillation
may generate additional principal components in the scree-plot, and
chemical information can become scattered into several compo-
nents, so one must be prepared to carefully examine the scree-plots
and information carried by principal component profiles.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S1431927621013933.
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Table 2. Bias Estimators Evaluated for the Simulated HSIs Shown in Figure 6.

nCAu IAu,NP (cts) Bias (Qualitative) Rw Rl Information Loss EIL

Simulation 1 (Fig. 6a) 0.02 1,780 Strong 0.01 1.043 15,400

Simulation 2 (Fig. 6b) 0.02 7,100 Moderate 0.70 1.035 970

Simulation 3 (Fig. 6c) 0.02 10,660 Low 0.90 1.138 430

Simulation 4 (Fig. 6d) 0.036 1,730 Strong 0.13 1.010 1,550

Simulation 5 (Fig. 6e) 0.036 3,540 Low 0.97 1.149 370

Different true concentration dispersion and counting levels are compared (ensemble of 54× 6-nm NPs, number spectral channels n = 500; image sizem = 64 × 384 = 24,576 pixels, scanning step
0.5 nm).

Fig. 9. Plot showing the correlation of proposed bias estimators Rw and Rl for exper-
iments I and III and simulations displayed in Figure 6 (index 1–5 indicated simulation
describes in Figs. 6a–6f, respectively).
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Figure S1. 

 
Figure S1. Typical size distribution of the alloy NP used in Experiment I, II and III as 
measured by TEM. The continuous curve represents a log-normal description of the 
distribution.  
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Figure S2. 

 
Figure S2. Integrated total counts per NP at the Au L peak (200 ms dwell time), as a function 

of NP diameter for different instruments. This allows a quick estimation of expected counts 

and Poisson noise for nanoparticle. A the mathematical expression describing the general 

tendency of the plots has been obtained by fitting the data. The observed counts as a function 

of NP diameter (D) can be estimated the equation below, derived from Figure S2.   

for Titan-80kV,                I(D)= 38.3 D3 -287.4 D2  + 670.7 D   

for JEM2100F-200kV,   I(D)= 2.4 D3 -6.9 D2  + 18.6 D  
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Figure S3. 
 

 

Figure S3. Cluster plot of scores for successive principal components obtained PCA 

processing a high SNR simulated EDS HSI of bimetallic NPs (Potapov, P., Lubk, A. (2019). 

Optimal principal component analysis of STEM XEDS spectrum images. Adv. Struct. Chem. 

Imag. 5, 4). Note that information-carrying component shows a structured anisotropic cloud 

(top), while noise components generate isotropic round clouds. 
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Chapter7
Exploiting Principal Component Analysis for

denoising EM image spectra: Uncertainty
intervals

This chapter contains the publication:
Murilo Moreira, Matthias Hillenkamp, Giorgio Divitini, Luiz H. G. Tizei, Caterina Ducati, Monica A.
Cotta, Varlei Rodrigues and Daniel Ugarte
Improving Quantitative EDS Chemical Analysis of Alloy Nanoparticles by PCA Denoising: Part I,
Reducing Reconstruction Bias
Microscopy and Microanalysis, 2022, 28(2), 338-349. doi:10.1017/S1431927621013933

In the last chapter, we have demonstrated by using simulations and experiments that
the effects of statistical bias in the PCA reconstruction can be mitigated by increasing
signal-to-noise ratios. We used quantitative estimators exploring the information loss
threshold, redundancy parameter, variance of the noise, and the variance of the
information we want to measure. We showed that the variance associated with the
chemical composition dispersion is mainly associated with the third component. When
the components are corrupted by noise, it is required to satisfy certain conditions
to extract quantitative and reliable information after PCA denoising. The third
component contains the finest chemical composition information (the dispersion of single
measurements). Even though the first two components associated with the average
information can be easily recovered, this is not true for the third. These observations are
consistent with the quantification limit for correct information retrieval. Even more in
raw non-denoised data sets, where the dispersion follows the Poisson uncertainty directly,
and the true information (size-dependent chemical composition) is hidden by the noisy
distribution. After these observations, we may wonder if PCA is denoising our data
set. Indeed this is predicted by the models used in the quantitative estimators proposed
in the last chapter. However, here we wish to propose experiments and simulations to
estimate the quantitative measurements’ uncertainty reduction and demonstrate that
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PCA denoising improves the EDS chemical composition quantification of nanoalloys.

7.1 Improving Quantitative EDS Chemical Analysis of
Alloy Nanoparticles by PCA Denoising: Part II,
Uncertainty intervals
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Improving Quantitative EDS Chemical Analysis of Alloy
Nanoparticles by PCA Denoising: Part II. Uncertainty Intervals

Murilo Moreira1 , Matthias Hillenkamp1,2, Giorgio Divitini3,4, Luiz H. G. Tizei5, Caterina Ducati3, Monica A. Cotta1,

Varlei Rodrigues1 and Daniel Ugarte1*
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4Electron Spectroscopy and Nanoscopy Group, Istituto Italiano di Tecnologia, via Morego 30, Genoa, Italy and 5Laboratoire de Physique des Solides, Université Paris-
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Abstract

Analytical studies of nanoparticles (NPs) are frequently based on huge datasets derived from hyperspectral images acquired using scanning
transmission electron microscopy. These large datasets require machine learning computational tools to reduce dimensionality and extract
relevant information. Principal component analysis (PCA) is a commonly used procedure to reconstruct information and generate a
denoised dataset; however, several open questions remain regarding the accuracy and precision of reconstructions. Here, we use experiments
and simulations to test the effect of PCA processing on data obtained from AuAg alloy NPs a few nanometers wide with different com-
positions. This study aims to address the reliability of chemical quantification after PCA processing. Our results show that the PCA treat-
ment mitigates the contribution of Poisson noise and leads to better quantification, indicating that denoised results may be reliable from the
point of view of both uncertainty and accuracy for properly planned experiments. However, the initial data need to be of sufficient quality:
these results can only be obtained if the signal-to-noise ratio of input data exceeds a minimal value to avoid the occurrence of random noise
bias in the PCA reconstructions.

Key words: denoising, energy-dispersive x-ray spectroscopy (EDS), nanoparticles, principal components analysis (PCA), quantitative
chemical analysis

(Received 22 November 2021; revised 31 January 2022; accepted 31 March 2022)

Introduction

The electronic properties of metal alloy nanoparticles (NPs) show
a complex behavior in relation to atomic or chemical structure.
This is exploited for the optimization of either physical properties
such as surface plasmons in plasmonic devices, or chemical reac-
tivity/selectivity in catalysis (Heiz & Landman, 2007; Odom &
Schatz, 2011; Alloyeau et al., 2012; Binns, 2014; Ferrando,
2016). The properties of NPs result from the interplay between
chemical (composition) and physical (surface/volume ratio or
NP size) features, so that a precise characterization requires the
estimation of morphology and chemical composition as a func-
tion of size (Lyman et al., 1995).

The strong scientific interest in nanostructured materials has
pushed transmission electron microscopy (TEM) to excellent per-
formance, not only for spatial resolution and signal detection effi-
ciency, but also for reproducibility and automation (Williams &
Carter, 2009; Pennycook & Nellist, 2011; Carter & Williams,
2016; Hawkes & Spence, 2019). At present, scanning transmission

electron microscopes (STEMs) are able to simultaneously record a
complete analytical spectrum or a diffraction pattern at each image
pixel, generating huge 3D or 4D data matrices containing 107–109

elements (usually denoted hyperspectral images, HSI). The full
exploration of these outstanding analytical capabilities requires
researchers to target “quantitative” TEM data interpretation for
imaging, diffraction, or spectroscopic studies. This will allow a
much deeper and robust approach to refine the physico-chemical
understanding of nanomaterials. While quantitative results require
significantly more effort in experimental optimization and data
processing compared to qualitative studies, we must keep in
mind that any data value (measured or calculated) without (a
stated) uncertainty is of minor interest (Bevington & Robinson,
2003; Drosg, 2009; Hughes & Hase, 2010). The only approach to
obtain meaningful, reproducible measurements is to follow rigor-
ous error analysis, taking both precision and accuracy into account.

Maximizing information from such big data ensembles (HSIs)
requires advanced statistical algorithms, such as machine learning
(ML) tools, which exploit redundancies and can find non-
apparent correlations in the data (Brown et al., 2020); in this
way, they can extract information that would be inaccessible by
traditional methods (Cueva et al., 2012; Carter & Williams,
2016; Brown et al., 2020). Principal component analysis (PCA;
Jolliffe, 2002) is recognized as the most popular unsupervised

*Corresponding author: Daniel Ugarte, E-mail: dmugarte@ifi.unicamp.br
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ML tool to reduce dimensionality. In favorable conditions, PCA
decompositions can extract meaningful information and reduce
the effects of noise. This procedure, usually described as “denois-
ing”, generates a new dataset with a higher signal-to-noise ratio
(SNR) and values closer to the “true” ones. However, an essential
point that is sometimes overlooked is that a PCA reconstruction
of a noisy dataset may be strongly biased, that is, quite different
from the “true” noiseless data (Faber et al., 1995a, 1995b;
Malinowski, 2002; Nadler, 2008, 2009).

In the accompanying Part I of this work (Moreira et al., 2022),
we have addressed the accuracy of energy-dispersive X-ray spec-
trometryy (EDS) chemical composition assessment from binary
alloy NPs after PCA processing. To obtain an accurate denoised
reconstruction, one requires adequate levels for experimental
noise, redundancy (dataset size m × n, where m is the number
of pixels and n the number of spectral channels), and variance
of the “noise-free” sample properties (Faber et al., 1995a, 1995b;
Malinowski, 2002; Nadler, 2008, 2009). The next step to a com-
plete error analysis is the evaluation of uncertainty intervals,
which is addressed in the present manuscript. An intuitive under-
standing of noisy signals would suggest that “denoising”must lead
to a reduction in the error bars for the outputs. In this paper, we
set out to investigate this issue, evaluating the uncertainty inter-
vals for quantitative EDS analysis after the application of PCA
denoising. We will focus on STEM-EDS chemical analysis of
few-nm-diameter bimetallic (AuAg) NPs using both experiments
and simulations. Our results show that if the input SNR exceeds a
certain minimal value, it is possible to avoid random noise bias
and reduce uncertainty levels in quantitative EDS chemical
analysis.

Materials and Methods

NP Synthesis

Binary alloy (AuxAg1−x) NPs have been generated using a home-
made gas aggregation source (de Sá et al., 2014); in-situ
time-of-flight mass spectrometry (TOF-MS) has been used to
measure NP mass distribution (size distribution follows a log-
normal function, ∼4 nm mean average diameter and 3 nm in
width; Moreira et al., 2022). The particles were deposited in a
“soft landing” mode on the TEM grid (kinetic energy per atom
∼0.05 eV for a 4 nm NP). The average Au composition (atomic
fraction) of the sample is CAu = (0.48 ± 0.01), which is obtained
by EDS-TEM from an ensemble of NPs using a large open elec-
tron beam (several microns in diameter).

Electron Microscopy: Data Acquisition and Processing

We have used different STEMs to compare EDS results from dif-
ferent experimental configurations (all instruments were equipped
with Silicon Drift Detectors—SDD): JEM-2100 F (0.39 sR,
LNNano, Campinas, Brazil); Titan Themis (Super X Quad, 0.8
sR, LNNANO, Campinas, Brazil); and FEI Tecnai Osiris
(SuperX 4, 0.9 sR, DMSM, University of Cambridge,
Cambridge, UK). The EDS HSIs were acquired using a 0.5 nm
pixel size and a dwell time of ∼200 ms per pixel; the image size
was set to 64 × 64 pixels to guarantee the operation of automatic
drift correction when realigning scan regions (JEM-2100 F). In
order to minimize the dose rate, a series of images of the same
region were acquired and, subsequently, individual frames were
added (10 scans at 20 ms dwell time) (Jones et al., 2018). For

all experiments, we have used a low-background Be sample
holder.

The raw EDS spectra were binned to 512 energy channels to
increase the SNR for subsequent PCA calculation, leading to an
EDS channel width of 20 eV. The Au-Mα and Ag-Lα EDS counts
from individual particles have been obtained by summing the
counts from pixels located inside each NP region. Since, in our
experiments, the pixel size is 0.5 nm, a particle size of 6 nm in
diameter (area ∼28 nm2) includes approximately 110 pixels.
Each 64 × 64 pixels scans contained about 5–8 NPs and then
the sparsity level is about 85–90%.

The quantitative analysis of the individual NP chemical com-
position followed the Cliff–Lorimer approach (Cliff & Lorimer,
1975) using experimentally measured KAB factors [equation (1),
Cy and Iy,NP, atomic percentage and x-ray intensity of element y
per NP, respectively].

CA

CB
= KAB

IA,NP
IB,NP

. (1)

Cliff–Lorimer factors (KAB) have been measured using a thin
film of known composition. A calibrated multilayer thin film
was evaporated onto a substrate using a quartz balance to control
the atomic ratio through film thickness. The resulting values were
as follows: KAuAg = 0.93 ± 0.01 for data acquired in the uncor-
rected instrument (JEM-2100 F) and KAuAg = 0.85 ± 0.01 for the
AC instrument including four EDS detectors (Titan Themis).

Estimations of chemical composition and their error bars have
taken into account all EDS quantitative analysis steps applied on a
fitted curve of the experimental EDS spectra (background
removal, x-ray peak integration, and composition determination);
we have considered Poisson noise for all EDS count measure-
ments. All EDS and HSI PCA processing steps have been per-
formed using the open-source Hyperspy Python library (de la
Peña et al., 2021).

Simulated Datasets

Synthetic datasets must be a faithful description of an actual
experiment, including an appropriate level of noise for each
pixel. As a first step, we have selected a total number of counts
per NP; we then distributed these counts inside the NP projection
(a circular region). It is important to emphasize that the simulated
HSI intensity distribution considers the spherical shape of the
NPs. This includes a thickness variation along the electron path,
so that counts are highest in the center and decrease toward sur-
face pixels. The AuAg NPs were assumed to lie on a uniform a-C
film and spurious peaks from the sample environment (C, Fe, Ni,
etc.) were also incorporated in the EDS spectra to reproduce
experimental data as closely as possible using rescaled spurious
counts from experiments. After a noise-less spectra was built, ran-
dom Poisson noise was added to each energy channel of the EDS
spectra in order to yield a realistic simulation of experimental
HSIs. For the sake of simplicity, our simulations have employed
KAuAg = 1.

PCA Processing

PCA provides a number of orthogonal components encoding the
information contained in the data variance within a dataset. The
component eigenvalues represent their information content and
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their values are usually compared in the so-called scree-plot
(Titchmarsh, 1999; Jolliffe, 2002; Jolliffe & Cadima, 2016).

Before PCA processing, the dataset was rescaled to induce var-
iance stabilization (Keenan & Kotula, 2004; Kotula & Keenan,
2006; Kotula & Van Benthem, 2015). The rescaled matrix Ds is
derived from Ds = GDH, where G is the spatial factor, D is raw
data, and H is the spectral factor (as implemented in Hyperspy
package; de la Peña et al., 2021). All EDS data reconstructions
in this work have included five PCA components to standardize
the comparison between experiments and simulations (data pro-
cessing in this paper follows the accompanying Part I of this pair
of papers; Moreira et al., 2022).

The samples being analyzed are close to ideal: isolated NPs
distributed on a uniform, thin carbon film, but with a set of dif-
ferent chemical compositions. The individual composition of each
particle is the main information that we would like to assess and
improve after PCA denoising. In an ideal high SNR dataset, the
main EDS information should be carried by three dominant com-
ponents (see Part I of this study; Moreira et al., 2022): (a) PC#1,
TEM support grid and other EDS spurious x-ray sources (Fe from
lenses and Cu from grid); (b) PC#2, mean NP EDS spectrum car-
rying the average chemical composition (that can be obtained
through the Au and Ag peak counts IAu,PC#2/IAg,PC#2 from this
component); and (c) PC#3, modeling elemental differences
between particles (Potapov & Lubk, 2019, see detailed analysis
in Moreira et al., 2022). This third component (PC#3) shows
an unphysical spectroscopic profile (Potapov, 2016), because the
Ag and Au EDS peaks occur with opposite signs for the two ele-
ments (one positive, the other negative). This results from the
need to model the anti-correlation between the two spectral fea-
tures: when combined with PC#2 (mean composition), the addi-
tion or subtraction of PC#3 is equivalent to the substitution of
one element with the other, describing Au- or Ag-rich particles.

Results

Different instrumental configurations result in a variety of inci-
dent electron probe characteristics and x-ray detection, yielding
datasets with different SNRs. The results of chemical composition
measurements from an uncorrected instrument are shown in
Figure 1a (hereafter named Experiment E1, realized at 200 kV),
where the total Au-Mα intensity per particle is around IAu,
NP∼380 counts for a 6-nm-diameter NP. This counting level
yields a typical concentration uncertainty interval of about
sCAu,raw = 0.04. The comparison of NP compositions (CAu)
derived from raw or denoised HSIs is shown in Figure 1a; this
plot shows CAu as a function of NP diameter to display potential
size-effects on composition. The measured NP composition using
raw data is centered at the expected average value (CAu∼0.5), and
the standard deviation of the distribution (STD) is SCAu,raw = 0.05
(hereafter Σ will be used to describe the STD of a distribution,

S =
����������������������∑
i
(xi − �x)2/(n− 1)

√
). With this precision, no clear size-

dependent trend can be observed or proven.
The compositions derived from PCA-reconstructed data are

still roughly distributed around the mean value but display a
much narrower distribution (SCAu,den = 0.022). This may suggest
the occurrence of significant random noise-related bias (Moreira
et al., 2022). The occurrence of random noise PCA bias is associ-
ated with insufficient counting; it generates unrealistic reconstruc-
tions where the derived values differ from “true” noiseless ones. A

biased PCA reconstruction may lead to a wrong quantification of
the chemical composition of the analyzed sample. PCA-treated
data have been displayed without error bars, because there is no
accepted and well-defined procedure for calculating uncertainty
intervals after denoising (this issue will be discussed in the next
sections). In fact, a simple analysis reveals that the input dataset
displays an insufficient SNR, and in this case, PCA processing
has not been capable of correctly ranking the PC#3, which carries
information on compositional variations between NPs. Then, the
x-ray intensity ratio (IAu,NP/IAg,NP) is dominated by the PC#2,
describing the average EDS spectrum. Therefore, IAu and IAg are
strongly correlated and the ratio becomes close to fixed (and
therefore the chemical compositions that follow). This explains
why the composition distribution appears significantly narrower
after denoising (see histograms at the right of Fig. 1a).

To improve counting statistics and data redundancy (dataset
size), we have performed additional experiments using an
aberration-corrected (AC) STEM microscope equipped with
four EDS detectors (hereafter named Experiment E2). Multiple
EDS detectors help to increase counting speed and efficiency;
the signal has been further increased by reducing the beam energy
to 80 keV, where the ionization cross-section raises by a factor of
1.6× (Goldstein et al., 2017; Zaluzec, 2019). A significant signal
improvement has been obtained (IAu,NP = 1,950 counts for a
6-nm-diameter NP, compared to 380 counts in E1). The NP com-
position distribution (Fig. 1b) shows a good agreement between
raw and denoised data (within uncertainty intervals). This count-
ing level results in a PCA reconstruction of EDS HSIs, which
agrees with chemical composition estimations (distribution

Fig. 1. Quantitative chemical composition analysis of alloy NPs using either raw or
PCA denoised EDS data. (a) In Exp. E1, dashed line indicates average composition
(JEM-2100 F); the plot shows a total of ∼50 NP results compiled from 10 HSIs
(64 × 64) denoised individually. (b) In Exp. E2, dashed line indicates average compo-
sition (Titan Themis, 64 × 256 image size generated by the stack of 4× scans 64 × 64
pixels). The resulting chemical composition histograms are plotted at the right.
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widths are SCAu,raw = 0.043 and SCAu,den = 0.031 for raw and
PCA-denoised data, respectively; Moreira et al., 2022). For smaller
NPs, the PCA-derived composition is statistically different from
the raw estimates, moving closer to the average composition.
The recorded intensity for these smaller NPs (∼3 nm in diameter)
is rather low (IAu∼ 400), suggesting that random noise bias
behavior may play a role for smaller particles. The improved qual-
ity of PCA reconstruction from Experiment E2 suggests a poten-
tial size-dependent composition: Au depletion for smaller
particles (Fig. 1b).

In order to confirm this size-dependent effect, we must pro-
vide data whose statistics are more robust and quantitative.
Firstly, we must increase the number of particles included in
the study. This can be achieved by performing more experiments
with a counting level at least similar to Experiment E2 (ideally
higher, to guarantee a sufficient signal level for small particles).
A more challenging second step is to reduce uncertainty intervals,
in a process that requires effort in several directions. We can
increase the counting level to reduce Poisson noise if the sample
can withstand an increased dose, although this might affect the
very quantity we are looking to measure. Alternatively, we can
exploit the ML techniques to increase data SNR. In any case,
we are confronted with an unavoidable fact: the validation of a
physical size-dependent effect requires a concrete quantitative
evaluation of uncertainty. Many dimensional reduction
approaches have become very popular (PCA; Jolliffe, 2002):
Non-Negative Matrix Factorization (NMF; Lin, 2007), and
Independent component Analysis (ICA; Jutten & Herault,
1991); unfortunately, they are mostly used in a qualitative man-
ner, and the evolution of uncertainty intervals is not estimated
after data treatment. The following sections will present a discus-
sion of this essential issue for PCA-reconstructed EDS data.

PCA Processing of an Ideally Homogeneous NP Ensemble

From a fundamental point of view, counting noise originates from
uncorrelated (random) radiative processes in the time domain,
and we can assess the total uncertainty by repeating the measure-
ments in identical conditions and analyzing the reproducibility
through the measurement distribution width (Bevington &
Robinson, 2003; Drosg, 2009; Hughes & Hase, 2010). This con-
cept can be applied to chemical composition estimations, and
in particular, when chemical compositions are derived from
PCA-denoised EDS data, we just need to measure the same system
multiple times and the uncertainty interval is the standard devia-
tion (ΣSTD) of the data cloud.

To reproduce this idealized experiment, we will need “The per-
fect NP sample”: all particles must have exactly the same size and
elemental composition. This situation is quite challenging (if not
impossible) to attain experimentally, but rather easy to implement
as a simulation. In addition, synthetic datasets allow to vary the
total Au counts per NP, so that it is possible to compare PCA
denoising for different given levels of input SNR. Using simula-
tion, we will be able to compare conventional EDS processing
and PCA-denoised results.

We have performed simulations considering a HSI (64 × 384
pixels) containing 54 NPs, 6 nm in diameter with added
Poisson noise (noiseless IAu,NP = 1,025 cts, see Fig. 2a). The
“true” average composition was chosen to be C∗

Au = 0.75 (hereaf-
ter * will indicate that the variable is the “true noise-free” data
value) because this sets a more challenging situation compared
to a Au/Ag 1:1 concentration, as IAu and IAg are significantly

different. For this counting level, a manual EDS analysis of an
individual NP yields an uncertainty bar sCAu = 0.01; averaging
for the ensemble of NPs, we obtain a precision interval of approx-
imately 7× smaller (sCAu,Ave = sCAu/

���
54

√ = 0.0016, 54 identical
NPs).

The NP chemical composition distribution after PCA treat-
ment (Fig. 2b) is narrowly distributed around the expected
value. In fact, the width (STD) of the composition distribution
after denoising (SCAu,den ) is about 10× smaller than the uncertainty
level deduced in a conventional way by averaging on the 54 par-
ticles (sCAu,Ave ). From another point of view, this may suggest that
it may be too optimistic to use the composition distribution STD
as uncertainty interval after PCA denoising.

For this homogeneous sample, the scree-plot shows only two
relevant principal components above noise: PC#1, representing
background, and PC#2, displaying the average NP spectrum.
The second component (PC#2) contains all the information on
the characteristic EDS signal for the NPs and, in particular, a well-
defined IAu/IAg ratio. In other words, this means that IAu,NP and
IAg,NP intensities have become almost fully correlated variables.
This explains why the particles show such a narrow composition
dispersion after denoising (Fig. 2b). Although an almost constant
IAu,NP/IAg,NP ratio dominates the EDS signal, the elemental x-ray
line intensities for individual NPs show a certain dispersion
(Fig. 2a), stemming from a variability of PCA scores among pix-
els. A simple analysis of the simulated HSI indicates that the STD
of Au intensity distribution (IAu,NP) in raw data (SIAu,NP = 28 cts)
was close to expected Poisson noise (sIAu,NP,Poi =

�������
1, 025

√ = 32 cts,
only noise source considered in these simulations). After PCA
denoising, the intensity variability of IAu,NP reduces and the

Fig. 2. Analysis of denoising effects on the assessment of chemical composition
deduced from simulated data. Simulated HSI includes 54 identical NPs (6 nm in
diameter, total count per NP 1,025 cts, C∗

Au=0.75, n∗C Au,STD = 0). (a) Plot of the Au
intensity for each NP; note that after denoising, there is still a clear variation of inten-
sity between particles (dashed and continuous horizontal lines indicate the full width
of the intensity distribution (mean value ∼3 STD) for raw and denoised data, respec-
tively). (b) Plot of the calculated Au concentration for each NP; note that after denois-
ing, Au concentrations are narrowly concentrated around the average value.
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STD becomes SIAu,NP,den = 21 cts. We must conclude that PCA
processing has not been able to recover “noise-free” intensity val-
ues, and some counting noise still remains in the
PCA-reconstructed HSI. This remaining intensity variability
could be considered a potential quantifiable uncertainty interval
for “denoised” intensities per NP.

Considering the STDs of denoised x-ray counts (SIAu,NP,den and
SIAg, NP, den ) as intensity error bars, we can tentatively use them to
estimate the post-PCA composition precision. For the sake of
simplicity, we will assume that the Cliff–Lorimer factor is ∼1
and shows negligible uncertainty (sKAu,Ag = 0). It is important to
emphasize that, after denoising, IAu,NP,den and IAg,NP,den have
become fully correlated. These two intensity values must be con-
sidered dependent input parameters, and we must calculate error
bars using a cross-derivative term between variables (Bevington &
Robinson, 2003; Drosg, 2009; Hughes & Hase, 2010; Ritchie,
2020):

sCA =
���������������������������������������������������������
∂CA

∂IA

( )2

s2
IA +

∂CA

∂IB

( )2

s2
IB + 2

∂CA

∂IA

∂CA

∂IB
sIA sIBrAB

√
,

(2)

where ρAB describes correlation coefficient between intensities
from elements A and B (ρAB ∈ [− 1, 1]).

As Au and Ag intensities are fully correlated (the measurement
of one tells us the other), we will take ρAu,Ag = 1. Using this crite-
rion, the composition uncertainty after denoising results
sCAu,den = 0.0006, that is around 2.8× smaller than the average
error bar calculated by traditional methods on raw data and aver-
aging the measurement for 54 NP sCAu,Ave = 0.0016. The fact that
the uncertainty interval after PCA processing results smaller than
a standard averaging of NP concentration may appear contradic-
tory. In fact, when applying PCA to a dataset matrix of dimension
(m × n) with homoscedastic noise σH, the maximum noise reduc-
tion should be that PCA can attain is sPCA,den � s/

����
nm

√
, as esti-

mated by Nadler (2009). In other words, the maximum expected
denoising performance of PCA is the averaging of all voxels in the
dataset. In this work, we are analyzing NP chemical composition;
this is a physical quantity, which is derived from a reasonably
large group of pixels (∼100). Thus, the 2.8× smaller error bar
derived from denoised data does not contradict established
knowledge on PCA processing (Nadler, 2009).

Having studied synthetic HSI data, it is essential to perform a
similar analysis on actual experimental measurements. It is hardly
possible to chemically or physically synthesize a binary metallic
alloy NP sample with neither composition variation nor size dis-
persion. We have chosen a different sample that allows us to emu-
late an ensemble of identical particles. We have taken a III–V
semiconductor nanowire made of indium phosphide (InP, with
minute Ga content) grown by the VLS (vapour–liquid–solid) cat-
alytic method (Fig. 3a) (Tizei et al., 2010). As the wire shape
shows some tapering, we have selected a wire region close to
the tip in order to avoid diameter variations that may induce
additional spectroscopic effects associated with sample thickness
(such as absorption). We have used a region of the wire as chem-
ical standard using the In-Lα and P-Kα x-ray lines (see Fig. 3), giv-
ing a Cliff–Lorimer factor of KIn,P = 0.63 ± 0.01. We have then
taken a different wire region with constant thickness and consid-
ered 20 axial wire positions (AWPs) separated by a step of 5 nm.
The aim is to emulate an ensemble of 20 identical NPs. To ensure
a good SNR we summed the signal in the direction perpendicular

to the axis (11 pixels per AWP), like we summed pixels across a
NP in previous examples.

Raw data on the AWPs yield on average 600 and 391 x-ray
counts for In and P, respectively (Fig. 3b). The observed intensity
STDs (SIIn ,AWP � 24 and SIP ,AWP � 19 cts) agree very well with
expected Poisson noise values (sIIn,Poi =

����
600

√ � 24 cts and
sIP ,Poi =

����
391

√ � 20 cts). The distribution of indium concentra-
tion (CIn) derived from raw data shows a distribution of mean CIn,

Ave = 0.50 and STD SCIn,As ,raw � 0.014 (in good agreement with an
estimated error bar of sCIn � 0.016 for each AWP, Fig. 3d).

As observed for simulations displayed in Figure 2, the compo-
sition distribution is much narrower after denoising (Fig. 3d;
mean CIn,Ave,den = 0.49 and STD SCIn,den � 0.0028). In addition,
intensities from each element show a dispersion reduction

Fig. 3. EDS characterization of a semiconductor InP nanowire. (a) STEM annular dark
field image of the nanowire. (b) Indium intensity for 20 AWP positions (raw data)
along the nanowires axis emulating an ensemble of 20 identical NPs; note that the
STD of the intensity distribution fits reasonably well the calculated poisson noise
(s = √

I). (c) Denoised data: indium EDS counts from the 20 AWPs; note that after
denoising, the EDS intensity distribution shows a dispersion, which is narrower
than the calculated one using Poisson noise. This indicates that the PCA reconstruc-
tion has not been able to recover noise-free intensity values and some counting noise
still remains in the denoised HSI. (d) Comparison of measured indium concentration
for the 20 axial NW points derived from raw and PCA denoised HSI; note that
denoised data are narrowly clustered around their mean value. In (b) and (c), contin-
uous and dashed horizontal lines indicate the intensity distribution mean and (mean
value ∼ STD), respectively, so that the narrowing of intensity variability becomes eas-
ily identifiable by eye.
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compared to raw data (SIIn,AWP,den � 14 cts, SIP,AWP,.den � 7 cts, see
Fig. 3). Using these last values as intensity uncertainty intervals
and considering the full correlation of In and P x-ray intensities,
the chemical composition error bar (sCIn,den = 0.0042) is about
3× smaller after denoising than using raw data.

Briefly, experimental data have shown a behavior in very good
agreement with simulated HSI of identical NPs. This suggests that
PCA denoising may allow a partial reduction of counting noise
(Fig. 3) and a potential reduction of uncertainty intervals.

PCA: Information Detection Limit and Estimation of
Uncertainty Intervals

ML algorithms represent statistical methods capable of retrieving
as much information as possible from available data by exploiting
redundancies to find hidden correlations. After dimensionality
reduction, bias describes the differences between reconstructed
data and “true” values (Faber et al., 1995a, 1995b; Malinowski,
2002; Nadler, 2008, 2009). In fact, the SNR of input data deter-
mines how much of “true noiseless” properties of the sample
are actually captured by experiments. It is essential to consider
that ML algorithms cannot reveal what has not been detected
due to low SNR (or in other terms, ML cannot create
information).

In spite of using ML processing, it will always be essential to
work out experiment details (number of pixels, detector channels,
counting level, and noise sources) to guarantee the reliable detec-
tion of the physical effect being targeted (Moreira et al., 2022). In
addition, simulations will also be necessary to support the phys-
ical interpretation of ML results. In fact, the association of simu-
lations and experiments (as realized in the previous section)
represents the recommended approach in the scientific and tech-
nological path to the data-driven next-generation TEM (Spurgeon
et al., 2020). In this work, we would like to gather the chemical
composition distribution from an ensemble of binary alloy NPs
and we aim to detect the possible occurrence of a size-dependent
effect on composition distribution. The increase of information
content of the input data can be mainly reached by higher count-
ing levels and secondly by increasing redundancy.

Most studies addressing the effect of noise on PCA reconstruc-
tion bias have suggested possible bias indicators based on models
considering uncorrelated homoscedastic noise (Faber et al., 1995a,
1995b; Malinowski, 2002; Nadler, 2008, 2009). Conversely, our
experiments involves Poisson noise, and we must account that
PCA is not frequently applied on original data, but also on scaled
datasets after variance stabilization (Keenan & Kotula, 2004;
Kotula & Keenan, 2006; Kotula & Van Benthem, 2015). Then,
we must emphasize that the application of these bias indicators
must be performed with utmost precaution. Within the so-called
spiked covariance model, Nadler has developed an information
loss estimator [EIL, see equation (3)] related to a sharp informa-
tion loss-phase transition (Nadler, 2008, 2009). A bias-free PCA
reconstruction is always achieved when EIL is below an informa-
tion loss threshold [TIL, see equation (4)]. The estimator expres-
sion is simple, and it points out a relation between dataset
dimensions (m pixels and n spectral channels), measurement
noise variance σ2, and “noise-free” data variance ν*2. The use of
this indicator is somewhat limited, because the true noise-free
data variance parameter is hardly accessible in practice. In the
limit that data matrix size (m × n) tends to infinity, the thresh-
old becomes TIL = 1 (Nadler, 2008, 2009). The application of this
estimator has already been explored in both EELS and EDS HSI

processing (Lichtert & Verbeeck, 2013; Potapov, 2017; Potapov
& Lubk, 2019).

EIL = n
m

s2

n∗2

( )2

, (3)

EIL ≤ TIL. (4)

Potapov & Lubk (2019) have rewritten equation (3) to define a
“retrievability criterion”: a minimal standard deviation (S∗I ) that a
“true” latent factor must show to be effectively detected by the
PCA processing [equation (5)]. The retrievability of principal
components was tested for the case of chemical maps from micro-
electronics devices [for this application, information loss thresh-
old (TIL) was assumed to be equal to 1 in equation (5)].

S∗I .
���
n
m

4

√
1����
TIL

4
√ s. (5)

The deterministic sharp phase transition of information loss
arises in the limit for infinite values of m and n. For finite values
of (m, n), we must expect a continuous increasing probability in
the relation between variance and limiting eigenvector instead
of a sharp transition (Nadler, 2008, 2009). Nadler has reported
a heuristic demonstration of this fact (Nadler, 2009), where the
estimator was found with the same functional dependence but
considering a multiplicative factor of >1 for the threshold relation.

From a numerical point of view, PCA processing of EDS data
is quite performant, because x-ray signal is constituted by nicely
shaped peaks on a very low and almost non-varying background
(Potapov, 2017). This profile guarantees an easy identification of
relevant EDS peaks but at the same time generates high sparsity
data. In fact, most spectral energy channels in an EDS HSI include
zero signal or just a few counts, then the average counting value
per voxel (Iave,voxel) may be ≪ 1 by several orders of magnitude.
This renders extremely difficult to use the simple square root of
intensity (s = ��������

Iave,voxel
√

) as an effective and reliable HSI noise
level due to Poisson statistics.

In Part I of this series of works (Moreira et al., 2022), we have
suggested to replace the use of average intensity per voxel of the
whole dataset as the noise variance of the EDS measurements.
Instead, we have proposed to overcome the intrinsic sparsity of
EDS data by calculating the noise variance taking into account
just the region of the EDS spectrum carrying chemical informa-
tion (the characteristic x-ray peaks). In this way, the experimental
noise estimation takes into account the focus of our study, which
is the assessment of individual NP composition. It is important to
consider that chemical composition is an information directly
related to the total characteristic counts per NP (IAu,NP consider-
ing Au signal). These counts are firstly distributed over the num-
ber of pixels (mNP) inside the particle region and, secondly, on the
spectral channels (nPeak) under the EDS peak. The noise variance
for voxels inside the EDS peak of interest can be approximately
calculated as follows:

(sIAu,vox )
2 = IAu,vox = IAu,NP/(mNPnPeak), (6)

assuming Poisson statistics and a homogeneous distribution of
counts on NP pixels and EDS peak spectral channels.
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The next parameter to estimate is the “noiseless” data vari-
ance (ν*2) for each component carrying chemical information.
On the basis of our previous studies of binary NPs (Moreira
et al., 2022), we must consider two PCA components, one pro-
viding the mean NP chemical concentration (PC#2) and a sec-
ond one associated with composition variation (PC#3). To
start, we will assume a “true” total number of counts per NP,
which is associated with “true” mean Au concentration
(CAu,0). Following the approximations described above, the
“noiseless variance” for PC#2 component is (hereafter noted
by the symbol †):

n
† 2
Au,PC#2 = IAu,0,NP/(mNPnPeak), (7)

where IAu,0,NP represents the expected “true noiseless” intensity
per NP.

At this point, we must estimate how the “true” chemical com-
position dispersion influences the noise-free voxel values. Let’s
start with a rather simple model, where the NP ensemble displays
a Gaussian distribution of chemical composition (mean CAu,0,
variance S

2
CAu, 0

). We can derive how many counts (ΔIAu,σ) must
be added to IAu,0 in order to get a NP with a new concentration
CAu,s = CAu,0 + SCAu,0 . Without losing the general applicability of
our approach, we must note that the Cliff–Lorimer factor is
assumed to be kAu,Ag∼ 1 for our experiments. Then, it is easy
to show that CAu = IAu,NP/ITot,NP, where ITot,NP = (IAu,NP + IAg,
NP). In addition, the total count per NP ITot,NP is a constant
for NPs of identical size (see Moreira et al., 2022).

Due to this direct proportionality between composition and
elemental counts, a composition change of value SCAu requires
an intensity change of DIAu = ITot,NP SCAu . Distributing these
counts between NP pixels and spectral channel, we can derive
the true standard deviation of intensity distribution associated
with chemical composition distribution variability, which is car-
ried by the third PCA component PC#3. Then, we can estimate
the “true” STD associated with PC#3 using:

n
†
Au,PC#3 = IAu,Tot,NP SCAu/(mNPnPeak). (8)

(Note that the estimation of the “true” variance associated with
PC#3 requires squaring this value).

In Part I of this series of works (Moreira et al., 2022), we have
reported that denoised data reconstructions (both from experi-
ments and simulations) may show very good fidelity (i.e. accu-
racy) to “true” noiseless chemical composition distribution.
This PCA processing is usually associated with an information
loss bias estimator EIL ∼ 300 (input parameters, m = 24,576, n
= 500, mNP = 110, nPeak = 10, IAu,0,NP = 3540, CAu,0 = 0.75,
SCAu = 0.036, see examples in simulations #3 and #5 in
Moreira et al. (2022)). This somewhat confirms Nadler’s conclu-
sion that for a finite data matrix (Nadler, 2009), it may be too
stringent to use as threshold for information loss criteria as
TIL = 1. Keeping this idea in mind, it may be interesting to
take 300 as a reasonable value for the threshold (TIL) for the par-
ticular physical problem analyzed here (determination of chem-
ical composition), although this value is much higher than
frequently used in literature (Potapov, 2017; Potapov & Lubk,
2019).

We may rewrite the retrivability criteria [equation (5)] pro-
posed by Potapov & Lubk (2019) as the minimal “true” data

STD for detection of a specific PCA loading as a function of
input data measurement noise σM as:

S∗I . fred fTh sM, (9)

where we have explicitly isolated the factors that may modify the
detectability of latent factors. These factors are associated with
redundancy:

fred =
�����
n/m4

√
(10)

and the information loss threshold value (Nadler, 2008, 2009):

fTh = 1/
����
TIL

4
√

. (11)

Considering that fred and fTh are both <1, the expression in
equation (9) indicates how PCA processing will exploit redun-
dancy and allow the detection of latent components whose
“true” variability is below measurement noise. Due to the fourth
power root, the retrievability improvement by increasing redun-
dancy [equation (10)] or threshold value [equation (11)] is rather
moderate. For example, taking TIL∼ 300, as suggested by Moreira
et al. (2022) for the study of binary alloy NPs, the retrievability
value S∗I is just changed by a factor of ∼1/4 (0.24 = 1/

����
3004

√
).

Nadler (2009) has deduced that for a finite dataset size, the
information loss probability should be gradual without a sharp
phase transition and without a define threshold value TIL = 1.
Then, we suggest to use the well-known 3-sigma criterion as a
detection decision value (Currie, 1968, 1999; Williams & Carter,
2009; Belter et al., 2014). This leads to the following estimation
of the detection decision value DI:

DI = FdetS
∗
I , (12)

where Fdet = 3 and represents multiplicative 3 factor of the
3-sigma criterion. Considering explicitly experimental noise, the
final expression for DI results:

DI = (FdetfredfTh) sM. (13)

Any latent factor whose “noise-free” intensity variability is
below DI will not be detected and properly ranked by PCA pro-
cessing. Therefore, the related information will be scattered in
the ensemble of loadings related to noise. When we reconstruct
the dataset considering all relevant principal components
(selected from the scree-plot), the PCA reconstruction will
include components whose true noiseless standard deviation
must be at least equal or larger than the detection value (σI≥DI).

For accurate unbiased PCA reconstruction, DI can be thought
as an approximation for the lower bound intensity error bar for
denoised intensity values (σI,den = DI). We may suggest rewriting
equation (13) as an estimation of uncertainty interval σI,den of the
PCA reconstruction:

sI,den = RPCA sM, (14)

where RPCA represent the effective PCA contribution to reduce
measurement noise and to increase precision ( RPCA = FdetfredfTh).

We can further use the proposed intensity error σI,den in sub-
sequent uncertainty calculations using conventional error propa-
gation procedures (Bevington & Robinson, 2003; Drosg, 2009;
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Hughes & Hase, 2010). At this point, it is essential to keep in
mind that, after PCA denoising, EDS intensities are not indepen-
dent variables. In particular, for binary alloy NP displaying a cer-
tain composition variability, PC#3 should contribute with
intensities of Au and Ag, which are fully anticorrelated. The
PC#3 loading shows these EDS peaks with the opposite sign
(see Moreira et al., 2022), then we must use ρAuAg = −1 when
applying equation (2) to calculate uncertainty for this case.

The aim of our study is the estimation of elemental composi-
tion of individual NP, an information related to total characteris-
tic counts per NP total intensity (INP) and its uncertainty σI,NP
(mainly associated with Poisson statistics and background sub-
traction). Table 1 explores the application of error bar calculation
using the suggested after-denoising intensity uncertainty [σI,NP,den
from equation (14)] to Experiment E2 and high SNR simulations
from the Part I of this series of articles (Moreira et al., 2022).

Briefly, we may conclude that PCA denoising has contributed
positively to increase precision; considering the values of our
experiments and simulations, the reduction factor for intensity
noise RPCA lays in the range of ∼0.3, leading approximately to
composition uncertainty reduction of the same order, than for
the monodispersed case analyzed above (∼2.3- to 2.8-fold
decrease).

It is essential to remember that this uncertainty analysis can
only be applied to datasets where the occurrence of random
noise bias has been minimized and the accuracy of reconstruction
has been thoroughly analyzed. The evaluation of PCA reconstruc-
tion fidelity for the three cases included in Table 1 has been
described in detail in Part I of this work (Moreira et al., 2022).

Conclusions

PCA data processing is a very powerful tool to reduce dimension-
ality and increase the SNR of HSIs, and it is frequently used to
improve the quality of TEM/STEM EDS “chemical maps”. Our
study has shown that the PCA “denoising” procedure can also
be applied to upgrade EDS quantitative chemical analysis of
binary alloy NPs. In fact, the correct application of PCA may
reduce the contribution of Poisson noise in EDS spectroscopy
of binary systems, leading to a narrowing of composition uncer-
tainty intervals. However, PCA users must be aware that this is
not a general output, and it is essential to ensure that the SNR
exceeds a minimal value to minimize random noise bias to an
acceptable level in the PCA-reconstructed data (guaranteeing
accuracy). Briefly, PCA processing can represent a potential prac-
tical route to obtain denoised results that are reliable from the
point of view of accuracy and showing improved precision if
input data are acquired with a suitable SNR.

Concerning the new knowledge gathered for NP research gen-
erated in the gas aggregation source, the developments described
in this work are very promising. The improvement in the

quantitative analysis precision by using PCA denoising may
allow better EDS studies to identify issues such as size-effects or
elemental distribution inside particles (core-shell and chemical
gradients).
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Chapter8
Chemical composition quantification within

Bimetallic Nanoparticles: Measuring chemical
gradients

Energy Dispersive X-ray Spectroscopy (EDS) combined with Scanning Transmission
Electron Microscopy offers the possibility of extracting quantitative chemical information
localized in the nanoscale [7]. However, as with any experimental methodology, noise and
properties of the measurement may hide information in the data sets. In this work, we
wish to discuss the elemental distribution inside AuAg BNPs. Moreover, we wish apply
and discuss the utility of machine learning approaches such as PCA and NMF to leverage
information with a better signal-to-noise ratio (SNR) from EDS data sets. The data
architecture plays a fundamental role in applying such methodologies. We have the so-
called hyperspectral images (HSI) in an EDS-STEM data set, as already explained in
the last chapters. Using these decomposition methods opens the door for blind source
separation (BSS) approaches where the signal in the data can be entirely unmixed and
hidden features can be extracted without human bias. Naturally, elemental distributions
or chemical phases can be identified by those methods [13, 14] and therefore, we propose
using these algorithms to process AuAg data sets to contribute to the understanding of
how the atoms are distributed within the nanoparticles. In addition, we will discuss the
physics and chemistry of elemental distribution inside the AuAg BNPs grown by physical
routes. Here, we will try to clarify questions related with where the atomic species, in
average, are located within the BNPs protected from air exposure effects.

8.1 Elemental distribution of bimetallic AuAg
nanoparticles

Bimetallic nanoparticles (BNPs) have attracted increasing attention in both
fundamental as well as applied sciences in the last decades [1, 2]. Here the nanoparticle
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properties depend not only on size, shape, and environment but also their chemical
composition and ordering. Different chemical configurations (alloyed vs. segregated,
chemically ordered, etc.) can considerably change the optical, magnetic, or catalytic
properties. One of the most intensely studied bimetallic systems is the gold-silver alloy.
Its nanoparticles have attracted a lot of attention for their catalytic [22], plasmonic [23]
and photocatalytic [24] properties. In bulk, the two metals are completely miscible
across the entire composition range, and their atomic radii, crystal structure, valence,
and electronegativity are very similar. On the nanoscale, however, additional degrees
of freedom have to be considered, namely the particle size and morphology, as well
as possible segregation and/or chemical ordering [1]. Despite the high number of
experimental and theoretical articles published on AgAu nanoparticles, the controversy
about whether intrinsically one of the two metals preferentially segregates at the
surface or not is still not resolved, neither on the experimental nor on the theoretical
side. Without claim of completeness, we cite just a few of the more recent works
in order to illustrate the discrepancies. Concerning theoretical descriptions of AgAu
nanoparticles, several approaches can be differentiated, some conceptually top-down
(macroscopic thermodynamic description with nanoscale corrections), others rather
bottom-up, starting from an atomistic description. A detailed nano-thermodynamic
description, used to derive phase diagrams for different crystallographic structures,
predicts silver segregation at the nanoparticle surface [25]. This work established rules
to predict segregation based on melting temperatures and surface energies. Similar
surface segregation of Ag was found using crystallographic Wulff constructions [113].
Many scientists have described the intermediate size range between roughly 2 and 10
nm diameter with atomistic Monte-Carlo or Molecular Dynamics approaches, some of
them combining the two. Whereas sometimes complete alloying is found [114, 115],
other authors report a more or less pronounced Ag surface segregation [116, 117]. As
a special case should be considered here, simulations predicting alternating layers such
as onions [118], or a gold subsurface layer beneath a silver surface [79]. The situation is
even more complex for the smallest clusters, as described by Density Functional Theory.
Here crystalline structure and magic numbers tend to dominate other effects, and charge
transfer is claimed to play an important role. Some articles report preferential Ag
segregation in the shell [119], in the core [120, 121] or random alloying [122]. Such
calculations are also used to rationalize experimentally observed Au surface segregation
in Au-rich BNPs [123].

As far as experimental studies are concerned, the overall situation is no less
contradictory. In general, two complementary techniques for BNPs fabrication have to
be distinguished, physical and chemical methods. Most of the reported work considers
wet-chemically prepared, and functionalized AgAu BNPs [124]. Here all sorts of
structures, alloyed vs. Ag@Au vs. Au@Ag, can be produced and even interconverted
[125, 126, 127, 128, 129, 130, 131]. These extensive works show that the choice of
synthesis sequence and especially of the surfactant dominates the presence of one or
the other metal at the interface [132, 133]. For the physical techniques we can cite
sequential pickup in helium droplets [67, 134], laser ablation and condensation [23, 123]
or magnetron sputtering/gas aggregation [26]. Here the two main reasons for apparent
contradictory structural observation are metastability and reactivity. Depending on the
fabrication mechanism, the BNPs may be kinetically trapped in metastable structures.
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Examples are Ag@Au and Au@Ag core-shell BNPs grown in He droplets [67] or random
alloy structures in rapidly quenched CoPt BNPs, which can be thermally relaxed into
ordered 𝐿10 structures [135]. So even though several studies hint at complete alloying
for surfactant-free AgAu BNPs, this mixing might be due to the rapid quenching of the
metal vapor. The second process to be considered for such physically prepared and thus
surfactant-free BNPs is reactivity. Bare metallic AgAu BNPs rapidly react with oxygen
upon exposure to air, leading to segregation of Ag at the surface and, eventually, to a
complete separation of silver-oxide from the remaining bare Au cores [26]. So, all in all,
the question of whether AuAg on the nanometer scale, relaxed to the ground state and
free from dominating environmental influences, intrinsically form alloys or segregates to
a more or less pronounced degree is still unresolved, both from the experimental as well
as from the theoretical point of view.

Here we want to contribute to this discussion in two ways. The first is the
implementation of quantitative analysis and machine learning signal improvement by
EDS-STEM, leading to the precise knowledge of not only where are the atoms but how
many of them are in which region. This is a significant improvement with respect to
purely qualitative chemical mapping, as it is widely used in various communities.

In figure 8.1, Guisbiers et al. [25] show a clear example of Ag segregation for a 9
nm AuAg BNP using both HAADF and EDS images. The authors argue that the Ag
atoms go to the surface due to their minimum surface energy. However, their qualitative
methodology does not allow us to learn the amount of segregation, and it is not very
statistically representative since in electron microscopy, very often, single objects are
analyzed to describe the entire sample. For example, in a second BNP analyzed by
HAADF and EDS in the same work, the Ag segregation is much less clearly visible. To
improve the statistical quality of chemical composition analysis of BNPs, the quantitative
approach becomes essential. Secondly, if successful, we wish to extend our studies to
carbon-protected and annealed BNPs. Here we combine, on the one hand, the fabrication
of surfactant-free but protected AuAg BNPs, annealed in order to provoke structural and
chemical relaxation with, on the other hand, extensive sample characterization based on
the quantitative chemical analysis of and inside individual BNPs.
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Figure 8.1: a) HAADF image of a clear core-shell AuAg BNP and b) its respective EDS
profile with Au intensity in yellow and Ag intensity in grey. c) Another example of AuAg
NP, but now the core-shell pattern is not evident. EDS results for the mixed BNP, with
Au in yellow whereas Ag in gray. d) Au map, e) Ag map, f) Au an Ag maps overlayed.

8.2 Effects of oxidation in the elemental distribution
inside AuAg NPs

In section 8.1, we introduced that physically synthesized AuAg NPs show different
elemental distribution patterns according to metastability or chemical reactivity. In
the case of reactivity towards oxidation, it is known that Ag severely segregates over
time. Therefore, differences in the chemical composition in the core and the shell of the
AuAg BNPs are expected. However, the degree of Ag segregation is not easy to predict
and increases with time [26]. In figure 8.2, we show a High Angle Annular Dark Field
(HAADF-STEM) image in atomic resolution of our AuAg BNPs, suggesting the existence
of Ag oxide shells around it. The amorphous shell region of lower contrast suggests the
core-shell AuAg@Ag𝑥𝑂 morphology for the BNPs. Looking at a big BNP (Diam. ∼6
nm), we can see a round NP with facets and a complex crystalline structure in the core,
with a lower contrast shell of approximately 1 nm of thickness. Smaller BNPs are also
shown in the corners of the image, on the bottom left, a small BNP of ∼ 2 nm of diameter
clearly shows the facets and crystalline structure. The same amorphous region around
the NP can be observed, and the surface fraction here is even more important, revealing
that the oxidation may be even more relevant for the smallest BNPs.
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Figure 8.2: HAADF-STEM image of few AuAg BNPs with a silver oxide shell around a
possibly alloyed core.

HAADF-STEM images offer the possibility to make images with Z-Contrast. However,
spectroscopy in this context is a much more helpful tool to determine if the core and shell
regions contain pure Au/Ag or mixed patterns. Hence, we can use Energy Dispersive X-
ray Spectroscopy in Scanning Transmission Electron Microscopy (EDS-STEM) to learn
where the atoms are and their amount inside the BNPs. This can be done by selecting,
for example, pixels from different regions of the image and analyzing them quantitatively.

We used a Titan-Themis operated in STEM mode to acquire Dark-Field and EDS
hyperspectral images (HSIs) under different experimental conditions as compared to the
HAADF-STEM in figure 8.2. The detector used was a Silicon Drift Detector — (SDD)
Super X Quad, 0.8 sR.( LNNANO, Campinas, Brazil). The acquisition parameters were
optimized to generate reliable statistics. In order to reduce beam-induced modification
of the sample due to knock-on damage, and thereby composition changes [62], the
acceleration voltage was set to 80 kV [65]. The probe diameter was between 0.7 - 1.0
nm, beam current between 300-500 pA, and dwell time between 200-400 ms, with a
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pixel size of 0.5 nm. The quantitative analysis of the EDS data followed the Cliff-
Lorimer approach described in chapter 4, where the calibration constant was determined
as 𝐾𝐴𝑢𝐴𝑔 = 0.85± 0.01.

In order to verify if EDS-STEM can quantitatively measure the Ag segregation, we
can select a region of interest in the HSI, defining a shell and a core for the BNP, as
illustrated by figure 8.3. With 𝑟 = (2/3)𝑅 as the radius of the core and shell thickness of
(1/3)𝑅, we integrate the pixels from the shell and obtain a representative EDS spectrum
for this region. We chose this amount of pixels in order to optimize the signal-to-noise
ratio and spatial resolution relation obtaining statistically reliable information from the
BNP shell. Processing the spectrum as described in chapter 4, we obtain the graph of
figure 8.3, where 37 NPs are quantified to obtain an average value of 0.62 ± 0.01 in Ag
atomic fraction in the shell. The average overall NP composition is given by the dashed
line showing that, indeed, Ag enrichment can be detected and quantified in the outer shell
region of the BNPs. Although we have 2D projections of 3D objects in the EDS-STEM
measurements, we can quantify the projected region of the defined shell, confirming that
our Ag segregated model suggested above is reasonable.

Figure 8.3: a) Schematic of the projected image of the BNP. The blue region defines
the core, the black the shell, and the cross mark illustrates the direction of the electron
beam entering the page. b) Representative AuAg EDS image with the ROI delimited. c)
Results for the shell ROI chemical composition quantification.
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Here we can come back to the discussion from the section 8.1, where several
authors claim different elemental distributions for AuAg BNPs. Some authors show Ag
segregation as thermodynamic and energetic consequences [25, 79], but two important
are not discussed in their work. First of all, oxidation must be taken in account as it leads
to Ag enrichemnt in the shell as we see in our images consitently with the litarature [26].
Secondly, the alloying of these systems through heat treatment also plays a fundamental
role in the elemental distribution of BNP’s physics. Using helium sequential droplet
sources, Ag@Au and Au@Ag BNPs can be produced [67, 134]. This way, Lasserus et
al.[67] reported that by annealing AuAg core-shell BNPs the elements favor mixing, and
even a diffusion constant as a function of temperature is determined. Before this work,
the inter atomic diffusion of Au/Ag in BNPs in this size range was never observed. This
implies that metastable structure must be taken in account. Thus, in order to study the
intrinsic mixing behavior of Au/Ag on the nanoscale, it becomes fundamental to protect
our BNPs from oxidation and perform heat treatment in the samples in order to relax
them to the ground state prior to the EDS chemical analysis.

An efficient way to protect metal nanoparticles against oxidation is by depositing a
thin carbon layer (few nm) which retards the oxygen diffusion towards the AuAg NPs
[135]. At the moment of the present study, the hollow cylindrical magnetron sputtering
source allowed us to produce only oxidation unprotected NPs. To prepare BNPs in ultra
high vacuum and to protect them in-situ with a thin carbon film, we fabricated new
samples using a different source. We used a laser vapor source [23] where the BNPs are
produced by gas phase aggregation, but here a laser is used to evaporate metals in a
plasma. This way, we grew AuAg BNPs of 50:50 Au/Ag atomic fraction. The BNPs
were deposited fragmentation-free on TEM grids, and we evaporated carbon filaments
to produce the thin carbon film (∼ 7 nm of thickness). We cannot, however, discard
the effects of structural metastability of the BNPs as they are rapidly quenched in a
supersonic expansion, stopping the growth. Their structure can be "frozen" without
necessarily being in its global minimum energy conformation, as seen in figure 8.4. In
this situation, most NPs show complex ramified crystallography [136] with disordered
grains in a shape-like similar to beans. It is essential to note that the outer shells are
not observed in this case, which reveals that the BNPs are at least much less oxidized
compared to the BNPs from figure 8.2.
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Figure 8.4: HAADF-STEM images of carbon proteced AuAg BNPs.

Considering the metastability, we first analyzed the BNPs carbon-protected as
prepared and then annealing at of 400ºC for 2h. After annealing, the sample cools down
slowly over 2h, relaxing the system to its fundamental atomic arrangement/structure
[135]. To estimate the annealing temperature, we used the work of Lasserus et al.[67],
choosing a temperature where they observed mixed AuAg BNPs of 5 nm. Some images
of the our annealead BNPs can be seen in figure 8.5, evidencing that the particles are
much more spherical and better crystalized than the as-prepared ones. However, the
BNPs show is this preliminary results are not in the same size range, the annealed ones
are more or less 5-7 nm in diameter, while the ones in figure 8.2 are about 8-9 nm.
The different sizes may prejudice the comparison between them, and more images of the
non-annealed sample are required for the completeness of the analysis.
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Figure 8.5: HRTEM and HAADF images of annealed carbon-protected AuAg BNPs
showing rounder shapes.

Returning to the investigation of the elemental distribution in the protected
samples, we quantify the chemical composition of individual BNPs through EDS-STEM
measurements. The acquisition parameters were optimized again for two different
microscopes, the first one being a JEOL NeoArm at Hubert Curien Laboratory, St.
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Etienne University, France. The probe diameter was between 0.3 - 0.5 nm, and beam
current ∼ 1nA. NPs have been measured with a pixel size between 0.2 - 0.5 nm and
dwell time between 50 - 200 ms, resulting in integrated Au counts at 2,000 - 10,000 for
6 nm NPs after acquiring for tens of minutes. The quantitative analysis of the EDS data
followed the Cliff-Lorimer approach described in chapter 4, where the calibration constant
was determined as 𝐾𝐴𝑢𝐴𝑔 = 0.69 ± 0.01. The second microscope was again at LNNano-
Campinas, Brazil. For this one, the pixel size was 0.1 nm, the probe size estimated as
∼ 0.2 - 0.3 nm, beam current of 100-200 pA and 200 ms of dwell time, 128x128 pixels
yielding 20,000 Au counts for 6 nm NP in 50 minutes. The data were processed using
HyperSpy [84]. We do not detect compositional changes beyond the uncertainty level
during the measurement, due to the choice of acceleration voltage (80 kV) [62]. No
significant Ag loss is expected for the acceleration energy of the measurement since it is
lower than the sputtering threshold energy of the two elements [64].

Consequently, for the mean chemical composition of the BNPs we obtained the value
of 0.510±0.002 Au atomic fraction, which corresponds to the expected 0.5 nominal value
of the metal target used in the cluster source. The compositon of individual BNPs, in
function of size, can be observed in figure 8.6. Selecting a region of interest for the core
and another for the shell, we can integrate all the pixels and generate a representative
spectrum for the two regions just like it was done for the oxidized sample. Defining
𝑟 = (2/3)𝑅 and 𝑅, for the two regions, we can study the chemical composition of the
shell region and compare it with the full NPs value.
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Figure 8.6: Quantitative analysis of AuAg BNPs comparing the full chemical composition
and the value of its shell. Results for samples with a) carbon protection and as-prepared
and b) carbon protection and annealed at 400ºC. C) EDS elemental mapping of three
AuAg BNPs of representative sizes in the sample. In red and green, Au and Ag intensities,
respectively.

In figure 8.6 a) and b), we show the chemical composition quantified for the full BNPs
and the shell in a carbon-protected sample, before and after annealing, respectively. The
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results obtained are put in contrast with a red line which represents the average value
for the oxidized samples of figure 8.3, analyzed similarly. Thus, it is visible that when
the AuAg NPs are carbon protected, the Ag segregation towards the surface is strongly
reduced, and the system exhibits a high level of miscibility. In figure 8.6 c) we show AuAg
maps of the annealed sample, which consistently reveals the miscibility of the elements.
However, after the heat treatment, we observed Ag loss in the small BNPs (Diam. < 6
nm), which means that the annealing temperature was probably too high, and we may
have ejected Ag atoms. This was already observed in the literature, where Co leaves small
CoPt NPs, increasing the size of others by Ostwald ripening effect [137]. In our case the
BNPs are carbon protected; therefore, the Ag atom movement towards other BNPs is
not favored. Selecting, bigger BNPs (∼ 8 nm) we find a chemical composition closest to
the average expected value. For the big NPs, Ag atoms evaporation is reduced, because
the melting point is reduced with BNP size [36]. The high miscibility observed for the
big annealed AuAg NPs suggests that the system ground state favors the miscibility of
the atoms with only a few percent of Ag enrichment in the shell. However, these results
are preliminary and and further work is required. For example, we must analyze new
samples with a lower annealing temperature, where Ag loss is no longer observable. For
that, we propose, in the continuity of this work, to produce AuAg BNPs with controlled
size distribution to optimize the annealing time and temperature for big (Diam. > 5 nm)
and small (Diam. < 5 nm) BNPs separately. This strategy should increase the quality of
the analysis since the optimum temperatures for distinct size regimes might be different.

The results obtained here show that despite the need for new samples annealed under
appropriate temperatures, we found very high miscibility in relaxed AuAg BNPs. The
average Ag atomic fraction in the shell for carbon-protected samples is 0.503 ± 0.003
while the full NP value is 0.490 ± 0.002, illustrating a strongly mixed system. In the
carbon-protected and annealed sample, the average result obtained for the full NPs is
0.417± 0.001 and for the shell is 0.450± 0.002. Comparing both samples, despite of the
Ag loss of the BNPs, it is possible to see a slight increase in Ag atoms in the defined shell.
Thus, by performing these quantifications, we expect to contribute to understanding the
elemental distribution inside AuAg BNPs synthesized by the physical route.

The whole reasoning above neglects the crystalyne structure on the BNPs, we can
see however, even with our preliminary data (HAADF-STEM images) that shape and
crystalinity change upon annealing. It is important to mention that, for the evaluation
of the shape/morphology and structure of single NPs, the HAADF images are not a
statistically sufficient representation of the whole sample. In order to evaluate the
impact of crystalline structure on the chemical order, the proper technique would be
electron diffraction and the use of Pair Distribution Functions (PDF) to obtain average
and statistically reliable information on the samples [61]. Nonetheless, this experiment is
beyond the scope of this thesis (measurement of elemental distributions by EDS chemical
analysis).

Moreover, in the context of this thesis, we immediately may wonder how the advanced
statistical methods of machine learning can help us to measure elemental distribution. In
chapter 6 and 7 we show the advantages and drawbacks of using Principal Component
Analysis (PCA) as a denoising method for quantitative EDS chemical analysis. Now,
for analyzing chemical phases and elemental distribution inside BNPs, we will use Non-
Negative Matrix Factorization (NMF) as unmixing signal tool. This is relevant to try to



109

find physical/chemical denoised information in the decomposed components, where this
method is more advantageous than PCA (see chapter 5). Accordingly, we may be able to
extract core and shell-related information quantitatively without the need to determine
handly these two regions in the projected 2D HSIs, without previously assuming the
morphology of the chemical phases.

8.3 Non-Negative Matrix Factorization for AuAg NP
studies: Measuring chemical gradients

The AuAg BNPs, although one of the simplest systems, exhibit different elemental
distribution patterns in different situations, such as discussed in section 8.1. In this
context, the challenge of characterizing these systems quantitatively with high precision
and accuracy is essential to properly learn the fine details of the sample. As we already
discussed in chapter 5, Principal Component Analysis (PCA) is one of the most popular
machine learning tools applied to electron microscopy (EM) data sets. Its powerful
denoising properties are shown in chapter 6 and the validation of the methodology
according to confidence interval definitions is discussed in chapter 7. However, as
discussed in chapter 5, PCA does not offer physically reliable components. Other
methodologies arise as complementary options to extract information of sample features
from the components. Using Non-Negative Matrix Factorization (NMF), we propose
using blind source separation by unsupervised machine learning [13]. This method
works as a way of extracting hidden correlated information of the HSIs (hyperspectral
images) of AuAg NPs, obtained by Energy Dispersive X-ray Spectroscopy and Scanning
Transmission Electron Microscopy (EDS-STEM). In NMF, similarly to PCA, the data set
is decomposed into orthogonal components; however, the components are always positive.
These constraints allow us to retrieve more reliable and interpretable information in the
components [14]. The main drawback of using NMF is that the algorithms typically used
are not convex, which means that in some situations, the solution of the factorization is
not convergent. In the chapter 5 we discuss the work of Uesugi et al. [112] where the
authors show that NMF does not converge for a high number of components as output.
Therefore, we used our experimental data and simulations to run the algorithm several
times, and we obtained the same results in each of them. This allowed us to verify that the
methodology is robust for the number of components we needed to extract information
from the EDS-HSI of AuAg BNPs.

Due to the known elemental segregation in oxidized AuAg BNPs, we chose the data
set from experiment III in chapter 6, to start the analysis with NMF. We have used
a Titan-Themis operated in STEM mode to acquire Dark-Field images and EDS HSIs.
The detector used was a Silicon Drift Detector—SDD) Super X Quad, 0.8 sR.(LNNANO,
Campinas, Brazil); the EDS HSIs were acquired using a 0.5 nm pixel size and dwell time
of 200 ms per pixel; the image size was set to 64 × 64 pixels. In order to minimize the dose
rate, a series of images of the same region was acquired, and, subsequently, individual
frames were added (10 scans at 20 ms dwell time) [138]. For all experiments, we have
used a low-background Be sample holder. The raw EDS spectra were binned to 512
energy channels to increase the signal-to-noise ratio (SNR) for subsequent PCA/NMF
calculation, leading to an EDS channel width of 20 eV. The Au-M𝛼 and Ag-L𝛼 EDS
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counts from individual particles have been obtained by summing the counts from pixels
inside each NP region. Each 64 × 64 pixel scan contained about 5–8 NPs, and we stacked
4 HSI together to increase the quality of decomposition methodologies by increasing
the number of pixels [103]. The quantitative analysis of the individual NP chemical
composition followed the Cliff–Lorimer [8] approach using the experimentally measured
K factor (𝐾𝐴𝑢𝐴𝑔 = 0.85± 0.01) described in chapter 4.

Figure 8.7: a) HAADF-STEM image of AuAg oxidized NPs. b) EDS-STEM of AuAg
BNPs and inset figure of the model suggested by the qualitative measurement. c)
Spectrum from a single pixel in the NP. d) Integrated spectrum for a single NP and
the respective fitting.

Recapitulating from the last section, as can be seen in High Angle Annular Dark Field
Images (HAADF), the NPs systematically show a ring of lower contrast around them (see
figure 8.7). This is associated with oxidation of the BNPs, since these are not protected
from the atmosphere during their transfer to the microscope. Sequentially, in the figure,
we show the elemental mapping of AuAg NPs, which reveals Au and Ag atoms in every
pixel of the NPs, suggesting a mixed alloy morphology for our model system. So, on the
one hand, we have a core-shell-like morphology and, on the other, a mixed system. We
also show in figure c) a single pixel spectrum and in d) an individual BNP spectrum to
evidence the quality of the data set. This is crucial to demonstrate that, as described in
chapter 6 and 7, a minimum signal-to-noise ratio (SNR) must be ensured for the level
of information we want to extract from the HSI (chemical heterogeneities inside small
BNPs).

It has already been observed that AuAg NPs oxidize, and, as a consequence, Ag
atoms segregate at the surface [26]. Due to the short time between NP synthesis and
microscopy, the segregation is only enough to form a core-shell structure and not a
completely segregated Janus one. Analyzing Z-Contrast images, we see the core-shell-like
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morphology of the BNPs. Nevertheless, we cannot quickly learn the elemetanl distribution
precisely from this type of data since we cannot obtain the chemical signatures of the two
phases with this technique. The most logical elemental distribution, thinking in atomic
mobility and diffusion, would be the gradual enrichment of Ag atoms towards the surface,
as illustrated in the inset of figure 8.7, and this is consistent with the qualitative elemental
mapping.

Despite the fact that we have 2D projections of 3D objects in the EDS-STEM
measurements, we can quantify the projected region of the shell defined by hand (see
figure 8.3 in section 8.2), confirming that our model of Ag segregation suggested above is
reasonable. Besides, we can improve our analysis using NMF as BSS for unmixing signals.
This way, we expect to see the core and the shell separated in both spectral and spatial
domains, as suggested in [13, 14]. First, we apply PCA to decompose the data set and
study the proportion of variances, following the elbow rule. We also studied the Potapov
diagrams [96](see chapter 5) to determine the number of components that correctly
describe the data set. This pre-processing is crucial for the NMF analysis because the
number of components is an input given to the algorithm. Knowing the proper number
of components is a challenge for the analysis, and the number of components describing
the data set must be minimized to guarantee the convergence of the decomposition’s
solution [112]. We started with 5 components following the PCA scree plot analysis, but,
by inspection, we verified three as an optimum number to unmix all the information.
More components do not change the results as the last components separate only noise
and background signals such as the Si K𝛼 line. In figure 8.8, we can see the PCA and
NMF spectral components illustrating the simpler physical interpretation of the NMF
compared with PCA.
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Figure 8.8: Components of PCA in the left column and of NMF in the right. PCA allows
negative signals while NMF allows only positive ones. The characteristic X-ray peaks
relevant for the analysis are labeled in the NMF components and are valid for the PCA
too.

In PCA, we separated the information with unrealistic negative counts. The
first component can be associated with the background information, the second with
the average chemical composition, and the third with the variations of the chemical
composition resulting in negative and positive Au and Ag peaks (see chapter 6 for more
details). The NMF first component again shows the background content, the second only
has Au and Ag content, and the third only Ag content. This suggests that the third
component describes the variations in chemical composition, just as in PCA. Here we
can perform some mathematical reasoning to understand how the information is split
into the components for PCA and NMF. In both cases, for simplicity, in each pixel 𝑖, we
can imagine the 𝐼𝐴𝑢 and 𝐼𝐴𝑔 signal composition as a system of two linear combinations.
Assuming that the whole BNP information is contained in components 2 and 3:

𝐼𝐴𝑢,𝑖 = 𝑠2,𝑖 * 𝐼𝐴2
𝑢,𝐴𝑣𝑒𝑟 + 𝑠3,𝑖 * 𝐼𝐴3

𝑢,𝑉 𝑎𝑟 (8.1)

𝐼𝐴𝑔,𝑖 = 𝑠2,𝑖 * 𝐼𝐴2
𝑔,𝐴𝑣𝑒𝑟 + 𝑠3,𝑖 * 𝐼𝐴3

𝑔,𝑉 𝑎𝑟 (8.2)

where the 𝑠2,𝑖 and 𝑠3,𝑖 are the i-th pixel intensities of the score matrices of the
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NMF#2 and NMF#3 respectively. 𝐼𝐴2
𝑢,𝐴𝑣𝑒𝑟 and 𝐼𝐴3

𝑢,𝑉 𝑎𝑟 are the intensities of the average
and variation of the Au signal, associated with the second and third components,
respectively. Thus, the intensity of gold and silver in each i-th pixel is built by two
"pieces" of information. An average chemical composition comes from the NMF#2, and
the distribution/variation in composition comes from the NMF#3. This logic is similar to
the concept observed for PCA in chapter 6, where the third component, with oscillating
Au and Ag peaks, is responsible for the information associated with the sample’s chemical
composition dispersion. Indeed, the information is the same, and how it is organized in
the components changes, with NMF forcing everything to be positive with the second
component accounting for all the Au in the entire particle and the according minimum
content of Ag. The third component then describes the additional Ag content and thereby,
their relative fluctuations. This changes how the different decomposition methods find
the correlated information and split them into components.

Looking at the scores (image of the weights of the linear combinations, see figure
8.9), it is possible to visualize that the first component is spatially associated with the
background, the second with a round NP shape, and the third with a larger round shape.
This is consistent with the model of a core-shell-like NP, where the core would be the
mixed AuAg nanoalloy and the shell Ag oxide. Along the same line, Rossouw et al. [13]
discuss the same unmixing strategy by BSS applied to core-shell NPs (see chapter 5 for
details), which influences our interpretation of separating a core and shell information.
However, in their case, the core and shell regions are much better defined and do not
show interdiffusion of elements, which simplifies the analysis of splitting the information
in core-shell morphology. As we will continue discussing, the AuAg system is a more
complex situation for blind source separation to resolve, and the the shell, suggested by
the HAADF images and by the NMF#3, can be either composed of an AuAg alloy or of
pure Ag, forming completely segregated chemical phase. In the first case, the elemental
distribution would form a gradual Ag segregation generating a chemical gradient inside
the BNPs. To verify which of the two possibilities we have for our system of study,
in the following discussion, we will explore standard qualitative profile analysis and new
quantitative approaches to measure the elemental distribution of these AuAg BNPs. Even
though standard analysis of the spatial and spectral NMF components might suggest a
core-shell (AuAg@Ag) structure, imagining the two extreme scenarios of core-shell vs
mixed structures, we expect to find the real elemental distribution within AuAg BNP
somewhere in between.
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Figure 8.9: Scores of the NMF decomposition ilustrating the spatial localized information
unmixed from the HSI. NMF#1 is associated with background, NMF#2 is associated with
AuAg average composition and NMF#3 to an Ag excess in the shape of a shell. The
model of the system with an Au rich core and a Ag rich shell is shown below. In the lower
right the difference of binarized NMF#3 and NMF#2 acordding to Otsu thresholding
algorithm [85, 139]

The figure above shows a model of the BNPs with an Au-rich core and an Ag-rich
shell. The illustration shows that we consistently have more Au in the core and more Ag
in the shell with the spatial and spectral components observations. In addition, we use
Otsu thresholding [85, 139] to obtain binary images of the NMF#2 and NMF#3 scores.
Hence, the two images are subtracted, exposing the spatially related shell information.
Here, we obtain a shell thickness of 1 to 2 pixels, which means approximately 1 nm.
In the HAADF-STEM images, the same thickness is measured for the amorphous shell
around the BNPs. Quantifying the chemical composition from the experimental NMF#2
and NMF#3 spectra separated, we obtain 0.33 of Ag in the so-called "core" and 0.98 of
Ag in the "shell". However, it is still unclear what these values represent, since we are
not yet able to associate the NMF components with well defined chemical phases of a
core-shell structure.

In order to obtain more information about the elemental distribution we continue our
analysis by means of standard profile analysis of a representative BNP from the EDS
data set (see figure 8.10). In the raw profiles 8.10 b), we can see that the shape of Ag
and Au signals are almost the same when normalized and we have no clear evidence of
Ag segregation towards the surface. Using NMF to improve the information retrieval
we obtain profiles with a clearer concentration of Ag at the surface as seen in figure c).
Therefore, comparing the raw profiles with the NMF#2 and NMF#3, we can verify that
whether NMF increases the sensitivity for shell detection or the Ag segregation is not
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relevant enough to form a pure Ag shell in the third component. These improved profiles
are, however, very different from simulated curves for a perfect core-shell segregation as
can be seen in figure d). The simulation was performed for a 6 nm NP with the same
SNR of the experiment (𝐼𝐴𝑢 = 2000 for each NP). Here, two phases were considered in
the model, with a AuAg alloy in the core and pure Ag in the shell.

Figure 8.10: a) EDS-STEM image of AuAg NP, b) Au and Ag intensities profile of the
pixels between the blue dashed line on a). c) Profile of the scores (NMF#2 and NMF#3)
obtained using the same coordinates of b). d) Simulated profiles of perfect core-shell
(AuAg@Ag) BNPs using the scores as in see in c).

As discussed above, following the ideal BSS applied on core-shell NPs, we should
expect the core information in the second component and the Ag shell component in the
third, as is easily observable in the simulated profile in figure 8.10 d). However, in the
experiment, we still have to consider that the pure Ag shell may not be thick enough to be
distinguished in our measurement with the spatial resolution in the experiment. Another
possibility to explain the mismatch between experiment and simulation is the case where
the shell is composed of an Ag-rich alloy phase and not a pure segregation. Therefore,
the spatial resolution and SNR of our measurement are not enough to easily distinguish
the two situations hitherto discussed only qualitatively. A deeper quantitative analysis
of the profiles is required to progress in the chemical analysis and answer these questions
undoubtedly.

Thus, we use the Cliff-Lorimer method to determine the chemical composition of the
profiles. Aiming to quantify the intensity profiles of reconstructed NMF components,
we first fit every pixel spectrum and subtract the background. Consequently, we use
the intensity integrated from these peaks to form the elemental maps. However, despite
the high quality of the data, the intensity is still low for the level of information and
precision we must achieve. Consequently, to optimize the SNR of the analysis, we used
an azimuthal integration, as the Otsu thresholding shown in figure 8.9 proves our educated
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guess of spherical symmetry to be reasonable. Thus, according to figure 8.11, we select
rings whithin the NPs with 1 pixel thickness and integrate all the pixels intensities for
each ring.

Figure 8.11: Scheme of azimuthal integration of intensities from the BNP. In a) the
NP with a ring ilustrating the azimuthal integration in the pixels of interest. In b) the
pixelated version of the NP with 1 pixel thick rings. The rings are drawn in different
colors to better visualize the regions used to extract signal for the profile quantitative
analysis.

Next we chose three representative BNPs indicated in figure 8.12. To obtain a
representative profile for each NP, exploring the azimuthal symmetry, we average the
intensity in each ring in the HSI with a stepsize of 0.5 nm. In sequence, the chemical
composition of the profile is quantified following Cliff-Lorimer method, and error bars are
estimated for each point in the graph of figure 8.13. It is important to mention that there
is not yet a robust methodology for error bar determination in NMF because the spiked
covariance model we proposed in chapter 7 is only valid for PCA. For that reason, we used
error propagation of Poisson uncertainty, such as in the raw situation, but considering
the intensities anticorrelated due to the NMF decomposition.

Figure 8.12: ADF image of AuAg BNPs. The numbers indicate the three NPs for which
the chemical gradient was determined by EDS-STEM.
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The quantitative chemical analysis of the profiles of these three NPs can be seen in
figure 8.13, where the first line of graphs corresponds to the results of NP number 1
indicated in the DF image. The second and third lines correspond to the other NPs,
respectively indicated in the figure 8.12 . The first column gives us the integrated
azimuthal intensities, the second column the profile obtained from the averaged pixels,
and finally, the Ag atomic fraction profile for each BNP in the third column. Here,
we show that, it is indeed possible to measure chemical gradient within BNPs, providing
values for the Ag enrichment radially, pixel by pixel, with relatively reasonable confidence
intervals (𝜎𝐴𝑔 ∼ 0.02).

Figure 8.13: Results of the quantitative chemical gradient analysis. BNP azimuthal and
profile intensities, excluding the NMF#1 from the reconstruction, are shown in the first an
second columns, respectively. In the third collumn the Ag atomic fraction quantification
obtained by the Cliff-Lorimer method is displayed. The x-axis shows the radial distance
from the center of the BNP.

We have exposed in the graph the raw quantification and the one obtained by the
reconstruction of the second and third NMF components. In the atomic fraction, the
raw and NMF2&3 curves are similar, with small differences mainly in the center and in
the surface of the BNPs, where the statistic is poorest. Even though we cannot unmix
the information inside the alloyed BNPs, we can unmix the background from NPs signal.
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Moreover, with NMF reconstruction of the relevant components (2 and 3), we learn
that the information obtained from the reconstructed curves is not simply fluctuations
and carries true information associated with detectable variances. On that account, the
atomic fraction measured pixel by pixel is reliable, and error bars are overestimated
because we are not considering the denoising aspect of the analysis in the uncertainty
estimation. Additionally, excluding the first component, we increase the quality of
the background definition, which acts as a pre-processing for background subtraction,
increasing the quality of the results by considering only the information of interest in the
reconstruction. This would not be possible with PCA, where the optimization leads to
some AuAg NP’s signal in more components, including the first, where the background is
ideally associated. Consequently, in this analysis, we can observe that the chemical
gradient can be measured and systematically indicates, as predicted, Ag enrichment
towards the BNP surface. The atomic fraction varies from 0.45 ± 0.02 in the center
to 0.62± 0.02 at the surface. Note that the images are 2D projections of the BNPs and
therefore, the pixels in the center of the particle contain information from the shell. The
values for the Ag atomic fractions in the center are thus upper limits. All the signal
beyond the BNP edge, indicated by the straight line, is below the intensity detection
criterium (3x error bar) [9, 10]. Therefore, no spatial distinction of the NMF2 and NMF3
is detectable with statistical relevance, since Au signal can be found as well whithin the
Ag-rich surface.

To help in the interpretation of the chemical gradient measurement, a simulation
that properly represents the data set must be used. In figure 8.10 we used a core-shell
simulated data set assuming that the AuAg BNPs were well-defined core-shell structures
(AuAg@Ag). However, here, we must build another simulation to try to extract the
chemical gradients from it using the data treatment prosed in this thesis and therefore
show the robustness of our method. An adequate simulation in this case would be at least
two AuAg alloy distinct phases, with Au-rich in the core and Ag-rich in the shell. To
build this data and interpret the chemical gradient measurement, we generated an HSI of
64 AuAg BNPs of 6 nm and 0.5 of average atomic fraction, similarly to the simulations in
chapters 6 and 7. We simulated the Ag enrichment towards the surface using quantified
experimental parameters exposed in figure 8.13 as input for the model. We used 0.33 of
Ag atomic fraction in the core and 0.62 in the shell. To build the simulation, we first
simulated core-shell (Au-rich alloy core and Ag-rich alloy shell) BNPs and calculated the
3D sphere’s volume projected onto a 2D image. We converted this projected volume in
atoms/X-ray intensity and allocated these values in each pixel. Therefore, the intensity
decreases from the center of the BNPs to the borders, just like in the experiments, since
the X-ray density is conserved. Hence, we used uniform distributions with core and
shell Ag atomic fractions as probabilistic weights to simulate the dispersion of chemical
composition in each pixel, obtaining the chemical gradient from the center to the borders.
It is of utmost importance to underline that Poisson noise is applied to the simulated HSI
(2,000 Au counts for each NP). As in the experimental data processing, we first perform
PCA to analyze the scree plot. In figure 8.14 we can see that, according to the elbow
rule, we have 3-5 principal components in the decomposition of the simulated data set.
Then, choosing three components (minimum number to fully describe the system) for
the NMF analysis again, we can compare the PCA and NMF components similarly as in
figure 8.8.
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Figure 8.14: Simulated HSI results: Components derived by PCA in the left column
and by NMF in the right column. PCA allows negative signals while NMF allows only
positives.

Here we can see that the simulated components in both PCA and NMF agree with
the measured HSI components. Observing the score images in figure 8.15, we can see that
the correlated spatial information in the 3 NMF components agrees with the experiment
derived from measured HSI. This is important because here in this simulation we are
sure that our BNPs are not simple core-shell structures but a structure with an Ag
fraction increasing from the core to the shell with simulated local fluctuations. In
the first simulation which was discussed in this section, we considered a completely
segregated Ag shell forming an AuAg@Ag morphology (see figure 8.10 d)). In this case,
the signal unmixing generates the pure Ag shell in the third component. However, the
latest simulated system with alloy in the core (Au-rich) and also in the shell (Ag-rich),
shows the same spatial and spectral patterns as it would be for the AuAg@Ag core-shell
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system, if analyzed carelessly. If the investigation relies only on experiments without
the support of simulations, this misleading information may induce wrong conclusions
about the chemical phases of the system analyzed. So the combinations of quantitative
profile analysis and simulations is required to unravell the fine details of the chemical
heterogeneities inside BNPs. Indeed, the unmixing of signals from inside small BNPs
shows itself as a challenging and complex issue. But as suggested before, we can at
least unmix the signal from the background and the signal from the BNPs without
any doubts. In figure 8.15 we also show reconstructed images using first the NMF#1
alone, reconstructing the background of the HSI. Then, we also reconstruct the NMF23
image with the information from the BNPs without background and with the chemical
composition information denoised. In the reconstructed BNPs, the quality of BNP
definition is increased, and the process of the method to separate the relevant information
from the background is evident.
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Figure 8.15: Simulated score images of the three NMF components. The firs is associated
with background, the second with a core AuAg alloy phase, the third with broader signal
similar to a shell with more Ag than Au. Below, the reconstructed images of the unmixed
background and BNPs.
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Sequentially, we employ the same methodology used for the reconstructed
experimental data. We fit every the Au and Ag peaks in every pixel of every image
using a linear combination of Gaussians and the background by a polynomial. With
background subtraction, we integrate the fitted peaks and generate the elemental maps
of Au and Ag separately. Hence, we apply the azimuthal integration in the pixels of
a representative NP, and we obtain the intensity profile and its respective Ags atomic
fraction quantified as can be seen in figure 8.16.

Figure 8.16: Azimuthal integration results for the simulated AuAg BNP. In the left,
the intensity profile generated averaging pixels azimuthally every 0.5 nm (1 pixel). In
the right corresponding chemical composition quantification following the Cliff-Lorimer
method. The x-axis shows the radial distance from the center of the BNP.

In the intensity profile, the red Ag line is more intense in the surface than the Au
blue dashed line, which is consistent with our experimental observations. Nevertheless,
here, the most exciting aspect of the simulation is the quantitative analysis because we
have control of the values expected. Thus, the Ag atomic fraction profile demonstrates
that the chemical gradients are correctly measured and that our methodology is robust
for this end.

Although we learned in chapters 6 and 7 how to use simulations to estimate
information loss/retrieval parameters to qualify the quality of our reconstructions with
PCA, the same approach is not so simple with NMF because there is no statistical model
such as the spiked covariance model (see chapter 5 for details) valid for NMF. However, it
might be possible to explore PCA assuming that if the information is retrievable for PCA,
it must also be for NMF. Thus, in the continuity of this work, we will try to establish
information loss estimators for PCA in order to establish the detection limits for NMF.

Looking at the experimental and simulated results, although within the method’s
limit, we can quantify the chemical gradients inside AuAg BNPs, showing Ag enrichment
radially in small BNPs of 5-8 nm. This breakthrough result offers the opportunity
to investigate the elemental distribution quantitatively by simple EDS-STEM analysis.
From the point of view of fundamental nanoscale chemistry and physics, this methodology
may offer quantitatively established parameters for further research and investigations in
BNPs properties both from theory/modeling or applications, where the knowledge of
precise elemental distribution is essential. At this point, we may return to the discussion
of the physics and chemistry of the elemental distribution inside BNPs, supported by
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our advanced data treatment for chemical gradients quantification. For example, we
argued in section 8.2 that the formation of Ag oxide might induce Ag segregation and
we showed in the sequence that by protecting the BNPs we can find more alloyed AuAg
BNPs. Therefore, the oxidation-protected NPs can be analyzed to verify their chemical
profile by evaluating the elemental distribution inside AuAg BNPs. These BNPs, after
relaxation obtained through thermal treatment, would be very close to their ground state.
In this case, would we expect alloying, Au/Ag segregation, or chemical gradients/order?
What we observed is that a small fraction of Ag (a few percent) segregates at the surface
(see figure 8.6). Now, with the tools developed in this chapter, we can go further in the
analysis and investigate the chemical gradients inside this more challenging system where
the amount of Ag segregation is reduced, and the chemical gradient is more difficult to
detect by the characterization technique employed in this thesis (EDS-STEM). In the
continuity of this work, we will analyze the data sets from section 8.2 applying NMF
and the azimuthal integration to obtain the quantitative chemical profile of these BNPS.
Despite the fact that the information is much more challenging to be obtained, the SNR
for these data sets is much better for a reduced electron probe diameter (0.2-0.3 nm)
which can make it possible to obtain the finest chemical information. However, this
spatial resolution may be already within the limit of the methodology since, due to
electron channeling effects and delocalization a quantitative analysis close to the atomic
scale might not be possible at all for EDS-STEM [140, 141, 142].

Finally, we propose that complementary methodologies, such as electron diffraction
PDF and quantitative HAADF-STEM, can be applied to go further in the analysis and
learn about the chemical gradients/ordering on the atomic scale. The results found
here for EDS can be used as support for these characterization methodologies, supplying
parameters for simulations and refinements.

8.4 Summary

This chapter aimed to analyze the elemental distribution inside the AuAg BNPs
quantitatively. Hence, open questions related to AuAg BNPs were discussed notably
whether Au or Ag segregate in different AuAg BNPs according to different articles
published in the last years.

In sequence, Ag segregation was observed in the elemental distribution in oxidized
BNPs. Then, carbon-protected samples were prepared and annealed to check for an
increase in alloying. While the as prepared particle showed complete miscibility some Ag
segregation was observe for the annealed one. However, some Ag loss was measured after
annealing, suggesting that the thermal treatment was too aggressive and the temperature
must be reduced.

Finally, NMF decomposition is explored in the oxidized benchmark AuAg BNPs for
elemental distribution quantification. It is shown that the BNPs are not the expected
well-defined core-shell systems. However, surprisingly, it is shown that chemical gradients
can be measured by quantifying integrated azimuthal intensities forming the chemical
profile of the Ag atomic fraction segregation. The NMF denoising aspect of the analysis
shows that the chemical gradients quantified are information and not noise fluctuations.
Simulations are used to corroborate the quantitative measurement.
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Chapter9
Conclusions and Perspectives

The work developed in this thesis was mainly motivated by the need to perform
quantitative approaches in Scanning Transmission Electron Microscopy (STEM) to study
bimetallic nanoparticles (BNPs). The physico-chemical properties of nanometric systems,
such as BNPs, are directly related to their atomic arrangement, morphology, size, and
chemical composition. Therefore, understanding such objects requires knowledge of these
characteristics and their influence on the BNP’s electronic properties. Despite the helpful
employ of qualitative analysis typically used in various communities, the quantitative
approach provides much more detailed and rich information about their nature. In
science, we should be quantitative in our analysis and conclusions whenever possible.
Because doing so, it is possible to exclude models and correctly interpret our observations.
Nowadays, quantitative analysis in electron microscopy has become possible due to the
advances in its software and instrumentation in the last ∼ 20 years. Additionally, machine
learning rises in nanoscience and TEM data treatment as a powerful tool to help design
experiments and extract hidden features from the data sets. Consequently, with this
thesis, we aimed to contribute to this field by employing machine learning tools for
quantitative chemical composition analysis of individual BNPs.

In chapter 2.1 we discussed the Physico-chemical properties of BNPs, such as
their exciting characteristics in plasmonics and catalysis, where the size and chemical
composition plays a fundamental role. In sequence, we showed that we synthesized
small AuAg BNPs (Diam. < 10 nm) as a benchmark system for the improvement of
quantitative analysis by Energy Dispervise X-ray Spectroscopy (EDS). We used gas
aggregation approaches to physically prepare the samples surfactant-free, free of the
influence of passivation that intrinsically changes the system’s properties.

In the literature the need for the chemical composition quantification of small BNPs
evaluating it in the function of size, where nanoscale effects show themselves as a
playground for scientific investigators. The BNP’s Physico-chemical properties are
structural, size, and compositional dependent. Thus, the correct characterization of both
ensemble and individual BNPs is crucial for understanding fundamental nanoscience and
technological applications. Therefore, we showed in chapter 3 the use of high spatial
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resolution spectroscopies and microscopies as crucial tools for measuring such systems.
Sequentially we explain the use of EDS for these purposes showing the basics of the
technique, its advantages, limitations, and technical details, focusing on the opportunity
of quickly being quantitative with this methodology. EDS is one of the most popular
techniques used in TEM, and due to its simplicity, the method is overused qualitatively in
simple elemental mapping by various nanoscience communities. When it is considered, the
quantitative analysis is typically resumed to the export of results from the data acquisition
software without careful data treatment (spectral fitting, background subtraction, etc.)
and rigorous error bar determination. Due to the lack of thoroughness in the quantitative
analysis, even more in such a small system where high signal-to-noise ratios (SNRs) are
difficult to be attained, not surprisingly, the quantifications do not always show realistic
values. Then, this issue might lead to serious disturbs in modeling and interpreting
general and applied physics and chemistry results.

In chapter 4, aiming to quantify with high precision and accuracy AuAg BNP chemical
compositions, we used the well-established Cliff-Lorimer method for each BNP measured
in the elemental maps. We developed our python software for the data treatment based
on the HyperSpy library. Here, we prepared a semi-automatic data processing routine,
where we extracted the information of each BNP, the spectrum fitting, background
subtraction, integration, and uncertainty bar calculation. Then, in chapter 5, to improve
the quantification of the chemical composition through elemental mapping, we used
machine learning tools, such as Principal Component Analysis (PCA), for denoising the
data set. Therefore, we discussed the use of unsupervised machine learning and the state-
of-the-art of its use in the EDS scenario. The architecture of the data set, the so-called
hyperspectral images (HSIs), are explored to represent each pixel/channel’s intensities
better. This way, the information can be reconstructed in a new basis of vectors, the
so-called principal components, reducing the noise. In the subsequent chapter 6 and
7 supported by two publications in "Microscopy and Microanalysis", we emphasize the
need for well-determined limits of detection and quantification for information extraction.
In this context, we verified the advantages and problems of using this machine-learning
filter. Even though the Poisson noise is severely reduced, if the SNR of the data set is
not good enough for proper quantification (too far from the quantification limit), the
denoising procedure generates biased results, consistent with previous work reported in
the literature. Motivated by these observations, we modeled and proposed the detection
and quantification limits of the methodology by studying statistical and information
theory models. We estimate information loss parameters related to information variance,
noise, number of pixels, and channels. Consequently, we could estimate confidence
intervals for quantifying the chemical composition after the PCA denoising from these
estimators. Comparing the confidence intervals obtained by simple error propagation
of raw data and those from the denoised data, we could show that the measurements’
uncertainty is reduced due to the Poisson noise reduction. Therefore, we show that by
increasing the number of counts in our measurements and applying PCA denoising, we
obtain improved results from the point of view of accuracy and precision.

In sequence, motivated by the open questions related to the elemental distribution
inside AuAg BNPs, we profited from the opportunity of having control in the BNPs
synthesis, data acquisition, and processing to try to go further in our analysis. Thus, in
chapter 8, we proceeded with our studies on the AuAg system to contribute to learning
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how many atoms we have in the BNPs and where they are located. Our results in
raw EDS data showed Ag segregation in the shell of the BNP, and High Angle Annular
Dark Field (HAADF) images confirmed the existence of a possible silver oxide-rich shell
around them. Immediately we discussed that the Ag segregation might be due to the
BNP oxidation, where according to the literature, the Ag mobility towards the surface
is increased due to the formation of silver oxide. The suggested core-shell morphology,
however, is very discreet in the EDS chemical analysis and cannot be easily verified
in typical qualitative maps. The quantitative approach showed an Ag atomic fraction
of 0.62±0.02 in the shell for 0.48±0.01 of the average full BNP’s chemical composition.
Thus, we analyzed an AuAg BNP sample with oxidation protection by the evaporation of
a few nm of carbon above it. In this case, the Ag segregation severely decreased, consistent
with the hypothesis of Ag-induced segregation due to particle oxidation. To guarantee
the reasoning of the BNP alloying in the ground state, we annealed the carbon-protected
samples and afterward relaxed them to ambient temperature. In this condition, according
to our qualitative and quantitative observation with EDS-STEM chemical analysis, we
confirmed the alloying of the BNPs. But still, a few percent of Ag can be measured
on the shell. Furthermore, to improve the quality of our results, we used unsupervised
machine learning in the oxidized BNPs to try to extract hidden information in the data
set. Motivated by the literature, where blind source separation is used to unmix EDS
signals from nanosystems, we used Non-Negative Matrix Factorization (NMF) to study
how the information contained in the data set is separated into the components. This way,
we verified three main relevant components of the analysis, consistent with the model of
three different chemical phases (background, core, and shell). However, we learned that
the unmixing property on complex core-shell-like systems could not be correctly applied
to the autonomous quantitative analysis of this system. The main issue, in this case, is
that the shell and core interface are not well defined due to the interdiffusion of Ag and Au
atoms. Therefore, no abrupt core and shell phase transition exists to be easily detected by
the algorithm. The pattern observed for our BNPs is Ag enrichment towards the surface.
In the three NMF components, we extracted the background in the first and an alloyed
AuAg chemical phase in the second. Finally, in the score image of the third, we found a
pattern that can be recognized erroneously as the BNP shell. Here, the signal contained in
the third component is responsible for modulating the variability in chemical composition.
We verified by the Ag atomic fraction profile of the BNP reconstructed image that the
two chemical phases could not be distinguished considering the detection limit criterium;
therefore, the shell detected in the decomposition represents the Ag enrichment, not a
pure Ag shell. With this description and supported by simulations, we showed that an
alloy forms the AuAg BNPs system with more Ag in the shell and more Au in the core, but
still a mixed system. By analyzing the BNPs profile quantitatively, we measured chemical
gradients inside those BNPs, which was a breakthrough and not an expected result for
EDS-STEM analysis. Supported by the denoising properties of NMF reconstruction, we
could verify that the chemical gradient measures are indeed physical information and not
noise fluctuations. Hence, we obtained the Ag atomic fraction increasing from 0.45±0.02
in the BNP’s center to 0.62±0.02 in the surface.

In the continuity of the work developed in this thesis, we expect to employ NMF
to investigate the carbon-protected samples where the alloying level is much more
challenging to explore. Using NMF and chemical gradient quantification, we will evaluate
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this sample’s elemental distributions and compare the results quantitatively with the
oxidized and segregated case. We also expect to analyze the sample aging and compare
the evolution of the chemical gradients over time, which may allow us to estimate a
segregation rate parameter for such systems. To completely understand the elemental
distribution inside the AuAg BNPs, we will optimize the sample’s annealing process (NP
size, annealing time, temperature, etc.) to obtain relaxed BNPs in the ground state
without the loss of Ag atoms. We also expect to use the support of simulations to
correctly estimate the limit of detection and quantification in the analysis after NMF
reconstruction. Finally, we have as the central perspective to apply this procedure to
fully characterize the elemental distribution of AuAg BNPs, separating the external
influences on BNP’s conformation and finishing the measurement of chemical gradients
by EDS-STEM. At this point, we have to add the possibility of continuing the work by
using the microscopy techniques more suitable for the questions related to the atomic
scale information. In this scenario, EDS fails to be quantitative due to electron beam
delocalization, channeling, and the lack of statistics (X-ray counting). It is encouraging,
however, for HAADF-STEM quantitative analysis, that EDS-STEM measured chemical
gradients, even within the method’s limit.

Motivated by our analytical and quantitative studies developed for EDS-STEM, one
could use HAADF-STEM combined with detector calibration and rigorous modeling by
multislice simulations. In this way, one can quantify the atomic columns of the AuAg
BNPs and, therefore, obtain the chemical gradients at the atomic scale. Thus, this
would lead the analytical study of BNPs to a new level, leveraging the extraction of
fine details in the chemical composition of finite nanoscale systems. Additionally, one
can develop new studies using in-situ and environmental TEM methodologies, studying
chemical gradients, alloying, and segregation with the systems evolving in time and
even under reactive environments like in redox (oxidation-reduction) reactions. Among
other advanced methodologies being developed for TEM studies, Pair Distribution
Function (PDF) analysis applied to electron diffraction datasets can also provide average
information on the structure and atomic arrangement of BNP samples. In this sense,
complementary approaches such as local spectroscopies, imaging, and PDF may fully
describe quantitatively nanoscale systems’ characteristics from the point of view of
both ensemble and individual BNP. Knowing that the complete characterization of
nanometric systems requires detailed knowledge of how the different chemical elements
of the materials are distributed at the interfaces/surfaces (roughness, interdiffusion,
etc.), the present work and the perspective presented above, construct through TEM
studies opportunities to the scientific community to fully characterize BNP systems and
understand its physico-chemical properties in both fundamental and applied sciences as
well.
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Abstract

Metal nanoparticles are omnipresent in today’s applied and fundamental research.

Both wet-chemical as well as physical procedures for their fabrication are well-established,

where the latter is of particular interest as they supply surfactant-free particles. The

particle growth has been investigated for several decades, but due to its complexity,

involving kinetic and dynamic processes on various length and time scales, often only

phenomenological rules of thumb are available. In this study, we report on bimetal-

lic AgAu nanoparticles and demonstrate how the additional degree of freedom of the

chemical composition can be used to derive information about how and where the par-

ticles grow, depending on two different cluster source types (hollow magnetron vs. laser

1



vaporization). The chemical composition is quantified on the single-particle level using

electron-induced x-ray spectroscopy (STEM-EDS) and shows significant differences for

the two fabrication routes. Based on Molecular Dynamics and Monte-Carlo simula-

tions, we derive that for hollow cylindrical sources both the mean particle size and the

chemical composition are determined within the plasma region, where particles not

only grow but also evaporate low-boiling silver. The comparably large plasma plays a

decisive role here, as opposed to planar magnetron or laser vaporization sources, where

no such evaporation is observed. These results shed light into the complex cluster

growth and help understand and optimizing nanoscale fabrication processes.

Introduction

Metallic nanoparticles have been used in numerous applied and fundamental studies, involv-

ing different research fields, amongst others, optics,1 catalysis,2 photocatalysis,3 electronics,4

magnetism,5 spintronics6,7 and sensing.8 Two main nanoparticle fabrication approaches can

be differentiated: wet chemistry and physical techniques. The latter has the advantage of

providing surfactant-free nanoparticles; among them, gas-phase synthesis is the most fre-

quently used at present.9 Despite a large amount of research on such metal nanoparticles,

the detailed kinetics and dynamics of the aggregation processes still need to be fully un-

derstood, and classical nucleation theory can only provide a qualitative understanding.10

One of the most used techniques since cluster science’s early days is the laser vaporization

source (LVS), as shown schematically in Figure 1a.11 Here a laser hits the metal target rod

and ignites a confined plasma of the order of a mm3 for a very short time, typically several

nanoseconds. Next, an inert gas quenches the hot plasma, and the metal vapor condenses

into clusters and nanoparticles before rapidly cooling by a supersonic expansion.12 This is

a typical example of cluster fabrication by successive steps: metal vapor generation, su-

persaturation and condensation, and finally, termination of growth through dilution in the

molecular beam.

2



A second popular method for nanoparticle fabrication is based on magnetron sputtering

cluster sources (MSCS), which have been extensively investigated over the last years.10,13–23

The general interpretation of cluster formation (also by some of the authors of this article)

was that metal atoms are sputtered into the gas phase in the discharge and aggregate into

clusters and nanoparticles by nucleation, successive atom addition and finally cluster coales-

cence all along the path between the discharge and the exit orifice of the aggregation region

(cf. Figure 1b). This picture was supported by the simple and reproducible observation that

increasing the distance between the magnetron head, and exit orifice monotonously increases

the size of produced particles. Thus the particle growth was supposed to occur along the

same general lines as described above for the LVS, despite the geometric and temporal dif-

ferences. The magnetron discharge forms a torus of several cm in diameter and some mm in

thickness, operated in almost all cases in continuous mode (dc). When used with bimetallic

targets, both types of sources, LVS and MSCS, have produced nanoparticles with the same

chemical composition as the targets.17,24

However, more recent works have started challenging this description for the magnetron

source. The authors of25,26 have monitored the aggregation of Cu and Ag into nanoparti-

cles inside the aggregation tube by in situ X-ray scattering and optical spectroscopy of the

silver surface plasmon resonance. They show that, contrary to the general interpretation,

the nanoparticles are, in fact, formed in the very same region of the sputter target and not

throughout the flow toward the end of the aggregation region. On the contrary, they demon-

strated that the nanoparticles are significantly bigger in the vicinity of the discharge than

after leaving the discharge area. The authors attribute this behavior to “trapping regions”

in the center of the plasma torus and several centimeters above the sputter target, where

inhomogeneities in the viscous flow of the inert gas lead to reduced velocities. However, the

initial assumption is maintained, where particles can only grow bigger but not decrease in

size inside the source. This means that if larger particles are present close to the discharge,

they must be trapped or expelled from the formed beam somewhere.
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Figure 1: a) Scheme of a laser vaporization source. A laser pulse hits a rod target, eroding it
and producing a localized plasma of ∼1 mm3 for a very short time. The plasma is quenched
by a pulse of inert gas that condensates the metal vapor into nanoparticles. (b-c) Schematic
of a magnetron sputtering cluster source with its round metal target, usually 1 or 2 inches
in diameter. The magnetron discharge forms a torus and erodes the target, producing the
metal vapor that is used to form the nanoparticles. (b) The standard picture of nanoparticle
formation starts from the atomic metal vapor, followed by the nucleation, successive atom
addition, and finally, cluster coalescence all the way between the discharge and the exit orifice
of the aggregation chamber, usually a few hundred millimeters long. (c) Recent works by
Kousal et al.25,26 propose that the nanoparticles are formed very close to the sputter target
and not all along the aggregation chamber. Also, they demonstrate that trapping regions
exist in the center of the plasma torus, where the biggest nanoparticles are trapped.
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In this article, we contrast these observations with experiments performed using a mag-

netron sputtering cluster source in the hollow cylindrical configuration (HC-MSCS),21 see

Figure 2a-c. In the HC-MSCS, the target is a metal wire or several twisted wires of the same

or different metals on the axis of a cylinder. An Argon plasma is formed inside the cylinder

(anode) to erode the axial target (cathode), forming a cloud of metal used to generate the

nanoparticles. In this setup, the plasma occupies a much larger volume than in the regular

planar magnetron geometry (25 mm diameter and 50 mm long). Here we study bimetallic

AuAg nanoparticles and exploit the additional degree of freedom of chemical composition

to obtain more information about the aggregation process in our magnetron cluster source.

In particular, we observe significant discrepancies between the chemical composition of the

sputter target and the fabricated bimetallic nanoparticles (BNPs). This observation seems

contradictory to >25 years of research using laser vaporization sources (LVS)27 in one of the

participating groups, where the average chemical composition of the investigated BNPs was

typically determined to be very close to that of the target rod.24,28,29 Furthermore, also for a

planar magnetron source, a chemical composition identical to that of the sputter target has

been reported.17 We thus propose to exploit the obvious dependence of cluster fabrication

on the exact design of the source to obtain more information about the underlying physical

processes. Our results show that for the HC-MSCS geometry, aggregation and evapora-

tion/fragmentation processes occur in the plasma region, where collisions heat the BNPs,

modifying their relative composition through evaporation.

Results and Discussions

Experimental

We have studied three different BNP samples produced by the HC-MSCS: A, B, and C using

three different targets: 1/1, 1/2, and 1/3 Au/Ag twisted wires, respectively (see Methods

section for details). To correctly estimate an atomic cloud composition, we used the sputter
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Figure 2: (a) Schematic of the hollow cylindrical magnetron sputtering (side view). The
target (cathode) is in the center, and the anode corresponds to the whole cylindrical struc-
ture around it. Magnets are located in the cylindrical walls, and soft iron at the magnet
extremities is used to ensure the closure of the magnetic flux lines. (b) Photo of the front
view with plasma. Note the greenish color around the target, typically seen in silver plasma.
(c) Schematic of the HC-MSCS mechanism of nanoparticle growth. The nanoparticles are
formed in the hot plasma region (green). Large particles start growing at the beginning of
the plasma region (furthest away from the exit orifice); they spend more time in the plasma
than small particles formed at the end of the plasma.
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yield of Au and Ag as 0.20 and 0.27 atoms/ion, respectively,30 taking the plasma energy in the

sputtering as 100 eV. Table 1 summarizes the estimated aggregation cloud Au/Ag content,

henceforth called cloud composition. We note that Au and Ag abundance is slightly different

from the initial target Au/Ag ratio due to the sputter yield correction. The uncertainty of

the relative sputter yield dominates the estimated error in the atomic cloud composition.

Table 1: Au atomic fraction of the different BNP syntheses. Samples A, B, and C were
prepared using the HC-MSCS, while sample D was produced using a laser vaporization BNP
source. BNP’chemical composition quantification was obtained by Energy Dispersive X-ray
Spectroscopy (EDS).

Sample A Sample B Sample C Sample D
Metal target 0.50 ± 0.01 0.33 ± 0.01 0.25 ± 0.01 0.50 ± 0.01
Atomic cloud 0.42 ± 0.03 0.27 ± 0.03 0.20 ± 0.03 0.50 ± 0.01
BNPs ensemble 0.727 ± 0.003 0.510 ± 0.005 0.500 ± 0.003 0.510 ± 0.002

To quantitatively evaluate the chemical composition of individual BNPs, we use the Scan-

ning Transmission Electron Microscopy spatial resolution associated with the X-ray energy-

dispersive spectroscopy (STEM-EDS). Quantitative chemical analyses were performed using

the Cliff-Lorimer method and machine learning procedures31–35 (See Supporting Informa-

tion for more details). Initially, the chemical composition was measured for an ensemble

of nanoparticles using an open parallel TEM beam with a long counting time to increase

the total X-ray intensity while minimizing radiation damage (dose ∼ 10 e−/Å2). Table 1

presents the average experimental chemical composition of the BNPs. Unexpectedly, we

observed very different values compared to the atomic cloud composition for the samples (A,

B, C) prepared using the HC-MSCS. The composition of the three samples is always richer

in Au. The HC-MSCS thus does not produce BNP samples with a chemical composition on

average equal to the composition of the atom cloud used for their synthesis.

In order to further investigate the BNP composition distribution, we have evaluated

the composition of a set of individual BNPs. Figure 3a) shows as an example the STEM-

EDS elemental map of five nanoparticles and Figure 3b) presents a representative EDS

spectrum for an individual nanoparticle of 6 nm. The EDS data are then analyzed using
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machine learning procedures, described in detail in previous works.34,35 Figure 3c) shows the

composition of 37 BNPs from sample C. In this sample, the chemical composition distribution

is size-dependent, with BNPs of a diameter larger than 5 nm being narrowly dispersed around

the average value. The smaller ones are relatively poor in Au compared to the average value.

It can be clearly observed that the BNP composition does not reflect the cloud composition

and that the composition shows some size dependence.

To compare these BNPs composition features with similar BNPs produced in a different

experimental setup, we used a laser vaporization BNP source (LVS).27 The BNP sample from

the LVS is thereafter called sample D, and its composition information is also presented in

Table 1. In sample D, the chemical composition measured for the BNPs is directly related

to the cloud composition. This feature can also be seen in Figure 4, where the mean value

of the dispersion in Au atomic fraction is ∼ 1% close to the expected nominal composition,

with a dispersion of ∼ 2% in the BNP composition distribution. Additionally, no chemical

composition size-dependent is observed for the measured diameter range.

Simulations

In order to elucidate the role of the different physical processes occurring in the source on the

Au/Ag content of the resultant nanoparticles, we resort to molecular simulation techniques.

Simulation techniques have been extensively used to study BNP’s energetic stability,36,37

phase transitions38 and core-shell segregation,39–43 as well as nanoparticle coalescence44–46

and growth.47–49 It is important to emphasize that these studies usually consider the behavior

of a single nanoparticle at the end of their simulations. In order to get correspondence

between the composition of atomic gas and the average composition of an ensemble of BNPs,

we need an approach that allows the analysis of many NP growth processes in a way that

the statistical behavior can be inferred.

In this work, we simulated two distinct situations describing (i) BNP growth and aggre-

gation from an atomic cloud with a given Au/Ag composition and; (ii) the evaporation of
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Figure 3: STEM-EDS measurement of AuAg BNPs. a) Elemental mapping obtained using
the characteristic x-ray intensities from Au Mα and Ag Lα emission lines. b) Representative
EDS spectrum for a single BNP and its fitting to integrate the peak intensity. c) Chemical
composition for AuAg BNPs as a function of diameter from sample C. The red points are
the composition quantification for individual BNPs, and the dashed line is the average value
measured using open beam TEM-EDS. The KAuAg = 0.85± 0.01 Cliff-Lorimer constant was
calibrated from a reference sample of known chemical composition. Note that all BNPs are
richer in Au than the sputter target (25%).
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Figure 4: Chemical composition quantification of individual AuAg BNPs measured by
STEM-EDS. BNPs are produced by laser vaporization source, where the BNPs are cold
compared with the HC-MSCS setup. The nominal composition of the metal target (50:50)
is reproduced in the measured BNPs. The KAuAg = 0.69± 0.01 Cliff-Lorimer constant was
calibrated from a reference sample of known chemical composition.

a single BNP initially at a high temperature. By simulating the first case, we can confirm

that BNPs produced solely by atom (or cluster) aggregation possess average compositions

consistent with the Au/Ag content of the initial atomic cloud. In this way, a different process

must explain the unexpected average compositions of BNPs produced by HC-MSCS. Next,

we simulated the second situation, where we have a hot BNP that loses atoms due to its

elevated temperature (escape/evaporation). For the latter case, we considered only a single

BNP to avoid unnecessary complexities and analyzed the changes in composition resulting

only from high temperatures.

The first simulation case, henceforth referred to as BNP growth, was performed by con-

sidering a system composed of Ng (Ns) atoms of gold (silver) randomly distributed inside a

cubic simulation box, as shown in Figure 5 (a). The relative amount of gold and silver was

such that we have Au compositions of 10%, 25%, 40%, and 50% (for more details, see the

Methods section). We used Molecular Dynamics (MD) to initially simulate a hot gas of gold

and silver atoms at a temperature of T = 2000 K. Then, the gas was quenched to T = 300 K,

where the system loses energy very rapidly and forms a set of small atomic clusters (Figure

5 (b)). After this, we let the system thermalize at the same 300 K for a long time, and the

system still consisted of small clusters made of a few atoms. The timescale of nanometer-
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sized particle growth is computer-demanding by molecular dynamics simulations because

there must be many low-energy collisions where atoms are incorporated in larger clusters

and, subsequently, in a larger nanoparticle. In other words, the growth of BNPs from small

atomic clusters are rare events that MD simulations cannot reproduce unless the simulations

run for a long time. In fact, some previous works50–52 have applied MD for complete BNPs

growth, but for simulations time on the order of µs. One way to overcome these limitations

and accelerate the growth process is to use Force-Bias Monte Carlo (FBMC) to aggregate

small clusters into nanoparticles. This hybrid approach that uses MD and FBMC to sim-

ulate a process that has two stages on different time scales has already been employed in

previous works.53–55 Also, this same scheme was used to study core-shell segregation trends

in BNPs.56 To our knowledge, there are no works in literature that use these two techniques

combined to accelerate the growth of many BNPs in a single simulation. Examples of the

resulting BNPs grown by an FBMC run are shown in Figure 5 (c), where we computed each

individual nanoparticle’s Au/Ag composition using cluster analysis. All detailed informa-

tion and simulation parameters are given in the Methods section. The composition of each

individual BNP is shown as a point in Figure 5 (d), where dashed horizontal lines represent

the average compositions. It can be seen that the average BNP composition is close to the

initial gas composition. Nominal values and standard deviations for these quantities are

reported in the caption of Figure 5. These results indicate that the discrepancy in the final

nanoparticle compositions in the experiments arises from a different reason rather than just

the chemical composition of the sputtered atoms from the target alone. The larger number

of points for smaller Au percentages occurs because they have a larger number of atoms in

the initial gas (explained in the Methods section) and, thus, can form more nanoparticles at

the end of the simulation.

To describe high-temperature effects on Au/Ag BNPs, we considered a reasonably large

nanoparticle of 4000 atoms (diameter of ∼ 5.0 nm) with three different Au compositions

(25%, 50%, and 75%). Then, we carried out MD runs in an NVE (or microcanonical) en-
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Molecular Dynamics Force-Bias Monte Carlo

Atomic gas Small clusters Nanoparticles

Figure 5: Hybrid MD/FBMC approach to study Au-Ag nanoparticle aggregation. (a) An
initial atomic Au/Ag gas evolves to (b) a set of small clusters using MD. Then, FBMC is
implemented to mimic a longer-timescale process of (c) nanometer-sized particle growth.
For the sake of simplicity, in (a)-(c), we just show a piece of the whole simulation box. The
chemical composition of individual nanoparticles is given by points with shapes indicated by
the legend. The average composition (with their corresponding standard deviation) of each
are 50±2% (for 50% in Au), 40±2% (for 40% in Au), 25±2% (for 25% in Au) and 10±2%
(for 10% in Au).
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semble and monitored the temperature change of the BNP as time evolved. For more details

regarding the types of ensembles used in MD simulations, see the Supporting Information.

We observe that atoms escape from the BNP due to its high temperature. Since the micro-

canonical ensemble describes an isolated system inside the simulation box, where the energy

is (on average) conserved, any temperature changes of the BNP are solely due to the evap-

oration of atoms. This process is known as evaporative cooling. For the evaporative cooling

simulations, we need a BNP hot enough such that atoms can escape from the BNP due to

the high temperature. On the other hand, we could not start from the temperature where

the evaporation of the BNP would take place abruptly. With this in mind, the choice of the

initial temperature should be intermediate between the melting point of silver and that of

gold in such a nanoscale environment to stimulate the escape of atoms at the beginning of

the simulation followed by a decreased rate of evaporation as the time evolves. In order to

have a range of initial temperatures, we performed a thermal ramp from 100 K to 5000 K on

the BNPs of each composition. We monitored the instantaneous atomic composition of each

BNP until it completely evaporated. This gives us an insight into the range of temperatures

where the BNPs start to evaporate. Thus, by observing the composition as a function of the

temperature from the ramp simulations (See Supporting Information for more details), we

observed that in the range between ∼ 2500− 3500 K we have silver atoms starting to escape

the BNP, indicating that the evaporation of silver in this system lies in this temperature

range. We then decided to choose 3000 K as the initial temperature. The melting tem-

perature of nano-sized metallic particles can be difficult to choose as it can be determined

by either energy or self-diffusion coefficient,57 and, thus, we chose the evaporation point as

the initial temperature. The chosen nanoparticle size was such that it is in the range of

size-independent composition, as shown in Figure 3 (c). Initially, the nanoparticle starts

to lose atoms due to its elevated temperature. This leads to a temperature decrease as a

consequence of losing atoms with higher kinetic energies (cooling by evaporation), as can be

seen in Figure 6 (a). Such decay is similar to the temperature evolution observed in water
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droplets under evaporative cooling.58 This Au-rich nanoparticle slower decay rate is expected

since gold has a higher melting point than silver, which helps to stabilize nanoparticles with

a larger gold content.59,60 It is important to emphasize that the nanoscale behavior of metals

is very distinct from that of bulk where, for instance, the evaporation points of nanoscale

metals are considerably lower than that of their bulk counterparts.59,61

As the time evolves in the evaporative cooling simulations, only Ag atoms escape from

the nanoparticle (independently of its chemical composition), as shown in Figure 6 (b).

Similar to the reasons explained above for the greater stability of Au-rich nanoparticles,

the weaker metallic bonding of silver contributes to this significant difference in evaporation

rates between the two elements. This indicates that the higher Au compositions of the

nanoparticles reported in Table 1 are a consequence of the evaporation of silver atoms from

each nanoparticle before the sample holder deposition.

The role of core-shell segregation in the evaporation process is important to account for

surface effects on the selective evaporation of Ag. Figure 6 (c) illustrates the core and shell

definitions used in this work. We analyzed the core and shell composition as a function of

the simulation time, shown in Figure 6 (d). We can see that Au content increases in the

core and decreases in the shell. Since none of the gold atoms evaporated during the time

span in our simulations, we can infer that there is a migration of gold from shell to core as it

has a higher surface energy and, more importantly, a higher bulk cohesive energy, which was

recently found to be of fundamental importance in determining core-shell segregation trends

in bimetallic nanoparticles.56 Both core and shell Ag moieties decrease with time, showing

that even silver atoms in the core migrate to the surface, where they escape (are ejected)

from the nanoparticle. This higher tendency of Ag evaporation is dominant, and it holds

even for Au-rich nanoparticles
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Figure 6: Evaporative cooling simulations for nanoparticles with 25%, 50%, and 75% in Au.
(a) Time evolution of temperature decay as a consequence of atoms that escape from the
nanoparticle initially at 3000 K. (b) The number of atoms of Au and Ag as a function of
time, where squares denote silver and circles denote gold content. The same color refers to
simulations of a given chemical composition. (c) Definition of core and shell, where the core
is a 2R/3-radius sphere concentric with the nanoparticle and the R/3-thickness spherical
shell is the outside region representing the shell. (b) Core-shell resolved Au-Ag composition
of a 50% gold nanoparticle, where the colors are indicated in the legend.
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Discussion

Our simulations describe the two main processes in forming BNPs in cluster sources and al-

low us to estimate their importance in the two cases discussed here. Firstly, nucleation and

coalescence, on the one hand, lead to particle growth and heating due to released binding en-

ergy. They are the most important at comparably low temperatures, where supersaturation

and slow evaporation kinetics favor the sticking of atoms. Secondly, at higher tempera-

tures, on the other hand, close to or above the size-dependent evaporation temperature of

the nanoparticle material, atoms are evaporated, and the particle size decreases, i.e., while

coalescence increases the particle temperature, evaporative cooling decreases it.

In the case of a hollow cylindrical magnetron source, the observed deviations in the

chemical composition somehow represent a counterintuitive situation. Typically, nanoparti-

cle growth only depends on the atomic vapor density and composition, in which the latter

reflects the grown BNP average composition. Only the presence of a high-temperature en-

vironment changes the relative composition through evaporation. This evaporation process

happens simultaneously with nucleation inside the HC-MSCS. Thus, we cannot conceptually

separate high-temperature BNP’s evaporation and simultaneous lower-temperature conden-

sation.

Our simulation results and the observed deviations in the BNPs’ chemical composition

indicate that, in the HC-MSCS, all condensation and evaporation processes occur in the

plasma region, where collisions with accelerated ions heat the BNPs. Even though the

plasma removes atoms from the target by ion collisions and not thermally (so-called cold

plasma), high temperatures in the metal vapor are achievable. Furthermore, the BNPs are

heated by the binding energy of added atoms during aggregation. We find a stable kinetic

state only in the region close to the target, where the particle temperature and residence

time are defined by the various source parameters, such as gas flow conditions and discharge

power, among others. We cannot obtain information about the exact temperature inside the

plasma, and it might, at some point, be even higher than the evaporation temperature of
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gold, leading to increased evaporation of both metals from possibly present large particles.

However, the important point is that, eventually, the particles reach a temperature between

the two evaporation points, the crucial regime in which the chemical composition can be

modified. After leaving the plasma region, the nanoparticle temperature decreases through

collisions with the carrier gas, and it rapidly cools below the evaporation temperature, and

evaporative cooling and composition variation stop. This effect is enhanced because the

melting temperature increases with increasing particle size.

The interpretation of the nanoparticle growth process proposed above is supported by

the size dependence on the chemical composition. The smallest BNPs stay only a short time

in the growth region, i.e., they start growing near the end of the plasma region, here, the

end of the cylinder within which the plasma is confined, cf. figure 2c). They are, thus, less

heated and lose fewer silver atoms, with the smallest generated clusters being close to the

target composition.

These considerations lead us to redefine the concept of particle growth in magnetron

sources. Contrary to the widespread acceptance, atomic addition throughout the trajectory

towards the exit orifice seems negligible. The cluster size is largely defined in the plasma

region close to the sputtering target, as already observed by Kousal et al.25,26 The fact that

an increase in the distance between the magnetron sputter and the exit of the aggregation

chamber increases the particle size must then be linked to other parameters, notably the gas

flow conditions, which affect both the residence time within the plasma and the transport

through the aggregation tube.26 The interpretation of cluster growth occurring exclusively

in the plasma region is confirmed by the observation that metal redeposition principally

takes place within the plasma tube and only to a very small extent onto the walls of the

condensation tube.

However, we must remark that the exact geometry of the source, especially the plasma,

is of fundamental importance in this discussion. While planar magnetron sources generate

cluster beams without apparent electronic shell closures or odd-even oscillations,15 they are
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observed in the cylindrical setup discussed here,21 similarly to sources based on high-energy

sputtering in vacuum.62 This observation indicates that the generated clusters are eventually

hotter in the cylindrical setup than in the planar one, reflecting the differences in time the

atoms spent inside the plasma. Furthermore, in laser vaporization sources, the growth mech-

anisms must also be in a cold environment, as reflected by the chemical composition of the

BNPs. We interpret nucleation and coalescence as the determining mechanism; evaporative

cooling does not seem to play a significant role. This is a reasonable assumption considering

that the laser pulses are only of the order of 5 ns and the plasma is thus rapidly quenched

to temperatures well below the boiling temperatures of the metals, contrary to magnetrons,

where the dc plasma continuously heats the vapor and the clusters throughout their fabri-

cation. Two more mechanisms for nanoparticle heating must also be discussed. First, in

magnetron cluster sources, some plasma often opens between the cathode and the aggrega-

tion tube, forming a large ”afterburner” leading to significantly increased ionization yields.

In our cylindrical setup experiments, we have made sure to confine the plasma between the

cathode and anode, thereby minimizing potential heating throughout the aggregation tube.

Second, suppose the cluster ions are accelerated between the aggregation tube exit and the

following ion optics (a skimmer). In that case, the collisions in this high-pressure region

can easily lead to cluster heating and fragmentation, as evidenced by the appearance of

odd-even oscillations in the cluster abundance. For the experiments discussed here, we have

kept the potential difference between the tube and skimmer small enough to avoid significant

acceleration-induced heating.

Finally, we would like to comment on three other possible explanations for the chemical

composition deviation in our AuAg BNPs. First, we can consider that silver and gold

could be sputtered at different solid angles, as has been observed before for pulsed laser

desorption under high vacuum conditions.63 However, in our case, the viscous carrier gas

flow inside the hollow magnetron mixes up all the plasma components (gas, metal atoms,

and nanoparticles) and sweeps them toward the plasma exit. A second possible explanation
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could be a preferential sputtering of gold vs. silver, leading to gold-enriched BNPs. We

can rule out this, as Ag’s sputter yield is higher than Au’s. Furthermore, this should lead

to the enrichment of one metal over the other in the target rod. BNPs fabricated at the

beginning and end of the target lifetime, however, showed no significant difference in chemical

compositions. Lastly, different diffusion rates for Ag and Au in the gas flow between the

plasma region and the aperture of the condensation tube could also lead to changes in the

chemical composition if the lighter silver atoms migrate more quickly towards the aggregation

tube walls and out of the beam. We, however, believe this effect to be minor, if at all present.

In the hollow magnetron geometry, the vast majority of metal that does not condensate into

clusters is redeposited onto the walls of the anode, i.e., inside the plasma region. This

observation can be seen as another indication of the cluster growth happening solely within

the plasma. But even in the more open planar magnetron geometry, no such increased

diffusion has been seen, as evidenced by the averaged chemical composition of AgAu BNPs.17

On the basis of these considerations, we can now relate our results to the recent literature.

In,25,26 the authors suggest that large nanoparticles are generated in the plasma region of

their magnetron source but cannot leave the source due to hydrodynamic trapping. We

propose that a second mechanism should be considered, which is the evaporative cooling

described above. Additional to hydrodynamical trapping, the authors may have measured a

steady state large diameter population inside the plasma, which rapidly decreases in size in

the outer region of the plasma, where the particles are still heated but no longer grow.

Conclusions

Although the study of metallic nanoparticles in the gas phase is an area with decades of

development, the detailed knowledge of the nanoparticle growth process still presents funda-

mental questions. There are several routes for the formation of nanoparticles, from the way

the metal cloud is generated to the strategy for its aggregation. However, all these processes
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are always quite complex, and it is challenging to infer the different phenomena that occur

there directly. Our chemical composition analysis of gas aggregated BNP using a hollow

cylindrical magnetron sputter source cannot be understood in the framework of classical nu-

cleation theory64 or even considering more recent descriptions25,26 of the planar magnetron

geometry. In our case, the composition differs from that of the sputter target, which is impos-

sible to rationalize simply in terms of the Au/Ag fraction in the initial atomic gas generated

by sputtering, as shown by atomistic simulations of an MD/FBMC hybrid approach. On

the contrary, evaporative cooling simulations using MD show that the selective evaporation

of silver is responsible for the Au enrichment in BNPs synthesized by HC-MSCSs. Thus we

can conclude that the nanoparticle growth must occur in a high-temperature region, where

the plasma heats the newly formed BNPs. Further experiments are planned to verify our

interpretation, e.g., using AuCu as BNP material. These two metals have similar evapora-

tion temperatures, so we expect much less deviation between the target and BNP chemical

composition.

Furthermore, these results shed new light on our knowledge of the process of forming

nanoparticles in the gas phase, particularly when using dc magnetron sputtering. This

study indicates that, in the HC-MSCS, NPs undergo annealing during their formation, which

influences the structural characteristic of the particles, producing crystalline and compact

ground-state atomic arrangements. This fact could be exploited for the in-flight fabrication

of relaxed structures. Conversely, larger clusters obtained by LVS may be ramified.65 We can

furthermore continue based on these conclusions with quantitative structural analyses using

a Pair Distribution Function derived from electron diffraction.66 Also, our interpretation can

be verified by studying the CoPt system, which has been demonstrated to display chemical

order upon annealing.24 In addition, we have gained a deeper understanding of how to model

and control the parameters of hollow cylindrical magnetron sources to prepare high-quality

model samples with chemical composition control, opening up new possibilities for studies

and applications in essential areas such as catalysis, for example.
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Methods

Nanoparticle Synthesis

Magnetron sputtering source:21 Bimetallic (AuxAg1−x) NPs have been produced using a

homemade gas aggregation cluster source as illustrated in Figure 1, where a cylindrical

magnetron is used to sputter atoms from a central target made of twisted Au and Ag wires.

A series of electrostatic lenses are used to reduce the BNP kinetic energy to achieve a “soft

landing” on the TEM grid (for a ∼4 nm in diam. NP, this corresponds to ∼0.05 eV/atom).

The NP size distribution contained in the molecular beam can be followed in situ by time-

of-flight mass spectrometry (TOF-MS). TEM images indicate that the NP size distribution

follows a log-normal function (mean diameter ∼4 nm, width ∼3 nm; see Supplementary

Figure 8). Three different bimetallic nanoparticle samples (A, B, C) were used in the present

study whose Au content is established by a proper choice of Au:Ag twisted wires (1:1, 1:2, and

1:3, respectively). Sample D was prepared using a laser vaporization source:11 A doubled

Nd:YAG laser (532 nm) is focused onto the surface of an Ag50Au50 target rod, and the

generated plasma is quenched in a continuous He flow. Nanoparticles form in the volume

of several mm3 above the target before being swept into a vacuum through a 1 mm nozzle,

creating a supersonic expansion in which the nanoparticles are extremely and efficiently

cooled. The charged fraction of the nanoparticle beam is then mass-selected in a quadrupole

deviator27 before being deposited fragmentation-free onto TEM grids.

Electron Microscopy: Data Acquisition and Processing

In order to measure the average chemical composition of samples A, B, and C, Energy Dis-

persive X-ray Spectroscopy (EDS) was performed in an ensemble of NPs, using an open

parallel TEM beam with a long counting time to increase X-ray total intensity, while min-

imizing radiation damage (dose ∼10 e-/Å2). This measurement was performed in a JEM

2100F. The quantitative analysis of the EDS data followed the Cliff-Lorimer approach.32
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Despite the quantitative precision and accuracy of recovering the average composition with

this method, spatially resolved information is still required to quantify the chemical composi-

tion of each individual nanoparticle. The acquisition parameters were optimized to generate

reliable statistics and do not produce beam-induced modification of the sample, measuring

at 80 kV to reduce knock-on damage,67 and composition changes.68 The probe diameter was

between 0.7 - 1.0 nm, the beam current between 300-500 pA, and the dwell time between

200-400 ms, with a pixel size of 0.5 nm. The results were processed and treated using

machine learning approaches to improve quantitative EDS chemical analysis, as described

in our previous works.34,35 This measurement was performed in a JEM 2100F, and a Titan-

Themis AC corrected from LNNano-Brazil. For sample D, the average chemical composition

was calculated from an ensemble of 24 NPs measured individually by STEM-EDS. Here, the

error is derived from standard error propagation rules. For sample D, the probe diameter

was between 0.3 - 0.5 nm, beam current ∼ 1nA. NPs were measured with pixels size be-

tween 0.2 - 0.5 nm and dwell time between 50 - 200 ms, obtaining Au counts in the interval

of 2,000 - 8,000 for 6 nm NPs. This measurement was performed in a JEOL NeoArm at

Hubert Curien Laboratory at St. Etienne University, France. Data were processed using

HyperSpy,33 an open-source electron microscopy python package.

Molecular Dynamics Simulations

All MD simulations were performed with the open-source Large-scale Atomic/Molecular

Massively Parallel Simulator (LAMMPS).69 Ag/Au atomic interactions for all simulations

were modeled by the Embedded-Atom Method (EAM), with parameters obtained from Zhou

et al .70 The dimensions of the simulation box are Lx = Ly = Lz = 50 nm. The initial atomic

gas compositions were chosen such that the Au content is kept fixed (5000 atoms). The

number of Ag atoms for each case is 45000 (10% in Au), 15000 (25% in Au), 7500 (40% in

Au), and 5000 (50% in Au). The dynamics of any system simulated through MD is described

in a given ensemble that constrains some chosen thermodynamical variables. For instance,
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a system described by a microcanonical ensemble is simulated by an NV E dynamics, where

the total number of atoms N , the simulation box volume V , and the total energy E are not

modified by the integration of the equations of motion. Similarly, an NV T dynamics lead

the system to a desired temperature T .

The initial gas configuration was initially thermalized using an NVE ensemble for 100 ps.

Then, the gas was cooled down to T = 300 K during 1 ns with the addition of a Langevin

thermostat and a temperature damping of 104dt that is a hundred times larger than the

minimum recommended 100dt in order to assure high-quality results, where dt = 0.1 fs is

the timestep used in all simulations in this work. After this, we let the system thermalize

at the same 300 K during 2 ns, where a system with few-atom clusters was reached, and no

further growth of nanometer-sized particles was observed.

We simulated the evaporative cooling of Au-Ag nanoparticles with 25%, 50%, and 75% of

Au. Detail on how to build our model nanoparticles are given in the Supporting Information.

First, we linearly increased the temperature of each nanoparticle from 100 K to 3000 K

during 100 ps in an NVT dynamics. Then, we performed NVE molecular dynamics on the

hot nanoparticles for 20 ns and observed the temperature decay as each system lost atoms,

and their Ag-Au content was mapped as a function of the simulation time.

Force-Bias Monte Carlo

Force-Bias Monte Carlo (FBMC) was performed for 5×1011 steps at a target temperature of

300 K. FBMC runs are also implemented in LAMMPS. The cluster analysis was provided by

the Open Visualization Tool (OVITO).71 From the generated geometry files, we were able

to obtain the number of atoms in each cluster. The nanoparticle diameters (D = 2R) were

estimated from R = RWN
1/3, where RW is the Wigner radius (∼ 0.16 for both Ag and Au)

and N is the total number of atoms of each cluster.
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Supporting Information Available

Simulations of thermal evaporation

To study the evaporation dynamics of Au and Ag in a bimetallic nanoparticle, we build

a 40.9 Å×40.9 Å×40.9 Å cubic nanoalloy containing 4000 Ag atoms (See Figure 7 (a) at

100 K). Then, we considered three cases where Au ones replaced 25%, 50%, and 75% of the

atoms. A temperature ramp using a Nosé-Hoover thermostat was applied, where the temper-

ature of the system is increased from 100 K to 5000 K, linearly on average, as shown in Figure

7 (b). As the nanoalloy is heated, it assumes a spherical shape (snapshots shown in Figure

7 (a)). We observed the individual evaporation of Ag and Au atoms for all three relative per-

centages of each element, as can be seen in Figure 7 (c). From temperatures slightly higher

than 3000 K, the nanoparticles of all compositions begin to evaporate. We chose this value

to be the initial temperature in the evaporative cooling simulations described in the main

manuscript. We also carried out the same procedure for a 12.27 Å×12.27 Å×12.27 Å cubic

nanoalloy containing 100 atoms in total to determine how the evaporation of Au and Ag

change for smaller sizes, as shown in Figure 7 (d). In addition, for the case where there is

50% of Au, we also simulated the thermal evaporation process for nanoparticles with 500

and 1000 atoms to evaluate the size dependence of Ag and Au dissociation from the original

particle (Figure 7 (e)). The time evolution of the chemical composition of nanoparticles was

analyzed using the Visual Molecular Dynamics (VMD) software through TCL scripting.
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Figure 7: Thermal evaporation of an Au-Ag nanoparticle. (a) Structural evolution for
successive indicated temperatures of a cubic nanoalloy containing a total of 4000 atoms. The
relative amount of gold and silver is such that we have the following three cases: 25%, 50%,
and 75% in Au. (b) Nosé-Hoover thermostat set the time evolution of the temperature of the
system with an approximately linear profile. Au’s composition as a function of temperature
for nanoparticles with (c) 4000 atoms and (d) 100 atoms. (e) Size dependence of the gold
composition for nanoparticles initially with 50% Au.
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Figure 8: Histogram of AuAg NPs diameter distribution measured by TEM. The log-normal
curve is adjusted on the histogram with a peak 4 nm and FWHM of 3 nm.
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Figure 9: Representative EDS spectrum for a single BNP produced by the LVS and its fitting
to integrate the peak intensity.
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Figure 10: HAADF STEM image of AuAg BNPs produced by HCMSS.
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(20) Pilch, I.; Söderström, D.; Brenning, N.; Helmersson, U. Size-controlled growth of

nanoparticles in a highly ionized pulsed plasma. Appl. Phys. Lett. 2013, 102, 033108.
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Morphology and growth of metal clusters in the gas phase: A transition from spherical

to ramified structures. Phys. Rev. B 2006, 73, 125444.
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