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Resumo

Neste trabalho, apresentamos uma análise fenomenológica de novas interações

em experimentos com neutrinos. Dividimos este trabalho em dois resultados

principais, o primeiro considerando novas interações de corrente carregada e o

segundo para novas interações de corrente neutra.

Para novas interações carregadas, procuramos experimentos de oscilação de

neutrinos no sabor do elétron. Neste trabalho utilizamos o formalismo da Teo-

ria Quântica de Campos que não é comumente utilizado na fenomenologia dos

neutrinos. Assim, experimentos com neutrinos de elétrons foram considerados,

incluindo reatores e experimentos solares. Realizamos a análise estat́ıstica do

ajuste de oscilação e dos parâmetros permitidos.

Para novas interações de corrente neutra usamos o experimento COHERENT e

resultados de análise global de dados de oscilação. Nossos principais resultados

foram focados na solução LMA-D, que foi exclúıda por 3σ neste trabalho.

Também realizamos uma análise de sensibilidade para resultados experimentais

futuros como em reatores e detecção de neutrinos na European Spallation

Source.



Abstract

In this work, we present a phenomenological analysis of new interactions in

neutrino experiments. We divide this work into in two main results, the former

considering new charged current interactions and the latter for new neutral

current interactions.

For new charged current interactions we look to neutrino oscillation experi-

ments in the electron flavor. In this work, we use the formalism of Quantum

Field Theory which is not commonly used in neutrino phenomenology. Hence,

electron neutrino disappearance experiments were considered, including reac-

tors and solar experiments. We perform the statistical analysis of the oscilla-

tion fit and of the allowed parameters.

For new neutral current interactions we use the COHERENT experiment and

the results of a global analysis of oscillation data. Our main results were

focused on the LMA-D solution, which was (the LMA-D) excluded by 3σ in this

work. We also perform a sensitivity analysis for future experimental results,

as in reactors and neutrino detection in the European Spallation Source.
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Chapter 1
Introduction

The development of Physics in the last century led to the Standard Model of

Particle Physics [9], [10], [11] and [12]. The Standard Model is a theory of particles and

their interactions in the Universe. The first building block begins with the discovery of

tiny particles like the electron and the photon and goes to the Higgs boson discovery in

the last decade [13].

At the beginning of the twentieth century, Max Planck and Einstein created

the theory of quanta, which quantized light in packages of energy. His theory solves the

ultraviolet divergence of the black body light spectrum. A few year later, Einstein used

that idea to propose the photoelectric effect, and Compton proposed the Compton effect

in which light could scatter with electrons like a particle. In the meantime, many contri-

butions appeared involving the electron, the proton, and the neutron. The description of

particles and their interactions were enough to describe the atom, that is, the matter we

see.

At the beginning of the 1930s, in an attempt to explain the missing electron

energy in the beta decay process, Pauli proposed the existence of a new particle, the

neutrino. Later, Enrico Fermi described the interactions involving neutrinos in his theory

of the beta decay. Fermi’s theory was a four-point interaction between neutrinos, electrons,

protons and neutrons. The neutrino should always appear in a beta decay process carrying

away part of the energy of the particles. A conceptual problem at that time was that this

particle was supposed to be massless and the intensity of the interaction to be low; hence,

the process was very challenging to be detected. However, in 1956, the neutrino was

detected in an underground reactor for the first time [14].

At that time, many other particles were already discovered, like the pion, the

muon and antiparticles as the positron. In addition, many others were found with time,

among them the second neutrino. The rising number of particles discovered led to the
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creation of an organizing theory that explains all the particles and their interactions using

symmetries between them. This theory was called the Standard Model.

The standard model was built on two essential symmetries, the SUC(3) and

the SUI(2) × UY (1). The former appears in the strong interaction Lagrangian, and the

latter is the weak interaction Lagrangian. The strong interaction happens between color-

charged particles, such as quarks and gluons. The quarks are building blocks of barions

(as protons and neutrons) and mesons (as the pion and kaons). In turn, the gluons are

massless particles that mediate this interaction.

The second symmetry is more critical for this thesis. It leads to the weak

interaction between W and Z bosons, leptons (electron, muon, tau, and neutrinos) and

quarks. The weak interaction can be classified as a neutral current or a charged current

interaction, depending on whether the boson mediator is the charged W or the neutral Z

boson. It is the generalization of the four-point theory of Fermi interactions.

The Standard Model (SM) formalism is the Quantum Field Theory, an ap-

proach based on fields instead of particles. The SM has a field Lagrangian, which contains

all particles and interaction. The terms generated by the SM symmetries can be used to

compute observable quantities as decay rates and cross-sections. The Quantum Field

Theory (QFT) is a mathematical framework that mixes Quantum Mechanics and special

relativity concepts, hence it mixes the description of small with high energy particles.

In addition, the ordinary Quantum Mechanics can not be used to describe the photon

because it has zero mass and travels at the velocity of light. Hence, QFT is a necessary

theory for the correct description of the photon [15]. In this context, the quantization of

the electromagnetic field was the first Quantum Field Theory and was developed in the

first 30 years of the last century. The inception of Quantum Field Theory arose mixed

with Quantum Mechanics, with Einstein’s photoelectric effect theory and other contribu-

tions between 1910 and 1930. Later, many issues (ultraviolet and infrared divergence)

appeared in the formalism that were solved by the renormalization concept.

The last building block to be discovery in the Standard Model was the Higgs

boson. The Higgs boson appears in the SM after a process called symmetry breaking,

used to generate renormalizable mass for all massive particles of the theory [11], [16] and

[17]. The discovery of the Higgs boson was possible only in 2012 [18] and [13].

In the Standard Model, the neutrino is described as a massless particle. How-

ever, in 1998, the Super-Kamiokande collaboration confirmed the neutrino mass using

atmospheric neutrino oscillations [19]. This is in contradiction with the Standard Model,

in which no mechanism for neutrino mass is described. The neutrino oscillation was pro-
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posed in 1958 by Bruno Pontecorvo [20] and has received the contributions of several

authors up to now. The mathematical approach for neutrino oscillation begins with the θ

puzzle and the proposal of flavor mixing by Gell-Man and Pais [21]. Later, Pais and Pic-

cioni [22] suggested a coherent superposition of the mass eigenstates in the propagation.

For neutrinos, the first hypothesis made by Pontecorvo was neutrino-antineutrino oscilla-

tion [20]. The flavor mixing was proposed in 1962 by Maki Nakagawa and Sakata [23], and

in 1968 Pontecorvo, together with Gribov [24] proposed the neutrino flavor oscillations.

The Quantum Mechanics formalism of neutrino oscillation began to receive

contributions around the 90s. One of the pioneer works in this context was that of Kayser

[25], who showed that neutrino plane wave assumptions are in contradiction with some

important physical concepts. Later on, Giunt and Kim showed that flavor states are ill-

defined in Quantum Field Theory [26] and then proposed a Quantum Field Theory Wave

Packet treatment of neutrino oscillations [27]. Discussions of the formalism of neutrino

oscillations in Quantum Mechanics and Quantum Field Theory still exist today, and we

can cite [28] as a recent review on this subject.

The neutrino oscillation formalism is based on the existence of three mas-

sive neutrinos. The massive neutrino field mix into flavor interaction fields through the

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. The PMNS matrix has four degrees

of freedom, in the standard parametrization it can be fully described by θ12, θ13, θ23 and

a complex phase δCP . In the final expression for neutrino oscillations in vacuum, two

kinematic quantities also appear, ∆m2
3i = m2

3 − m2
i (i = 1, 2) and ∆m2

21 = m2
2 − m2

1.

Hence, neutrino oscillation brings the opportunity to achieve neutrino mass information

from neutrino oscillations.

As a result, in the current scenario, we have a well-structured theory of neu-

trino oscillation whose parameters are measured with increasing precision each decade.

However, only CP violation measurements and the ordering of neutrino masses remain,

which should be measured in the next generation of neutrino experiments.

In this sense, the neutrino mass is a subject related to new physics since it is

not present in the Standard Model. There are several extensions to the neutrino oscillation

formula based on extensions of the Standard Model: new interactions in the production

and detection, new interactions in the propagation, neutrino decay, neutrino decoherence,

extra dimensions, and many others. Until the mystery of the origin of neutrino masses is

not solved, the neutrino oscillation is seen with enthusiasm as an opportunity to detect

new Physics.

One example, that is one of the subjects of this work, is the Large Mixing Angle
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- Dark solution [29]. For several years, non-standard neutrino interactions were a subject

of uncertainties for the neutrino oscillations when describing solar neutrino disappearance

experiments. Solar experiments are used to measure with the most considerable precision

the mixing angle θ12. However, the possible presence of new interactions shadows the

solution parameter space, leading to discussions that remain up today.

In this work, we investigate implications of new interactions in neutrino oscil-

lations. In chapter2, we introduce the neutrino oscillation formalism used in the following

chapters. We show the derivation of neutrino oscillation in Quantum Mechanics and the

Quantum Field Theory formalism that will be used in chapter 3. We divide the work

into two main results: for charged current (CC) contact interactions in the production

and detection, discussed in chapter 3. Then, in chapter 4, we present our findings related

to new interactions in the neutrino propagation and the solution of the so-called Large

Mixing Angle Dark Solution. In chapter 5, we review the main conclusions of this thesis.
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Chapter 2
The Neutrino Oscillation Theory

This chapter will explore the theoretical and analytical development of the

neutrino oscillation description. This was a subject of theoretical discussions over the

last 30 years. We can highlight some reviews of the subject used to develop this chapter:

[30], [27], [31], [28] and, more recently, [32]. At the first 20 years of neutrino oscillation

proposal, the oscillation probability was based on a plane-wave quantum mechanics [24]

and later, a wave packet treatment was also included [25]. At the beginning of the ’90s, a

quantum field theory emerged, discussing some issues when defining flavor eigenstates [26].

In terms of neutrino phenomenology, this is not well known, since all those approaches

agree in the final expression of the oscillation probability.

In the 2000’s, the Quantum Field Theory formalism of neutrino oscillation

was already well established [31], [33]. In the 2010s, the connection between quantum

mechanics and quantum field theory was developed and discussed [28], and also new

physics was included in the formalism of quantum field theory [34].

In this chapter, we begin with the description of quantum mechanics plane

wave and wave packets. We then introduce the quantum field theory formalism and its

connection to quantum mechanics. We follow closely to [28].

2.1 Quantum Mechanics

2.1.1 Basis vectors

The basis of the quantum mechanics formalism of neutrino oscillation is to

assume that there is a vector basis for the Hilbert space, Hf , which is somehow related

to the flavor observable. Every neutrino is created in one of the flavor base vectors that

is characterized by the lepton generated together. However, for a neutrino to appear or
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disappear, it must be assumed that flavor eigenstates are not free Hamiltonian eigenstates.

The first postulate for the oscillation mechanism is:

Postulate 1: There is a basis belonging to the Hilbert space, whose vectors are non-

degenerate eigenstates of the operator Oα, associated with the measure of weak interaction

flavors: (e, µ, τ).

The second postulate is based on the fact that flavor eigenstates are not diag-

onal in a mass basis. We can formally express it as follows:

Postulate 2: Let the free Hamiltonian of a neutrino α produced in a weak interaction be

Ĥ. Then we have:

[Ĥ,Oα] ̸= 0. (2.1)

With these two postulates, it is possible to build both the theory of plane

waves and the theory of wave packets. To understand how the Hamiltonian eigenstates

relate to the flavor base: let the set of all flavor eigenstates be {|να⟩}. Through these

postulates, it is possible to show that there will always be a set of vectors, {|νi⟩} with

well-defined mass, which diagonalizes Ĥ, such that:

|να⟩ =
∑
i

U∗
αi |νi⟩ , (2.2)

where U∗
αi are components of the unit matrix Û that diagonalizes the Hamiltonian Ĥ. It

should be noted that postulate 1 is valid only if all eigenstates of the Hamiltonian are

kinematically independent. For example, if at least one of the neutrinos is heavier enough

to cause suppression of its production or detection, the mass state will no longer be part

of the mixing. In this case, we need to redefine flavor states, which will be no longer

orthogonal, and will depend on the energy regime in question. This is one of the first

indications of problems in the QM formalism.

2.1.2 Plane wave formalism

The plane wave formalism is very important to obtain the standard form of

the oscillation probability. To arrive at the plane wave treatment, suppose an initial state

|να⟩. The probability of finding the state β at time t and distance x, can be found through

the amplitude:

Aα→β(t, r) = ⟨νβ| exp
(
−iĤt+ iP̂ · r

)
|να⟩ , (2.3)

here P̂ is the momentum operator.
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Hypothesis 1 (Plane wave): The mass states |νi(0)⟩ are momentum eigenstates.

Through hypothesis 1, when calculating the probability with the usual procedures of

quantum mechanics, we find:

P (t, r) = |Aα→β(t, r)| =
∑
ij

UαiU
∗
βiU

∗
αjUβje

i(ϕi−ϕj) (2.4)

with:

ϕi = Eit− pi · r. (2.5)

Here, Ei =
√
p2i +m2

i is the energy of the massive neutrino i, pi is its momentum and

mi is the neutrino mass. This is a widely used unrealistic hypothesis, the hypothesis

of equal moments. It has the consequence of eip·r as a global phase, however it is not

necessary to find the usual formula, as we will see. Since oscillation experiments are not

time dependent, a number of works were carried out in an attempt to remove the time

dependence of Equation (2.4).

In general, we can assume different detection times for massive neutrinos, that

is t = ti + δti.

Since the massive neutrino is on-shell, it has energy Ei related to momentum pi

and it is possible to expand the energy Ei around an average momentum, p, which is not

very different between the different eigenstates of mass. Furthermore, we will also assume

that there is an average mass, m, such that δm2
i = m2

i −m2. With those assumptions, it

is possible to rewrite the phase as:

ϕi =
√
p2i +m2

i ti − pjx =

(
E +

1

2E
δm2

i +
p

E
δpi

)
ti − px− δpx+ Eδti. (2.6)

For simplicity, we assume in Eq. (2.6) the momentum in the x direction. At that mo-

mentum, using the relationship p/E = v and applying the so-called classical propagation

condition vt− x = 0 and the prescription of equal times δti = ti − t = 0, we find:

ϕi − ϕj ≈
∆m2

ijx

2E
, (2.7)

in which

∆m2
ij = m2

i −m2
j . (2.8)

It should be noted that the deduction made is valid only if the second order

term (δm2
i )

2 is negligible. For non-quasi-degenerate masses, the usual formula is no longer

valid.

Conceptual problems arise when we look more carefully at the real situation:
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• Classical propagation condition: As plane waves are delocalized in space-time, this

condition cannot be justified without a more sophisticated treatment, for example,

with wave packets[31].

• Prescription of equal times: Imposing equal times in the laboratory, also means

imposing equal proper times. It is inconsistent with relativity given neutrinos have

different velocities.

• It is a fact that if the moments have zero uncertainty, the uncertainty in the initial

position of the neutrino would be infinite, so that it would be impossible to have a

well-defined oscillation length.

Some of those issues can be overcome in the quantum field theory wave packet

formalism. The subtleties of the wave packet formalism are covered in the quantum field

theory, hence, we will discuss them in the context of QFT.

2.2 Quantum Field Theory

In particle physics, we are mainly interested in the measurement of cross-

sections. Cross-section measurements reveal the conservation laws and symmetries of

the theory. One of the primary assumptions in cross-section calculations is that the

interactions are pointlike; that is, they occur in a definite small position in space and

time. The cross-section calculations for particle physics come mainly from Quantum

Field Theory.

However, when we talk about neutrino oscillations, the process occurs not in a

short position in space and time but on scales that can vary from kilometers to hundreds of

kilometers. Hence, if one wants to understand oscillations in the background of Quantum

Field Theory, it is necessary to consider that pointlike production and detection are unique

processes separated through space and time, see fig. 2.1.

A seminal article on neutrinos in QFT in 1993 showed that Fock space can not

well-define flavor states [26]. Hence, it is only possible to perform kinematic calculations

in Quantum Field Theory considering the neutrino mass states.

Moreover, in order to avoid problems of localization in space and time, all

the particles involved in the process of production and detection should be considered as

wave packets [27]. This is the external wave packet treatment, the core principle of the

following calculations. In this approach, the neutrino is not seen as an initial or final state

but as an intermediate virtual particle. The asymptotic states are, in reality, the particles
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Figure 2.1: Feynman diagram for a neutrino oscillation process, from production to detection.

Here, P means production, and D is detection. The time arrow is from the left to the right.

involved in neutrino detection; those can be mesons, protons, nucleons, and any particle

involved in a process that can produce or detect neutrinos.

2.2.1 External Wave Packet Treatment

In the external wave packet treatment, the neutrino is produced near to a

region x⃗P at a time tP and detected near to x⃗D at time tP . We label the production

particles as α and its momentum at production pα and at detection β and pβ, we will

omit the spin information. The Feynman diagram for the oscillation process is shown in

figure 2.1. The amplitude for this process is given by:

iA(α′, β′ → α, β, β′′) = out⟨β
′′, β, α|α′, β′⟩in. (2.9)

If the neutrino is produced and detected through charged current, we will always charac-

terize the neutrino by the production of two leptons, α in the neutrino production and β

in the neutrino detection. So, as we are interested in the flavored neutrino state, we will

denote the amplitude by A(α′, β′ → α, β, β′′) = A(α′, β′ → l−α , l
−
β , β

′′).

We will consider that all the states are disentangled, thus allowing us to write

the state as |A,B⟩ = |A⟩ |B⟩ and work with each individual particle state. Hence, the

wave packet states will be represented by a sum over the momentum states:

|ψ⟩ =
∫

[dp⃗]× ψ(p⃗, P⃗ , x⃗0, t0)× |p⃗⟩ , (2.10)

where t0 is the initial time, x⃗0 is the initial position, P⃗ is the momentum where the wave
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packet is distributed around and

[dp⃗] =
d3p⃗

(2π)3
1√
2Ep

. (2.11)

In addition, it is also possible to write the wave packet as a momentum distribution

translated over space and time

ψ(p⃗, P⃗ , x⃗0, t0) = ψ(p⃗, P⃗ )eiEt0−ik⃗·x⃗0 . (2.12)

Since all the initial and final states are defined, we can now calculate the amplitude. The

states in eq. (2.9) are interaction eigenstates and for now, all the states we use are free

asymptotic states. In this way, the amplitude will be given by [35]:

iA(α′, β′ → να, νβ, β
′′) = ⟨β′′| ⟨β| ⟨α|

{
T

[
exp

(
−i
∫
d4xLI

)]
− I
}
|α′⟩ |β′⟩ , (2.13)

where LI is the interaction Lagrangian, which includes all the possible interactions that

involve the production (detection) particles. To calculate the amplitude, we use pertur-

bation theory (Feynman rules in position space), obtaining

iA(α′, β′ → να, νβ, β
′′) =

 ∏
γ=(α∗,α′)

∫
[dp⃗γ]ψγ(p⃗γ, P⃗γ)× eiEγtP−ip⃗γ x⃗P


×

 ∏
γ′=(β∗,β′,β′′∗)

∫
[dp⃗γ′ ]ψγ′(p⃗γ′ , D⃗γ′)× eiEγ′ tD−ip⃗γ′ x⃗D


×⟨p⃗β′′ | ⟨p⃗β| ⟨p⃗α|

{
T

[
−1

2

∫
d4xLP (x)

∫
d4yLD(y)

]}
|p⃗α′⟩ |p⃗β′⟩ .

(2.14)

Here LP (x) and LD(y) are the Lagrangian for the interactions at production and detection.

The wave functions of stats that have (*) are conjugated. The third line of equation (2.14)

is the plane wave amplitude, which we will denote it by Apw. In our approximation, we

are in an effective low-energy approximation. So, the Lagrangian for production and

detection doe not depends on the bosons’ W± and Z0 masses:

LP (x) = −GF√
2

∑
i

Uαij
†
Pµ
lα(x)(1− γ5)γµνi(x) + c.h. (2.15)

LD(y) = −GF√
2

∑
i

U∗
βijDµνi(y)(1− γ5)γµlβ(y) + c.h. (2.16)
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For simplicity, let us take a concrete example. Let us assume, α → l−α , β → l−β ,

α′ → π−, β′ → AI and β′′ → AF :

|π−⟩ =
∫

[dp⃗]ψπ(p⃗, P⃗ )e
−ipxP |π−(p⃗)⟩ ,

|l−α ⟩ =
∫

[dq⃗]ψα(q⃗, Q⃗)e
−iqxP |l−α (q⃗)⟩ ,

|AI⟩ =
∫

[dk⃗]ψAI
(k⃗, K⃗)e−ikxD |AI(k⃗)⟩ ,

|l−β ⟩ =
∫

[dq⃗′]ψβ(q⃗
′, q⃗′)e−iq′xD |l−β (q⃗

′)⟩ ,

|AF ⟩ =
∫

[dk⃗′]ψAF
(k⃗′, K⃗ ′)e−ik′xD |AF (k⃗

′)⟩ .

(2.17)

We will treat the initial and final states as asymptotic states. With this hy-

pothesis, the amplitude of the process can be calculated through the matrix S:

iA(π−, AI → l−α , l
−
β , AF ) = ⟨AF , l

−
α , l

−
β |
{
T

[
exp

(
−i
∫
d4xLI

)]
− I
}
|π−, AI⟩ . (2.18)

LI is the interaction Lagrangian and includes interactions that produce and detect neutri-

nos. Another fundamental hypothesis is to assume that there is no entanglement between

the states of the production and detection particles. With this, we obtain:

|AF , l
−
α , l

−
β ⟩ = |AF ⟩ |l−β ⟩ |l

−
α ⟩ , (2.19)

|π−, AI⟩ = |AI⟩ |π−⟩ . (2.20)

Given these conditions, it is possible to calculate the amplitude (2.18) through perturba-

tion theory. The calculation becomes simple if we calculate the tree diagram in position

space, figure 2.1. Assuming the existence of only one mediating neutrino, we are taking

to the amplitude below:

Aj =

∫ ∫ ∫ ∫
[dk⃗][dq⃗][dk⃗][dq⃗′]ψPI

(q⃗, Q⃗)ψDI
(q⃗′, Q⃗′)ψ∗

PF
(k⃗, K⃗)ψ∗

DF
(k⃗′, K⃗ ′)MP (q, k)MD(q

′, k′)

×
∫
d4x

∫
d4x′

∫
d4p

(2π)4
e−i(q−k)xP e−i(q′−k′)xDe−ip(x′−x)e−i(q−k)xe−i(q′−k′)x′ (/p+mj)

p2 −m2
j + iϵ

,

(2.21)

where A(π−, AI → l−α , l
−
β , AF ) =

∑
j Aνj . From the previous equation, we can see that

there is a sum over all the momenta of all the particles involved, and also over the position

of production and detection of the neutrino. Since x and x′ are free variables, we can

change variables:

x+ xP → x

x′ + xD → x′,
(2.22)
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separating the detection and production terms in a more frindly form:

Aj =

∫
d4p

(2π)4
ϕP (K⃗, Q⃗, p)Gν(xP , xD, p)ϕD(K⃗

′, Q⃗′, p) (2.23)

in which

ϕP (K⃗, Q⃗, p) =

∫ ∫
[dk⃗][dq⃗]MP (q, k)ψPI

(q⃗, Q⃗)ψ∗
PF

(k⃗, K⃗)

∫
dxe−ix(q−k−p), (2.24)

ϕD(K⃗
′, Q⃗′, p) =

∫ ∫
[dk⃗′][dq⃗′]MD(q

′, k′)ψDI
(q⃗′, Q⃗′)ψ∗

DF
(k⃗′, K⃗ ′)

∫
dx′e−ix′(q′−k′+p), (2.25)

and the propagator

Gν(xP , xD, p) =
(/p+mν)

p2 −m2
ν + iϵ

eip(xP−xD). (2.26)

The amplitude (2.23) has a simple interpretation. Here, ϕP is the amplitude for the

production of a neutrino. It depends only on the interaction in the production and the

wave packets of the particles involved. The same interpretation holds for the ϕD detection.

The Green’s function for the Gν neutrino is responsible for connecting production with

detection. Therefore, conditions for production and detection are contained in ϕP,D while

conditions for propagation are contained in the Gν .

If we have more than one neutrino involved in the process, we can sum over

the amplitudes of all neutrinos, thus includes production, detection and propagation:

A(π−, AI → l−α , l
−
β , AF ) =

∑
i

Aνi . (2.27)

For convenience, it is possible to rewrite the amplitudes as follows:

M
(i,α)
P (pi, pf ) → UαiM

(i)
P (pi, pf ), (2.28)

M
(i,α)
D (pi, pf ) → U∗

αiM
(i)
D (pi, pf ), (2.29)

assuming that

M
(i)
P (pi, pf ) ≈MP(pi, pf ), (2.30)

M
(i)
D (pi, pf ) ≈MD(pi, pf ). (2.31)

We mean that the production and detection amplitudes are not sensitive to the neutrino

mass, mi ≪M , where M is the mass of the particles involved in the process.
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Hence, for the whole process, if a lepton α appears at the production, and a

lepton β at the detection, we can sum over all the neutrinos, obtaining:

A(π−, AI → l−α , l
−
β , AF ) =

∑
i

U∗
αiUβi

∫
d4p

(2π)4
ϕP (K⃗, Q⃗, p)Gi(xP , xD, p)ϕD(K⃗

′, Q⃗′, p).

(2.32)

Continuing with the calculation of this amplitude, we can separate the momentum integral

from the energy integral:

A(π−, AI → l−α , l
−
β , AF ) =

∑
i

U∗
αiUβi

∫
dEi

∫
d3pi
(2π)4

ϕP (K⃗, Q⃗, pi)Gi(xP , xD, pi)ϕD(K⃗
′, Q⃗′, pi).

(2.33)

The integral at the momentum can be performed using Grimus-Stockinger’s theorem [36]:

For large L, positive A and a smooth function ψ(p⃗),∫
d3p

ϕ(p⃗)eip⃗·L⃗

A− (p⃗ )2 + iϵ
= −2π2

L
ϕ

(
√
A
L⃗

L

)
ei

√
AL +O

(
L−3/2

)
. (2.34)

Matching A = E2
i −m2

i = p2i , the amplitude will be:

A(π−, AI → l−α , l
−
β , AF ) = −

∑
i

U∗
αiUβi

∫
dEie

iEiT
1

8π2L
ϕP

(
K⃗, Q⃗, piL̂

)
ϕD

(
K⃗ ′, Q⃗′, piL̂

)
eipiL,

(2.35)

where L is |x⃗P − x⃗D| and L̂ is the normalized direction of (x⃗P − x⃗D). From now on,

let us abbreviate A(π−, AI → l−α , l
−
β , AF ) → Aαβ(L, T ). With the simplification of the

amplitudes, it becomes simpler to calculate the probability

P osc
αβ (L, T ) = |A(L, T )|2 = 1

(8π2L)2

∑
ij

U∗
αiUβiUαjU

∗
βj

∫
dEi

∫
dEj(some factors)ei(Ei−Ej)T .

(2.36)

It should be noted that the quantity P osc
αβ (L, T ) gives us the probability of producing a

lepton lα and detecting of a lepton lβ separated for a distance L and a time T . However,

in what follows, we will be interested in averaging the probability over time, so:

P
osc

αβ (L) =
1

T

∫
dTP osc

αβ (L, T ) =
1

(8π2)4πL2

∑
ij

U∗
αiUβiUαjU

∗
βj

∫
dEiϕ

i
Pϕ

∗j
P ϕ

i
Dϕ

∗j
D e

i(pi−pj)L,

(2.37)
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where we use the delta function:∫
dTei(Ei−Ej)T = 2πδ(Ei − Ej). (2.38)

Defining the Probabilities

In an oscillation experiment, one of the main quantities observed is the total

detection rate. In a given experiment ,it is defined by:

Nβ

Nα

= Γtot
αβ =

∫
dΓtot

αβ

dE
dE. (2.39)

The detection rate is the ratio of the number of α leptons produced to the number of β

leptons detected. We multiply the energy production rate by the flow suppression factor

1/4πL2 and the detection cross-section when calculating the total detection rate. For the

case of neutrino experiments, there is a quantity called the probability of oscillation that

depends on L and E, so we should write:

dΓtot
αβ

dE
=

1

4πL2

dΓprod
α

dE
P (να → νβ)(L,E)σβ(E). (2.40)

Following the equation (2.40), the quantity called probability of oscillation, can be found

through:

P (να → νβ)(L,E) =
4πL2 dΓ

tot
αβ

dE

dΓprod
α

dE
σβ(E)

, (2.41)

which can be interpreted as the probability that a neutrino produced with flavor α will

be detected with flavor β.

From now on, we will calculate the quantities shown on the right side of the

equation (2.41). Starting with the total rate of the process, we will use the result of [37],

where the total rate is calculated and given by

Γtot
αβ(L) = NPND

P
osc

αβ

T 2
0

. (2.42)

Here, T0 is a large time when compared to the usual time scales for production and detec-

tion, NP is the number of neutrinos produced, ND is the number of neutrinos detected,

and P
osc

αβ is given by eq. (2.37):

P
osc

αβ (L) =
∑
ij

1

(8π2)4πL2

∑
ij

U∗
αiUβiUαjU

∗
βj

∫
dEiϕ

i
Pϕ

∗j
P ϕ

i
Dϕ

∗j
D e

i(pi−pj)L. (2.43)

We are interested in the rate per energy. Taking the derivative of eq. (2.42) with respect

to the energy, we can use:

P
osc

αβ (L) =

∫
dE

P
osc

αβ (L)

dE
, (2.44)
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to find
dΓtot

αβ(L)

dE
=

NPND

(8π2)4πL2T 2
0

∑
ij

U∗
αiUβiUαjU

∗
βjϕ

i
Pϕ

∗j
P ϕ

i
Dϕ

∗j
D e

i(pi−pj)L. (2.45)

Now, we only have to calculate the production rate and detection cross section to find the

oscillation probability through the equation (2.41). The probability that an α lepton will

be produced is:

P prod
α = ⟨π−| Ŝ |να, lα⟩ =

∑
i

|Uαi|2
∫
d3pi

∣∣∣ϕP

(
K⃗, Q⃗, pi

)∣∣∣2 =∑
i

|Uαi|2

2π2

∫ ∣∣∣ϕP

(
K⃗, Q⃗, pi

)∣∣∣2EidE.

(2.46)

The production rate will be the time ratio multiplied by the number of producing particles:

Γprod
α = N0

P prod
α

T0
⇒ dΓprod

α

dE
=
N0

T0

∑
i

|Uαi|2

2π2
|ϕP (E, pi)|2Ei. (2.47)

For detection, we must assume that the neutrino has a well-defined energy and momentum,

so that detection probability will be:

P det
β (E) =

∑
i

|Uβi|2 |ϕD (E, pi)|2
1

V
. (2.48)

Here the factor 1/V appeared when we suppose that the neutrino is produced with a

well-defined momentum: it is the normalization of the plane wave. Analogously to the

production case, we need to find the detection rate Γdet
β that relates to the cross section

through:

σβ(E) =
Γdet
β

nkvk
= Γdet

β V
E

pk
. (2.49)

Here nk is the number of particles per volume (in our normalization it is 1/V ) and vk =
E
pk
.

So the cross section will be:

σβ(E) =
ND

T0

∑
i

|Uβi|2 |ϕD (E, pi)|2
E

pk
. (2.50)

Substituting the equations (2.45), (2.47) and (2.50) into (2.41), we find the probability of

oscillation:

P (να → νβ)(L,E) =

∑
ij U

∗
αiUβiUαjU

∗
βjϕP (E, pil̂)ϕ

∗
P (E, pj l̂)ϕD(E, pil̂)ϕ

∗
D(E, pj l̂)e

i(pi−pj)L∑
i |Uαi|2|ϕP (E, pil̂)|2pi

∑
j |Uβj|2|ϕD(E, pj l̂)|2p−1

j

.

(2.51)

At the current stage, the oscillation probability differs a little from the usual formula,

which is



31

P (να → νβ)(L,E) =
∑
ij

U∗
αiUβiUαjU

∗
βj exp

(
−i

∆m2
ijL

2p

)
, (2.52)

where ∆m2
ij = m2

i −m2
j is the squared mass difference between the neutrinos and p the

momentum of the neutrinos. On the other hand, we can recover the standard case if we

assume two conditions:

• The wave packets are such that:

|pi − pj| ≪ σpP , σpD, (2.53)

where σpP and σpD are the uncertainties in the momentum distributions at the pro-

duction and detection respectively. With this assumption, the peak of the functions

ϕD, ϕP can be approximated by pi → p.

• The neutrino masses are quasi-degenerate, that is:

|pi − pj| ≪ pi, pj. (2.54)

With this hypothesis, we can replace the momenta pi in the numerator and denom-

inator by p and still perform the approximation:

pi − pj ≈
m2

j

2p
. (2.55)

Applying the conditions (2.53) and (2.54) in equation (2.51), we recover the standard case

presented in eq. (2.52).
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Chapter 3
Non-standard neutrino interactions:

production and detection (CC)

If Physics Beyond the Standard Model exists, non-standard interactions can

be present in the neutrino production and detection. When present in the production and

detection, interactions are assumed to be ”charged current” types. That is, the interaction

mediator has a non-zero charge. The study of new interactions in high-energy physics can

mainly follow two directions:

• Model building: here, the theory is built on symmetries step by step. It is the

most consistent way to build a theory (the Standard Model is built in that way).

However, it is challenging and complex to construct without generating conflicts

with observation;

• Effective Field Theories (EFT’s): we integrate out all high-energy gauge bosons,

and relics of the high-energy theory appears at low energy.

In this chapter, we study the consequences of non-standard interactions in the

production and detection. We use solar and reactor neutrino experiments. First, we

discuss the scenario of a general structure of new interactions (scalar, tensor, pseudo-

scalar, left-handed, and right-handed). In this work, we will focus only on scalar and

tensor interactions in the final analysis. All the interactions considered here are charged-

current types, and present on beta and inverse-beta decays. We give more details in the

following sections.

In section 3.1, we give a brief introduction to the Lagrangian of new interac-

tions from an effective field theory. In section 3.2, we give a theoretical overview including

amplitude calculations oscillations in the presence of new interactions, formulas, and dis-

cussions about the oscillation regime. In section 3.3, we give details about the analysis
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and statistical quantities used to test the model. Finally, in section 3.4, we present the

results and conclusions.

3.1 Effective Field Theory

As we already discussed, when studying new interactions in particle physics,

one can follow through the model building approach. That is, construct the model under

symmetries of nature. However, despite a general and complete scenario, due to the

increase of the number of parameters to describe the full theory, this procedure is complex

and can be very challenging.

The Effective Field Theory is an alternative method if the energy scale of the

new interactions is above the experimental data. It is not necessary to look at the details

of the theory (it is above the energy scale of interest). All possible Gauge bosons were

”integrated out.” The EFT is the approach we choose to follow in this work.

In more detail, an Effective Field Theory (EFT) arises when the experimental

energy scale, Λ, is beneath the mass of the particles of the theory. For example, in the

Fermi theory of weak interactions, the effective Lagrangian is a four-vertice interaction,

the Fermi coupling constant hides all the electro-weak gauge bosons and SU(2) × U(1)

couplings:

GF =

√
2

8

g2

M2
W

. (3.1)

As a further example, the Standard Model can be an Effective Field Theory

for energies related to the LHC scale, 1 TeV. In this situation, if it is possible to consider

the existence of new physics beyond the LHC scale, we can define the Standard Model

Effective Field Theory (SMEFT) [38, 39]. The SMEFT includes the Standard Model

Lagrangian and Effective Interactions coming from other energy scales:

L = LSM +
∑
j≥5

1

Λj−4

∑
i

C
(j)
i√
2GF

O(j)
i (3.2)

where C
(j)
i gives the strength of the interaction, they are called dimensionless Wilson

Coefficients, and O
(j)
i are dimension-j operators for different Standard Model particles.

The index i runs over a set of Standard Model Particles and Lorentz Invariant interactions:

left-handed, right-handed, tensor, scalar, and pseudo-scalar. The SMEFT is very useful

when searching for the effects of new interactions at low energy.

For our case of study, we can integrate out the particles above the electroweak

interaction scale1, Λ ∼ 100 GeV. At this point, the structure of the non-standard interac-

1Z, W±, quark top, Higgs.
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tions is the same as in the SMEFT. On the other hand, the Standard Model Lagrangian in

the weak sector reduces to four-vertice interactions. An EFT on this scale is called Weak

Effective Field Theory (WEFT). Our purpose is to reach reactor and solar energies, so

that we can go further down in the energy scales, that is, below the proton mass scale

Λ ∼ 1 GeV.

In some specific cases2, there is a match between the WEFT and the SMEFT.

For such cases, if we constrain the non-standard interaction parameters, we will be con-

straining the Wilson Coefficients [39].

3.1.1 Lee-Yang Effective Field Theory

We focus our interest here on neutrino production at reactors and in the sun.

In this case, two points should be distinguished:

• We are in the ∼ 10 MeV energy scales, where protons and neutrons are more

important than quarks;

• Our interest is the electroweak sector, that is, interactions between quarks and

leptons;

• We will only consider dimension-6 operators. Due to the small neutrino mass, we

neglect dimension-5 operators. Dimensions higher than six are suppressed by Λn−6

cut-off.

Concerning the first point, we use the Lee-Yang Effective Field Theory (LYEFT).

The LYEFT is a non-relativistic effective interaction theory between protons and neutrons

in the electroweak sector. The LYEFT is appropriated at the energies smaller than the

proton mass, 1 GeV.

In this thesis, we study reactor and solar neutrinos for which the energies are

around 10 MeV. The Standard Model interaction Lagrangian for this theory is [40]:

LLY = − Vud√
2GF

∑
α=(e,µ,τ)

[pγµ(gV − γ5gA)n]
[
lαγµPLνα

]
+ h.c.. (3.3)

Here, Vud is the u−d Cabibbo–Kobayashi–Maskawa (CKM) quark matrix component, gV

and gA are experimental values related to the Fermi (vector) and Gamow-Teller (axial)

transitions. The second and third points constrain us to including dimension-6 interactions

2e.g., no particles between both energy scales.
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between quarks and leptons. In the non-relativistic energy scale, the non-standard new

interactions (NSI) follow the Lagrangian

LNSI = − Vud√
2GF

∑
α,β

{
gV [ϵL + ϵR]αβ(pγ

µn)(lαγµPLνα) − gA[ϵL − ϵR]αβ(pγ
µγ5n)(lαγ

µPLνα)

+ gS[ϵS]αβ(pn)(lαPLνα)− [gT ]αβ(pσ
µνn)(lασµνPLνβ) + h.c.

}
,

(3.4)

where, σµν = {γµ, γν} and γµ are the Dirac matrices. The [ϵX ]αβ are the couplings

related to the Wilson coefficients that are always proportional to the square of the Higgs

Vaccum Expectation Value (VEV), v, and to the inverse of the new physics energy scale,

Λ, i.e., [ϵX ]αβ ∝ v2

Λ2 . From the models of nuclear quark distributions and experimental

measurements [41], we know that: gA = 1.2728± 0.0017, gS = 1.02± 0.11, gP = 349± 9

and gT = 0.987±0.055. Here, the gA, gV , gT and gS were extracted from Refs. [42, 43, 44].

In this work, we are mainly interested in beta, and inverse beta decays at reactors and

in the sun. In this case, ϵP can be neglected at low energies [45]. The effects of [ϵ[L,R]]ee

are not considered here since we suppose experiments cannot distinguish them in the

measurements of Vud and gA at the Lagrangian level:

Vud[I+ ϵL + ϵR]ee, gA
[I+ ϵL − ϵR]ee
[I+ ϵL + ϵR]ee

. (3.5)

We also neglect non-diagonal ϵR, as it goes with O(Λ−4), which is above the mW scale.

3.2 New interactions and neutrino oscillations

The neutrino production comes together with a lepton with a given flavor. For

example, the beta decay process in reactors produces an antineutrino, converts a neutron

into a proton, and releases an electron. Because of the electron, the antineutrino produced

is called electron antineutrino. However, today we know this process is more complex than

that, and the simple phrase ”electron neutrino” requires clarification. The whole process

of neutrino oscillation and neutrino flavor state were discussed in details in Chapter 2.

In this section, we discuss the process of neutrino production and detection in

the presence of oscillations. This discussion is already present in the literature following

Refs. [41, 34], which we will follow closely.

The calculation for producing a neutrino with mass i begins with the La-

grangian given in Eqs. (3.4) and (3.3). For each four-point term in those equations, we
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can write an amplitude that later should be summed coherently:

MP
αk = U∗

αiMP
SM +

∑
X=L,R,S,T

[ϵXU ]
∗
αiM

P
X . (3.6)

Here the amplitude comes together with the flavor of the associated lepton α, X is the

type of interaction, and we have already seen the PMNS matrix. We can do the same

for the detection process, where instead of the letter P (production), we will use the

letter D (for detection). In section 3.2.2 we give more details about the calculation of the

amplitudes for reactors and the sun.

In the Quantum Field Theory approach to the neutrino oscillation, the total

rate is process-dependent (2.43), that is, it is dependent on the amplitudes for production

and detection. Consequently, it can also depend on the interaction Lagrangian and the

rates with Beyond The Sstandard Model (BSM) physics for a neutrino produced in a

να state detected as a νβ state. This was given by Eq. (2.45) (neglecting wave packet

contributions) and calculated for the first time on [45]:

Rαβ ∝
∑
k,l

e−iLϕkl

∫
dΠPdΠDMP

αkM
P

αlMD
βkM

D

βl. (3.7)

Here,

ϕkl ≡ ∆m2
kl/2Eν , (3.8)

where ∆m2
kl ≡ m2

k−m2
l is the squared mass difference between the mass eigenstates k and

l, and Eν is the neutrino energy. The ΠD(ΠP ) sums over the detection (production) phase

space. In Eq. (3.7) the BSM fluxes and cross-sections are included through the interaction

amplitudes. In the Standard Model case, we factor the fluxes and cross-section, making

the oscillation probability process-independent. For the BSM case, we will also factorize

the Standard Model fluxes and cross-sections:

RSM
αβ ∝

∑
k,l

∫
dΠPdΠD

(
MP

αk

)SM (MP

αl

)SM (
MD

βk

)SM (MD

βl

)SM
δαβ = ϕSM

α σSM
β δαβ (3.9)

where
(
MP,D

αk

)SM
are the amplitudes for production of a να neutrino and detection of a

νβ neutrino in the Standard Model, ϕSM
α is the να neutrino flux, and σSM

β is the detection

cross-section for νβ neutrino. Notice that there is no dependence on the distance between

the source and the neutrino detection. Applying Eq. (3.9) on Eq. (3.7), we will have:

Rαβ

ϕSM
α σSM

β

=
∑
k,l

e−iϕklL
[
V kl
α (pX)

]
×
[
V kl
β (d∗X)

]∗
, (3.10)
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where

V kl
α (pX) = U∗

αkUαl + pXL(ϵXU)
∗
αkUαl + p∗XLU

∗
αk(ϵXU)αl + pXX(ϵXU)

∗
αk(ϵXU)αl. (3.11)

The pXY(dXY) is the ratio in the production (detection) between the squared amplitude

terms MX
αk and MY

αk divided by the Standard Model squared amplitude (the definitions

of p’s and d’s include the integration over the phase space):

pXY ≡
∫
dΠPA

P
XA

P

Y∫
dΠP |AP

SM|
2 , dXY ≡

∫
dΠDA

D
XA

D

Y∫
dΠD |AD

SM|
2 . (3.12)

In the expression for antineutrinos, one should replace in Eq. (3.10):

U → U∗ and [ϵX ]αβ → [ϵX ]
∗
αβ. (3.13)

First, we should use Eq. (3.12) to calculate the p’s (and d’s), and then, perform

the calculations of the oscillations scale, Eq. (3.10). The former will be calculated in Sec.

3.2.2 and the latter in the Sec. 3.2.1.

3.2.1 The oscillation rate

In this section, we will develop the expressions of the oscillation rate analyti-

cally. We will separate it among orders of magnitude of ϵX and scale of oscillation. Let

us begin our understanding listing some properties of Eq. (3.10) and (3.11):

1. The oscillation rates are not oscillation probabilities, but the ratios between the

oscillation rates with BSM and the oscillation rates in the SM. Hence, they can be

larger than 1;

2. The BSM parameters come always multiplying the PMNS matrix, ϵXU ;

3. If ϵ→ 0, we recover the Standard oscillation probability for three neutrinos.

We can use property 2 to reduce the number of parameters of our analysis. That is, we

can write the PMNS matrix in terms of mixing angles and redefine the BSM parameters:

ϵXU = ϵXU(θ23, δ)R(θ13)R(θ12) = ϵ̃XR(θ13)R(θ12). (3.14)

Here we are using an alternative parametrization in the PMNS matrix, where the δ CP

violation phase is included in the 23 rotation. In this parametrization of the PMNS

matrix, we have:

U(θ23, δ) =

1 0 0

0 c23 s23e
iδ

0 −s23e−iδ c23

 , R13 =

 c13 0 s13

0 1 0

−s13 0 c13

 , R12 =

 c12 s12 0

−s12 c12 0

0 0 1

 ,

(3.15)
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and cij ≡ cos θij, sij ≡ sin θij for i, j = 1, 2, 3. The new effective BSM parameters are

[ϵ̃X ] ≡ [ϵX ]U(θ23, δ), (3.16)

the same as defined in [41] and [46, 47]:

[ϵ̃X ]eµ = c23[ϵX ]eµ − s23[ϵX ]eτe
−iδ,

[ϵ̃X ]eτ = s23[ϵX ]eµe
iδ + c23[ϵX ]eτ .

As we can see, we can write the ratio of BSM rates over the SM rates as function of

only ϵ̃. Then, all the dependence of θ23 and δ CP-violation is hidden inside the BSM

parameters. In this way, our analysis will be independent of the mixing angles θ23 and

the δ CP-violation phase.

In this analysis, we assume one type of BSM physics for each case: if scalar

interactions are present, tensor interactions are not. In addition, we do not assume [ϵ̃X ]eµ

and [ϵ̃X ]eτ present at the same time.

From now on, we assume electron disappearance and write Eq (3.10) as

Ree

ϕSM
e σSM

e

= Nnon−osc −
∑
k>l

Nosc
kl sin2

(
ϕklL

2

)
+
∑
k>l

NCP
kl sin (ϕklL). (3.17)

The Nnon-osc is the non-oscillation rate and gives the ratio between the Beyond the Stan-

dard Model Physics (BSM) and Standard Model physics if there is no oscillation. For

example, in the standard neutrino oscillation, it equals 1. The Nosc
kl is the amplitude

of oscillation for the non-CP violation term, and the novelty is the appearance of the

amplitude for the CP-violating term NCP
kl . In the Standard Oscillation, for electron dis-

appearance, the CP violation amplitude is zero.

We further assume that the [ϵX ]ee for X = T, S receives strong constraints

from beta decay and [ϵL]ee is degenerated in the gV and Vud measurements as shown in

[45]. Hence, from now on, we always consider [ϵX ]eα with α ̸= e.

The non-oscillation rate is not dependent on the oscillation scale, ϕkl, hence it

is:

Nnon−osc = 1 + 2 |[ϵ̃X ]eα|2 dXLpXL + |[ϵ̃X ]eα|4 dXXpXX +O([ϵX ]ee), α ̸= e. (3.18)

One can notice that the [ϵ̃X ]eα does not appear at linear order, having only second-order

or higher effects. In addition, the neglected diagonal terms [ϵX ]ee are:

O([ϵX ]ee) = + 2[ϵ̃X ]ee(dXL + pXL) + ([ϵ̃X ]ee)
2(dXX + pXX + 4dXpX)

+ 2([ϵ̃X ]ee)
3(dXXpX + pXXdX) + ([ϵ̃X ]ee)

4dXXpXX .
(3.19)
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Regarding the oscillation scales, we will separate the formulas in atmospheric and solar

scales. The former appears when Eν/L ∼ 2.5×10−3eV2, and for reactor energies ∼ 4 MeV

it happens around L ∼ 1 km where this implies ϕ31 ∼ ϕ32 and ϕ21 ∼ 0. In the past, such

approximation was called one mass scale dominance approximation. The ϕkl was defined

in Eq. (3.8) and we from that, it follows that ∆m2
32 = ∆m2

31+∆m2
21 ≈ ∆m2

31 and neglect

∆m2
21. In the case when only [ϵ̃X ]eµ is present:

Nosc
atm = Nosc

31 +Nosc
32 = s22θ13

(
1 +

c213
s13

|[ϵ̃X ]eµ|2 dXLpXL

)
, (3.20)

NCP
atm = NCP

31 +NCP
32 = 0. (3.21)

Here, s13 = sin(θ13), s2θ13 = sin(2θ13) and the same for cos → c. If only [ϵ̃X ]eτ is present:

Nosc
atm =s22θ13

(
1 +

c2θ13
s2θ13

Re{[ϵ̃X ]eτ}(dXL + pXL)− 4 (Re{[ϵ̃X ]eτ})2 dXLpXL

)
+ 4 |[ϵ̃X ]eτ |2 dXLpXL

− s22θ13 |[ϵ̃X ]eτ |
2 (dXX + pXX + c22θ13 Re{[ϵ̃X ]eτ}(dXXpXL + pXXdXL)− |[ϵ̃X ]eτ |2 dXXpXX

)
(3.22)

NCP
atm =+ Im{[ϵ̃X ]eτ}s2θ13

(
(dXL − pXL) + |[ϵ̃X ]eτ |2 s2θ13(dXXpXL − dXLpXX)

)
(3.23)

From Eqs. (3.20), (3.22) and (3.23), the [ϵ̃X ]eµ appears only in second order with no

CP-violation effects while [ϵ̃X ]eτ appears at linear order and presents CP-violation effects.

Hence, it is expected that experiments more sensitive to the atmospheric scale have a

higher sensitivity to the [ϵ̃X ]eτ in comparison with the [ϵ̃X ]eµ parameter.

Concerning to the CP violation, no sensitivity is expected for CP-violation

coming from [ϵ̃X ]eµ in atmospheric scale experiments, only for the [ϵ̃X ]eτ parameters.

However, in this section, we will see that some experiments can be sensitive to the CP-

violation of [ϵ̃X ]eµ coming from the solar scale.

In the solar scale, the active mass difference is ∆m2
21 ≈ 7 × 10−5eV2. Reac-

tor experiments (with energies of around 4 MeV) with distances around 100 km can be

sensitive to the solar mass scale. The amplitudes, in that case, for [ϵ̃X ]eµ

Nosc
Sun =c413s

2
2θ12

− Re{[ϵ̃X ]eµ}c313s4θ12(dXL + pXL)

+
(
|[ϵ̃X ]eµ|2 +Re{[ϵ̃X ]eµ}2s22θ12

)
4c213dXLpXL − |[ϵ̃X ]eµ|2 s22θ12(dXX + pXX)

− |[ϵ̃X ]eµ|2Re{[ϵ̃X ]eµ}c13s24θ12(dXXpXL + pXXdXL) + |[ϵ̃X ]eµ|4 s22θ12dXXpXX (3.24)

NCP
Sun = +

[
c213(dXL − pXL) + |[ϵ̃X ]eµ|2 (dXXpXL − dXLpXX)

]
Im{[ϵ̃X ]eµ}c13s2θ12 (3.25)
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and for [ϵ̃X ]eτ

Nosc
Sun =c413s

2
2θ12

− 2s13c
3
13Re{[ϵ̃X ]eτ}(dXL + pXL)s

2
2θ12

+ s22θ13s
2
2θ12

Re{[ϵ̃X ]eτ}2dXLpXL +
1

4
|[ϵ̃X ]eτ |2 s22θ124s

2
13c

2
13(dXX + pXX)

− c13s
3
13 |[ϵ̃X ]eτ |

2 s24θ12 Re{[ϵ̃X ]eτ}(dXXpXL + pXXdXL)

+ s413 |[ϵ̃X ]eτ |
4 dXXpXXs

2
2θ12

(3.26)

NCP
Sun =0. (3.27)

Both parameters appear in linear order, however [ϵ̃X ]eτ can be suppressed by a small θ13

(it always comes multiplied by s13). In solar scale, the opposite happens: the CP-violation

terms exist only for the [ϵ̃X ]eµ parameter. As we have already mentioned, experiments

constructed on the atmospheric mass-scales assumption can also be sensitive to Eq. (3.25).

It comes from the fact that the amplitudes NCP
kl are multiplied by sin (ϕkl) and not by

sin2 (ϕkl/2). Hence, the CP-violating term can reach the same size as the standard oscil-

lation term from ∆m2
31, which happens when

Im {[ϵ̃X ]eµ} s2θ12 sin(∆21) ∼ s22θ13 sin
2(∆31). (3.28)

As we will see, this results has some implications for our study.

In addition, if one wants to split the atmospheric mass scale to the study of

the mass hierarchy, we present our formulas when ∆m2
32 = ∆m2

31 +∆m2
21 ≈ ∆m2

31 is not

true anymore. The Nosc
3i are different for i = 1, 2. In the [ϵ̃X ]eτ case, they are proportional

to the coefficients, Nosc
atm and Nosc

CP as

Nosc
32 = Nosc

atms
2
12, Nosc

31 = Nosc
atmc

2
12, (3.29)

NCP
32 = NCP

atms
2
12, NCP

31 = NCP
atmc

2
12. (3.30)

In contrast, for the [ϵ̃X ]eµ parameter, we have more complex changes:

Nosc
32 =s22θ13s

2
12+Re{[ϵ̃X ]eµ}(pXL + dXL)s2θ12c13s

2
13 + 4 |[ϵ̃X ]eµ|2 dXLpXLs13c

2
12 (3.31)

NCP
32 =− Im{[ϵ̃X ]eµ}(pXL − dXL)s2θ12c13s

4
13, (3.32)

Nosc
31 =s22θ13c

2
12−Re{[ϵ̃X ]eµ}(pXL + dXL)s2θ12c13s

2
13 + 4 |[ϵ̃X ]eµ|2 dXLpXLs13s

2
12 (3.33)

NCP
31 =+ Im{[ϵ̃X ]eµ}(pXL − dXL)s2θ12c13s

4
13. (3.34)

Now that we have an overview of the analytical aspect of the oscillation rate,

we can proceed to the amplitude calculations.
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3.2.2 Amplitude calculation

Now that we have a better understanding of the oscillations formulas in each

scale, it is time to look at the process of neutrino production and detection. We will

focus on neutrino beta decay and inverse beta decay. Here, we restrict our work to scalar

and tensor interactions. The Lagrangian is given by Eq. (3.3), where we separate the

Standard Model Lagrangian LSM , the scalar interaction, LS and the tensor interaction,

LT :

LSM = −GFVud√
2

[
(gV pγ

µn− gApγ
µγ5n)(lαγµPLνα)

]
+ h.c., (3.35)

LS = +
GFVud√

2
gS[ϵS]αβ(pn)(lαPLνβ) + h.c., (3.36)

LT = −GFVud

2
√
2
gT [ϵT ]αβ(pσ

µνPLn)(lασµνPLνβ) + h.c. (3.37)

There are two main types of standard weak interactions at low energies: the

Fermi interaction and the Gamow-Teller one. The Fermi interaction is mainly related to

the vector component of the weak Lagrangian, while the Gamow-Teller one is related to

the axial part. In beta-decay at reactors, most of the decays are of Gamow-Teller type;

hence, the vector part of the interactions can be neglected for the production in reactors.

At low energies, the hadronic current in the Lagrangian (up to second-order

derivatives) reduces to the structure of Gamow-Teller or Fermi interactions. Moreover, as

can be seen from Ref. [41], the pure scalar interactions reduce to Fermi transitions while

the Tensor ones reduce to Gamow-Teller.

Our goal is to calculate the oscillation ratios, Eq. (3.17), which implies calcu-

lating all possible combinations of amplitude products:

MXY =

∫ ∑
spin

AXA
∗
Y dΠ. (3.38)

It corresponds to the numerators and denominators of Eq. (3.12). At the end of the

day, the production and detection factors can be found a in Eq. (3.12). We begin our

calculation by focusing on the detection process. In the end, we go to the production

process.
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Neutrino and antineutrino detection

As we have already seen, neutrino detection can appear in two types: charged

current and neutral current signal. In our case, only the charged current is affected by

new interactions. Hence, we are interested in two of the Feynman diagrams in Figure 3.1:

Figure 3.1: The four-vertex Feynman diagram for the anti-neutrino and neutrino detection. One

can read the Feynman diagram from the left to the right.

All the interactions depend on nuclear effects, which can play an important

role depending on the process. First, we will look at the neutrino detection through the

charged current. The amplitudes are:

AX=S,T = −i ⟨νe, Xi| LX

∣∣e−Xf

〉
. (3.39)

In the case of antineutrinos one should change νe → νe and e− → e+. Then, using the

Feynman rules, one can find

AX = −iGFVud√
2

[ϵX ]αβ
[
ue−(pe)Γ

l
Xuν(pν)× gXup(pp)Γ

h
Xun(pn)

]
. (3.40)

The same expression is valid for the Standard Model, but one should use the identity

matrix instead of using [ϵX ]. We can now, substitute Eq. (3.40) in Eq. (3.38):

MXY =

∫
dΠ

G2
FV

2
ud

2
[ϵX ]αβ[ϵY ]αβ

∑
spin

[
ue−(pe)Γ

l
Xuν(pν)

] [
gXup(pp)Γ

h
Xun(pn)

]
[
ue−(pe)Γ

l
Y uν(pν)

]∗ [
gXup(pp)Γ

h
Y un(pn)

]∗
.

(3.41)

Here, α and β represent the neutrino flavors. Using Casimir’s trick, and one can find

MXY ∝
∫
dΠ

G2
FV

2
ud

2
[ϵX ]αβ[ϵY ]αβgXgYTr

[
Γl
X/pνΓ

l

Y (/pe +me)
]
×

Tr
[
Γh
X(/pp +mp)Γ

h

Y (/pn +mn)
]
.

(3.42)
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Here, we should calculate the traces for each combination between the interactions: scalar,

tensor, vector, and axial. Let us begin with the combination of the scalar with the others

3:

(vector x scalar) =
1

2
Tr
[
γα(1− γ5)/pν(1 + γ5)(/pe +me)

]
Tr
[
γα(/pp +mp)(/pn +mn)

]
=
1

2
Tr
[
γα(1− γ5)/pν(1 + γ5)(/pe +me)

]
4
[
pαnmp + pαpmn

]
= [2(pν)αme] 4

[
pαnmp + pαpmn

]
= 16me[(pν · pn)mp + (pν · pp)mn],

(3.43)

(axial x scalar) =
1

2
Tr
[
γµ(1− γ5)/pν(1 + γ5)(/pe +me)

]
Tr
[
γµγ5(/pp +mp)(/pn +mn)

]
=
1

2
Tr
[
γµ(1− γ5)/pν(1 + γ5)(/pe +me)

]
× 0

=0.

(3.44)

(scalar x scalar) =
1

2
Tr
[
(1− γ5)/pν(1 + γ5)(/pe +me)

]
Tr
[
(/pp +mp)(/pn +mn)

]
=
1

2
Tr
[
(1− γ5)/pν(1 + γ5)(/pe +me)

]
× 4 [pp · pn +mpmn]

=16(pν · pe)(pp · pn +mpmn).

(3.45)

We check that our calculations agree with the calculations performed in the Software

Mathematica. Hence, from now on, we will use the Mathematica output results. Bellow,

we show the remaining traces between vector, axial and tensor combinations.

(vector x vector) =
1

2
Tr
[
γα(1− γ5)/pνγβ(1 + γ5)(/pe +me)

]
Tr
[
γα(/pp +mp)γ

β(/pn +mn)
]

=32 [−mnmp(pν · pe) + (pn · pe)(pν · pp)− (pν · pn)(pp · pe)] ,
(3.46)

(axial x axial) =
1

2
Tr
[
γαγ5(1− γ5)/pνγβγ5(1 + γ5)(/pe +me)

]
Tr
[
γαγ5(/pp +mp)γ

βγ5(/pn +mn)
]

=32 [+mnmp(pν · pe) + (pn · pe)(pν · pp)− (pν · pn)(pp · pe)] ,
(3.47)

(vector x axial) =
1

2
Tr
[
γα(1− γ5)/pνγβγ5(1 + γ5)(/pe +me)

]
Tr
[
γα(/pp +mp)γ

βγ5(/pn +mn)
]

=64 [(pn · pe)(pν · pp)− (pν · pn)(pp · pe)] .
(3.48)

3We will not calculate the trace between scalar and tensor interaction since they are not used in this

work.
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(tensor x vector) =
1

2
Tr
[
σαδ(1− γ5)/pνγβ(1 + γ5)(/pe +me)

]
Tr
[
σαδ(/pp +mp)γ

β(/pn +mn)
]

=48× 4×me[(pν · pp)mn − (pν · pn)mp],

(3.49)

(tensor x axial) =
1

2
Tr
[
σαδ(1− γ5)/pνγβγ5(1 + γ5)(/pe +me)

]
Tr
[
σαδ(/pp +mp)γ

βγ5(/pn +mn)
]

=48× 4×me[(pν · pp)mn + (pν · pn)mp],

(3.50)

(tensor x tensor) =
1

2
Tr
[
σαβ(1− γ5)/pνσδη(1 + γ5)(/pe +me)

]
Tr
[
σαβ(/pp +mp)σ

δη(/pn +mn)
]

=16 [2(pn · pe)(pν · pp) + 2(pν · pn)(pp · pe)− (pp · pn)(pν · pe)] .
(3.51)

Now, we should calculate the integral in the phase space. For the detection

case, one should have:

MXY = AXA
∗
Y dΠ = (...)dΠ ∝(...)δ4(pν + pn − pp − pe)

d3p⃗p
Ep

d3p⃗e
Ee

=(...)δ(Eν + En − Ep − Ee)δ
3(p⃗ν + p⃗n − p⃗p − p⃗e)

d3p⃗p
Ep

d3p⃗e
Ee

,

(3.52)

If we assume the nucleons at rest (or negligible recoil contribution of the final nucleon)

and neglect neutrino masses, it is possible to reduce Eq. (3.52) to

MXY = (...)dΠ ∝(...)δ(Eν +mn −mp − Ee)δ
3(p⃗ν − p⃗e − p⃗p)d

3p⃗p
d3p⃗e
mpEe

=(...)δ(Eν +mn −mp − Ee)pe
d cos θdϕdEe

mpEe

= (...)2πpe
d cos θ

mpEe

.

(3.53)

From equation (3.53) we got the constraints: p⃗ν − p⃗e = p⃗p and Ee = Eν + ∆ where

∆ = mn −mp. In the case of nuclei, the ∆ can the substituted by ∆if = mf −mi, where

mf and mi are the masses of the initial and final states of the nuclei. Now, we can apply

Eq. (3.53) to our amplitudes, for the standard mode traces, we will have

MSM
LL ∝g2V (vector x vector) + g2A(axial x axial) + gV gA [(vector x axial)+(axial x vector)]

=64{(gA + gV ) [mnmp(gA − gV )(pν · pe) + (gA + gV )(pn · pe)(pν · pp)]

+ (gA − gV )
2(pν · pn)(pp · pe)}.

(3.54)
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Under our kinematic assumptions, we have:

pν · pn ≈Eνmn,

pν · pp ≈Eνmp,

pν · pe ≈EνEe − pepν cos θ,

pe · pn ≈Eemn,

pe · pp ≈Eemp,

pp · pn ≈mpmn.

(3.55)

Hence, the standard model amplitude become:

MSM
LL ∝64mnmpEνEe

[
g2A(3− ve cos θ) + g2V (1 + ve cos θ))

]
, (3.56)

where

ve =
pe
Ee

. (3.57)

Now we can apply the angular contribution coming from the phase-space integration, and

the amplitude is integrated over cos θ from −1 to 1, leading to

∫ 1

−1

MSM
LL d(cos θ) ∝ 64EνEemnmp(3g

2
A + g2V ). (3.58)

For the scalar scenarios, we have

MSL ∝+ 32gSgVEνmpmnme,∫ 1

−1

MSLd(cos θ) ∝+ 64gSgVEνmpmnme,
(3.59)

MSS ∝+ 32g2SEνEe(1− ve cos θ)mpmn,∫ 1

−1

MSSd(cos θ) ∝+ 64gSgVEνEempmn.
(3.60)

For tensor interactions, we will have

MTL ∝+ 96gTgVEνmpmnme,∫ 1

−1

MTLd(cos θ) ∝+ 192gTgVEνmpmnme,
(3.61)

MTT ∝+ 32g2TEνEe(3 + ve cos θ)mpmn,∫ 1

−1

MTTd(cos θ) ∝+ 192g2TEνEempmn.
(3.62)
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From kinematic considerations, the interference between the tensor and axial contributions

is zero. Furthermore, substituting equations (3.58), (3.59), (3.60), (3.61) and (3.62) in eq.

(3.12), we should have the following terms for Fermi plus Gamow-Teller interactions:

dSL =
gSgV

g2V + 3g2A

me

Ee

, dSS =
g2S

g2V + 3g2A
,

dTL =
3gAgT
g2V + 3g2A

me

Ee

, dTT =
3g2T

g2V + 3g2A
,

(3.63)

where me = 0.511 MeV is the electron mass. At low-energy, the electron energy spectrum

is related to the neutrino electron spectrum by the relation

Ee = Eν −∆if , (3.64)

where ∆if = mf −mi is the mass difference between the final and initial nuclei.

Neutrino and antineutrino production

In the electron neutrino nuclear production, we have a similar calculation and

three types of neutrino production:

Mβ+

X = −i ⟨Xi| LX

∣∣e+, Xf , νe
〉
, (3.65)

Mβ−

X = −i ⟨Xi| LX

∣∣e−, Xf , νe
〉
, (3.66)

ME.C.
X = −i

〈
Xi, e

−∣∣LX |Xf , νe⟩ . (3.67)

respectively, the β+, the β− and the electron capture (E.C.). Those interactions can be

represented by the following diagrams

In the case of production, the main difference is the integral in the phase space,

which is the same for all interactions. So, the amplitudes will be

Mβ+

X = −iGFVud√
2

[ϵX ]αβ
[
ve+(pe)Γ

l
Xuν(pν)× gXun(pn)Γ

h
Xup(pp)

]
, (3.68)

Mβ−

X = −iGFVud√
2

[ϵX ]αβ
[
ue−(pe)Γ

l
Xuν(pν)× gXup(pp)Γ

h
Xun(pn)

]
, (3.69)

ME.C.
X = −iGFVud√

2
[ϵX ]αβ

[
uν(pν)Γ

l
Xue−(pe)× gXun(pn)Γ

h
Xup(pp)

]
. (3.70)
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Figure 3.2: Here we show the four-vertice Feynman diagrams for the neutrino and antineutrino

production. In the left, there is the β+ decay, in the center the β−, and on the right side,

the electron capture (E.C.). We assume a horizontal time-arrow from left to right for those

diagrams.

Performing the same calculation as for detection (for beta decays), we will find

very similar expressions for the traces. For β−, the traces are the same as for neutrino

detection because of eq. (3.40) is equals to eq. (3.69). The kinematics is the same as in eq.

(3.55), so we should find similar expressions for β− in the case of Fermi plus Gamow-Teller

interactions:

pβ
−

SL =
gSgV

g2V + 3g2A

me

Ee

, pβ
−

SS =
g2S

g2V + 3g2A
,

pβ
−

TL =
3gAgT
g2V + 3g2A

me

Ee

, pβ
−

TT =
3g2T

g2V + 3g2A
.

(3.71)

For β+, the expression should be the same as for antineutrino detection, therefore, similar

to [41]

pβ
+

SL = − gSgV
g2V + 3g2A

me

Ee

, pβ
+

SS =
g2S

g2V + 3g2A
,

pβ
+

TL =
3gAgT
g2V + 3g2A

me

Ee

, pβ
+

TT =
3g2T

g2V + 3g2A
.

(3.72)

A already mentioned, there are two types of weak interactions at low energies:

the Fermi and the Gamow-Teller. Moreover, at low energy, the pure scalar one reduces

to Fermi transitions and the tensor one to Gamow-Teller transitions. Hence, if we have

a process where one should consider only Gamow-Teller transitions (as in the reactor or

solar neutrino production), one should find:
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pβ
±

SL = 0, pβ
±

SS =
g2S
3g2A

,

pβ
±

TL =
gT
gA

me

Ee

, pβ
±

TT =
g2T
g2A
.

(3.73)

3.2.3 Solar neutrino oscillation

The description of neutrinos coming from the sun is not the same as for neu-

trinos in the vacuum as discussed in Sec. 3.2.1. In the sun, the neutrino is produced

subjected to matter effects, an effective potential created by the coherent forward neu-

trino scattering in the matter. The matter potential is given by:

Ve(x) =
√
2GFNe(x). (3.74)

Here Ne(x) is the number density of electrons at the position x, and the potential appears

only at the electron neutrino component of the evolution. Due to the nature of the

profile of matter density in the sun, for usual oscillations we have that all transitions are

adiabatic, and, the mass eigenstate do not change along the path [48]. In addition, the

initial neutrino state is the state in the matter, given by a rotation of the mixing angles

in the matter (for two neutrinos):

cos 2θ̃12 =
∆m2

21 cos 2θ12 − VCC

∆m2
M

e sin 2θ̃12 =
∆m2

21 sin 2θ12
∆m2

M

, (3.75)

where

∆m2
M =

√
∆m2

21 sin
2 2θ12 + (VCC −∆m2

21 cos 2θ12). (3.76)

The solar neutrinos do not have the same oscillation pattern as in vacuum

(the oscillation exists but is averaged out), and it arrives in the detector as an incoherent

admixture of mass eigenstates. Hence, Eq. (3.10) becomes:

Rαβ

ϕSM
α σSM

β

=
∑
kl

δkl

[
Ṽ kl
α (pX)

]
×
[
V kl
β (dX)

]∗
, (3.77)

where we use the same expression in Eq. (3.11), making the replacement of V → Ṽ

(vacuum to matter) when neutrinos are in the matter. This expression can be written as:

Rαβ

ϕSM
α σSM

β

=
∑
k

(|Ũαk|2 + 2Re
{
pXL(ϵXŨ)

∗
αkŨαk

}
+ |pXX(ϵXŨ)αk|2)

×
(
|Uβk|2 + 2Re

{
dXL(ϵXU)

∗
βkUβk

}
+ |dXX(ϵXU)βk|2

)
(3.78)
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As can be seen, Eq. (3.78) has no CP violation term, despite the sensitivity to the CP

violation phase of the Re{· · ·} terms. If one neglects NSI, it is possible to recover the

standard expressions for solar neutrinos.

The sun produces mainly electron neutrinos, and we can write the electron

flux and see how does it depends on the mass states:

Φ(νk) = ϕSM(νe)
(
P SM
ek + 2Re

{
pXL(ϵXŨ)

∗
αkŨαk

}
+ |pXX(ϵXŨ)αk|2)

)
(3.79)

and, similarly, we can write an effective cross-section of detecting a β-flavoured neutrino

on the detector from a mass state k:

σβ(νk) = σSM
β

(
P SM
kβ + 2Re

{
dXL(ϵXU)

∗
βkUβk

}
+ |dXX(ϵXU)βk|2

)
. (3.80)

We can calculate the rates based on the 3ν scenario explicitly showing the mix-

ing angles with these expressions in hand. Based on our calculations, for solar production

of mass states and considering the [ϵ̃X ]eµ, we have:

Pe1 → P SM
e1 − 2Re{[ϵ̃X ]eµ}pXLs̃12c̃12c13 + |[ϵ̃X ]eµ|2pXXs̃

2
12,

Pe2 → P SM
e2 + 2Re{[ϵ̃X ]eµ}pXLs̃12c̃12c13 + |[ϵ̃X ]eµ|2pXXc̃

2
12,

Pe3 = P SM
e3 . (3.81)

For [ϵ̃X ]eτ , we have:

Pe1 → P SM
e1 − 2Re{[ϵ̃X ]eτ}pXLc̃

2
12s13c13 + |[ϵ̃X ]eτ |2pXXc̃

2
12s

2
13,

Pe2 → P SM
e2 − 2Re{[ϵ̃X ]eτ}pXLs̃

2
12s13c13 + |[ϵ̃X ]eτ |2pXXs̃

2
12s

2
13,

Pe3 = P SM
e3 + 2Re{[ϵ̃X ]eτ}pXLc13 + |[ϵ̃X ]eτ |2pXXc̃

2
13. (3.82)

For the detection we obtain similar expressions but changing d→ p and Ũ → U .

For [ϵ̃X ]eτ parameters the changes on the probabilities that appear in the two

first families are suppressed by the small value of θ13, as can be seen in Eq. (3.82).

As the first two families are the most important for solar neutrinos, we expect that

solar experiments do not have considerable sensitivity to the ϵ̃eτ parameter. Indeed, we

explicitly checked that the constraints on [ϵ̃X ]eτ from solar neutrino data are much weaker

than those coming from reactor neutrino experiments. As for the [ϵ̃X ]eτ parameter, it

appears only in the first two families but is not suppressed by any parameter.

As an additional effect, if the neutrinos arrive at the detector during the night,

the coherence between mass eigenstates is reestablished, and flavor oscillation can be

probed. Finally, we developed expressions to include NSI on neutrino regeneration on

Earth and explicitly checked that its effect on the constraints is marginal.
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3.3 Case study: solar neutrinos and reactors

This section introduces the details of the simulation of solar and reactor neu-

trinos under the scope of the theory developed in the last section. As will be seen, only

scalar and non-standard tensor solar interactions will be considered. The neutrinos will

be produced at the source in the presence of the new interactions from the Lagrangian

in Eq. (3.3), will travel a given distance, and will be detected at the experiment with an

electron signal (also with the presence of new interactions). Before going into the details

about the simulation, we will discuss some statistics used in this work.

3.3.1 Statistics

Neutrinos are particles that rarely interact with other particles, e.g., the mean

free path of the neutrino in the solar matter is around 100 light-years. Because neutrinos

have a small probability of interaction, and the number of trials of scattering neutrinos is

large (proportional to the number of neutrinos times the number of a nucleons), the total

neutrino events in a detector should obey a Poisson distribution:

P (n;λ) =
e−λλn

n!
, (3.83)

where λ is the mean value of neutrino interactions in a given period, and n is the number

of interactions. The λ comes from the neutrino rates (3.10). In an experiment, the number

of events is separated into energy bins. Hence the total probability obtained from the n⃗

events in the detector and distributed over all energy bins is:

P (n⃗, λ⃗) =
∏
i

P (ni;λi). (3.84)

From Eq.(3.84), we can create a test statistics that compare the model with its largest

probability, that is, when λi = ni:

χ2 = −2 ln

(
P (n⃗, λ⃗)

P (n⃗, n⃗)

)
= 2

∑
i

(
ni ln

ni

λi
+ λi − ni

)
, (3.85)

where the χ2 function follows a χ2 distribution with N −m degrees of freedom [49] (N is

the total number of points and m is the number of parameters). As we will be interested

in ni > 5, even a normal distribution can be assumed instead of P (n⃗, λ). In that case,

one can use

χ2 =
∑
i

(ni − λi)
2

σ2
i

(3.86)
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where Eq. (3.86) obeys a χ2 distribution with N −m degrees of freedom [50] and σ2
i is

the standard deviation in the energy bin (which can be estimated from the data). The

minimum values of equations (3.85) and (3.86) are equivalent to maximize Eq. (3.84)

and can be used to estimate the p-value to measure the goodness-of-fit. In addition, Eqs.

(3.85) and (3.86) can also be used to measure the uncertainty of the parameters at a

certain C.L.. If one uses:

∆χ2 = χ2 −min(χ2), (3.87)

it follows a χ2 distribution with m degrees of freedom, where m is the number of free

parameters.

For completeness, we also introduce the parameter goodness-of-fit, that also

will be used in this work:

χ2
PG =

∑
j

∆χ2
j , (3.88)

where j refers to a given data set (e.g, an experiment) χ2
PG follows a χ2 distribution with

mj − m where mj is the number of parameters in each data-set j and m is the total

number of parameters [51].

3.3.2 Reactors

In this section we will introduce the experimental setup and simulations of the

reactor experiments KamLand [52], Reno [53], Daya Bay[54], and Double Chooz[2].

Reactor antineutrinos are produced by the fission of nuclear fuel and frag-

ments. The four main components of nuclear fuel are 235U, 238U, 239Pu, and 241Pu. The

antineutrino flux from reactors is well known in the literature and peaks around 4 MeV.

In the past, the reactor flux was a source of several discussions about sterile neutrinos.

Nowadays, it is calculated with good precision and does agree with data [55] with no

indication of sterile neutrinos.

The anti- neutrinos produced in reactors can be detected by inverse beta decay,

generating a positron event. We calculate the Eqs. (3.12) for reactors based on Eqs. (3.63)

(for detection) and (3.73) (for Gamow-Teller production). In the production, the energy

dependency should be averaged for processes dependent on the nucleon energy:

⟨pTL⟩ = −gT
gA
me

⟨Ee⟩
⟨Eepe⟩

= −gT
gA

me

fT (Eν)
, (3.89)

where pe is the final lepton energy, which comes from the phase space contribution. The

fT (Eν) is defined to include the averaged lepton energy over the nucleon decay modes. It
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can be found in the continuum approximation

fT (Eν) =

∑n
1 ωiEe(∆i)pe(∆i)∑n

1 ωiEe(∆i)
≈ 3.7773− 0.3805

Eν

MeV
+ 0.0189

E2
ν

[MeV]2
− 0.0003

E3
ν

[MeV]3
.

(3.90)

Here, wi is the weight of the process, and we fit the fT (Eν) using the reactor flux [55] in

the continuum approximation to find the values shown above. The factors for reactors

are presented in table 3.1.

Table 3.1: Production and detection factors in Eq. (3.12) for reactors antineutrinos. Here Ee is

the positron energy, me is the electron mass and f(Eν) take into account the nuclear fuel and

sub-products in the reactor model. For low-energy, the positron energy can be related to the

antineutrino electron by the relation Ee = Eν−∆if , where ∆if = mf −mi is the mass difference

between the final and initial nucleon.

scalar tensor scalar tensor

pXL 0 −gT
gA

me

f(Eν)
pXX

g2S
3g2A

g2T
g2A

dXL
gSgV

g2V + 3g2A

me

Ee

3gAgT
g2V + 3g2A

me

Ee

dXX
g2S

g2V + 3g2A

3g2T
g2V + 3g2A

Depending on the distance between the reactor an the detector, the experiment

can be sensitive to several squared mass differences. We will divide our study of reactors

based on that.

In reactor neutrino experiments as Reno, Daya Bay, and Double Chooz, the

∆m2
3i (i = 1, 2) and θ13 are the oscillation parameters that have measurable impacts.

Because of their average distance of around 1 km, they are called medium baseline ex-

periments (MBL). On the other hand, in reactor experiments as Kamland, the ∆m2
21 and

θ12 are the parameters that matter, it has a length of around 200 km, and it is called a

long-baseline experiments (LBL).

Medium Baseline Reactors

Here we describe our simulations of Daya Bay, RENO, and Double Chooz. In

our simulation, we used the Globes Fit 1.0 [3], a GLOBES 3.0 based software [56, 57].

We used our modified version of GLOBES Fit 1.0 that includes new interactions. Daya

Bay, Double Chooz, and RENO analyses are independent for spectral and total rate in

GLOBES fit. Aas we will see, we take both into account to calculate our χ2.

The Daya Bay experiment [54] is made of eight identicall antineutrino detectors

(AD) distributed over three experimental halls (EH) and six reactors. There are two cores
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Figure 3.3: Schematic view of the Daya Bay experiment.

∼316 m apart from EH1, four cores ∼505 m from the EH2, and all the six cores ∼1663

m from the EH3. In the EH1 and EH2, there are two ADs each, and in the EH3, there

are four ADs. The precise distances between each reactor and AD as well as the reactor

power can be found in tables XIII and XIV of [3] or in [54]. The top view of the Daya Bay

experiment is shown in figure 3.3. The Daya Bay data can be divided into three phases:

• In phase 1, there were six ADs working, from AD1 to AD6. They took data during

217 days.

• In phase 2, all the eight ADs were working, and they took data during 1013 days.

• In phase 3, AD1 was removed and they took data during 217 days.

In order to simulate Daya Bay, we should use eq. (3.10) for Daya Bay and

calculate the ratio in each detector:

Rsimul
d =

∑
rs t

s
dP

s
rR

simul
ν (Eν , Lrd)/L

2
rd∑

rs t
s
dP

s
r /L

2
rd

, (3.91)

where r sums over each reactor and s sums over each phase, tsd is the duration of the phase

s, and the P s
r is the power of reactor r in phase s. The Lrd is the distances between the

reactors and the ADs. As in ref. [3], we assumed a 3-meter spherical target for the ADs

and performed a Monte Carlo simulation for these distances. With that configuration,

we could reproduce the Daya Bay measurements over the standard oscillation parameters

∆m2
ATM and sin2 θ13 as shown in Fig. 3.5. Furthermore, we also reproduced the results
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Figure 3.4: The yellow circles represent the reactor’s positions in the left schematic view of the

RENO [1] experiments. On the right is the schematic view of the Double Chooz experiment [2].

of ref. [3] for the sterile neutrino analysis. More details about the Daya Bay simulation

can be found in ref. [3].

The RENO experiment [53, 2] consists of two detectors that detect neutrinos

produced in six reactor cores, as can be seen in figure 3.4. The two main distances

associated with RENO are 290 m and 1380 m. On the other hand, the Double Chooz

experiment is made of two reactors and two detectors in two experimental halls, as can

be seen in figure 3.4 extracted from [2]. The Double Chooz experiment is characterized

by two effective mean distances, 300 m and 1000 m. Further details can be found in ref.

[3]. We assume the detectors are spheres with 3 m of radius. The distances and power of

each reactor in each running period can be found in tables XVIII, XIX, and XXIII of ref.

[3]. With this information, we can use our modified version of GlobesFit 1.0 and simulate

RENO and Double Chooz. From our simulation, we could reproduce the results of ref.

[3] that we present in figure 3.5. It is possible to see that the experiment that restricted

more the parameters is Daya Bay due to its large statistics.

The GlobesFit assumes averaged baselines for the neutrino oscillation. In Eqs.

A.12-A.13 of Ref. [3] it can be seen how to compute the average over the baseline, F (q)

function for sin2(qL):

F (q) =
〈
L2
〉∑

i

wi sin
2(qLi)

L2
i

, (3.92)

where, wi is the weight for the average, which is assumed as the power of the plant or a

combination with the period of usage (as in Daya Bay). The ⟨L2⟩ is the weighted average

sum. We reproduced their calculations and found the same results. With that, we could

also include the average for sin(qL) (the CP violation term), see eq. (3.17). For the

Medium Baseline reactor (MBR) case, we adopt the following χ2 distribution:
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Figure 3.5: We show our results for the confidence level curves at 3σ for Daya Bay (dashed red),

DoubleChooz experiment (dotted blue), and RENO experiment (dashed-dotted green). Further,

the confidence level curves for a joint analysis of all the three experiments at 1, 2, and 3σ in

shades of red.

χ2
MBR =

∑
exp={DB,DC,RENO}

(χshape
exp )2 + (χrate

exp )
2 +

(1− α)2

σ2
a

, (3.93)

where

(χ2)shapeDB =
∑

k={EH2,EH3}

NDB∑
i,j

(dki − nk
i )(V

−1
DB )ij(d

k
j − nk

j ), (3.94)

where, dki is the released data in the energy bin i (over NDB = 52 energy bins) for the

ratio between the event number in the experimental hall k = 1, 2, 3 (EHk) with EH1, nk
i

is the corresponding simulated value. Here, VDB is the covariance matrix for the Daya

Bay shape analysis. Finally,

(χ2)rateDB =

NDB∑
i,j

(dk0,i − (1− α)nk
0,i)(W

−1
DB)ij(d

k
0,j − (1− α)nk

0,j), (3.95)

where the variables have similar meanings as in the shape analysis case, with the difference

that d0,i(n0,i) (i runs over NDB = 8 bins for different running periods) is the ratio between

the total number of events at AD1, AD2, AD8 and AD3 divided by the standard neutrino

oscillation prediction case. The parameter α is related to the normalization error, σa =

0.025, that we assume to be fuel independent. For Double Chooz (DC) (NDC = 26 data

points in the shape analysis and four data points in the rate) and RENO (NRENO = 25

data points in the shape analysis and eight data points in the rate), we consider the

near and far detectors ratio. The χ2 is the same as in Eqs. (3.94) and (3.95) but dki is
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the far/near ratio and dk0,i are the ratios in the near detector with the standard model

prediction.

Long Baseline Experiments

The KamLAND experiment consists of a 1 kton of highly purified liquid scin-

tillator detector in Japan that collects signals of inverse beta decay of neutrinos coming

from different reactors in Japan. As the average distance from the reactors and the Kam-

LAND detector is of the order of 180 km, and the neutrino energies are around 3 MeV, the

experiment is sensitive to the solar neutrino squared mass difference ∆m2
21. The Kamland

reactor distances can be seen in figure 3.6.

Figure 3.6: Kamland reactors distribution on a map. Taken from http://www.insc.gov

The KamLAND detector measures the event rates of antineutrino signals from

2002 to 2007. The experiments had a total exposure of 2.44 × 1032 proton-yr and the

energy resolution of ∼ 6.8%/
√
Eν/MeV.

To simulate the KamLAND event rates, we used a reactor predicted flux from
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ref. [58, 59] and calculated the total flux in the detector

dΦ(Eν)

dEν

=

∑
j Fj

dϕ
(j)
ν (Eν)

dEν

4π
∑

iWiL2
i

, (3.96)

where Fj are the fuel fractions of the reactor given by the KamLand collaboration (0.567 :

0.078 : 0.298 : 0.057) for (235U : 238U : 239Pu : 241Pu). The neutrino flux comes from [55]

and the baseline Li and power Wi for each reactor comes from [60]. The efficiencies are

given by ϵi and extracted from [52]. The antineutrino cross-section comes from [61] and

the neutrino reconstruction function was taken from Ref. [62] using a 6.4%
√
Eν/MeV

error given by [52].

Using the total flux at the detector made it possible to calculate the event

rates:

ni ∝ ϵi

∫ Emax
f

Emin
i

dEe

∫ ∞

Eth

dEν

(∑
j

Wj

(
Rνeνe

ϕSM
e σSM

e

)
(Eν ,Lj)

)
dΦ(Eν)

dEν

dσ(Eν , Ee)

dEe

R(Eν , ER),

(3.97)

where ϵi is the post-smearing efficiency for each energy beam, σdet(E) is the inverse beta-

decay cross-section, P (νe → νe) is the neutrino oscillation probability and R(E,E ′) is a

Gaussian energy resolution function

R(E,E ′) =
1

σ(E)
√
2π
e
− (E−E′)2

2σ2(E) , (3.98)

where σ(E) function for inverse beta decay is defined in GLOBES 3.1 manual, page 104.

The data and the predicted background were collected from ref. [52]. Using eq. (3.10),

we could reproduce the confidence level curves4 for the standard oscillation parameters in

figure 4 of ref. [52].

For the statistical analysis of KamLand (KL), we calculate the following χ2:

χ2
KL =

∑
i

(
di − ni(a1, a2)− bi(a3, a4)

)2
di

+
∑
i

a2i
σ2
i

(3.99)

where di is the data extracted by summing the number of events of the three KamLand

phases of Ref. [52], bi is the background also extracted from Ref. [52], and σi are the

systematic errors. We used σ1 = 0.05(signal normalization error), σ2 = 0.02 (signal

energy error), σ3 = 0.08 (background normalization error) and σ4 = 0.02 (background

4We used the ordinary χ2 test.
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energy error). Also, the number of events given the calibration and normalization errors

will be the same as in the Ref. [57]:

ni(a, b) = (1 + b)(1 + a)
[(
ni+1 − ni

)(
δ(b)− i

)
+ ni

]
. (3.100)

Here, δ(b) = b(i + t0 + 0.5) + i where t0 = NbinsEmin/(Emax − Emin). For each χ2
KL, we

minimize over the nuisance parameters ai.

3.3.3 Solar neutrino experiments

In addition to reactor experiments, solar neutrino experiments are essential

to measuring neutrino oscillation parameters, the θ12 and ∆m2
21. In our context, solar

experiments can give light to new constraints in our new physics analysis. For example,

non-standard neutrino interactions can appear in the beta process in the sun and in

inverse beta detection of the neutrino coming from the sun. The processes for neutrino

production in the sun are:

(pp) p+ p→ d+ e+ + νe, (3.101)

(pep) p+ e− + p→ d+ νe, (3.102)

(hep) 3He+ p→4 He+ e+νe, (3.103)

(7Be) e− +7 Be→7 Li+ νe, (3.104)

(8B) 8B →8 Be+ e+ + νe, (3.105)

(13N) 13N →13 C + e+ + νe, (3.106)

(15O) 15O →15 N + e+ + νe, (3.107)

(17F ) 17F →17 O + e+ + νe, (3.108)

in which (3.105), (3.106), (3.107) and (3.108) are β decays. For solar neutrinos, we consider

that non-standard interactions are present in beta decay processes which are mainly of

Gamow-Teller type. The interaction factors are presented in table 3.2.

scalar tensor scalar tensor

pXL 0 +
gT
gA

me

Ee

pXX
g2S
3g2A

g2T
g2A

dXL − gSgV
g2V + 3g2A

me

Ee

3gAgT
g2V + 3g2A

me

Ee

dXX
g2S

g2V + 3g2A

3g2T
g2V + 3g2A

Table 3.2: The same as Table 3.1 but now for production and detection factors for solar neutrinos.
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The flux for each of these processes depends on the distance from the center

of the core and on the neutrino energy. We obtain the fluxes from Ref. [63]. We consider

the following experiments in our analysis:

• the full spectral data from Super-Kamiokande phases I, III and IV [64, 65, 66];

• the combined analysis of all three SNO phases [67];

• Borexino results [68];

• combined Gallex+GNO [69];

• SAGE [70] data;

• Homestake results [71].

For each of these experiments we calculate the number of events for the ratio considered:

nexp
ij =

∫ Emax
i

Emin
i

dEe

∫ ∞

Ermth

dEν

∫ Rsun

0

dL
dϕj(L,Eν)

dEν

(
Rνeνe

ϕSMσSM

)
dσ(Eν , Ee)

dEe

dEν , (3.109)

where nexp
i is the number of events for the bin i from the flux j for each experiment exp.

The ϕj(L,Eν) is the flux for a given production process, σexp is the cross-section for the

experiment i. In our ratios, the factors dependence Ee = Eν −∆if , where ∆if = mf −mi

is the mass difference between the final and initial nucleon was implemented using:

71Ga →71 Ge : Ee = Eν + 0.2785 MeV,

37Cl →37 Ar : Ee = Eν − 0.303 MeV.
(3.110)

The number of events was calculated for each energy bin. For statistics, we

used Eq. (3.86) with the difference that the correlation between neutrino experiments

was included to take into account the flux uncertainties from astrophysical parameters,

see Ref. [72]. Each flux component has its astrophysical uncertainty. They affect mainly

Gallex/GNO, SAGE, and Homestake (GSH). We sum all the components and define the

covariance matrix between these experiments as:

(VGSH)kl = (σ2
sys)kδkl + (σ2

stat)kδkl +
∑
ij

niln
exp
j (σastro)i ∗ (σastro)j(ρastro)ij (3.111)

where k and l run over experiments and i, j run over the flux component. The χ2
GSH

function for Gallex/GNO, Sage, and Homestake will be

χ2
GSH =

∑
kl

(nexp
k − dexpk )(V −1

GSH)kl(n
exp
l − dexpl ). (3.112)
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For the Borexino experiment, there is a correlation between the energy bins, driven by

systematic errors:

(VB)ij =
[
(σsys)i(σsys)j + σ2

fid

]
nborexino
i nborexino

j + (σ2
stat)iδij (3.113)

where (σsys)i is the systematic error of the ith bin, σfid = 0.038 is the error in the fiducial

volume and (σstat)i = ni+ bi+1 is the statistical error including the background. The χ2
B

function for Borexino will be:

χ2
B =

∑
ij

(ni + bi − di)(V
−1
B )kl(nj + bj − dj). (3.114)

where ni are the events given by Eq. (3.109) summed over all flux components, bi is the

background and di are the data points. For Super-Kamiokande the calculation is very

similar to the Borexino case, with the difference that the fiducial uncertainty is already

included in the systematic error:

χ2
SK =

∑
all phases

χ2
phase. (3.115)

In the same way, for the SNO experiment χ2
SNO is calculated including the systematics

and statistical errors, and the final result for solar experiments will be given by:

χ2
sun = minboron flux(χ

2
GSH + χ2

B + χ2
SK + χ2

SNO) (3.116)

where we let a free boron flux parameter for all experiments, and we marginalize over it

to find the χ2
sun.

3.4 Results and Conclusions

This section presents the results of the simulations given on sec. 3.3. We

separate our analysis in four groups by flavor and type of interaction, and the section

will follow: [ϵ̃S]eτ , [ϵ̃T ]eτ [ϵ̃S]eµ, and [ϵ̃T ]eµ. We study each case separately and compare

the result at the end. We simulate each experimental set (MBL reactors, LBL reactors,

and solar experiments) as given in section 3.3. We vary over all the combinations of

parameters in a grid search way. The Fig. 3.7 shows which parameters were set free and

were considered in each simulation. If a parameter can be sensitive in a set of experiments,

it will be linked by a solid line. If the sensitivity is weak, it receives a dashed line link.

Colored lines mean that the sensitivity only exists if there is new physics.

We perform a grid calculation of the predicted number of events for each

experimental set and then calculate the correspondent χ2 function. For each experimental
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SUNKAMLANDDB+DC+RENO

Figure 3.7: Connection of parameter sensitivity to experimental set. Solid line represents strong

sensitivity, the dashed line represents weak sensitivity. Colored lines mean that the parameter

is active only if new physics is present.

case, the resultant χ2 was stored in a large table and then interpolated to create a table

that sums the χ2 of all the experiments.

Regarding the type of interaction, the difference between scalar and tensor

interactions comes from calculating the p’s and d’s. For most of the p’s (and d’s), the ratio

between scalar and tensor interactions is 3gT/gS ≈ 1/3, meaning that scalar interactions

are mostly 1/3 in size of the tensor interactions. For example, it can be seen from the two

rightmost panels of Fig. 3.8, where the tensor interactions in green is approximately are

1/3 is size compared to scalar interaction in yellow.

For comparison, before presenting the results for non-standard interactions, let

us see what to expect in the case of the standard model. In the standard model, the MBL

reactors are experiments with the baseline of hundreds of meters and 5 MeV neutrino

energies. As a consequence, it is sensitive to the ∆m2
31 and θ13 parameters. The θ13 was

first measured and had its precision associated with the MBL experiments (mainly Daya

Bay). The minimum χ2 found for MBL in the standard neutrino oscillation was 87 with

114−2 dof, as χ2/dof < 1, the simulated scenario agrees with the data. For the Kamland

experiment, the minimum χ2 obtained was 15 with 17 − 2 dof, also in agreement with

the data. The Kamland experiment was sensitive to ∆m2
21 and θ12. In the same direction

of the Kamland experiment are the solar neutrinos, where we found a minimum χ2 of

134 and 149-2 dof. Solar experiments are sensitive to ∆m2
21 and θ12. Both Kamland and

solar neutrinos can be sensitive to θ13. However, they can not see a non-zero effect of its

value. In addition, those experiments are complementary to each other Kamland is more

sensitive to ∆m2
21, and solar experiments are more sensitive to θ12.

In the global analysis of the standard model, where we sum the χ2 of all the

experiments, the minimum value was 247.7 with 280-4 dof. In addition, the parameter

goodness-of-fit leads to a p−value of 15%, with no significance to exclude the neutrino
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Figure 3.8: In this figure, we present the Monte Carlo simulated results of the ∆chi2. We show

the boxplot for each distribution. In green we present the limits when tensor interactions are

present, in yellow for scalar interactions and in blue for standard neutrino oscillation.

oscillation hypothesis. The resultant limits on the parameters from our analysis for stan-

dard oscillations can be seen in figure 3.8 in blue. The whiskers were set at the 5% and

95% percentiles, approximately the 90% C.L. region. To generate figure 3.8, we perform

a Monte Carlo sampling. The result is in total agreement with our grid results.

Before going into the details of each case, we present a summary of the statis-

tics:

• Scalar [ϵ̃S]eτ : we found a (χ2
Global)min − ((χ2

Global)SO)min = 2.99 that corresponds to

a 1.73σ with preference for non-zero NSI. The parameter goodness-of-fit has the

p−values of 29%;

• Scalar [ϵ̃S]eµ: we found (χ2
global)min − ((χ2

global)SO)min = 2.40 with a 1.55σ preference

for non-zero NSI and the p−values of 38%;

• Tensor [ϵ̃T ]eτ : we found (χ2
global)min − ((χ2

global)SO)min = 1.99 with a 1.41σ preference

for non-zero NSI and the p−value of 26%;

• Tensor [ϵ̃T ]eµ: we found (χ2
global)min − ((χ2

global)SO)min = 2.89 with a 1.70σ preference

for non-zero NSI and the p−values of 29%.
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Figure 3.9: In the first line, the panels are the 1D χ2 − χ2
T functions where the minimum value

we put the smallest among the minimum χ2 of the three cases, in this case, was the tensor. In

dashed green, we show the tensor interactions case, in plain yellow, the scalar and the standard

neutrino oscillation in dash-dotted blue. In the panels below, we show a grid with six 2D panels

for all combinations of parameters simulated. In green, we show the tensor, in yellow, the scalar,

and in blue, the standard neutrino oscillation. The contours were set to 1, 2, and 3 σ.

3.4.1 The [ϵ̃X ]eτ

In our analysis, the [ϵ̃X ]eτ have strong effects in MBR experiments, see Fig.

3.9. This figure remains unchanged if we include Kamland and solar experiments, also

representing the global analysis. In MRB experiments, we perform a grid calculation of

the χ2 considering the sin2 θ13, ∆m
2
31, Re{[ϵ̃S]eτ} and Im{[ϵ̃S]eτ}.

The 2D and 1D contours of the χ2 are shown in figure 3.9, where in the first

line we show the 1D curve of the ∆χ2 = χ2 − minχ2
S marginalized over all the other

parameters (minχ2
S is the minimum value of the χ2 for scalar interactions). In blue is the

result for the standard neutrino oscillation, in yellow are those for scalar interactions and

in green are those for tensor interactions. In the panels below, we show a facet grid with

the 2D contours of ∆χ2 = χ2−minχ2
X marginalized on the not shown parameters (minχ2

X

is the correspondent minimum χ2).

In figure 9, we can see that the main effect of [ϵ̃S]eτ on MBR experiments is to

increase the value of the allowed θ13. This is an effect that is mainly due to Re{[ϵ̃S]eτ}.
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In addition, there is a correlation between the Im{[ϵ̃S]eτ} and ∆m2
31, where the non-zero

Im{[ϵ̃S]eτ} allows new regions of ∆m2
31. For tensor interactions, the value of θ13 is not

subjected to large changes as in the scalar case. On the other hand, the ∆m2
31 is negatively

correlated with the Im{[ϵ̃T ]eτ}. We enter in more details in the discussion below:

• For scalar [ϵ̃S]eτ interactions, the standard neutrino oscillation is disfavored at 1.7σ.

In the ∆m2
31 ×Re[ϵ̃S]eτ panel of figure 3.9, we notice a positive correlation between

∆m2
31 and the imaginary part of [ϵ̃S]eτ . This correlation drives the improvement in

the fit leading to a large ∆m2
31 = 2.78× 10−3 eV2 and a non-zero Im[ϵ̃S]eτ = +0.62.

The analysis also leads to a 3σ allowed region of sin2 θ13 ≈ 0.05 due to a correlation

of the sin2 θ13 with the Re[ϵ̃S]eτ , as can be seen in the sin2 θ13 ×Re[ϵ̃S]eτ panel. The

range of the parameters can be obtained by ∆χ2 = 1 in Fig. 3.9. The values of the

real and imaginary parts found for scalar interactions [ϵ̃S]eτ are (shown graphically

in the right panel of figure (3.8) by the yellow box) and are equal to

Re[ϵ̃S]eτ = +0.03+0.40
−0.21, Im[ϵ̃S]eτ = +0.62+0.23

−0.41. (3.117)

• In the tensor interaction case, the standard neutrino oscillation is disfavored with

a 1.41σ statistical significance, see figure 3.9. As in the scalar case, the preference

was guided by the Im[ϵ̃T ]eτ that is negatively correlated with ∆m2
31 also leading to

a larger value of ∆m2
31 = 2.75 × 10−3 eV2. Now the imaginary part is negative

Im[ϵ̃T ]eτ = −0.12. This comes from the fact that the interference term in the

production see Table. (3.1), is negative for tensor interactions and positive for scalar

interactions. At 3σ in the tensor case the ∆m2
31 can reach values of 3.6× 10−3 eV2

and sin2 θ13 = 0.027 upper limit at 3σ. In the tensor case, the θ13 is also correlated

with Im[ϵ̃T ]eτ as can be seen in the θ13 × Im[ϵ̃T ]eτ panel of figure (3.9). The values

of the real and imaginary parts of the NSI parameter are (shown graphically in the

right panel of figure (3.8) by the green box):

Re[ϵ̃T ]eτ = −0.03+0.06
−0.06, Im[ϵ̃T ]eτ = −0.12+0.08

−0.10. (3.118)

For the mixing parameters and the squared mass difference, we show in left and

central panel of figure (3.8) the range of sin2 θ13, tan
2 θ12,∆m

2
31 and ∆m2

21. Visually, we

can notice that sin2 θ13 and ∆m2
31 changed compared with the usual neutrino oscillation

scenario.
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3.4.2 The [ϵ̃X ]eµ

From the analysis of our formulas discussed in section 3.2.1, the [ϵ̃X ]eµ param-

eter was expected to have significant effects on the solar scale for solar experiments and

KamLand. This happens because parameters always appear together with the ∆m2
21 mass

squared difference. However, our analysis of MBR experiments also plays an important

role. It comes from the fact that the CP violation term of solar scalar can be sensitive at

the MBR experiments.

Here, we first present the results of MBR experiments, followed by Kam-

Land+Solar experiments, and in the end, the global analysis. Our analysis will be based

on the χ2 curve. For MBR, it will depend on:

χ2
MBR = χ2(θ13,∆m

2
31, θ12,Re[ϵ̃X ]eµ, Im[ϵ̃X ]eµ), (3.119)

in fact, it also depends on ∆m2
21; however, we fixed it at the best-fit point of solar and

KamLand experiments (7.8 × 10−5eV2). We show the 1D and 2D contours of the χ2

function in figure 3.10. In contrast with figure 3.9, in this analysis, the standard neutrino

oscillation parameters are weakly affected by the new interactions. However, the fit is

better than Standard Oscillation by 2σ. The improvement in the fit comes mainly from

the non-zero CP violation effect from the solar scale. We check that the improvement

comes from the normalization of the flux and on the improvement in the fit for the first

point of Daya Bay, the result is shown in figure 3.11.

Before combining all in a global analysis, we also perform the Solar+KamLand

analysis. The chi2 function for those experiments, depends on θ13, θ12, ∆m
2
21 and [ϵ̃X ]eµ,

we show the 1D and 2D contours at figure 3.12. In the first line, we show the χ2 functions

in the same way as in the previous section. In green, we show the tensor, in yellow the

scalar interactions, and in blue the standard neutrino oscillation. There are no important

differences for the scalar interactions compared with the standard neutrino oscillation.

However, we found a 1.3σ improvement in the fit for the tensor case compared to the

standard neutrino oscillation model. This result is compatible with the MBR experiment,

as we will see. Also, in figure 3.12 we show the 2D contour. From the 2D contours, we

can infer correlations between parameters. For each pair of variables, we minimize the

complementary parameter space. In the bullet points bellow, we discuss the scalar and

tensor interactions separated:

• If the [ϵ̃S]eµ interaction is present, we found no improvement in the fit compared to

the standard neutrino oscillation. We found only a tiny distortion in the θ13 that

can be considered negligible. The limits on the parameters are:
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the total rate results compared with the standard model. Here, the x-axis is the neutrino energy

E = Eν . We use the data as presented in [3]
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Figure 3.12: The same as in fig 3.9 but for solar neutrinos and [ϵ̃X ]eµ interactions

Re[ϵ̃S]eµ = 0.00+0.27
−0.30, Im[ϵ̃S]eµ = +0.01+0.29

−0.29. (3.120)

• In the case [ϵ̃T ]eµ interaction is present, we found a 1.3σ improvement in the fit

compared to the standard neutrino oscillation. The improvement comes from a

non-zero Re[ϵ̃T ]eµ and the limits on the NSI parameters are:

Re[ϵ̃T ]eµ = −0.09+0.05
−0.03, Im[ϵ̃T ]eµ = +0.10+0.14

−0.09. (3.121)

We found that MBR points to a non-zero CP-violation NSI and Solar+Kamland

go in the same direction. We perform a global analysis, using the global χ2 defined in sec.

3.3. We show the result in figure 3.13. As was expected, the fit improvement remains,

now with 1.7σ for non-zero Im[ϵ̃T ]eµ. We summarize the results of figure 3.13 bellow:

• If [ϵ̃S]eµ interactions are present, there are large changes in the statistical analysis

compared to the Standard Model. The [ϵ̃S]eµ parameter is strongly constrained by
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parameter.

solar data. In the global analysis, the limits on the NSI parameters are:

Re[ϵ̃S]eµ = 0.00± 0.25, Im[ϵ̃S]eµ = −0.16+0.31
−0.09. (3.122)

Those are the first limits ever made on these parameters.

• If tensor [ϵ̃T ]eµ interactions are present, for the KamLand+Solar analysis, there is

an improvement of 1.3σ in the fit compared with the Standard Model. In the MBR

analysis, the significance is 2.1σ guided by a CP violation term from the solar scale.

In the global analysis case, the improvement has a 1.7σ significance compared to the

standard neutrino oscillation scenario. The tensor [ϵ̃T ]eµ interaction presence can

improve the fit of each experiment individually and when they are combined. The

global analysis results are presented in the green lines of figure 3.13 and the values

of the NSI parameters are:

Re[ϵ̃T ]eµ = −0.05+0.04
−0.03, Im[ϵ̃T ]eµ = −0.13+0.09

−0.07. (3.123)

3.4.3 CP-violation

From Eqs. (3.125), (3.124), we conclude that for CP violating term, the Kam-

land [52] can have effects of Im[ϵ̃X ]eµ and the medium baseline reactors to the Im[ϵ̃X ]eβ

(β = µ, τ). We can compute the equivalent of the Jarskolg invariant in the context of
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BSM physics. From Eq. (3.125) and Eq. (3.124) we found that

JCP
eµ =Im{[ϵ̃X ]eµ}c313s2θ12 , (3.124)

JCP
eτ =Im{[ϵ̃X ]eτ}s2θ13 . (3.125)

In the standard neutrino oscillation, when the initial and final neutrino states are equals,

there is no effect of CP violation. Then, if there is any evidence of JCP
eα ̸= 0 (α = µ, τ) it

will be signaling new physics.

The CP violation phase appears in the expressions of booth reactors and solar

experiments. However, the CP violation effect by itself appears only at reactors, see

Eqs. (3.124) and (3.125). We quantify the effects of the CP violation terms, and the

∆χ2 functions are presented in figure 3.14. In the left panel, we include the ∆χ2 for the

eµ interactions and the right panel for the eτ . In the green curve, we show the tensor

interactions in which we notice that the CP constrained is stronger than the scalar, dashed-

dotted yellow. We found two scenarios, [ϵ̃T ]eµ and [ϵ̃S]eτ , in which the preference for non-

zero CP violation in higher than 1σ. For the tensor, [ϵ̃T ]eτ interactions, the constraint is

the restrictive. On the other hand, for the [ϵ̃S]eµ, the bounds are relaxed.

We check that the first data point of the energy spectrum of Daya Bay was

responsible for the improvement in the analysis. The significance of the effect is low,

only 1σ, and can be only a statistical fluctuation. We consider that more experimental

data is needed to support a non-statistical fluctuation interpretation. One experiment

that could test such effect which much more statistics, can be the future designed JUNO

experiment [73].
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Figure 3.14: In this figure we show the ∆χ2 as function of the CP-violation parameters, in the

left (right) panel we show the Jeτ (Jeµ) parameters of Eqs. (3.124) and (3.125).
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3.4.4 JUNO

The JUNO experiment is a proposed experiment [73] that aims to solve the

mass hierarchy problem with a significance of 3σ − 4σ. The JUNO experiment will use

reactor neutrinos in a baseline of around 56 km to measure the standard oscillation pa-

rameters with a precision of more than 1%. We assume an exposure that corresponds to

a 1.4 × 105 events in the simulation. As JUNO is a reactor oscillation experiment, the

underlying physics is the same as the reactors used here.

Our results found no implications for NSI in the normal and inverted ordering.

The parameter limits are shown in figure 3.15, where we can see that JUNO has a strong

sensitivity to ∆m2
31, it can help to break the degeneracy between ∆m2

31 and Im[ϵ̃X ]eτ

that appeared on sec. 3.4. For Im[ϵ̃X ]eµ JUNO can check the preference for non-zero

CP-violation coming from Daya Bay.
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Chapter 4
Non-standard neutrino interactions:

production and detection (NC)

This chapter explores the famous Large-Mixing Angle Dark (LMA-D) solution.

It is one of several solutions that still allow us to explain solar neutrinos. At the time of

the measurement of solar neutrino oscillation, the available data was compatible with at

least four solutions of standard neutrino oscillation, the Large Mixing Angle (LMA), the

Small Mixing Angle (SMA), the Vacuum solution (VAC), and the MSW low mass (LOW)

solution. These were distributed around the space of parameters of neutrino oscillations,

as shown in Fig. 4.1.

Figure 4.1: Neutrino parameter space at the beginning of the 2000’s. Figure from Ref. [4].

Later, with more data and independent KamLAND findings [52], it was shown
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that the correct solution was the LMA. Fig. 4.2 shows the solution for the solar neutrino

and the KamLAND cases.

Figure 4.2: In this figure we show the contours at 95%, 99% and 99,73% form KamLAND

(colored) and for Solar neutrinos (black lines), for Ref. [5].

The LMA-D solution can be calculated by using the Hamiltonian for neutrinos

in the matter:

Ĥ = M+ V =
1

2Eν

U †

0 0 0

0 ∆m2
21 0

0 0 ∆m2
31

U

+

VCC 0 0

0 0 0

0 0 0

 (4.1)

where VCC is the neutrino potential given by (3.74). In the vacuum, that is, if VCC = 0,

this Hamiltonian is invariant under the transformation

∆m2
31 → −∆m2

32, (4.2)

sin θ12 → cos θ12, (4.3)

δ → π − δ, (4.4)

where sin θ12 → cos θ12 is equivalent to tan θ12 → 1/ tan θ12 which represents tan θ12 > 1

and the tan θ12 < 1, the left and the right-side solutions of KamLAND in Fig. 4.2. Once

solar neutrinos are sensitive to the MSW effect, the matter potential breaks the degeneracy

of the Hamiltonian, leading to the exclusion of the LMA-D solution is exclusion by solar



74

neutrinos. On the other hand, if non-standard neutrino interactions are present, the

Hamiltonian for neutrino propagation will not be the same as in Eq. (4.1), but

V = VCC

1 + ϵee ϵeµ ϵeτ

ϵµe ϵµµ ϵµτ

ϵτe ϵτµ ϵττ

 , (4.5)

where ϵeµ =
∑

f=e,d,uNf (x)/Ne(x)ϵ
f
αβ. For neutral currents the couplings on (4.5) are the

strength of the non-standard interactions

LNSI = −2
√
2GF ε

f
αβ

(
ναLγµνβL

)(
fγµf

)
. (4.6)

If we consider Nf (x)/Ne(x) ≈ constant, the neutrino Hamiltonian is invariant under the

following transformation [74]

(εee − εµµ) → −(εee − εµµ)− 2, (4.7)

(εττ − εµµ) → −(εττ − εµµ), (4.8)

εαβ → −ε∗αβ, (4.9)

∆m2
31 → −∆m2

32, (4.10)

sin θ12 → cos θ12, (4.11)

δ → π − δ. (4.12)

One can notice that it leads to a new solution compatible with the presence of a matter

potential. This is called the LMA-D degeneracy and was unresolved for all neutrino

experiments up to the results of Ref. [75].

Once for oscillation experiments in matter electrons and protons have almost

the same density, the electron neutrino component can be neglected without the loss of

generality. With that, for theories where the lepton flavor coupling is independent of the

quark coupling, it can be parametrized by:

εfαβ =
√
5εf,ηαβ (cos η + Y (x) sin η) , (4.13)

where Y (x) = Nn(x)/Np(x) is the ratio between the number density of neutrons and

protons. The η parameter controls the strength of the interaction between protons and

neutrons, and the ϵηαβ controls the magnitude of the coupling, see Ref. [6]. In the next

section, we will see how it is possible to resolve this degeneracy with scattering experi-

ments.
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4.1 CEνNS

As we have seen, if non-standard interactions (NSI) as in Eq. (4.6) does exist,

it can be predicted on neutrino oscillation experiments as solar neutrino and some long-

baseline accelerator experiments. On the other hand, NSI can also be seen in scattering

experiments where the neutrinos are measured near the source. Scattering experiments

provides a vast number of events and, consequently, a clean signal of neutrinos.

The neutrino scatters at a target in a scattering experiment, usually a nucleon.

The target can also be an electron, but for this, the data is very scarce; see Ref. [6]. For

collisions with nucleons, the CHARM experiment [76] provides strong bounds on NSI.

However, CHARM is a high-energy experiment and does not provide bounds for small

mass mediators (M ≪ 100 GeV).

Alternatively, a low-energy experiment is required to study small-mass medi-

ators. In this sense, there is the coherent elastic neutrino-nucleus scattering (CEνNS).

This process appears at low-energy neutrino interactions with nucleons and is the dom-

inant process for neutrino energies Eν < 40 MeV, providing model-independent bounds

on neutrino interactions. The differential cross section of a neutrino with energy Eν on a

nucleus with Z protons, N neutrons, and mass M reads [77]:

dσ

dT
=
G2

F

2π
Q2F 2(q2)M

(
2− MT

E2
ν

)
. (4.14)

Here, T is the recoil energy of the nucleus, F (q2) is the nuclear form factor depending on

the squared momentum transfer, q2 = 2MT , and Q2 is the weak charge of the nucleus.

In the Standard Model (SM), the weak charge value is

Q2
SM = (ZgVp +NgVn )

2 , (4.15)

with the tree-level relations gVp = 1/2 − 2 sin2 θW and gVn = −1/2. For the weak mixing

angle θW , we follow the low-energy value calculated in [78].

For our case of study, it is always possible to consider the effect of NC NSI by

replacing Q2
SM with an effective weak charge. The effective weak charge will be dependent

on the flavor α of the incoming neutrino [79]:

Q2
α =

[
Z(gVp + εpαα) +N(gVn + εnαα)

]2
+
∑
β ̸=α

[
Zεpαβ +Nεnαβ

]2
,

=
(
QSM + ZεY,ηαα

)2
+ Z2

∑
β ̸=α

(
εY,ηαβ

)2
. (4.16)

Here, we can fix the neutron to proton ratio and, from Eq. (4.13) define an effective

ϵY,ηαβ . For simplicity, we assume that the off-diagonal NSI coefficients are real. The first
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Target Z Y ηblind −QSM σ/Q2
SM σµ/σ

C3F8 8.2 1.081 −42.8o 4.27 13.3% ∞
Si 14 1.006 −44.8o 6.72 17.6% ∞
Ar 18 1.235 −39.0o 10.71 12.0% ∞
Ge 32 1.270 −38.2o 19.6 14.2% 4.20

CsI 54 1.405 −35.4o 36.7 12.5% 3.37

Xe 54 1.431 −35.0o 37.4 12.0% 4.01

Table 4.1: The number of protons Z, the neutron-to-proton ratio Y = N/Z, the corresponding

blind spot ηblind, eq. (4.17), and the value of the SM weak charge, QSM, for different target

materials. We use the average N corresponding to the natural isotope abundances, and for the

molecules C3F8 and CsI, we take the average Z and N values. The last two columns show our

assumptions about the measurement uncertainties obtainable at ESS.

term in eq. (4.16) corresponds to interactions conserving flavor process (the diagonals of

Eq. (4.1)) να + A → να + A. For this term, represents the NSI amplitude interfere with

the SM, whereas the second term is flavor changing neutral current (FCNC) scattering,

να + A→ νβ + A.

From Eqs. (4.16) and (4.13), it follows that an experiment with a given target

nucleus will not be sensitive to NSI if ϵY,ηαβ = 0, which happens for

ηblind = − arctan

(
1

Y

)
. (4.17)

In Table 4.1, we list some of the possible detector targets used in this work, and we

show their values for Z, Y , and ηblind. Before [75], the LMA-dark was allowed for values

of η close to the blind spot of CsI, ηCsI
blind ≈ −35.4◦. The CsI was the target used in the

first measurement of CEνNS. In order to resolve the LMA-D degeneracy, the data from

a target with an ηblind sufficiently smaller than this value is needed.

4.2 COHERENT

The COHERENT experiment was the first experiment to obtain the CEνNS

signal [80]. The COHERENT collaboration used a stopped neutron source to provide an

electron (and muon) neutrino beam that and measure the recoil of a CsI nucleon. We will

use the COHERENT data to provide limits on the weak charge and the NSI parameters

of the LMA-D degeneracy.

For COHERENT(CsI), we use timing information measurement in CsI and

discussed ref. [6]. The time information implies a correlation between Qµ and Qe mea-
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surements, which can be estimated from figure 6 of ref. [6]. In order to be conservative,

we choose to use the Chicago Quenching Factor (QF) result (which has the largest uncer-

tainty). We use the following χ2
coh.(CsI) function

χ2
coh.(CsI)(Qe, Qµ) =

(
∆Qe ∆Qµ

)(
σ2
e ρσeσµ

ρσeσµ σ2
µ

)−1(
∆Qe

∆Qµ

)
. (4.18)

Here, ∆Qα = Qα − Qbfp
α , where we estimate ρ = −0.687, σe = 965.5, σµ = 436.5,

(Qbfp
e )2 = 1008.3 and (Qbfp

µ )2 = 1193.9. The result of eq. (4.18) is shown in figure 4.3.
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Figure 4.3: Contours on 1σ, 2σ and 3σ (two dof) on the χ2 of eq. (4.18) for the Chicago QF

from ref. [6]. The SM weak charge for CsI is shown by the gray line Q2
SM ≈ 1352.5.

At the time of our calculations, preliminary results presented in ref. [81] were

released. Here, we use the preliminary results. For comparison with the original 2017

results of COHERENT [80], the statistics have increased, and new data on the quenching

factor have become available. It led to an overall improvement in precision from 33% of

the 2017 analysis to around 16%.

The results of Ref. [81] are reported in terms of the correlated determination

of averaged cross-sections ⟨σµ⟩ and ⟨σe⟩, corresponding to the averaged νµ and νe flux

contributions to the observed CEνNS cross-section. In order to reproduce these results,

we use that ⟨σα⟩ ∝ Q2
α (α = e, µ) and use assume the same χ2 function as in Eq. (4.18).

We find that with the values ρ = −0.790, δe = 1204.7, δµ = 404.6, (Qbfp
e )2 = 1200.0

and (Qbfp
µ )2 = 1245.1 it was possible to replicate their results. Using eq. (4.16), it is

straightforward to transform χ2
Coh(CsI)(Q

2
e, Q

2
µ) into χ

2
Coh(CsI)(ϵ

η, η).

For Argon measurements in COHERENT, we use the data released in Ref. [82].
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Then, we estimate the weak charge measurement uncertainty, assuming that COHERENT

measures the total rate. In that case, our χ2 is given by:

χ2
coh.(Ar) =

(feQ
2
e + fµQ

2
µ − (Qbfp)2)2

σ2
, (4.19)

where, fe ≈ 0.3 and fµ ≈ 0.7 were taken from Ref. [80, 83]. The σ = 25.0 is the total rate

error and Qbfp = −12.2 is the best fit point measured. We estimate those values from fig.

6 of Ref. [82], using the following effective weak charge:

Q2
e ≡

[
QSM + ZCsI(2 + YCsI)ε

u
ee + ZCsI(1 + 2YCsI)ε

d
ee

]2
. (4.20)

Our estimates can be seen in Fig. 4.4.
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Figure 4.4: In the left: We show our prediction of Fig 6. of Ref. ?? using eq. (4.19) at 1σ, 2σ and

3σ (two dof) C.L.. In the right: using the eq. (4.19), we plot the 1σ, 2σ and 3σ (two dof) C.L.

for the effective weak charge. The standard model weak charge in that case is Q2
Ar ≈ 114.64.

We combine Argon and CsI measurements on COHERENT, assuming no cor-

relation between the measurements. In that case, we follow flavor-independent model

parametrization:

Q2
α ≡ [QSM + Zexpϵ

exp
αα ]

2 , (4.21)

where

εexpαα =
√
5(cos η + Y exp sin η)εηαα. (4.22)

Using the assumption of no correlation between Ar and CsI, we use

χ2
coh. = χ2

coh. (CsI) + χ2
coh. (Ar), (4.23)
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and, instead of using χ2
coh.(Qe, Qµ), we will use χ2

coh.(ϵ
η
ee, ϵ

η
µµ, η). In Fig. 4.5, we show the

combination of COHERENT CsI and Ar measurements for four different model scenarios:

when Argon is blind to non-standard interactions (first column of the first line), when CsI

is blind to the new interactions (second column of the first line), when light matter (the

ratio of protons and neutrons is equal to 1) is blind to non-standard interactions, and

when the interaction happens only with protons. With the dashed orange curve, we show

the Ar measurement; in the plain blue line curve, we show the CsI measurement, and in

purple shaded region, both together using eq. (4.23). As can be seen, when Argon is blind

to NSI, NSI has constraints from CsI, and when CsI is blind NSI is, the NSI constrained

by Ar.
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Figure 4.5: Here we show the 3σ regions for four different models depending on η. With the

dashed orange curve, we show the COHERENT argon measurement. The blue straight curve

shows the COHERENT CsI results, and the purple shaded region represents the combination of

COHERENT CsI and Ar. From ref. [7].

4.2.1 Global oscillation limits on non-standard neutrino interactions

In order to test the LMA-dark solution discussed in the last section, we will

compare it with the LMA-light solution. We then define the following ∆χ2:

∆χ2(ϵη, η) = χ2
D(ϵ

η, η)− χ2
L,min , χ2

L,min = min
ϵη ,η

χ2
L(ϵ

η, η) . (4.24)
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Here, ϵη = (ϵηαβ) is a short-hand for all NSI coefficients, and χ2
D,L(ϵ

η, η) are the χ2 functions

describing the LMA-dark (θ12 > 45◦) or LMA-light (θ12 < 45◦) solutions in the parameter

space. The ∆χ2 in eq. (4.24) is the test statistics that quantify if the LMA-dark solution

is disfavoured concerning LMA-light. In particular,

∆χ2
DL ≡ min

ϵη ,η

[
∆χ2(ϵη, η)

]
= χ2

D,min − χ2
L,min (4.25)

corresponds to the log-likelihood ratio of the two hypotheses LMA-dark versus LMA-

light. Here, we will evaluate ∆χ2
DL from eq. (4.25) for one dof (free η) to quantify the

exclusion of the LMA-dark degeneracy. In order to perform the minimization over the

NSI parameters, we use a Monte Carlo minimization based on the differential evolution

method [84]. The numerical calculations are performed with the SciPy library [85] in

python that already has this algorithm implemented.

Minimizing multi-variable functions can be a difficult task depending on which

type of function is minimized. Moreover, it can be tricky if the function behavior is not

well known, if the function’s derivative is not continuous, or if we have several local

minima. In this context, Monte Carlo minimization is a commonly used approach. In this

work, we use a kind of Monte Carlo minimization; the differential evolution method [84].

The differential evolution method is based on the ”philosophy” of evolutionary

biology. For the χ2(ε⃗) function, where ϵ⃗ is NSI vector space, the differential evolution

algorithm works with the implementation of a set of N ”individuals”(we use 15) in the NSI

parameter space. Several proposals for the initial positions can be made depending on the

previous knowledge of the global minimum. In our case, we choose it uniformly randomly

between the boundaries1 of NSI that comes from oscillation experiments. Thereby, given

the initial positions of the population, we choose a random set of three individuals, and

based on those three, we propose a new ”mutant”. Here, the mutations ε⃗new are new values

of the NSI based on the three we sorted, and we do that procedue for each one of them.

Several strategies can be used to generate those mutations, e.g., binomial or exponential.

For each case we tested to see which was the best option, for example:

ε⃗new = ε⃗best + µM⃗(∆ε⃗). (4.26)

where µ (we use 0.5) is the mutation factor, ∆ε⃗ is the difference between the position

complementary sorted vectors, and M⃗ is a function that depends on the mutation method.

For the binomial case, it randomly chooses with some probability p (we use 0.7) if the

1The boundaries we use were always the 4/3 of the NSI largest values among the η of oscillation

experiments.
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mutation will be implemented or not. After creating a new mutated individual in the

population, we can choose if we substitute the old one with the new one based on the

minimum values of the function χ2. Finally, we can repeat that procedure until we

have some desired convergence of the population to the χ2 minimum value with a given

tolerance.

The minimization was made using the Scipy library [85] in python that already

has this algorithm implemented.

Oscillation experiments. The data from oscillation experiments was included

by using the results of the global analysis from ref. [86]. We reconstruct approximate

functions for the χ2
L,osc(ϵ

η, η) and χ2
D,osc(ϵ

η, η) from figs. 7 and 10 of ref. [86] (2020 updated

version).2 We refer the reader to that reference for further details about the statistical

analysis and used data.

4.2.2 Results

Here we show the results of our analysis, including the oscillation data. The

inclusion of oscillation data is made by including a χ function as described in the last

section. We are interested in knowing the data preference between the light side and the

dark side. Hence, we assume that the oscillation and the COHERENT measurements are

uncorrelated summing the χ functions:

∆χ2 = ∆χ2(ϵη, η) +
∑

i={CsI,Ar}

χ2
i (ϵ

η, η), (4.27)

where the first term is the χ2 for oscillation as given in Eq.(4.24), and the second term

sums the χ2 of Eqs. (4.18) and (4.19). The function ∆χ2
osc minimized with respect to

all ϵη is shown as black-dotted curve in fig. 4.6. We restrict to the range −50◦ ≲ η ≲ 0◦

since outside this region, LMA-dark is strongly disfavoured [6]. We see that oscillation

data by themselves exclude LMA-dark for values of η ≲ −37◦ at more than 3σ, while for

−25◦ < η < 0◦, LMA-dark provides a comparable fit as LMA-light with ∆χ2
DL ≲ 2.

2We are grateful to the authors of ref. [86] for providing us a χ2-table corresponding to an updated

version of their fig. 7. Let us note that the figure shows marginalized regions for each ϵηαβ as a function

of η. Therefore, we neglect correlations between the different ϵηαβ . Our exclusions will be conservative;

if parameter correlations can be included, exclusions of the LMA-dark degeneracy would be somewhat

stronger.
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Figure 4.6: For oscillation, we show the ∆χ2 of the LMA-D solution minimized on ϵηαβ and as

a function of η (dotted black). For COHERENT, we show each target separated and in a joint

analysis: oscillations+COHERENT(CsI) (blue), oscillations+COHERENT(Ar) (orange), and

all data sets combined (purple). For the dashed curves, the off-diagonal ϵηαβ are fixed at zero,

and for the solid curves, we minimize over them. From ref. [7].

4.3 ESS

Given the results of the last section, we are naturally led to investigating future

CEνNS measurements with the potential to exclude the LMA-dark with high significance.

Therefore, we replicate the results from [87] and use their results to follow our discussions.

This work will consider future CEνNS measurements that use either stopped pions or

nuclear reactor sources of neutrino. The main difference between those experiments is the

neutrino energy and the neutrino flavor component. In a reactor, electron antineutrinos

are produced, whereas in stopped pions sources, there is a combination of electron, muon,

and antimuon neutrinos. In this section, we study only stopped pion source, and in

the next section, we include reactors in the analysis. Below we will always assume that

the best-fit point for a hypothetical future experiment is at Q2
SM, i.e., no NSI. Then we

calculate the sensitivity to constrain Q2
e and Q

2
µ where the measurement uncertainty (from

Ref. [87]) and add the resulting χ2 to the (4.27).

To be specific, in this section, we consider as an example for a stopped pion

source the sensitivity of a possible CEνNS measurement at the European Spallation Source

(ESS) [8]. The ESS can increase neutron luminosity by a factor of 30–100 concerning previ-

ous spallation sources and an order of magnitude larger neutrino fluxes than the Spallation

Neutron Source (SNS) where the COHERENT experiment is located. The sensitivity of
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CEνNS measurements using different detector technologies based on various target ma-

terials has been investigated in ref. [8], where details about the assumed experimental

configurations can be found. See also [88] for some physics applications.

4.3.1 Analysis

The European Spallation Source (ESS) is a proposed low energy neutrino

beam. It is similar to the COHERENT neutrino beam, and it is proposed to be the

most intense spallation neutron source. Indeed, there is a proposal to measure CEνENS

on ESS using a list of targets, see Ref. [8]. Here, we use the simulated sensitivities of Ref.

[8] to estimate the limits on the effective weak charges Qe and Qµ.

The total rate of the signal will dominate the CEνNS measurement at ESS. We

adopt the neutrino flavour contribution ratios to the event rate: νe : νµ : νµ = (1 : 1 : 1);

it corresponds to the effective weak charge combination Q2
e/3 + 2Q2

µ/3. In some cases,

the detector energy resolution allows to partially distinguish between electron neutrinos

and muon neutrinos due to the spectral shape of their respective fluxes [8]. We suppose

that an additional independent constraint on Qµ can be obtained to implement this effect.

Hence, we use the following χ2 definition:

χ2
ESS =

(Q2
SM −Q2

e/3− 2Q2
µ/3)

2

σ2
+

(Q2
SM −Q2

µ)
2

σ2
µ

. (4.28)

Here, σ (σµ) is the uncertainty on the total rate (on Q2
µ). The uncertainty values have

been chosen to match fig. 12 of [8]. Our results are listed for the various targets in tab. 4.1.

In agreement with [8], we found rate uncertainties in the range from 12% to 18%. For Ge,

CsI, and Xe targets, a constraint on Q2
µ with σµ/σ ≃ 4 can be obtained, whereas for the

lighter targets C3F8, Si, and Ar, the measurement is dominated by the total rate alone.

With these assumptions, we can reproduce fig. 12 of [8] with excellent accuracy.

4.3.2 Results

In fig. 4.8, we show the sensitivity to exclude the LMA-dark solution adding an

ESS measurement with single target nuclei to present data. The Ar, Xe and CsI targets

can lead to a slight improvement in the statistics, increasing the ∆χ2 by about 1 unit, and

the same also for Ge, for which the improvement is about three units. These nuclei have

their blind spot close to η ≈ −35◦ (c.f., tab. 4.1). Therefore, it is impossible to significantly

improve around that value of η concerning the present situation. On the other hand, a

measurement using C3F8, especially Si, can significantly improve. From tab. 4.1 we see
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Figure 4.7: Our 90% C.L. curves for the eqs. (4.28) and (4.16) assuming different targets.

that they have a neutron-to-proton ratio as well as ηblind sufficiently different from CsI,

such that they will be able to exclude LMA-dark with ∆χ2 ≈ 16.1 (Si) and 13.0 (C3F8).

Figure 4.8: Expected sensitivity to exclude LMA-dark by a CEνNS measurement at ESS using

different target materials. For dashed curves the off-diagonal ϵηαβ are fixed at zero, for solid

curves we minimize with respect to them. From ref. [7].

The complementarity of Si measurement over present data is also illustrated

in fig. 4.9. We see that in the relevant range of η the ellipse from the Si measurement only

marginally touches the LMA-dark band at the 3σ level. From these plots, it is clear that

also for the ESS measurement, we observe a similar effect of off-diagonal NSI parameters

as for COHERENT: they are negligible once constraints from oscillations are included
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c.f. dashed versus solid curves in fig. 4.8.
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Figure 4.9: Allowed regions in the plane of ϵηee and ϵηµµ at ∆χ2 = 11.83 corresponding to 3σ

for two dof, for different fixed values of η. The contour lines correspond to the regions from

oscillation data, COHERENT(CsI), and COHERENT(Ar) separately. The purple filled region

is obtained by combining all three data sets. The diagonal band corresponding to oscillation

data does not pass through the SM point ϵηµµ = ϵηee = 0 because we have assumed the LMA-dark

solution with θ12 > 45◦. The light-red filled region shows the sensitivity of a future measurement

at ESS using Si detector, assuming the SM. Off-diagonal ϵηαβ are fixed at zero. From ref. [7].

In fig. 4.10, we address the question of which accuracy for a CEνNS measure-

ment at a stopped pion source will be needed in order to disfavor LMA-dark significantly.

We adopt the χ2 from eq. (4.28), add it to the one from the present data, and show the

difference between the χ2 minima in the dark and light sides as a function of the relative

measurement uncertainty of the weak charge. We see that for Si (C3F8), already for a

rough measurement of σ/Q2
SM ≈ 1 (0.5), LMA-dark will be disfavoured at ∆χ2 > 9.

At small values of σ, the curves become flat. The asymptotic value for a given

target material is determined by the size and location of the ring in the plane of ϵηee and

ϵηµµ relative to the LMA-dark band.3 We see that Ar, Xe, and CsI targets would not

3The slight decrease at small σ for Ar, Xe, CsI results from the fact that the best-fit point in the light
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3σ

4σ

Figure 4.10: ∆χ2 between the LMA-dark and LMA-light best-fit points as function of the relative

measurement error σ/Q2
SM for a CEνNS experiment at a stopped pion source for different target

materials, assuming that the best-fit point corresponds to no NSI. In scaling σ we keep the ratio

σµ/σ constant, using the value given in tab. 4.1. The dashed-green curve shows the result for

Ge for σµ → ∞. The stars indicate the assumptions for ESS sensitivities based on [8]. From ref.

[7].

reach 3σ even for ideal measurement. However, the asymptotic values for Si, Ge, C3F8

are roughly 17, 16, 12.5, respectively. If evaluated for one dof, this would correspond to

about 4σ for Si and Ge, and 3.5σ for C3F8. For Si and C3F8, the asymptotic sensitivity

is already achieved for σ/Q2
SM around 10%, and already our default assumptions for ESS

are relatively close to them, as indicated by the stars in fig. 4.10.

Note that for Si and C3F8, we assume a total rate measurement, constraining

only the combination (Q2
e/3 + 2Q2

µ/3). For Ge, we show in fig. 4.10 the impact of a

partial separation of Q2
e and Q2

µ. The solid green curve corresponds to the situation

where in addition to the total rate, also Q2
µ can be determined with a relative precision of

σµ/σ = 4.2, as motivated by the results of [8]. In contrast, the dashed-green curve shows

the result for Ge using only the total rate, i.e., setting σµ → ∞. For Ge, the separate

Q2
e/Q

2
µ information is essential to disfavor LMA-dark at high significance. The reason for

this becomes apparent in fig. 4.11, where we show a Ge measurement with a precision of

factor 5 better than the ESS assumption using total rate information only (green shaded).

We see that the ring passes precisely through the two islands for η ≈ −35◦, and therefore,

the degeneracy cannot be lifted for this value of η. The Ge constraint has a similar shape

side from current data is not precisely at ϵη = 0. By adding hypothetical ESS data assuming no NSI, the

light-side best-fit point also changes slightly, decreasing ∆χ2 between dark and light sides.
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to the one from Ar due to the similar value of the neutron-to-proton ratios, c.f. tab. 4.1.

However, if in addition to the total rate also separate information on Q2
µ is available, the

ring becomes split into four islands (green-solid contours), and the degeneracy is resolved.

Figure 4.11: Same as fig. 4.9 but showing allowed regions at 3σ from a Ge target at a stopped

pion source assuming a precision of σ/Q2
SM = 0.028, a factor 5 better than the ESS assumption

from [8]. For the green-shaded region (green-solid contours) we assume σµ/σ = ∞ (4.2). From

ref. [7].

4.4 Reactors

Reactors are another source of low energy neutrinos highly used in the search

for more CEνNS data. As we mentioned in the previous chapter, antineutrinos are created

in the beta decay processes in reactors. The neutrino energy spectrum is defined by the

set of parent nuclei and the energy of the final nuclei. Therefore, the total rate of the flux

is subject to systematic uncertainty from the flux modeling. For reactors, the systematic

is around ∼ 5%. Hence, we assume the following χ2 function for reactors:

χ2
reactor =

(NSM −Ne)
2

(NSMσsys(%))2
. (4.29)

For CEνNS, the total number of events is proportional to the weak charge:

Nevents ∝ Q2
e. From that, we factorize the total constants leading to the following weak-

charge χ2:

χ2
reactor =

(Q2
SM −Q2

e)
2

(Q2
SMσsys(%))2

=
(1−Q2

e/Q
2
SM)2

σ2
sys

(4.30)
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In that case, if there is some systematic uncertainty, it will appear in the

σsys(%). In the next section, we will explore the present CEνNS limits on NSI and a

combined sensitivity if one of the reactor experiments measures CEνNS.

4.4.1 CONNIE Measurements

Here, we combine the low-energy CONNIE data [89] with our results. In ref.

[89] the authors put bounds on light mediators in neutrino-nucleon interactions. Here,

we are interested in the universal flavor-conserving coupling result. In ref. [89], the

first energy bin was used to calculate the parameter limits, with the assumption that

Nobs/Nexpected = 41 at 95%. In that case, the chi-square function will be given by a

Gaussian where they assume centered on zero:

χ2 =

[(
1− QZ′

QW

)2]2
(
N

(1σ)
obs /Nexpected

)2 . (4.31)

In our case, we do not assume the Gaussian is centered on zero, but

χ2 =

[
Nobs −

(
1− QZ′

QW

)2
Nexpected

]2
(
Nobs −N

(1σ)
obs

)2 . (4.32)

With that in hand, we made the fig. 4.12, trying to reproduce the results of ref. [89].

We include the CONNIE analysis in the global χ2 (4.27) assuming the following χ2 for

10 3 10 2 10 1 100 101

M ′
Z(GeV)

10 4

10 3

10 2

10 1

g′ Z

CONNIE constraints on NSI
Lindhard QF
Chavarria QF

Figure 4.12: Limits on light mediators using the absence of a coherent neutrino nucleon scatter-

ing.
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CONNIE:

χ2 =

[
Nobs −

(
Qe

QSM

)2
Nexpected

]2
(
Nobs −N

(1σ)
obs

)2 . (4.33)

The result is shown in Fig. 4.13, where we can see that CONNIE helps in the analysis for

η ∼ −33o. For this figure, we use the results of COHERENT CsI from [6] using timing

information.
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Figure 4.13: Global analysis with the limits on the LMA-D degeneracy.

4.4.2 Sensitivity

There are many ongoing or planned CEνNS experiments at nuclear reactors;

see [90] for a review. In this subsection, we address whether a reactor measurement can

also serve to resolve the LMA-dark degeneracy. The most suitable difference to pion

sources is the pure electron flavor of the reactor neutrino. Particularly, we will consider

the ongoing CONNIE [91] and CONUS [92] experiments which use Si and Ge targets,

respectively. However, both experiments have published the first results, which could not

yet establish a significant measurement of CEνNS events.

Similar to the above, we estimate the sensitivity of future reactor experiments

by assuming a determination of the weak charge. We define

χ2
reac =

(Q2
SM −Q2

e)
2

σ2
reac

, (4.34)

where again we assume that the best-fit point is at Q2
SM and adopt a measurement uncer-

tainty of σreac/Q
2
SM = 5%. While this appears to be a somewhat optimistic assumption, it
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discusses the potential of a close-to-ultimate reactor measurement concerning the LMA-

dark ambiguity.

Figure 4.14: Same as fig. 4.9 with sensitivity of the reactor experiments using Ge and Si overlaid

assuming a 5% measurement of the weak charge QSM. From ref. [7].

In Fig. 4.14, we show the constraints from a reactor experiment in the plane of

ϵηee and ϵ
η
µµ for four values of η. Since they are sensitive only to Qe, the limits are vertical

bands in these plots. It is clear that for values of η, for which the LMA-dark allowed

region overlaps with ϵηee = 0, such a measurement will not be able to exclude it. It is

indeed the case for η ≈ −20◦, as shown in the bottom-right panel of fig. 4.14.

This behavior is confirmed in fig. 4.15, where the sensitivity to exclude the

LMA-dark solution is shown as a function of η. We observe that for −27◦ < η ≲ −15◦,

reactor experiments can not improve concerning the present situation. Some improvement

is possible for η < −27◦. However, reactor experiments lose their sensitivity at certain

values of η in this region. The origin of this effect for Si is visible in the upper-right panel

of fig. 4.14: it happens that the allowed band for non-zero ϵηee passes close to an island
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Figure 4.15: Sensitivity to exclude the LMA-dark solution by a hypothetical CEνNS measure-

ment at a nuclear reactor using a Si (red curves) or a Ge (green curves) target. In both cases,

we assume a 5% measurement of QSM. For dashed curves, off-diagonal ϵηαβ are fixed to zero. For

solid curves, we minimize concerning them. For η ≳ −33◦ the Si and Ge curves overlap.

of the regions allowed by oscillations + COHERENT. The spike of the Ge experiment in

fig. 4.15 has a similar origin.

In fig. 4.14, the off-diagonal NSI parameters are fixed at zero. If we had allowed

them to vary freely, the region between the two vertical reactor bands would be filled for

a similar reason as discussed in sec. 4.2 in the context of COHERENT. However, once

the constraints from oscillation data are applied, the result is practically identical to the

fixed case, c.f. fig. 4.15.

In fig. 4.16, we show some examples where the complementarity of the reactor

and stopped pion source can be used to reach high significances. We combine a reactor

measurement using Si with several target materials at ESS. Results for using Ge at the

reactor are very similar. The ESS targets have been chosen such that by themselves; they

cannot reach 3σ, c.f. sec. 4.3. We observe that the combination of a reactor with Ar (Ge)

at ESS allows rejecting LMA-dark at more than 4σ (3σ). For the heavy targets, Xe and

CsI, a small region remain below 3σ around η ≈ −20◦.
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Figure 4.16: Sensitivity to exclude the LMA-dark degeneracy by a hypothetical CEνNS measure-

ment at a nuclear reactor combined with ESS. The red-dashed curve corresponds to Si target at

a reactor. For the solid curves we combine reactor(Si) with measurements at the ESS assuming

Ar, Ge, Xe, and CsI targets, see sec. 4.3 for details.
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Chapter 5
Conclusions

In this thesis, we investigate the limits of neutrino data on Non-Standard

Interactions (NSI) in two scenarios. In the first we study charged current NSI in reactors

and in the sun, and in the second we study neutral current NSI in scattering experiments

as COHERENT in the context of the Large Mixing Angle Dark (LMA-D) degeneracy.

In chapter 2, we present the formalism of neutrino oscillations based on quan-

tum mechanics and on quantum field theory. We show that the neutrino oscillation

depends on the production and detection process but for most of the real cases, the pro-

cesses dependency is canceled by some approximations. We show how important it is to

consider neutrino wave packets for consistency when building the theory.

In chapter 3, we study the effects of BSM physics coming from the EFT La-

grangian given in Eq. (3.3). We introduce the quantum field theory formalism to study

these new interactions. In the QFT approach, the BSM physics appears in the production

and detection and may cause new effects, such as CP violation. In sec. 3.2.1, we study

the formula for oscillation, and we separate the analysis by scale and type of interactions.

We found that some types of interaction can decouple in different scales, e.g., the [ϵ̃X ]eτ

appears mostly in the atmospheric scale and [ϵ̃X ]eµ in the solar scale. However, that is

not always the case. We show that when the experiment is sensitive to parameters of the

atmospheric scale, it can also detect CP violation effects from the solar scale, which hap-

pened for the Daya Bay experiment. In addition, we show how to calculate the production

and detection factors for each experimental setup and the implementation of experiment

simulation in sec. 3.3.

We analyze medium baseline reactors as Daya Bay, Double Chooz, and RENO,

where those experiments show a 2σ preference for non-zero CP violation. This preference

was more substantial for the [ϵ̃T ]eµ parameter. We also studied the Kamland experiment

and solar experiments, where we also found a preference for non-zero CP violation in
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the [ϵ̃T ]eµ interaction case. In our global analysis, the significance for this parameter was

reduced but remained at 1.7σ.

We have also shown that experiments such as JUNO have the potential to test

the signals seen in this analysis.

In chapter 4, we studied how CEνNS measurements can help to understand

the LMA-D degeneracy. First, we begin presenting the degeneracy, then give an overview

of the present scenario, showing the consequences of recent COHERENT measurements

on Ar and CsI. Finally, we show that the combination of different targets can help resolve

the degeneracy for theories where the coupling with quarks d and u can e different. In

that case, the LMA-D degeneracy is excluded at 3σ.

We also studied scenarios where new measurements come in handy. For exam-

ple, we follow proposals of new sources as neutrino beams (ESS) and reactors (CONNIE

and CONUS). For ESS, we followed the experimental proposal and performed the analy-

sis using several targets. We could show that at least for the lightest elements as Si, the

sensitivity can reach 4σ.

For reactors, we show they can help exclude islands of the parameter space,

and if combined with ESS elements as Ar or Ge, we can help exclude the LMA-D at 4σ.
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CEvNS experiments as probes of lepton unitarity and light-sterile neutrinos,” Phys.

Rev. D, vol. 102, p. 113014, 2020.

[89] A. Aguilar-Arevalo et al., “Search for light mediators in the low-energy data of the

CONNIE reactor neutrino experiment,” JHEP, vol. 04, p. 054, 2020.

[90] R. Strauss, “Future uses of CEvNS,” June 2020. talk at the Neutrino20 conference.

[91] A. Aguilar-Arevalo et al., “Exploring Low-Energy Neutrino Physics with the Coherent

Neutrino Nucleus Interaction Experiment,” Phys. Rev. D, vol. 100, no. 9, p. 092005,

2019.

[92] H. Bonet et al., “First Constraints on Elastic Neutrino Nucleus Scattering in the

Fully Coherent Regime from the Conus Experiment,” 10 2020.


	Introduction
	The Neutrino Oscillation Theory
	Quantum Mechanics
	Basis vectors
	Plane wave formalism

	Quantum Field Theory
	External Wave Packet Treatment


	Non-standard neutrino interactions: production and detection (CC)
	Effective Field Theory
	Lee-Yang Effective Field Theory

	New interactions and neutrino oscillations
	The oscillation rate
	Amplitude calculation
	Solar neutrino oscillation

	Case study: solar neutrinos and reactors
	Statistics
	Reactors
	Solar neutrino experiments

	Results and Conclusions
	The [X]e
	The [X]e
	CP-violation
	JUNO


	Non-standard neutrino interactions: production and detection (NC)
	CENS
	COHERENT
	Global oscillation limits on non-standard neutrino interactions
	Results

	ESS
	Analysis
	Results

	Reactors
	CONNIE Measurements
	Sensitivity


	Conclusions
	Bibliography

