

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE CIÊNCIAS MÉDICAS

HELENA TADIELLO DE MORAES

CARACTERIZAÇÃO GENÉTICA DE UMA COORTE LATINO-AMERICANA DE PACIENTES COM ENCEFALOPATIAS EPILÉPTICAS E DO DESENVOLVIMENTO.

> CAMPINAS 2022

HELENA TADIELLO DE MORAES

CARACTERIZAÇÃO GENÉTICA DE UMA COORTE LATINO-AMERICANA DE PACIENTES COM ENCEFALOPATIAS EPILÉPTICAS E DO DESENVOLVIMENTO.

Tese apresentada à Faculdade de Ciências Médicas da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do título de Doutora em Ciências.

ORIENTADORA: PROFA. DRA. ÍSCIA TERESINHA LOPES CENDES

ESTE TRABALHO CORRESPONDE À VERSÃO FINAL DA TESE DEFENDIDA PELA ALUNA HELENA TADIELLO DE MORAES, E ORIENTADA PELA PROFA. DRA. ÍSCIA TERESINHA LOPES CENDES.

> CAMPINAS 2022

Ficha catalográfica Universidade Estadual de Campinas Biblioteca da Faculdade de Ciências Médicas Ana Paula de Morais e Oliveira - CRB 8/8985

 Moraes, Helena Tadiello de, 1987-Caracterização genética de uma coorte latino-americana de pacientes com encefalopatias epilépticas e do desenvolvimento / Helena Tadiello de Moraes. – Campinas, SP : [s.n.], 2022.
 Orientador: Iscia Teresinha Lopes-Cendes. Tese (doutorado) – Universidade Estadual de Campinas, Faculdade de Ciências Médicas.
 1. Encefalopatia epiléptica e do desenvolvimento. 2. Sequenciamento completo de exoma. 3. Microarranjos de DNA. 4. Diagnóstico molecular. 5. Herança complexa. I. Lopes-Cendes, Iscia Teresinha, 1964-. II. Universidade Estadual de Campinas, Faculdade de Ciências Médicas. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Genetic characterization of a Latin American cohort of patients with developmental and epileptic encephalopathies

Palavras-chave em inglês: Developmental and epileptic encephalopathy Whole exome sequencing DNA microarray Molecular diagnosis Complex inheritance Área de concentração: Fisiopatologia Médica Titulação: Doutora em Ciências Banca examinadora: Iscia Teresinha Lopes-Cendes [Orientador] Ana Carolina Coan Antonia Paula Margues de Faria Kette Dualibi Ramos Valente Magda Lahorgue Nunes Data de defesa: 07-06-2022 Programa de Pós-Graduação: Fisiopatologia Médica

Identificação e informações acadêmicas do(a) aluno(a) - ORCID do autor: https://orcid.org/0000-0002-1285-2687

Currículo Lattes do autor: http://lattes.cnpq.br/9774925559884301

COMISSÃO EXAMINADORA DA DEFESA DE DOUTORADO

HELENA TADIELLO DE MORAES

ORIENTADORA: PROFA. DRA. ÍSCIA TERESINHA LOPES CENDES

MEMBROS TITULARES:

1. PROFA. DRA. ÍSCIA TERESINHA LOPES CENDES

2. PROFA. DRA. ANA CAROLINA COAN

3. PROFA. DRA. ANTONIA PAULA MARQUES DE FARIA

4. PROFA. DRA. KETTE DUALIBI RAMOS VALENTE

5. PROFA. DRA. MAGDA LAHORGUE NUNES

Programa de Pós-Graduação em Fisiopatologia Médica da Faculdade de Ciências Médicas da Universidade Estadual de Campinas.

A ata de defesa com as respectivas assinaturas dos membros encontra-se no SIGA/Sistema de Fluxo de Tese e na Secretaria do Programa da FCM.

Data de Defesa: 07/06/2022

DEDICATÓRIA

Dedico este trabalho a todas as crianças e familiares que sofrem com o diagnóstico de algum tipo de epilepsia, especialmente para aquelas que participaram de forma tão esperançosa dessa pesquisa. O contato que tive com essas crianças e famílias durante o tempo do doutorado me fez ver a vida de uma outra maneira. Espero ter contribuído, nem que seja um pouquinho, para o avanço do conhecimento nessa área e que isso possa trazer alguma melhoria na vida dessas pessoas.

AGRADECIMENTOS

Primeiramente gostaria de agradecer a minha família e amigos que sempre estiveram ao meu lado me apoiando em qualquer decisão. Principalmente meu marido Felipe pelo apoio e amor incondicionais. Não conseguiria nada sem você!

Agradecimentos especiais a Profa. Dra Íscia Lopes Cendes por ter aberto tantas portas para mim e por ter me dado todo o apoio necessário durante o desenvolvimento deste trabalho. Agradeço também a todos do Laboratório de Genética Molecular por nunca medirem esforços para me ajudar, especialmente Paty Aline e Lu Bonadia. Agradeço às meninas que sempre me ajudaram tanto no trabalho, quanto no dia a dia, nas conversas, nos almoços, nos cafés, nos bolos, nas risadas...Donatti, Canto, Jaque, Tânia, Dani Bruno, Diana, Estela e, em especial, Vanessa, amiga de muitos anos que tem um papel fundamental em toda a minha vida acadêmica e pessoal. Levarei sempre todos vocês em meu coração!

Agradeço imensamente a toda a equipe do ambulatório de epilepsias da infância do HC-UNICAMP. Principalmente a Profa. Dra. Ana Carolina Coan, Profa. Dra. Maria Augusta Montenegro e Malu.

Agradecimentos ao Prof. Dr. André Reis, meu orientador durante o estágio no exterior, e a todos do Instituto de Genética Humana da Universidade Friedrich-Alexander Erlangen-Nürnberg que me receberam tão bem e com muito profissionalismo.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Código de Financiamento 001 (processo nº 88887.508863/2020-00) e da Fundação de Amparo à Pesquisa do Estado de São Paulo (processo nº 2017/00648-1).

RESUMO

As encefalopatias epilépticas e do desenvolvimento (EEDs) formam um grupo de epilepsias graves, geralmente resistentes ao tratamento medicamentoso e associadas a atraso do desenvolvimento neuropsíquico-motor e cognitivo. Com o avanço de estudos moleculares nos últimos anos, novas mutações têm sido descritas para as EEDs, porém, uma parcela significativa dos pacientes ainda permanece sem diagnóstico molecular, assumindo modelo monogênico de herança. Assim, o objetivo principal deste trabalho foi aplicar novos paradigmas analíticos para identificar e investigar alterações genéticas em uma grande coorte de pacientes com EEDs da América Latina. Dos 275 pacientes com diferentes tipos de EEDs que tivemos acesso, foi possível obter amostras de DNA em 239 deles. Primeiramente, utilizamos dados de sequenciamento completo do exoma (WES) de 234 desses pacientes e dados de microarranjos cromossômicos (CMA) de 236 desses pacientes para determinar a taxa de diagnóstico molecular dessas técnicas assumindo um modelo monogênico. Após análise individual de cada paciente, a taxa de diagnóstico foi de 38% para WES, de 4,6% para CMA e de 38,9% para as duas técnicas combinadas, o que representa uma alta taxa de diagnóstico genético se comparado com a literatura. Em segundo lugar, no grupo de pacientes em que não foi possível encontrar uma causa genética, utilizamos duas abordagens exploratórias tendo em mente modelos complexos de herança: regressão logística, que leva em conta a presença de variantes genéticas comuns, que apresentam frequência alélica, MAF>0,01; e SKAT-O (do inglês, optimized sequence kernel association test) que analisa variantes raras (MAF=0,01) e ultrarraras (MAF=0,0005). Na análise de variantes comuns encontramos uma diferença entre as variantes dos grupos com e sem diagnóstico genético, sendo que o último apresentou uma variante exclusiva (rs9374755) em um gene de RNA (LOC101927314) com indício de associação (p = 0,000005). Na análise com variantes ultrarraras também observamos uma diferença entre os grupos com e sem diagnóstico, sendo que para o último encontramos sete genes candidatos que podem conter variantes de predisposição às EEDs: ASPM (p=0.045517718); CREBBP (p=0.032086627); FASN (p=0.009504475); LAMC3 (p=0.001417445); RELN (p=0.017928247); RYR3 (p=0.047068168); e SPTAN1 (p=0.045613193). O nosso estudo demonstrou que utilizando estratégias tradicionais de diagnóstico molecular foi possível encontrar uma causa monogênica para as EEDs em quase 40% dos

pacientes investigados, sendo que o WES teve o maior rendimento. Porém, o uso de CMA conseguiu adicionar quase cinco pontos percentuais no rendimento diagnóstico e, portanto, deve ser também considerado na investigação da etiologia genética das EEDs. Além disso, encontramos evidências de que pelo menos uma parte do efeito genético presente na etiologia das EEDs deve seguir um modelo complexo de herança. Apesar de não ser ainda possível aplicar essas análises ao diagnóstico genético de rotina, nossos resultados indicam que uma etiologia genética deve ser considerada em pacientes com EED mesmo que resultados negativos sejam obtidos utilizando as técnicas genômicas de rotina. A medida em que a possibilidade de diagnóstico molecular para doenças genéticas de herança complexa e multifatorial avança, acreditamos que as EEDs poderão se beneficiar desse novo conhecimento e novos métodos de análise dos dados genéticos.

Palavras-chave: Encefalopatia epiléptica e do desenvolvimento, sequenciamento completo de exoma, microarranjos de DNA, diagnóstico molecular, herança complexa.

ABSTRACT

Developmental and epileptic encephalopathies (DEEs) are a group of severe epilepsies, usually resistant to drug treatment and associated with delayed neuropsychomotor and cognitive development. With the advance of molecular genetic studies, mutations in many genes have been described in patients with DEEs; however, a significant proportion of these patients remains undiagnosed, assuming a monogenic model of inheritance. Thus, the main objective of this work was to apply new analytical paradigms to identify and investigate genetic variants in a large cohort of patients with DEEs from Latin America. Of the 275 patients with different types of DEEs that were initially ascertained, we obtained DNA samples from 239 of them. First, we used whole exome sequencing (WES) data from 234 of these patients and chromosomal microarray analysis (CMA) data from 236 of these patients to determine the molecular diagnostic yield of these techniques assuming a monogenic model. After individual analysis, the diagnostic yield was 38% for WES, 4.6% for CMA, and 38.9% for both techniques combined, representing a high diagnostic yield compared to the literature. Next, in the group of patients in whom a genetic cause could not be found, we used two exploratory approaches considering complex models of inheritance: logistic regression, which takes into account the presence of common genetic variants, which have allele frequency, MAF>0.01; and SKAT-O (optimized sequence kernel association test) which analyzes rare (MAF=0.01) and ultra-rare (MAF=0.0005) variants. We found a difference between the groups with and without a genetic diagnosis in the analysis of common variants. The latter showed a unique variant (rs9374755) with evidence of association (p = 0.000005) located in an RNA gene (LOC101927314). In the analysis with ultra-rare variants, we also observed a difference between the groups with and without genetic diagnosis, and for the latter we found seven candidate genes containing variants predisposing to the DEEs: ASPM (p=0.045517718); CREBBP (p=0.032086627); FASN (p=0.009504475); LAMC3 (p=0.001417445); RELN (p=0.017928247); RYR3 (p=0.047068168); and SPTAN1 (p=0.045613193). Our study showed that using traditional molecular diagnostic strategies, it was possible to find a monogenic cause in almost 40% of the patients with DEE investigated, with WES having the highest yield. The use of CMA was able to add almost five percentage points in the diagnostic yield and, therefore, should also be considered when investigating the genetic etiology of DEEs. Furthermore, we found

evidence that at least part of the genetic effect present in the etiology of DEEs may follow a complex model of inheritance. Although it is not yet possible to apply these analyses to the routine genetic diagnosis of patients, our results indicate that a genetic etiology should be considered in patients with DEEs even in the absence of an identifiable monogenic cause. As the possibility of molecular diagnosis for genetic diseases of complex and multifactorial inheritance advances, we believe that the DEEs may benefit from this new knowledge and new methods of analyzing genetic data.

Key words: Developmental and epileptic encephalopathy, whole exome sequencing, DNA microarray, molecular diagnosis, complex inheritance.

LISTA DE ILUSTRAÇÕES

Figura 1: Linha epilepsias	ı do tempo	da desc	oberta de	genes en 18	n 8
Figura 2: Representa diferentes idades de ir	ação de algumas nício das crises	s das EED bei	n conhecidas	em relação às 2	s 1
Figura 3: Classificaçã acordo com a hipótese	o e distribuição d e diagnóstica	os pacientes co	om EED quant	o ao fenótipo de	e 7
Figura 4: Passos da te Array 6.0 (Affymetrix™	écnica de CMA ut [∞])	ilizando protoco	olo Genome-W	/ide Human SNF 29	Р Э
Figura 5: Ancestralida partir da análise de co	de dos pacientes mponentes princip	de EED da Am pais utilizando o	érica Latina (E s dados de WE	3RA) calculada a 5S37	a 7
Figura 6: (A) Distribuio localizadas. (B) Tipo Classificação das var relacionada ao gene e	ção do número de o de mudança riantes segundo a em que a variante	e variantes em na sequência a ACMG. (D) F se encontra	relação ao ger causada pel 'adrão de hera	ne em que estão la variante. (C ança da doença 30	с ;) а 0
Figura 7: Distribuição outros genes mostra grupos	dos pacientes c ndo que o gene	om variantes c SCN1A é o r	ausais no ger nais frequente	ne SCN1A e en es em todos os 4 ′	n s 1
Figura 8: Cariótipo d evidencia o cromosso	o paciente 67 c mo adicional idic(om resultado 4 15)	17,XY,+idic(15)(q11.2). A seta 48	a 8
Figura 9: (A) C der(22)t(16;22)(p13.3) metáfase do paciente.	ariótipo do pa ;q13)(TUPLE1+,A	aciente 144 RSA-,121l4+).	com result (B) e (C) Aná	ado 46,XY.ish lise de FISH en 4	h n 9
Figura 10: (A) Car t(16;22)(p13.3;q13)(A pai do paciente 144. FISH em metáfase no	iótipo do pai d \RSA+;TUPLE1+, (C) Cariótipo nor rmal da mãe do pa	o paciente 14 ARSA-). (B) Ar mal da mãe do aciente 144	14 com resu álise de FISH o paciente 144	ltado 46,XY.ish em metáfase do . (D) Análise do 50	h o e 0
Figura 11: Gráficos Qe X mostra os valores o totais com lambda de (DG) e lambda de 1, lambda de 1,109	Q: O eixo Y mostr de -log10 P espe 1,108. (B) Gráfic 109. (C) Gráfico	a os valores de rados. (A) Gráf o QQ de pacie QQ de paciente	-log10 P obse ico QQ do gru ntes com diag es sem diagné	ervados, e o eixo po de pacientes nóstico genético ostico genético e 5	o s o e 9
Figura 12: Gráficos de (A) Gráfico de Manha de interesse que ult Manhattan para o gru que ultrapassou o prin de pacientes sem DG valor de referência	e Manhattan obtio ttan para o grupo trapassaram o p po de pacientes o neiro valor de refe mostrando o únic	dos a partir da o de pacientes f rimeiro valor o com DG mostra erência. (C) Grá o SNP de intere	análise de reg totais mostran le referência. Indo o único S fico de Manhat Isse que ultrap	ressão logística do os três SNPs (B) Gráfico de NP de interesse tan para o grupo assou o primeiro 6	1. s e o 0

LISTA DE TABELAS

Tabela WES	1:	Parâmetros	de	qualidade	е	número	de	variantes	dos 3 8
Tabela 2: \	/aria	intes seleciona	adas a	pós análise d	e WE	ES			42
Tabela 3:C	NVs	s causais seleo	cionad	as a partir da	anál	ise de WE	S		45
Tabela 4:C	CNVs	s patogênicas	causai	s selecionad	as a	partir da a	nálise	de CMA	47
Tabela 5:F CMA	Pacie	entes que apre	esentai	ram grandes	regió	ões de hor	mozigo	ose na anál	ise de 52
Tabela 6: ⁻ a técnica ι	Taxa utiliza	i de diagnóstic ando a análise	co gen otimiz	ético dos 239 ada) pac	ientes cor	n EED	s de acord	o com 53
Tabela 7: com epilep	Taxa osias	as de diagnós de início prec	tico ge oce ou	nético (DG) da infância	em c	liferentes	estudo	os com paci	ientes 55
Tabela 8: origem	Таха	as de diagnós	tico ge	nético (DG)	dos	pacientes	em re	lação ao pa	aís de 57
Tabela 9: estão asso	SNF ociad	's associados los e genes en	a cad n que e	a grupo mos estão localiza	trano dos.	do suas p	osiçõe	s, grupo er	n que 60
Tabela 10 significativ): G o (p	enes cujos (≤ 0,05) no gru	grupos po de	de variante pacientes tota	es u ais	ltrarraras	apres	entaram p	-valor 62
Tabela 1´ significativ	1:Ge o (p	nes cujos g ≤ 0,05) no gru	rupos po de p	de variante pacientes cor	es u n D G	ltrarraras	apres	entaram p	-valor 63
Tabela 12 significativ	2: G	enes cujos (≤ 0,05) no gru	grupos po de p	de variante bacientes ser	es u n D G	ltrarraras	apres	entaram p	-valor 63
Tabela 13:	List	a EEDG conte	ndo ge	enes relacion	ados	às EEDs.			80
Tabela 14:	List	a EG contende	o gene	s relacionado	os às	epilepsia	s em g	eral	81
Tabela 15:	List	a PG contendo	o gene	s potenciais p	bara	epilepsias			82
Tabela 16:	List	a de todos os	pacien	tes analisado	os no	estudo			86

LISTA DE ABREVIATURAS E SIGLAS

- ACMG Colégio Americano de Genética Médica
- ADNPM Atraso do desenvolvimento neuropsicomotor
- CAAE Certificado de Apresentação e Apreciação Ética
- CEP Comitê de Ética em Pesquisa
- CMA Análise de microarranjos cromossômicos
- CNV Variantes de número de cópias
- CTCG Crises tônico-clônicas generalizadas
- DG Diagnóstico genético
- EED Encefalopatias epilépticas e do desenvolvimento
- EEDG Painel de genes ligados às EEDs
- EEG Eletroencefalograma
- EEMES Epilepsia com estado de mal elétrico do sono
- EG Painel de genes ligados às epilepsias
- FCM Faculdade de Ciências Médicas
- FISH Hibridização in situ por Fluorescência
- GEFS+ Epilepsia genética com crises febris plus
- HC Hospital de Clínicas
- IBD Identidade por descendência
- ILAE Liga Internacional contra Epilepsia
- IMECC Instituto de Matemática, Estatística e Computação Científica
- Indel Inserção/deleção
- LD Desequilíbrio de Ligação
- LGS Síndrome de Lennox-Gastaut
- LKS Síndrome de Landau-Kleffner
- MAF Frequência do alelo menor
- NGS Sequenciamento de nova geração]
- NGSVA Plataforma NGS Variant Analyzer
- PCA Análise de Componentes Principais
- PCR Reação em Cadeia da Polimerase

- PG Painel de genes candidatos/potenciais para epilepsias
- POCS ponta-onda contínua durante o sono
- qPCR PCR quantitativo em tempo real
- QQ Quantil-Quantil
- RM Ressonância magnética
- ROH Regiões de homozigose
- SKAT-O do inglês optimized sequence kernel association test
- SNP Polimorfismos de nucleotídeo único
- SNV Variantes de nucleotídeo único
- TCLE Termo de consentimento livre e esclarecido
- UNICAMP Universidade Estadual de Campinas
- VUS Variante de significado incerto
- WES Sequenciamento completo do exoma
- WGS Sequenciamento completo do genoma
- WS Síndrome de West

Introdução	16
Objetivos	24
Material e Métodos	
Seleção de Pacientes	25
Casuística	
Extração de DNA e Processamento das amostras	
Análise de WES Utilizando Plataforma NGS Variant Analyzer	
Análise de WES Utilizando Plataforma Varstation	32
Análise de CMA Utilizando Plataforma ChAS	32
Análise de Regressão Logística	
Análise de SKAT-O	36
Resultados e Discussão	
Sequenciamento Completo de Exoma	37
Análise de Microarranjos Cromossômicos	46
Taxa de Diagnóstico Genético	51
Análise de Regressão Logística	58
Análise de SKAT-O	62
Conclusão	65
Referências	66
Anexos	
I – Parecer do CEP	74
II – Termo de Consentimento	
III – Listas de Genes Usadas nas Análises	80
IV – Artigo de Revisão Publicado como Primeira Autora	84
V – Artigo Publicado como Coautora	85
VI – Lista de Pacientes	86

SUMÁRIO

INTRODUÇÃO

Encefalopatias epilépticas e do desenvolvimento (EEDs) formam um grupo heterogêneo de epilepsias graves de início precoce, caracterizadas por diferentes tipos de crises de difícil controle e intensa atividade interictal no eletroencefalograma (EEG), geralmente resistentes ao tratamento medicamentoso e que levam ao risco de deterioração cognitiva e neuropsicomotora progressiva¹. A incidência é idade-dependente e é estimada em cerca de 45 casos a cada 100.000 crianças^{2–7}, podendo chegar a mais de 60 casos a cada 100.000 crianças a nível populacional. Uma porção significativa dessas crianças (cerca de 35%) com epilepsias nos primeiros três anos de vida apresentam refratariedade e alto risco de morte precoce e de comorbidades cognitivas e comportamentais⁸. A taxa de mortalidade é alta, podendo chegar até 25%^{9,10}.

Segundo a Liga Internacional contra Epilepsia (ILAE, do inglês *International League Against Epilepsy*), existem três definições quando tratamos desse assunto: encefalopatias do desenvolvimento, onde ocorre apenas comprometimento do desenvolvimento, mas sem atividade epileptiforme frequente associada à regressão ou a um maior atraso do desenvolvimento; encefalopatia epiléptica, quando a própria atividade epileptiforme contribui para as alterações cognitivas e comportamentais, para além do esperado apenas pelo mecanismo da doença em si, onde não há atraso de desenvolvimento preexistente e não é provável que a mutação genética cause atraso por si só (malformação cortical, por exemplo); e encefalopatias epilépticas e do desenvolvimento, onde há atuação de ambos os fatores (atividade epileptiforme e comprometimento do desenvolvimento) e, por muitas vezes, não é possível distinguir qual dos dois contribui mais para a apresentação clínica do paciente^{11–13}.

É amplamente conhecido que as EEDs possuem uma vasta gama de etiologias, incluindo, por exemplo, lesões cerebrais estruturais congênitas ou adquiridas, distúrbios metabólicos, e causas genéticas^{1,14}. O diagnóstico das EEDs ainda é baseado inicialmente e predominantemente nas características clínicas e de EEG e sua etiologia permanece desconhecida na maioria dos pacientes¹⁵. Os avanços nos estudos de genética molecular demonstraram que uma proporção desses pacientes tem mutações em genes, muitos deles associados à função de canais iônicos voltagem dependentes expressos no sistema nervoso central¹⁶. As evidências de que há predisposição genética em síndromes epilépticas existem desde a década de 1950^{17,18}. A partir de estudos tradicionais de análise de ligação em grandes famílias onde o gene segregava junto com a doença começaram a relacionar genes envolvidos com canais iônicos às epilepsias, o que ficou conhecido como a era das canalopatias.

A primeira mutação relacionada com uma forma de epilepsia idiopática foi descrita em 1995 por Steinlein e colaboradores. Eles identificaram uma mutação no gene *CHRNA4* que codifica uma subunidade de um receptor acetilcolinérgico em uma forma de epilepsia focal¹⁹. Em 1998, Charlier e colaboradores e Singh e colaboradores identificaram as primeiras mutações em genes que codificam subunidades de canal de potássio voltagem dependente (*KNCQ2* e *KCNQ3*)^{20,21}, enquanto que Wallace e colaboradores identificaram mutações no gene de canal de sódio *SCN1B* em uma família com epilepsia genética com crises febris plus (GEFS+ do inglês *genetic epilepsy with febrile seizures plus*)²². Em meados de 2000 Escayg e colaboradores identificaram, em duas famílias também com GEFS+, mutações no gene *SCN1A* que, mais tarde foi o primeiro gene associado a uma EED^{23,24}.

Após um período de transição, a partir de meados de 2010, o número de mutações associadas a epilepsias vem crescendo muito rapidamente, principalmente para síndromes epilépticas monogênicas raras^{16,25}. Esse crescimento se deu, principalmente, pelo avanço de técnicas na área da Genética Molecular, como o sequenciamento de nova geração (NGS, do inglês *next generation sequencing*), o que ficou conhecido como a era do NGS. A tecnologia de NGS permite sequenciar porções significativas do genoma de forma rápida, fácil e com alto custo-benefício^{26,27}. A linha do tempo com os genes separados dentro de cada uma dessas eras pode ser visualizada na Figura 1²⁸.

O sequenciamento de apenas um gene pela técnica de Sanger ainda pode ser utilizado para identificar variantes em genes que já estão associados a doenças monogênicas. O sequenciamento do gene *SCN1A*, por exemplo, é um ótimo candidato para a síndrome de Dravet, uma vez que mutações nesse gene podem explicar cerca de 80% dos casos^{29–33}. Apesar de o sequenciamento de Sanger ser uma técnica eficaz e ainda muito utilizada para identificar mutações em um único gene³⁴, o NGS é uma forma muito mais rápida e custo-efetiva para isso.

Figura 1:Linha do tempo da descoberta de genes em epilepsias. Os genes em vermelho correspondem às encefalopatias epilépticas e os genes em preto às epilepsias. NGS: sequenciamento de nova geração. Adaptado de I. Helbig, A.N.A. Tayoun / Mol Syndromol 2016;7:172–181.

Outra alternativa quando falamos em diagnóstico molecular é o painel de NGS, onde vários genes podem ser sequenciados de uma só vez^{34,35}. Os painéis podem ser específicos para cada doença e são customizáveis. Atualmente existem muitos painéis comerciais para epilepsias que contem de 100 a mais de 300 genes³⁶.

A técnica mais utilizada atualmente para diagnóstico de doenças mendelianas raras causadas por variantes de alta penetrância é o sequenciamento completo de exoma (WES, do inglês *whole exome sequencing*)^{27,37,38}, que tem o poder de capturar e sequenciar os éxons da maior parte dos 20.000 genes codificantes do genoma humano. Essa opção possui uma alta taxa de diagnóstico para doenças neurológicas^{34,39,40}.

Por último, temos a técnica de sequenciamento completo do genoma (WGS, do inglês *whole genome sequencing*). O WGS sequencia todo o genoma do paciente, incluindo regiões codificantes, não codificantes, e regulatórias e também permite uma alta taxa de diagnóstico para doenças genéticas. Por apresentar uma cobertura mais uniforme, permite até a identificação de variantes em região codificante que não estariam presentes em dados de WES. Porém, o alto custo dessa técnica e a alta

complexidade das análises de bioinformática devido ao grande volume de dados, fazem com que o WES seja mais utilizado como teste genético ainda hoje. Com o avanço dos estudos utilizando WGS e com a queda do custo, essa técnica será, no futuro, a mais aconselhada para uma avaliação mais abrangente em pacientes com doenças neurológicas não diagnosticadas³⁴.

Utilizando as estratégias de NGS é possível identificar diferentes tipos de variantes genéticas, como variantes de nucleotídeo único (SNV, do inglês *single nucleotide variants*), inserções e deleções (indels) e variantes de número de cópias (CNV, do inglês *copy number variants*). As CNVs são importantes causas de doenças do neurodesenvolvimento³⁴ e, apesar de poderem ser detectadas também através de NGS (preferencialmente no WGS), a principal técnica hoje em dia para identificação desse tipo de variante é a análise de microarranjos cromossômicos (CMA, do inglês *chromosomal microarray analysis*).

Estudos recentes mostram que as estratégias de NGS possuem uma taxa de diagnóstico entre 15 e 50% para as epilepsias, sendo essa taxa ainda mais alta (40 a 80%) para pacientes com idade de início antes dos dois meses, ou em certos grupos de doenças, como a síndrome de Ohtahara^{29,34,41}. Para as EEDs a taxa de diagnóstico molecular utilizando WES varia de 11 a 70%^{42–45} e pode chegar a cerca 80% nos casos de Dravet com o gene *SCN1A*, como dito anteriormente. No caso das CNVs, a taxa de diagnóstico molecular nas EEDs é de 5 a 19%^{46–48}. A maioria dos pacientes possui variantes patogênicas *de novo* em heterozigose, mas também são observadas variantes com herança autossômica recessiva e ligada ao cromossomo X^{1,49}.

Apesar de a grande maioria das causas de EEDs já descritas ser monogênica, alguns genes modificadores já foram propostos, mas ainda é um assunto controverso. São genes que não são a causa primária da doença, mas podem modificar o fenótipo e por isso devem ser levados também em consideração. Variantes em *CACNB4*, por exemplo, aumentam a liberação de neurotransmissores em neurônios excitatórios na condição de insuficiência de neurônios inibitórios causada por *SCN1A*, melhorando o fenótipo⁵⁰. Variantes sozinhas em *SCN9A* podem ser assintomáticas ou causar crises febris infrequentes devido a penetrância incompleta e expressividade variável, mas contribui de forma multifatorial para a síndrome de Dravet⁵¹. Variantes em *scn2a*, *scn8a* e *kcnq2* podem influenciar o fenótipo em modelos animais com GEFS+ com a mutação *Scn1a*-R16648H⁵². A perda de função do gene *HIf* modifica o fenótipo em

modelos animais Scn2aQ54 e Scn1a+/- de epilepsia⁵³. Já a diminuição da expressão de *Cacna1g* atua como modificador aumentando a sobrevivência e diminuindo a frequência de crises espontâneas em modelos animais com variantes em Scn2aQ54 e $Scn1a+/-^{54,55}$.

Um diagnóstico molecular conclusivo deve ser baseado em diversos parâmetros, incluindo o conhecimento prévio da literatura sobre a relação entre o suposto gene causal e o fenótipo do paciente. Essa relação entre o genótipo e fenótipo é muito complexa para a maioria das EED que já possuem genes associados. Nesses casos podemos observar uma alta heterogeneidade tanto fenotípica (onde mutações em um mesmo gene podem causar diferentes fenótipos), quanto genética (onde mutações em diferentes genes podem causar o mesmo fenótipo)¹². Essas duas características das EED representam um grande desafio para a prática clínica e para identificação das síndromes específicas.

Contudo, é inquestionável que a identificação de variantes patogênicas em pacientes com EED proporciona muitos benefícios para esses e para suas famílias, ainda mais quando o teste genético é realizado de forma precoce, reduzindo o tempo e o custo associados à odisseia diagnóstica. A confirmação da natureza genética da doença, além do impacto emocional positivo significativo, permite a busca de aconselhamento genético, o estabelecimento mais acurado do prognóstico, oportunidades de pesquisa na área, permite a conexão de famílias com o mesmo diagnóstico através de grupos de apoio e, mais importante, permite a busca por terapias personalizadas e mais adequadas⁵⁶. Como exemplo disso podemos citar o caso de mutações com perda de função no gene *SCN1A*, onde bloqueadores de canais de sódio, como a carbamazepina, oxcarbazepina e fenitoína, podem piorar o controle das crises e, portanto, devem ser evitados⁵⁷. No caso de mutações com ganho de função em *SCN8A* ocorre o oposto e há boa resposta aos fármacos anticrises bloqueadores de canal de sódio⁵⁸. Já para pacientes com mutações nos genes *SLC2A* e *PDHA1* a melhor opção de tratamento é a dieta cetogênica^{59,60}.

As EEDs compreendem uma série de síndromes com diferentes características clínicas e de EEG. Como podemos observar na Figura 2, elas são relacionadas à idade de início das crises que, por muitas vezes se sobrepõe, assim como a semiologia das crises e os fenótipos. Como já foi dito, essa classificação clínica do tipo de síndrome do paciente é um desafio, permanecendo, na maioria das vezes, como uma EED indeterminada. A seguir descrevemos brevemente, com informações relevantes ao que será discutido, as síndromes que foram identificadas e incluídas nesse trabalho.

Figura 2: Representação de algumas das EED bem conhecidas em relação às diferentes idades de início das crises (eixo X). O tamanho das caixas reflete as frequências das síndromes. Adaptado de I.E. Scheffer, J. Liao / European Journal of Paediatric Neurology 24 (2020) 11e14.

A síndrome de espasmos epilépticos infantis é um termo usado para englobar tanto pacientes com síndrome de West (WS, do inglês *West syndrome*), quanto pacientes que apresentam espasmos epilépticos mas que não preenchem critérios para WS⁶¹. Aqui foram incluídos somente pacientes com WS que apresentaram atraso do desenvolvimento neuropsicomotor (ADNPM). A WS tem início entre um e 24 meses de idade, sendo que o pico é entre três e 12 meses. Inícios mais tardios são raros, mas podem ocorrer⁶². A incidência é de cerca de 30 casos a cada 100.000 crianças e é maior no sexo masculino, porém, ambos os sexos são afetados^{8,61}. Quanto à etiologia, metade a dois terços das crianças possuem alterações estruturais que podem ser congênitas ou adquiridas. Após resultado de ressonância magnética (RM) normal, uma etiologia genética deve ser considerada. A taxa de diagnóstico genético (DG) pode chegar até 41% e são observadas variantes patogênicas *de novo* na

maioria dos casos. Dentre as causas genéticas já conhecidas temos: *CDKL5, DEPDC5, STXBP1, TSC1, TSC2,* alterações cromossômicas estruturais, CNVs, entre outros. Etiologias metabólicas são raras, mas também são importantes e devem ser consideradas se causas genéticas e estruturais forem descartadas^{8,61,63}.

A síndrome de Dravet tem início dentro do primeiro ano de vida^{64,65} e a incidência é de aproximadamente 6,5 casos a cada 100.000 crianças^{8,63}. É importante ressaltar que, na grande maioria dos casos, a etiologia é genética e cerca de 80% dos pacientes possuem variantes patogênicas *de novo* no gene *SCN1A*^{29–33}. Entretanto, o diagnóstico de síndrome de Dravet envolve diversas características clínicas e não deve ser feito baseado somente na variante genética encontrada, já que variantes em SCN1A podem ser observadas em outras síndromes epilépticas⁶⁶. Outros genes já associados a essa síndrome são: *GABRG2, GABRA1, STXBP1, SCN1B*, entre outros⁶⁷.

A síndrome de Doose, também conhecida por epilepsia com crises mioclônicaatônicas, possui incidência de um caso a cada 10.000 crianças e representa aproximadamente 2% de todas as epilepsias da infância⁶⁸. O início das crises ocorre entre seis meses a oito anos de idade (pico de dois a seis anos) e indivíduos do sexo masculino são mais afetados⁶⁹. Os exames de imagem nesses pacientes são normais e, na maioria das crianças, há envolvimento de herança complexa com padrão poligênico. Em um terço dos casos existe histórico familiar de epilepsia ou crises febris, o que favorece o prognóstico. Alguns dos genes já associados a essa síndrome são: *SCN1A, SCN1B, SCN2A, STXBP1, SLC6A1, CHD2, SYNGAP1, NEXMIF, KIAA2022* e, em 5% dos casos, *SLC2A1* que está associado à deficiência de GLUT1⁷⁰.

Na síndrome de Lennox-Gastaut (LGS, do inglês *Lennox-Gastaut syndrome*) as crises tem início principalmente entre 18 meses a 8 anos de idade (pico entre três e cinco anos), porém, somente em 0,6% dos casos o diagnostico ocorre no início das crises. Essa síndrome é responsável por um a 2% de todas as pessoas com epilepsias e é ligeiramente mais comum no sexo masculino. Cerca de 20% dos casos de LGS evolui de síndrome dos espasmos epilépticos infantis⁷⁰. Além disso, cerca de 3,6% de todas as crianças com epilesias e 19% das crianças com início das crises na infância, também evoluem para LGS^{70,71}. Etiologias estruturais são mais comuns e exame de RM no início das crises é o mais recomendado, podendo ter um grande impacto na

tomada de decisões e tratamentos⁷². Após exame de RM normal, testes genéticos devem ser considerados. São observadas variantes patogênicas, geralmente, *de novo*^{42,73}, alterações cromossômicas estruturais e CNVs. O teste genético também pode ser recomendado para detectar a causa por trás da alteração estrutural encontrada no exame de imagem. Raramente a LGS é associada a uma doença metabólica que deve ser considerada após as etiologias estrutural e genética serem descartadas⁷⁰.

Por último, temos as síndromes epilépticas associadas a atividade ponta-onda continua durante o sono (POCS). Nesse grupo estão duas síndromes muito raras conhecidas como epilepsia com estado de mal elétrico do sono (EEMES) e síndrome de Landau-Kleffner (LKS, do inglês *Landau-Kleffner syndrome*). O início é entre dois e 12 anos de idade (pico entre quatro e cinco anos) e ambos os sexos são igualmente afetados⁷⁰. A etiologia pode ser estrutural com alterações adquiridas ou relacionadas ao desenvolvimento. Em alguns casos existe uma base genética para a doença que pode seguir modelo de herança monogênica ou complexa, sendo o gene GRIN2A a causa monogênica mais comum^{70,74}. Histórico familiar é observado em até 50% dos pacientes⁷⁵.

Além dessas síndromes existem as síndromes com etiologias especificas, como a EED por *KCNQ2*, EED por *CDKL5* e a EED dependente de piridoxina (relacionada ao gene *ALDH7A1*), por exemplo. Nesses casos existe uma etiologia específica para a epilepsia que está associada a um fenótipo clínico claramente definido, relativamente uniforme e diferenciado na maioria dos indivíduos afetados. Existe uma tendência de aumento do número dessas síndromes com o tempo, à medida que novas etiologias, principalmente genéticas forem sendo descobertas⁷⁰.

É evidente que, apesar de uma grande parcela dos pacientes com EED possuir mutações de efeito monogênico e causas conhecidas, uma proporção significativa fica sem diagnóstico etiológico, mesmo com a obtenção de dados genômicos. Por outro lado, a disponibilidade dos dados de WES em um número crescente de pacientes com EEDs cria a oportunidade de aplicar novas análises considerando, também, outros modelos mais complexos de herança (modelo poligênico, por exemplo, onde variantes de efeito menor podem se combinar para produzir o efeito fenotípico final). E foi nesse contexto que esse trabalho foi conduzido.

OBJETIVOS

Objetivo geral

Caracterizar, do ponto de vista genético, uma grande coorte de pacientes latinoamericanos com EEDs utilizando modelo monogênico de herança e investigar o possível envolvimento de modelos mais complexos de herança.

Objetivos específicos

- Obter amostras de pacientes com EEDs com caracterização clínica adequada provenientes de diferentes países da América Latina;
- Realizar as técnicas de sequenciamento completo de exoma e de microarranjos cromossômicos a partir das amostras de DNA desses pacientes e obter dados genômicos a partir de diferentes tipos de processamentos;
- Utilizar os dados genômicos gerados para investigar, em todos os pacientes, a
 presença de variantes de sequência (SNV e indel) utilizando dois tipos de análises
 para sequenciamento completo de exoma; e de variantes cromossômicas
 estruturais (CNV) utilizando ambas as análises de exoma e microarranjos, visando
 obter o maior rendimento diagnóstico possível seguindo um modelo monogênico,
 ou seja, um gene ou variante de efeito maior causando o fenótipo;
- Explorar evidências de envolvimento de modelos complexos de herança nos pacientes em que não foi possível encontrar uma causa monogênica através de análises complexas de regressão logística e de SKAT-O (do inglês, *optimized sequence kernel association test*), envolvendo variantes comuns, raras e ultrarraras.

MATERIAL E MÉTODOS

Seleção e Coleta dos Pacientes

Foram selecionados para esse estudo pacientes com diagnóstico clínico de EED de acordo com os critérios clínicos propostos pela ILAE, incluindo: atraso do desenvolvimento neuropsicomotor após o surgimento das crises, epilepsia farmacorresistente, ausência de alterações nos exames de imagens que pudesse explicar o quadro, ausência de suspeita de doenças metabólicas e não houve limitação de idade. A maior parte dos pacientes foi recrutada no ambulatório de epilepsias da infância do Hospital de Clínicas (HC) da Faculdade de Ciências Médicas da Universidade Estadual de Campinas (FCM-UNICAMP). Recebemos também amostras de pacientes de centros colaboradores de outras regiões do Brasil e de outros países da América Latina. Para as amostras provenientes de outros países recebemos o apoio logístico da ILAE pela Comissão Regional para a América Latina. Essa é a primeira vez que é realizado um estudo em larga escala com EED na América Latina.

Os pacientes do HC-UNICAMP foram acompanhados prospectivamente no ambulatório de epilepsias da infância e os dados clínicos foram revisados e discutidos pela equipe clínica responsável: Dra. Ana Carolina Coan, neurologista com especialidade em epilepsia da infância; Dra. Maria Augusta, neuropediatra; Dra. Íscia Lopes Cendes, médica geneticista; Dr. Fernando Cendes, neurologista, especialista em epilepsia e neuroimagem. As discussões tiveram como objetivo chegar a um consenso sobre a inclusão ou exclusão dos pacientes, bem como classificar a EED a qual o paciente pertence de acordo com os padrões clínicos e eletroencefalográficos apresentados. No caso das amostras enviadas, os médicos responsáveis pelos pacientes responderam questionários clínicos padronizados e os dados também foram revisados e discutidos por nossa equipe clínica do HC-UNICAMP.

É importante ressaltar que a preocupação com a qualidade da informação clínica em nosso estudo, o que garante a homogeneidade fenotípica dos pacientes incluídos, é um dos pontos fortes do trabalho, e só foi atingida pelo meu grande envolvimento com a equipe clínica, e é claro, pela excelência do grupo de pesquisa em epilepsia infantil do nosso centro chefiado pelas Profas. Dras. Ana Carolina Coan e Maria Augusta Montenegro, ambas com mais de uma década de experiência na avaliação de crianças com epilepsia grave.

Esse trabalho teve aprovação do Comitê de Ética em Pesquisa (CEP) da UNICAMP e o Certificado de Apresentação e Apreciação Ética (CAAE: 12112913.3.0000.5404) se encontra em anexo. Todos os responsáveis pelos pacientes concordaram em participar da pesquisa e assinaram o termo de consentimento livre e esclarecido (TCLE) que também se encontra em anexo.

Para as amostras do HC-UNICAMP, a coleta procedeu-se de acordo com a disponibilidade e possibilidade do paciente. Foram coletadas amostras de sangue periférico quando possível e, em caso de impossibilidade, foram coletadas amostras de células de mucosa bucal. No caso dos centros colaboradores recebemos amostras de sangue periférico e/ou amostras de DNA já extraído. Quando possível, foram realizadas também as coletas dos pais, irmãos afetados ou não e/ou outros familiares. Não foram realizadas analises de trio para as técnicas avaliadas e essas amostras de familiares foram utilizadas nas etapas de validações para determinação da segregação e do padrão de herança das variantes genéticas selecionadas.

Casuística

Reunimos um total de 275 pacientes diagnosticados clinicamente com EEDs. Em casos de baixa quantidade e qualidade do DNA, os pacientes eram recoletados para nova extração, porém, isso não foi possível para 36 destes pacientes, que foram excluídos da casuística. Dos 239 pacientes com amostras de DNA (Anexo VI), 130 são do sexo masculino (54,4%) e 109 são do sexo feminino (45,6%). Em relação ao local de coleta, 124 deles foram coletados no HC-UNICAMP, 22 foram enviados de outros centros colaboradores no Brasil, 57 enviados da Argentina, 15 do Chile, 14 do Peru, quatro do Uruguai e três de Honduras. É importante ressaltar a dificuldade em se obter amostras provenientes de outros centros colaboradores, principalmente de outros países. Isso foi possível devido ao envolvimento do nosso grupo com diferentes serviços clínicos que possibilitou o contato com outros médicos que se disponibilizaram para colaborar com a pesquisa e se comprometeram com a coleta, extração, armazenamento e transporte adequados das amostras. Além disso, trata-se do primeiro estudo com EEDs realizado em larga escala com pacientes provenientes de diferentes regiões da América Latina.

Foi possível obter informações sobre as idades no momento da coleta de 159 pacientes e sobre as idades de início das crises de 175 pacientes. A idade dos pacientes no momento da coleta em meses variou de 1 até 444 meses (média=104,7 \pm 72,7) e a de idade de início das crises variou de zero (dentro do primeiro mês de vida) a 168 meses (média=24,7 \pm 31,3).

Quanto ao fenótipo, os pacientes foram classificados de acordo com a Figura 3. Após análise clínica detalhada de nossos médicos colaboradores chegamos a oito grupos classificados de acordo com as hipóteses diagnósticas.

O grupo das EEDs indeterminadas reúne aqueles pacientes que cumpriram todos os nossos critérios de inclusão, mas que não foi possível identificar a síndrome específica, achado que ilustra bem a dificuldade da classificação clínica da síndrome específica. Como consta na introdução deste trabalho, as EEDs compreendem uma grande proporção das síndromes epilépticas de início precoce e esses fenótipos se sobrepõem e evoluem no tempo; portanto, após novas consultas testes o diagnóstico clínico ainda pode ser alterado, fato que ressalta a importância da avaliação clínica prospectiva e cuidadosa desses pacientes. Os pacientes com fenótipo "síndrome de Doose vs. Síndrome de Lennox-Gastaut" não foram especificamente categorizados devido a sobreposição que ocorre na semiologia das crises nessas duas síndromes⁷⁶.

Fenótipos	Número de	Distribuição dos Pacientes quanto
	Pacientes	ao Fenótipo
Encefalopatia Epiléptica e do	97	0%
Desenvolvimento indeterminada		3% 6% 2%
Síndrome de Dravet	45	
Síndrome de Doose	37	
Síndrome de Lennox-Gastaut	32	13% 41%
Síndrome de West	15	
Epilepsia com Mal Elétrico do Sono	8	16%
Síndrome de Doose vs. Síndrome de	4	
Lennox-Gastaut		19%
Síndrome de Landau-Kleffner	1	
Total	239	

Figura 3:Classificação e distribuição dos pacientes com EED quanto ao fenótipo de acordo com a hipótese diagnóstica.

Extração de DNA e Processamento das Amostras

Para as amostras de sangue periférico, a extração de DNA genômico de linfócitos foi realizada utilizando protocolo fenol-clorofórmio-álcool-isoamílico. Para as amostras de células da mucosa bucal foi utilizado o kit *OraCollect* da marca *DNA Genotek* e a extração seguiu protocolo indicado pelo fabricante.

Foram realizadas as verificações da integridade e da qualidade e a quantificação do DNA extraído. A integridade do DNA foi testada por eletroforese em gel de agarose 1% para verificação do grau de fragmentação. Os padrões de pureza foram medidos com um espectrofotômetro modelo Epoch da marca *BioTek*, onde os valores de absorbância 260/280nm entre 1.8 e 2.0 e taxa de composto fenólico 320 Raw menor de 0.1, foram considerados como ideais para qualidade do DNA. A quantificação também foi realizada pelo Epoch e os DNAs foram diluídos até atingirem concentração entre 50 e 60ng/µL para serem processados utilizando as técnicas de WES e CMA.

Para o WES, as amostras foram aliquotadas e enviadas à empresa *Macrogen, Inc.* para preparação das bibliotecas e sequenciamento. Foram enviados cerca de 70µL de cada amostra a uma concentração de 50ng/µL e, essa quantificação final foi realizada utilizando sistema *Qubit.* A preparação das bibliotecas seguiu protocolo recomendado pelo fabricante utilizando o *kit SureSelectXT Human All Exons v6 (Agilent Technologies)* que é otimizado para 3 µg de DNA genômico total. Já o sequenciamento foi realizado parte em plataforma *Illumina Hiseq 4000* e parte em plataforma *Illumina Novaseq 6000.* Os dados brutos dos sequenciamentos (arquivos FASTQ) foram enviados e armazenados nos servidores do laboratório de Biologia Computacional e Bioestatística da FCM-UNICAMP e do Instituto de Matemática, Estatística e Computação Científica (IMECC-UNICAMP), chefiados pela Profa. Íscia Lopes Cendes e pelo Prof. Benilton Carvalho.

Para CMA, utilizamos também as amostras já quantificadas para realização da técnica em nosso laboratório. Foram utilizados chips *Genome-Wide Human SNP Array 6.0 (Affymetrix*[™]), que possuem mais de 1.8 milhões de marcadores genéticos, incluindo 906600 polimorfismos de base única (SNP, do inglês *single nucleotide polymorphisms*) e 946000 sondas para detecção de CNVs. Os passos dessa técnica seguiram protocolo recomendado pelo fabricante e podem ser observados na Figura

4. Após escaneamento dos chips utilizando o *GeneChip*® *Scanner* 3000 7*G* (*Affymetrix*®), foram obtidos os arquivos brutos para análise (arquivos CEL) que também se encontram armazenados em nossos servidores.

Figura 4:Passos da técnica de CMA utilizando protocolo Genome-Wide Human SNP Array 6.0 (Affymetrix™).

Os arquivos brutos resultantes de cada uma dessas duas técnicas individualmente foram analisados em relação a presença ou ausência de variantes com potencial patogênico de diversas formas diferentes que serão descritas nas seções seguintes. Os dados também foram analisados em conjunto (WES+CMA) de duas formas diferentes (regressão logística e SKAT-O) para testar a hipótese do envolvimento de herança complexa em dados de pacientes em que não foi possível encontrar uma causa genética.

Análise de WES Utilizando Plataforma NGS Variant Analyzer

Essa etapa do trabalho foi desenvolvida durante o estágio no exterior realizado entre setembro de 2019 e fevereiro de 2021 na Universidade Friedrich-Alexander, Erlangen-Nürnberg, Alemanha. O estágio foi realizado no Instituto de Genética Humana do Hospital de Clínicas da Universidade sob supervisão do Prof. Dr. André Reis com o intuito de analisar os arquivos brutos de WES e CMA para fins de diagnóstico genético (DG). Os arquivos brutos provenientes dos WES (arquivos FASTQ) foram mapeados ao genoma de referência (*GRCh37/hg19*) utilizando o programa *BWA MEM* (versão 0.7.17). Em seguida, as duplicações foram removidas utilizando *MarkDuplicates* (*Picard*; versão 2.18.21) e as regiões de inserções/deleções foram realinhadas utilizando *GATK* (versão 3.8-1). A qualidade de mapeamento de todas as leituras que tinham MQ igual a zero foi reajustada para 60 manualmente usando *AWK* e *SAMtools*. Para a chamada de variantes, cinco programas foram utilizados: *GATK HaplotypeCaller* (versão 3.8-1); *GATK UnifiedGenotyper; Freebayes* (versão 1.2.0); *Platypus* (versão 0.8.1); e *SNVer*.

Em seguida, as chamadas do *Freebayes* foram filtradas para ter uma qualidade mínima de 0,1. Todas as variantes foram então transferidas para a base de dados de análises do Instituto e anotadas utilizando *Annovar*. O processamento foi realizado pela equipe de bioinformática do grupo do Prof. Reis.

Para visualização, filtragem e análise das variantes foi utilizado o programa *NGS Variant Analyzer* (NGSVA), desenvolvido também pelo grupo do Prof. Dr. André Reis. Os WES foram carregados na plataforma um por um utilizando os seguintes parâmetros para filtragem das variantes:

- Variantes com frequência na população geral menor ou igual a 0,01 (ou 1%) em bases de dados;
- Variantes presentes em quatro ou menos controles internos (cerca de 960 indivíduos normais da população alemã, constituída de alemães e turcos);
- Variantes exônicas e/ou de sítios de splicing;
- Variantes com função exônica não sinônima;
- Variantes com profundidade igual ou maior que cinco;
- Novos alelos de variantes heterozigotas com profundidade igual ou maior que três;
- Variantes chamadas pelos programas GATK HaplotypeCaller e GATK UnifiedGenotyper.

Após filtragem das variantes foram aplicados dois painéis de genes para priorização das variantes. O primeiro painel é formado por 339 genes conhecidos relacionados epilepsias, incluindo as EED (EG) e o segundo painel é formado por 848

genes potenciais para epilepsia (PG). As listas dos genes contidos em cada painel se encontram nas tabelas do anexo III. As variantes localizadas nesses genes foram então analisadas uma por uma utilizando os seguintes parâmetros:

- Cobertura e profundidade;
- Frequências interna (utilizando os controles internos) e na população geral (utilizando bases de dados como gnomeAD, 1000 Genomes e ExAC);
- Padrão de herança (se a zigosidade condiz ou não com o padrão de herança da doença e dos genes);
- Potencial patogênico dado pelos algoritmos preditores e CAAD score;
- Presença e classificação em bancos de dados como dbSNP e ClinVar;
- Correlação do gene com os fenótipos já observados em bancos de dados como OMIM.

Após análise, as variantes de interesse selecionada foram classificadas de acordo com os critérios estabelecidos pelo Colégio Americano de Genética Médica (ACMG, do inglês *American College of Medical Genetics*) com o auxílio da plataforma *Franklin/Genoox* (https://franklin.genoox.com/). As variantes consideradas causais foram então validadas nos pacientes e nos pais (quando coletados) pelo método sequenciamento de Sanger utilizando oligonucleotídeos iniciadores (*primers*) que foram desenhados especificamente para cada variante.

Ainda utilizando os dados de WES, foi realizada também a chamada de CNVs em ambiente R através do pacote *ExomeDepth* (versão 1.1.15) utilizando os alvos do *SureSelect* como exons de referência. Em seguida as CNVs foram transferidas para a base de dados e visualizadas e analisadas através do programa NGSVA. Para cada paciente as CNVs foram filtradas utilizando filtro de tamanho (≥1000pb) e filtro de frequência (CNVs presentes em menos de 10 amostras). Após filtragem as CNVs foram priorizadas utilizando um painel de 127 genes associados a EEDs (EEDG; Anexo III). As CNVs consideradas causais foram validadas por PCR em tempo real (do inglês, *polymerase chain reaction*), também conhecido como PCR quantitativo (qPCR). Para isso foram desenhadas sondas específicas para os genes contidos na CNVs e foi utilizado *SYBR Green Master Mix* (*Applied Biosystems*™) para a preparação das reações.

Análise de WES Utilizando Plataforma Varstation

A plataforma *Varstation*⁷⁷ permite a análise a partir dos arquivos de dados brutos (arquivos FASTQ) e integra todos os passos para obtenção da lista de variantes de interesse para cada paciente (arquivos VCF). Essa etapa foi realizada para complementar a análise anterior já que permite a análise de variantes com uma maior liberdade em relação aos filtros. Aqui foram analisados com maior atenção os pacientes em que não foi possível encontrar uma variante causal na primeira análise.

Os arquivos FASTQ foram transferidos para a plataforma e foram processados utilizando o genoma de referência *GRCh37/hg19* com *pipeline* padrão específico para o protocolo de preparação da biblioteca (*Exome_Sureselect_all_exon_v6*). Após esse processamento inicial foram realizadas as etapas de identificação e priorização de variantes. As listas de variantes encontradas foram ordenadas por grupos de classificação e as consideradas patogênicas ou provavelmente patogênicas pelos critérios da ACMG foram priorizadas e analisadas sem filtros. O gene *SCN1A* também foi analisado sem filtro, devido a sua alta relação com as EEDs. Em seguida, as variantes foram filtradas em três etapas. Primeiramente priorizamos as variantes com profundidade de no mínimo 5x, com frequência populacional menor que 1% nas bases de dados (*gnomeAD, 1000 Genomes, ExAC, ABRaOM*, etc.) e com consequência exônica não sinônima. Nas duas etapas seguintes as variantes já filtradas foram analisadas utilizando os dois painéis de genes (EG e PG) e os mesmos parâmetros descritos na seção anterior.

Após análise, as variantes de interesse selecionadas foram também classificadas de acordo com os critérios da ACMG com o auxílio da plataforma *Franklin/Genoox* e também validadas utilizando *primers* específicos e sequenciamento de Sanger.

Análise de CMA Utilizando Plataforma ChAS

Essa etapa também foi realizada durante o estágio no exterior. Os arquivos brutos (arquivos CEL) gerados pelo scanner ao final do protocolo foram analisados pelo programa *Genotyping Console 4.2 (Affymetrix*™) para determinação da qualidade dos dados. Em seguida, foram feitas as análises de genotipagem (chamada

de SNP), de número de cópias (chamada de CNV) e de regiões de homozigose (ROH, do inglês *regions of homozygosity*). ROHs são longas regiões em homozigose consecutivas no genoma, provavelmente devido a segmentos que foram compartilhados de forma idêntica por descendência. Esses segmentos podem ser resultado de consanguinidade, dissomia uniparental, redução do tamanho da população ou seleção natural e são regiões de interesse na análise do WES para identificação de alterações genéticas com herança autossômica recessiva⁷⁸. Para chamadas de SNP, o programa utiliza os algoritmos *Birdseed V1* e *Birdseed V2*, já para as chamadas de CNV e ROH o programa utiliza os algoritmos *CN5* e *BRLMM-P*+. Para ambas as análises foi usado genoma de referência *GRCh37/hg19*.

Após chamada de CNV, os arquivos gerados (arquivos CNCHP) foram importados para o programa *Chromosome Analysis Suite 4.0 (ChAS; Thermo Fisher Scientific)* para visualização e análise. As CNVs e ROH de cada paciente foram filtradas da seguinte forma:

- Para duplicações (ganhos) foram analisadas CNVs com 50 ou mais marcadores na região;
- Para deleções (perda) foram analisadas CNVs com 25 ou mais marcadores na região;
- Para duplicações e deleções foram analisadas CNVs com tamanho mínimo de 100kb para pacientes que passaram nos dois parâmetros de qualidade (MAPD ≤ 0,35 e Waviness ≤ 0,12) e CNVs com tamanho mínimo de 300kb para pacientes que falharam em apenas um dos parâmetros de qualidade. Pacientes que falharam nos dois parâmetros de qualidade foram excluídos das análises;
- Para ROH foram analisadas regiões com 500 ou mais marcadores e com no mínimo 1500kb de tamanho.

Cada CNV e ROH foi analisada individualmente para determinação da qualidade e do nível de patogenicidade. Para determinação da frequência foram utilizados os seguintes conjuntos de dados de microarranjos como controles:

- Cerca de 2700 indivíduos da população geral disponibilizados pela Affimetrix (protocolo Cytoscan HD);
- Cerca de 800 controles internos provenientes da população alemã (protocolo SNP Array 6.0);

- Cerca de 270 indivíduos brasileiros (protocolo SNP Array 6.0) disponíveis no BIPMed⁷⁹ (www.bipmed.org);
- Bases de dados de frequência de CNVs como DGV e aDGV.

As CNVs raras (que foram encontradas em menos de 1% da população utilizando todos os conjuntos de controles) foram então selecionadas e classificadas quanto a patogenicidade utilizando também os critérios estabelecidos pela ACMG com a ajuda da plataforma *Franklin/Genoox*. Após seleção das variantes de interesse, essas foram relacionadas ao fenótipo observado a partir de seu potencial patogênico.

As CNVs foram também validadas pelo método de qPCR. Para a confirmação de rearranjos cromossômicos, utilizamos duas técnicas em colaboração com o Prof. Dr. Társis Antônio Paiva Vieira do Laboratório de Citogenética Humana e Citogenômica da FCM-UNICAMP: cariótipo com bandamento G e resolução de 400 a 550 bandas; e hibridização *in situ* por fluorescência (FISH, do inglês *fluorescence in situ hybridization*).

As ROH filtradas foram analisadas quanto à quantidade e distribuição no genoma e aquelas com tamanho maior que 10Mb foram selecionadas e analisadas quanto à presença de variantes patogênicas em genes já ligados às epilepsias no WES. Para isso foi utilizada a plataforma *Varstation* onde as variantes foram ordenadas pelo número do cromossomo e filtradas para priorizar variantes em homozigose nos genes relacionados às epilepsias.

Análise de Regressão Logística

As análises complexas utilizadas nesse trabalho (análises de regressão logística e SKAT-O) testam associações de variantes (SNPs) aos grupos de pacientes aqui descritos e foram realizadas com a ajuda da Dr^a. Thais Crippa de Oliveira e de nossa equipe de bioinformática chefiada pelo Prof. Dr. Benilton S. Carvalho. Foram utilizados aqui os pacientes que possuíam dados pareados, ou seja, pacientes que possuíam dados tanto de WES quanto de CMA.

Em dados de WES, o processamento foi feito utilizando o programa de automação *Espresso-Caller* (versão 1.2.0). Os arquivos brutos (FASTQ) foram mapeados contra o genoma de referência humano (*GRCh37/hg19*) utilizando o

programa *BWA* (versão 0.7.17) e a chamada de variantes das amostras individualmente foi feita utilizando o programa *GATK* (versão 4.1.0.0), com o uso do manual de melhores práticas do *Broad Institute*. A chamada de variantes foi realizada considerando toda a coorte, utilizando *JointGenotyping*. A calibração da genotipagem foi realizada utilizando os arquivos das amostras do banco de dados BIPMed, que são de alta qualidade⁷⁹. Ao final, foi gerado um único arquivo VCF para todos os pacientes que possui os dados de variantes presentes na coorte e a anotação dos SNPs foi gerada utilizando o software *ClinEff* (disponível em www.dnaminer.com/clineff.html).

Para dados de CMA, utilizamos os dados de genotipagem a partir dos arquivos CEL gerados para esse tipo de técnica. A primeira parte da conversão de arquivo CEL em arquivo CHP foi feita utilizando o *apt-probeset-genotype* com os parâmetros para *GenomeWideSNP_6*. Para a segunda conversão de CHP para VCF, foram utilizados os *plug-ins gtc2vcf* e *affy2vcf* para *bcftools*⁸⁰. Um filtro de percentil de 90% por indivíduo foi utilizado como parâmetro de qualidade dos SNPs tipados.

Os VCFs de ambas as técnicas foram então unificados por indivíduo, de forma que todos os indivíduos nos grupos caso e controle possuíssem dados de ambas as técnicas (dados pareados). *Pipelines* próprios foram utilizados para combinar os dados e, no caso específico de SNPs em posições idênticas em ambas as técnicas foi realizada a imputação dos dados para remoção de lacunas em branco/faltantes (*missing calls*). O grupo de SNPs caso-controle unificado foi então submetido a dois fluxos distintos de filtragem de SNPs e de amostras utilizando o programa *PLINK* (versão 2.0)⁸¹: um para variantes comuns e outro para variantes raras. O fluxo de filtragem para variantes comuns se sucedeu da seguinte forma:

- (A) Frequência do alelo menos (MAF, do inglês *minor allele frequency*) maior que 0,01, parâmetro PASS e qualidade maior que 30;
- (B) Teste Fisher em variantes que possuem missing calls de caso/controle;
- (C) Exclusão de amostras com mais de 10% de missing calls e SNPs com mais de 5% de missing calls;
- (D) Teste de heterozigosidade;
- (E) Equilíbrio de Hardy-Weinberg, com valores de 1e-6 para controles e 1e-10 para casos;

- (F) Teste de desequilíbrio de ligação (LD, do inglês *linkage disequilibrium*) com *cut-off* de R² = 0,2, com janelas de 50kb e passos de 5kb;
- (G) IBD (identidade por descendência) > 0,125;
- (H) Inspeção visual com uso de análise de componentes principais (PCA, do inglês *Principal Component Analysis*).

Para o fluxo de variantes raras, a duas únicas mudanças ocorreram no item (A), em que não há definição de MAF e um último item é adicionado com a separação entre os bancos de dados de variantes raras (MAF = 0,01) e ultrarraras (MAF = 0,0005). A análise de regressão logística, que foi realizada utilizando também o software *PLINK* (versão 2.0)⁸¹, verifica se há relação entre a variável dependente e as variáveis independentes de um conjunto de dados, ou seja, se há associação entre as variantes testadas e o conjunto de pacientes. Para essa análise, separamos os pacientes em três grupos pós filtragem: conjunto total de pacientes + controles; conjunto dos pacientes com DG + controles; e conjunto dos pacientes sem DG + controles. Definindo que em casos com DG foi possível encontrar uma causa genética de maior efeito, e que em casos sem DG não foi possível encontrar uma causa genética para a doença.

Análise de SKAT-O

A análise de SKAT-O é uma análise baseada em genes e testa a associação entre o grupo de variantes em um dado gene utilizando grupos de casos e controles, assumindo que todas essas variantes possuem efeito cumulativo no fenótipo dos pacientes⁸².

Essa análise foi realizada utilizando o banco de dados de variantes raras e ultrarraras criado na seção anterior, localizadas apenas nos genes descritos no painel EG (Anexo III), não sendo utilizados os genes localizados no cromossomo X. Foram realizadas três análises utilizando o pacote $SKAT^{82}$ no programa R e os resultados de p-valores por gene ajustados $\leq 0,05$ foram avaliados. Assim como os dados de variantes comuns, foram utilizados os mesmo três conjuntos de indivíduos também utilizando somente os dados pareados.
RESULTADOS E DISCUSSÃO

Sequenciamento Completo de Exoma

Após análise de qualificação e quantificação de DNA, todas as 239 amostras foram enviadas para o sequenciamento e obtivemos resultado de 234 delas. As cinco amostras restantes, apesar de apresentarem boa qualidade na primeira triagem, não apresentaram boa qualidade para a preparação da biblioteca e foram excluídas em triagens posteriores. Os resultados apresentados na Figura 5 e nas Tabelas 1 e 3 foram obtidos a partir da análise utilizando plataforma *NGS Variant Analyzer*. Já os resultados das variantes selecionadas (Tabela 2 e Figuras 6 e 7) e de taxa de DG foram descritos utilizando as duas análises combinadas (*NGS Variant Analyzer* e *Varstation*).

Após processamento dos WES, foi calculada a ancestralidade através de análise de componentes principais (PCA; Figura 5). É possível observar um padrão de miscigenação entre a população europeia e ambas populações africana e nativa, com possível presença de alguns alelos do leste asiático, como já observado em outros estudos⁸³. Essa proximidade da população analisada com a população europeia justifica também o uso de controles europeus nas análises.

Ancestralidade da População de

Figura 5: Ancestralidade dos pacientes de EED da América Latina (BRA) calculada a partir da análise de componentes principais utilizando os dados de WES. EUR – população europeia; EAS – população do leste asiático; AFR – população africana

Os resultados de WES foram separados em dois grupos de acordo com a profundidade dos sequenciamentos e seus parâmetros podem ser observados na Tabela 1. O primeiro grupo com 118 pacientes foi sequenciado desejando-se atingir uma profundidade média de 30x e o segundo grupo, com 116 pacientes foi sequenciado visando atingir uma profundidade média de 100x. Podemos observar uma grande diferença entre as qualidades dos sequenciamentos, principalmente na porcentagem do genoma que foi coberta com no mínimo 20x de profundidade (% cobertura 20x), que é quando a chamada de variantes é mais confiável. Observamos também um número maior de variantes após aplicação dos filtros no grupo de 30x, devido à maior ocorrência de variantes não reais e artefatos. Foi também devido a

Após análise de todos os pacientes, utilizando os dois *pipelines* e as duas plataformas de análise (*NGS Variant Analyzer* e *Varstation*) selecionamos 100 variantes de interesse em 96 pacientes em 47 genes diferentes (Tabela 2). Sendo que, dois pacientes não relacionados apresentaram a mesma variante em *GNAO1* (pacientes 175 e 186), um par de gêmeas apresentou a mesma variante em *SCN1A* (pacientes 52 e 53) e outro par de gêmeas apresentou a mesma variante em *NRXN2* (pacientes 36 e 37).

Parâmetro	Grupo 1 – 30X	Grupo 2 – 100X
Número de pacientes	118	116
Profundidade	29	73
% cobertura 10X	85,9	97
% cobertura 20X	59,9	90,5
№ total de variantes	186738	271546,4
№ de variantes após filtro	1044,27	789,7
№ de variantes após painel PG	52,7	37,9
№ de variantes após painel EG	18,4	14,7

Tabela 1: Parâmetros de qualidade e número de variantes dos WES. Valores correspondem às médias.

Foi possível realizar o diagnóstico genético em 79 pacientes, até o momento avaliando somente variantes de sequência (SNV e indel). Algumas variantes provavelmente patogênicas ainda aguardam validação pois apresentam baixa profundidade no sequenciamento. As variantes de significado incerto (VUS) selecionadas também estão aguardando validação e análise de segregação, pois suas classificações serão alteradas se forem variantes não herdadas de nenhum dos progenitores (*de novo*).

A frequência dos genes e as distribuições quanto ao tipo de variante, classificação da ACMG e padrão de herança nesses pacientes com diagnóstico podem ser observadas na Figura 6. Essa a primeira vez que um estudo desse tipo é realizado em uma grande coorte de população da América Latina. Em relação às distribuições de tipo de variante e padrão de herança, nossa população não apresentou padrões diferentes do esperado para pacientes com epilepsia e doenças do neurodesenvolvimento⁸⁴. Além disso, observamos um grande número de variantes do tipo SNV, sendo essas as mais frequentes nas epilepsias genéticas⁸⁵.

Observamos uma maior frequência do gene *SCN1A*, sendo responsável por 35,5% dos casos com diagnóstico. Esse alto número pode ser devido ao grande número de pacientes com síndrome de Dravet, que somam 72,7% de todos os pacientes com variantes nesse gene. O que já era esperado, já que o gene *SCN1A* é responsável por cerca de 80% dos casos de Dravet, como já explicado anteriormente^{29,30}. Porém, excluindo os pacientes com síndrome de Dravet de nossa casuística, o gene *SCN1A* continua sendo o mais frequente, somando 13,8% dos casos com DG, e aparece em pacientes pertencentes ao grupo das EEDs indeterminadas e síndrome de Doose. As distribuições dos diagnósticos moleculares envolvendo o gene *SCN1A* no grupo total de pacientes e nos grupos de pacientes com e sem diagnóstico clínico de síndrome de Dravet podem ser observadas na Figura 7.

O gene *SCN1A* é o mais frequente para as EEDs e para outros tipos de epilepsias, principalmente nas de início precoce, também em outras populações⁸⁵. Para os outros genes, observamos frequências ligeiramente diferentes do apresentado por coortes de outros países, como Austrália⁸⁶, Canadá⁸⁷, Estados Unidos^{84,88}, Itália⁴⁵, Coréia do Sul⁸⁹ e Índia⁹⁰. Em um estudo prospectivo de pacientes com epilepsias da infância da população escocesa, o gene mais frequente foi o

PRRT2, o que indica que estudos a níveis populacionais são muito importantes na avaliação de uma coorte^{8,63}. Entre os outros genes que aparecem com uma variante causal cada estão: *AHDC1*, *ALG13*, *ANKRD11*, *ASXL3*, *ATP1A3*, *BSCL2*, *CDK19*, *CLN5*, *EEF1A2*, *GAMT*, *GNAO1*, *GRIN2B*, *IQSEC2*, *KCNQ2*, *MEF2C*, *NEXMIF*, *NPRL2*, *NRAS*, *NSUN2*, *PROK2*, *PRRT2*, *RARS2*, *SLC13A5*, *SLC6A1*, *SLC9A6*, *SMC1A* e *TBCD*. As variantes causais presente nos 79 pacientes estão localizadas em 36 genes, o que ilustra bem a heterogeneidade genética característica das EEDs.

Figura 6: (A) Distribuição do número de variantes em relação ao gene em que estão localizadas. (B) Tipo de mudança na sequência causada pela variante. (C) Classificação das variantes segundo a ACMG. (D) Padrão de herança da doença relacionada ao gene em que a variante se encontra. AD – Autossômica Dominante; XLD – Ligada ao X Dominante; AR – Autossômica Recessiva; XLR – Ligada ao X Recessiva.

Figura 7: Distribuição dos pacientes com variantes causais no gene SCN1A e em outros genes mostrando que o gene SCN1A é o mais frequentes em todos os grupos: (A) Grupo de pacientes totais onde foi possível realizar o diagnóstico genético. (B) Grupo de pacientes onde foi possível realizar o diagnóstico genético excluindo os pacientes com diagnóstico clínico de síndrome de Dravet. (C) Grupo de pacientes com diagnóstico clínico de síndrome de Dravet em que foi possível realizar o diagnóstico genético.

Para os 33 pacientes com variantes causais no gene *SCN1A* foi possível realizar a análise de segregação com validação nos progenitores em 20 deles e em três casos essas variantes foram herdadas de um dos pais. Já é conhecido que as EEDs são doenças geneticamente heterogêneas⁹¹ e que variantes no gene *SCN1A* podem causar um amplo espectro de condições, desde de crises febris benignas até casos de morte súbita^{66,92}. No caso da síndrome de Dravet, em cerca de 10% dos pacientes com mutações *de novo* no gene *SCN1A*, um dos progenitores é mosaico, e isso deve ser levado em consideração para o aconselhamento genético⁶⁶. Além disso, a síndrome de Dravet ainda pode ocorrer em um membro de uma família com GEFS+ e variantes patogênicas em *SCN1A* podem apresentar penetrância incompleta e podem ocorrer em outras síndromes epilépticas⁶⁶.

ID	DG	Gene	Variante	Tipo da variante	Consequência	Classificação	PH	Fenótipo
178	ОК	AHDC1	c.92_93insGG	Inserção frameshift	p.Gly31fs	Provavelmente patogênica	AD	Síndrome de Doose
213	ок	ALG13	c.320A>G	Missense	p.Asn107Ser	Patogênica	XLD	Síndrome de Dravet
229	ОК	ANKRD11	c.7814T>G	Missense	p.Leu2605Arg	Provavelmente patogênica	AD	Síndrome de Dravet
12	ОК	ASXL3	c.4215_4216del	Deleção frameshift	p.Leu1407fs	Patogênica	AD	Síndrome de Lennox-Gastaut
240	ОК	ATP1A3	c.2443G>A	Missense	p.Glu815Lys	Patogênica	AD	Síndrome de Dravet
62	Validar	ATP6V1A	c.1157A>T	Missense	p.Tyr386Phe	VUS	AD	Síndrome de Doose
100	ОК	CACNA1A	c.6525_6537dupCAC ATCGGTGTAG	Inserção frameshift	p.Asp2180Leufs*94	Provavelmente patogênica	AD	Síndrome de Dravet
257	ок	CACNA1A	c.2986G>T	Códon de parada	p.Glu996*	Provavelmente patogênica	AD	Síndrome de Dravet
43	ОК	CDK19	c.1066C>T	Códon de parada	p.Arg356*	Patogênica	AD	Síndrome de Dravet
160	ОК	CDKL5	c.419A>G	Missense	p.Asn140Ser	Patogênica	XLD	Síndrome de Dravet
201	OK	CDKL5	c.118G>A	Missense	p.Ala40Thr	Provavelmente patogênica	XLD	Síndrome de Dravet
222	ОК	CLN5	c.659delA	Deleção frameshift	p.Lys220fs	Provavelmente patogênica	AR	Síndrome de Dravet
167	Validar	CLTC	c.3603_3604insTTTTT	Inserção frameshift	p.Gly1202fs	Provavelmente patogênica	AD	Síndrome de Dravet
81	Validar	DEPDC5	c.1174C>T	Missense	p.Arg392Cys	VUS	AD	Síndrome de Dravet
228	ОК	EEF1A2	c.370G>A	Missense	p.Glu124Lys	Provavelmente patogênica	AD	EED indeterminada
82	Validar	GABBR2	c.2743_2744insCCAG AGGGTCA	Inserção frameshift	p.Val915fs	VUS	AD	EED indeterminada
102	ОК	GAMT	c.506G>A c.491dupG	Missense Inserção frameshift	p.Cys169Tyr p.Val165fs	Patogênica	AR	Síndrome de Dravet
175	Validar	GNAO1	c.448A>C	Missense	p.Asn150His	Provavelmente patogênica	AD	Síndrome de Dravet
186	Validar	GNAO1	c.448A>C	Missense	p.Asn150His	Provavelmente patogênica	AD	Síndrome de Dravet
219	ОК	GNAO1	c.736G>A	Missense	p.Glu246Lys	Patogênica	AD	Síndrome de Dravet
225	ОК	GRIN2B	c.1906G>A	Missense	p.Ala636Thr	Provavelmente patogênica	AD	Síndrome de Doose
133	Validar	HIVEP2	c.7337delA	Deleção frameshift	p.His2446fs	VUS	AD	Síndrome de Dravet
194	ОК	IQSEC2	c.23delC	Deleção frameshift	p.Pro8fs	Provavelmente patogênica	XLD	Síndrome de Dravet
207	Validar	KCNB1	c.574G>C	Missense	p.Ala192Pro	VUS	AD	Síndrome de Dravet
177	Validar	KCNQ2	c.2518A>G	Missense	p.Arg840Gly	VUS	AD	Síndrome de Dravet
251	ОК	KCNQ2	c.790T>C	Missense	p.Tyr264His	Patogênica	AD	EED indeterminada
2	Validar	KCNQ3	c.105_107dupGGC	Inserção frameshift	p.Ala36dup	VUS	AD	Síndrome de Dravet
78	ОК	KCNT1	c.1066C>T	Missense	p.Arg356Trp	Provavelmente patogênica	AD	Síndrome de Dravet
149	ОК	KCNT1	c.2944-2A>C	Splicing	-	Provavelmente patogênica	AD	EED indeterminada
161	ОК	KCNT1	c.2800G>A	Missense	p.Ala934Thr	Provavelmente patogênica	AD	EED indeterminada
212	ОК	KCNT1	c.1193G>A	Missense	p.Arg398GIn	Provavelmente patogênica	AD	EED indeterminada
72	ОК	MECP2	c.916C>T	Missense	p.Arg306Cys	Patogênica	XLD	EED indeterminada
221	ОК	MECP2	c.473C>T	Missense	p.Thr158Met	Patogênica	XLD	EED

Tabela 2: Variantes selecionadas após análise de WES. ID - número de identificação do paciente; DG - diagnóstico genético; PH - padrão de herança da doença relacionada ao gene; VUS – variante de significado incerto.

185	ОК	MEF2C	c.565C>T	Códon de parada	p.Arg189*	Patogênica	AD	EED indeterminada
87	Validar	MTOR	c.2051A>G	Missense	p.Asp684Gly	VUS	AD	EED indeterminada
198	ОК	NEXMIF	c.1882C>T	Códon de parada	p.Arg628*	Patogênica	XLD	EED indeterminada
99	ок	NPRL2	c.883C>T	Códon de parada	p.Arg295* + alteração estrutural	Patogênica	AD	EED indeterminada
261	ок	NRAS	c.179G>A	Missense	p.Gly60Glu	Patogênica	AD	EED indeterminada
36	ок	NRXN2	c.808delG	Deleção frameshift	p.Ala270fs	Provavelmente patogênica	AD	EED indeterminada
37	ок	NRXN2	c.808delG	Deleção frameshift	p.Ala270fs	Provavelmente patogênica	AD	EED indeterminada
16	ок	NSUN2	c.2035G>A	Missense	p.Gly679Arg	Provavelmente patogênica	AR	Síndrome de Dravet
95	ок	PCDH19	c.1314delG	Deleção frameshift	p.Phe439fs	Provavelmente patogênica	XLD	EED indeterminada
255	ок	PCDH19	c.1019A>G	Missense	p.Asn340Ser	Patogênica	XLD	EED indeterminada
60	ок	PROK2	c.163delA	Deleção frameshift	p.lle55fs	Patogênica	AD	Síndrome de Dravet
223	ОК	PRRT2	c.641delC	Deleção frameshift	p.Ala214fs	Patogênica	AD	Síndrome de Lennox-Gastaut
202	ок	RARS2	c.754T>A c.1A>G	Missense Códon de início	p.Tyr252Asn p.Met1?	Provavelmente patogênica Patogênica	AR	EED indeterminada
15	ОК	SCN1A	c.971A>C	Missense	p.His324Pro	Provavelmente patogênica	AD	EED indeterminada
17	ОК	SCN1A	c.602+1G>A	Splicing	-	Patogênica	AD	Síndrome de Dravet
21	ок	SCN1A	c.4753C>T	Missense	p.Arg1596Cys	Patogênica	AD	Síndrome de Dravet
22	ок	SCN1A	c.5146G>T	Missense	p.Asp1727Tyr	Patogênica	AD	EED indeterminada
24	ОК	SCN1A	c.829T>C	Missense	p.Cys277Arg	Provavelmente patogênica	AD	EED indeterminada
28	ок	SCN1A	c.1170+3G>T	Splicing	-	Provavelmente patogênica	AD	EED indeterminada
29	ОК	SCN1A	c.383+1A>G	Sinônima	p.Ser128Ser	Provavelmente patogênica	AD	EED indeterminada
31	ок	SCN1A	c.5701C>T	Códon de parada	p.Arg1912*	Patogênica	AD	Síndrome de Dravet
33	ОК	SCN1A	c.5456_5458delAGT	Deleção non Frameshift	p.Gln1819_Phe1820 delinsLeu	Provavelmente patogênica	AD	Síndrome de Lennox-Gastaut
34	ОК	SCN1A	c.1243delA	Deleção frameshift	p.lle415fs	Patogênica	AD	EED indeterminada
35	ок	SCN1A	c.2327T>G	Missense	p.Met787Arg	Provavelmente patogênica	AD	EED indeterminada
38	ОК	SCN1A	c.4060G>T	Missense	p.Gly1354Cys	Patogênica	AD	Síndrome de West
39	ОК	SCN1A	c.2254delC	Deleção frameshift	p.Leu752fs	patogênica	AD	Síndrome de West
40	ОК	SCN1A	c.5144G>A	Códon de parada	p.Trp1715*	Patogênica	AD	indeterminada
41	ОК	SCN1A	c.4251+1G>A	Splicing	-	Patogênica	AD	Lennox-Gastaut
46	ОК	SCN1A	c.3656T>C	Missense	p.Leu1219Pro	patogênica	AD	Lennox-Gastaut
49	ОК	SCN1A	c.4940C>G	Missense	p.Thr1647Arg	Provavelmente patogênica	AD	Sindrome de Doose
52	ОК	SCN1A	GGTTCAGTGCCA	Deleçao non Frameshift	p.lle99_Ala104del	Provavelmente patogênica	AD	EED indeterminada
53	OK	SCN1A	c.296_313delTCTTCC GGTTCAGTGCCA	Deleção non Frameshift	p.lle99_Ala104del	Provavelmente patogênica	AD	EED indeterminada
54	ОК	SCN1A	c.1094T>G	Missense	p.Phe365Cys	Provavelmente patogênica	AD	EED indeterminada
56	OK	SCN1A	c.4402A>T	Missense	p.Ile1468Phe	Provavelmente patogênica	AD	Síndrome de Lennox-Gastaut
57	ОК	SCN1A	c.2465_2467dupATA	Inserção non frameshift	p.Asn822dup	Provavelmente patogênica	AD	Síndrome de Lennox-Gastaut
59	ОК	SCN1A	c.1692_1693dupTT	Inserção frameshift	p.Ser565fs	Provavelmente	AD	Síndrome de

71	ОК	SCN1A	c.5732T>C	Missense	p.lle1911Thr	Patogênica	AD	Síndrome de Lennox-Gastaut
90	ОК	SCN1A	c.1400C>G	Códon de parada	p.Ser467*	Provavelmente patogênica	AD	Síndrome de Lennox-Gastaut
108	ок	SCN1A	c.1007G>A	Missense	p.Cys336Tyr	Patogênica	AD	Síndrome de Doose
110	ОК	SCN1A	c.1177C>T	Missense	p.Arg393Cys	Patogênica	AD	Síndrome de Doose
115	ок	SCN1A	c.1620delG	Deleção frameshift	p.Asn541fs	Provavelmente patogênica	AD	Síndrome de Doose vs. Síndrome de Lennox-Gastaut
130	ОК	SCN1A	c.5233T>C	Missense	p.Cys1745Arg	Provavelmente patogênica	AD	EED indeterminada
187	ок	SCN1A	c.2803C>T	Missense	p.Arg935Cys	Patogênica	AD	EED indeterminada
244	Validar	SCN1A	c.2711T>C	Missense	p.Phe904Ser	Provavelmente patogênica	AD	EED indeterminada
247	ОК	SCN1A	c.1033T>C	Missense	p.Cys345Arg	Patogênica	AD	EED indeterminada
259	Validar	SCN1A	c.3628G>A	Missense	p.Glu1210Lys	VUS	AD	EED
264	ОК	SCN1A	c.5477C>T	Missense	p.Pro1826Leu	Provavelmente patogênica	AD	Síndrome de Lennox-Gastaut
307	ОК	SCN1A	c.2926T>C	Missense	p.Phe976Leu	Provavelmente patogênica	AD	Síndrome de Doose
112	Validar	SCN2A	c.3013A>G	Missense	p.lle1005Val	VUS	AD	Síndrome de Doose
269	Validar	SCN2A	c.23C>A	Missense	p.Pro8Gln	VUS	AD	EED indeterminada
137	ок	SLC13A5	c.655G>A	Missense	p.Gly219Arg	Patogênica	AR	EED indeterminada
205	ок	SLC6A1	c.813C>A	Códon de parada	p.Tyr271*	Patogênica	AD	EED indeterminada
199	ок	SLC9A6	c.220delC	Deleção frameshift	p.Leu74fs	Provavelmente patogênica	XLR	EED indeterminada
105	ок	SMC1A	c.1771delG	Deleção frameshift	p.Ala591fs	Patogênica	XLD	EED indeterminada
92	ок	STXBP1	c.704G>A	Missense	p.Arg235GIn	Patogênica	AD	EED indeterminada
243	ок	STXBP1	c.1652G>A	Missense	p.Arg551His	Patogênica	AD	EED indeterminada
262	ок	STXBP1	c.1074C>A	Códon de parada	p.Tyr358*	Patogênica	AD	EED indeterminada
113	ОК	STXBP1 BSCL2	c.685dupC c.412C>T	Inserção frameshift Códon de parada	p.Gln229fs p.Arg138*	Patogênica Patogênica	AD AD	Síndrome de West
75	ОК	SYNGAP1	c.388-2A>C	Splicing	-	Provavelmente patogênica	AD	Síndrome de West
91	ОК	SYNGAP1	c.2387delC	Deleção frameshift	p.Pro796fs	Patogênica	AD	EED indeterminada
84	ОК	TBCD	c.1340C>T c.1424C>T	Missense	p.Ala447Val p.Ala475Val	Provavelmente Patogênica	AR	Síndrome de West
267	Validar	TBL1XR1	c.821G>A	Códon de parada	p.Trp274*	Provavelmente patogênica	AD	Síndrome de West
58	Validar	TRIO	c.7355_7360delGGG CCG	Deleção non Frameshift	p.Gly2452_Ala2453 del	VUS	AD	Síndrome de Dravet

As análises de CNVs a partir dos exomas revelou uma média de 66 CNVs por paciente para o grupo sequenciado com profundidade de 30x e de 120,8 CNVs por paciente para o grupo com 100x. Após filtragem, as médias de CNVs por paciente foram de 6,7 e 17,2 respectivamente. Após aplicação do painel de genes de EEDs as médias de CNVs por paciente foram de 0,25 e 0,55 respectivamente. Após análise de todas essas variantes obtidas após aplicação do painel, 12 delas foram selecionadas

em 11 pacientes, sendo 11 variantes patogênicas e uma provavelmente patogênica (Tabela 3). A maioria das CNVs encontradas no WES também foram observadas na análise de CMA, com exceção das CNVs dos pacientes 255 e 256 que só apareceram no WES devido à má qualidade dos microarranjos. Outras três CNVs (pacientes 132, 239 e 310) foram selecionadas a partir do WES, mas também apareceram no CMA após remoção de filtros.

ID	Variante	Genes OMIM	Tamanho	Consequência	Classificação	Fenótipo
63	ngs[hg19] 15q11.2q13.1(23609191_28525369)x1	14	4,9Mb	Síndrome de Angelman	Patogênica	EED indeterminada
67	ngs[hg19] 15q11.2q13.2(23325091_30702538)x4 ngs[hg19] 15q13.2q13.3(31093551_31862472)x3	25 5	7,4Mb 768,9Kb	Tetrassomia parcial do cromossomo 15	Patogênica	EED indeterminada
74	ngs[hg19] 16p11.2(29580502_30215205)x1	33	634,7Kb	Síndrome de deleção 16p11.2	Patogênica	EED indeterminada
132	ngs[hg19] 1q44(244848874_245027664)x1	3	178,8Kb	Deleção do gene HNRNPU	Patogênica	Síndrome de West
134	ngs[hg19] 1p36.33p36.32(803773_3816962)x1	75	3Mb	Síndrome de deleção 1p36	Patogênica	EED indeterminada
144	ngs[hg19] 16p13.3(103402_3900998)x3	157	3,8Mb	Síndrome de duplicação 16p13.3	Patogênica	Síndrome de Lennox-Gastaut
239	ngs[hg19] 16p11.2(29547304_30215205)x3	33	667,9Kb	Síndrome de microduplicação 16p11.2	Patogênica	Síndrome de West
254	ngs[hg19] 15q11.2q13.1(23608748_28475084)x3	14	4,9Mb	Síndrome de duplicação 15q11.2	Patogênica	EED indeterminada
255	ngs[hg19]15q11.2(25585161_25599876)x1	1	14,7Kb	Deleção dos exons 12, 13 e 14 do gene UBE3A	Patogênica	EED indeterminada
256	ngs[hg19]2q22.3(145182225_145187633)x1	1	5,4Kb	Deleção dos exons 3 e 4 do gene ZEB2	Provavelmente patogênica	EED indeterminada
310	ngs[hg19] 2q24.3(166773732_166915261)x1	2	169,2Kb	Deleção de parte do gene SCN1A	Patogênica	Síndrome de Dravet

Tabela 3:CNVs causais selecionadas a partir da análise de WES. Genes OMIM corresponde ao número de genes envolvidos na CNV já associados a doenças presentes no banco de dados do OMIM. ID: número de identificação do paciente.

Considerando tanto as variantes de sequência quanto as CNVs, foi possível obter um DG em 89 pacientes utilizando somente dados de WES. Como já dito anteriormente, os WES foram sequenciados utilizando duas profundidades médias diferentes, porém, não houve diferença quanto a taxa de DG nos dois grupos. No grupo 1, que foi sequenciado visando obter uma profundidade média de 30x foi possível obter o DG em 44 de todos os 118 pacientes sequenciados (37,3%). Já no grupo 2, que foi sequenciado visando obter profundidade média de 100x, foi possível obter o DG em 45 de todos os 116 pacientes sequenciados (38,8%). Considerando todos os 89 pacientes com DG, 49,4% pertencem ao grupo 1 (30x) e 50,6% pertencem ao grupo 2 (100x).

Análise de Microarranjos Cromossômicos

Assim como no WES, todas as amostras foram submetidas à técnica de CMA, porém, três das amostras não apresentaram boa qualidade em triagens posteriores e foram excluídas já no início do procedimento. Sendo assim, obtivemos resultados de microarranjos de 236 pacientes. Desses 236 pacientes, 16 foram excluídos após a análise de controle de qualidade. Analisamos então, 220 pacientes quanto a presença de CNVs causais, sendo que 87 passaram em ambos os parâmetros de qualidade (MAPD \leq 0,35 e Waviness \leq 0,12) e foram analisados com o filtro de tamanho de no mínimo 100kb e 133 passaram em apenas um dos controles de qualidade e foram analisados utilizando filtro de tamanho de no mínimo 300kb.

Na análise utilizando o programa *ChaS* e os filtros descritos nos métodos, observamos 2694 CNVs em todos os 220 pacientes (média de 12,2 CNVs por paciente). Selecionamos 115 CNVs raras em 76 pacientes, sendo que: 25 CNVs foram classificadas como provavelmente benignas por não possuírem genes em suas extensões; 76 classificadas como VUS pois possuem genes com função desconhecida, ainda não relacionados a doenças ou não sensíveis a dosagem; duas classificadas como provavelmente patogênicas, mas não causais, pois possuem genes sensíveis a dosagem mas que são relacionados somente com doenças recessivas; e 15 como patogênicas, sendo que duas são relacionadas a síndrome de Down e 13 possuem relação direta com os fenótipos. Essas 13 CNVs compreendem síndromes de deleção ou duplicação já conhecidas ou possuem genes relacionados a EEDs em sua extensão (Tabela 4).

Após finalizar as duas análises, todas as CNVs encontradas no WES e CMA foram comparadas e, como já dito anteriormente, três CNVs encontradas no WES se confirmaram também no CMA (pacientes 132, 239 e 310). Essas CNVs foram excluídas pelos filtros de tamanho aplicados, sendo assim, foram adicionadas duas análises complementares: análise das CNVs de todos os pacientes sem filtro de tamanho levando em conta a presença de genes relacionados às EEDs; e análise dos 16 pacientes anteriormente excluídos utilizando filtro de tamanho de 300Kb. Porém, em ambos os casos, nenhuma outra CNV além das três detectadas pelo exoma foi selecionada. Isso não quer dizer que não haja variantes causais nesses pacientes, pois não podemos confiar na qualidade desses microarranjos. As validações das CNVs ainda estão em andamento, e se fazem necessárias, principalmente para as CNVs menores que 1Mb. Os dois casos de CNVs mais interessantes que encontramos e que envolvem rearranjos cromossômicos já foram validados nos pacientes e nos pais e estão descritos a seguir.

Tabela 4:CNVs patogênicas causais selecionadas a partir da análise de CMA. Genes OMIM corresponde ao número de genes envolvidos na CNV já associados a doenças presentes no banco de dados do OMIM. ID: número de identificação do paciente.

ID	Variante	Genes OMIM	Tamanho	Consequência	Fenótipo
63	arr[hg19] 15q11.2q13.1(23282799_28445135)x1	19	5,2Mb	Síndrome de Angelman	EED indeterminada
67	arr[hg19] 15q11.1q13.2(20016316_30764615)x4 arr[hg19] 15q13.2q13.3(30775982_32876972)x3	36	12,9Mb	Tetrassomia parcial do cromossomo 15	EED indeterminada
74	arr[hg19] 16p11.2(29580611_30226931)x1	23	646,3Kb	Síndrome de deleção 16p11.2	EED indeterminada
104	arr[hg19] 13q12.3q13.1(29626643_33600755)x1	13	4Mb	Síndrome de deleção 13q12.3	EED indeterminada
134	arr[hg19] 1p36.33p36.32(564621_4105141)x1	53	3,5Mb	Síndrome de deleção 1p36	EED indeterminada
144	arr[hg19] 16p13.3(85815_4021612)x3 arr[hg19] 22q13.33(50275935_51234443)x1	121 29	3,9Mb 958,5Kb	Translocação desbalanceada entre os cromossomos 16 e 22	Síndrome de Lennox-Gastaut
176	arr[hg19] 16p12.2(21807855_22558797)x1	3	750,9Kb	Síndrome de microdeleção 16p12.2	Síndrome de Lennox-Gastaut
195	arr[hg19]13q32.1q33.2(97908422_105183839)x3	22	7,3Mb	Associada a doenças que causam atraso do desenvolvimento e epilepsia	Síndrome de Lennox-Gastaut
250	arr[hg19] 15q11.1q11.2(20577500_23487534)x1	6	2,9Mb	Região da síndrome de microdeleção 15q11.2	EED indeterminada
254	arr[hg19] 15q11.2q13.2(22751668_30668572)x3 arr[hg19] 16p13.12p13.11(14777381_16290495)x3 arr[hg19] 22q11.21(18876416_21567219)x3	27 11 40	7,9Mb 1,5Mb 2,7Mb	Síndrome de duplicação 15q11.2 Síndrome de microduplicação 16p13 Síndrome de duplicação 22q11	EED indeterminada

No caso do paciente 67, havia suspeita de um cromossomo marcador supranumerário devido a presença de duas grandes CNVs na região proximal do cromossomo 15. Trata-se de uma região de *imprinting* instável conhecida pela recorrência de rearranjos devido à presença de DNA repetitivo⁹³. Esse tipo de cromossomo, conhecido como invdup(15) ou idic(15), já é amplamente conhecido na literatura. Foi descrito pela primeira vez em 1977 por Van Dyke *et al.*, e está relacionado a diferentes fenótipos que incluem hipotonia, ADNPM, deficiência intelectual, epilepsia e comportamento autista^{94,95}. Nosso paciente apresenta epilepsia refratária com CTCG, Miastenia Gravis Ocular, micronefrolitíase bilateral, ADNPM com piora após início das crises, deficiência intelectual e transtorno do espectro autista, entre outras características clínicas. O cariótipo do paciente apresentou 47 cromossomos, sendo o cromossomo adicional um isocromossomo dicêntrico derivado do cromossomo 15, com ponto de quebra em q11.2 (Figura 8).

Este cromossomo derivado contém dois braços curtos do cromossomo 15 e duas cópias da região proximal do braço longo do 15, resultando em tetrassomia parcial do braço longo do 15 (47,XY,+idic(15)(q11.2)). A mãe do paciente relatou que sofreu três abortos e o óbito de uma filha de um ano e quatro meses antes do paciente aqui descrito, porém, os pais apresentaram cariótipos normais e esse cromossomo adicional, muito provavelmente, foi gerado durante a formação de gametas.

Figura 8: Cariótipo do paciente 67 com resultado 47,XY,+idic(15)(q11.2). A seta evidencia o cromossomo adicional idic(15).

No caso do paciente 144, devido às duas alterações encontradas serem nas porções terminais dos cromossomos, havia a suspeita de uma translocação desbalanceada entre os cromossomos 16 e 22. Essa translocação foi confirmada por cariótipo e FISH no paciente e nos pais onde foram analisadas 20 metáfases em ambos os métodos. No cariótipo do paciente é possível observar um excesso de material genético no braço longo do cromossomo 22. O método de FISH do paciente revelou um cromossomo 22 derivado de uma translocação entre os cromossomos 16 e 22, com pontos de quebra em p13.3 e q13 respectivamente. No cromossomo derivado 22 foi observado um sinal para a sonda da região 22q11.2 (TUPLE1, Abbott®), ausência de sinal para a sonda da região terminal 22q13 (ARSA, Abbott®) e um sinal para a sonda da região terminal 22q13 (ARSA, Abbott®). Concluiu-se que existe um rearranjo cromossômico desequilibrado causado pela translocação, resultando em monossomia parcial 22q13 e trissomia parcial 16p13.3

[46,XY.ish der(22)t(16;22)(p13.3;q13)(TUPLE1+,ARSA-,121I4+); Figura 9]. O método de FISH no pai revelou uma translocação entre os cromossomos 16 e 22, com pontos de quebra em p13.3 e q13 respectivamente. No cromossomo derivado 16 foi observado um sinal para a sonda da região terminal 22q13 (ARSA). No cromossomo derivado 22 foi observado um sinal para a sonda da região terminal 22q13 (ARSA). No cromossomo derivado 22 foi observado um sinal para a sonda da região terminal 22q13 (ARSA), resultando em uma translocação cromossômica equilibrada entre os cromossomos 16 e 22 [46,XY.ish t(16;22)(p13.3;q13)(ARSA+;TUPLE1+,ARSA-); Figura 9]. A mãe do paciente apresentou cariótipo normal e o FISH revelou dois sinais para a sonda da região 22q11.2 e dois sinais para a sonda da região 22q13 em ambos os cromossomos 22 [46,XX.ish 22q11.2(TUPLE1×2)22q13(ARSA×2), Figura 10].

Figura 9: (A) Cariótipo do paciente 144 com resultado 46,XY.ish der(22)t(16;22)(p13.3;q13)(TUPLE1+,ARSA-,121I4+). A seta mostra o material adicional em 22q. (B) Análise de FISH em metáfase do paciente mostrando três sinais para 16p13.3 (verde). (C) Análise de FISH em metáfase do paciente mostrando um sinal para a região 16p13.3 (verde), dois sinais para região 22q11.2 (vermelho) e nenhum sinal para a região 22q13.

A deleção na região terminal do cromossomo 22 está relacionada com a síndrome de Phelan McDermid que pode ser causada por deleção terminal ou subtelomérica, translocações balanceadas ou não balanceadas, cromossomo em anel, ou mosaicismo dessas anormalidades. De acordo com a base de dados do OMIM, essa síndrome está associada a hipotonia congênita, distúrbios de deglutição, hiporreflexia, alterações de marcha, dismorfismos, atraso e/ou involução do

desenvolvimento neuropsicomotor global, deficiência intelectual, transtorno do espectro autista, crises epilépticas, insensibilidade a dor, alterações renais e cardiovasculares, etc. Nosso paciente apresenta epilepsia de difícil controle com CTCG e foi diagnosticado com LGS precedida de WS. Além disso, apresenta hipotonia global com coréia, hiperelasticidade, ADNPM, distúrbio de sucção e deglutição, hipotireoidismo, entre outras características clínicas sendo, o fenótipo do paciente, compatível com a síndrome de Phelan McDermid e com esse tipo de rearranjo cromossômico complexo. Uma translocação especificamente entre os cromossomos 16 e 22 já foi descrita em 2015 por Fontes *et al.*, coincidentemente também em um paciente do HC-UNICAMP, porém, a paciente do estudo apresentava uma duplicação no cromossomo 16 maior e uma deleção no cromossomo 22 menor do que as apresentadas por nosso paciente. Essa paciente apresentou microcefalia, dismorfismos, problemas gastrointestinais, anomalias vasculares, ADNPM, atraso de fala e problemas cardíacos e renais⁹⁶.

Figura 10: (A) Cariótipo do pai do paciente 144 com resultado 46,XY.ish t(16;22)(p13.3;q13)(ARSA+;TUPLE1+,ARSA-). (B) FISH do pai mostrando um sinal para a região 22q13 no cromossomo derivado 16 (verde) e um sinal para a região 22q11.2 (vermelho) e ausência de sinal para a região 22q13 no cromossomo derivado. (C) Cariótipo normal da mãe com resultado 46,XX. (D) FISH normal da mãe mostrando dois sinais para a região 22q11.2 (vermelho) e dois sinais para a região 22q13 (verde) em ambos os cromossomos 22.

A análise ROH revelou nove pacientes com regiões de homozigose maiores que 10Mb (Tabela 5). Sete pacientes possuem mais de 1% do genoma autossomo composto por regiões de homozigose com 10Mb de tamanho ou mais, e quatro deles possuem essas ROHs distribuídas por todo o genoma (pacientes 16, 128, 248 e 251), o que é característica de consanguinidade ou identidade por descendência. A maior porcentagem (26,06%), presente no paciente 251 é representativa de uma família com consanguinidade frequente ou entre parentes de primeiro grau⁹⁷. Nos outros três casos (pacientes 58, 76 e 97), apesar de possuírem porcentagem maior que 1%, não há indicação de consanguinidade ou identidade por descendência, pois as ROH não estão distribuídas por todo o genoma e são concentradas em apenas alguns cromossomos, o que pode ser resultado de dissomia uniparental segmentar⁹⁸. A paciente 31 do sexo feminino possui uma grande ROH no cromossomo X, porém, é comum encontrar um aumento de ROH nesse cromossomo devido a sua taxa de recombinação limitada. Além disso, pessoas do sexo masculino são sempre hemizigotos⁹⁸.

Essas regiões foram analisadas no WES para identificação de variantes em homozigose para doenças autossômicas recessivas e isso foi possível em apenas um paciente. O paciente 16 possui 4,36 de seu genoma autossomo em homozigose, sendo que a consanguinidade de seus progenitores também foi declarada pela família. Neste caso, na análise de WES através da plataforma *Varstation*, encontramos uma variante em homozigose no gene *NSUN2* que está relacionado a deficiência intelectual que pode ser acompanhada de epilepsia. Essa variante está localizada em uma dessas ROHs no cromossomo cinco. Em outros seis pacientes foi possível realizar o diagnóstico genético, mas nenhuma das variantes está localizada na ROH, estando todas em heterozigose. Nos cinco pacientes restantes não foram encontradas variantes causais, mesmo após análise dessas ROHs.

Taxa de Diagnóstico Genético

Para fins comparativos, separamos os tipos de análises realizados aqui em análise padrão e análise otimizada. A análise padrão de WES e CMA consiste em utilizar um programa para filtrar e priorizar as variantes encontradas e depois selecionar as variantes patogênicas e provavelmente patogênicas que tenham relação com o fenótipo. Já a análise otimizada, consistiu em utilizar outros tipos de análises nos dados de WES, principalmente nos pacientes em que não foi possível en contrar uma causa genética, para aumentar a taxa de DG em nossos pacientes. Para isso realizamos a análise sem filtros com o programa *Varstation*, realizamos a chamada de CNVs a partir dos dados de WES e realizamos análise de segregação em variantes de significado incerto cuja classificação seria alterada para provavelmente patogênica se fossem não herdadas, ou seja, *de novo*.

Tabela 5:Pacientes que apresentaram grandes regiões de homozigose na análise de CMA. ID - número de identificação do paciente; LOH: Perda de heterozigose.

ID	Sexo	Diagnóstico Genético através de WES	Regiões de LOH	% de LOH Autossomos	Fenótipo
16	М	<i>NSUN2</i> :c.2035G>A	Consanguinidade	4,36	Síndrome de Lennox-Gastaut
17	F	SCN1A:c.602+1G>A	arr[hg19] 10q21.1q22.1(54715100_70608911)x2 hmz arr[hg19] 10q22.1q23.1(73435426_85459984)x2 hmz	0,92	Síndrome de Dravet
31	F	SCN1A:c.5701C>T	arr[hg19] Xp11.4q23(39605561_113497351)x2 hmz	0	Síndrome de Dravet
33	F	SCN1A:c.5456_5458delAGT	arr[hg19] 7q22.3q33(106012679_135619612)x2 hmz	0,98	Síndrome de Dravet
58	F	-	arr[hg19] 7q31.32q36.1(122485983_150496416)x2 hmz arr[hg19] 9q33.1q34.11(121363428_132926691)x2 hmz	1,31	EED indeterminada
76	F	_	arr[hg19] 3q13.11q22.1(104031239_132647420)x2 hmz arr[hg19] 8q12.3q13.3(62826793_73577554)x2 hmz arr[hg19] 11p14.3p13(24804459_35032596)x2 hmz arr[hg19] 15q25.1q26.1(79950522_92933859)x2 hmz	2,07	EED indeterminada
97	Μ	-	arr[hg19] 1p21.2p13.2(101203113_111854120)x2 hmz arr[hg19] 9p22.2p13.1(18497828_39213995)x2 hmz arr[hg19] 12q15q22(70937094_93476695)x2 hmz arr[Hg19] 18p11.21q21.1(11283157_47016787)x2 hmz	2,97	Síndrome de Dravet
99	М	NPRL2:c.883C>T	arr[hg19] 14q24.2q31.3(70650867_85973847)x2 hmz	0,50	Síndrome de Lennox-Gastaut
128	М	-	Consanguinidade	4,20	EED indeterminada
149	М	KCNT1:c.2944-2A>C	arr[hg19] 14q23.1q31.3(58473958_85984782)x2 hmz	0,91	EED indeterminada
248	М	_	Consanguinidade	13,50	EED indeterminada
251	F	KCNQ2:c.790T>C	Consanguinidade	26,06	EED indeterminada

Utilizando a análise padrão, foi possível realizar o DG em 73 pacientes utilizando WES e em 10 pacientes utilizando CMA. Considerando as duas técnicas combinadas foi possível encontrar uma causa genética em 83 ou 34,7% dos pacientes em nossa casuística. Quando adicionamos os resultados da análise otimizada de WES aumentamos em 10 o número de pacientes com DG. Sendo assim, foi possível

o DG em 89 pacientes utilizando somente WES e em 10 pacientes utilizando CMA. Somando as duas técnicas combinadas e todas as análises que foram realizadas, foi possível encontrar uma causa genética em 93 ou 38,9% dos pacientes. Esse número representa uma alta taxa de DG para essas doenças considerando a nossa coorte e foi atingido devido a análise otimizada realizada nesse trabalho. As taxas de DG de ambas as técnicas separadas e combinadas utilizando análise padrão + análise otimizada podem ser observadas na Tabela 6.

	atao nor Táonico	% Pacientes com DG				
N° Pacier	Nº Pacientes por Tecnica		CNV	Total		
WES	234	33,8	4,7	38		
СМА	236	-	4,6	4,6		
Total	239	33	6,3	38,9		

Tabela 6: Taxa de diagnóstico genético dos 239 pacientes com EEDs de acordo com a técnica utilizando a análise padrão + análise otimizada.

Na Tabela 7 podemos observar as taxas de DG em outros estudos que variam de acordo com o número, fenótipo e critérios de inclusão dos pacientes, o tipo de técnica usada e método do teste, o número de genes analisados no painel, etc⁶³. Separamos esses estudos em quatro grupos: primeiro podemos observar as taxas de DG em estudos que avaliaram painéis gênicos; em segundo temos estudos que avaliaram somente WES ou sequenciamento de genoma completo (WGS); o terceiro grupo reúne quatro estudos que utilizaram técnicas de detecção de variantes de sequência e estruturais combinadas; e o último grupo reúne estudos que analisaram somente CNVs utilizando WES e/ou CMA.

As taxas de DG na literatura utilizando painéis, variam de 10 a 48,5%, porém, cada estudo deve ser analisado dentro de seu contexto. Na coorte com 48,5% de diagnóstico, por exemplo, foi analisado painel de 265 genes em 33 pacientes sendo que dez deles possuíam história familiar de epilepsia, o que faz com que seja mais provável encontrar uma variante pois ela segrega junto com a doença nos indivíduos afetados da família, que também foram analisados⁹⁹. Em outro caso analisando também painel de 67 genes, o mesmo foi observado: foi possível obter 47% de diagnóstico em 19 pacientes, sendo oito deles com histórico familiar¹⁰⁰. Outros artigos

utilizando painéis avaliaram de 28 a 500 pacientes com epilepsias e doenças do neurodesenvolvimento e obtiveram de 10 a 34,7% de sucesso no diagnóstico, isso devido ao baixo número de genes (de 38 a 71 genes) utilizados nos painéis^{84,86–88,101}.

Utilizando WES, as taxas de DG variam de 11 a 72%. Os estudos com altas taxas de DG analisaram um baixo número de pacientes (de 10 a 71 pacientes^{43–45}) e muitos indivíduos possuíam malformações cerebrais, microcefalia e dismorfismos. Os estudos que combinaram técnicas de detecção tanto de variantes de sequência quanto de variantes estruturais atingiram uma taxa de DG de 15,4 a 31,7%, sendo mais próximas da atingida em nosso trabalho, porém, ainda mais baixas^{84,90,102}.

Quanto ao poder de diagnóstico das CNVs, a taxa de DG na literatura varia de 4,8 a 28%^{46–48,103,104}. Aqui também precisamos considerar cada coorte individualmente para entender a seleção de pacientes e os vieses envolvidos que influenciam significativamente as taxas observadas. No estudo que atingiu 28% de DG, eles mesmos chamam a atenção para um viés de verificação que pode estar influenciando os resultados¹⁰⁴.

O WES apresentou o maior rendimento diagnóstico, porém, o uso de CMA conseguiu adicionar quase cinco pontos percentuais a esse rendimento e, portanto, deve ser também considerado na investigação da etiologia genética das EEDs. Por outro lado, a análise de CMA encontrou um maior número de CNVs causais do que a análise por WES, pois, na análise com WES foram usados filtros mais restritos, onde apenas CNVs que continham genes já relacionados às EEDs foram analisadas. A análise de CNV usando WES foi usada como uma análise complementar nesse trabalho e se mostrou eficiente para aumentar o poder de diagnóstico do WES. Porém, muita informação é perdida quando se utiliza um painel de genes como filtro na análise de CNVs.

Em relação ao sexo dos pacientes, foi possível diagnosticar geneticamente 43,1% das pacientes do sexo feminino e 35,4% dos pacientes do sexo masculino. Segundo teste de Fisher, não houve diferença estatisticamente significativa entre os sexos (p= 0,2333). Em relação aos subtipos de EEDs, não observamos nenhuma relação genótipo-fenótipo com exceção do gene *SCN1A* para síndrome de Dravet. Lembrando que nossa análise aqui foi apenas observacional.

Tabela 7: Taxas de diagnóstico genético (DG) em diferentes estudos com pacientes com epilepsias de início precoce ou da infância. WES – sequenciamento completo do exoma; WGS – sequenciamento completo do genoma; CMA – análise de microarranjos cromossômicos; MLPA – amplificação multiplex de sondas dependente de ligação; CNV – variante de número de cópia.

Estudo	População	N⁰ Pacientes	Fenótipos	% de DG (Referência)
Painel 65 genes	EUA	500	Encefalopatias Epilépticas	10 ⁸⁸
Painel 38-327 genes	Canadá	93	Encefalopatias Epilépticas	12,7 ⁸⁷
Painel 38-53 genes	EUA	28	Epilepsias	21,4 ¹⁰¹
Painel 35 genes	Japão	53	EE de Início Precoce	23 ¹⁰⁵
Painel 71 genes	Austrália	105	Encefalopatias Epilépticas	28,5 ⁸⁶
Painel 172 genes	Coréia do Sul	150	EEDs	34,7 ⁸⁹
Painel 67 genes	Itália	19	Epilepsias de Início Precoce	47 ¹⁰⁰
Painel 265 genes	Alemanha e Suíça	33	Epilepsias	48,5 ⁹⁹
WES	EUA	264	Espasmos Infantis e LGS	11 ⁴²
WES	Itália	71	Adultos com EEDs	25,3 ⁴⁵
WGS	Austrália	30	EEDs	50 ¹⁰⁶
WES	EUA	10	Encefalopatias Epilépticas	70 ⁴³
WES	Canadá	11	Epilepsias da Infância	7244
Painel 70 genes CMA	EUA	8565	Epilepsia e Doenças do Neurodesenvolvimento	15,4 ⁸⁴
WES CMA	Canadá	18 44	Espasmos Infantis	28 7 ¹⁰²
Painel >4600 genes MLPA	Índia	82	EEDs	31,7 ⁹⁰
Painel 104 genes CMA WGS	Escócia	390	Epilepsias da Infância	31 ⁸
CNV a partir de WES	EUA	349	Espasmos Infantis e LGS	4,8 ¹⁰³
CMA	EUA	805	Epilepsias	5 ⁴⁸
СМА	EUA	315	Encefalopatias Epilépticas	7,946
СМА	Noruega	21	LGS	19 ⁴⁷
CNV a partir de WES e CMA	China	100	Deficiência Intelectual e Epilepsia	28 ¹⁰⁴

Observamos também que os pacientes com grandes CNVs que envolvem muitos genes apresentam quadros mais complexos do que pacientes com variantes patogênicas de sequência (SNVs ou indels) ou CNVs pequenas que envolvem poucos genes. Esses pacientes apresentam quadros mais sindrômicos devido à somatória de efeitos de cada gene deletado e/ou duplicado. Pacientes com rearranjos cromossômicos complexos, como os casos de cromossomo isodicêntrico e translocação aqui apresentados, apresentam quadros ainda mais graves do que os pacientes com variantes de sequência, CNVs pequenas que envolvem poucos genes e CNVs grandes, mas que envolvem somente uma região de um cromossomo. Esses achados podem ser muto úteis para priorizar e otimizar a indicação de testes genéticos

na prática clínica, visando o melhor custo-benefício para os pacientes e para os serviços e planos de saúde. Quando há suspeita de causa genética e as outras causas já foram descartadas após exames específicos, para pacientes com quadros sindrômicos envolvendo má formações, dismorfismos, ADNPM e/ou problemas neuropsiquiátricos, por exemplo, a análise de CNVs por CMA tem grande chance de ser eficiente para p DG¹⁰⁷. Já pacientes sem essas características e com suspeita de doença monogênica de causa desconhecida são elegíveis para teste de WES ou painéis multigênicos. Porém, alguns autores sugerem que, após triagem diagnóstica inicial (envolvendo EEG, exame de ressonância magnética, triagem de doenças metabólicas) os pacientes que não possuem diagnóstico devem ser indicados diretamente para exame de painel ou WES, incluindo a chamada de CNVs. Se após WES ou painel não for possível o DG, então o CMA seria indicado. Se mesmo após CMA não houver DG, outras estratégias podem ser usadas, como WGS, reanálises e reinterpretações periódicas dos exames já realizados, avaliar mutações dos tipos repetição e expansão, sequenciamento de genoma mitocondrial, variantes epigenéticas, etc⁸⁵. Pacientes com suspeita de causa monogênica conhecida ainda podem se beneficiar do sequenciamento de gene único, como o caso do gene SCN1A na síndrome de Dravet, por exemplo. Com o avanço das técnicas e programas de processamento e chamada de variantes, tem sido cada vez mais viável a detecção de CNVs a partir de WES e, preferencialmente de WGS. Por enquanto CMA continua sendo o padrão ouro para detecção de CNV, mas a ideia de se fazer apenas um teste abrangendo o maior número de possibilidades em termos de identificação de variantes causais está cada vez mais próxima.

Quando analisamos as taxas de DG em relação aos países (Tabela 8), Peru teve o maior rendimento com 50% dos pacientes diagnosticados, sendo que a maior parte do diagnóstico foi possível no grupo de EED indeterminadas. Em segundo lugar com maior DG temos o Chile, seguido por Brasil, Honduras e Argentina. Honduras apresentou uma alta taxa de DG, porém, deve-se considerar o viés causado pelo baixo número de pacientes analisados (N=3). Nos pacientes do Uruguai não foi possível obter DG, porém, apenas quatro pacientes foram analisados e dois deles possuem variantes em potencial que ainda necessitam serem validadas. No grupo da Argentina estão os oito pacientes com EMES, mas o DG não foi possível em nenhum deles. O padrão de POCS observado no EEG desses pacientes é apresentado também por

crianças com epilepsias estruturais ou metabólicas associadas a diferentes tipos de lesões cerebrais que podem estar relacionadas a causas genéticas, mas também a etiologias desconhecidas. Além disso, tanto as crises quanto o padrão de POCS podem desaparecer com o tempo na maioria dos pacientes e, enquanto que o POCS desaparece por volta da puberdade, o desaparecimento da epilepsia e os danos cognitivos dependem da etiologia¹⁰⁸. Na seleção de pacientes do HC-UNICAMP, pacientes com EMES não foram incluídos, por isso, esses oito pacientes podem estar baixando a nossa taxa de DG.

País	Nº de Pacientes	Nº Pacientes com DG	% Pacientes com DG
Brasil	146	61	41,8
Argentina	57	17	29,8
Chile	15	7	46,7
Peru	14	7	50
Uruguai	4	0	0
Honduras	3	1	33,3
Total	239	93	38,9

Tabela 8:Taxas de diagnóstico genético (DG) dos pacientes em relação ao país de origem.

De todos os pacientes com DG, 51,6% possui variantes em genes ou regiões com possíveis abordagens terapêuticas, o que é um ponto muito importante quando falamos em medicina de precisão. Em mais da metade dos pacientes diagnosticados é possível realizar uma intervenção clínica, mudando e personalizando o tratamento para melhora das crises e da vida dos pacientes. O que demonstra, mais uma vez, a utilidade e aplicabilidade dos testes genéticos e a importância da realização de um DG o mais cedo possível em pacientes com EEDs. Os genes/diagnósticos para os quais há evidências de terapia de precisão, até o presente momento, em nossa coorte foram: *CDKL5, GAMT, KCNQ2, NPRL2, PCDH19, PRRT2, SCN1A, SLC6A1, STXBP1* e InvDup15^{63,85,109–111}.

É importante ressaltar que a relação genótipo-fenótipo foi muito bem estudada em todos os pacientes através de discussões periódicas com nosso grupo de especialistas da FCM-UNICAMP. As variantes encontradas foram relacionadas com os históricos presentes nos prontuários dos pacientes para seleção das variantes causais ou exclusão de variantes que não eram condizentes com os fenótipos. O cenário aqui apresentado ainda pode sofrer alterações conforme o avanço das validações. Consideramos aqui somente as variantes patogênicas e provavelmente patogênicas já validadas ou que apresentaram altas coberturas, profundidades e parâmetros de qualidade adequados. Ainda, a ausência de diagnóstico molecular no restante dos pacientes não quer dizer que não haja variantes genéticas relacionadas ao fenótipo nesses indivíduos. Isso só ressalta a importância da aplicação de novas abordagens de análises, como a análise de novos genes que possam estar relacionados as EEDs e/ou análises que levem em conta um tipo de herança complexa.

Análise de Regressão Logística

Para essa análise foram usados os pacientes com dados pareados, ou seja, pacientes que possuem dados de WES e CMA ao mesmo tempo. Assim, foram usados inicialmente 208 pacientes, 203 controles e 914116 variantes. Após os filtros, as análises foram realizadas com 178 pacientes, 179 controles e 125796 variantes, sendo 105 pacientes do grupo sem DG e 73 pacientes no grupo com DG.

As distribuições entre os grupos foram comparadas e apresentadas em Gráficos Quantil-Quantil (QQ) que podem ser observados na Figura 11. Os gráficos, bem como os valores de lambda, indicam uma boa qualidade dos dados, ou seja, não há evidência de estruturação dentro dos grupos. O desvio da distribuição esperada do p-valor é evidente apenas na área da cauda, com lambdas próximos a um, sugerindo que a estratificação da população foi adequadamente controlada.

Os SNPs associados em cada grupo podem ser observados na Tabela 9. Na análise de regressão logística com variantes comuns, três SNPs (rs10962384, rs10786907 e rs12327363) ultrapassaram o primeiro valor de referência (-log10(1e-05) = 5) para o grupo total de pacientes, como podemos ver na Figura 12a, estando possivelmente associados a doença. Quando analisado o grupo com DG (Figura 12b) o único SNP com possível associação é o rs10962384 que também aparece no grupo total. Esse parece ser um SNP com uma associação mais robusta que pode estar influenciando o grupo de pacientes totais.

Figura 11: Gráficos QQ: O eixo Y mostra os valores de -log10 P observados, e o eixo X mostra os valores de -log10 P esperados. Cada SNP é representado por um ponto preto, e a linha vermelha indica a hipótese nula de não haver uma associação verdadeira. O desvio da distribuição esperada do p-valor é evidente apenas na área da cauda, com lambdas próximos a 1, sugerindo que a estratificação da população foi adequadamente controlada. (A) Gráfico QQ do grupo total de pacientes com lambda de 1,108. (B) Grafico QQ de pacientes com diagnóstico genético (DG) e lambda de 1,109. (C) Gráfico QQ de pacientes sem diagnóstico genético e lambda de 1,109.

Chr	Posição	SNP	Ref	Alt	p-valor	Grupo	Gene	Tipo do Gene
6	98159736	rs9374755	Т	С	0.000005	Sem DG	LOC101927314	Gene de RNA
9	16336600	rs10962384	А	G	0.000007	Total/Com DG	C9orf92	Gene de RNA
10	83908249	rs10786907	Т	G	0.000009	Total	NRG3	Intrôn
18	11410757	rs12327363	Т	С	0.000006	Total	LINC01928	Gene de RNA

Tabela 9: SNPs associados a cada grupo mostrando suas posições, grupo em que estão associados e genes em que estão localizados. Chr: Cromossomo; Ref: Alelo de referência; Alt: Alelo alternativo.

Quando analisamos somente o grupo de pacientes sem DG, apenas um SNP (rs9374755) ultrapassou o valor de referência, estando associado a esse grupo de pacientes (Figura 12c) e, possivelmente associado a doença, sendo um SNP candidato para a análise de herança complexa. Esse SNP está localizado em um gene de RNA (LOC101927314) categorizado como RNA longo não codificante (IncRNA). Tratam-se de RNAs com mais de 200pb que possuem papel essencial na regulação da transcrição e estão envolvidos em diversos processos biológicos^{112,113}. Não foram encontradas, ainda, publicações sobre esse gene específico, porém, a expressão anormal de IncRNAs ligados à epilepsia tem sido observada tanto em pacientes quanto em modelos animais. Devido à sua expressão no sistema nervoso e às suas funções nos processos celulares, uma desregulação ou expressão anormal de IncRNAs pode causar um comprometimento da função e do desenvolvimento cerebral, o que leva a vários distúrbios neurodegenerativos do desenvolvimento, como epilepsia, distúrbios do espectro do autismo, e doença de Alzheimer, porém, o papel funcional dessas moléculas na patogênese dessas doenças ainda está sendo explorado^{114,115}.

É importante ressaltar que nenhum SNP ultrapassou o segundo valor de referência (-log10(5e-08) = 7.30103), que seria o mais confiável para indicar associação. O que podemos sugerir aqui é que existe uma diferença entre os SNPs comuns encontrados entre os grupos com e sem DG quando comparados aos controles normais, ou seja, o grupo dos pacientes sem diagnóstico apresenta características diferentes dos grupos controle e com diagnóstico, o que seria uma evidência de que outro tipo de herança, que não a monogênica, pode estar envolvido nesse grupo de pacientes.

Figura 12: Gráficos de Manhattan obtidos a partir da análise de regressão logística. O eixo Y mostra -log10 dos p-valores, e o eixo X mostra as posições cromossômicas. A linha horizontal azul representa o valor de referência -log10(1e-05) = 5, e a linha horizontal vermelha representa o valor de referência log10(5e-08) = 7.30103. (A) Gráfico de Manhattan para o grupo total de pacientes mostrando os três SNPs de interesse que ultrapassaram o primeiro valor de referência. (B) Gráfico de Manhattan para o grupo de pacientes com DG mostrando o único SNP de interesse que ultrapassou o primeiro valor de referência. (C) Gráfico de Manhattan para o grupo de pacientes sem DG mostrando o único SNP de interesse que ultrapassou o primeiro valor de referência.

Análise de SKAT-O

Nessa análise também foram usados os pacientes com dados pareados, porém, após os filtros, as análises foram realizadas com 117 pacientes, 130 controles e 299598 variantes, sendo 152694 variantes raras e 82248 variantes ultrarraras.

Quando analisamos conjuntos de variantes por gene, só encontramos evidências de associações significativas em todos os grupos quando foram analisadas as variantes ultrarraras (MAF = 0.0005), o que parece ser uma tendência desse tipo de análise, apesar de estarmos analisando doenças também raras.

No grupo total de pacientes, sete genes apresentaram p-valor \leq 0.05: CACNA1H, AHDC1, TBCD, HERC1, WWOX, PTPN23 e PCLO (Tabela 10), sendo que seis deles também foram relacionados ao grupo de pacientes com DG (Tabela11).

Gene	Doenças Associadas aos Genes	p-valor	Nº de SNPs
AHDC1	EED, síndrome de Xia-Gibbs	0.006988838	19
CACNA1H	EED, epilepsia de ausências infantil	0.004311538	34
HERC1	Microcefalia, dismorfismos faciais e atraso psicomotor	0.014326329	21
PCLO	Hipoplasia Pontocerebelar	0.044966164	25
PTPN23	EED, epilepsia de início precoce refratária/ encefalopatia epilética e do desenvolvimento com hipomielinização e atrofia cerebral	0.027643194	18
TBCD	Encefalopatia precoce progressiva com atrofia cerebral e agenesia de corpo caloso	0.008093057	26
WWOX	EED, síndrome de West	0.016897373	16

Tabela 10: Genes cujos grupos de variantes ultrarraras apresentaram p-valor significativo ($p \le 0,05$) no grupo total de pacientes.

Identificamos grupos de variantes ultrarraras significativas nos genes *LAMC3*, *PTPN23*, *TBCD*, *FASN*, *RELN*, *CREBBP*, *ASPM*, *SPTAN1*, *RYR3* e *HERC1* para o grupo de pacientes sem DG (Tabela 12), sendo que sete desses genes são exclusivos para esse grupo. Esses sete genes candidatos podem conter variantes de predisposição às EEDss que estão, possivelmente, associadas a doença e devem ser consideradas sob a perspectiva de análises de herança complexa. Dos 10 genes associados a esse grupo, seis deles já foram relacionados às EEDs, sendo que apenas o gene *TBCD* aparece no diagnóstico genético em um paciente de nossa casuística.

Tabela 11:Genes cujos grupos de variantes ultrarraras apresentaram p-valor significativo (p ≤ 0,05) no grupo de pacientes
com DG.

Gene	Doenças Associadas aos Genes	p-valor	N⁰ de SNPs
AHDC1	EED, síndrome de Xia-Gibbs	0.001037311	19
CACNA1H	EED, epilepsia de ausências infantil	2.10004E-05	34
HERC1	Microcefalia, dismorfismos faciais e atraso psicomotor	0.009037844	21
PCLO	Hipoplasia Pontocerebelar	0.044334276	25
TBCD	Encefalopatia precoce progressiva com atrofia cerebral e agenesia de corpo caloso	0.051756669	26
WWOX	EED, síndrome de West	0.019156085	16

Tabela 12: Genes cujos grupos de variantes ultrarraras apresentaram p-valor significativo ($p \le 0,05$) no grupo de pacientessem DG. * - genes exclusivos que só aparecem nesse grupo.

Gene	Doenças Associadas aos Genes	p-valor	Nº de SNPs
ASPM*	Microcefalia primária	0.045517718	15
CREBBP*	EED, síndrome de Menke-Hennekam	0.032086627	16
FASN*	EED	0.009504475	29
HERC1	Microcefalia, dismorfismos faciais e atraso psicomotor	0.053036286	21
LAMC3*	Malformações occipitais do desenvolvimento cortical	0.001417445	27
PTPN23	EED, epilepsia de início precoce refratária/ encefalopatia epilética e do desenvolvimento com hipomielinização e atrofia cerebral	0.004014821	18
RELN*	Lisencefalia e epilepsia de lobo temporal, familial e Lisencefalia	0.017928247	16
RYR3*	EED	0.047068168	27
SPTAN1*	EED, síndrome de West	0.045613193	10
TBCD	Encefalopatia precoce progressiva com atrofia cerebral e agenesia de corpo caloso	0.006100143	26

Após as análises de regressão logística e de SKAT-O, observamos que o grupo de pacientes com diagnóstico é um grupo muito bem caracterizado e acaba influenciando o resultado quando o grupo de pacientes totais é analisado. Já o grupo de pacientes sem diagnóstico, por ser um grupo mais heterogêneo, possui uma característica diferente dos outros grupos. Isso seria uma evidência de que pelo menos uma parte do efeito genético presente na etiologia das EEDs deve seguir um modelo complexo de herança.

Para epilepsias em geral, a análise de regressão logística tem sido usada para predizer associações em termos de tratamentos, resposta à medicamentos, desfecho de cirurgias, etc. Já a análise de SKAT-O tem sido usada, principalmente em estudos de farmacogenética. Por fim, é muito importante enfatizar que essa é a primeira vez que esses dois tipos de abordagens (regressão logística e SKAT-O) são utilizados para explorar possíveis associações a níveis de variantes e de genes causais nas EEDs e se mostram mais adequadas quando analisamos essas doenças pela perspectiva de herança complexa, como a herança poligênica, por exemplo.

Apesar de não ser ainda possível aplicar essas análises ao diagnóstico genético de rotina, nossos resultados indicam que uma etiologia genética deve ser considerada em pacientes com EED mesmo que resultados negativos sejam obtidos utilizando as técnicas genômicas de rotina.

À medida que as compreensões acerca das causas genéticas das epilepsias e acerca das doenças genéticas de herança complexa e multifatorial se expandem, o conceito e o uso da medicina de precisão (incluindo terapias gene especificas) também continua a se expandir, aumentando as descobertas genéticas com possibilidade de intervenção clínica e, acreditamos que as EEDs poderão se beneficiar desses novos conhecimentos e novos métodos de análise dos dados genéticos.

CONCLUSÕES

Foi possível obter pacientes com caracterizações clínicas adequadas e foi possível realizar uma caracterização genética bem abrangente no grupo de pacientes com EEDs da América Latina. Seguindo a ordem dos objetivos específicos propostos, pontuamos as seguintes conclusões:

• Foi possível reunir uma grande coorte com 275 pacientes com EEDs, sendo que a obtenção de amostras de DNA foi possível para 239 desses pacientes;

 Foi possível obter dados de WES para 234 pacientes e dados de CMA para 236 pacientes, sendo que a taxa de perda de pacientes durante os processos foi muito baixa;

 Obtivemos altas taxas de DG em nossos pacientes, sendo que 38% foram diagnosticados utilizando somente WES, 4,6% foram diagnosticados utilizando somente CMA, e 38,9% foram diagnosticados utilizando ambas as análises combinadas;

 Encontramos evidências de que pelo menos uma parte do efeito genético presente na etiologia das EEDs deve seguir um modelo complexo de herança e, portanto, uma causa genética deve ser considerada e explorada mesmo nos pacientes com resultados negativos de exames que utilizam as técnicas genômicas de rotina.

REFERÊNCIAS

- 1. McTague, A., Howell, K. B., Cross, J. H., Kurian, M. A. & Scheffer, I. E. The genetic landscape of the epileptic encephalopathies of infancy and childhood. *Lancet Neurol.* **15**, 304–316 (2016).
- 2. Hurst, D. L. Epidemiology of Severe Myoclonic Epilepsy of Infancy. **31**, 397–400 (1990).
- 3. Cowan, L. D. & Hudson, L. S. Epidemiology and Natural History of Infantile Spasms. 355–364 (1991).
- Hino-fukuyo, N., Haginoya, K., Iinuma, K., Uematsu, M. & Tsuchiya, S. Neuroepidemiology of West syndrome and early infantile epileptic encephalopathy in Miyagi Prefecture, Japan. 299–301 (2009). doi:10.1016/j.eplepsyres.2009.09.012
- 5. Bayat, A., Hjalgrim, H. & Møller, R. S. The incidence of SCN1A -related Dravet syndrome in Denmark is 1 : 22 , 000 : A population-based study from 2004 to 2009. 36–39 (2015). doi:10.1111/epi.12927
- 6. Behr, C., Goltzene, M. A., Kosmalski, G., Hirsch, E. & Ryvlin, P. Epidemiology of epilepsy. *Rev. Neurol. (Paris).* **172**, 27–36 (2015).
- Ware, T. L. *et al.* Epidemiology and etiology of infantile developmental and epileptic encephalopathies in Tasmania. 504–510 (2019). doi:10.1002/epi4.12350
- 8. Symonds, J. D. *et al.* Early childhood epilepsies : epidemiology , classification , aetiology , and socio-economic determinants. *Brain* **144**, 2879–2891 (2021).
- 9. Keezer, M. R., Sisodiya, S. M. & Sander, J. W. Comorbidities of epilepsy: current concepts and future perspectives. *Lancet Neurol.* **15**, 106–115 (2016).
- Jeffrey, J. S., Leathem, J., Ross, K., Sadleir, L. G. & Mefford, H. C. Developmental and epileptic encephalopathy : Personal utility of a genetic diagnosis for families. *Epilepsia Open* 6, 149–159 (2021).
- 11. Berg, A. T. *et al.* Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005-2009. *Epilepsia* **51**, 676–685 (2010).
- 12. Scheffer, I. E. *et al.* ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. *Epilepsia* **58**, 512–521 (2017).
- 13. Specchio, N. & Curatolo, P. Developmental and epileptic encephalopathies: What we do and do not know. *Brain* **144**, 32–43 (2021).
- 14. Tavyev, Y. J. & Scaglia, F. European Journal of Medical Genetics Molecular bases and clinical spectrum of early infantile epileptic encephalopathies. *Eur. J. Med. Genet.* **55**, 299–306 (2012).
- 15. Weber, Y. G. & Lerche, H. Genetic mechanisms in idiopathic epilepsies. *Dev. Med. Child Neurol.* **50**, 648–654 (2008).
- 16. Gonsales, M. C. et al. Recent developments in the genetics of childhood

epileptic encephalopathies: Impact in clinical practice. *Arq. Neuropsiquiatr.* **73**, 946–958 (2015).

- 17. Lennox, W. THE HEREDITY OF EPILEPSY AS TOLD BY RELATIVES AND TWINS William. *JAMA Neurol.* **146**, 529–536 (1951).
- 18. Metrakos, K. & Metrakos, J. D. Genetics of convulsive disorders II. Genetic and eletroencephalographic studies in centrencephalic epilepsy. *Neurology* (1961).
- Steinlein, O. K. *et al.* A missense mutation in the neuronal nicotinic acetylcholine receptor alpha 4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. *Nat Genet* **11**, 201–203 (1995).
- 20. Charlier, C. *et al.* A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. *Nat. Genet.* **18**, 53–55 (1998).
- 21. Singh, N. *et al.* A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. *Nat. Genet.* **18**, 25–29 (1998).
- Wallace, R. H. *et al.* Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel ß1 subunit gene SCN1B. *Nat. Genet.* 19, 366– 370 (1998).
- 23. Escayg, A. *et al.* Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. *Nat. Genet.* **24**, 343–345 (2000).
- Claes, L. *et al.* De Novo Mutations in the Sodium-Channel Gene SCN1A Cause Severe Myoclonic Epilepsy of Infancy. *Am. J. Hum. Genet.* 68, 1327–1332 (2001).
- 25. Lopes-Cendes, I. & Oliveira Ribeiro, P. A. Aspectos genéticos das epilepsias: uma visão atual. *Rev. Médica Clínica Las Condes* **24**, 903–908 (2013).
- 26. Shendure, J. & Ji, H. Next-generation DNA sequencing. *Nat. Biotechnol.* **26**, 1135–1145 (2008).
- 27. Chandler, M. R., Bilgili, E. P. & Merner, N. D. A Review of Whole-Exome Sequencing Efforts Toward Hereditary Breast Cancer Susceptibility Gene Discovery. *Hum. Mutat.* **37**, 835–846 (2016).
- 28. Helbig, I. & Abou Tayoun, A. N. Understanding genotypes and phenotypes in epileptic encephalopathies. *Mol. Syndromol.* **7**, 172–181 (2016).
- 29. Depienne, C. *et al.* Spectrum of SCN1A gene mutations associated with Dravet syndrome: Analysis of 333 patients. *J. Med. Genet.* **46**, 183–191 (2009).
- 30. Brunklaus, A. *et al.* The clinical utility of an SCN1A genetic diagnosis in infantile-onset epilepsy. *Dev. Med. Child Neurol.* **55**, 154–161 (2013).
- 31. Hildebrand, M. S. *et al.* Recent advances in the molecular genetics of epilepsy. *J. Med. Genet.* **50**, 271–279 (2013).
- Scheffer, I. E. *et al.* ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. *Epilepsia* 58, 512–521 (2017).
- 33. Gonsales, M. C. et al. Multimodal Analysis of SCN1A Missense Variants

Improves Interpretation of Clinically Relevant Variants in Dravet Syndrome. *Front. Neurol.* **10**, 1–10 (2019).

- 34. Warman Chardon, J., Beaulieu, C., Hartley, T., Boycott, K. M. & Dyment, D. A. Axons to Exons: the Molecular Diagnosis of Rare Neurological Diseases by Next-Generation Sequencing. *Curr. Neurol. Neurosci. Rep.* **15**, 1–8 (2015).
- 35. Rehm, H. L. Disease-targeted sequencing: A cornerstone in the clinic. *Nature Reviews Genetics* (2013). doi:10.1038/nrg3463
- Myers, K. A., Johnstone, D. L. & Dyment, D. A. Epilepsy genetics: Current knowledge, applications, and future directions. *Clin. Genet.* 95, 95–111 (2019).
- 37. Bamshad, M. J., Ng, S. B., Bigham, A. W. & Tabor, H. K. Mendelian disease gene discovery. *Nat. Publ. Gr.* **12**, 745–755 (2011).
- 38. Kiezun, A. *et al.* Exome sequencing and the genetic basis of complex traits. *NIH Public Access* **44**, 623–630 (2013).
- 39. Foo, J. N., Liu, J. J. & Tan, E. K. Whole-genome and whole-exome sequencing in neurological diseases. *Nat. Rev. Neurol.* **8**, 508–517 (2012).
- 40. Boycott, K. M., Vanstone, M. R., Bulman, D. E. & MacKenzie, A. E. Raredisease genetics in the era of next-generation sequencing: Discovery to translation. *Nat. Rev. Genet.* **14**, 681–691 (2013).
- Olson, H. E. *et al.* A Recurrent De Novo PACS2 Heterozygous Missense Variant Causes Neonatal-Onset Developmental Epileptic Encephalopathy, Facial Dysmorphism, and Cerebellar Dysgenesis. *Am. J. Hum. Genet.* **102**, 995–1007 (2018).
- 42. Epi4K, C. *et al.* De novo mutations in epileptic encephalopathies. *Nature* **501**, 217–221 (2013).
- 43. Veeramah, K. R. *et al.* Exome sequencing reveals new causal mutations in children with epileptic encephalopathies. *Epilepsia* **54**, 1270–1281 (2013).
- Dyment, D. A. *et al.* Whole-exome sequencing broadens the phenotypic spectrum of rare pediatric epilepsy: A retrospective study. *Clin. Genet.* 88, 34–40 (2015).
- 45. Minardi, R., Licchetta, L., Baroni, M. C., Pippucci, T. & Stipa, C. Whole-exome sequencing in adult patients with developmental and epileptic encephalopathy : it is never too late. *Clin. Genet.* 1–12 (2020). doi:10.1111/cge.13823
- 46. Mefford, H. C. *et al.* Rare copy number variants are an important cause of epileptic encephalopathies. *Ann. Neurol.* **70**, 974–985 (2011).
- Lund, C., Brodtkorb, E., Røsby, O., Rødningen, O. K. & Selmer, K. K. Copy number variants in adult patients with Lennox-Gastaut syndrome features. *Epilepsy Res.* **105**, 110–117 (2013).
- 48. Olson, H. *et al.* Copy number variation plays an important role in clinical epilepsy. *Ann. Neurol.* **75**, 943–958 (2014).
- 49. Magalhães, P. H. M., Moraes, H. T., Athie, M. C. P., Secolin, R. & Lopes-Cendes, I. New avenues in molecular genetics for the diagnosis and

application of therapeutics to the epilepsies. Epilepsy Behav. 121, 1–11 (2021).

- Ohmori, I. *et al.* A CACNB4 mutation shows that altered Cav2.1 function may be a genetic modifier of severe myoclonic epilepsy in infancy. *Neurobiol. Dis.* 32, 349–354 (2008).
- Singh, N. A. *et al.* A role of SCN9A in human epilepsies, as a cause of febrile seizures and as a potential modifier of Dravet syndrome. *PLoS Genet.* 5, 1–12 (2009).
- 52. Hawkins, N. A., Martin, M. S., Frankel, W. N., Kearney, J. A. & Escayg, A. Neuronal voltage-gated ion channels are genetic modifiers of generalized epilepsy with febrile seizures plus. *Neurobiol. Dis.* **41**, 655–660 (2011).
- 53. Hawkins, N. A. & Kearney, J. A. Hlf is a genetic modifier of epilepsy caused by voltage-gated sodium channel mutations. *Epilepsy Res.* **119**, 20–23 (2016).
- 54. Calhoun, J. D., Hawkins, N. A., Zachwieja, N. J. & Kearney, J. A. Cacna1g is a genetic modifier of epilepsy caused by mutation of voltage-gated sodium channel Scn2a. *Epilepsia* **57**, e103–e107 (2016).
- Calhoun, J. D., Hawkins, N. A., Zachwieja, N. J. & Kearney, J. A. Cacna1g is a genetic modifier of epilepsy in a mouse model of Dravet syndrome. *Epilepsia* 58, e111–e115 (2017).
- 56. Sheidley, B. R. & Poduri, A. Genetics in clinical epilepsy: Issues in genetic testing and counseling. *J. Pediatr. Epilepsy* **1**, 135–142 (2012).
- 57. Wirrell, E. C. & Nabbout, R. Recent Advances in the Drug Treatment of Dravet Syndrome. *CNS Drugs* **33**, 867–881 (2019).
- 58. Gardella, E. & Moller, R. S. Phenotypic and genetic spectrum of SCN8A related disorders, treatment options, and outcomes. *Epilepsia* **60**, 77–85 (2019).
- 59. Wang, D. *et al.* Glut-1 Deficiency Syndrome : Clinical , Genetic , and Therapeutic Aspects. *Ann. Neurol.* **57**, 111–118 (2005).
- 60. Sofou, K. *et al.* Ketogenic diet in pyruvate dehydrogenase complex deficiency : short- and long-term outcomes. *J. Inherit. Metab. Dis.* **40**, 237–245 (2017).
- 61. Zuberi, S. M. *et al.* ILAE Classification & Definition of Epilepsy Syndromes in the Neonate and Infant: Position Statement by the ILAE Task Force on Nosology and Definitions. *Int. Leag. against Epilepsy* **63**, 1349–1397 (2022).
- 62. Ohtahara, S. & Yamatogi, Y. Epileptic encephalopathies in early infancy with suppression-burst. *J. Clin. Neurophysiol.* **20**, 398–407 (2003).
- 63. Symonds, J. D. *et al.* Incidence and phenotypes of childhood-onset genetic epilepsies : a prospective population-based national cohort. *Brain* **142**, 2303–2318 (2019).
- 64. Sharma, S. & Prasad, A. N. Genetic testing of epileptic encephalopathies of infancy: an approach. *Can. J. Neurol. Sci.* **40**, 10–6 (2013).
- 65. Dravet, C. The core Dravet syndrome phenotype. *Epilepsia* **52**, 3–9 (2011).

- 66. Scheffer, I. E. & Nabbout, R. SCN1A-related phenotypes : Epilepsy and beyond. *Epilepsia* **60**, 17–24 (2019).
- 67. Steel, D., Symonds, J. D., Zuberi, S. M. & Brunklaus, A. Dravet syndrome and its mimics : Beyond SCN1A. *Epilepsia* **58**, 1807–1816 (2017).
- Kelley, S. A. & Kossoff, E. H. Doose syndrome (myoclonic astatic epilepsy): 40 years of progress. *Dev. Med. Child Neurol.* 52, 988–993 (2010).
- 69. Tang, S. & Pal, D. K. Dissecting the genetic basis of myoclonic-astatic epilepsy. *Epilepsia* **53**, 1303–1313 (2012).
- Specchio, N. *et al.* International League Against Epilepsy classification and definition of epilepsy syndromes with onset in childhood: Position paper by the ILAE Task Force on Nosology and Definitions. *Epilepsia* 63, 1398–1442 (2022).
- Berg, A. T., Levy, S. R. & Testa, F. M. Evolution and course of early life developmental encephalopathic epilepsies : Focus on Lennox - Gastaut syndrome. *Epilepsia* 59, 2096–2105 (2018).
- 72. Lee, Y. J. *et al.* Resective pediatric epilepsy surgery in Lennox-Gastaut syndrome. *Pediatrics* **125**, 58–66 (2010).
- 73. Asadi-pooya, A. A. Lennox-Gastaut syndrome : a comprehensive review. (2017).
- 74. Lesca, G. *et al.* Update on the genetics of the epilepsy-aphasia spectrum and role of GRIN2A mutations. *Epileptic Disord.* **21**, 41–47 (2019).
- 75. Tsai, M. *et al.* Clinical genetic study of the epilepsy-aphasia spectrum. *Epilepsia* **54**, 280–287 (2013).
- 76. Stephani, U. The natural history of myoclonic astatic epilepsy (Doose syndrome) and Lennox-Gastaut syndrome. *Epilepsia* **47**, 53–55 (2006).
- 77. Faria, A. *et al.* Varstation: a complete and efficient tool to support NGS data analysis. *bioRxiv* 833582 (2019). doi:10.1101/833582
- 78. Szpiech, Z. A. *et al.* Long Runs of Homozygosity Are Enriched for Deleterious Variation. *Am. J. Hum. Genet.* **93**, 90–102 (2013).
- Rocha, C. S., Secolin, R., Rodrigues, M. R., Carvalho, B. S. & Lopes- Cendes, I. The Brazilian Initiative on Precision Medicine (BIPMed): fostering genomic data-sharing of underrepresented populations. *npj Genomic Med.* 42, 1–7 (2020).
- 80. Li, H. A statistical framework for SNP calling , mutation discovery , association mapping and population genetical parameter estimation from sequencing data. *Bioinformatics* **27**, 2987–2993 (2011).
- 81. Purcell, S. *et al.* PLINK : A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. *Am. J. Hum. Genet.* **81**, 559–575 (2007).
- 82. Wu, M. C. *et al.* Rare-Variant Association Testing for Sequencing Data with the Sequence Kernel Association Test. *Am. J. Hum. Genet.* **89**, 82–93 (2011).

- 83. Secolin, R. *et al.* Distribution of local ancestry and evidence of adaptation in admixed populations. *Sci. Rep.* **9**, 1–12 (2019).
- Lindy, A. S. *et al.* Diagnostic outcomes for genetic testing of 70 genes in 8565 patients with epilepsy and neurodevelopmental disorders. *Epilepsia* 59, 1062– 1071 (2018).
- Beltrán-corbellini, Á. *et al.* Epilepsy Genetics and Precision Medicine in Adults : A New Landscape for Developmental and Epileptic Encephalopathies. *Front. Neurol.* 13, 1–12 (2022).
- 86. Kothur, K. *et al.* Diagnostic yield of targeted massively parallel sequencing in children with epileptic encephalopathy. *Seizure* **59**, 132–140 (2018).
- 87. Mercimek-mahmutoglu, S. *et al.* Diagnostic yield of genetic testing in epileptic encephalopathy in childhood. *Epilepsia* **56**, 707–716 (2015).
- Carvill, G. L. *et al.* Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. *Nat. Publ. Gr.* 45, 825– 830 (2013).
- 89. Na, J. H. *et al.* Targeted gene panel sequencing in early infantile onset developmental and epileptic encephalopathy. *Brain Dev.* **42**, 438–448 (2020).
- Mitta, N. *et al.* Genotype-phenotype correlates of infantile-onset developmental & epileptic encephalopathy syndromes in South India : A single centre experience. *Epilepsy Res.* **166**, 1–10 (2020).
- 91. Nabbout, R. & Dulac, O. Epileptic Encephalopathies : A Brief Overview. *J. Clin. Neurophysiol.* **20**, 393–397 (2003).
- 92. Mei, D., Cetica, V., Marini, C. & Guerrini, R. Dravet syndrome as part of the clinical and genetic spectrum of sodium channel epilepsies and encephalopathies. *Epilepsia* **60**, 2–7 (2019).
- Makoff, A. J. & Flomen, R. H. Detailed analysis of 15q11-q14 sequence corrects errors and gaps in the public access sequence to fully reveal large segmental duplications at breakpoints for Prader-Willi, Angelman, and inv dup (15) syndromes. *Genome Biol.* 8, 14.1-14.16 (2007).
- Van Dyke, D. L., Weiss, L., Logan, M. & Pai, G. S. The Origin and Behavior of Two Isodicentric Bisateilited Chromosomes. *Am J Hum Genet* 29, 294–300 (1977).
- 95. Bataglia, D. *et al.* Epileptic disorders within the first year of life: neurological abd cognitive outcome. *Eur. J. Pediatr. Neurol.* **3**, 95–103 (1999).
- 96. Fontes, M. I. B. *et al.* Genotype-phenotype correlation of 16p13.3 terminal duplication and 22q13.33 deletion: Natural history of a patient and review of the literature. *Am. J. Med. Genet. Part A* **170**, 766–772 (2016).
- 97. Sund, K. L. *et al.* Regions of homozygosity identified by SNP microarray analysis aid in the diagnosis of autosomal recessive disease and incidentally detect parental blood relationships. *Genet. Med.* **15**, 70–78 (2013).
- 98. Kearney, H. M., Kearney, J. B. & Conlin, L. K. Diagnostic implications of excessive homozygosity detected by SNP-Based microarrays: Consanguinity,

uniparental disomy, and recessive single-gene mutations. *Clin. Lab. Med.* **31**, 595–613 (2011).

- 99. Lemke, J. R. *et al.* Targeted next generation sequencing as a diagnostic tool in epileptic disorders. *Epilepsia* **53**, 1387–1398 (2012).
- 100. Della Mina, E. *et al.* Improving molecular diagnosis in epilepsy by a dedicated high-throughput sequencing platform. *Eur. J. Hum. Genet.* **23**, 354–362 (2015).
- Wang, J., Gotway, G., Pascual, J. M. & Park, J. Y. Diagnostic Yield of Clinical Next-Generation Sequencing Panels for Epilepsy. *JAMA Neurol.* 71, 2013– 2014 (2014).
- 102. Michaud, J. L. *et al.* The genetic landscape of infantile spasms. *Hum. Mol. Genet.* **23**, 4846–4858 (2014).
- 103. Epi4K, C., Project, E. P. & Mefford, H. Copy number variant analysis from exome data in 349 patients with epileptic encephalopathy. *Ann. Neurol.* **78**, 323–328 (2015).
- 104. Kessi, M. *et al.* Rare Copy Number Variations and Predictors in Children With Intellectual Disability and Epilepsy. *Front. Neurol.* **9**, 1–12 (2018).
- 105. Kodera, H. *et al.* Targeted capture and sequencing for detection of mutations causing early onset epileptic encephalopathy. *Epilepsia* **54**, 1262–1269 (2013).
- Palmer, E. E. *et al.* Diagnostic Yield of Whole Genome Sequencing After Nondiagnostic Exome Sequencing or Gene Panel in Developmental and Epileptic Encephalopathies. *Neurology* 96, e1770–e1782 (2021).
- 107. Striano, P. *et al.* Clinical significance of rare copy number variations in epilepsy: A case-control survey using microarray-based comparative genomic hybridization. *Arch. Neurol.* **69**, 322–330 (2012).
- 108. Caraballo, R., Pavlidis, E., Nikanorova, M. & Loddenkemper, T. Encephalopathy with continuous spike-waves during slow-wave sleep: evolution and prognosis. *Epileptic Disord.* **21**, S15–S21 (2019).
- 109. Nabbout, R. & Kuchenbuch, M. Impact of predictive, preventive and precision medicine strategies in epilepsy. *Nat. Rev. Neurol.* **16**, 674–688 (2020).
- 110. Striano, P. & Minassian, B. A. From Genetic Testing to Precision Medicine in Epilepsy. *Neurotherapeutics* **17**, 609–615 (2020).
- Bayat, A., Bayat, M., Rubboli, G. & Møller, R. S. Epilepsy syndromes in the first year of life and usefulness of genetic testing for precision therapy. *Genes* (*Basel*). **12**, 1–19 (2021).
- 112. Ma, L. *et al.* LncBook : a curated knowledgebase of human long non-coding RNAs. *Nucleic Acids Res.* **47**, 128–134 (2019).
- 113. Chen, J., Wang, Y., Wang, C., Hu, J. & Li, W. LncRNA Functions as a New Emerging Epigenetic Factor in Determining the Fate of Stem Cells. *Front. Genet.* **11**, 1–12 (2020).
- 114. Wan, P., Su, W. & Zhuo, Y. The Role of Long Noncoding RNAs in Neurodegenerative Diseases. *Mol. Neurobiol.* **54**, 2012–2021 (2017).
115. Villa, C., Lavitrano, M. & Combi, R. Long Non-Coding RNAs and Related Molecular Pathways in the Pathogenesis of Epilepsy. *Int. J. Mol. Sci.* **20**, 1–14 (2019).

ANEXOS

I. Parecer do CEP

FACULDADE DE CIENCIAS MEDICAS - UNICAMP (CAMPUS CAMPINAS)

PARECER CONSUBSTANCIADO DO CEP

DADOS DO PROJETO DE PESQUISA

Título da Pesquisa: BIORREPOSITÓRIO ¿ESTUDOS DE GENÉTICA MOLECULAR EM DOENÇAS NEUROPSIQUIÁTRICAS ; FASE ; l;

Pesquisador: Iscia Teresinha Lopes Cendes Área Temática: Área 1. Genética Humana. (Trata-se de pesquisa envolvendo genética humana não contemplada acima.);

Versão: 2 CAAE: 12112913.3.0000.5404 Instituição Proponente: Hospital de Clínicas da UNICAMP Patrocinador Principal: Financiamento Próprio

DADOS DO PARECER

Número do Parecer: 257.020 Data da Relatoria: 12/04/2013

Apresentação do Projeto:

Trata-se de um projeto para implantação de biorepositório de doenças neuro-psiquiátricas e casos-controle. O estudo prevê recrutamento e coleta de 700 pacientes e 300 individuos controle.

O presente projeto pretende estudar os aspectos moleculares das seguintes doençasas: epilepsias, malformações do desenvolvimento cortical, coreias, ataxias, paraparesias espa¿sticas, distonias, transtorno afetivo bipolar, esquizofrenia, doenc¿as musculares, doenc¿as mitocondriais, doenc¿a de Parkinson, acidente vascular cerebral e deme¿ncias. O projeto esta¿ dividido em sub-projetos, com a descric¿a¿o detalhada das estrate¿gias que sera¿o utilizadas para cada uma dessas doenc¿as.

Sera¿o utilizados diversas te¿cnicas de biologia molecular para identificac¿a¿o de mutac¿o¿es conhecidas ou novas, como PCR, sequenciamento convencional e de tereceira gerac¿a¿o e ana¿lises de bioinforma¿tica. No Subprojeto 1 (Epilepsias e Malformac¿o¿es do Desenvolvimento Cortical), sera¿o avaliadas mutac¿o¿es atrave¿s da implantac¿ao da tecnologia de sequ¿enciamento, baseada em equipamento de terceira gerac¿a¿o e um novo sistema de detecc¿a¿o eletro¿nico, sistemalon Torrent®. No subprojeto 2 sera¿ realizada a captura e o sequenciamento do exoma em amostras de DNA de

FACULDADE DE CIENCIAS MEDICAS - UNICAMP (CAMPUS CAMPINAS)

indivi¿duos afetados por formas familiares de epilepsia mioclo¿nica juvenil (EMJ), epilepsia do lobo temporal (ELT) e benigna rola¿ndica epilepsia (BRE) e Malformac¿o¿es do desenvolvimento cortical (MCD) nas quais as mutac¿o¿es ja¿ descritas na¿o foram identificadas. Nessa investigac¿a¿o sera¿o utilizados kits de captura e enriquecimento Illumina TruSeq®, ale¿m do sequenciamento 11 usando a Illumina Hi-seq 2.000. Apo¿s o sequenciamento, sera¿ realizada ana¿lise de bioinforma¿tica nos dados obtidos a fim de identificar variantes potencialmente patoge¿nicas.

Os pacientes sera¿o recrutados nos ambulato¿rios do HC-UNICAMP (Neurogene¿tica, Epilepsia, Epilepsia de difi¿cil controle, Epilepsia infantil, Distu¿rbio do Movimento, Doenc¿as Neuromusculares, Distonias, Toxina Botuli¿nica, Deme¿ncias, Neurovascular ou Psiquiatria). Sera¿o coletados de 20-30 ml de sangue perife¿rico para o estudo, ale¿m do exame cli¿nico e anamnese. Sera¿o coletados dados do prontua¿rio me¿dico.

Objetivo da Pesquisa:

Identificar as mutações responsáveis pelos respectivos fenótipos, em um grupo de doenças neuropsiquiátricas, incluindo: epilepsias, malformações do desenvolvimento cortical, coreias, ataxias, paraparesias espásticas, distonias, transtorno afetivo bipolar, esquizofrenia, doenças musculares, doenças mitocondriais, acidente vascular cerebral, doença de Parkinson e demências.

Avaliação dos Riscos e Benefícios:

Os procedimentos a serem realizados são de pequeno risco para o indivíduo, sendo o principal deles a coleta de sangue por punção venosa.

Como benefícios, em alguns casos será possível a identificação das mutações associadas às doenças dos pacientes incluídos no estudo, o que implica na possibilidade de algoritmos mais eficientes de diagnóstico e tratamento. Os autores alertam que, muitas ,a da mutação não resulta uma mudançaa no tratamento, o que é compreensível quando se trata de estudos genéticos.

Informações geradas durante o projeto e que possam ter implicações na confirmação diagnóstica de indivíduos sintomáticos serão comunicadas aos profissionais responsáveis pelo acompanhamento destes pacientes, nas sessões de orientação e aconselhamento genético dos ambulatórios de Neurogenética, cuja pesquisadora principal é a responsável.

Comentários e Considerações sobre a Pesquisa:

O projeto está bem escrito e detalhado, assim como os procedimentos que serão aplicados aos voluntários sadios e portadores de doença. apresenta relevância científica e social, a médio e longo prazos. O estudo será patrocinado pelo próprio pesquisador. Foram acrescentadas ao projeto principal as informações sobre o local onde serão recrutados e onde serão coletados os exames do grupo controle.

Considerações sobre os Termos de apresentação obrigatória:

O TCLE está bem redigido, é de fácil entendimento para o voluntário e prevê armazenamento de

FACULDADE DE CIENCIAS MEDICAS - UNICAMP (CAMPUS CAMPINAS)

material biológico. Estão presentes todos os termos de apresentação obrigatória previstos pela Resolução 196/96 e complementares, assim como o "Regulamento do Biorepositório de Doenças Neuropsiquiátricas!".

Recomendações:

Nada a declarar.

Conclusões ou Pendências e Lista de Inadequações:

Foram acrescentadas ao projeto principal as informações sobre o recrutamento dos voluntários do grupo controle, com priorização inicial para membros da família de pacientes, porém não portadores das doenças. As amostras serão coletadas nos ambulatórios de Genética e Neurologia HC-Unicamp e Hemocentro-UNICAMP.

Situação do Parecer:

Aprovado

Necessita Apreciação da CONEP:

Não

Considerações Finais a critério do CEP:

Aprovado em reunião do colegiado, em 23 de Abril de 2013.

CAMPINAS, 26 de Abril de 2013

Assinador por: Fátima Aparecida Bottcher Luiz (Coordenador)

Ш. Termo de Consentimento

TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO PARA PESQUISA (Menor de 18 anos ou legalmente incapaz)

Título do projeto: Estudos de genética molecular em doenças neuropsiquiátricas – Fase I Pesquisadora Responsável: Profa. Dra. Iscia Lopes Cendes (tel: 19 3521 8242)

OBJETIVO DA PESQUISA:

O menor ou indivíduo legalmente incapaz, a qual você representa legalmente, está sendo convidado(a) a participar de um projeto de pesquisa em neurociência e neurotecnologia envolvendo pacientes e famílias de indivíduos com:

- □ Acidente Vascular Cerebral
- Ataxias

Distonias

Doencas mitocondriais

- Crises Febris na Infância
- Coréias
- Demências

- Doenças musculares
- Epilepsias
- Esquizofrenia
- Grupo Controle
- Malformações corticais
- Paraparesias
- Parkinson
- Transtorno afetivo bipolar

O objetivo desse estudo é identificar alteração genética que causa doenças e também estudar a população normal para comparação. Isso poderá melhorar o diagnóstico das doenças (se a alteração for encontrada) e poderá levar a um melhor tratamento no futuro. No entanto, muito provavelmente, o tratamento do(a) participante não será modificado com a participação nesse estudo.

ESCLARECIMENTOS:

- 1) A concessão do material é livre e não causará quaisquer prejuízos pessoais ou ao andamento do tratamento do participante.
- 2) As informações pessoais do(a) participante serão mantidas em sigilo e privacidade. Seus dados serão codificados e criptografados por sistemas informatizados. Somente dados relevantes para as pesquisas serão utilizados, mantendo como prioridade o anonimato dos(as) participantes. Toda informação médica, mas não os resultados dos testes genéticos decorrentes desse projeto de pesquisa, farão parte do prontuário médico e serão submetidos aos regulamentos do HC- UNICAMP referentes ao sigilo da informação médica.
- 3) Você, como responsável legal do(a) participante, terá acesso gratuito, se assim desejar:
 - a) às informações sobre as finalidades do armazenamento, incluindo seu responsável, os riscos e beneficios potenciais, as garantias de qualidade de conservação e integridade do material biológico, e as medidas para garantir a privacidade e confidencialidade;
 - b) às informações e resultados obtidos a partir do material biológico utilizado, inclusive, aquelas que impliquem em riscos para doenças não preveníveis ou riscos familiares;
 - c) ao aconselhamento genético, quando aplicável.
- 4) Você, como responsável legal, poderá retirar seu consentimento de uso da amostra do participante a qualquer momento, sem prejuízo ou penalização alguma às partes envolvidas. Uma vez desautorizada, você, como responsável legal do(a) concedente, será solicitado(a) a formalizar e assinar sua manifestação por escrito, cabendo ao biorrepositório o descarte ou devolução da amostra, se assim for solicitado. A pesquisadora responsável pode interromper a participação nesse estudo a qualquer momento que julgar apropriado.
- 5) Você, como responsável legal, será comunicado(a) se houver a necessidade de descarte do material armazenado, o que poderá ocorrer se a amostra não atender a critérios mínimos de qualidade para pesquisa, se houver dificuldades institucionais para seu armazenamento (espaço) ou se o biorrepositório deixar de existir. Caso o material seja descartado, será feito de acordo com as normas de biossegurança legais.
- 6) O material concedido ficará sob a guarda da Faculdade de Ciências Médicas do Hospital de Clínicas da UNICAMP (FCM-UNICAMP), sob cuidados dos(as) responsáveis pelo biorrepositório, e será utilizado para o estudo genético da doença em questão. Os dados gerados do estudo poderão ser divulgados em artigos e/ou congressos, resguardando-se sempre o sigilo quanto à identidade dos participantes da pesquisa.

Rubrica do(a)) pesquisador(a)	
---------------	------------------	--

Rubrica do(a) responsável legal

Versão2- nov/2018

78

- 7) Este TCLE deverá ser elaborado em duas vias, rubricado em todas as páginas e assinado pelo(a) responsável legal e pelo(a) pesquisador(a) responsável. Uma via deverá ficar com o responsável legal e outra com o(a) pesquisador(a).
- 8) Em caso de dúvidas sobre as amostras concedidas ao biorrepositório, o(a) responsável pelo(a) participante poderá entrar em contato com: Prof^a D^{ra} Iscia Lopes Cendes, telefones: (19) 3521-7754 ou (19) 3521- 8242.
- 9) Em caso de denúncias ou reclamações sobre sua participação e sobre questões éticas de estudo, o(a) responsável pelo(a) participante poderá entrar em contato com a secretaria do Comitê de Ética em Pesquisa (CEP) da UNICAMP das 08:30 às 11:30 e das 13:00 às 17:00 na Rua Tessália Vieira de Camargo, 126, CEP: 13083-887, Campinas SP; telefones: (19) 3521-8936 ou (19) 3521-7187; e-mail: cep@fcm.unicamp.br.
- 10) Os esclarecimentos para material biológicos acima também são aplicáveis quando houver concessão somente de resultados de exames genéticos (genoma, exoma, painel gênico, etc), Neste caso, desconsidere os itens "RISCO E DESCONFORTO DOS PROCEDIMENTOS DE COLETAS" e "ACOMPANHAMENTO E ASSISTÊNCIA".

COLETA DE MATERIAL:

O(s) pesquisador(a) fará perguntas sobre os antecedentes médicos e familiares do participante, que poderá ser convidado(a) a participar de exame físico, neurológico e/ou psiquiátrico para estabelecimento de seu estado clínico. Poderão ser solicitados exames como eletroencefalograma (EEG), eletromiografía (EMG) tomografía computadorizada e ressonância magnética de crânio. Será ainda convidado(a) a realizar coleta de material biológico, como especificado abaixo.

O(a) responsável pelo(a) participante autoriza a coleta/concessão do seguinte material:

□ Biópsia de pele (2 a 4 mm)

□ Resultados de exames genéticos □ Sangue (20 a 30 ml)

Fezes (5g ou um copo de coleta)
Raspado da mucosa bucal / saliva

Caso seja necessário, poderão fazer parte desta pesquisa informações clínicas disponíveis em prontuários médicos, com isso você, responsável pelo(a) participante:

Autoriza o uso de dados clínicos presentes no prontuário ou laudo médico do(a) participante.

□ Não autoriza o uso de dados clínicos presentes no prontuário ou laudo médico do(a) participante.

RISCO E DESCONFORTO DOS PROCEDIMENTOS DE COLETAS:

Biópsia de pele: é uma pequena cirurgia, geralmente superficial. O procedimento é realizado por um médico, com instrumentos e materiais estéreis e há risco de infecção e dor local. Eventualmente pode ser necessário o uso de pontos para fechamento do local. Nesse caso, será necessário o uso de anestesia local e prescrição de medicamentos para controlar a dor e inflamação. Se houver sinal de infecção, antibióticos serão necessários. Há a necessidade de comparecer novamente ao ambulatório para retirada dos pontos e haverá orientação para a realização dos curativos e procedimentos de cuidado e higiene locais.

Fezes: será feita em casa, seguindo as orientações que forem passadas pelo(a) pesquisador(a), ou será feita no ambulatório. Não há desconforto ou risco associados, somente será necessário cuidado ao transportar o material, caso a coleta seja feita em casa, para evitar vazamentos, mau cheiro e contaminações.

Sangue: podem ocorrer dor e manchas roxas (equimoses) no local da coleta. O desconforto será mínimo, pois se trata de uma coleta de sangue geralmente da veia do braço que será realizada por profissional treinado e habilitado para realizar esse procedimento.

Para raspado de mucosa bucal/saliva e resultados de exames genéticos não existem riscos ou desconfortos associados.

ACOMPANHAMENTO E ASSISTÊNCIA:

Não haverá necessidade de acompanhamento médico específico. No caso de alguma intercorrência médica o(a) responsável pelo(a) participante deve procurar a pesquisadora responsável para assistência.

Rubrica do(a) pesquisador(a) Rubrid	ca do(a) responsável legal
-------------------------------------	----------------------------

Versão2- nov/2018

Em caso de danos ocorridos de sua participação, o(a) participante tem direito a indenização prevista a qualquer cidadão pelo código civil. Se for paciente, sua participação será feita em conjunto com os retornos agendados para consulta no HC-UNICAMP, porém, se for necessário uma visita fora dos retornos agendados para consulta, poderemos ressarcir os gastos com transporte e alimentação; essa prerrogativa também é válida para voluntários pertencentes ao grupo controle, bastando para isso avisar a pesquisadora responsável previamente.

O diagnóstico de familiares do(a) participante que não apresentam sintomas (pré-sintomáticos) não faz parte dessa pesquisa e não é oferecido em nosso serviço. Mas se o(a) responsável pelo(a) participante desejar obter orientação/aconselhamento genético, será oferecido no ambulatório de neurogenética do HC/Unicamp, tel. (19) 3521-7754.

DISPONIBILIZAÇÃO PÚBLICA DOS DADOS DESTA PESQUISA:

Com o avanço das pesquisas na área da genética, é de grande importância compartilhar as informações de alguns testes genéticos em bancos de dados públicos. No compartilhamento desses dados é sempre assegurado que não haverá divulgação dos identificadores (nome, filiação, endereço, número de registro hospitalar), mas poderão ser incluídas informações relevantes para a interpretação dos dados genéticos (sexo, idade, país e região de procedência, diagnóstico e outras informações clínicas pertinentes). Sendo assim, o(a) responsável pelo participante:

□ Autoriza a disponibilização dos dados genéticos em bancos públicos, que poderão ser consultados por pesquisadores(as) da área médica, desde que esses dados não sejam vinculados com identificadores da amostra (veja acima exemplos de identificadores).

Não autoriza a disponibilização dos dados genéticos realizados neste projeto de pesquisa.

Em caso de falecimento ou condição incapacitante, os direitos sobre o material armazenado deverão ser concedidos a:_______ (pedir para o(a) responsável legal indicar o nome de uma pessoa a ser contatada).

Diante destas informações, o(a) responsável pelo(a) participante declara consentimento livre para ceder o material de origem biológica para o Biorrepositório do BRAINN, assinando o presente termo:

Campinas, _____ de _____ de 20____.

Nome do(a) participante

HC do(a) participante

Nome do(a) responsável pelo(a) participante

Assinatura do(a) responsável pelo(a) participante

Nome da testemunha

Assinatura da testemunha

RESPONSABILIDADE DO(A) PESQUISADOR(A):

O(a) pesquisador(a) explicou a (nome do(a) responsável pelo(a) participante)

o objetivo do estudo, os procedimentos requeridos e os possíveis riscos e vantagens que poderão advir do estudo, usando o melhor de seu conhecimento e se compromete a fornecer uma via desse termo de consentimento ao participante.

III. Listas de Genes Usadas nas Análises

AARS1	CAD	FARS2	HDAC4	MAPK10	PLPBP	SERPINI1	SZT2
ADGRL2	CASK	FGF12	HNRNPU	MBD5	PNKP	SIK1	TBC1D24
ADORA2A	CDKL5	FLNA	HOXD@	MECP2	PNPO	SLC19A3	TCF4
ALG13	CHD2	FOLR1	IQSEC2	MEF2C	POLG	SLC1A2	TNK2
AP3B2	CHRNA7	FOXG1	IRF2BPL	MTMR1	PRRT2	SLC25A22	TOR1A
ARFGEF2	CLCN4	GABRA1	KCNA2	MTOR	PTPN23	SLC2A1	TRMT9B
ARHGEF15	CNPY3	GABRB3	KCNH5	NECAP1	QARS1	SLC35A2	TRPM1
ARHGEF9	CNTNAP2	GABRG2	KCNQ2	NEDD4L	RARS2	SLC35A3	TWNK
ARX	CPA6	GNAO1	KCNQ3	NRG2	RB1	SLC9A6	UBA5
ASAH1	CSNK1E	GRIA3	KCNQ5	OR10H2	RHOBTB2	SNAP25	VRK2
ATP1A2	CYFIP2	GRIN1	KCNT1	PACS2	SCN1A	SPTAN1	WDR45
ATP6V1A	DCX	GRIN2A	KCNT2	PCDH19	SCN1B	SRGAP2	YWHAG
BRAT1	DOCK7	GRIN2B	KCTD3	PCDHG@	SCN2A	SRPX2	ZEB2
CACNA1A	EEF1A2	GRIN2D	KCTD7	PIGA	SCN3A	STXBP1	ZMYND8
CACNA1E	ENG	HADHB	KLF13	PIGQ	SCN8A	SYNGAP1	ZNF182
CACNA2D2	ERBB4	HCN1	MAGI2	PLCB1	SEPSECS	SYNJ1	

Tabela 13: Lista EEDG contendo genes relacionados às EEDs

			nendo genes	relacionados	us cpiicpsius c	in geran	
AARS1	CDK5	EFHC1	GUF1	MBD5	PIGP	SERPINI1	ТМТС3
ACER3	CDKL5	EIF2S3	HACE1	MDH2	PIGQ	SGCE	TNK2
ADAM22	CENPE	EMX2	HADHB	MECP2	PIGT	SHH	TOR1A
ADGRG1	CENPJ	ENG	HCN1	MED17	PIK3R2	SIK1	TPP1
ADGRL2	CERS1	EPM2A	HDAC4	MEF2C	PLAA	SIX3	TRIO
ADGRV1	CHD2	EPRS1	HECW2	MFSD2A	PLCB1	SLC12A5	TRMT10A
ADORA2A	CHRNA2	ERBB4	HERC1	MFSD8	PLEKHG2	SLC12A6	TRMT9B
ADRA2B	CHRNA4	ERMARD	HEXA	MOCS1	PLPBP	SLC13A5	TRPM1
ADSL	CHRNA7	EXOSC3	HEXB	MOCS2	PNKP	SLC19A3	TSC1
AIMP2	CHRNB2	EXT2	HNRNPU	MPDZ	PNPO	SLC1A2	TSC2
ALDH7A1	CILK1	FARS2	HOXD@	MTMR1	POLG	SLC20A2	TSEN15
ALG13	CLCN2	FGF12	IER3IP1	MTOR	POLG2	SLC25A12	TSEN2
AMPD2	CLCN4	FIG4	IQSEC2	NACC1	PPP1R15B	SLC25A22	TSEN54
AMT	CLDN5	FLNA	IRF2BPL	NDE1	PPP3CA	SLC2A1	TUBA1A
ANKLE2	CLN3	FOLR1	ITPA	NECAP1	PPT1	SLC35A2	TUBA8
AP3B2	CLN5	FOXG1	KANSL1	NEDD4L	PRDM8	SLC35A3	TUBB2A
ARFGEF2	CLN6	FRRS1L	KATNB1	NHLRC1	PRICKLE1	SLC45A1	TUBB2B
ARHGEF15	CLN8	GABBR2	KCNA1	NPC1	PRICKLE2	SLC6A1	TUBB3
ARHGEF9	CLP1	GABRA1	KCNA2	NPC2	PRRT2	SLC6A8	TUBG1
ARV1	CLTC	GABRA2	KCNB1	NPRL2	PTCH1	SLC6A9	TWNK
ARX	CNNM2	GABRA3	KCNC1	NPRL3	PTPN23	SLC9A6	UBA5
ASAH1	CNPY3	GABRA5	KCNH5	NR4A2	QARS1	SMC1A	UBE3A
ASPM	CNTN2	GABRB1	KCNJ10	NRG2	RAB11A	SMS	UFC1
ATN1	CNTNAP2	GABRB2	KCNMA1	NRXN1	RARS2	SNAP25	UFM1
ATP13A2	COL4A2	GABRB3	KCNQ2	NSDHL	RB1	SNIP1	VARS1
ATP1A2	CPA6	GABRD	KCNQ3	NTRK2	RBFOX1	SPATA5	VPS53
ATP6V1A	CPLX1	GABRG2	KCNQ5	NUS1	RELN	SPTAN1	VRK2
ATP7A	CSNK1E	GAL	KCNT1	OCLN	RHOBTB2	SRGAP2	WASF1
ATP8A2	CSTB	GAMT	KCNT2	OPHN1	ROGDI	SRPX2	WDR45
BRAF	CTSD	GATM	KCTD17	OR10H2	RORB	ST3GAL3	WDR45B
BRAT1	CYFIP2	GBA	KCTD3	OTUD6B	RPH3A	ST3GAL5	WDR62
BSCL2	DCX	GCSH	KCTD7	PACS2	RTN4IP1	STAMBP	WDR73
CACNA1A	DEAF1	GLDC	KIF11	PAFAH1B1	RTTN	STRADA	WWOX
CACNA1D	DENND5A	GNAO1	KIF2A	PCDH12	SARS1	STX1B	XPR1
CACNA1E	DEPDC5	GOSR2	KIF5C	PCDH19	SASS6	STXBP1	YWHAG
CACNA1H	DHDDS	GPAA1	KLF13	PCDHG@	SCARB2	SUOX	ZEB2
CACNA2D2	DIAPH1	GRIA3	LAMB1	PCLO	SCN1A	SYN1	ZMYND8
CACNB4	DIP2A	GRIA4	LAMC3	PDHA1	SCN1B	SYNGAP1	ZNF182
CAD	DLAT	GRIN1	LGI1	PDHX	SCN2A	SYNJ1	
CASK	DNAJC5	GRIN2A	LIAS	PDP1	SCN3A	SZT2	
CASR	DNM1	GRIN2B	LMNB2	PIGA	SCN8A	TBC1D24	
CCDC88A	DOCK7	GRIN2D	MAGI2	PIGC	SCN9A	TBCD	
CCDC88C	EEF1A2	GRN	MAPK10	PIGN	SEPSECS	TCF4	

Tabela 14: Lista EG contendo genes relacionados às epilepsias em geral.

AAAS	BRCA2	COL6A2	F2	GRM3	KCNC4	MAN2A2	NONO	PTEN	SOBP
AASS	BRD2	COL6A3	FADD	GRM4	KCND1	MANBA	NOTCH1	PTGS1	SON
ABAT	BRWD3	COQ2	FAM111A	GRM5	KCND2	MAOA	NPC1L1	PTH	SOX2
ABCC8	BSN	COQ4	FAN1	GRM6	KCND3	MAPRE2	NR2F1	PUF60	SOX5
ABHD12	BSND	COQ6	FAR1	GRM7	KCNE1	MAPT	NRAS	PURA	SPR
ACADS	C12orf57	COQ8A	FARP2	GRM8	KCNE2	MATN4	NRG3	PUS3	SPTLC2
ACADSB	C18orf25	COQ9	FASN	GTPBP3	KCNE3	MBTPS2	NSD1	QDPR	SQSTM1
ACMSD	C3	CORO1A	FASTKD2	GUCY1A1	KCNE4	MCCC1	NSD2	RAB18	SSR4
ACO2	CACNA1B	COX10	FAT4	GYS1	KCNE5	MCCC2	NUBPL	RAB39B	ST7
ACOT7	CACNA1C	COX6B1	FBXL4	HADHA	KCNF1	MCM8	OCA2	RAI1	ST8SIA2
ACOX1	CACNA1F	COX8A	FBXO28	HAX1	KCNG1	МСМ9	OFD1	RANBP2	STAT1
ACSF3	CACNA1G	CP	FGD1	HCFC1	KCNG2	ME2	OPA1	RANGAP1	STAT2
ACTB	CACNA1I	CPS1	FGF8	НСК	KCNG3	MED12	OPLAH	RAPGEF6	STK11
ACTG1	CACNA1S	CPT2	FGFR2	HCN2	KCNG4	MED13L	OPRM1	RAPSN	STT3A
ACVR1	CACNA2D1	CRB2	FGFR3	HCN3	KCNH1	MED25	ORAI1	RBFOX3	STT3B
ACY1	CACNA2D3	CREBBP	FKTN	HCN4	KCNH2	METTL23	OTC	RBM10	STYXL1
ADD3	CACNA2D4	CRH	FLG	HEG1	КСМНЗ	MID2	OTX2	RBP4	SUCLA2
ADK	CACNB1	CRHR1	FLT4	HEPACAM	KCNH4	MINK1	PAK3	RBPJ	SUCO
ADNP	CACNB2	CRLF1	FMC1	HERC2	KCNH6	MKS1	PARN	RBSN	SV2A
AFG3L2	CACNB3	CRYAB	FMN2	HESX1	KCNH7	MLC1	PC	RD3	SVIL
AGL	CACNG1	CSF1R	FMR1	HGSNAT	KCNH8	MLLT3	PCDH15	RFT1	SYN2
AGO4	CACNG2	CSNK1G1	FOXRED1	HIBCH	KCNIP1	MLYCD	PCDH7	RFX3	SYP
AGPS	CACNG3	CSPP1	FSTL5	HIP1	KCNJ1	MMAA	PCDHB13	RMND1	SYT14
AGTR2	CACNG4	CTC1	FTL	HIVEP2	KCNJ11	MMADHC	PCDHB4	RNASET2	SYT2
AHI1	CACNG5	СТН	FTO	HMGCS2	KCNJ12	MOGS	PDE10A	RNF213	TAF1
AIFM1	CACNG6	CTNND2	FTSJ1	HNF1B	KCNJ14	MPC1	PDSS2	RPL10	TANGO2
AIMP1	CACNG7	CTSF	GABBR1	HNRNPH1	KCNJ15	MPDU1	PDYN	RRM2B	TAP1
AKT2	CACNG8	CUL4B	GABRA4	HS2ST1	KCNJ16	MPP7	PET100	RTN4R	TBCK
AKT3	CALM2	CUX1	GABRA6	HSD17B10	KCNJ2	MRAP	PEX13	RUBCN	TBL1XR1
ALDH18A1	CALN1	CXCR4	GABRE	HSD17B4	KCNJ3	MRI1	PEX14	RYR1	TBP
ALDH4A1	CAMTA1	CYB5R3	GABRG1	HSPD1	KCNJ4	MRPS22	PEX19	RYR2	TDP1
ALG1	CARD9	CYP26C1	GABRG3	HSPG2	KCNJ5	MSC	PEX2	RYR3	TDP2
ALG11	CARS2	CYP27B1	GABRP	HTR1A	KCNJ6	MSX2	PEX3	SACS	TECPR2
ALG12	CAV3	D2HGDH	GABRQ	HTR1B	KCNJ8	MT-ATP6	PEX5	SATB2	TELO2
ALG2	CBL	DARS2	GABRR1	HTR1D	KCNJ9	MT-ATP8	PEX7	SCN10A	TENM2
ALG3	CC2D2A	DENND2B	GABRR2	HTR1E	KCNK1	MT-CO3	PGAP1	SCN11A	THAP1
ALG6	CD46	DGKD	GAD1	HTR1F	KCNK10	MT-CYB	PGAP2	SCN2B	THOC2
ALG9	CD59	DHCR24	GALC	HTR2A	KCNK12	MTFMT	PGAP3	SCN3B	THRB
AMACR	CELF4	DHFR	GAS2L2	HTR2C	KCNK13	MTHFR	PGK1	SCN4A	TICAM1
AMER1	CELSR3	DHTKD1	GATA6	HTR3A	KCNK15	MTMR10	PGM3	SCN4B	TK2
ANK2	CENPW	DIP2C	GATAD2B	HTR3B	KCNK16	MTMR11	PHF6	SCN5A	TMEM139
ANK3	CEP164	DKC1	GBE1	HTR3C	KCNK17	MT-ND4	PHF8	SCN7A	TMEM70
ANKH	CEP290	DLD	GCH1	HTR3D	KCNK2	MT-ND5	PHGDH	SCNM1	TMLHE

Tabela 15: Lista PG contendo genes potenciais para epilepsias.

ANO10	CERT1	DLG2	GCK	HTR3E	KCNK3	MTO1	PHOX2B	SCO2	TNFAIP6
ANOS1	CHD1L	DLG3	GDI1	HTR4	KCNK4	MTR	PIGG	SDHD	TPK1
AP1S2	CHD3	DMBX1	GFAP	HTR5A	KCNK5	MYH14	PIGL	SEC24D	TRAF3
AP3D1	CHD4	DMD	GFM1	HTR6	KCNK6	MYH6	PIGM	SEMA5B	TRAPPC11
AP4B1	CHD8	DNAJC6	GFRA1	HTR7	KCNK7	MYO9B	PIGO	SETBP1	TRAPPC9
AP4E1	СНКВ	DNM1L	GIGYF2	HTT	KCNK9	MYOCD	PIGV	SETD2	TRIM8
AP4S1	CHL1	DNM3	GIPC1	HUWE1	KCNMB2	MYT1L	PIGW	SETD5	TRMT44
APOE	CHN1	DNMT1	GJC2	IDH2	KCNMB3	NAA10	PIGY	SEZ6	TRPM6
APP	CHRDL1	DNMT3A	GJD2	IDS	KCNMB4	NADK2	PIK3AP1	SHANK1	TSNARE1
ARG1	CHRFAM7A	DOCK6	GK	IFIH1	KCNN1	NALCN	PLA2G6	SHANK3	TSPAN7
ARHGDIA	CHRNA1	DOCK8	GLI2	IFNAR2	KCNN2	NANS	PLP1	SHROOM4	TSPYL4
ARID1A	CHRNA10	DOLK	GLRA1	IGSF8	KCNN3	NAPB	PLXNB2	SKI	TTN
ARID1B	CHRNA3	DPAGT1	GLRA2	IL10	KCNN4	NARS2	PMP22	SLC16A1	TTR
ARNT2	CHRNA5	DPM1	GLRA3	IL1B	KCNQ1	NAT8L	PNPLA8	SLC17A5	TUBA3E
ARSA	CHRNA6	DPM2	GLRB	IL1RAPL1	KCNQ4	NCKAP5	PNPT1	SLC1A1	TUBB4A
ASNS	CHRNA9	DPYD	GLUL	IL1RN	KCNRG	NDN	POGZ	SLC1A3	TXN2
ASXL1	CHRNB1	DPYS	GLYCTK	IL27RA	KCNS1	NDP	POLR3B	SLC1A4	UBE2A
ATIC	CHRNB3	DRD1	GMEB2	IL6	KCNS2	NDUFA1	POMC	SLC25A1	UBR5
ATP1A3	CHRNB4	DRD2	GMPPB	INO80	KCNS3	NDUFA2	POMGNT1	SLC25A15	UNC80
ATP5F1A	CHRND	DRD3	GNA11	INPP4A	KCNV1	NDUFAF3	РОМК	SLC25A2	UPB1
ATP6AP1	CHRNE	DRD4	GNAQ	INSR	KCNV2	NDUFAF6	POMT1	SLC25A20	UQCC2
ATP6AP2	CHRNG	DRD5	GNB1	IRF3	KDM5C	NDUFB11	POMT2	SLC26A1	USP9X
ATP6V0A2	CLCN1	DYNC1H1	GNPAT	ISG15	KDM6A	NDUFS4	PPP1R3C	SLC30A3	VARS2
ATP6V0C	CLCN3	DYRK1A	GPHN	ITGB1BP1	KIF1A	NDUFS8	PPP2R1A	SLC33A1	VPS11
ATPAF2	CLCN5	EARS2	GPSM2	ITPR1	KIF3C	NDUFV1	PPP2R5D	SLC39A8	VPS35
ATXN10	CLCN6	EBP	GPT2	IVNS1ABP	KIF4A	NEB	PQBP1	SLC46A1	VPS35L
ATXN2	CLCN7	ECM1	GPX4	JAM3	KMT2A	NEDD4	PRAG1	SLC4A10	WDR19
AUH	CLCNKA	EFTUD2	GRIA1	JRK	KPNA7	NELL1	PRKDC	SLC4A3	ХК
AUTS2	CLCNKB	EGF	GRIA2	KARS1	KPTN	NEU1	PRKN	SLC6A3	XPNPEP3
AVPR2	CLIC2	EHMT1	GRID1	KAT6A	KRAS	NEXMIF	PRKX	SLC7A11	YAP1
B3GNT2	CLPB	EIF2B1	GRID2	KCNA10	KRIT1	NF1	PRNP	SLC7A6OS	YWHAE
B4GAT1	CLPP	EIF3E	GRIK1	KCNA3	L1CAM	NGLY1	PRODH	SLC8A1	ZBTB18
BCAP31	CLSTN1	ELMO1	GRIK2	KCNA4	LAMA2	NHS	PROK2	SLC9A1	ZC4H2
BCKDHA	COA8	ELOVL4	GRIK3	KCNA5	LARS2	NID1	PROS1	SLC9A9	ZDHHC15
BCKDK	COG4	EPG5	GRIK4	KCNA6	LMAN2L	NIN	PRRC2B	SLCO1B7	ZFP57
BCL10	COG6	EPHA5	GRIK5	KCNA7	LRFN5	NIPA1	PSAP	SMARCA2	ZFYVE26
BCS1L	COG7	EPHB2	GRIN2C	KCNAB1	LRP2	NIPA2	PSAT1	SMARCA4	ZMYND11
BDNF	COG8	ERCC6	GRIN3A	KCNAB2	LRPPRC	NKAIN3	PSEN1	SMARCB1	ZNF12
BEX3	COL18A1	ERLIN2	GRINA	KCNAB3	LRRK2	NLGN1	PSEN2	SMARCE1	ZNF44
BMP4	COL2A1	ETFDH	GRIP1	KCNB2	MAF	NOD2	PSMB8	SMG9	ZSWIM6
BMP5	COL3A1	ETHE1	GRM1	KCNC2	MAGEL2	NOL11	PSMD1	SNRPN	
BOLA3	COL4A1	EXOC6B	GRM2	KCNC3	MAN1B1	NOL3	PSPH	SNX14	

IV. Artigo de Revisão Publicado como Primeira Autora

Epilepsy & Behavior 121 (2021) 106428

Review

New avenues in molecular genetics for the diagnosis and application of therapeutics to the epilepsies

Pedro H.M. Magalhães¹, Helena T. Moraes¹, Maria C.P. Athie, Rodrigo Secolin, Iscia Lopes-Cendes*

^a Departments of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil ^b Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil

ARTICLE INFO

Article history: Received 5 May 2019 Revised 14 June 2019 Accepted 6 July 2019 Available online 7 August 2019

Keywords: Genome-wide association studies Complex inheritance Developmental epileptic encephalopathies

ABSTRACT

Genetic epidemiology studies have shown that most epilepsies involve some genetic cause. In addition, twin studies have helped strengthen the hypothesis that in most patients with epilepsy, a complex inheritance is involved. More recently, with the development of high-density single-nucleotide polymorphism (SNP) microarrays and next-generation sequencing (NCS) technologies, the discovery of genes related to the epilepsies has accelerated tremendously. Especially, the use of whole exome sequencing (WES) has had a considerable impact on the identification of rare genetic variants with large effect sizes, including inherited or *de novo* mutations in severe forms of childhood epilepsies. The identification of pathogenic variants in patients with these childhood epilepsies provides many benefits for patients and families, such as the confirmation of the genetic nature of the diseases. This process will allow for better genetic counseling, more accurate therapy decisions, and a significant positive emotional impact. However, to study the genetic component of the more common forms of epilepsy, the use of high-density SNP arrays in genome-wide association studies (GWAS) seems to be the strategy of choice. As such, researchers can identify loci containing genetic variants associated with the common forms of epilepsy. The knowledge generated over the past two decades about the effects of the mutations that cause the monogenic epilepsy is tremendous; however, the scientific community is just starting to apply this information in order to generate better target treatments.

© 2019 Elsevier Inc. All rights reserved.

Genetic predisposition to the epilepsies: from monogenic to complex inheritance

Remarkably successful efforts in identifying genes involved in the monogenic forms of epilepsy have led to the misconception that only in these rare forms of the disease does genetics have an important role [1,2]. Genetic epidemiology studies have shown that 70% to 80% of the epilepsies have the involvement of some genetic cause while only 20% to 30% are related to other etiologies [3–6]. In addition, twin studies have helped strengthen the hypothesis that, in most patients with epilepsy, a complex inheritance is involved [7–11].

The CHRNA4 gene, which encodes a nicotinic acetylcholine receptor, was the first gene related to a monogenic form of epilepsy to be identified in 1995 [12,13]. The main approaches used before the advent of high throughput deoxyribonucleic acid (DNA) sequencing and highdensity genome data were based on a traditional linkage analysis of large families that segregated the disease following monogenic inheritance [14–18]. Based on these studies, many genes were found to be related to different forms of epilepsy in the early 2000s, most of them encoding ion-channel subunits [15,16]. However, despite the evidence of high heritability [19], these results were poorly replicated in the scenario in which common genetic variants contributed to the development of the more common epilepsies [19–22]. Nevertheless, the challenge to identify genetic variants associated with complex inheritance epilepsies resides in the large number of genes and their low effect size, which means that variants themselves just slightly raise the risk of developing epilepsy [16,23,24]. To address this issue better, it is also important to highlight the necessity to carry out multicenter studies to advance the field of complex epilepsies.

More recently, with the development of high-density singlenucleotide polymorphism (SNP) microarrays and next-generation sequencing (NGS) technologies, the discovery of genes related to the epilepsies has accelerated tremendously [20]. In particular, the use of whole exome sequencing (WES) has had a considerable impact on the identification of rare genetic variants with a rather large effect size, including inherited or *de novo* mutations in the severe forms of childhood epilepsy [15]. However, WES is still underpowered in the search for common variants with low effect size [16]. Therefore, to study the

Corresponding author at: Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas – UNICAMP, Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, Campinas, SP 13083-887, Brazil.

E-mail address; icendes@unicamp.br (I.Lopes-Cendes).

¹ Both authors contributed equally to this publication.

Artigo Publicado como Coautora

V.

Genetics and Molecular Biology, 43, 4, e20200047 (2020) Copyright © Sociedade Brasileira de Genética. DOI: https://doi.org/10.1590/1678-4685-GMB-2020-0047

Research Article Genomics and Bioinformatics

The impact of post-alignment processing procedures on whole-exome sequencing data

Murilo Guimarães Borges^{1,2,3} ⁽¹⁾, Helena Tadiello de Moraes^{1,2} ⁽¹⁾, Cristiane de Souza Rocha^{1,2} and Iscia Lopes-Cendes^{1,2}

¹Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas, Departamento de Genética Médica e Medicina Genômica, Campinas, SP, Brazil. ²Instituto Brasileiro de Neurociência e Neurotecnologia (BRAINN), Campinas, SP, Brazil. ³Universidade Estadual de Campinas (UNICAMP), Centro de Engenharia Biomédica. Campinas, SP, Brazil.

Abstract

The use of post-alignment procedures has been suggested to prevent the identification of false-positives in massive DNA sequencing data. Insertions and deletions are most likely to be misinterpreted by variant calling algorithms. Using known genetic variants as references for post-processing pipelines can minimize mismatches. They allow reads to be correctly realigned and recalibrated, resulting in more parsimonious variant calling. In this work, we aim to investigate the impact of using different sets of common variants as references to facilitate variant calling from whole-exome sequencing data. We selected reference variants from common insertions and deletions available within the 1K Genomes project data and from databases from the Latin American Database of Genetic Variation (LatinGen). We used the Genome Analysis Toolkit to perform post-processing procedures like local realignment, quality recalibration procedures, and variant calling in whole exome samples. We identified an increased number of variants from the call set for all groups when no post-processing procedure was performed. We found that there was a higher concordance rate between variants called using 1K Genomes and LatinGen. Therefore, we believe that the increased number of rare variants identified in the analysis without realignment or quality recalibration indicated that they were likely false-positives.

Keywords: Sequence alignment, quality recalibration, variant discovery, BIPMed, LatinGen.

Received: February 26, 2020; Accepted: September 18, 2020.

Introduction

Advances in sequencing methods have made it possible to interrogate the genome in its most basic components at an affordable price and in a timely manner (Goodwin et al., 2016). A single sequencing reaction generates reads that, after processing, make it possible to compare the resulting assembly against a given reference genome (Li and Durbin, 2009; DePristo et al., 2011). Based on these achievements, the rapid adoption of such techniques are being directly applied to medicine, inaugurating the new era of genome medicine (Karczewski, 2013). Nonetheless, understanding the pathogenicity of a given variant is not a straightforward task and it demands prior knowledge or biological and insilico validation (Thusberg et al., 2011). In this perspective, databases containing variants previously related to disease have an unquestionable role while linking phenotypes to genotypes (Landrum et al., 2018).

The common variants from a given population are also relevant to clinical diagnosis, while evidencing that normal alterations are not necessarily linked to disease (International HapMap Consortium, 2010; 1000 Genomes Project Consortium, 2015). Many such projects have been implemented by initiatives across the globe, providing a

much richer picture of human variation across regions and/ or populations (Haga, 2017; Wijmenga and Zhernakova, 2018; Stark et al., 2019). In Latin America, one of the first initiatives was the Brazilian Initiative on Precision Medicine (BIPMed), which expanded into additional projects in the Latin American Database of Genomic Variation (LatinGen), aiming to assist with genomic data sharing in Latin America. Currently, despite being an initiative that encompasses all of Latin America, only two databases are contributing to genetic variation from the reference population (or healthy individuals), from the Brazilian population. Thus, LatinGen materializes what many studies reinforce, the need for a better understanding of the admixture in Latin American populations, as well as other underrepresented populations, in large scale sequencing studies (Ruiz-Linares et al., 2014; Petrovski and Goldstein 2016; Popejoy and Fullerton, 2016; van Rooij et al., 2017).

The use of post-alignment bioinformatics procedures has been suggested to reduce false-positive discovery rates in massive DNA sequencing data (McKenna *et al.*, 2010). Insertions and deletions are most likely to be misinterpreted by the alignment algorithms, which may produce several false single-nucleotide variants in the call-set. The use of highquality, commonly-known variants tends to minimize such mismatching and allows reads to be correctly realigned and recalibrated. This procedure tends to increase the number of true genetic variants identified (Vo and Phan, 2018). In this work, we aim to investigate the impact of using different

Send correspondence to Iscia Lopes-Cendes. Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Departamento de Genética Médica e Medicina Genômica, Campinas, SP, Brazil. E-mail: icendes @unicamp.br.

VI. Lista de Pacientes

Tabela 16: Lista de todos os pacientes analisados no estudo. ID - número de identificação do paciente; DG - Estado do diagnóstico genético do paciente.

ID	Sexo	ldade coleta	ldade 1ª crise	Local de Coleta	Hipótese Diagnóstica	WES	СМА	DG
1	М	240	30	Campinas - Brasil	Síndrome de Doose vs. Síndrome de Lennox-Gastaut	OK	ОК	Inconclusivo
2	М	-	30	Campinas - Brasil	Síndrome de Doose	OK	ок	Validar
4	М	-	8	Campinas - Brasil	Síndrome de Dravet	OK	ОК	Inconclusivo
6	М	-	43	Campinas - Brasil	Síndrome de Doose	ОК	ок	Inconclusivo
7	F	-	36	Campinas - Brasil	Síndrome de Doose	OK	-	Inconclusivo
9	М	-	36	Campinas - Brasil	Síndrome de Doose	OK	ок	Inconclusivo
12	F	84	8	Campinas - Brasil	Síndrome de Dravet	OK	ОК	ОК
13	F	120	72	Campinas - Brasil	Síndrome de Doose	OK	ок	Inconclusivo
15	М	-	3	Campinas - Brasil	Síndrome de Dravet	OK	ОК	OK
16	М	-	15	Campinas - Brasil	Síndrome de Lennox-Gastaut	OK	ОК	OK
17	F	-	4	Campinas - Brasil	Síndrome de Dravet	OK	ОК	OK
18	М	-	36	Campinas - Brasil	Síndrome de Doose	ОК	ОК	Inconclusivo
19	М	-	8	Campinas - Brasil	Síndrome de Doose	ОК	ОК	Inconclusivo
20	М	-	-	Campinas - Brasil	Síndrome de Dravet	OK	ОК	Inconclusivo
21	F	216	48	Campinas - Brasil	Síndrome de Doose	OK	ОК	OK
22	F	168	3	Campinas - Brasil	Síndrome de Dravet	OK	ОК	OK
24	F	-	4	Campinas - Brasil	Síndrome de Dravet	OK	ОК	OK
25	М	-	30	Campinas - Brasil	Síndrome de Doose	OK	ОК	Inconclusivo
26	F	312	35	Campinas - Brasil	Síndrome de Doose	OK	ОК	Inconclusivo
27	М	168	36	Campinas - Brasil	Síndrome de Doose	OK	ок	Inconclusivo
28	F	-	7	Campinas - Brasil	Síndrome de Dravet	OK	ОК	OK
29	F	-	3	Campinas - Brasil	Síndrome de Dravet	OK	ок	OK
30	М	168	30	Campinas - Brasil	Síndrome de Doose	ОК	ОК	Inconclusivo
31	F	192	7	Campinas - Brasil	Síndrome de Dravet	OK	ок	OK
32	М	-	18	Campinas - Brasil	Síndrome de Dravet	OK	ОК	Inconclusivo
33	F	-	-	São Paulo - Brasil	Síndrome de Dravet	OK	ок	ОК
34	F	84	6	Campinas - Brasil	Síndrome de Dravet	OK	ОК	ОК
35	F	-	5	Campinas - Brasil	Síndrome de Dravet	ОК	ок	ОК
36	F	180	23	Campinas - Brasil	EED indeterminada	OK	ОК	ОК
37	F	-	18	Campinas - Brasil	EED indeterminada	OK	ок	ОК
38	F	-	-	Campinas - Brasil	Síndrome de Dravet	OK	ОК	ОК
39	F	-	-	Campinas - Brasil	Síndrome de Dravet	OK	ОК	ОК
40	F	-	5	São Paulo - Brasil	Síndrome de Dravet	OK	ОК	ОК
41	М	-	4	São Paulo - Brasil	Síndrome de Dravet	OK	ок	ОК
42	М	-	11	Campinas - Brasil	Síndrome de Dravet	-	OK	Inconclusivo
43	М	-	36	São Paulo - Brasil	Síndrome de Doose	OK	OK	OK
44	М	-	24	Campinas - Brasil	Síndrome de Doose	OK	OK	Inconclusivo
45	F	-	6	Campinas - Brasil	Síndrome de Dravet	ОК	ОК	Inconclusivo

46	F	-	-	Campinas - Brasil	Síndrome de Dravet	OK	OK	ОК
47	М	-	56	São Paulo - Brasil	Síndrome de Doose	ОК	ок	Inconclusivo
48	F	-	-	Campinas - Brasil	EED indeterminada	ОК	ОК	Inconclusivo
49	М	204	5	Campinas - Brasil	Síndrome de Dravet	ОК	ок	ОК
50	М	84	-	São Paulo - Brasil	Síndrome de Dravet	ОК	ок	Inconclusivo
51	м	84	-	São Paulo - Brasil	Síndrome de Dravet	ОК	ок	Inconclusivo
52	F	-	6	Porto Alegre - Brasil	Síndrome de Dravet	ОК	ОК	ОК
53	F	-	8	Porto Alegre - Brasil	Síndrome de Dravet	ОК	ОК	ОК
54	М	204	2	Campinas - Brasil	EED indeterminada	ОК	ОК	ОК
55	М	204	8	Campinas - Brasil	EED indeterminada	ОК	ОК	Inconclusivo
56	М	36	12	Campinas - Brasil	Síndrome de Dravet	ОК	ОК	ОК
57	М	444	46	Campinas - Brasil	Síndrome de Dravet	ОК	ОК	ОК
58	F	156	24	Campinas - Brasil	EED indeterminada	ОК	ОК	Validar
59	F	60	11	Campinas - Brasil	EED indeterminada	ОК	ОК	ОК
60	М	204	3	Campinas - Brasil	EED indeterminada	ОК	ОК	ОК
61	М	84	48	Campinas - Brasil	EED indeterminada	ОК	ОК	Inconclusivo
62	М	108	3	Campinas - Brasil	EED indeterminada	ОК	ОК	Validar
63	М	48	24	Campinas - Brasil	EED indeterminada	ОК	ОК	ОК
64	М	192	108	Campinas - Brasil	EED indeterminada	-	ОК	Inconclusivo
65	F	24	15	Campinas - Brasil	Síndrome de Doose	ОК	ОК	Inconclusivo
66	М	156	10	Campinas - Brasil	Síndrome de Lennox-Gastaut	ОК	ОК	Inconclusivo
67	М	192	60	Campinas - Brasil	EED indeterminada	ОК	ОК	OK
69	F	48	27	Campinas - Brasil	EED indeterminada	-	ОК	Inconclusivo
70	F	36	3	Campinas - Brasil	EED indeterminada	ОК	ОК	Inconclusivo
71	М	180	3	Campinas - Brasil	EED indeterminada	ОК	ОК	ОК
72	F	72	35	Campinas - Brasil	EED indeterminada	ОК	ОК	ОК
73	М	12	2	Campinas - Brasil	EED indeterminada	OK	ОК	Inconclusivo
74	м	108	14	Campinas - Brasil	EED indeterminada	ОК	ок	ОК
75	М	12	8	Campinas - Brasil	EED indeterminada	ОК	ОК	ОК
76	F	-	9	Campinas - Brasil	EED indeterminada	ОК	ОК	Inconclusivo
77	М	96	0	Campinas - Brasil	EED indeterminada	ОК	ок	Inconclusivo
78	F	2	-	Campinas - Brasil	EED indeterminada	ОК	ок	ОК
79	F	132	2	Campinas - Brasil	Síndrome de Lennox-Gastaut	ОК	ОК	Inconclusivo
80	М	108	3	Campinas - Brasil	EED indeterminada	ОК	ОК	Inconclusivo
81	F	72	4	Campinas - Brasil	EED indeterminada	ОК	ОК	Validar
82	F	96	84	Campinas - Brasil	EED indeterminada	ОК	ОК	Validar
83	М	12	5	Campinas - Brasil	Síndrome de Doose	ОК	ОК	Inconclusivo
84	М	84	12	Campinas - Brasil	EED indeterminada	ОК	ок	ОК
86	М	252	30	Campinas - Brasil	EED indeterminada	ОК	ОК	Inconclusivo
87	М	12	3	Campinas - Brasil	EED indeterminada	ОК	ок	Validar
88	М	120	8	Campinas - Brasil	Síndrome de West	OK	ОК	Inconclusivo
89	М	228	7	Campinas - Brasil	Síndrome de Lennox-Gastaut	OK	OK	Inconclusivo
90	М	-	4	Campinas - Brasil	Síndrome de Dravet	OK	OK	OK
91	М	36	5	Campinas - Brasil	EED indeterminada	OK	OK	ОК
92	М	60	0	Campinas - Brasil	EED indeterminada	OK	ОК	ОК

94	М	156	-	Campinas - Brasil	Síndrome de Lennox-Gastaut	ОК	ОК	Inconclusivo
95	F	216	24	Salvador - Brasil	Síndrome de Dravet	ОК	ОК	ОК
96	F	132	3	Campinas - Brasil	Síndrome de Dravet	ОК	ОК	Inconclusivo
97	М	48	18	Campinas - Brasil	Síndrome de Dravet	ОК	ОК	Inconclusivo
98	М	-	-	Campinas - Brasil	Síndrome de Dravet	ОК	ок	Inconclusivo
99	М	-	-	Campinas - Brasil	Síndrome de Lennox-Gastaut	ОК	ОК	ОК
100	F	120	41	Campinas - Brasil	EED indeterminada	ОК	ок	OK
102	М	156	24	Campinas - Brasil	EED indeterminada	ОК	ок	OK
103	F	168	7	Campinas - Brasil	EED indeterminada	ОК	ок	Inconclusivo
104	F	180	60	Campinas - Brasil	EED indeterminada	ОК	ОК	ОК
105	F	-	-	Campinas - Brasil	Síndrome de Dravet	ОК	ОК	ОК
106	М	204	-	Curitiba - Brasil	EED indeterminada	ОК	ОК	Inconclusivo
108	М	84	6	Natal - Brasil	Síndrome de Dravet	ОК	ОК	ОК
109	F	36	-	Curitiba - Brasil	EED indeterminada	ОК	ОК	Inconclusivo
110	М	-	-	Curitiba - Brasil	EED indeterminada	ОК	ОК	ОК
111	М	84	0	Campinas - Brasil	Síndrome de Lennox-Gastaut	ОК	ОК	Inconclusivo
112	М	-	-	Campinas - Brasil	EED indeterminada	ОК	-	Validar
113	М	-	-	Campinas - Brasil	EED indeterminada	OK	-	ОК
114	М	-	-	Campinas - Brasil	EED indeterminada	ОК	ОК	Inconclusivo
115	F	72	7	Campinas - Brasil	EED indeterminada	ОК	ОК	ОК
116	М	-	-	Campinas - Brasil	Síndrome de Doose	OK	ОК	Inconclusivo
125	М	-	-	Campinas - Brasil	EED indeterminada	OK	ОК	Inconclusivo
126	М	192	36	Campinas - Brasil	EED indeterminada	ОК	ОК	Inconclusivo
127	F	-	-	Campinas - Brasil	EED indeterminada	OK	ОК	Inconclusivo
128	М	-	-	Campinas - Brasil	EED indeterminada	ОК	ОК	Inconclusivo
129	М	84	15	Campinas - Brasil	EED indeterminada	ОК	ОК	Inconclusivo
130	F	-	-	Campinas - Brasil	Síndrome de Dravet	ОК	ОК	OK
131	М	48	46	Campinas - Brasil	Síndrome de Doose	ОК	ОК	Inconclusivo
132	М	24	8	Campinas - Brasil	Síndrome de West	ОК	ок	ОК
133	F	120	10	Campinas - Brasil	Síndrome de Lennox-Gastaut	ОК	ок	Validar
134	F	72	-	Curitiba - Brasil	EED indeterminada	ОК	ок	ОК
136	F	204	132	Campinas - Brasil	EED indeterminada	ОК	ОК	Inconclusivo
137	М	36	-	Curitiba - Brasil	EED indeterminada	ОК	ОК	ОК
138	F	24	-	Curitiba - Brasil	EED indeterminada	ОК	ОК	Inconclusivo
139	М	-	-	Campinas - Brasil	EED indeterminada	ОК	ОК	Inconclusivo
140	М	192	61	Campinas - Brasil	Síndrome de Lennox-Gastaut	ОК	ОК	Inconclusivo
141	F	-	-	Campinas - Brasil	Síndrome de Dravet	ОК	ок	Inconclusivo
142	F	-	-	Campinas - Brasil	EED indeterminada	ОК	ОК	Inconclusivo
143	М	108	8	Campinas - Brasil	EED indeterminada	ОК	ок	Inconclusivo
144	М	24	19	Campinas - Brasil	Síndrome de West → Síndrome de Lennox-Gastaut	ОК	ОК	ОК
145	F	84	-	Campinas - Brasil	EED indeterminada	OK	OK	Inconclusivo
149	М	180	132	Campinas - Brasil	EED indeterminada	OK	OK	OK
158	F	48	6	Campinas - Brasil	Síndrome de Lennox-Gastaut	OK	OK	Inconclusivo
159	М	168	36	Campinas - Brasil	Síndrome de Lennox-Gastaut	OK	OK	Inconclusivo

160	F	12	1	Campinas - Brasil	Síndrome de West	ОК	ОК	ОК
161	F	5	-	Campinas - Brasil	Síndrome de West	ОК	ок	ОК
167	F	-	-	Campinas - Brasil	EED indeterminada	ОК	ОК	Validar
168	F	-	-	Campinas - Brasil	EED indeterminada	ОК	ок	Inconclusivo
169	М	-	-	Campinas - Brasil	Síndrome de West	-	ок	Inconclusivo
170	М	-	-	Brasília - Brasil	EED indeterminada	ОК	ОК	Inconclusivo
171	М	120	3	Campinas - Brasil	EED indeterminada	ОК	ОК	Inconclusivo
173	М	132	12	Campinas - Brasil	Síndrome de Dravet	ОК	ОК	Inconclusivo
174	М	192	17	Buenos Aires - Argentina	Síndrome de Lennox-Gastaut	ОК	ОК	Inconclusivo
175	F	168	24	Buenos Aires - Argentina	Síndrome de Lennox-Gastaut	ОК	ОК	Validar
176	F	228	168	Buenos Aires - Argentina	Síndrome de Lennox-Gastaut	ОК	ок	ОК
177	F	168	60	Buenos Aires - Argentina	Síndrome de Lennox-Gastaut	ОК	ОК	Validar
178	М	96	36	Buenos Aires - Argentina	Síndrome de Doose	ОК	ОК	ОК
179	М	180	24	Buenos Aires - Argentina	Síndrome de Doose	ОК	ОК	Inconclusivo
180	F	144	36	Buenos Aires - Argentina	Síndrome de Doose	ОК	ОК	Inconclusivo
181	F	60	14	Buenos Aires - Argentina	Síndrome de Doose	ОК	ОК	Inconclusivo
182	М	204	24	Buenos Aires - Argentina	Síndrome de Doose	ОК	ОК	Inconclusivo
183	М	120	36	Buenos Aires - Argentina	Epilepsia com Estado de Mal Elétrico do Sono	OK	ОК	Inconclusivo
184	F	96	12	Buenos Aires - Argentina	Síndrome de Landau-Kleffner	ОК	ОК	Inconclusivo
185	F	24	-	Campinas - Brasil	EED indeterminada	ОК	ОК	ОК
186	F	72	5	Natal - Brasil	EED indeterminada	ОК	ОК	Validar
187	М	66	7	Tegucigalpa - Honduras	EED indeterminada	ОК	ОК	OK
188	F	60	10	Tegucigalpa - Honduras	EED indeterminada	ОК	ок	Inconclusivo
189	М	108	10	Tegucigalpa - Honduras	Síndrome de Dravet	-	ОК	Inconclusivo
190	F	156	120	Buenos Aires - Argentina	Síndrome de Lennox-Gastaut	ОК	ОК	Inconclusivo
191	М	192	36	Buenos Aires - Argentina	Síndrome de Lennox-Gastaut	ОК	ОК	Inconclusivo
192	М	84	7	Buenos Aires - Argentina	Síndrome de Doose	ОК	ок	Inconclusivo
193	F	156	6	Buenos Aires - Argentina	Síndrome de Lennox-Gastaut	ОК	ОК	Inconclusivo
194	М	120	60	Buenos Aires - Argentina	Síndrome de Lennox-Gastaut	ОК	ОК	ОК
195	М	192	84	Buenos Aires - Argentina	Síndrome de Lennox-Gastaut	ОК	ОК	ОК
196	М	144	72	Buenos Aires - Argentina	Síndrome de Lennox-Gastaut	ОК	ОК	Inconclusivo
197	М	108	36	Buenos Aires - Argentina	Epilepsia com Estado de Mal Elétrico do Sono	ОК	ОК	Inconclusivo
198	F	108	60	Buenos Aires - Argentina	Síndrome de Lennox-Gastaut	ОК	ок	ОК
199	М	120	10	Buenos Aires - Argentina	Síndrome de Lennox-Gastaut	ОК	ОК	ОК
200	F	96	7	Buenos Aires - Argentina	Síndrome de Lennox-Gastaut	ОК	ОК	Inconclusivo
201	F	108	2	Buenos Aires - Argentina	Síndrome de Lennox-Gastaut	ОК	ОК	ОК
202	F	108	72	Buenos Aires - Argentina	Síndrome de Lennox-Gastaut	ОК	ОК	ОК
203	М	60	-	Buenos Aires - Argentina	Síndrome de Doose	ОК	ок	Inconclusivo
204	F	108	36	Buenos Aires - Argentina	Síndrome de Doose	ОК	ОК	Inconclusivo
205	F	156	36	Buenos Aires - Argentina	Síndrome de Doose	OK	OK	OK
206	F	72	24	Buenos Aires - Argentina	Síndrome de Doose	OK	OK	Inconclusivo
207	М	120	24	Buenos Aires - Argentina	Síndrome de Doose	OK	OK	Validar
208	М	108	8	Buenos Aires - Argentina	Síndrome de Lennox-Gastaut	OK	OK	Inconclusivo
209	М	36	18	Buenos Aires - Argentina	Síndrome de Doose	OK	OK	Inconclusivo

210	М	156	60	Buenos Aires - Argentina	Epilepsia com Estado de Mal Elétrico do Sono	ОК	ОК	Inconclusivo
211	М	96	48	Buenos Aires - Argentina	Epilepsia com Estado de Mal Elétrico do Sono	ОК	ок	Inconclusivo
212	М	48	2	Buenos Aires - Argentina	Síndrome de Doose vs. Síndrome de Lennox-Gastaut	ОК	ОК	ОК
213	F	-	-	Buenos Aires - Argentina	EED indeterminada	OK	ОК	ОК
214	F	10	4	Buenos Aires - Argentina	Síndrome de Doose vs. Síndrome de Lennox-Gastaut	ок	ок	Inconclusivo
215	F	10	2	Buenos Aires - Argentina	Síndrome de Doose vs. Síndrome de Lennox-Gastaut	ОК	ОК	Inconclusivo
216	М	144	36	Buenos Aires - Argentina	EED indeterminada	OK	ОК	Inconclusivo
217	F	-	-	Lima - Peru	EED indeterminada	ОК	ОК	Inconclusivo
218	М	-	-	Lima - Peru	EED indeterminada	ОК	ОК	Inconclusivo
219	М	-	-	Lima - Peru	EED indeterminada	ОК	ОК	OK
220	F	9	1	Lima - Peru	Síndrome de West	ОК	ОК	Inconclusivo
221	F	60	36	Lima - Peru	EED indeterminada	ОК	ОК	OK
222	F	-	-	Lima - Peru	EED indeterminada	ОК	ОК	ОК
223	F	-	-	Lima - Peru	EED indeterminada	ОК	ОК	OK
224	F	4	2	Lima - Peru	Síndrome de West	ОК	ОК	Inconclusivo
225	М	192	3	Buenos Aires - Argentina	Síndrome de Lennox-Gastaut	ОК	ОК	ОК
226	М	84	18	Buenos Aires - Argentina	Síndrome de Lennox-Gastaut	ОК	ОК	Inconclusivo
227	F	96	22	Buenos Aires - Argentina	Síndrome de Lennox-Gastaut	ОК	ОК	Inconclusivo
228	М	48	4	Buenos Aires - Argentina	Síndrome de Doose	ОК	ОК	ОК
229	М	24	11	Buenos Aires - Argentina	Síndrome de Doose	ОК	ОК	ОК
230	М	60	36	Buenos Aires - Argentina	Síndrome de Doose	ОК	ОК	Inconclusivo
231	F	228	15	Buenos Aires - Argentina	Síndrome de Doose	ОК	ОК	Inconclusivo
232	F	21	0	Buenos Aires - Argentina	Síndrome de Dravet	ОК	ОК	Inconclusivo
233	F	72	36	Buenos Aires - Argentina	Epilepsia com Estado de Mal Elétrico do Sono	ОК	ок	Inconclusivo
234	F	108	2	Buenos Aires - Argentina	Epilepsia com Estado de Mal Elétrico do Sono	ОК	ОК	Inconclusivo
235	М	60	48	Buenos Aires - Argentina	Epilepsia com Estado de Mal Elétrico do Sono	ОК	ок	Inconclusivo
236	F	156	156	Buenos Aires - Argentina	EED indeterminada	OK	ОК	Inconclusivo
237	F	132	120	Buenos Aires - Argentina	Epilepsia com Estado de Mal Elétrico do Sono	ОК	ОК	Inconclusivo
238	F	24	0	Buenos Aires - Argentina	Síndrome de Dravet	ОК	ОК	Inconclusivo
239	М	24	7	Buenos Aires - Argentina	Síndrome de West	ОК	ОК	OK
240	М	48	2	Buenos Aires - Argentina	EED indeterminada	ОК	ОК	OK
241	М	24	11	Buenos Aires - Argentina	Síndrome de Dravet	ОК	ОК	Inconclusivo
242	F	36	5	Buenos Aires - Argentina	Síndrome de Dravet	OK	OK	Inconclusivo
243	М	27	9	Buenos Aires - Argentina	EED indeterminada	OK	OK	OK
244	F	7	0	Campinas - Brasil	EED indeterminada	ОК	ОК	Validar
245	М	-	-	Valparaíso - Chile	EED indeterminada	ОК	ОК	Inconclusivo
246	М	-	-	Valparaíso - Chile	EED indeterminada	ОК	ОК	Inconclusivo
247	М	-	-	Valparaíso - Chile	EED indeterminada	ОК	ОК	ОК
248	М	-	-	Valparaíso - Chile	EED indeterminada	ОК	ОК	Inconclusivo
249	F	-	-	Valparaíso - Chile	EED indeterminada	OK	OK	Inconclusivo
250	F	-	-	Valparaíso - Chile	EED indeterminada	OK	OK	OK
251	F	-	-	Valparaíso - Chile	EED indeterminada	OK	OK	OK
252	М	-	-	Valparaíso - Chile	EED indeterminada	OK	ОК	Inconclusivo

253	F	-	-	Valparaíso - Chile	EED indeterminada	ОК	ок	Inconclusivo
254	F	-	-	Valparaíso - Chile	EED indeterminada	ОК	ок	ОК
255	F	-	-	Valparaíso - Chile	EED indeterminada	ОК	ОК	OK
256	М	-	-	Valparaíso - Chile	EED indeterminada	ОК	OK	ОК
257	F	-	-	Valparaíso - Chile	EED indeterminada	ОК	OK	ОК
258	М	-	-	Valparaíso - Chile	EED indeterminada	ОК	ок	Inconclusivo
259	F	-	-	Valparaíso - Chile	EED indeterminada	ОК	OK	Validar
260	М	102	32	Lima - Peru	Síndrome de Doose	ОК	OK	Inconclusivo
261	М	7	0	Lima - Peru	Síndrome de West	ОК	OK	ОК
262	М	10	6	Lima - Peru	Síndrome de West	ОК	OK	OK
263	F	25	8	Lima - Peru	Síndrome de West	ОК	OK	Inconclusivo
264	F	-	-	Lima - Peru	EED indeterminada	ОК	OK	OK
265	М	9	4	Lima - Peru	Síndrome de West	OK	ОК	Inconclusivo
266	F	21	3	Montevideo - Uruguai	Síndrome de West	ОК	OK	Inconclusivo
267	М	14	8	Montevideo - Uruguai	Síndrome de West	ОК	OK	Validar
268	F	-	-	Montevideo - Uruguai	EED indeterminada	ОК	OK	Inconclusivo
269	F	31	5	Montevideo - Uruguai	Síndrome de West	ОК	OK	Validar
270	М	10	0	Campinas - Brasil	EED indeterminada	ОК	OK	Inconclusivo
271	М	10	48	Campinas - Brasil	EED indeterminada	ОК	OK	Inconclusivo
272	F	-	-	Campinas - Brasil	EED indeterminada	ОК	OK	Inconclusivo
273	F	-	156	Campinas - Brasil	Síndrome de Lennox-Gastaut	OK	OK	Inconclusivo
307	М	84	5	Campinas - Brasil	Síndrome de Dravet	ОК	ОК	OK
308	М	-	-	Campinas - Brasil	Síndrome de Doose	ОК	OK	Inconclusivo
309	М	-	-	Campinas - Brasil	EED indeterminada	OK	OK	Inconclusivo
310	М	60	4	Campinas - Brasil	Síndrome de Dravet	ОК	OK	OK